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Abstract

Copositivity is a generalization of positive semidefiniteness. It has applications

in theoretical economics, operations research, and statistics. An n-by-n real, sym-

metric matrix A is copositive (CoP) if xTAx ≥ 0 for any nonnegative vector x ≥ 0.

The set of all CoP matrices forms a convex cone. A CoP matrix is ordinary if it

can be written as the sum of a positive semidefinite (PSD) matrix and a symmetric

nonnegative (sN) matrix. When n < 5, all CoP matrices are ordinary. However,

recognizing whether a given CoP matrix is ordinary and determining an ordinary de-

composition (PSD + sN) is still an unsolved problem. Here, we give an overview on

modern theory of CoP matrices, talk about our progress on the ordinary recognition

and decomposition problem, and emphasis the graph theory aspect of ordinary CoP

matrices.



Chapter 1

Introduction

Copositive (CoP) matrices are generalizations of positive semidefinite (PSD) ma-

trices. They have applications in optimization, game theory, etc. In this paper, we

give a survey on the class of copositive matrices, discuss properties related to its dual

structure and its graphs, and present the ordinary recognition and decomposition

problem.

Our motivation for studying this subject comes from the fact that copositivity is a

generalization of positive semidefiniteness. Specifically, we wonder what properties of

PSD matrices can be carried over to CoP matrices. For example, positive semidefinite-

ness is preserved under taking product, Hadamard product, and Kronecker products;

we examine Hadamard products and Kronecker products on CoP matrices in Ch. 4.

PSD matrices are preserved under polynomial p such that p(t) ≥ 0 ∀t ≥ 0, so we also

wonder what polynomial preserves copositivity, and we discuss this in Ch. 5.

In general, since the set of all PSD matrices are a small subset of the set of all

CoP matrices, many PSD properties do not apply to CoP matrices. Therefore, we

include a few counterexamples and remarks to illustrate the difference between the

class of PSD and CoP matrices.
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1.1 Notations & Symbols

In this paper, we will be using the abbreviations of terminologies shown in Table 1

and notations and symbols shown in Table 2. These are the standard matrix notation

presented in [1, 2, 3].

Table 1.1: Abbreviations
CoP Copositive
SCoP Strictly copositive
CP Completely positive
PD Positive definite
PSD Positive semidefinite
sN Symmetric nonnegative

1.2 Definitions

To begin our discussion, we first state the following definitions.

Definition 1.2.1. Let A ∈ Mn(R) be a symmetric matrix, and let x ∈ Rn be a

vector. Then, the quadratic form of A, Q(A), is defined as Q(x) = xTAx.

Definition 1.2.2. Let A ∈ Mn(R) be a symmetric matrix. Then, A is positive

definite (PD) if the quadratic form xTAx is positive for all nonzero vectors x ∈ Rn.

Similarly, A is positive semidefinite (PSD) if the quadratic form xTAx is nonnegative

for all nonzero vectors x ∈ Rn.

As a generalization of PSD matrices, we define copositive matrices as below.

Definition 1.2.3. Let A ∈ Mn(R) be a symmetric matrix, and let Rn
+ be the set

of all vectors x ∈ Rn with nonnegative entries. Then, A is copositive (CoP) if its

quadratic form Q(x) = xTAx ≥ 0 for all nonzero vectors x ∈ Rn
+. Similarly, A is

strictly copositive if Q(x) = xTAx > 0 for all nonzero vectors x ∈ Rn
+.
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Table 1.2: Notations and Symbols

R Fields of real numbers
Rn All column n-vectors of real numbers
R+ All real, nonnegative numbers
Rn

+ All vectors in Rn with nonnegative entries
Mm,n(F) All m-by-n matrices over field F
Mn(F) All n-by-n matrices over field F

Mn({1, 0,−1}) All n-by-n matrices with entries in {1, 0,−1}
Mn({1,−1}) All n-by-n matrices with entries in in {1,−1}

AT , A∗ Transpose and conjugate transpose of a matrix A
A[α] Principal submatrix whose rows and columns are indexed by set α
aij The (i, j) entry of a matrix A = [aij]
ei The column vector with the ith entry being 1 and others being zero.

Q(x) = xTAx Quadratic form of matrix A
A ◦B Hadamard product of matrices A and B
A⊗B Kronecker product of matrices A and B
σ(A) Spectrum (eigenvalues) of A ∈ Mn(F)
Tr(A) Trace of a matrix A ∈ Mn(F)
ρ(A) Spectral radius of A
K∗ Dual cone of a cone K
Cn The set of all CoP matrices in Mn(R).
Pn The set of all PSD matrices in Mn(R).
Nn The set of all sN matrices in Mn(R).
C∗

n The set of all CP matrices in Mn(R).

Definition 1.2.4. Let C be a subset of a vector space. For positive scalars a, b, if

ax+ by ∈ C for any x, y ∈ C, then C is a convex cone.

We note that the set of all CoP matrices, denoted by Cn, forms a convex cone.

Let A,B ∈ Cn with quadratic forms QA(x), QB(x), respectively. Then, for all nonzero

vectors x ∈ Rn
+ and any α, β ∈ R+, QαA+βB(x) = α · QA(x) + β · QB(x) ≥ 0. Thus,

αA+βB ∈ Cn, and Cn is closed under taking positive linear combinitions. For further

discussion of the cone structure of the set of all CoP matrices, see [5].
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1.3 Background

The idea of copositivity was first defined by Motzkin in 1952 as generaliza-

tions of positive semidefiniteness [4]. CoP matrices have a wide range of potential

applications. In optimization theory, copositivity offers a unified convex way to re-

formulate non-convex mixed quadratic programs into convex programs [5]. Besides

optimizations, CoP matrices also have application in differential equations [6] and

theoretical economics [7]. Generally speaking, CoP matrices offer strong modeling

power. However, Kaplan shows that the process of checking copositivity for any

given matrix requires some efforts, as it is NP-hard (with more detail described in

Sec. 3.3). Therefore, more studies are needed in this novel area.

