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Classically forbidden recurrences in the photoabsorption spectrum of lithium

Vladimir Kondratovich and John B. Delos
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

Neal Spellmeyer* and Daniel Kleppner
Research Laboratory of Electronics, George R. Harrison Spectroscopy Laboratory and Department of Physics,

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
~Received 9 May 2000; published 19 September 2000!

We present data on the photoabsorption spectrum of lithium atoms in an electric field at energies between
the saddle point of the Stark potential and below the field-free ionization threshold. The spectrum displays a
sequence of sharp resonances and a sequence of broad ones. We find that the broad resonances arise from the
classically forbidden reflection of waves above a dynamical potential barrier. The recurrence spectrum is also
observed and it is dramatically affected by above-barrier reflections. We have developed a semiclassical theory
that interprets the spectra using quasiclassical trajectories that undergo above-barrier reflection.

PACS number~s!: 32.60.1i, 03.65.Sq, 32.30.2r, 32.80.2t

In this paper, we identify resonances in an atomic absorp-
tion spectrum that are associated with a classically forbidden
process: reflection of a quantum wave when the effective
energy is above the top of a potential-energy barrier~Figs.
1–3! @1#. In this circumstance, a classical particle would di-
rectly escape from the atom. The corresponding quantum
wave, however, has a reflection coefficient. We identify here
broad resonances associated with this ‘‘above-barrier reflec-
tion.’’

In our analysis, we provide a quantitative description of
the spectrum by a new method. Also we extend closed-orbit
theory @2# by introducing quasiclassical closed orbits under-
going above-barrier reflection.

I. CLASSICALLY ALLOWED AND CLASSICALLY
FORBIDDEN REFLECTIONS IN A HYDROGEN ATOM

IN AN ELECTRIC FIELD

Several phenomena in atomic spectroscopy manifest
themselves as broad structures in the absorption spectrum,
and these can easily be confused with above-barrier reflec-
tion. ~A! If a negative ion is placed in an electric field, a part
of the wave function of the photodetached electron travels
uphill against the electric force, and then is reflected back
downhill. The returning wave overlaps the atom and inter-
feres with the outgoing wave, producing oscillations in the
absorption spectrum@3#. ~B! If a neutral atom is placed in an
electric field, and the absorption spectrum is measured above
the field-free threshold, waves that travel uphill are also re-
flected back to the atom, again giving interference modula-
tions or resonances@4#. Similar phenomena occur in a mag-
netic field@5#. These phenomena involve classically allowed
reflection~i.e., classicallyrequiredreflection!: the wave fol-
lows the path that would be followed by a classical particle
of the same initial momentum, and the reflection coefficient
is unity.

For an atom in an electric field below the field-free ion-
ization threshold, the situation is more complex. Let us re-
strict ourselves to the hydrogen atom in an electric field.

The potential energy of the electron

V~r !521/r 1Fz ~1.1!

has a saddle at energyEs522F1/2. Classically, if an elec-
tron leaves the atom with an energy belowEs , then no mat-
ter what direction it goes, it is reflected from a potential-
energy hill, and it remains bound to the atom forever. In
quantum theory, such an electron escapes from the atom only
by tunneling. Accordingly, the absorption spectrum consists
of a set of narrow resonances, with a lifetime governed by
the rate of tunneling through the barrier~or the rate of spon-
taneous emission of a photon, whichever is larger!.

If the electron is ejected from the atom with an energy
between the saddle energy and the zero-field ionization en-
ergy Es,E,0, then its fate is determined by its initial di-
rection of motion. The electron has enough energy to escape,
but unless it has sufficient momentum in the ‘‘downhill’’
direction, it will still remain bound to the atom. There is a
critical angleuc , such that electrons leaving the atom with
uc,u<p escape quickly, but those leaving the atom with
0<u,uc are bound forever.~Those leaving atuc approach a
periodic orbit that lies on a parabola not far from the
potential-energy saddle.!

