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Using Deep Learning with Satellite Imagery to Estimate Global
Deforestation Rates

by Maeve NAUGHTON-ROCKWELL

Previous studies have used Convolutional Neural Networks for regional detec-
tion of deforestation breaks. However, there is limited research into the capa-
bility of deep neural networks to identify sudden shifts in global forest cover
from satellite imagery. Additionally, many deforestation detection models are
trained on region specific data and need manual input thresholds. In this work,
we develop a deep learning model to predict the percent of deforestation in
a region between two points in time, trained on globally sourced data. Us-
ing the before and after satellite images of a deforestation event as inputs, we
implemented a two input Convolutional Neural Network with ResNet transfer
learning. The model yields a percent estimate of the deforestation that occurred
within the region, achieving an error of 7.61%, using thousands of observations
across a wide range of bio-climatic regions. These results illustrate the ability of
a deep learning model to predict deforestation when it occurs, at a global scale.
Our study, which uses random sampling from every continent, suggests the ef-
ficacy/possibility of moving from a limited and regional method to a global
model.
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Chapter 1

Thesis

1 Introduction

With rising concern for climate change and unprecedented deforestation rates in
the Brazilian Amazon, it is increasingly important to create effective deforesta-
tion detection methods (Shyamsundar et al., 2021; Zon and Sparhawk, 1923).
Though the research community has focused heavily on deforestation detection,
there are significant gaps in the capabilities of contemporary methods. Specif-
ically, most current methods of deforestation detection are region specific and
often require manual threshold inputs (Buhalău, 2016; Schroeder et al., 2011;
Banskota et al., 2014).

In this work, we explore the capability of deep learning techniques to iden-
tify the degree of deforestation in satellite images captured at any two points
in time. We specifically focus on the efficacy of a single model to capture these
trends globally, irrespective of shifts in bioclimatic regime. This paper seeks to
answer the research question: To what degree can deforestation be quantified using
deep learning techniques?

To explore this question, we leverage global Landsat satellite imagery and
train a neural network to predict the percent of deforestation that occurred in a
region. We define forest cover as a 30mx30m pixel that has at least 25% canopy
closure of trees over 5m tall (Hansen, Stehman, and Potapov, 2010) and defor-
estation as forest cover that is removed due to any type of disturbance (Hansen,
Stehman, and Potapov, 2010).

This paper is structured as follows. In section 2, we provide a literature re-
view comparing past deforestation detection models. In section 3, we explain
how we acquired and processed the deforestation data and satellite imagery
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inputs. Section 4 and 5 detail the methods for the model architecture created,
followed by the results. Sections 6 and 7 provide our discussion and a brief
conclusion.

2 Literature Review

Forests play an important role in shaping local and global ecosystems, covering
31 percent of the global land area (Schroeder et al., 2011; Banskota et al., 2014;
FAO, 2020). Forests are important and unique habitats for animals, providing
4.06 billion hectares of unique terrain (FAO, 2020). Trees have numerous eco-
logical benefits for ecosystems, economic benefits to humans, and play a large
part in regulating the climate (Miura et al., 2015). Forests also contribute to the
livelihoods of subsistence farmers and provide a major energy source in many
developing countries (FAO, 2015; FAO, 2020; Romijn et al., 2015; Boafo, 2013).
However, forests are a limited resource, declining in size. It is estimated that
since 1990 the Earth has lost 420 million hectares of forest with agricultural ex-
pansion being the primary cause (FAO, 2020).

The destruction of forests can have negative environmental and ecological
effects, especially on tropical countries (D’Almeida et al., 2007; Amelung, 1993).
Deforestation can change the microclimate, influence soil erosion, and decrease
habitat for animals in these areas (Viera et al., 2008). The unique ecology of
rainforests lends itself to the adaptation of rare species of flora and fauna only
found in uncommon conditions (Amelung, 1993; Klaus Riede, 1993). The loss of
this particular habitat irreversibly threatens the biodiversity of species, allowing
for their endangerment (Viera et al., 2008).