1.4 Outline & Organization

In this paper, we give a survey on modern theory of CoP matrices and discuss our

progress on the ordinary recognition and decomposition problem. In Ch. 2, we will

discuss basic properties of CoP matrices, such as some entry-wise properties, excep-

tional and ordinary CoP matrices, spectral properties, and the Schur complement of

CoP matrices. In Ch. 3, we will mention three methods of checking copositivity for

different classes of matrices. In Ch. 4, we will discuss the dual cone of CoP matrices.

In Ch. 5, we propose the ordinary recognition and decomposition problem. In Ch. ??,

we will examine ordinary CoP matrices from the graph theory aspect.
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Chapter 2

Basic Properties of CoP Matrices

Lemma 2.0.1. Let A ∈ Mn(R) be a CoP matrix. Then, all principal submatrices of

A is CoP.

Proof. Proof by contradiction: suppose there exists a principal submatrix A[α] of a

CoP matrix A ∈ Mn(R) that is not CoP, with α = {α1, α2, ..., αk} ⊆ {1, 2, ..., n} as

the index set of the row and column of this principal submatrix. Then, there exists a

vector x ∈ Rk
+, x ̸= 0 such that Q(x) = xTA[α]x < 0. We extend this vector x ∈ Rk

+

to a vector x′ ∈ Rn
+ by keeping all entries in x at the indexed place according to

α, and the other entries of x′ are zeros. Then, we have x′TAx′ = xTA[α]x < 0 for

this nonnegative vector x′ ̸= 0. Thus, A is no longer CoP, contradicting the given

condition.

2.1 Basic Properties

In[8], Bundfuss presents the following four entrywise properties for CoP matrices.

Proposition 2.1.1. Let A = [aij] be a CoP matrix. Then:

(i) aii ≥ 0 for all i.

(ii) If aii = 0, then aij ≥ 0 for all j.
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(iii) aij ≥ −√
aiiajj for all i and all j.

Proof. (i). We may think of aii as a 1-by-1 principal submatrix of A. Since the

quadratic form Q(x) for x ∈ R1
+ is nonnegative, aii must be nonnegative.

(ii). Proof by contradiction: suppose there exists i, j ∈ {1, .., n} such that aii =

0, aij < 0. From (i), we know ajj = 0. Let ei ∈ Rn be the column vector with ith

entry being 1 and others being zero. Then, the vector x = (ajj +1)ei−aijej is in Rn
+.

Consider the quadratic form of x : Q(x) = ((ajj+1)ei−aijej)
TA((ajj+1)ei−aijej) =

−(ajj + 2)a2ij < 0. However, A is CoP and x ∈ Rn
+. Thus, we have a contradiction,

and aij ≥ 0.

(iii). Proof by contradiction: suppose there exists i, j ∈ {1, ..., n} such that aij <

−√
aiiajj. Thus, from this condition, aij < 0 and a2ij > aii · ajj. Since aij < 0, from (i)

and (ii), aii > 0. Then, the vector x = ajjei − aijei is in Rn
+. Consider the quadratic

form of x : Q(x) = (ajjei − aijei)
TA(ajjei − aijei) = ajj(aiiaij − a2ij) < 0. Since A is

CoP and x ∈ Rn
+, we have a contradiction, and aij ≥ −√

aiiajj.

We note that this proposition offers us convenience when dealing with CoP ma-

trices with unknown off-diagonal entries. Specifically, if the diagonal entry is zero,

the off-diagonal entries can only be nonnegative. Furthermore, we can use diago-

nal congruence to scale its nonzero diagonal entries to 1, which may simplify some

calculations.

2.2 Exceptional vs. Ordinary

First, we define the following sets of matrices. Let Cn = {A ∈ Mn(R) : A is copositive (CoP)};

Pn = {A ∈ Mn(R) : A is positive semidefinite (PSD)}; Nn = {A ∈ Mn(R) : A is sym-

metric and entry-wise nonnegative (sN)}.

Definition 2.2.1. A CoP matrix is called exceptional if it is not the sum of a PSD
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matrix and an sN matrix. Otherwise, we say the CoP matrix is ordinary (in some

literature, ordinary CoP matrix is also called SPN).

In [9], Diananda proves the following theorem.

Theorem 2.2.2. In general, Pn +Nn ⊂ Cn. For n ≤ 4,Pn +Nn = Cn.

Let A ∈ Mn(R) be a CoP matrix. Then, we outline the specific type of A as the

following:

• n = 1 : A ∈ R+ ∪ {0};

• n = 2: A ∈ Pn or A ∈ Nn;

• n = 3 or 4: A ∈ Pn +Nn;

• n ≥ 5: A ∈ Pn +Nn, or A is exceptional.

Here, we provide examples to help illustrate the case of ordinary and exceptional

CoP matrix. We will discuss more in-depth of ordinary and exceptional CoP matrices

in Ch. 5, and the graph of ordinary matrices in Ch. 6.

Example 2.2.3. In this example, A is ordinary CoP, and A can be decomposed into

PSD + sN.

A =

 1 3 −1
3 1 1
−1 3 2

 =

 1 0 −1
0 1 1
−1 1 1

+

0 3 0
3 0 2
0 2 1

 .

Example 2.2.4. The following matrix B is known as the Horn matrix. It is excep-

tional CoP and is not a sum of PSD and sN.

B =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


7



2.3 Spectral Properties

We further note the following spectral property of CoP matrices.

Definition 2.3.1. The spectral radius, ρ(A), of a matrix A is the largest absolute

value of A’s eigenvalues.