The critical angleuc depends on the energy as

cosuc512E2/2F ~1.2!

so as the energy is raised fromEs to zero, the critical angle
varies betweenp and 0: the bound sector shrinks and the
escape sector grows.

What are the consequences for the quantum spectrum in
this energy range? Trajectories in the bound sector again
correspond to long-lived quantum states; their lifetimes are
governed not by tunneling through the real potential-energy
barrier ~Fig. 1! but by tunneling through the effective
potential-energy barrier~Fig. 2!. These long-lived states ap-
pear in the absorption spectrum as narrow resonances. In
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contrast, quantum states associated with the classical escape
sector are essentially free states, and they give continuum
absorption. It follows that the absorption spectrum as a func-
tion of energy consists of narrow lines superposed on a
smoothly rising continuum~see Fig. 4 of Ref.@6#!.

Interesting phenomena occur if the initial direction of the
electron is close to the critical angle. While the trajectories
change discontinuously from bound to free if the ejection
angleu is increased throughuc , the corresponding quantum
states must be continuously connected. States having elec-
tron ejection angles slightly on the bound side ofuc have
relatively short tunneling lifetimes~compared to other qua-
sibound states!, and therefore they appear as relatively broad
resonances. States having electron ejection angles slightly on
the free side ofuc have relatively long lifetimes~compared
to other continuum states!, and therefore they appear as
‘‘structure in the continuum.’’ If we were to vary the electric
field such that the ejection angle associated with a particular
quasibound resonance were to increase throughuc , we
would see the width of the resonance increase rapidly, so its

contribution to the absorption spectrum would change from a
narrow line to a smooth contribution to the continuum.

When the ejection angle is just on the free side ofuc , the
lifetime of the state is governed by the classically forbidden
process of above-barrier reflection. In this paper, we identify
in the Stark absorption spectrum of Li a set of broad reso-
nances that correspond to classically forbidden above-barrier
reflection. The same region of the spectrum has been exam-
ined in a number of studies@7#, but none have previously
noted this particular phenomenon. It is of special interest to
us because this phenomenon forces us to give a new exten-
sion of closed-orbit theory, introducing quasiclassical closed
orbits undergoing above-barrier reflection.

II. HYDROGENIC STARK PROBLEM

The Schro¨dinger equation and the classical Hamilton-
Jacobi equation are separable in parabolic coordinatesu
5Ar 1z, v5Ar 2z, with effective Hamiltonians

hu5pu
2/22Eu21Fu4/2511b,

~2.1!
hv5pv

2/22Ev22Fv4/2512b.

Everything we said in Sec. I is easily proved by analysis of
these equations. The separation constantb (21<b<1) is
related to the polar angleu at which a classical electron
leaves the atom by

b5cosu. ~2.2!

FIG. 1. The Stark potential energy@Eq. ~1.1!# has a potential
energy barrier, below which electrons can escape only by tunneling.
Above the saddle-energyEs , electrons have enough energy to es-
cape, but they may still be classically bound forever by a dynamical
barrier ~Fig. 2!. Above the dynamical barrier they may still be
bound temporarily by classically-forbidden above-barrier reflection.

FIG. 2. Effective potentials for motion alongu and v coordi-
nates. The quantities 11b and 12b play the role of effective
energies. Theu motion is always bound; thev motion can show
tunneling or above-barrier reflections, both of which are classically
forbidden.

FIG. 3. Bound trajectory~solid line! and escaping trajectories
~dashed lines! in Coulomb field combined with electric field along
thez axis. The scaled energy,«521.9, is slightly above the saddle
point energy,«saddle522. All trajectories have enough energy to
escape, but those having ejection angleu<uc are bound by the
dynamical barrier in thev coordinate. The energetically forbidden
region is shaded.
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Also 16b plays the role of the effective energy associated
with the u or v motions, respectively~Fig. 2!.

