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ABSTRACT

Tributyltin (TBT), the active ingredient in many marine antifouling paints, has 
been strictly regulated over the last decade because of its toxicity to many non target 
species. Regulatory actions have reduced TBT concentrations in the water column, 
however TBT has accumulated in the sediment where degradation is very slow with a half 
life on the order of years. Dredging has the potential to re-expose sediment historically 
contaminated with high concentrations of TBT. These dredge spoils then require some 
form of remediative treatment. The goal of this study was to determine the feasibility of 
bioremediation of TBT contaminated sediment using created wetlands. This was 
accomplished by measuring the loss of TBT from amended sediments, its uptake by the 
marsh macrophyte Spartina alterniflora, and its potential release via plant decomposition. 
TBT levels up to 250 ng/g did not inhibit S. alterniflora growth over a sixteen month 
period. TBT disappearance in vegetated versus unvegetated treatments were similar with 
half lives of 300 and 330 days respectively. Measured DBT levels suggest that the 
breakdown of TBT is occurring in the wetland. Measured levels of TBT in aboveground 
biomass ranged from 1- 2.5 ng/g. Belowground biomass TBT levels were higher at 43 
ng/g of TBT suggesting little translocation within the plant. During a fifty-three day plant 
degradation study, plant tissue underwent physical changes but much of the TBT was 
retained in the detrital material. Based on the results of this study in a relatively sandy 
created marsh, only 40% of the sediment TBT would be expected to remain after 16 
months. Of the initial amount of TBT only 0.4% would be expected to accumulate in S. 
alterniflora biomass. While S. alterniflora did not expedite the degradation of TBT, 
using dredge spoils to create wetlands is plausible. However this should only be 
undertaken after further investigation into the potential for the plant biomass to become a 
biovector for TBT to different trophic levels.
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INTRODUCTION

Tributvltin 

Uses and Effects

Since organotins were first described by Lowig in 1852, these compounds have been 

put to many uses. Organotins were first used in 1925 as the active ingredient in moth 

proofing agents. In the mid 1930s, organotins were employed as stabilizers first in 

chlorinated benzenes and biphenyls used in transformers and capacitors as heat stabilizers 

and then in polyvinyl chloride (PVC) copolymers for heat and light. This use has continued 

today in industrial and food packaging with PVCs. The benefit to the food packaging 

industry is that organotin stabilizers result in PVCs which are clear, allowing the consumer 

to examine the food product (Bennett, 1996; Champ & Seligman, 1996). In 1954 organotins 

were even introduced in the medical world as treatment for staphylococcal infections. This 

was quickly discontinued when it resulted in the deaths of 102 people. It was not until 1961 

that organotins were first recognized as efficient, effective active ingredients for antifouling 

paints. Throughout the 1970s and 80s their use in this manner became widespread (Champ 

& Seligman, 1996). Other uses of organotins include wood preservation, fungicides in the 

textile industry, biocides in the agricultural industry, insecticides, molluscides, stone 

preservatives, and as disinfectants (Bennett, 1996). As illustrated by their prolific and 

diverse usage, organotins are broad spectrum toxins, and their use and production has 

escalated to more then 50,000 tons annually worldwide (Bennett, 1996).

Of most concern to the study presented here is the use of the tributyltin (TBT) cation



in marine antifouling paints. Preventing the fouling of vessel hulls has been a goal of the 

shipping industry since its beginning. Fouling by seaweeds, algae, barnacles, worms, 

bryozoans, and other colonizing marine animals on a ship’s hull causes increased drag and 

as a result, increased fuel consumption and decreased maneuverability. Copper based 

antifouling paints had been utilized before organotin based paints were introduced to the 

market. It became apparent that TBT containing paints were more effective at preventing 

fouling. In one US Navy study, copper based antifouling systems worked for less than a year 

while TBT paints were effective for 5-7 years (Champ & Pugh, 1987; Champ & Seligman, 

1996). Both by extending the periods between drydocking and repainting and by decreasing 

fuel consumption, the use of TBT was estimated to save the world fleet $US3 billion 

annually (de Mora, 1996; Rouhi, 1998). An indirect benefit of using TBT based paints for 

the environment is reduction in the emissions of greenhouse gases due to reduced fuel usage. 

The paints also prevent the spread of non-native, invasive species because they keep the hulls 

of ships free of fouling organisms (Evans & Nicholson, 1999; Evans, 1992).

There are two types of TBT based antifouling paints, free association paints and self­

polishing copolymers (SPCs). The free association paints include those manufactured with 

both soluble and insoluble matrices. Paints that employ a soluble matrix release TBT 

through diffusion and periodically the top layer has to be sloughed off to expose a layer still 

rich in TBT. The normal life of these paints is approximately 2 years. Paints utilizing an 

insoluble matrix initially release high levels of TBT. These release rates decrease 

exponentially with time and become more controlled as TBT moves through small channels 

in the paint matrix. Eventually these channels become plugged rendering the paint

3



ineffective. At that time the paint must be removed. High levels of TBT remain in the paint 

which is removed and then disposal of the contaminated waste becomes an issue. The latest 

paints are the self polishing copolymers (SPCs) which use TBT incorporated into a 

methylmet-«-acrylate matrix (TBTM). A gradual, constant release is attained through the 

slow alkaline hydrolysis of the matrix surface. This results in the eroding of the surface layer 

and the exposure of fresh TBTM. These paints contain lower overall concentrations of TBT 

and have an extended life time of up to and beyond 5 years (de Mora, 1996). The problem 

with TBT as an antifouling agent is its toxicity to non target species once it enters the water 

column.

Tributyltin (TBT) is an extremely biologically reactive organometallic compound. 

The TBT moiety is made up of three butyl groups bound covalently to a tin atom in the +4

a^-Q ^-Q ^-cf^-sn+-

0 ^ 0 4 -0 4 -0 %

oxidation state (Muller et al., 1989). The carbon-tin bonds are relatively weak and more 

polar than the bonds formed within the organic component of the molecule. In the aquatic 

environment tributlytin speciation is controlled by pH, salinity, and the dissolved carbon 

dioxide concentration in the water. At a pH of 8, roughly that of seawater, the most common 

species are tributyltin hydroxide and tributyltin carbonate but it can also exist as a hydrated 

tin cation or tributyltin chloride (de Mora, 1996).

As an environmental contaminant, TBT has been shown to impact multiple species
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and trophic levels at concentrations as low as ng/L (pptr). Responses to TBT exposure have 

included imposex in snails (the superimposition of male genitalia on the female reproductive 

system), disruption of normal hormonal activity in multiple species, reduced growth rates in 

mussels and oysters, sterility, and premature death (Lee, 1991). Concentrations of TBT in 

contaminated water normally range from >100 ng/L to <300 ng/L (Batley, 1996) but ranges 

of 20-1800 ng/L have been observed (Hall, 1986). Sediment concentrations can be even 

higher because of the propensity of TBT to be associated with particles which quickly settle 

out. Normally the water surface micro-layer is also enriched due to the increased 

concentration of organic and inorganic anthropogenic compounds as well as hydrophobic 

materials to which TBT adsorbs (Hardy, 1982; Cleary <fe Stebbing, 1985). During peak 

boating season, levels of TBT in the surface micro-layer can exceed 1000 ng/L (Mathias et 

al., 1988). Studies have shown that these levels of TBT are toxic to many species. Evans 

and Smith (1999), reported that the no observed effects concentration (NOEC) for plankton 

growth and development was 0.4 ng/L. Lindblad et al. (1989) exposed Fucus vesiculosus 

communities including epifauna and algal components to 1.6-5.0ng/L TBT. Before 

exposure, net community productivity was between 10 and 30mgO2 g*1 d*1, following 

exposure that had fallen to 0-5mgO2 g*1 d'1. Oysters including Ostrea edulis (European 

oyster), Crassostrea gigas (Pacific oyster), and Crassostrea virginica (Eastern oyster) 

exhibited a range of 96 hour LC50 values from 210-560pg/L. The larvae and embryos of 

these species exhibited lethal effects at much lower concentrations of TBT (1 and 2pg/L). 

Serious physiological effects on larvae resulted after exposure to 0.05pg/L TBT (Hall, 1996). 

Langston and Burt (1991) observed that many sediment dwelling organisms such as the
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infaunal deposit feeding bivalves Scrobiculariaplana develop body burdens of 25-30pg/g 

within a few days of exposure to sediment with a TBT concentration of 10pg/g. Within two 

weeks of exposure, all the clams were dead. Fish, fish eating birds, and marine mammals 

have been found with TBT in body tissues (Kannan & Falanaysz, 1997; Guruge et al., 1996; 

Iwate et al., 1994; & Kannan et al., 1996). Microorganisms, fish, and algae have also shown 

toxicities to TBT (Muller et al., 1989).

Regulations o f Use

As an antifouling agent TBT is extremely effective, but it became apparent in the 

early 1980s that there were problems with some non-target, economically important species. 

The first restrictions placed on the use of TBT occurred in France in 1982. They were based 

on circumstantial evidence summarized in Alzieu (1996) which attributed damage to the 

oyster population on the French coast to exposure to TBT. Oyster production had fallen to 

30-50% of that in the late 1970s and early 1980s (Evans & Smith, 1991). A temporary ban 

was put in place that would remain until more scientific evidence could be collected. This 

ban excluded the use of paints which contained more than 3% organotin on all non­

aluminum vessels less than 25m (82ft) in length in ports along the French Atlantic coast. 

This was later extended to include all organotin containing paints (de Mora, 1996; Huggett 

et al., 1992; Clark et al., 1988). In 1985 the United Kingdom followed suit with a set of 

regulations which banned the sales of SPC paints containing greater that 7.5% total tin and 

free association paints containing greater than 2.5 % total tin. It also set a water quality 

target for TBT of 20ng/L. In 1987 the water quality goal was lowered to 2ng/L. A ban,
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similar to that in France, was also placed on boats less than 25m in length. Beginning in 

1987, the United States followed the French model in the passage of the Organotin 

Antifouling Paint Control Act (PL 100-333). This act prohibited the use of paints on non­

aluminum craft less then 25m in length and set the maximum daily leach rate at 4pg 

TBT/cm3/day on vessels greater than 25m in length. In 1990, the US EPA also began 

requiring that all paints be registered and applicators of the paint be certified. In the early 

1990s, Canada, South Africa, and the majority of the European Community followed suit, 

with similar guidelines (Bosselman, 1996). In 1996, Austria, Switzerland, and New Zealand 

were the only countries that had total bans in place. Not surprisingly, none of these nations 

relied heavily on the shipping industry for their economic stability. Brazil, China, Hong 

Kong, Korea, Singapore, Malaysia, Russia, the Ukraine, and the United Arab Emirates are 

among the nations which have very few restrictions. This is significant because these 

countries have large drydocking facilities in conjunction with their shipping industries 

(Bosselman, 1996; de Mora, 1996; Hall, 1988).

The United Nations became involved in the TBT debate in 1990 when at the 3rd 

Annual International Organotin Symposium it was recognized that the International Maritime 

Organization, which was established by the UN in 1948, was the body that should regulate 

the use of organotin paints and develop regulatory strategies. In November 1990, the Marine 

Environmental Protection Committee (MEPC) of the IMO passed resolution MEPC 46(30). 

In this resolution the following general guidelines were put in place to aid countries in 

forming regulations regarding use of TBT based paints.

1.Eliminate use on non aluminum vessels less than 25m in length.
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2.Eliminate use of paints with daily release rates greater than 4pg organotin/cm3/day.

3.Develop sound management practices related to ship maintenance and construction 

activities which eliminate discharge of TBT.