In [10], Haynsworth et al. show that CoP matrices have the Perron property.

Theorem 2.3.2. Let A be CoP. Then, the spectral radius, ρ(A), is an eigenvalue of

A.

2.4 Schur Complements

In [11], Johnson et al. provide a survey on closure of matrix classes under Schur

Complementation. Specifically, the class of CoP matrix is not closed under taking

Schur complement and taking inverses; it is closed under inverse class Schur comple-

mentation.
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Chapter 3

Checking Copositivity

3.1 For matrices in Mn({1, 0,−1})

For CoP matrices with entries from {1,−1} or {1, 0,−1}, there is an easier way

to check copositivity [3].

Theorem 3.1.1. Let A ∈ Mn(R) be a symmetric matrix. Then, A is CoP if and only

if all of its principal submatrices do not contain the following “forbidden” patterns (up

to permutation similarity):

 1 −1 −1
−1 1 −1
−1 −1 1

 &

 1 −1 −1
−1 1 0
−1 0 1

 .

A proof of this theorem can be found in [3].

3.2 For matrices with non-positive off-diagonal en-

tries

Theorem 3.2.1. Let A ∈ Mn(R) be a symmetric matrix with non-positive off-

diagonal entries. Then, the following four conditions are equivalent:

1. A is a Z-matrix;

2. A is PSD;
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3. A is an M-matrix;

4. A is CoP.

3.3 General case: Kaplan’s Theorem

We now introduce the following method to check copositivity for any given sym-

metric matrix [12].

Theorem 3.3.1. (Kaplan’s Theorem)

Let A ∈ Mn(R) be a symmetric matrix. Then A is CoP if and only if every

principal submatrix B of A has no eigenvector v > 0 with associated eigenvalue λ < 0.

Proof. Proof: to be completed.

This theorem provides us with a systematic way to check copositiviy, but it also

shows that checking copositivity is NP-hard. In appendix, we present codes for a

computer algorithm to check copositivity using Kaplan’s theorem.
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Chapter 4

Dual Cone: Completely Positive
(CP) Matrices

Before we begin our discussion, we would like to outline our motivation of study-

ing the dual cone of CoP matrices. Since CoP matrices are generalizations of PSD

matrices, we wonder what matrix operations preserve copositivity. First, if we sim-

ply multiply two PSD matrices, the product is PSD. However, multiplying two CoP

matrices does not give a CoP matrix, as the counterexample below.

Example 4.0.1. Let A =

 1 −1 1
−1 1 −1
1 −1 1

 , B =

 1 1 −1
1 1 1
−1 1 1

 . Here, A,B are both

CoP according to Thm. 3.1.1. Then, the product of A and B is

A ·B =

−1 1 1
1 −1 1
1 1 −1

 .

The diagonals of AB are negative, so AB cannot be a CoP matrix.

In addition to multiplication, the Kronecker product and Hadamard product of

two PSDmatrices are PSD. Therefore, we wonder if Kronecker product and Hadamard

product also preserves copositivity. The following counterexample shows that if we

have two CoP matrices in general, then their Hadamard product may not be CoP.

However, if we have one CoP matrix and one CP matrix, then their Hadamard and

Kronecker products are CoP.

11



4.1 Completely Positive Matrices

To begin our discussion on the dual of CoP matrices, we state the following defi-

nitions.

Definition 4.1.1. Let Mn,m be the class of all n-by-m matrices. Let A ∈ Sn. A is

completely positive (CP) if A can be factorized as A = BBT for nonnegative matrix

B ∈ Mn,m. CP matrices are special PSD matrices, while CP matrices are also CoP.

Definition 4.1.2. For a cone K ⊂ Sn, the dual cone is: K
∗ = {Y ∈ Sn : Tr(Y TX) ≥

0 ∀X ∈ K}.

The set of all CP matrices also form a convex cone. Furthermore, since xTAx =

Tr
(
ATxxT

)
, all matrices of the form xxT with x ≥ 0 are in the dual cone of Cn. Thus,

the cone of all CP matrices is the dual of the cone of all CoP matrices.

4.2 Hadamard Product & Kronecker Product

Positive semidefiniteness is preserved under Hadamard and Kronecker products.

Since CoP matrices are generalizations of PSD matrices, we wonder if copositivity

would also be preserved. We first present the definitions of Hadamard and Kro-

necker products in the following. For more information on Kronecker and Hadamard

products, see [3, 2, 1].

Definition 4.2.1. Let Mn be the class of all n-by-n matrices. Let A = (aij), B =

(bij), A,B ∈ Mn. The Hadamard product of A and B, denoted by A◦B, is an entrywise

multiplication: A ◦B = (aijbij).

Definition 4.2.2. Let A = (aij) ∈ Mm,n, B ∈ Mp,q. Then, the Kronecker product of

12



A and B, denoted by A⊗B, is a pm-by-qn matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Example 4.2.3. This example shows that if we have two CoP matrices in general,

their Hadamard product may not be CoP. 1 −1 1
−1 1 −1
1 −1 1

 ◦

 1 1 −1
1 1 1
−1 1 1

 =

 1 −1 −1
−1 1 −1
−1 −1 1


We use the checking CoP method stated in Sec. 3.1. The first two matrices are

both CoP, but their Hadamard product is not CoP.

Lemma 4.2.4. Let A,B ∈ Mn(F). Then, A ◦B is a principal submatrix of A⊗B.

From the definition, we remark that for two matrices A,B ∈ Mn, A ◦ B is a

principal submatrix of A ⊗ B. Therefore, if A ◦ B is not a CoP matrix, then A ⊗ B

is not a CoP matrix.

In [13], Bomze et al. provide the following theorems that state the circumstances

where Hadamard and Kronecker products preserve copositivity.