Increasing variability in weather can decrease tourism and can be an eco-
nomic damper as many cities depend on eco-tourism (Amelung, 1993). These
changing environmental factors can also decrease agricultural productivity in
tropical areas (Amelung, 1993). Deforestation also has the ability to greatly
increase global greenhouse gasses (Galford et al., 2010). Trees sequester car-
bon and the release of this carbon affects the climate (Cramer, Bondeau, and
Schaphoff, 2004; Foley et al., 2005, Romijn et al., 2015). It is estimated that forests
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contain around 80 percent of the total carbon in the terrestrial above ground bio-
sphere (Waring and Running, 1998). The release of sequestered carbon from de-
forestation can have substantial effects on the amount of greenhouse gasses in
the atmosphere (Galford et al., 2010).

Alongside the need to protect forests, there is an immediate urgency to keep
accurate records for forest monitoring programs such as REDD and REDD+
(UN-REDD, 2014). However, global forest data has not always been available.
It was not until 1923, when the first Global Forest Resource Assessment was
published, that we had any idea of the volume of forests on Earth (Zon and
Sparhawk, 1923). Since 1948, the United Nations’s Food and Agriculture Orga-
nization (FAO) has performed forest assessments every five to ten years (MacDicken,
2015). In recent years, great strides have been made in tracking forest loss with
satellite imagery (Hansen et al., 2013;Finer et al., 2018; Belward and Skøien,
2015). A popular satellite which has led to the development of many defor-
estation monitoring programs is the USGS Landsat series (Lechler et al., 2020;
Hansen et al., 2013; Hansen, Stehman, and Potapov, 2010). The first Landsat
satellite was launched by USGS in 1972 and the program has since launched
8 successful satellites, providing continuous Earth data for over 40 years (Roy
et al., 2014). Our ability to monitor forests continues to develop and improve
as our remote sensing capabilities increase. From 2005 to 2015 the total tropical
forest area monitored increased from 69% to 83% (Romijn et al., 2015). The in-
creasing availability of free and open remote sensing data has greatly expanded
the scope of what land can be monitored (Romijn et al., 2015).

2.1 Contemporary Approaches to Measure Breaks in Forests

Satellite observations of forest cover have become the primary approach for the
measurement of forest health and size, with 70% of global forest assessments us-
ing such imagery as recently as 2015 (MacDicken, 2015). The long history, acces-
sibility, and reliability of the Landsat series of satellites has been one of the most
important contributors to this use, providing nearly 40 years of unbroken cover-
age of land cover at comparable temporal, spectral, and radiometric resolutions
(Lauer, 1997). While many contemporary satellites have higher resolutions, this
long-term record has improved our capability to understand the evolution of
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forest cover throughout much of contemporary human history (Keenan et al.,
2015).

One major challenge to the use of satellite data to monitor forest cover is
how to translate the spectral signatures observed (generally across visual and
near-infrared bands) into estimates of forest cover, or the quantity of other veg-
etative biomass present on the earth’s surface (Schroeder et al., 2011). The ma-
nipulation of image bands is one way to reformat images to isolate a study ob-
ject, with many different ways to highlight vegetation (Banskota et al., 2014). A
common method is highlighting green vegetation by manipulating the red and
Near-Infrared (NIR) bands to create a Normalized Difference Vegetation Index
(NDVI) (Eckert et al., 2015, Nath and Acharjee, 2013). The NDVI maximizes the
contrast between greenness and spectral background and can be used to create
phenological profiles for specific forest regions. In 2018, Othman et al. per-
formed an assessment of Malaysian tropical forest vegetation cover using NDVI
on 1km and 250m resolution MODIS images (Othman et al., 2018). For the 250m
resolution images Othman found that 8.9% of the total forest was degraded with
a 70-90% accuracy. The study suggested that imagery with higher resolution had
more accurate results.