4.Encourage development of alternative, safer antifouling products.

5.Engage in monitoring to evaluate effectiveness of regulatory actions.

6.Consider appropriate movement towards a possible total ban of TBT.

These guidelines are echoed very strongly in the regulations discussed previously. Recent 

actions of the MEPC of the IMO are continuing to move towards the total ban of TBT use 

as a marine antifouling agent by 2003 and the goal of all hulls being TBT free by 2008 

(Evans, 1999).

Fate & Degradation

The fate of tributyltin in the environment is controlled by the characteristics of the 

compound. TBT has a log K^, (water-octanol partitioning coefficient) of 3.7 at a salinity of 

25 psu (Laughlin et al., 1986). The Kow is a relative indicator of the propensity of a 

compound to partition into organic material. To a large extent TBT in the water column is 

associated with particles of various sizes which then settle out. This is one of the most 

important mechanisms of loss from the water column. The typical measured log Kd 

(partitioning coefficient) values in sediment range from 2 to 5 but these are very site specific 

(Langston & Pope, 1995). It is important to realize that this does not mean that TBT is then 

no longer available to organisms. TBT partitioning to sediment is a reversible process 

(Unger et al., 1988) and furthermore, the organisms that live in the sediment are exposed to
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higher levels than organisms in the water column. Other losses from the water column are 

due to assimilation by organisms, aerobic metabolism, photolysis, hydrolysis, and 

volatilization (de Mora, 1996). Under some conditions, such as when the compound is in 

the water column, degradation to less toxic daughter products, dibutyltin and monobutyltin, 

can be relatively quick, on the order of 1-3 weeks (Muller et al., 1989). However, TBT 

adsorbed to particles and buried in sediment, or in anoxic conditions may have a half-life on 

the order of years (de Mora et al., 1995; Dowson et al., 1996). TBT buried in the sediments 

of harbors and marinas is not lost to the environment. Dredging and other physical processes 

may re-expose organisms such as clams and mussels, certain species of which can 

bioaccumulate the compound to levels three orders of magnitude above ambient levels (Clark 

etal., 1988).

TBT degradation can occur in several ways. In the upper water column the most 

important of these is photolytic degradation. Direct photolysis of TBT occurs when the 

molecule is exposed to near UV light in the wavelength range of300-350nm. Because of the 

low transmittance of UV light through water, this process only occurs in the very top layer 

of the water column (Clark et al., 1988). Indirect photolysis has also been shown to occur 

with the assistance of fulvic acids (Muller et al., 1989). Muller et al. (1989) demonstrated 

that degradation rates with light exposure increased by a factor of 2 to 3 when fulvic acids 

were present. Chemical cleavage, thermal cleavage, and volatilization are also potential 

pathways of degradation. Both nucleophilic and electrophilic reagents can act on the Sn-C 

bonds of the TBT molecule resulting in chemical cleavage. Most studies involving these 

reactions were done with very high starting concentrations and in non-aqueous solutions.
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Half lives ranged from one minute to 115 days and results are not directly applicable to the 

environment (Clark et al., 1989). Thermal cleavage is rare in the environment due to the 

high level of heat needed to break the bonds which are stable up to 200°C (Clark et al., 1989). 

Volatilization does not appear to be a major mechanism of TBT removal. The vapor 

pressure of TBT is relatively low, in the range of 6.4 x 10'7 to 1.2 x 10"4 mm of Hg at 20°C 

(de Mora, 1996). One freshwater study showed negligible amounts of TBT lost due to 

volatilization over a time period of months. In the saltwater experimental study, significant 

loss due to volatilization was reported, but the possibility that photolysis was also occurring 

in the surface micro-layer could not be ruled out (de Mora, 1996). Over all, loss of TBT 

from the environment due to volatilization is also negligible.

Biotic degradation is an important process affecting TBT concentrations in the 

environment. In fact much of the photolysis that has been observed was biologically 

mediated. Both microbial and fimgal populations have been shown to degrade TBT. Loss 

is accelerated in unsterilized versus sterilized cultures (de Mora, 1996). In sediment the 

process appears to be a debutylation although in water samples both debutylization and 

methylation can occur depending on the dominant microbial population. The dominant end 

products of these reactions are dibutyl and monobutyl tin. TBT can also be metabolized by 

a number of organisms, some with more efficiency then others (de Mora, 1996). Green 

algae, diatoms, eelgrass, crabs, oysters, and fish are a few examples of organisms that are 

capable of degrading the contaminant. In the higher organisms such as fish, the hydroxylated 

products indicate that a cytochrome P-450 dependant mono-oxygenase detoxification system 

was likely responsible for this metabolism (Lee, 1991).
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Created Wetlands and Remediation 

Goals

Wetland creation and restoration is becoming a prominent aspect of coastal wetland 

management as the functional roles of these created habitats become better understood. 

Although wetlands are created each year in order to compensate for acreage destroyed by 

expansion of urban areas and industry, increasingly, creation projects are undertaken for the 

purpose of targeting specific wetland functions. Targeted functions range from flood control, 

wastewater treatment, storm water or nonpoint source pollution control, and water quality 

improvement to coastal restoration, and wildlife and fisheries habitat enhancement (Mitsch 

& Gosselink, 1993). Erwin (1990) further expands this list to encompass groundwater 

recharge, flood storage, sediment trapping, and nutrient retention. More recently the 

importance of wetlands in bioremediation projects has come to the forefront of wetland 

science. The use of wetlands for the treatment of contaminated sediment and water is 

perhaps the least understood function of created wetland habitats. Standards for creation and 

criteria for success by which wetlands should be evaluated are being established in order to 

better define and subsequently refine these projects (Kusler & Kentula, 1990).

Contaminant Remediation with Wetlands

The use of natural wetlands and created wetlands for remediation of contaminated 

water and sediment has been utilized in many areas including freshwater and tidal/saltwater 

environments. A broad range of contaminants have been studied including metals, radio­

nuclides, and multiple organic compounds consisting of chlorinated solvents, PCBs, PAHs,
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pesticides, insecticides, explosives, nutrients, and surfactants (Miller, 1996). Initially these 

attempts at remediation focused on microbial communities which inhabit the wetlands, but 

as studies continued it became obvious that the plants populating these sites were 

contributing more to the degradation of chemicals than simply supplying a favorable medium 

in which microbes would flourish. In the case of some toxicants, there is evidence to 

suggest that certain vascular plants may not only sequester the toxicants, but promote their 

degradation to less toxic daughter products (Cunningham & Ow, 1996; Schnoor et al., 1995; 

Rai et al., 1995). Plants can aid in the removal and breakdown of contaminants by multiple 

avenues. Direct mechanisms include uptake, metabolism, and release of exudates and 

enzymes that stimulate microbial and biochemical degradation, enhancing these processes 

in the rhizosphere. Indirectly, plants may increase both particulate and dissolved organic 

material in the soil, thereby enhancing microbial activity. Microbial activity is also 

enhanced by the oxygen which diffuses into the sediment surrounding the roots and rhizomes 

of plants. In addition, they stabilize soil preventing the spread of contaminants, and 

through transpiration, plants can decrease the downward migration of chemicals via 

percolation (Schnoor et al., 1995).

The use of wetlands to aid in the transformation and removal of nutrients (nitrate, 

nitrite, phosphate, and ammonium), organic matter, fecal coliforms, total suspended solids 

(TSS) and biochemical oxygen demand (BOD) in wastewater has been the focus of many 

mesocosm and full scale field studies. These studies have incorporated a broad range of 

fresh and saltwater macrophytes and macroalgae. Removal efficiencies reported include 

85% reduction in TSS using Scirpus validus (Gearheart et al., 1990), 74% reduction in fecal
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coliform and 66% removal of total phosphate by Eleocharis dulcis (Maddox and Kingsley,

1989), 70% decrease in organic matter with Scirpus lacustris and Typha augustifolia (Ansola 

et al., 1995), and reduced total nitrogen using S. validus, T. latifola, and Phragmites 

communis (Gersberg et al., 1986). Removal rates depended on a number of factors including 

combination of plants, substrate, and retention times, but in all cases the use o f wetlands in 

remediation was successful and more cost effective than traditional means.

Reclamation of industrial wastes is a second area in which wetlands have been 

successfully utilized to reduce contamination of soil and water. The Tennessee Valley 

Authority (TVA) created a wetland in the vicinity of an impoundment area near an old mine 

using T. latifolia and Scirpus cyperinus. The successful reduction in levels of iron, 

manganese, TSS loads and lowering of the pH of acid mine drainage (AMD) allowed the 

TVA to maintain suitable effluent levels in the adjacent soil and streams, a goal that had 

eluded them for years (Brodie et al., 1990). For example, the number of macroinvertebrate 

taxa in the adjacent stream increased from 2 to 19 in six months. In the actual AMD 

impoundment, the number rose to thirty-two taxa. In thirteen months the two species of 

plants introduced had increased to twenty. In other projects, multiple species of floating and 

rooted emergent plants have been successfully used in the reduction of chromium levels in 

tannery effluent (Valpayee et al., 1995). Wetlands have also been effective in remediating 

ash pond seepage, pulp mill effluents, and refinery effluents (Brodie et al., 1989; Thut, 1989; 

Litchfield & Schatz, 1989).

The success of wetland plants for remediation of water and sediments with high 

levels of metals has also been shown. Rai et al. (1995) assessed the potential of free floating,

13



submersed, and emergent plants to remove heavy metals. Chromium, iron, manganese, 

cadmium, and lead accumulated in at least two of the plant species and concentrations of 

many of the metals were reduced to levels below the maximum permissible limit in the 

wastewater tested. It has been demonstrated that Spartina alterniflora will take up metals 

found in salt marsh sediments including Al, Cu, Fe, Hg, Mn, and Zn (Alberts et al., 1990). 

In addition, Komuc (Pers. Com., 1998) has found that in the created wetland used in this 

study, after one growing season the concentrations of lead, chromium, and arsenic had 

increased in the tissues of the S. alterniflora, while concurrent decreases in the concentration 

of these metals in the surface sediments were observed.

TBT Remediation

Studies on TBT contamination in the past have focused on sediment and water 

column processes, microbial degradation, and the effects of TBT on organisms. Levine et 

al. (1990) and Kelly et al. (1990) examined the influence of Thalassia testudinum seagrass 

beds on TBT behavior and degradation. Using microcosm experiments they concluded that 

degradation was faster in vegetated compared to unvegetated cores. Furthermore, uptake of 

TBT was rapid. Half lives of ten to twenty hours were observed, but the assimilation was 

temporary. When cores were sacrificed, only 20-30% of the initial TBT concentration 

remained and half of this was as degradation products. Even with rapid assimilation by 

grasses and degradation, fauna in the microcosms still had accumulated TBT (Levine et al.,

1990). In addition, studies involving Zostera marina and TBT accumulation have 

demonstrated the propensity of eelgrass to take up TBT (Francois et al., 1989). While the
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rate of degradation of TBT was slower in the plants than in the water, the rate of dibutyltin 

decomposition was faster. Further investigation revealed that monobutyltin, the least toxic 

of the butyltin species, was then slowly released into the water. Upon decay in clean water, 

relatively large amounts of MBT were released (300-500ng/L), a small quantity of DBT was 

released and the water contained <30ng/L of TBT. This was a much lower concentration 

then the original concentrations to which the water was spiked (540-1940ng/L).