Theorem 4.2.5. Let A ∈ Sn be a CoP matrix. Then, B ◦A is copositive if and only

if B is CP; B ⊗ A is copositive if and only if B is CP.

Proof. A proof of this theorem can be found in [14].

13



Chapter 5

The Ordinary Recognition &
Decomposition Problem

In this chapter, we will discuss the ordinary recognition & decomposition problem

and our progress on this problem. First, we state the problem as the following:

Problem 5.0.1. (The Ordinary Recognition & Decomposition Problem)

1) Given a CoP matrix, how to recognize whether it is ordinary or not?

2) If we have an ordinary CoP matrix, how to decompose it into PSD + sN?

5.1 Failure of the naive decomposition

First, we want to remark the failure of the “naive” decomposition. By naive de-

composition, we mean the most straightforward way one could think of to decompose a

matrix into PSD + sN. In particular, all negative entries can only go to the PSD part.

Since increasing the diagonal entries does not destroy the positive semi-definiteness,

we may keep all diagonal entries in the PSD part. As in the naive decomposition, we

want to take anything else left to be in the sN part.

In the following, we provide a counterexample that the naive decomposition fails

to provide a PSD + sN decomposition.

Example 5.1.1. (Failure of the naive decomposition)

14



Let A be the following CoP matrix. Since A is 3-by-3, A is ordinary.

A =

13 −9 28
−9 12 −11
28 −11 20


If we decompose A according to the naive decomposition, then we will have:

A =

13 −9 0
−9 12 −11
0 −11 20

+

 0 0 28
0 0 0
28 0 0

 .

We note that the first part, B =

13 −9 0
−9 12 −11
0 −11 20

, is not PSD; it has an eigen-

value of −0.16. Therefore, the naive decomposition does not work.

We would also like to remark the subtlety of the ordinary decomposition problem

by presenting a possible ordinary decomposition for the matrix A. In particular, if

we transfer a little amount of positive weight to the zero entries of B, we can obtain a

PSD matrix: B′ =

13 −9 1
−9 12 −11
1 −11 20

. Therefore, a possible ordinary decomposition

of A is:

A =

13 −9 1
−9 12 −11
1 −11 20

+

 0 0 27
0 0 0
27 0 0

 .

5.2 From Ordinary Decomposition to PSD Com-

pletion

We claim that the ordinary recognition problem is equivalent to a restricted type

of PSD completion problem. Let A,N, P ∈ Mn(R) be symmetric, and let A be the

ordinary CoP matrix that we want to decompose into PSD + sN. Let N contain only

the negative off-diagonal entries of A, and let P contain only the positive off-diagonal

entries of A.

15



Now, let B = P +N, and let the zero entries in B be unspecified. Then, we make

the following conjecture.

Conjecture 5.2.1. Let A,B, P be the matrices constructed as above. Then, A is

ordinary if and only if B has a PSD completion with entries no more than P.

With this conjecture, we translate the ordinary recognition problem to a PSD

completion problem. Specifically, we start with a “skeleton” B, and we gradually

transfer positive weight from P to B. If we use up everything but still not yet gotten

a PSD matrix, then the original matrix A is exceptional.

A =

 a −d f
−d b −e
f −e c

 ;⇒ ”Skeleton”B =

 a −d 0
−d b −e
0 −e c


To illustrate the procedure of our ordinary recognition method, we include the

example below. As stated in prior section, the Horn matrix is an exceptional CoP

matrix.

Example 5.2.2. Horn matrix:

A =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ;

The decomposed D,P , and skeleton B are:

D = I5, P =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 ;B =


1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 1 −1

 .

B has no PSD completion here; if we transfer the positive off-diagonal weight on

P to B, we can never get a PSD matrix. Therefore, we can see that A is exceptional.
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5.3 Odd powers of exceptional copositive matrices

In this section, we would like to discuss our observation on odd powers of excep-

tional CoP matrices.

The motivation comes from the fact that CoP matrices are generalization of PSD

matrices. In the PSD case, a polynomial p(A) can preserve the positive semidefinite-

ness if it sends a positive number to a positive number, i.e. p(t) ≥ 0 for t ≥ 0. Thus,

we wonder when does a polynomial p(A) preserves copositivity.

It is clear that even powers of CoP matrices are PSD, so the even powers pre-

serve copositivity. However, it is ambiguous that whether odd powers can preserve

copositivity. Therefore, we wonder if odd powers preserve copositivity.

To better understand this question, we want to use computer program to generate

random CoP matrices, raise them to odd powers, and then check copositivity of these

odd powers with the CoP checking algorithm presented in Appendix. However, we

note that it is only possible to generate random ordinary matrices, since they are the

sums of PSD and sN matrices. Currently, there is no clear way of generating random

exceptional matrices. Therefore, we only have a few number of known exceptional

CoP matrices (presented in [15]) for our test.

In particular, we raised our random ordinary CoP matrices to the 3rd, 5th, 7th

powers, and we did this for size n = 4, 5, 6, 7, each with 100,000 random ordinary

CoP matrices. All random ordinary CoP matrices we have tested are still CoP after

raising them to the 3rd, 5th, 7th powers. Additionally, we would like to indicate the

limitation here, as counterexample may have a specific pattern that is hard to be

randomly generated.

However, in exceptional CoP cases, the cubes are no longer CoP. We present the

Horn matrix as an example below.
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Example 5.3.1. Let A be the Horn Matrix. Then,

A =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 , A3 =


13 −11 5 5 −11
−11 13 −11 5 5
5 −11 13 −11 5
5 5 −11 13 −11

−11 5 5 −11 13

 .

Let B be the principal submatrix of A3 with the first three rows & columns, so B =

A[{1, 2, 3}]. Then, B has eigenvalue λ = −0.2560 with eigenvector v =

0.45860.7611
0.4586

.
Thus, A3 is not CoP by Kaplan’s Theorem.