The motion along theu coordinate is always bound~Figs.
2 and 3!. However, in thev coordinate, there is an ‘‘effec-
tive’’ or ‘‘dynamical’’ potential-energy barrier. If an electron
with energy aboveEs leaves the atom in a ‘‘downhill’’ di-
rection, then cosu;21, hv512b is large, and the electron
can escape over the barrier. If the electron leaves the atom in
an uphill direction, then cosu;1, hv512b is small, and
the electron is trapped by the dynamical barrier. It has
enough energy to escape~Fig. 1!, but it is trapped below the
dynamical barrier~Fig. 2!, i.e., it never finds the escape route
~Fig. 3!.

It also follows easily from Eqs.~2.1! that the boundary
between bound and free motions is atbc5cosuc51
2E2/2F. If the electron leaves the atom just slightly downhill
from this critical angle then the value ofhv512b is just
barely higher than the dynamical barrier. A classical particle
moves slowly over the barrier and escapes, but the quantum
wave is partially reflected and partially transmitted. This
classically forbidden above-barrier reflection produces broad
resonances in the absorption spectrum.

III. OBSERVATIONS AND INTERPRETATION BY WKB
APPROXIMATION

Scaled energy spectroscopy@8~a!# is invaluable for ob-
serving these states experimentally. In this method the exci-
tation energyE and electric fieldF are simultaneously varied
so that the scaled energy«5E/F1/2 is constant. The spec-
trum is recorded as the scaling variablew5F21/4 is varied.
Scaled energy spectroscopy maintains constant the shapes of
classical orbits as it generates the absorption spectrum
D f (E,F)u«5const[D f (w).

The experimental setup is similar to that described in
@8~b!#. Lithium is excited to the 3s state by two-step resonant
excitation 2s→2p→3s, and then to anm50 Rydberg state
by a tunable laser. The absorption spectrum, Fig. 4, was
taken for scaled energy«5E/AF520.125. This is far
above the Stark saddle energy«saddle522 and the critical
angle is about 7° from the uphill electric field axis.

We see in the absorption spectrum a reasonably flat con-
tinuum, a sequence of four narrow resonances, and a se-
quence of four less intense and broader resonances (nv51).
These are associated, respectively, with escaping classical
orbits, bound classical orbits, and quasiclassical orbits that
undergo quantum above-barrier reflection.

To make this connection, we extend semiclassical quanti-
zation conditions above the dynamical potential barrier by
using a uniform-WKB approximation~see, for example,@9#!.
This leads to complex quantization conditions

Ju~E,b!5~nu11/2!2p, ~3.1a!

Jv~E,b!5~nv11/2!2p2 ilv2d, ~3.1b!

whereJu and Jv are action variables associated with theu
andv motion

Ju~E,b!5E
osc

pu du52E
0

u0A2~11b!12Eu22Fu4 du,

Jv~E,b!5E
osc

pv dv52E
0

v0A2~12b!12Ev21Fv4 du,

~3.2!

lv describes the imaginary addend to action due to tunneling
or above-barrier reflection

lv5
1

2
ln~11e22K!, ~3.3!

andK is an underbarrier action integral

K5E
v0

v1
pv dv. ~3.4!

The cuts on the complexv plane are defined such thatK is
positive below the barrier and negative above the barrier.s
is a parabolic-barrier phase correction

d5argGF1

2
1 i

K

2pG2
K

2p
lnS uKu

2p D1
K

2p
. ~3.5!

The quantization conditions~3.1! are associated with com-
plex turning points, and they lead to complex quantized val-
ues ofE andb.

Using these quantization conditions, we identify the nar-
row peaks in the experimental spectrum~Fig. 4! as the levels
with parabolic quantum numbersnu51002103 andnv50.
These are ordinary above-saddle-energy Stark states. Each of
these states has an energy above the saddle inV(r ), but its
effective energy in thev coordinate 12b is below the bar-

FIG. 4. Scaled absorption spectrum of Li vsw5F21/4 at «
520.125, experiment and theory~dotted line!. The parabolic quan-
tum numbers (nu ,nv) are indicated. All peaks correspond to reso-
nances that are far above the potential-energy saddle. States with
nv50 are below the dynamical barrier; escape is classically forbid-
den and they decay by tunneling. Those withnv51 are above the
dynamical barrier and escape is classically allowed; they have a
lifetime because of quantum reflection above the dynamical barrier.
The shadowed strips show the position and widths of these states.
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rier in the effective potential energyVv ~Fig. 2!, so reflection
is classically mandated, and the state has a long lifetime.