Some studies have found that NDVI does not always have the accuracy that
is promised (Schroeder et al., 2011). In 2011 Schroeder et al. performed a com-
parison study of various band calculations and indices using Landsat Time Se-
ries annual image composites to determine when and what type of disturbance
to the forest occurred (Schroeder et al., 2011). Schroeder tested Short-Wave In-
frared (SWIR), Tasseled Cap Wetness, Forestness Index, NDVI, normalized burn
ratio (NBR), Tasseled Cap angle, and other green leaf indices. This study found
that the SWIR band was the most effective in differentiating between fires and
clearcut harvests, even up to 4 years after the disturbance occurred. Schroeder
found that NDVI and other near infrared-based indices led to lower classifica-
tion accuracy. To accommodate for this, researchers have developed numerous
variations of NDVI in attempt to cover its weaknesses: Soil Adjusted Vegetation
Index (SAVI), Enhanced Vegetation Index (EVI), and Atmospheric Resistant Veg-
etation Index (ARVI) (Huete, 1988;Jiang et al., 2008;Kaufman and Tanre, 1992).
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One weakness of vegetation detection algorithms is that they do not inher-
ently identify when deforestation occurs (Verbesselt et al., 2010a). Breaks for Ad-
ditive Season and Trend (BFAST) is a change detection method that uses a time-
series to identify a stable historical period to compare breaks against (Verbesselt,
Zeileis, and Herold, 2012; Hamunyela et al., 2020 ). BFAST integrates the decom-
position of time series into trend, seasonal, and remainder components with
methods to detect breaks (Verbesselt et al., 2010a). BFAST can provide near-real
time deforestation detection and can identify breaks in long-term seasonal pat-
terns using RGB imagery or a vegetation index (Verbesselt et al., 2010a;Gao et
al., 2021).

BFAST has been proven to be a useful tool to identify deforestation events us-
ing satellite imagery and remote sensing indices. The BFAST time-series change-
detection algorithm identifies pixels that deviate significantly as breakpoints
(Mitchell, Rosenqvist, and Mora, 2017;Verbesselt et al., 2010a). BFAST iteratively
estimates the time and number of changes based on a magnitude threshold
(Verbesselt et al., 2010a). In 2016, Bahalau found that using BFAST with Nor-
malized Difference Moisture Index (NDMI) had greater accuracy than BFAST
using NDVI (Buhalău, 2016). In 2018 Schultz found that using BFASTmonitor
with NDMI performed best with closed canopies versus open canopies (Schultz
et al., 2018). Lechler et al. compared multiple types of forest health indices
with BFAST and Random Forest algorithm, finding that SAVI used as input for
BFAST has the highest accuracy (Lechler et al., 2020).

Another threshold-based change detection method used is the Vegetation
Change Tracker (VCT) which uses the Integrated Forest z-score (IFZ) as a spec-
tral variable in time-series analysis (Banskota et al., 2014; Huang et al., 2010).
VCT works by first masking each image from clouds, water, and cloud shadow
using low reflectance values and NDVI. Then a band calculation is performed
that determines the likelihood of each pixel representing forest by calculating
the IFZ. From this index a final change and no change class layer is created;
however, it only achieved accuracy of 80% (Huang et al., 2010). The downside
of using a threshold based technique is that it is region specific and empirically
determined. A threshold that is calculated for one area is not interchangeable
with other regions containing different vegetation types and densities (Banskota
et al., 2014).
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2.2 Deep Learning with Satellite Imagery

The sheer amount of remote sensing data that is available has led to develop-
ments in creating deep learning models with satellite imagery. For example,
deep learning models have been shown to outperform traditional remote sens-
ing techniques in the context of segmentation (Minaee et al., 2020), scene classifi-
cation (Alhindi et al., 2018), and even land cover change detection (Sefrin, Riese,
and Keller, 2021). However, there is limited literature on using Deep Learning
to detect forest disturbances (Kislov et al., 2021).

A CNN is a deep learning model that uses sequential filters to identify pat-
terns and structures (Sylvain, Drolet, and Brown, 2019). CNNs are made up of
layers with interconnected nodes that receive and pass on weights (Minaee et al.,
2020). In 2021 Kislov et al. used pansharped, high resolution satellite imagery
with a deep convolutional neural network (DCNNs) to determine forest dam-
age caused by certain pests (Kislov et al., 2021). Kislov used an encoder-decoder
network architecture with U-Net. It was found that DCNNs performed better
than traditional pixel-based classification methods (Kislov et al., 2021).