Therefore, we arrive at the following conjecture. If this conjecture is true, then

taking the odd power of a CoP matrix would be a way to classify whether a CoP

matrix is ordinary or exceptional.

Conjecture 5.3.2. Let A ∈ Mn(R) be a CoP matrix. Then, any odd power of A is

CoP if and only if A is ordinary.

5.4 3-by-3 Ordinary Decomposition

5.4.1 Decomposing a 3-by-3 CoP matrix

We give a 3-by-3 ordinary CoP decomposition method as below. From our prior

discussion in Ch. 2.2, all 3-by-3 CoP matrices are ordinary. Wlog, we may take all

diagonal entries to be 1’s by diagonal equivalence. This follows from Prop. 2.1.1. Let

d, e, f ≥ 0, then we have 4 cases up to permutation similarity:

A1 =

1 d f
d 1 e
f e 1

 ;A2 =

 1 −d f
−d 1 e
f e 1

 ;A3 =

 1 −d f
−d 1 −e
f −e 1

 ;A4 =

 1 −d −f
−d 1 −e
−f −e 1

 .
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For A1, an ordinary decomposition is give by

A1 =

1 d f
d 1 e
f e 1

 = I3 +

0 d f
d 0 e
f e 0

 .

For A2, since it is CoP, by Prop. 2.1.1, which stats aij ≥ −√
aiiajj, we know the upper

2-by-2 submatrix of A2

[
1 −d
−d 1

]
is PSD. Thus, the following gives a valid ordinary

decomposition for A2 :

A2 =

 1 −d f
−d 1 e
f e 1

 =

 1 −d 0
−d 1 0
0 0 1

+

0 0 f
0 0 e
f e 0

 .

For A4, it is already PSD. Therefore, we only need to work on A3.

We use the same idea as the naive decomposition in Sec. 5.2. Let A = A3 = 1 −d f
−d 1 −e
f −e 1

 ;B =

 1 −d 0
−d 1 −e
0 −e 1

 . Let B′ =

 1 −d f ′

−d 1 −e
f ′ −e 1

, for 0 ≤ f ′ ≤ f . If

B is PSD, then we are done. Thus, we suppose that B is not PSD, and we want to

make B′ PSD by picking a suitable value f ′ between 0 and f .

Before we start to pick the f ′, we would like to note that we never need to make a

negative entry of a CoP matrix more negative to obtain an ordinary decomposition. In

this case, we do not need to alter the −d,−e entries. Since d2 ≤ 1, det(

[
1 −d
−d 1

]
) ≥

0. we need det(B′) ≥ 0. Since det(B) = 1−d2− e2, if we make −d,−e more negative,

then det(B) will be more negative. Therefore, we only need to adjust the positive

entries, namely, f in B.

Consider B′. For B′ to be PSD, we want det(B′) > 0.

Since det(B′) = −f ′2 + 2def ′ − d2 − e2 + 1, we solve the quadratic equation at

det(B′) = 0, and the solution is

f ′ = de±
√
(d− 1)(d+ 1)(e− 1)(e+ 1).

For easier notation, we let f1 = de −
√
(d− 1)(d+ 1)(e− 1)(e+ 1), f2 = de +√

(d− 1)(d+ 1)(e− 1)(e+ 1), and we note that f1, f2 > 0.
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Then, as f ′ increases from 0 to f, the determinant det(B′) changes as the following:

1. When 0 < f ′ < f2, det(B
′) < 0;

2. When f1 < f ′ < f2, det(B
′) > 0;

3. When f ′ > f2, det(B
′) < 0.

5.4.2 Observations on eigenvalues and eigenvectors

In Kaplan’s Theorem (Thm. [12]), the eigenvalue and eigenvector behavior of

a copositive matrix seems interesting by itself. When we conduct computational

experiment with 3-by-3 CoP matrices, we also notice some interesting behavior. Here,

we want to remark some observations on eigenvalues and eigenvectors of 3-by-3 CoP

matrices when we slowly increase f ′ from 0 to f as stated above (Sec. 5.4.1).

We use the same notation as Sec. 5.4.1, and let B′ =

 1 −d f ′

−d 1 −e
f ′ −e 1

. Let us

denote the smallest eigenvalue of B′ by λs and vs. By our assumption, at f = 0, B′

is not PSD. Thus, at f = 0, we have λs < 0, vs > 0 , and λs is the only negative

eigenvalue of B′ from the interlacing inequality.

If we trace λs and vs as f
′ increases from 0 to f , we notice the following.

1. When 0 ≤ f ′ < f1 : λs < 0, and vs > 0 ⇒ B′ is not CoP.

2. At f ′ = f1 : λs = 0, vs > 0 ⇒ B′ is PSD.

3. At f1 < f ′ < f2, there is a certain point where vs start to have mixed signs ⇒

B′ is PSD.

4. At f ′ > f2 : λs < 0, vs has mixed signs ⇒ B′ is CoP, not PSD.

We would like to further indicate some importance of these spectral related ob-

servation of ordinary CoP matrices. The inverse eigenvalue problem for symmetric
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nonnegative (sN) matrices is unsolved, and ordinary CoP matrices can be decomposed

into PSD + sN. If we take a sN matrix and add a PSD matrix to it, the eigenvalues

never decreases. Therefore, it is valuable to study the spectrum of CoP matrices.
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Chapter 6

Ordinary Copositive Matrices and
their Graphs

Graph theory is also a common method to study matrices, and there are many

interesting theories connecting the combinatorial aspect of graphs to matrices[cite].

In this chapter, we would like to talk about the graphs of ordinary CoP matrices.

6.1 Preliminaries

To begin our discussion about graph or ordinary graphs, we first give the following

preliminaries in graph theory.