One problem with the use of wetland plants for remediation of substances such as 

TBT is the potential of contaminated plants to become vectors for transferring the toxins to 

higher trophic levels. Francois et al. (1989) found that TBT in Zoster a marina was reduced 

to MBT, which was subsequently released into the water column. Potential pathways of TBT 

transfer within the food chain were not determined. Another question left unanswered was 

whether decaying plants release contaminants. In some studies plants have been harvested 

and incinerated, thereby removing the contaminant from the natural environment and 

reducing the mass of the contaminated material (Cunningham & Ow, 1996). Furthermore, 

there is the problem of what to do with plant material if it merely stores the toxin and does 

not degrade it.

The previously described seagrass - TBT studies indicated that vascular plants may 

play a potentially important role in TBT degradation. However, relationships between 

marsh environments, and TBT accumulation and decomposition have not yet been elucidated 

through research. The presence of S. alterniflora in contaminated treatments could have 

multiple effects on the concentration of TBT in sediment. The plants could act directly by 

taking up TBT and degrading it, releasing less toxic daughter products or indirectly by
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providing an environment that encourages microbial growth. It would then be the microbes 

that act directly on the TBT. The mode of uptake of TBT by S. altemiflora is likely through 

the roots and rhizomes of the plants. Due to its bulky nature, we expect most of the TBT to 

remain in the belowground biomass of the plant.

Objectives and Hypotheses

For both created and natural salt marshes to be considered effective in the 

remediation of TBT contaminated soils, a more detailed understanding of the rates of 

degradation and fate of the daughter products must be determined. The first objective of this 

study was to investigate, in the field, the potential of S. altemiflora to aid in the degradation 

of tributyltin in enriched marsh sediments by measuring TBT, DBT, and MBT in both plants 

and sediments from vegetated and unvegetated plots throughout a growing season. This 

experiment was accomplished in a created tidal wetland in order to subject the treatments to 

natural conditions which could effect the degradation of the contaminant. The second 

objective was to investigate the fate of TBT once it had been taken up by the S. altemiflora. 

In a laboratory experiment, the release of TBT and its daughter products by decaying plants 

was examined.

Hypothesis #1

TBT will be taken up by Spartina altemiflora from contaminated sediments in 

detectable amounts. Tissue concentrations of TBT in plants growing in contaminated 

sediments will be significantly greater than in plants growing in uncontaminated
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sediments.

Hypothesis #2

TBT concentrations typical of those found in contaminated dredge spoils will not be 

detrimental to Spartina altemiflora growth.

Hypothesis #3

Presence of Spartina altemiflora will increase the disappearance rate of TBT.

Hypothesis #4

The rate of TBT disappearance will increase as plant biomass increases throughout the 

growing season.

Hypothesis #5

TBT concentration will be higher in plant roots and rhizomes than in shoots.

Hypothesis #6

Upon plant senescence and decay, TBT and its daughter products will be released into 

the water column. Relative concentrations of TBT species released will be in the 

following order MBT>DBT>TBT.
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METHODS

Study Site

The wetland chosen as the study site for this work was created in the summer of 

1996 by the Naval Facilities Engineering Service Center (NFESC) of Port Hueneme, 

California at Little Creek Naval Amphibious Base in Norfolk, Virginia (36°55TN\ 76° 10'W) 

(Figure 1). This tidally-influenced salt marsh was created on a previous dredge spoils site to 

investigate the treatment of non-point source pollution, in this case, storm water runoff. The 

wetland consists of two cells each measuring 60 x 650 feet, graded to mean sea level. The 

cells are fed by a tidally influenced drainage ditch via 24-inch diameter pipes equipped with 

one-way check valves (Figure 2). This forces a one-way flow of tidal water from the storm 

water channel through the wetland cells and into an adjacent cove. The wetland was planted 

with 20,000 greenhouse-raised marsh plants in the summer of 1996. S. altemiflora was 

planted up to the mean high tide line and S. patens was planted on the slopes down to the S. 

altemiflora. Panicum amarum and Iva frutescens were planted on the upper side of the 

slopes and on top of the berm. This study was initiated after the wetland had been growing 

for two years. The wetland presented an environment in which the experimental treatments 

would be subjected to tidal flow, animal usage, and plant growth that would simulate a 

natural marsh system.

Field Experimental Design

The capacity of S. altemiflora to aid in the degradation of TBT was assessed through 

a field study at the created wetland site using a randomized complete block design
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Figure 1. Map of Little Creek Naval Amphibious Base, Norfolk, Virginia and the location 

of the created wetland used in this study
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Figure 2. Site, Grading, and Drainage Plan for the constructed wetland at the Little Creek 

Naval Amphibious Base, Norfolk, Virginia.
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(Figure 3). A total of twenty 18-inch by 12-inch by 6-inch fiberglass bins were placed in 

the S. altemiflora zone of the wetland (Figure 4). There were five replicates of four 

treatments including: 1) vegetated, TBT contaminated, 2) vegetated, uncontaminated, 3) 

unvegetated, TBT contaminated and 4) unvegetated, uncontaminated. The wetland cell 

furthest from the cove was used for the experiment because of its hydrological conditions. 

Through observation, this cell appeared to be draining more completely, and S. altemiflora 

coverage was greater than the other cell. The first fifty feet at the influent and effluent ends 

of the cell were not used and the remaining 550 feet were divided into five equal lengths. 

For the purposes of the experiment, each section was considered a block to assess potential 

effects caused by location in the marsh. Within each block replicates of each treatment were 

randomly placed at equal intervals. The individual experimental units were contained in 18- 

inch by 12-inch by 6-inch steel reinforced, fiberglass bins (C&H Distributors). The 

fiberglass bins were prepared in advance by drilling holes in the sides and bottom and 

covering the holes with squares of fiberglass mesh window screen attached with 100% 

silicone sealant (Dow Coming) to prevent loss of sediment, but to allow the rise and fall of 

the water level with the tide. The use of bins enabled the environmental processes to occur 

on a realistic, measurable, controllable scale while reducing the potential contamination of 

the surrounding areas with butyltins.

The sediment for experimental treatments was removed from the wetland in late 

August 1998. It was transported to the Virginia Institute of Marine Science in four large 

containers and stored with a layer of water over the sediment as well as a shade cloth in order 

to prevent drying. Within 48 hours the homogenizing and dosing took place. This was
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Figure 3. Diagram of the wetland cell used in the study including approximate placement of 

experimental bins in the cell and location of the blocks and treatments
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Figure 4. Prepared bins before placement into the created wetland at Little Creek, September 

1998 and an experimental bin located in the S. altemiflora zone of the wetland at the 

beginning of the growing season 1999
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accomplished by first manually removing large pieces of plant and detrital matter and 

homogenizing sediment by hand. In order to amend the sediment, 10ml of ethanol was used 

as a carrier for a dose of 15.7mg TBT-C1 that would amend the sediment to approximately 

200mg/kg TBT. This concentration was determined to be representative of a relatively high, 

but reasonable value found in sediments from harbor areas of the Chesapeake Bay, VA, San 

Diego Bay, CA, and Pearl Harbor, HI (Espourteille et al., 1993; Govhoug et al., 1996). Ten- 

ml of ethanol minus the TBT-C1 spike was added to uncontaminated sediment in order to 

rule out any carrier effects from the ethanol. Sediment for the uncontaminated bins was 

handled first. Sediment sufficient to fill two bins was placed into a pre-rinsed cement mixer. 

The 10ml of ethanol was added to a quart Mason jar with 200ml of York River water, 

shaken, then added to the sediment followed by two rinses of 100ml each. The sediment was 

mixed for 15 minutes at which time it was placed back into two bins. This was repeated 5 

times until all 10 uncontaminated bins were filled. The same procedure was then followed 

for the contaminated bins with the exception that the ethanol contained a dose of 15.7mg 

TBT-C1. After all 20 bins were prepared, a subsample of known volume was removed from 

each of the bins for determination of percent moisture. After the sediment was dosed, each 

vegetated bin was planted with twelve plugs of two year old S. altemiflora grown in two inch 

by two inch peat pots. The S. altemiflora was purchased from Environmental Concern of 

St. Michaels, Maryland, where they had been grown in freshwater and then adapted to 20psu. 

The day following transplanting, the bins were transported to the wetland location and placed 

into the marsh. Initial sediment samples for TBT analysis were taken at this time to establish 

background levels (uncontaminated bins) and attained dose levels (contaminated bins).
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Several plants from the stock that were not used for planting were rinsed free of sediment 

and frozen in order to determine background levels of TBT, DBT, and MBT.

In the Spring of 1999, a second set of four bins were contaminated using the same 

method but with twice the amount of TBT-C1. This brought the target spike to 400mg/kg 

TBT. These bins were also planted with S. altemiflora from Environmental Concern. The 

S. altemiflora were of the same cohort as the original plants used in September 1998. These 

plants were to be harvested and utilized in the plant degradation laboratory study.

TBT Sampling - Sediment

In order to determine concentrations of TBT, DBT, and MBT in the sediment and 

plants, samples were taken at regular intervals, frozen, and processed back in the lab. Each 

month, four 8.5cm sediment core samples were collected from each bin using a modified 

20cc syringe. The cores were homogenized in a 500ml plastic beaker and approximately 50g 

of sediment was placed into a Whirl-Pak® bag. The samples were then placed on ice and 

transported back to the lab where they were subsequently frozen until they could be 

processed.

TBT Sampling - Plant Material

Plant tissue was collected at intervals throughout the experiment to determine levels 

of TBT, DBT, and MBT in the aboveground and belowground portions of the plants. 

Sampling occurred at the beginning of the experiment (September 1998), the middle of the 

1999 growing season (June 1999), and at the end of the experiment (December 1999). Entire
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plants, including shoots, roots, and rhizomes were cut from the bins, placed in Zip-Loc® 

bags, put on ice, and transported back to the lab. Once in the lab, the plants were gently 

rinsed using deionized water in order to remove any sediment. Above and belowground 

tissue were separated and frozen until analysis.

Spartina altemiflora Biomass

Each bin was delineated into six overlapping zones, each zone consisted of four of 

the original twelve planted culms and had an area of approximately one third of the entire 

bin (approximately 464 cm2). Within each bin one zone was randomly selected at the 

beginning of the experiment. The biomass in the same zone was then estimated each month 

throughout the duration of the field study. During the first growing season of the experiment, 

September 1998 through December 1998, biomass was measured monthly by recording the 

height and basal width of the stem and length and width of each leaf of new growth around 

the original culm. This was considered a period of establishment for the new plants. The 

original culm that was placed into the bin was not measured and all dead standing material 

was trimmed to an equal height during the first winter (February 1999). Beginning in March 

1999, with the onset of the growing season, new shoots within the designated zones of each 

bin were marked with #12, numbered, monel, bird-bands (National Band & Tag Co.). In 

each bin, working in a clockwise orientation around the designated zone, the first 10 shoots 

were measured for shoot height and basal width and the width and length of each leaf on the 

shoot. All remaining shoots after the tenth were measured for shoot basal width and height. 

Basal width was defined as the width of the shoot at the level of the sediment. Leaf width
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was taken at the point where the leaf joined the shoot and leaf length from that same point 

to the tip of the leaf.

In September of 1999, 65 shoots were sacrificed from the constructed wetland 

surrounding the bins. The plants selected were within the size range of the plants growing 

in the bins. The shoots were taken back to the lab and measurements of basal width and 

height and leaf length and width, were made. The individual plants were then dried and 

weighed and a relationship between plant size and weight was developed (c.f. Dai, 1996).