In 2019 a study was performed using high-resolution (<5m) classifying satel-
lite imagery as either forest or not forest using three popular CNN structures:
ResNet, DenseNet, and U-Net. It was found that U-Net performed best with
an accuracy of 88.27% and an F1-score of 86.29%. (Mazza et al., 2019). U-Net
has been used in various deep learning studies on high resolution forest satellite
imagery. In a study on wind-related deforestation detection, U-Net was further
extended with an additional dropout layer and batch normalization after each
convolutional layer that could be parameterized at each step. This created a U-
Net-like CNN that achieved up to 97% accuracy at determining wind damaged
sites in certain forested landscapes. This study found that a U-Net-like CNN
is better at handling pattern-specific sources of error compared to pixel-based
methods (Kislov and Korznikov, 2020; Kislov et al., 2021).

Studies employing traditional CNN architectures tend to exhibit similar lev-
els of accuracy to those employing more complex U-Net approaches. In one
study on road segmentation it was found that Fully Connected Neural Net-
works (FCN) perform 1.5% better on inputs of 512 x 512 pixels and U-Net per-
forms 6% better on inputs of 256 x 256 pixels. However, it was found that U-Net
overfit the data for both input sizes while the FCN had either an equivalent or
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higher validation accuracy to training accuracy (Ozturk, Saritürk, and Seker,
2020). Because of the class imbalance of the forested and deforested pixels in the
Landsat data used in this study, it is important to watch for overfitting. Stud-
ies have shown that U-Net performs poorly for detecting non-standard objects
of interest, especially with changing terrain (Shahedi et al., 2020;Kislov et al.,
2021).

Lobo Torres et al. tested six different neural network architectures on Land-
sat and Sentinel data for the purpose of deforestation detection in the Amazon
(Torres et al., 2021). Lobo Torres et al. attempted to identify the pixels where
deforestation occurred at the time interval between two co-registered images.
Because the datasets were imbalanced with less than 1% of the data belonging
to the deforestation class, they used a Weighted Cross-Entropy Loss. The mod-
els performed similarly on the Landsat and Sentinel data with a slight reduction
in classification errors when using the Sentinel data. Overall, ResU-Net and FC-
DenseNet were found to be the best performing. The ResU-Net is similar to the
U-Net but has stacked layers of residual blocks to stop exploding or vanishing
gradients. The FC-DenseNet is a Densely Connected Convolutional Network
with added upsampling for the purpose of image classification (Torres et al.,
2021).

A difficulty of creating a model detecting deforestation is finding accurate
validation data. A popular dataset used is the Hansen et al. 2013 derived Global
Forest Watch data (Hansen et al., 2013). This dataset contains several variables of
note: Tree canopy cover for year 2000, Global forest cover loss 2000-2017 (Loss),
Global forest cover gain 2000-2017 (Gain). Tree cover is defined as 25% canopy
closure per pixel for all vegetation 5m and taller. Forest gain is defined as non-
forest to forest change entirely within the study period. Forest loss is defined as
change from a forest to non-forest state (Hansen et al., 2013).

In 2020 Galiatsatos performed an accuracy assessment on the Global Forest
Change data using the Guyana-Measurement Reporting and Verification (MRV)
and Landsat imagery (Galiatsatos et al., 2020). For this analysis, each pixel of
Landsat imagery was labeled based on the estimated tree cover percentage. Tree
cover was defined as a pixel where percent tree canopy coverage was at least
50%. It was found that the accuracy for forest loss when comparing the Global
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Forest Change dataset and Guyana-MRV was around 99%. This study sug-
gests that Global Forest Change data is more accurate than previously thought.
Hansen et al. reported an accuracy of 80% or better in tropical biomes, while
Galiastatos et al. found an accuracy of 99%.

Mitchard et al. 2015 also performed a study to determine the accuracy of
the Hansen Forest Loss Data (Mitchard et al., 2015). Mitchard et al. looked at
the usefulness of University of Maryland (UMD) Global Forest Change data for
the UK’s International Climate Finance (ICF) using two case studies in Brazil
and Ghana. The satellite imagery used was 5m RapidEye and SPOT data. The
Brazil imagery was put through a Support Vector Machine and the Ghana data
went through a two layer neural network for classification. It was found that the
Global Forest Watch dataset performed well in Brazil with an accuracy of 95%
and relatively low errors of omission. The UMD dataset did not provide the
same results for Ghana. In Ghana the UMD dataset only captured 10% of the
deforestation. Deforestation in Ghana is typically driven by small agroforestry
(Acheampong et al., 2019) and the 30m Landsat pixels were not able to capture
the change in forest (Mitchard et al., 2015).