Definition 6.1.1. Given a symmetric matrix A = (aij) ∈ Mn(R) and a geaph G

with n vertices, we say this matrix A induces the graph G if the following holds: if

the off-diagonal entry aij(i ̸= j) is nonzero, then there is an edge between i and j; if

the off-diagonal entry aij(i ̸= j) is zero, then there no edge between i and j. We note

that the diagonal entries of A can be any arbitrary numbers.

In this section, we use the notation R(G) = {A ∈ Mn(R) : G(A) = G} to describe

the set of all matrices that induce the graph G.

Definition 6.1.2. We call a graph G ordinary (in some literature, SPN [16]) if

A ∈ Mn(R) is ordinary for all A ∈ R(G) ∪ Cn. In other words, a graph G is ordinary
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if all copositive matrices associated with the graph G are ordinary.

The following lemma presents the main reason that people are interested in ordi-

nary graph. Specifically, all subgraphs of an ordinary graph are ordinary.

Lemma 6.1.3. If G is ordinary, then every subgraph of G is ordinary.

Proof. This follows from Lem. 2.0.1. Since all principal submatrices of an ordinary

CoP matrix is ordinary, all subgraphs of an ordinary graph are ordinary.

6.2 Properties Ordinary Graphs

In this section, we will discuss properties of ordinary graphs and some ordinary-

preserving operation on ordinary graphs [16].

Lemma 6.2.1. Let two ordinary graphs G1 and G2 be connected by a positive edge.

Then, the resulting graph G is ordinary.

Proof. Suppose A1 ∈ R(G1), A2 ∈ R(G2) have ordinary decompositions: A1 = P1 +

S1;A2 = P2 + S2. Wlog, let the new positive edge be added between the i, j vertices

of the new graph G, and we denote the edges by kij, kji. Let K be the matrix that

only contains kij, kji. Then, an ordinary decomposition of G is given by P + S, with

P = P1 ⊗ P2, S = S1 ⊗ S2 +K. Therefore, G is ordinary.

Definition 6.2.2. Let A ∈ Mp(R), B ∈ Mq(R), and let A,B be partitioned as below:

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
,

where A11 ∈ Mp−n(R), A12 ∈ Mp−n,n(R), A21 ∈ Mn,p−n(R), A22 ∈ Mn(R);B11 ∈

Mn(R), B12 ∈ Mn,q−n(R), B21 ∈ Mq−n,q(R), B22 ∈ Mq−n(R). Let 1 < n < p+ q.

Then, the nth-subdirect sum of A and B is a matrix C ∈ Mp+q−n such that
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C =

 A11 A12 0
A21 A22 +B11 B12

0 B21 B22

 .

We give an example below to illustrate the 1st-subdirect sum.

Example 6.2.3. Let A =

1 1 1
1 1 1
1 1 1

 , B =

2 2 2
2 2 2
2 2 2

. Then, the 1st-subdirect sum

of A and B is

C =


1 1 1 0 0
1 1 1 0 0
1 1 3 2 2
0 0 2 2 2
0 0 2 2 2

 .

Lemma 6.2.4. Let G = G1 ∪G2, where G1, G2 are ordinary graphs, and G1 ∩G2 is

a single vertex. Then G is an ordinary graph if and only if G1 and G2 are ordinary

graphs.

Proof. Again, suppose A1 ∈ R(G1), A2 ∈ R(G2) have ordinary decompositions: A1 =

P1 + S1;A2 = P2 + S2. Wlog, let the ith vertex, vi be in both G1 and G2. Then, all

CoP matrices with graph G have ordinary decomposition with P +S, where P is the

1st-subdirect sum of P1 and P2, and S is the 1st-subdirect sum of S1 and S2.

Theorem 6.2.5. Let G1, G2 be ordinary graphs, and let A1 ∈ R(G1), A2 ∈ R(G2).

Let B be the nth-subdirect sum of A1 and A2. Let G be the graph of B. Then, G is

an ordinary graph.

Proof. We use the same idea as Lemma 6.2.4. Let A1, A2 have ordinary decompo-

sitions: A1 = P1 + S1;A2 = P2 + S2. Then, all CoP matrices with graph G have

ordinary decomposition with P + S, where P is the nth-subdirect sum of P1 and P2,

and S is the nth-subdirect sum of S1 and S2.

Definition 6.2.6. A block of G is a subgraph that has no cut vertex, and is maximal

with respect to this property.

24



Figure 6.1: The Fan graph F5 [13]

Lemma 6.2.7. A graph G is ordinary if and only if every block of G is ordinary.

A proof of this Lemma can be found in [13].

Lemma 6.2.8. If we do an edge subdivision on an exceptional graph G and obtain

G′, then G′ is also exceptional.

A proof of this Lemma can be found in [13].

6.3 Specific ordinary graphs

Lemma 6.3.1. All trees are ordinary.

Proof. Since each individual vertex of a tree can be treated as an 1-by-1 ordinary

CoP matrix, this is a special case inherited from Lemma 6.2.7.

Lemma 6.3.2. All cycles are ordinary.

A proof of this Lemma can be found in [13].

6.4 Ordinary graphs on 5 vertices

Lemma 6.4.1. The graph F5 (shown in Fig.6.1), known as the fan graph, is an

exceptional graph [13].
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Figure 6.2: The exceptional graph CD6 [13]

According to [13], ordinary graphs on 5 vertices are completely characterized as

the following.

Theorem 6.4.2. A graph on 5 vertices is an SPN graph if and only if it does not

contain the fan F5 [13].

6.5 Ordinary graphs on 6 vertices

Lemma 6.5.1. The graph CD6, shown in Fig., is an exceptional graph [13].