By the same calculation we identify the broad peaks in
Fig. 4 as above-barrier levels withnv51. These arise from
classically forbidden reflection above the effective potential-
energy barrier.

IV. SEMIQUANTAL CALCULATION OF THE
ABSORPTION SPECTRUM

We have computed the absorption spectrum including
continuum, quasidiscrete states and above-barrier reflection
using a new semiclassical method. Details of the theory will
be given in a later paper; here we give only a sketch of the
essential results.

If we have only a discrete spectrum, then the oscillator
strength for the transition from a given initial statei to a final
staten is defined as

f n
i 52~En2Ei!u^ iuDun&u2, ~4.1!

whereD is the relevant component of the dipole operator.
The oscillator-strength-densityD f (E) is defined as

D f ~E!5(
n

f n
i d~E2En!. ~4.2!

In a previous paper@10#, we presented a semiclassical
formula for the oscillator strength of discrete high-Rydberg
states,

f n
i 532p3~En2Ei!U ]~E,b!

]~Ju ,Jv!
UuY~un!u2. ~4.3!

Y(u) is the angular distribution of electron waves going out
from the atom as a result of excitation by light.

In another paper@11#, following the method of Berry and
Tabor @12#, we used the Poisson sum formula to transform
the oscillator-strength densityD f (E) ~4.2! and ~4.3! to the
form

D f ~E!532p3~E2Ei!(
M

E db eiM (J2mp/2)uY„u~E,b!…u2.

~4.4!

Here the integral over the conserved quantityb is an in-
tegral over all possible tori that exist at the given energyE.
The sum over all integersM is a sum over all possible loops
on those tori.MuJu1M vJv is the action integral around
those loops, and we include in the sum (2`,Mu ,M v
,`). m is the vector of Maslov indices for single loops on
the tori; in our casem5(2,2).

As stated above, Eq.~4.4! applies to a discrete spectrum,
when there is no tunneling. In the present case, we have
tunneling in thev coordinate, and Eq.~4.4! must be modi-
fied. A lengthy analysis shows that a very similar represen-
tation holds when tunneling is present and the semiclassical
quantization conditions are complex. Let us define

Rv~E,b!5e2lv5~11e22K(E,b)!21/2 ~4.5!

as the reflection coefficient for each cycle ofv motion.@K is
the underbarrier integral defined in Eq.~3.4!.# The analysis
~which we will present elsewhere! shows that the exponential
factor exp(iMvJv) in Eq. ~4.4! should be multiplied by the
reflection coefficientRv once per cycle, to give a factor
R v

uMvu :

D f ~E!532p3~E2Ei!(
M

E db eiM (J2mp/2)R v
uMvu

3uY„u~E,b!…u2. ~4.6!

This formula can be summed analytically overM v , to
give the formula

D f ~E!527p5~E2Ei! (
nu50

nu
max

uY~u„b~nu ;E!…!u2

]Ju /]b

3D~Jv„E,b~nu ;E!…2p,lv„E,b~nu ;E!…!.

~4.7!

We call this the semiquantal formula for the oscillator-
strength density. It has the following meaning.

~1! D(x,l) is a sum of broadened delta functions

D~x,l!5
1

2p

cothl

11S sin~x/2!

sinhl D 2 . ~4.8!

When l→0, the function D(x,l) tends to (n52`
1` d(x

22pn). The width of these functions is the natural ln of the
reflection coefficientRv :

l5lv52 ln Rv52 ln~11e22K(E,b)!21/2. ~4.9!