There is some debate on what the best spatial resolution to use for Deep
Learning forest classifications is. A drawback of high resolution data is that
it can be hard to find or expensive to produce and often not viable for larger
study areas (Sefrin, Riese, and Keller, 2021). Kattenborn argues that the tradi-
tional method of pooling and convolving to lower spatial resolutions is not effec-
tive for vegetation mapping (Kattenborn, Eichel, and Fassnacht, 2019). Course
spatial resolution can lead to errors of where exactly the deforestation occurred
(Lunetta, 1991; Lepš and Hadincová, 1992;Leitão et al., 2018).

Much of the research on deforestation detection are small case studies and
region specific.The imagery used to train the models concentrate on a specific
continent or section of a country. There has not been much research on applica-
tions of deep learning to identify deforestation at a global scale. Some studies
have found spatial bias from global models, with different accuracies per conti-
nent (Masolele et al., 2021). While other studies use satellite imagery with coarse
spatial resolution (>250m) (Hansen, Stehman, and Potapov, 2010; Loveland et
al., 2000; Hansen et al., 2013). The following sections of the paper attempt to
address the gaps in global deforestation detection methods.
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3 Data

3.1 Study Area

All regions that were measured by Hansen et al. 2013 (Hansen et al., 2013) were
eligible for inclusion in this study, covering the vast majority of tropical regions
around the globe (see Figure 1.1). This resulted in an eligible area of 238 10x10
degree tiles. From this set, a random sampling strategy was employed in which
21,750 sites were chosen, totaling to 152,250 km2. The resulting final dataset
encompasses a wide range of geographies (i.e., forest, urban, deserts, and fields)
(see Figure 1.5).

3.2 Deforestation Validation Data

FIGURE 1.1: Example of the Forest Loss layer of the UMD Global
Forest Change Dataset (Hansen et al., 2013)

This study uses the University of Maryland (UMD) Global Forest Change
Dataset to create the deforestation validation data (Hansen et al., 2013). The
Global Forest Change data is derived from Landsat data (30 meter spatial reso-
lution) and has layers characterizing forest extent, loss, and gain from 2000-2019.
Forest loss is defined as the area of forest cover removed due to any type of dis-
turbance (Hansen, Stehman, and Potapov, 2010. Only the Forest Loss Year layer
was used for this study. This data can be downloaded as 10x10 degree raster tiles
which span the entire world; (noting only terrestrial regions were incorporated
into this study). Each raster cell contains a value from 0 to 19, with 0 represent-
ing no deforestation detected and 1-19 representing the year of deforestation
(2001-2019).
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Once the raster tiles were downloaded, 21,750 points of deforestation were
randomly selected. A 7km x 7km bounding box was drawn around each of
the random points and the percent area of deforestation versus no deforestation
was calculated. Percent deforestation was calculated by counting the number of
pixels where deforestation was found, divided by the total number of pixels in
the region. This percent of deforestation per 7km bounding box was used as the
final prediction output for the model.

3.3 Landsat Imagery

Before Deforestation After Deforestation

FIGURE 1.2: Example of Landsat imagery . Source image courtesy
of the U.S. Geological Survey.

The USGS and NASA joint Landsat program has continuously collected satel-
lite imagery since 1972 and put a total of 8 satellites in orbit. The Landsat 5
Thematic Mapper (TM) has 7 bands and operated from the years 1992 to 2013
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(Chander, Markham, and Barsi, 2007). The Landsat 8 Operational Land Imager
(OLI) has 9 bands and has operated since 2013 (Roy et al., 2014). Each satellite
orbits around Earth every 99 minutes with a 16-day repeat cycle.

The satellite images used in this study were extracted from Landsat satellite
5 and 8 Tier 1 Collection 1 Top of Atmosphere (TOA) Reflectance (Woodcock
et al., 2008). Tier 1 Collection 1 is the highest quality of data for Landsat, which
has a radial root mean square error (RMSE) of 12 meters or less (USGS, 2018).
Each pixel of a Landsat satellite represents 30 square meters.