Pulse-Amplitude Modulated Fluorometry

A pulse-amplitude modulated (PAM) fluorometer was utilized to measure stress in 

the S. altemiflora. PAM fluorometry provides information about the health of the 

photosystem II (PSII) photochemical processes (Schreiber et al., 1994 ). The two parameters 

which were of greatest interest in this study were light adapted, effective quantum yield 

(AF/Fm') and dark adapted, maximum quantum yield, or photochemical efficiency (F/FjJ. 

These ratios includes measurements, AF or Fvand Fm’ or Fm. AF and Fv are the differences 

between two parameters, F0* or F0 which are the minimal fluorescence yield under light and 

dark adapted conditions and Fm’ or Fm which are the maximum fluorescence yields under 

these same conditions. Minimal fluorescence yield is the amount of fluorescence when all 

of the PSD reaction centers are open. Maximal fluorescence yield is the amount of 

fluorescence when all of the PSII reaction centers are closed. Typical photochemical 

efficiency values range from 0.75 to 0.85 (Bolhar-Nordenkampf & Oquist, 1993). These 

parameters can be used as stress indicators because it has been shown that PSA function is

27



particularly sensitive to many stress factors including; high temperature, chilling, freezing, 

drought, and excessive radiation (Bolhar-Nordenkampf & Oquist, 1993). Other factors can 

also indirectly affect PSII health. PAM fluorometry has been used in the past to examine 

stress in the seagrass, Halophila ovalis, caused by herbicides, petrochemicals and heavy 

metals (Ralph, 1999; Ralph & Burchett, 1998a; Ralph & Burchett, 1998b).

PAM measurements were taken in the field in August 1999 using a Walz DIVING- 

PAM (Germany). Ten shoots were selected from each bin and the second newest leaf on the 

shoot was used to collect measurements. Dark-adaption clips (DLC-8) were placed on the 

leaves 2cm above the stock clasp on the adaxial side of the leaf. Effective quantum yield was 

measured and then the leaf was dark adapted for 10 minutes at which time the maximum 

quantum yield was measured. The same measurements were taken on shoots growing in the 

high dose experimental treatments.

Redox Potential

Redox potential was measured monthly in each of the contaminated bins beginning 

in March 1999 with a Fisher Scientific AP10 Ej/pH Meter. Readings were taken using 

platinum electrode probes at three locations within the bins at four different depths: 1cm, 

2cm, 5cm, and 10cm. These electrodes were tested for accuracy each month using a 

quinhydrone standard solution (pH 4) before the field measurements were taken. A 

reference electrode was placed on the surface of the wet sediment and the platinum electrode 

probe at the first depth. After a period of equilibration, a reading in millivolts, was taken and 

the probe was then advanced to the second depth until all readings were taken and recorded.
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A sediment temperature reading was also obtained in order to correct the reading. The mean 

of the three readings measured at each depth was used to characterize the redox potential 

with depth in the contaminated bins. Five control measurements were also collected within 

the marsh surrounding the bins, one in each of the five blocks.

Nutrients

Sediment nutrients were sampled in each bin seasonally in order to detect possible 

variations in the conditions between bins and to help explain any potential variations in plant 

growth. Sediment cores were taken to the full depth of the bin and divided into three 

segments; 0-2cm, 2-5cm, and 5-15cm. These segments were then divided in half. One half 

was used to determine bulk density of the sediment. The other half was placed into Whirl- 

Pak® bags containing 2N KC1 in a 2:1 ratio with the sediment. The bag with KC1 and 

sediment was placed on a shaker table and allowed to extract for 1 hour. The liquid was then 

poured into a centrifuge tube and spun using a Centra MP4 (International Equipment Co.) 

at 2300 rpms for 10 minutes. The supernatant was then decanted into a 30cc syringe and 

filtered (Gelman Supor, 0.45pm) into a Whirl-Pak® bag. The samples were then frozen until 

analysis for dissolved ammonium, nitrate, and nitrite. An Alpkem autoanalyzer was used to 

determine the concentration of nitrate/nitrite in the samples. In this method, nitrate was 

reduced to nitrite by cadmium metal. With the addition of a color reagent, which consisted 

of sulfanilamide and N-l-naphthylethylenediamine dihydrochloride in a phosphoric acid 

solution, the total nitrite was determined spectrophotometrically at 540nm. In a replicate 

sample, which was not reduced, the amount of nitrite originally there was determined.
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Nitrate concentration was then derived by calculating the difference in nitrite between the 

two samples (Perstorp, 1992). To determine the amount of ammonium in the samples, a set 

volume of 5ml was pipetted into a test tube. A volume of 0.143ml of each of the following 

reagents was added in the order listed; citrate, phenol, and hypochlorite. Between each 

addition the sample was vortexed. The samples were then stored in the dark for 24 hours. 

At that time, a color change indicated the presence of ammonium in the samples. This was 

detected spectrophotometrically at 630nm with a Shimadzu UV 1601 spectrophotometer. 

(Parsons et al., 1984; Solorzano, 1969). In the case of both methods a standard curve was 

developed using standard stock solutions of ammonium sulfate or potassium 

nitrite/potassium nitrate dissolved in dionized water. This solution was then further diluted 

into a series of concentrations ranging from zero to a value at the high end of the estimated 

sample concentration.

Statistical Analyses

The concentration of TBT over time in the bins was analyzed using a two way 

ANOVA with main effects of vegetation, treatment, and time. Regression analysis was used 

to test the relationships between TBT sediment concentration over time and S. altemiflora 

biomass. A one-way ANOVA was used on redox data to determine if there was any 

difference in the redox potential at each depth interval over time. The same was done for the 

nutrient data.
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Analytical Methods 

Sediment

TBT sediment analysis was performed according to the protocols in A Manual for the 

Analysis ofButyltins in Environmental Samples (Unger, 1996). The analytical methodology 

flowchart in Figure 5 gives a general overview of the process. Samples were thawed and 

homogenized in the Whirl-Pak® bags and then a lOg aliquot was placed into a 500ml 

Nalgene Teflon bottle (VWR). At the same time a subsample of the sediment was placed 

into a pre-weighed aluminum weigh pan for water content determination. These were 

weighed, dried overnight in a 100 °C degree oven, and weighed again. A value of the total 

percent solids was calculated for each sample. A blank consisting of 1 Og of pre-extracted 

sand was also placed into a Teflon bottle. The samples were then spiked with the surrogate 

standard, tripentyltin chloride in hexane, at a concentration similar to the expected TBT 

concentration of the samples. Twenty-ml of deionized water with the pH adjusted to 2 was 

added to each sample. A 0.2% tropolone hexane/tropolone mixture made with 98% 

tropolone (Aldrich) and high purity Burdick & Jackson Hexane UV (VWR) was added to the 

samples in two 100ml aliquots. The samples were shaken for one hour on a Wrist Action 

Shaker after each of these additions and the hexane layer was decanted into a 500ml round 

bottom flask. Using a rotary evaporator, the volume was reduced to approximately 2ml and 

the samples were then transferred to a 50ml centrifuge tube. The volume was reduced to 

2ml under a stream of nitrogen.

The next step in the process was the removal of the sulfur from the sediment extract. 

This was accomplished by eluting the samples through columns packed with fine granular
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Figure 5. Flowchart of tributyltin analytical method
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(-40 mesh) activated 99.5% copper (Aldrich). This was followed by derivatization of the 

butyltins with 0.5ml of Grignard reagent, hexylmagnesium bromide, 20%, in tetrahydrofuran 

(TCL). Excess reagent was neutralized with 2 ml of concentrated HC1. The samples were 

shaken, vented, and then allowed to settle for 30 min. to allow separation of the phases. The 

bottom aqueous layer was then removed and discarded. The samples were purified by 

elution through 20g of activated (110°C) florisil (Fisher) and 2g of granular anhydrous 

sodium sulfate (JT Baker) which had been rinsed with 75ml of hexane. The samples were 

collected in 500ml round bottom flasks. After sample volume was reduced by rotary 

evaporator, samples were transferred into centrifuge tubes and spiked with an internal 

standard, tetrabutytin in hexane, to a concentration similar to the surrogate standard. TBT 

concentrations were calculated relative to the surrogate internal standard. Total recovery for 

the sample was calculated relative to the tetrabutyltin internal standard added just prior to 

injection on the GC. Samples were then reduced further to a volume of 0.1ml and analyzed 

on a Varian 3300 GC with a modified flame photometric detector. GC settings and a sample 

chromatogram are included in Appendix A. Detection limits for this method were 

approximately lng/g for sediment and tissue samples and lng/L for water samples.

Plant Tissue Analysis

Frozen plant material was thawed and cut into 0.5cm segments using clean hexane 

rinsed utility shears. A lOg subsample was placed into a pint Mason jar and spiked with 

tripentyltin in hexane. A desiccant consisting of a 1:9 ratio of precipitated silica (QUSO®) 

and anhydrous granulated sodium sulfate was then added in a 3:1 ratio to the plant tissue.
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The sample was homogenized further in a blender using a metal blade and frozen for 24 

hours.

The frozen samples were placed in a Soxhlet apparatus with a course frit (VWR) and 

extracted with hexane for 24 hours. A blank was prepared with each batch of samples using 

the desiccant materials. The surrogate standard was added to the blank after extraction, the 

sample volume was reduced to approximately 2ml using a rotary evaporator, and the samples 

were transferred to a centrifuge tube. The extracts were then put through the derivatization 

and cleaning steps described above and were analyzed by gas chromatography with modified 

flame photometric detection.

Water Analysis

Water samples were warmed to room temperature and 500ml was poured into a 

separatory funnel. An equal amount of acidified (pH 2), deionized water was extracted as 

a blank with each batch of samples. All samples were spiked with the surrogate standard 

(tripentyltin chloride in ethanol) to a concentration near to the expected TBT concentration. 

Samples were swirled to mix and then extracted for 3 minutes with three 40ml aliquots of 

0.2% tropolone in hexane. The extract was reduced to approximately 2ml, transferred to 

centrifuge tube, and the aqueous layer (bottom) was removed from the tube. Derivatization 

and sample clean-up followed procedures which were described in detail above.

Recovery Experiments - Standard Curves

Two standard curves, one for plant material and one for sediment were created to
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establish TBT recovery in the analytical process. For the sediment, a series of butyltin spikes 

were added to lOg aliquots of sediment taken from the constructed wetland. By using this 

sediment, the same which was used for the actual experiment, any matrix effect would be 

taken into consideration in the recovery of the butyltins. The series of spikes included 

O.Ong/g, 5.6ng/g, 9.8ng/g, 56ng/g, 98ng/g, and 270ng/g. This range was inclusive of 

concentrations that we would expect to see within the samples obtained from the experiment. 

The results, shown in Figure 6, give a percent recovery for TBT of 105%, DBT 73%, and 

MBT 19%. Background sediment levels of TBT were below the detection limit which for 

sediment samples is approximately lng/g..

To test the recovery from Spartina altemiflora, a series of TBT spikes were added 

to plant material which was collected from the wetland. The series of spikes included 

O.Ong/g, 1. lng/g, 1 lng/g, and 23ng/g. There was a 0.42ng/g background level of TBT which 

was subtracted out of the series before calculating recoveries. Again, this series included a 

range of TBT concentrations which spanned all expected plant sample values. Percent 

recovery was 88% while the r-squared value for the regression was 0.9969 (Figure 7).

Laboratory Experimental Design

A study of the potential re-release of TBT, DBT, and MBT from decomposing plants 

into the water column was conducted in the lab using TBT contaminated S. altemiflora 

gathered from the contaminated bins at the end of the experiment in December 1999. The 

average measured TBT in the aboveground plant material was 1.2ng/g with a range of
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Figure 6. Standard curves for sediment TBT, DBT, and MBT recoveiy experiments
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Figure 7. Standard curves for plant TBT recovery experiments
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1 .Ong/g to 1.4ng/g. The plant material was thawed, cleaned gently with deionized water to 

remove sediment, cut into approximately 0.5cm lengths, and well mixed.