If we take into account the total dependence of the argument
x5Jv„E,b(nu ;E)…2p on the energy, we come to the fol-
lowing formula for the absorption peak width:

G5

]Ju

]b

]~Ju ,Jv!

]~E,b!

ln~11e22K!. ~4.10!

When the reflection coefficient is close to 1~far below the
barrier, whenK is large and positive!, then theD function is
narrow and the width is exponentially small:

G5

]Ju

]b

]~Ju ,Jv!

]~E,b!

e22K. ~4.11!

This formula was initially reported in@13#. When the reflec-
tion coefficient is close to zero~far above the barrier, whenK
is large and negative!, the width is large and proportional to
K:
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G5

2
]Ju

]b

]~Ju ,Jv!

]~E,b!

uKu. ~4.12!

~2! b(nu ;E) is obtained from the quantization condition
for u motion, ~3.1a!:

Ju„E,b~nu ;E!…5~nu11/2!2p, ~4.13!

and u„b(nu ;E)…5cos21 b(nu ;E) represents the correspond-
ing polar angle, or initial direction of motion of the electron.

~3! For eachE, since21<b<1, there is a range of in-
tegersnu satisfying theu-quantization condition~4.13!. This
gives the limits of summation 0<nu<nu

max with nu
max equal

to the integer part of@Ju(E,1)/2p21/2#. Associated with
each such integer is a peak of widthG, weighted by the
angular distribution of outgoing waves at the corresponding
angle, times@]Ju /]b#21. The peaks are positioned at ener-
gies given by thev-quantization condition~3.1b!

Jv@E,b~nu ;E!#1d5~nv11/2!2p ~4.14!

~in good approximation, we may neglect the imaginary ad-
dendilv when finding the eigenenergies!.

This semiquantal formula~4.7!–~4.13! is easily imple-
mented. It gives the result shown as a dotted curve in Fig. 4
@14#. We see that this formula includes the nearly constant
continuum, the narrow below-barrier resonances, and the
broad above-barrier resonances.

V. CLOSED-ORBIT SEMICLASSICAL CALCULATION OF
THE ABSORPTION SPECTRUM AND THE

RECURRENCE SPECTRUM

We call the above approach ‘‘semiquantal’’ because it
uses the WKB approximation, but everything in the theory
involves quantum concepts: individual resonance states and
lifetimes. Now we present a semiclassical calculation, which
uses closed-orbit theory to compute the absorption and recur-
rence spectra. We shall show that an important feature of the
spectrum is associated with classical orbits that undergo non-
classical above-barrier reflection.

The propagation of a quantum wave from the atom to-
ward the dynamical barrier is described in semiclassical ap-
proximation by a system of rays—classical orbits obeying
Newton’s laws. Near the top of the dynamical barrier the
semiclassical approximation breaks down and the ray de-
scription is no longer valid. The quantum solution near the
barrier top yields a transmitted wave and a reflected wave.
The transmitted wave corresponds to ordinary Newtonian
trajectories that are launched in the escape sector and go to
infinity ~Fig. 3!. The reflected wave can also be correlated
with Newtonian trajectories, but the reflection itself is a
quantum process that cannot be described by Newtonian me-
chanics.

For the Stark system, Eq.~1.1!, the dynamical barrier lies
on a parabolic curvev5AuEu/F, which is indicated as the
dotted-dashed line in Fig. 5. Examples of closed orbits asso-

ciated with above-barrier reflection are shown. These new
nonclassical orbits that arise from above-barrier reflection
must be included in closed-orbit theory.~This conclusion is
complementary to conclusions reached by Maitra and Heller
@15#. They examined the quantum propagator in time- and
energy-domains for one-dimensional motion with a potential
barrier. One might anticipate that the Green function in the
energy domain is a Fourier transform of the time propagator
calculated using classical trajectories joining two given
points in space. Maitra and Heller show that classically al-
lowed trajectories are not enough; tunneling trajectories must
also be considered for energies below the barrier top. Our