Ordinary graphs on 6 vertices have not yet been fully characterized. In [13], the

author wrongly thought that the graph T6, shown in Fig. 6.3 is ordinary. Later on in

[14], Drury found an counterexample in matrix which shows that T6 is not SPN.

In addition, we identify three boundary graphs with 6 vertices as shown in Fig. 6.4,

Fig. 6.5, and Fig. 6.6. Namely, if we add an edge to these graphs, then the result-

ing graphs will be exceptional; if we take an edge away from these graph, then the

resulting graphs will be ordinary. If we can settle down the three boundary graphs,

then ordinary graphs on 6 vertices will be fully characterized.
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Figure 6.3: T6, an exceptional graph on 6 vertices [13]
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Figure 6.4: Boundary graph #1
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Figure 6.5: Boundary graph #2
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Figure 6.6: Boundary graph #3
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Appendix

6.6 Python Codes for Checking Copositivity

In this section, we present the Python codes of checking copositivity for a given

matrix with size n = 5, 6, 7. These programs are used and mentioned throughout our

paper, and they are based on Kaplan’s theorem in Sec. 3.3.

Also, we would like to explain the computational error (the parameter com err

in codes below). Since numerical calculations in Python give rise to error, it may be

possible that a certain value should be exactly 0, but due to the computational error,

is close to 0; for example, 10e-10 instead of 0. Therefore, we include a computational

error to serve as a lower/upper bound when determining whether a certain calculated

value is positive/negative. It can be adjusted accordingly in the program.

The following import lines are needed for all codes:

#import lines

import math

import numpy as np

import scipy as sp

from numpy import linalg as lin

6.6.1 5-by-5 CoP Checking

#check whether a 5-by-5 matrix A is copositive or not

def Check_CoP(A): #Input: suppose A is a 5-by-5 matrix

com_err = -10e-14 #compensate for the computational error

#1st , check diagonal entries

for i in range(5):

29



if A[i,i]<0:

#print ("Not copositive at diagonal entries", A)

return 1 #return 1 if not CoP

#2nd , check 2-by-2 principal submatrices

for i in range(4):

for j in range(i+1,5):

submatrix = A[[[i],[j]],[i,j]]

eigval , eigvec = lin.eig(submatrix)

for m in range(2):

if eigval[m]<0:

#print(eigval , eigvec)

if eigvec[:,m][0]>0 and eigvec[:,m][1] >0:

#print(eigvec[:,m][1])

#print(eigval , eigvec)

print("Not copositive at 2-by-2, with: " ,\

submatrix , eigval[m], eigvec[:,m])

return 1

elif eigvec[:,m][0]<0 and eigvec[:,m][1] <0:

return 1

#3rd , check 3-by-3 principal submatrices

three_list = [ A[[[0],[1],[2]],[0,1,2]] ,\

A[[[0],[1],[3]],[0,1,3]] ,\

A[[[0],[1],[4]],[0,1,4]] ,\

A[[[0],[2],[4]],[0,2,4]] ,\

A[[[0],[2],[3]],[0,2,3]] ,\

A[[[0],[3],[4]],[0,3,4]] ,\

A[[[1],[2],[3]],[1,2,3]] ,\

A[[[1],[2],[4]],[1,2,4]] ,\

A[[[1],[3],[4]],[1,3,4]] ,\

A[[[2],[3],[4]],[2,3,4]]]

for i in three_list:

eigval , eigvec = lin.eig(i)

for m in range(3):

if eigval[m]<com_err:

if eigvec[:,m][0]>com_err and \

eigvec[:,m][1] >com_err and \

eigvec[:,m][2] >com_err:

print("Not copositive at 3-by-3, with: ", \

i, eigval[m], eigvec[:,m])

return 1

elif eigvec[:,m][0]<com_err and \

eigvec[:,m][1]<com_err and \

eigvec[:,m][2] <com_err:

return 1

#4th , check 4-by-4 principal submatrices

four_list = [ A[[[0],[1],[2],[3]],[0,1,2,3]] ,\

A[[[0],[1],[2],[4]],[0,1,2,4]] ,\

A[[[0],[1],[3],[4]],[0,1,3,4]] ,\
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A[[[0],[2],[3],[4]],[0,2,3,4]] ,\

A[[[1],[2],[3],[4]],[1,2,3,4]] ]

for i in four_list:

eigval , eigvec = lin.eig(i)

for m in range(4):

if eigval[m]<com_err:

if eigvec[:,m][0]>com_err and \

eigvec[:,m][1]>com_err and \

eigvec[:,m][2]>com_err and \

eigvec[:,m][3]>0:

print("Not copositive at 4-by-4, with: ", \

i, eigval[m], eigvec[:,m])

return 1

elif eigvec[:,m][0]<0 and eigvec[:,m][1]<0 \

and eigvec[:,m][2]<0 and eigvec[:,m][3]<0:

return 1

#5th , check matrix A

eigval_A , eigvec_A = lin.eig(A)

for m in range(5):

if eigval_A[m]<0:

if eigvec_A[:,m][0]>0 and eigvec_A[:,m][1]>0 and \

eigvec_A[:,m][2]>0 and eigvec_A[:,m][3]>0 and \

eigvec_A[:,m][4]>0:

print("Not copositive at 5-by-5, with: ", \

A, eigval_A[m], eigvec_A[:,m])

return 1

if eigvec_A[:,m][0]<0 and eigvec_A[:,m][1]<0 and \

eigvec_A[:,m][2]<0 and eigvec_A[:,m][3]<0 and \

eigvec_A[:,m][4] <0:

return 1

print("It’s CoP!")