At the onset of the experiment, 50g subsamples of the prepared plant material were 

placed into 500ml square polycarbonate Nalgene bottles (Fisher). Two treatments (aerobic 

and anaerobic) were replicated in three bottles. Aerobic treatments remained open to the air 

throughout the experiment. Anaerobic treatments were bubbled with nitrogen and then 

capped. After plant material was added, a stock solution consisting of 25psu Hawaiian 

Marine Mix, 30pm ammonium, and 4pm phosphate was poured into the aerobic bottles up 

to the 500ml mark. An aliquot of the stock solution was bubbled with nitrogen gas for 30 

minutes and then poured into each of the three anaerobic treatment bottles. These were then 

each bubbled with nitrogen for 5-7 minutes and capped. All of the experimental bottles were 

then placed in a cooler which had been prepared by removing the lid and mounting a 

styrofoam holder for the bottles in the bottom. Water was added in the cooler, surrounding 

the bottles and a second constructed styrofoam piece was placed over the bottle necks to hold 

them in place and prevent water from splashing into the aerobic, open treatments (Figure 8). 

A fish tank heater was placed in the water bath and temperature was maintained throughout 

the experiment between 25° and 27° Celsius. Glass Pasteur pipets were connected with 

aquarium tubing to a Whisper® air filter and air was bubbled through the aerobic treatment 

bottles and the blank for the duration of the experiment. The cooler was set on a shaker table 

and agitated continuously at 700rpms. The experiment was run for 53 days.

Due to the typical degradation rate of TBT in the upper water column of 7-14 days 

(Muller et al., 1989), a water sample was collected every four days. This was accomplished
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Figure 8. Diagram of the laboratory plant degradation experiment- Cooler was placed on 

shaker table with two treatments replicated three times in the cooler held in place with 

styrofoam. Blank was set outside the cooler. Aerobic treatments and blanks were aerated 

constantly and temperature was kept constant using an aquarium heater.
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using a modified Nalgene Teflon lid which had the center drilled out and a brass screen (150 

micron) installed. The water could then be poured off while filtering out large pieces of 

detrital plant matter. At each sampling, approximately 400ml of water was poured into a 2L 

Nalgene polycarbonate bottle and replaced with stock solution. The sample was acidified 

to a pH of 2 using hydrochloric acid to preserve the TBT and daughter products and 

refrigerated at 4°C until analysis. Water samples from four consecutive sampling dates 

were combined in each 2L bottle resulting in a total of three composite samples from each 

of the replicates for the duration of the experiment. Plant material was also collected during 

the course of the experiment. This occurred on the 12th, 28th, and 44th days. After the water 

was drained, forceps were used to withdraw approximately lOg of plant material. This was 

then frozen until analysis. The concentrations from each water sample, examined 

individually, were used to provide a measure of any change in the rates of release over the 

month. Total net release over the 53 days was estimated by adding total butyltin mass 

obtained from each sample. The butyltin concentrations measured in the plant samples 

combined with butyltins measured in water samples over time were used to model the fate 

of TBT in the plant/water system. One of the aerobic water samples was also divided in 

half and one half was extracted whole while the other half was filtered using a type A-E glass 

fiber filter to remove suspended material prior to extraction. Results from this analysis were 

used to estimate the bioavailable fraction of TBT released to the water column.
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RESULTS

Field Experiment 

Butylin Background Levels

Background concentrations of TBT, DBT, and MBT in incoming water in December 

1997 in the non-experimental wetland cell were determined to be l-3ng/L TBT, 6-7ng/L 

DBT and l-4ng/L MBT. In the experimental wetland cell in January 1998, the levels were 

l-2ng/L TBT, 2ng/L DBT, and MBT was below the detection limit (<lng/L). Highest 

butyltin levels in the water would be expected during this period when water from the cove, 

where ship traffic occurred, was coming into the wetland. It was determined that these low 

background levels would not effect the field experiment due to the high initial TBT spike 

that would be used to amend the sediment.

When the experimental bins were placed in the wetland in September 1998, sediment 

samples from the uncontaminated bins were analyzed to insure that butyltin concentrations 

were low. One uncontaminated bin was then selected and samples from that bin were 

analyzed every other month of the experiment for butyltins. Levels remained below the 

detection limit throughout the study period. This demonstrated that there was no measurable 

input of TBT to the sediment either from outside sources or from the experimental bins 

themselves over the course of the experiment. In September 1998, some of the S' 

altemiflora that was not used in the experimental bins was frozen to determine background 

levels of butyltins. All butyltin species were found to be below the detection limit.
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Butyltins in the Sediment

TBT levels in the vegetated bins ranged from 230-300ng/g dry weight, with an 

average o f250 ng/g at the beginning of the experiment Unvegetated bin levels ranged from 

240-3 lOng/g dry weight with an average of 280ng/g. These levels attained by the 

amendment of the sediment show that the spike resulted in concentrations near the target 

dose and the small range demonstrate that the sediment was well mixed. Though sediment 

samples were taken every month for 16 months, samples from only 6 dates were processed 

due to the time and cost of the analysis since a trend of disappearance could be established 

from these samples.

TBT disappearance was not linear throughout the experimental period. The greatest 

decrease occurred during the spring and summer of 1999. Over the first four months of the 

experiment (Sept - Dec. 1998) TBT concentrations in both treatments fell to approximately 

200ng/g, with the vegetated bins ranging from 170-220ng/g and the unvegetated bins ranging 

from 190-230ng/g (Figure 9). During the winter months, there was little change in the levels 

of TBT. With the onset of spring and the 1999 growing season, TBT sediment 

concentrations decreased once again. During the interval from April to June the TBT in the 

bins fell to an average of 150ng/g, ranging from 130-160ng/g and 140-160ng/g in vegetated 

and unvegetated bins respectively. A further decrease in TBT occurred over the second part 

of the growing season when TBT ranged from 83-130ng/g in the vegetated bins and 94- 

120ng/g in the unvegetated bins. From October 1999, until the experiment ended in 

December, little change was noted in the levels of TBT. There was no significant difference 

(p>0.05) between vegetated and unvegetated treatments in sediment TBT concentrations at
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Figure 9. TBT concentrations in vegetated and unvegetated experimental bins in the created

wetland over the course of the experiment
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each of the sampling dates suggesting that the S. alterniflora was not contributing to the 

disappearance of TBT. The calculated half lives of TBT for the vegetated and unvegetated 

bins were not significantly different (p>0.05) at 300 days and 330 days respectively.

DBT demonstrated a different pattern of change over time compared to TBT, 

reflecting both its generation due to TBT degradation and the degradation of the DBT itself. 

DBT was present in the bins at the beginning of the experiment. In the vegetated bins there 

was an average of 30ng/g DBT (19-37ng/g) and in the unvegetated bins 50ng/g (41-75ng/g). 

Like TBT, the concentration of DBT decreased between September and December 1998 and 

remained at a stable level during the winter with averages at 24ng/g in the vegetated bins 

and 25ng/g in the unvegetated bins (Figure 10). An increase in DBT was then seen in both 

the vegetated and unvegetated bins with averages of 41 ng/g and 34ng/g respectively. There 

was then a decrease of DBT in the bins through October to an average of 17ng/g in vegetated 

bins and 20ng/g in unvegetated bins. There was no change in these levels through 

December, the end of the experiment.

Butyltins in the Plants

Initially, in September 1999, butyltins in the plant tissues were below the detection 

limit but over time TBT was at measurable concentrations in the plants. By June 1999 the 

levels of TBT had risen to an average of 1.2ng/g (Figure 11) in the aboveground material and 

to 26ng/g in the belowground material (Table 1). These levels remained constant through 

the remainder of the study period. DBT and MBT in the aboveground plant tissue remained 

below the detection limit throughout the experiment.
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Figure 10. DBT concentrations in vegetated and unvegetated experimental bins in the created 

wetland over the course of the experiment
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Figure 11. Butyltin concentrations in S. alternijlora aboveground biomass from the

experimental bins
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Table 1. Butyltin concentrations in S. alterniflora belowground biomass from the

experimental bins
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Butyltin Concentrations in Spartina alterniflora
Belowground Biomass

(concentrations in ng/g wet weight)

Sample_______Date TBT______DBT
Cumulative 6/26/99 26 ND
A3 VEG-T 12/4/99 27 2.3
B4 VEG-T 12/4/99 34 2.8
Cl VEG-T 12/4/99 52 3.1
D2 VEG-T 12/4/99 48 2.2
E4 VEG-T 12/4/99 54 2.6



Sediment Nutrients Data

Nutrient concentrations (Table 2) varied with season but overall the vegetated bins 

and the surrounding marsh were similar ( p>0.05) while the concentrations of nutrients were 

higher in the unvegetated bins (p<0.05) compared to the vegetated bins and the surrounding 

marsh. Concentrations of nitrite in the sediment was determined to be minimal (0.0- 

0.08fimole/m2). Mean NOx concentrations did not vary significantly (Table 2; p>0.05) with 

respect to the treatment but did vary significantly (p<0.05) over time at the 0-2cm (p<0.05) 

and the 5-10cm (p<0.05) depth intervals. Mean NH4 concentrations did vary significantly 

(p<0.05) among both treatment and date at each of the three depth intervals (except for the 

0-2cm depth interval with respect to date). There were significant differences between the 

vegetated and unvegetated treatments, but no effect of TBT. The unvegetated treatments had 

much higher concentrations of NH4 compared to vegetated treatments and were similar to 

sediments in the surrounding created marsh (p>0.05).

Sediment nutrient data were also analyzed for each of the quarterly sampling dates 

in order to minimize the temporal variability in the data, as well as highlight differences due 

to the treatments which each bin represented. A summary of each quarterly nutrient 

concentration is presented in Table 3. In February 1999, the NOx concentrations did not vary 

significantly between vegetated and unvegetated or TBT contaminated and uncontaminated 

treatments but NH4 showed a significant effect of treatment over the 2-5cm and 5-10cm 

depth intervals with the higher concentration in the unvegetated versus vegetated treatments 

(p >0.05). There was no TBT effect (p>0.05). The same results were found for the May 

1999 nutrient data. In August 1999 NOx data demonstrated no significant difference
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Table 2. Summary of annual means and ANOVA results for sediment nutrient data from the

experimental bins and the surrounding created wetland
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Sediment Nutrient Data - 1999 (All Dates)
(nutrient concentrations in mmole/m2)

Annual Mean Nitrate/Nitrite Concentration 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 39.93 76.97 44.72 77.17 39.06
2-5 cm 36.17 50.12 68.77 64.53 29.49
5-10cm 124.90 39.56 41.53 51.06 60.83

Nitrate/Nitrite ANOVA
Date Effect Treatment Effect

Depth df F P df F P
0-2 cm 80 5.215 0.0024 80 1.537 0.1993
2-5 cm 80 1.798 0.1543 80 0.4088 0.8018
5-10cm 80 7.298 0.0002 80 1.1019 0.3615

Annual Mean Ammonium Concentration 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 1639.49 1773.55 808.12 744.25 678.12
2-5 cm 4531.07 4454.30 660.07 790.84 556.30
5-10cm 8645.07 8509.19 764.90 921.03 644.29