FIG. 5. Two examples of above-barrier-reflected orbits.~a!
Heavy line: a below-barrier closed orbit which makes one cycle of
u motion and 5 cycles ofv motion ~1/5 orbit!. Light line: above-
barrier-reflected orbit with the same ratio of periods. Classically, an
electron would follow the dashed line and escape.~The critical
angle uc lies between the heavy and light lines.! On the below-
barrier orbit, the electron makes a full stop and then retraces itself.
Near the stop-point the trajectory is rectilinear and parallel to the
stopping force~the sum of the Coulomb force and the force from
the external field!. The above-barrier closed orbit also retraces it-
self. However, at the endpoint, the trajectory does not have a stop-
ping point—the reflection occurs with nonzero velocity.~b! The 1:6
above-barrier closed trajectory shows an example of a ‘‘ray split-
ting’’ due to above-barrier reflection. The heavy line is the outgoing
trajectory; on its third passage through the2z axis, a ray splitting
occurs, and the transmitted~classical! trajectory continues to infin-
ity ~dashed line! while the above-barrier-reflected trajectory returns
to the atom, but not retracing itself~thin line!. In the blowups~right!
we have indicated the top of thev-barrier by the dotted-dashed
curve.
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result shows that above the top, nonclassically reflected tra-
jectories make their contribution.!

A quantitative description can be obtained starting again
from Eq. ~4.6!. First let us set the reflection coefficientRv
51, so Eq.~4.6! is equivalent to Eq.~4.4!. In that case, it can
be shown@11# that if the integral overb is evaluated using
the stationary-phase approximation, the result is the closed-
orbit formula for the oscillator-strength-density. Each closed
orbit for this regular system is labeled by a pair of integers
M5(Mu ,M v) representing the number of cycles ofu andv
motion before closure. The closed orbit lies on a rational
torus characterized by conserved quantities (E,bM), and the
action integral around the closed orbit is

SM5MuJu~E,bM !1M vJv~E,bM !. ~5.1!

The contribution of each closed orbit to the oscillator-
strength-density is

D f M~E!5S 2p

]2SM /]b2D 1/2

uY„u~E,bM !…u2Im ei (SM2p/4).

~5.2!

Now let us incorporate the effects of tunneling or escape
in the v coordinate. Not surprisingly, the effect is that the
RHS of Eq.~5.2! is multiplied by the reflection coefficient
R v

Mv whereM v is the number of cycles ofv motion before
closure. If the reflection coefficient is 1~impenetrable bar-
rier!, we get the standard closed-orbit formula. For a real
barrier, Rv,1, so the contribution of each closed-orbit is
reduced.~The minimal value ofRv for bound motion is
reached at the top of the effective potential barrier, where
Rv5221/2.! Above the barrier,Rv decreases exponentially.

The resulting formula

D f M~E!5R v
MvS 2p

]2SM /]b2D 1/2

uY„u~E,bM !…u2Im ei (SM2p/4)

~5.3!

also applies to nonclassical orbits associated with above-
barrier reflection. In that case the quasiclassical orbit goes
out to a complex turning point, and the associated wave is
partially reflected. In the present case, we find reflection co-
efficients of about 0.57 for the above-barrier 1/5 orbit, and
about 0.67 for the above-barrier 1/6 orbit.

More generally, Eq.~5.3! is accurate if the closed orbit is
well-separated from the endpointsb561, and from the
critical point bc , where the reflection coefficient changes
rapidly as a function ofb. ~Refinements of a familiar type
are necessary otherwise@12#.! Such calculations have been
carried out, and they give good agreement with semiquantal
calculations.

The effect of the classically forbidden above-barrier-
reflected orbits is dramatically revealed in a recurrence spec-
trum. The recurrence spectrum is given byuR(s)u2 where
R(s) is the Fourier transform ofD f (w) over a selected range
of w (133.2<w<138.5 in our case!,

R~s!5E e22p iswD f ~w!dw. ~5.4!