Due to the ease of access and history of success the Global Forest Change data
has with the Landsat satellites, Landsat 5 and 8 were used to collect the imagery
for the study areas. We used the latitude and longitude of deforestation points
derived from the Global Forest Change data as centroids for image download.

We downloaded one year composite images for the year before and the year
after the identified deforestation date. For example, if deforestation was found
in the year 2005, satellite imagery for the years 2004 and 2006 were downloaded.
The images were sorted based on cloud coverage, and the least cloudy image
for each year was chosen. The images were then clipped to a 7km bounding box
and downloaded as red, green, and blue band files. As a final step for the image
processing the band files were concatenated and transformed into PNG image
files. The data was grouped into pairs with each pair containing the before and
after image of a deforestation event of a single coordinate.

4 Methods

In our model, the outcome we are seeking to predict is the total deforestation
between time 1 (a pre-deforestation scene, as measured by Hansen) and time
2 (a post-deforestation scene). We do this based on the pre- and post-imagery
alone, leveraging a convolutional model. In this paper we develop two separate
neural networks: a before neural network and an after neural network. The
"before" neural network is given satellite images of a 7km region which depicts
an area before a deforestation event occurs. The "after" neural network takes
inputs of images after a deforestation event. The outputs of the two "before"
and "after" CNNs are then concatenated and trained through a final series of
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FIGURE 1.3: Flowchart of the Model used in paper

Fully-Connected Layers. The CNN created for this project was implemented
using Tensorflow, an open source python package.

4.1 Train and Test Split

The 21,750 pairs of images were randomly separated into a 60/40 training and
testing split. The training data set received 60% of the data, and the remaining
40% went into a testing dataset. Inside the training and testing datasets, the
data was further divided. The grouped pairs of images were separated chrono-
logically: with the earlier year belonging to the “before” dataset, and the more
recent year placed into the “after” dataset.

4.2 Model Architecture

The model developed for this paper is a two step model that starts with two
identical CNNs that feed into a final series of Fully-Connected Layers. For a
single location, the before and after image of a deforestation event (size of 224
x 224) are fed into separate CNNs that are pretrained using transfer learning
(based on the imagenet dataset (He et al., 2015)). Using the weights learned
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from the classification of the ImageNet data, our model was fine tuned on the
Landsat satellite imagery. The output from the ResNet50 model was then put
through a series of dense layers.

Next, the "before" and "after" CNNs were concatenated and trained on a fi-
nal network made of fully-connected dense layers using a Rectified Linear Unit
(ReLU) activation function. We compiled the model using a batch size of 64,
Adam optimization, and a learning rate of 0.0001. The optimization and learn-
ing rate were both chosen from a grid search. We then fine-tune the network
parameterization over 50 epochs to estimate the percent deforestation of the 7km
area.

5 Results

FIGURE 1.4: Graph of the MAE of the testing data every run of the
epoch

Our CNN predicts the percent of deforestation that occurred in a 7km x 7km
region with 7.61% error on a dataset of 21,750 locations. As indicated in Table



Chapter 1. Thesis 14

1.1, the average error per continent ranged from 4.79% (Europe) to 8.70% (South
America). This model achieved an error of less than 10% for 85% of the testing
dataset.

5.1 Results: Loss

Continent MAPE Number of Observations Number of Outliers

Africa 5.15 1008 119
Asia 6.427 2659 497

Europe 4.79 775 74
N. America 7.45 1596 225
S. America 8.70 794 97
Australia 6.65 176 37

TABLE 1.1: Table for the error metrics of the testing data

Each epoch of the model was trained using the loss metric Mean Absolute
Error (MAE). MAE, calculated as the average between the actual and predicted
values, was chosen because of its resilience to outliers. Figure 1.4 depicts a sharp
decrease in loss at the beginning of fitting and a steady decline in the loss each
epoch. The final validation MAE of the model was 0.0003563 (i.e., 7.61% relative
to the mean of 0.00468).