Ammonium ANOVA 
Date Effect Treatment Effect

Depth df F P df F P
0-2 cm 80 1.0378 0.3805 80 6.8061 0.0001
2-5 cm 80 3.1193 0.0306 80 40.75661 >.0001
5-10cm 80 3.8801 0.0121 80 30.5706 >.0001



Table 3. Summary of quarterly means and ANOVA results for sediment nutrient data from

the experimental bins and the surrounding created wetland
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Quarterly Sediment Nutrient Data - Feb. 1999
(nutrient concentrations in mmole/m2)

February 1999 Mean Nitrate/Nitrite Concentration (S.K) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

17.85 (15) 
7.88 (4) 

34.58 (21)

27.88 (14) 
25.37 (22) 

2.26 (2)

20.37 (15) 
172.57 (170) 

8.57 (5)

92.00 (68) 
149.25 (144) 

5.37 (5)

35.49 (12) 
14.13 (10) 
67.19 (57)

February 1999 Nitrate/Nitrite ANOVA 
Treatment Effect

Depth df F P
0-2 cm 
2-5 cm 
5-10cm

20
20
20

0.8660
0.6555
1.0155

0.5013
0.6299
0.4231

February 1999 Mean Ammonium Concentration (S.E.) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

1890.0(1310) 1136.4(79) 
4502.0 (3361) 4379.6 (495) 
9497.0(158) 12991.4(867)

695.2 (1352) 
1044.0 (47)
857.2 (304)

859.3 (2457) 
1181.2(2695) 

1780.0 (86)

738.0 (2629) 
606.9 (573)
721.1 (3283)

February 1999 Ammonium ANOVA 
Treatment Effect

Depth df F P
0-2 cm 20 1.3268 0.2943
2-5 cm 20 11.9610 >.0001
5-10cm 20 11.0227 >.0001



Quarterly Sediment Nutrient Data - May 1999
(nutrient concentrations in mmole/m2)

May 1999 Mean Nitrate/Nitrite Concentration (S.E'.) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

27.41 (12) 
38.75 (31) 
16.77(11)

63.26 (40) 
50.46(31) 
51.53 (47)

43.59 (25) 
22.25 (13) 

3.59 (2)

67.86 (37) 
22.9 (6) 

40.66 (34)

18.61 (10) 
3.77 (2) 

22.22 (17)

May 1999 Nitrate/Nitrite AN OVA 
Treatment Effect

Depth df F P
0-2 cm 20 0.6180 0.6548
2-5 cm 20 0.7417 0.5748
5-10cm 20 0.4836 0.7475

May 1999 Mean Ammonium Concentration (S.E.)
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 994.2 (1574) 1073.8 (178) 956.3 (1588) 801.0 (943) 658.2 (1610)
2-5 cm 4516.6 (3598) 4143.5 (1604) 625.8 (61) 674.0 (1940) 617.5 (137)
5-10cm 9850.3 (243) 6697.9 (1893) 968.2 (81) 814.7 (69) 850.7 (1061)

May 1999 Ammonium ANOVA 
Treatment Effect

Depth df F P
0-2 cm 20 2.0912 0.1199
2-5 cm 20 18.6698 >0001
5-10cm 20 7.6488 0.0006



Quarterly Sediment Nutrient Data - Aug.1999
(nutrient concentrations in mmole/m2)

August 1999 Mean Nitrate/Nitrite Concentration (S.E.) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

26.94 (8) 59.33 (28) 
25.04(6) 11.83 (9) 
9.82(5) 13.16(12)

35.29 (8) 
15.88 (4) 
4.03 (4)

30.17(10) 
18.3 (5) 

34.25 (26)

25.02 (9) 
14.16(10) 
30.69 (9)

August 1999 Nitrate/Nitrite ANO VA
Treatment Effect

Depth df F P
0-2 cm 
2-5 cm 
5-10cm

20 0.8901 
20 0.4917 
20 0.9405

0.4879
0.7418
0.4609

August 1999 Mean Ammonium Concentration (S.E) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

1893.6 (1509) 2010.9 (373)
5934.6 (4512) 6047.5 (2369) 
11087.9 (157) 9771.9 (1644)

1005.9 (169) 
597.2 (92) 

684.7 (108)

702.6 (1190) 
797.4 (2413)
683.7 (166)

898.4 (1268) 
580.2 (45) 

560.7 (2249)

August 1999 Ammonium AN OVA
Treatment Effect

Depth df F P
0-2 cm 20 4.9088 0.0064
2-5 cm 20 9.4711 0.0002
5-10cm 20 7.6296 0.0007



Quarterly Sediment Nutrient Data - Nov. 1999
(nutrient concentrations in mmole/m2)

November 1999 Mean Nitrate/Nitrite Concentration (SJL) 
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 
2-5 cm 
5-10cm

87.52 (19) 
73.02 (12) 

438.43 (285)

157.41 (75) 
112.82 (65) 
91.28 (16)

79.61 (11) 
64.35(31) 
149.91 (19)

118.66 (61) 
67.67 (27) 
123.96 (18)

77.11 (17) 
85.9 (11) 

123.35 (11)

November 1999 Nitrate/Nitrite ANOVA 
Treatment Effect

Depth df F P
0-2 cm 20 0.5799 0.6806
2-5 cm 20 0.3190 0.8619
5-10cm 20 1.2454 0.3239

November 1999 Mean Ammonium Concentration (S.K)
Treatment

Depth UNV-T UNV-NT VEG-T VEG-NT MARSH
0-2 cm 1780.2 (651) 2873.2 (1240) 575.1 (69) 614.2 (71) 417.62 (86)
2-5 cm 3170.9(540) 3246.6(1073) 373.3(82) 510.8 (124) 420.6 (78)
5-10cm 4145.2 (700) 4578.5 (1440) 549.6 (76) 405.7 (99) 444.7 (75)

November 1999 Ammonium ANOVA 
Treatment Effect

Depth df F P
0-2 cm 20 2.8384 0.0515
2-5 cm 20 7.8923 0.0005
5-10cm 20 8.9083 0.0003



between treatments but NH4 concentrations were significantly different between vegetated 

and unvegetated treatments at all depth increments. There was no effect of TBT seen on the 

NH4 concentrations. The same was true for the November 1999 data. Vegetated and marsh 

samples were not significantly different in nutrient concentration at all sampling dates 

showing that as far as the sedimnet nutrient environment is concerned, the experimental bins 

and surrounding created marsh were similar.

Redox Potential

Trends in redox show a higher, less negative redox potential in the vegetated 

treatments and in the marsh outside of the bins compared to the unvegetated treatments. 

Redox potential decreased with depth in all treatments. Redox measurements from April, 

August, and October 1999 (Figure 12) are representative of conditions throughout the 

growing season. Because of the spatial variation and the range of values of the redox 

data(Table 4), there appears to be few differences between the treatments as determined by 

ANOVA (Table 5). In April 1999, there were significant differences in redox at the 1cm, 

2cm, and 5cm depths between the vegetated and unvegetated plots. At the 10cm depth there 

were significantly lower redox potentials in the unvegetated treatments and in the 

surrounding marsh (p<0.05). In July, at the 10cm depth sediment redox potentials in the 

unvegetated treatments and the surrounding marsh were significantly different (p<0.05).
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Figure 12. Redox potential profiles for the vegetated and unvegetated experimental bins and 

the surrounding created wetland April, August, and October 1999.
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Table 4. Monthly redox mean values at four depth intervals in the vegetated and unvegetated

experimental bins and the surrounding created wetland
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Table 5. Monthly redox ANOVA results at four depth intervals in the vegetated and

unvegetated experimental bins and the surrounding created wetland
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Monthly Re-Dox ANOVA Results

April 1999 Re-Dox ANOVA July 1999 Re-Dox ANOVA
Treatment Effect Treatment Effect

Depth df F P Depth df F P
1 cm 11 7.2177 0.0099 1 cm 12 0.4041 0.6764
2 cm 11 5.3950 0.0233 2 cm 12 0.3848 0.6887
5 cm 11 6.8327 0.0118 5 cm 12 1.1079 0.3618
10 cm 11 6.7955 0.012 10 cm 12 6.2577 0.0138

June 1999 Re-Dox ANOVA August 1999 Re-Dox ANOVA
Treatment Effect Treatment Effect

Depth df F P Depth df F P
1 cm 12 0.2671 0.7700 1 cm 12 4.2245 0.0408
2 cm 12 0.3420 0.7170 2 cm 12 5.7031 0.0182
5 cm 12 0.1462 0.8655 5 cm 12 1.4808 0.2662
10 cm 12 0.6873 0.5217 10 cm 12 1.6778 0.2278

October 1999 Re-Dox ANOVA 
Treatment Effect

Depth df F P
1 cm 12 1.1444 0.3508
2 cm 12 3.0138 0.0869
5 cm 12 2.5742 0.1174
10 cm 12 2.0076 0.177



Biomass Data

Regression to Estimate Biomass

Non-destructive shoot morphometric measurements were compared to measured 

shoot biomass to develop a predictive model of plant biomass. Total stem length was found 

to be the best predictor of biomass (r2=0.804; Figure 13). This relationship (y=0.0019x17974) 

was therefore used to predict shoot biomass and growth from the measurements of shoot 

height.

Monthly Field Measurements

Results indicated a gradual decrease in mean S. altemiflora shoot density and shoot 

height over time during the fall of 1998 (Table 6). There were no significant differences 

(p>0.05) between plants growing in TBT and non-TBT amended sediments. During the 

1999 growing season the mean number of shoots per meter squared decreased over the 

growing season as the mean shoot height increased (Figure 14). Shoot biomass increased 

from April to June, then decreased during July and increased again through September. Final 

winter dieback of shoot material was evident in November and December (Figure 15). 

Growth parameters paralleled this biomass trend. There were no significant differences 

(p>0.05) observed in the monthly measured shoot morphometric and biomass parameters 

between the TBT treatments (Table 7). Belowground biomass was measured at the end of 

the experiment only. Belowground biomass ranged from 620-3 lOOg dry wt/m2. Mean 

belowground biomass was 1700g dry wt/m2 and 1900g dry wt/m2 for the TBT and non TBT 

amended treatments were not significantly different (p>0.05).
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Figure 13. Regression relating S. alterniflora stem length to shoot biomass
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Table 6. S. alterniflora average stem length and shoot density for September to December 

1998
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Spartina alterniflora Data - 1998
Parameters for new growth shoots only

Monthly Treatment Means for Biomass Parameters
10/8/98 11/4/98 12/2/98

Parameters TBT No TBT TBT No TBT TBT No TBT
Shoots/m2
Mean Shoot Ht. (cm)

172.17
7.40

129.21
5.80

116.21
6.50

116.21
6.40

94.69
3.90

81.78
4.1



Figure 14. S. alterniflora density and canopy height during the 1999 growing season
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Figure 15. S. alterniflora biomass during the 1999 growing season
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Table 7. S. altemiflora biomass parameters - monthly means and ANOVA results
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Spartina alterniflora Data - 1999
Means in experimental bins by date and treatment

Monthly Treatment Means for Biomass Parameters
4/23/99 6/26/99 7/17/99 8/7/99

Parameters TBT No TBT TBT No TBT TBT No TBT TBT No TBT
Shoots/m2 585.55 512.36 413.33 417.64 383.19 391.8 348.75 357.36
Mean Shoot Ht. (cm) 11.70 10.21 21.41 21.78 19.29 16.9 25.93 21.2
Biomass/m2 103.68 74.06 229.05 239.82 190.13 148.46 325-37 19526
Growth/m2/day - - - - 3.86 3.15 8.71 6.37