Closed-orbit theory@2# shows that a recurrence spectrum
consists of peaks positioned at the scaled actionss of closed
orbits. The recurrence spectrum of the data in Fig. 4 is shown
in Figs. 6~b! and 6~c!. Large-scale modulations are conspicu-
ous. We shall show that they arise from above-barrier reflec-
tions.

For scaled energy«520.125, the action of every orbit is
close to a multiple of the action of the parallel orbitsuu .
Therefore individual orbits are not resolved in Fig. 6: each
peak corresponds to all orbits having the same number of
oscillations ofu motion. If we neglect above-barrier reflec-
tions, we get a smoothly decaying sequence of peaks@Fig.
6~a!#. The decay rate is determined by the width of the sharp
below-barrier peaks~see Fig. 4!; this width is governed by
the energy resolution in the experiment.

When above-barrier reflections are taken into account,
modulations occur in the recurrence spectrum. The effect is
surprisingly large—the modulations are comparable to the
peak heights in Fig. 6. We may contrast this with the ratio of
the peak heights in the photoexcitation spectrum, Fig. 4,
where peak heights associated with above-barrier resonances
are only 10% of the heights of the below-barrier resonances.
The enhanced effect of above-barrier reflections in the recur-
rence spectrum arises because the latter is sensitive to the
integrated oscillator-strengthf nv

, which is still considerable
for the above-barrier resonances.

In the scaled spectrum, the narrow resonances withnv
50 are nearly equally spaced by 2p/suu @16#, suu being the

FIG. 6. Recurrence spectra vs the scaled actions. Thenth peak
represents the effect of thenth return of the parallel orbit combined
with all other orbits which haven oscillations ofu motion. Dashed
line is the theoretical envelope of the modulations, induced by the
interference of quasiclassical closed orbits undergoing above-
barrier reflections with the ordinary closed orbits.
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distance between peaks in the recurrence spectrum. The
broad levels are displaced from these byTu /Tv fraction of
their spacing.Tu andTv are the periods of classical motion
taken at the values ofE andb corresponding to the above-
barrier resonance. Taking also into account the resonance
widths Gnv

, we can make the Fourier transform analytically
and find the envelope of recurrence peaks:

f ~s!5 f 0
2e22pG0s1 f 1

2e22pG1s

12 f 0f 1e2p(G01G1)s cosS 2p
Tu

Tv

s

suu
D . ~5.5!

This envelope is in good agreement with more detailed cal-
culations @Fig. 6~b!#. There is also good agreement in the
depth and period of modulation with the experimental recur-
rence spectrum@Fig. 6~c!#.

The closed-orbit sum reveals that the large modulations in
the recurrence spectrum result from the interference of clas-
sical, below-barrier orbits and nonclassical, above-barrier
closed-orbits. The major closed-orbit contributions come
from Tu /Tv51/4 and 1/5 below-barrier orbits and from 1/5
and 1/6 above-barrier orbits. The period of modulation of the
recurrence spectrum is, according to Eq.~5.5!, Tu /Tv . At E
and b of the broad resonance,Tu /Tv51/4.7, or 4.7 peaks
per period.

The peaks at greater scaled actions correspond to longer
orbits; many of them are repetitions of the shorter ones. The

decay in the modulation amplitude arises because the recur-
rence strengths of above-barrier orbits decrease as a power of
the reflection coefficient.

VI. CONCLUSION

We have measured the scaled photoabsorption spectrum
of the Li atom in an external electric field. It shows a peri-
odic sequence of sharp peaks associated with quasibound
states, and it shows broad peaks, identified as classically for-
bidden above-barrier resonances. These broad low-amplitude
peaks have a dramatic effect on the recurrence spectrum,
introducing about 100% modulation. We developed a semi-
classical theory of the oscillator-strength-density that is in
agreement with experimental data. We have shown that the
modulation carries important information about above-
barrier resonances: the depth of modulation is related with
the integrated oscillator-strength of the resonances, and the
decay rate is determined by the width of resonances. The
closed-orbit interpretation of the effect involves nonNew-
tonian orbits that undergo above-barrier reflection.
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