We report and evaluate the accuracy of the model using Mean Absolute Per-
cent Error (MAPE), calculated as MAPE = 1

n ∑n
t=1 |

At−Pt
At

| where A is the actual
percent of deforestation and P is the predicted percent of deforestation. The
average percent deforestation for each input was 0.000468. Because the target
values for this study are so small, even minute differences between the actual
and predicted values result in large error. MAPE helps to account for this by
showing inaccuracies as a percent of the target value.

5.2 Spatial Pattern of Errors

Figure 1.5 shows the percent error for each point of deforestation, mapped to
the location of the event. This shows the breadth of samples from the study,
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FIGURE 1.5: Map of the percent absolute error for each data point
in the the testing dataset

Continent Mean Percent Error (%)

Africa 5.14%
Asia 6.28%

Europe 4.79%
N. America 7.45%
S. America 8.70%
Australia 6.65%

TABLE 1.2: Mean Percent Absolute Error calculated from the test-
ing dataset for each continent

with points across many different types of terrain in all continents. There do not
appear to be large clusters of high errors.

In Figure A.4 we can see the percent error for each sample site in the testing
dataset for Europe. The model achieved the lowest error in Europe. Though
there are some points that resulted in above 40% error, Figure A.4 shows the
even distribution of higher error points little appearance of clustering. This can
be compared to the distributions of error in South America (see Figure A.6).
South America has the highest percent error of the continents, however, the
higher errors appear to be spread evenly across the land. There does not ap-
pear to be groups of high error in South America.

As you can see in Asia (see Figure A.3), the randomized sampling of de-
forestation led to diverse geographies in the training and testing datasets with
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FIGURE 1.6: Relationship between percent error of the model and
the continent the data point is found.

locations in mountains, deserts, islands, and more. In Asia there appear to be
slight patterns in the error across the continent. There are occurrences of higher
error in northern Asia and Oceania. We can also see slight groupings of error
in North America (see Figure A.5). In North America the Central Canada and
the South East region of the United States of America experience higher percent
error.

In Australia Figure A.2 shows little grouping of high error, however, Aus-
tralia has much lower sample size than other countries. The dataset has 176 ob-
servations from Australia compared to 2,659 observations inside Asia. Though
Australia has the smallest interquartile range (Figure 1.6), it has the third largest
MAPE. South America has the widest interquartile range and highest error.

When studying such a large area, it is important to break the data by region
to evaluate any bias in error. For this study we examined the data by continent
to determine if there were any spatial patterns of error. Figure 1.6 shows the
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Biosphere Mean Percent Error # of Observations

Boreal Forests/Taiga 6.87% 1,318
Deserts & Xeric Shrublands 4.40% 713

Flooded Grasslands & Savannas 7.58% 55
Mangroves 6.80% 16

Mediterranean Forests, Woodlands & Scrub 6.35% 194
Montane Grasslands & Shrublands 5.83% 236

Temperate Broadleaf & Mixed Forests 5.71% 1,075
Temperate Conifer Forests 8.97% 314

Temperate Grasslands, Savannas & Shrubs 7.14% 747
Tropical & Subtrop. Coniferous Forests 4.69% 20

Tropical & Subtrop. Dry Broadleaf Forests 6.90% 220
Trop. & Subtrop. Grasslands, Savannas & Shrubs 5.68% 707

Tropical & Subtrop. Moist Broadleaf Forests 8.83% 898
Tundra 6.07% 498

TABLE 1.3: Mean Percent Absolute Error calculated from the test-
ing dataset for each continent

error distribution of the continents studied: Africa, Asia, Europe, North Amer-
ica, South America, and Australia. This figure further shows the skew of the
error towards smaller percent loss. As referenced in 1.2, Europe has the smallest
MAPE with a value of 4.79% and South America has the largest MAPE of 8.70%.
This suggests that the CNN is useful across a wide range of geographic data.

Phenological differences in terrestrial biospheres can cause large differences
in satellite imagery which makes it hard to differentiate between seasonal change
and deforestation (Verbesselt et al., 2010a). These visual differences can pose a
challenge for the model to learn (Verbesselt et al., 2010b). For example, in a de-
ciduous forest, an image taken during leaf-off season could appear as deforesta-
tion when none has occurred. By examining error trends in different biospheres
we can evaluate the model’s capacity for handling seasonal change/different
forests/diverse terrain/different types of forests.