9/18/99 10/2/99 11/20/99 12/4/99
Parameters TBT No TBT TBT No TBT TBT No TBT TBT No TBT
Shoots/m2 310.00 258.33 310.00 318.61 188.37 159.3 75.35 64.58
Mean Shoot Ht. (cm) 27.98 28.66 25.46 24.20 22.63 24.75 28.62 27.85
Biomass/m2 287.83 259.06 243.00 238.01 89.68 116.12 45.25 42.96
Growth/m2/day 2.5 3.15 7.13 7.29 0.69 0.95 3.02 1.87

Monthly Treatment ANOVA Results for Biomass Parameters
4/23/99 6/26/99 7/17/99

Parameters df F P df F P df F P
Shoots/m2 9 1.023 0.4927 9 0.8897 0.571 9 0.8932 0.5688
Mean Shoot Ht. (cm) 9 1.1972 0.4052 9 0.8928 0.5691 9 1.1089 0.4474
Biomass/m2 9 1.3201 0.353 9 0.8937 0.5685 9 0.9959 0.5078
Growth/m2/day - - - - - - 9 1.0933 0.4553

8/7/99 9/18/99 10/2/99
Parameters df F P df F P df F P
Shoots/m2 9 0.8928 0.5691 9 1.0179 0.4954 9 0.8924 0.5693
Mean Shoot Ht (cm) 9 1.8139 0.2069 9 0.8921 0.5695 9 0.9233 0.5503
Biomass/m2 9 1.1962 0.4056 9 0.9039 0.5622 9 0.8898 0.5709
Growth/m2/day 9 1.0115 0.499 9 0.9727 0.521 9 0.8907 0.5704

11/20/99 12/4/99
Parameters df F P df F P
Shoots/m2 9 0.891 0.5702 9 0.945 0.5373
Mean Shoot Ht. (cm) 9 1.0672 0.4689 9 0.9302 0.5462
Biomass/m2 9 0.9455 0.537 9 0.8896 0.5711
Growth/m2/day 9 1.0584 0.4735 9 0.9546 0.5316



PAM Results

In situ plant stress measurements of photosystem effective quantum yield and 

maximum quantum yield were obtained during the perceived peak of biomass in August 

1999 with the Pulse Amplitude Modulated (PAM) flourmeter. The measurements revealed 

no significant effect of TBT on the plants, even in the high dose bins (TBT > 400ng/g). 

Effective quantum yields ranged from 0.663 to 0.747 and maximum quantum yields from 

0.707 to 0.768. Typically maximum quantum yields of 0.75-0.85 are considered 

representative of non-stressed conditions. The data from the PAM is summarized in Table 

8.

Plant Degradation Laboratory Experiment 

Butyltins in the Water

During the course of the laboratory experiment, TBT and DBT were observed to be 

released into the water in the aerobic treatments (Figure 16). Only data from the aerobic 

treatments is available due to an analytical problem with TBT extraction in the anaerobic 

water samples. An average of 13ng of TBT was released into the water during the first 

twelve days of the experiment with a range of 14-17ng. After 25 days a the total released 

averaged of 14ng. This level remained constant through the end of the experiment. This 

represents a release of approximately 20% of the initial level of TBT into the water (Figure

17). This did not, however, account for the TBT lost to degradation which was 

approximately 10% of the initial TBT. DBT followed the same trend with an average of 7ng 

released over the first 12 days. This amount increased to 7.5ng after 24 days and to 9.0ng
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Table 8. Summary of pulse modulated amplitude fluorometery
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Summary of PAM Data - August 1999

Bin & Treatment
Effective 

Quantum Yield
Effective 

QY Std. Error
Maximum 

Quantum Yield
Maximum 

QY Std. Error
A2 VEG-NT 0.747 0.003 0.768 0.007
A3 VEG-T 0.740 0.005 0.765 0.016
B1 VEG-NT 0.737 0.006 0.764 0.006
B4 VEG-T 0.746 0.009 0.777 0.007
Cl VEG-T 0.735 0.008 0.763 0.006
C2 VEG-NT 0.730 0.010 0.765 0.008
D2 VEG-T 0.741 0.009 0.768 0.006
D4 VEG-NT 0.731 0.012 0.767 0.009
El VEG-NT 0.743 0.005 0.718 0.011
E4 VEG-T 0.663 0.018 0.707 0.009
HIGH DOSE #1 0.672 0.017 0.713 0.017
HIGH DOSE #2 0.716 0.012 0.735 0.013



Figure 16.Cumulative TBT released into the water during the plant degradation experiment
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Figure 17. Percent of initial TBT released into the water
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after 44 days. MBT release was negligible at 1.5ng after 44 days.

One of the aerobic water samples was filtered and run to determine the percent of 

TBT associated with the particulate phase. In the unfiltered sample, there was 28ng/l TBT 

and in the filtered sample 17ng/l TBT remained. Therefore in the water associated with the 

plant decomposition study, roughly 61% of the TBT was associated with the dissolved phase 

and 39% with the particulate phase.

Butytins in the S. altemiflora

Normally tissue concentrations are presented as a wet weight but due to the changing 

quality of the plant material throughout the experiment, the concentrations were normalized 

to dry weight to better compare concentrations over time. When converted to dry weight, 

there was 3.8ng/g TBT in the plant material which translates to a total beginning mass of 

TBT in the experiment of 73ng. Due to the abrupt change in the quality of the plant material 

over the first twelve days, it appears as if the TBT concentration actually went up (Figure

18). In the aerobic treatments, the concentration rose to 14ng/g then fell to approximately 

1 lng/g by the end of the experiment. The anaerobic also rose to approximately 13ng/g but 

then stayed at that level. DBT levels also appeared to rise initially to 6ng/g then fall to 3ng/g 

(Figure 19). The aerobic treatment increased to 1 lng/g while the anaerobic treatment level 

remained unchanged. MBT levels in the anaerobic plant material increased to approximately 

5ng/g then fall at the end to 3.5ng/g (Figure 20). There was never any detectable MBT 

detected in the aerobic plant material. This apparent rise in the concentration of TBT in the 

plant material corresponded with the initial release of TBT into the water. The percent total
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Figure 18. TBT concentration in the aerobic and anaerobic plant material over the course of

the plant degradation experiment
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Figure 19. DBT concentration in the aerobic and anaerobic plant material over the course of

the plant degradation experiment
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Figure 20. MBT concentration in the aerobic and anaerobic plant material over the course

of the plant degradation experiment.
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solid of the plant material decreased from 32% initially to an average of 12.7% after 12 days. 

It then decreased further to 11% and remains constant through the end of the experiment. 

The percent organic carbon did not change throughout the 53 days, staying at approximately 

75%.
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DISCUSSION

Field Experiment

Natural Versus Created Wetland Conditions

The biomass and growth of the S. alterniflora in this study were found to be 

consistent with that of other of created tidal wetlands, and therefore the results are likely 

good models of bioremediation for these wetland habitats. Biomass production in S. 

alterniflora dominated low marsh systems typically varies with latitude and has been found 

to range from 1,300 to 3,700g dry wt/m2/ yr in North Carolina and Georgia (Mitsch & 

Gosselink, 1993). The average annual production for the vegetated treatments at the Little 

Creek study site was 410g dry wt/m2/yr. However, four year old created marshes have been 

found to typically have 1.3 - 5.5 times less above ground biomass and 2.1-12.4 times less 

below ground biomass than similar natural marshes (D’Avanzo, 1990; Hardisky, 1978).

Nutrient concentrations in the created wetland were found to be similar to those 

observed in a study by Anderson et al (1997) for a natural S. alterniflora saltmarsh on the 

Eastern Shore of Virginia. D’Avanzo (1990) found that newly created wetlands are normally 

lower in nutrient concentrations than their established counterparts, but become similar 

within 2-5 years of development When the study at Little Creek began, the created marsh 

was 3 years old so these concentrations were indicative of a created marsh at a 3-4 year stage 

of development The sediment nutrients in the vegetated treatment bins were also similar to 

the surrounding marsh and therefore the experimental treatments within the bins were 

representative of the adjacent created wetland. During periods of increasing biomass, 

nutrient concentrations in the vegetated treatments were found to be significantly lower then
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those of the unvegetated treatments. Again, patterns of decrease were similar between both 

vegetated bins and the adjacent vegetated marsh suggesting little impact of the bins on 

sediment geochemistry.

Effect ofSpartina alterniflora on disappearance o f TBT

The TBT concentration in the contaminated sediment decreased from an average 

of260ng/g to 1 lOng/g over the 16 month duration of the experiment (Figure 9). The greatest 

decrease occurred during the fall of 1998 and the spring/summer of 1999 with little change 

evident during the winter. It was hypothesized that if the plants did not directly accumulate 

or degrade TBT, they would enhance the surrounding environment making it more favorable 

to microbial growth. This could occur by oxygenating the sediment and by providing 

microbial nutrients through exudates in the root and rhizome zone. However in this study, 

S. alterniflora growth did not enhance the disappearance of TBT, as both vegetated and 

unvegetated treatments followed the same trend with half lives of 300 and 330 days. There 

were also no significant affects of the vegetation on the levels of DBT in the sediment. 

Previous studies have shown that microbially mediated degradation is a primary means of 

disappearance of TBT from sediment. In one study, when poison was used to inhibit 

microbial activity, degradation slowed significantly (Clark et al., 1988). It is likely that the 

microbial communities in the saltmarsh sediment were the major factor affecting TBT 

degradation rate and they were inhibited by the colder temperatures. The MBT was below 

the detection limit for all of the sediment samples analyzed but, initial recovery experiments 

showed a low recovery of MBT at 19%. This is due in part to the method used to analyze the
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sediment which is optimized for the recovery of TBT. Francois et al. (1989) found that in 

seagrass tissue (Zostera marina), MBT was the major degradation product. They 

hypothesized that while decomposition was a step wise debutylation reaction, the seagrass 

tissue actually increased the rate of DBT degradation. In our study DBT is the major 

degradation product in the sediment and water. De Mora (1996) demonstrated two paths of 

degradation, methylation and debutylation depending on the dominant microbial activity. 

The lack of apparent effects of the plants on TBT degradation, even at the levels of plant 

biomass and growth found here, suggest that degradation processes other than those affected 

by the plants were likely regulating TBT degradation.

Other Processes Affecting TBT Degradation

The most likely explanation for the decrease in the concentration of TBT within the 

constructed wetland was biologically mediated degradation. Other possible mechanisms to 

consider include removal by tidal flushing and/or rainfall, volatilization, and photolysis. 

Processes such as photolysis and volatilization are unlikely, even in the top layer of sediment 

due to low transmittance of UV light beyond the top of the sediment and the low vapor 

pressure of TBT. The effect of tides and rain seem unlikely because of the hydrophobic 

character of TBT. Water-octanol partitioning coefficients (Kow) as well as partitioning 

coefficient (Kj) values suggest a much greater affinity of TBT for sediment particles than 

water. In order to investigate the effect of rain events on the flushing of TBT from the bins, 

daily rainfall was compared to TBT concentration in the sediment for the duration of the 

experiment (Figure 21). However, no correlation between TBT disappearance and rainfall
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Figure 21. TBT concentration and rainfall over the duration of the field study
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could be found suggesting effects were small.

The disappearance of TBT seemed to be best explained by microbial degradation. 

Sediment microbial activity typically decreases with temperature, with the lowest amount of 

activity during the winter months. Slower rates of disappearance in winter months (Figure 

22) suggests that there was a potential relationship between temperature and TBT 

disappearance with a temperature threshold of approximately 15 °C. Below this temperature 

the rate of TBT disappearance was negligible. When the temperature increased above this 

threshold in the spring, the degradation rates increased.

Redox

Overall there were no consistent significant differences in the redox potentials 

between the vegetated and unvegetated treatments throughout the study. This may explain 

the lack of difference between the vegetated and unvegetated plots with regard to the 

disappearance rates of TBT. Dowson et al. (1996) found that TBT degradation rates were 

related to the aerobic condition of the sediment. The redox conditions measured in the 

created wetland and experimental treatments suggest relatively aerobic sediments even 

without vegetation. Therefore the potential additional effects of vegetation on sediment 

oxygenation may have been minimized in this study. The redox measurements which were 

taken at low tide during the day likely represent, temporally, the most oxygenated periods at 

the site. Under waterlogged conditions of high tide the diffusion of oxygen down into the 

sediment would be reduced and redox would be expected to be lower. Given the relatively 

sandy nature of the sediments in this created wetland (1-4% organic carbon) and the lack of
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Figure 22. TBT concentration and water temperature over the duration of the field study
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waterlogging at low tide, it is likely that the disappearance rates for TBT observed here 

represent relatively high rates for salt marsh areas. Rates for marshes with poorer drainage 

or more organic-rich sediments might be less than those reported in this study.

Effects o f TBT on Spartina alterniflora

Prior to this study there has been no reported information on the effects of TBT on 

saltmarsh macrophytes. Results here suggest that TBT effects on S. alterniflora should be 

minimal up to sediment levels of 270ng/g. Growth rates of the plants in contaminated and 

uncontaminated sediments were similar and measurements of photo-system stress indicated 

relatively unstressed conditions. Therefore, the use of TBT contaminated sediments at these 

representative levels of contamination (Espoureille et al.,1993; Govhoug et al., 1996) should 

not inhibit macrophyte growth and development.

In the Spring of 1999 additional bins were amended to 400ng/g TBT and planted with 

S. alterniflora of the same cohort as that which was used to vegetate the original bins. 

Unlike the experimental bins, the S. alterniflora in these bins did not grow well. A 

composite sample of plant material from these bins was analyzed and the TBT levels in the 

aboveground portion of the plant were found to be higher than in the regular experimental 

bins (16ng/g versus 1.2ng/g). While this was a single sample that was not replicated, it does 

suggest that for higher sediment concentrations the TBT concentrations in the plants would 

also increase. There was no evidence of photo-system stress in the surviving shoots. Those 

shoots that did grow were healthy. There could have been other factors that may have 

affected the health of the plants during the transplanting process such as temperature, time
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out of soil before they were transplanted, and uncompacted soils which may have affected 

shoot viability. However, future work investigating the effect of TBT at levels higher than 

those used here may be warranted.

TBT Concentration in Plants and Trophic Transfer

TBT concentrations in Spartina alterniflora growing in the contaminated treatments 

remained relatively low throughout the experiment, achieving a maximum of 1.2ng/g in 

aboveground tissue and in 43ng/g in belowground tissue. TBT concentrations as low as 

0.03 pg/L in the water column have been shown to cause adverse effects to the copepod 

Acartia tonsa, an important estuarine organism in the Chesapeake Bay (Bushong et al., 

1990). The levels measured in the S. alterniflora are very low compared to those measured 

in eelgrass tissue {Zostera marina) by Francois et al (1989) (61-819ng/g after two weeks) but 

the TBT water spike used in that study was much higher than levels typically found in natural 

waters. Additionally the mode of uptake in eelgrass tissue differs from a marsh marcophyte 

in that uptake occurs through the leaf tissue from the surrounding water column as well as 

in the roots and rhizomes. An earlier survey of eelgrass tissue from the Great Bay Estuary, 

NH by Francois and Weber (1988) revealed tissue levels to be below detection limits 

(<lng/g) even in areas of heavy boating traffic.

There has been little published information concerning the toxicity of TBT 

contaminated food, therefore it is difficult to predict the effect of the TBT contaminated S. 

alterniflora tissues on higher trophic levels. While this study demonstrates that most of the 

non-degraded TBT remains associated with the sediment, there is some potential for
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exposure to organisms of the lower trophic levels as well as secondary consumers. Many 

studies have investigated the importance of salt marshes for wintering waterfowl, insects, 

detrital feeders, and small vertebrates. Uptake by bacteria could result exposure to copepods, 

larval crustaceans, and small fish. Waterfowl including Snow Geese, Geyleg Geese, Atlantic 

Brant, Canada Geese, and Mallards feed on both the leaves and the roots and rhizomes 

through grubbing of many salt marsh plants including S. alterniflora (Mason, 1995; Esselink 

et al., 1997; Buchsman & Valiela, 1987; Priest pers. com., 2000; Havens pers. com., 2000). 

Insects such as grasshoppers, and leafihoppers feed on S. alterniflora as well as certain 

vertebrates including nutria, muskrats, and grazers such as deer and livestock (Priest, 

Havens, & Perry pers. com., 2000). Some smaller birds will also ingest the seeds of marsh 

grasses. There are therefore many possible vectors for transfer of TBT, not only to higher 

trophic levels in the aquatic system but also to the terrestrial environment. While this study 

only dealt with S. alterniflora, it is essential to carefully consider the animals utilizing the 

flora in a remediative system and to evaluate the consequences of their grazing on the 

potentially contaminated tissue. Considering the diverse group of consumers that can feed 

on both the aboveground and belowground tissue of S. alterniflora, trophic transfer is a 

concern in these systems and this issue warrants further investigation.

Laboratory Experiment 

Plant Degradation

The plant degradation experiment was undertaken in order to assess the possibility 

of re-release of TBT into the environment from contaminated plants upon their senescence.
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Plant decomposition takes place in multiple stages as described in Hicks et al. (1991). The 

first stage involves mostly physical changes with the leaching of the soluble components of 

the tissue. During the second stage, microbial activity on the tissue is the predominant 

method by which the plant continues to degrade. In the third stage, which is of the longest 

duration, refractory components like cellulose and lignins make up a large percentage of 

what remains and microbial activity associated with the litter is diminished. The plant 

degradation experiment conducted here simulated the early stages of senescence.

Over the initial 12 days of the experiment, the quality of the plant material changed. 

This was associated with a relative increase in TBT concentration within the plant material 

(3.8 to 14ng/g). Possibly, when the tissue was beginning to decompose and the labile 

portions of the plant were released there was little TBT associated with this material 

therefore the relative concentration in the remaining tissue increased. This is similar to what 

Drifineyer & Redd (1981) found in an experiment involving S. alterniflora and heavy metals. 

Higher concentrations were detected in the dead versus live S. alterniflora biomass and they 

hypothesized this was due to the association of the metals with the more refractory 

component of the plant tissue. Of the initial 73ng of TBT in the plant material only 15ng 

were released into the water over the course of the experiment. The TBT released by the 

decomposing plant material was therefore only a small percentage (20%) of the total taken 

up by the plants. Most of that which was released occurred within the first 2 weeks after that 

little loss occurs. Therefore, in a marsh system, much of the TBT associated with the plant 

material may eventually be incorporated into the marsh sediment through burial and 

degradation. This would prevent its exportation as a dissolved component from the marsh.
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Unlike the aerobic treatments, the TBT concentrations in the anaerobic plant material 

here did not decrease over time after an initial relative increase. This is in agreement with 

what has been reported in the literature for the fate of TBT in marsh sediments. When TBT 

is buried in anaerobic sediments there has been normally very little degradation of the 

compound and a half life of years has been reported (de Mora et al., 1995; Dowson et al., 

1996).

Overall Observations of the Fate of TBT in a Created Wetland

Based on the results of this study an overall budget of sediment TBT in a created 

wetland was developed and a theoretical amount of TBT (1kg) was used to illustrate the 

amount that would be in each compartment (Figure 23). After 16 months 40% of introduced 

TBT would still be present in the marsh sediment. Only 0.4% of the original TBT would 

have accumulated in S. alterniflora tissue. Of this amount, 0.5% would be in the 

aboveground shoot tissue and 99.5% in the belowground portions of the plant. Not taking 

into account the small portion which was degraded, approximately 20% of the shoot TBT, 

or 0.0004% of the original amount of sediment TBT, would be expected to be released into 

the water after 53 days of senescence. The remainder of the TBT accumulated by the plants 

may be reincorporated into the sediment via burial where decomposition would be reduced. 

Of the TBT released into the water column, 61% would likely be associated with the 

dissolved fraction and 39% with the particulate fraction. This budget suggests that most of 

the TBT associated with sediments would either disappear or remain associated with the 

sediment in a created, S. alterniflora dominated salt marsh. While S. alterniflora does not
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Figure 23. Fate of TBT in a created marsh system
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seem to increase the rate of TBT disappearance in relatively well oxygenated sediments, TBT 

in contaminated sediment will degrade. Creating wetlands on contaminated dredge spoils 

for the sole purpose of remediation does not seem viable, but using dredge spoils to create 

wetlands would be plausible.
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CONCLUSIONS

The first objective of this study was to determine if S. alterniflora contributed to the 

degradation of TBT in created marsh sediments. The presence of S. alterniflora did not 

expedite TBT degradation and disappearance rates did not differ significantly between 

vegetated and unvegetated treatments. While this potential mechanism remediating TBT 

contaminated sediment was not found to work here, TBT was accumulated by the marsh 

macrophyte. Greater amounts of TBT were found in the belowground portion of the S. 

alterniflora which averaged 43ng/g than in the aboveground tissue which averaged 1.2ng/g. 

These concentrations could potentially affect the consumers of S. alterniflora. The toxicity 

of TBT to animals which utilize S. alterniflora dominated salt marshes deserves further study 

if this common marsh macrophyte is to be planted on TBT contaminated dredge spoils.

The second objective of the study was to investigate the fate o f the TBT if it was 

accumulated by the plants. It was hypothesized that upon plant senescence, butyltins would 

be released into the water with concentrations of MBT and DBT being higher then TBT. 

Here it was found that TBT was released in the greatest quantity followed by DBT. MBT 

remained below the detection limit. However, most of the TBT remained in the plant 

material over the 53 day experiment.

The use of S. alterniflora to speed the remediation of TBT contaminated dredge 

spoils was not supported in this marsh with sandy, well drained sediment. During this study, 

degradation rates did not differ significantly between vegetated and unvegetated treatments. 

Half lives of the TBT in these treatments were 300 and 330 days respectively, and presence
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of DBT in sediments confirmed that the degradation of TBT to less toxic daughter products 

was occurring. In a created wetland using TBT contaminated sediment approximately 60% 

of the contaminant would be lost after 16 months. Approximately 0.5% would be 

accumulated by plants in the marsh and 0.3% of this would be in the aboveground biomass. 

While the TBT does degrade, the concern of the marsh macrophytes becoming vectors for 

TBT movement up the trophic level and potentially into the terrestrial ecosystem must be 

considered.
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Appendix A. GC Settings and sample chromatogram of TBT standard and sediment standard 

from early spring 1999
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Gas Chromatography Settings for Butyltin Analyses

GC:

Detector:

Carrier Gas:

Detector:

Filter:

Column:

Injector Temperature: 

Detector Temperature:

Initial Column Oven Temp.: 

Final Column Oven Temp.: 

Temperature Program Rate: 

Final Oven Temp. Hold Tim

Varian 3300 GC 

Modified Flame Photometric 

Helium at 4 ml/min.

Hydrogen 152 ml/min.

Airl 97 ml/min.

Air2 188 ml/min.

600nm band pass 

DB-5; 30m x 0.32id. x 1.00pm 

280 °C 

280°C 

135°C 

300°C 

10°C/min. 

j: 5min.
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