To further evaluate the extent of geographic bias, we looked at the percent
error of each biosphere. We used the dataset created by Ecoregion (Dinerstein
et al., 2017) which divides and groups all terrestrial land into 15 biospheres.
Using this data we grouped the testing validation data based on the biosphere
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FIGURE 1.7: The error distributions for each biosphere the model
was tested on.
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they were located in. We then created boxplots (see figure 1.7) to look for pat-
terns in the errors. When looking at Figure 1.7 we see Tropical and Subtropical
Moist Broadleaf Forests (TSMF) and Temperate Conifer Forests (TCF) are both
skewed to the right with large interquartile ranges and the highest MAPE of all
the biospheres (8.97% and 8.83% respectively). A possible reason for the high
error in the TSMF is that it is composed of mostly deciduous trees. This could
indicate the model does not fully account for seasonal trends. A possible reason
for the high error in the TCF is that there were only 314 observations from this
biosphere in the testing dataset. Overall, the geographical bias of the model is
within an acceptable range. The MAPE for each biosphere is within 4% of each
other, indicating the model handles the different biospheres relatively similarly.
The model does seem to perform slightly worse on forests with deciduous or
mixed type forests.

6 Discussion

Across all continents, we can see that the model was broadly successful in pre-
dicting the percent of deforestation that occurred with ranges of accuracy simi-
lar to other techniques noted in the literature review. The presented technique
does not require region-specific calibration, indicating it may be more suitable
to global analyses than other techniques.

This paper opens the possibility for several areas of further research. The
first is researching the model’s implementation with different types of satellite
imagery. Landsat 5 and 8 Top of Atmosphere were used for this project, however
there are many other satellites of different spatial and temporal resolution that
could provide different benefits. Another extension of this project is to look into
global real-time deforestation detection. For this paper, composite images of the
year before and the year after the deforestation event is used as input, however
a smaller window could be tested.

There are several limitations of this study that can be resolved with further
research. This study only looked at one type of CNN, however there is much
room for further research into other model architectures. A comparative study
can also be done with this CNN and a different preexisting deforestation de-
tection model. For example, BFAST and the U-Net-like CNN mentioned in the
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literature review. The comparison of different machine learning and deep learn-
ing models on a diverse global dataset can help to isolate the most robust model.
A comparison of other CNN architectures could also lead to better results and
should be explored as options.

However, even with the best model it is important that deforestation detec-
tion modeling goes beyond proof-of-concept research papers and becomes a us-
able tool. Even if a model has 100% accuracy it has no use if it is not being used.
For further study, the development of a user friendly interface for deep learning
deforestation breaks detection would be an important tool for the conservation
community.

7 Conclusion

The main question driving this research was To what degree can deforestation be
quantified using deep learning techniques? The purpose of this paper was to ex-
tend our ability to track deforestation events. We developed a Convolutional
Neural Network that used the before and after image of a deforestation event
as inputs. Our results illustrated that deep learning detection of global breaks
in forest cover is promising. We achieved a global mean absolute percent error
of 7.61%, and less than 10% error on 85% of the data. This compares favorably
with previous results of similar studies.

The model created in this research demonstrates two things. First, the model
removes the need for region-specific calibration. Our methods required no region-
specific calibration yet yielded relatively comparable bias to region-specific mod-
els in estimates across the globe. We additionally test the approach of using only
two images as inputs for detection. Unlike other approaches that tend to train
the model on a stack of images, we trained each before and after image of a de-
forestation event on separate CNNs. This allows deforestation to be contrasted
across various time periods, according to a user’s need.

In summary, the CNN presented here illustrates how using satellite imagery
from around the world can help to train a robust deforestation detection model.
Relying solely on free, publicly available imagery, we were able to develop a
method to begin detecting deforestation globally. Extending this approach to
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other datasets and platforms could have lasting implications for the future of
deforestation detection.
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FIGURE A.1: Map of the percent error in Africa

FIGURE A.2: Map of the percent error in Africa
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FIGURE A.3: Map of the percent error in Asia

FIGURE A.4: Map of percent error in Europe
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FIGURE A.5: Map of percent error in North America
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FIGURE A.6: Map of percent error in South America
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