return None

6.6.2 6-by-6 CoP Checking

#6x6 CoP Check REWRITE --- 8/11/2021

#check whether a 6-by-6 matrix is copositive or not

def Check_CoP_6(A): #suppose A is a 6-by-6 matrix

com_err = -10e-14 #compensate the computational error

#1st , check diagonal entries (and whether the big 6-by-6 is good

)

for i in range(6):

if A[i,i]<0:

print("Not copositive at diagonal entries", A)

return 1 #return 1 if not CoP
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eigval , eigvec = lin.eig(A)

for m in range(6):

if eigval[m]<com_err:

if (eigvec[:,m][0]>-0 and eigvec[:,m][1]>-0 and \

eigvec[:,m][2]>-0 and eigvec[:,m][3]>-0 and \

eigvec[:,m][4]>-0 and eigvec[:,m][5]>-0):

print("A: Not copositive at 6-by-6", eigval[m], \

eigvec[:,m])

return 1

elif (eigvec[:,m][0]<com_err and eigvec[:,m][1]<com_err

\

and eigvec[:,m][2]<com_err \

and eigvec[:,m][3]<com_err \

and eigvec[:,m][4]<com_err \

and eigvec[:,m][5]<com_err): #check if they are

the same signs

print("B: Not copositive at 6-by-6", \

eigval[m], eigvec[:,m])

return 1

#2nd , check 2-by-2 principal submatrices

for i in range(5):

for j in range(i+1,6):

submatrix = A[[[i],[j]],[i,j]]

eigval , eigvec = lin.eig(submatrix)

for m in range(2):

if eigval[m]<com_err:

#print(eigval , eigvec)

if (eigvec[:,m][0] * eigvec[:,m][1]) \

>com_err:

#check if they are the same signs

print("Not copositive at 2-by-2, with: " ,\

submatrix , eigval[m], eigvec[:,m])

return 1

#3rd , check 3-by-3 principal submatrices

for i in range(4):

for j in range(i+1,6):

for k in range(j+1, 6):

submatrix = A[[[i],[j],[k]],[i,j,k]]

eigval , eigvec = lin.eig(submatrix)

for m in range(3):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err and \

eigvec[:,m][1]>com_err and \

eigvec[:,m][2]>com_err) \

or (eigvec[:,m][0]<com_err and \

eigvec[:,m][1]<com_err and \

eigvec[:,m][2]<com_err): \

#check if they are the same signs

print("Not CoP at 3-by-3, with:" ,\
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submatrix , eigval[m],\

eigvec[:,m],(i,j,k), A)

return 1

#4th , check 4-by-4 principal submatrices

for i in range(3):

for j in range(i+1,6):

for k in range(j+1, 6):

for f in range(k+1, 6):

submatrix = A[[[i],[j],[k],[f]],[i,j,k,f]]

eigval , eigvec = lin.eig(submatrix)

for m in range(4):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err and \

eigvec[:,m][1]>com_err and \

eigvec[:,m][2]>com_err and \

eigvec[:,m][3]>com_err) \

or (eigvec[:,m][0]<com_err and \

eigvec[:,m][1]<com_err and \

eigvec[:,m][2]<com_err and \

eigvec[:,m][3]<com_err): \

#check if they are the same signs

print("Not CoP at 4-by-4, with: ",

submatrix , eigval[m],\

eigvec[:,m])

return 1

#5th , check 5-by-5 principal submatrices

for i in range(2):

for j in range(i+1,6):

for k in range(j+1, 6):

for f in range(k+1, 6):

for g in range(f+1, 6):

submatrix = A[[[i],[j],[k],[f],[g]] ,\

[i,j,k,f,g]]

eigval , eigvec = lin.eig(submatrix)

for m in range(5):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err \

and eigvec[:,m][3]>com_err \

and eigvec[:,m][4]>com_err) \

or (eigvec[:,m][0]<com_err and \

eigvec[:,m][1]<com_err and \

eigvec[:,m][2]<com_err and \

eigvec[:,m][3]<com_err and \

eigvec[:,m][4]<com_err):

#check if same signs

print("Not CoP 5-by-5,w/" ,\

submatrix , eigval[m], \
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eigvec[:,m])

return 1

print("It’s CoP!")

return None

6.6.3 7-by-7 CoP Checking

def Check_CoP_7(A): #suppose A is a 7-by-7 matrix

com_err = -10e-14

#1st , check diagonal entries (and whether the 7-by-7 is good)

for i in range(7):

if A[i,i]<0:

print("Not copositive at diagonal entries", A)

return 1 #return 1 if not CoP

eigval , eigvec = lin.eig(A)

#1st , check the diagonal entries

for m in range(7):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err \

and eigvec[:,m][3]>com_err \

and eigvec[:,m][4]>com_err \

and eigvec[:,m][5]>com_err \

and eigvec[:,m][6]>com_err):

print("Not copositive at 7-by-7", \

eigval[m], eigvec[:,m])

return 1

elif (eigvec[:,m][0]<com_err \

and eigvec[:,m][1]<com_err \

and eigvec[:,m][2]<com_err \

and eigvec[:,m][3]<com_err \

and eigvec[:,m][4]<com_err \

and eigvec[:,m][5]<com_err \

and eigvec[:,m][6]<com_err):

#check if they are the same signs

print("Not copositive at 7-by-7", \

eigval[m], eigvec[:,m])

return 1

#2nd , check 2-by-2 principal submatrices

for i in range(6):

for j in range(i+1,7):

submatrix = A[[[i],[j]],[i,j]]

eigval , eigvec = lin.eig(submatrix)

for m in range(2):

if eigval[m]<com_err:

#print(eigval , eigvec)
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if (eigvec[:,m][0] * \

eigvec[:,m][1])>com_err:

#check if they are the same signs

print("Not CoP at 2-by -2, w/: " ,\

submatrix , eigval[m], eigvec[:,m])

return 1

#3rd , check 3-by-3 principal submatrices

for i in range(5):

for j in range(i+1,7):

for k in range(j+1, 7):

submatrix = A[[[i],[j],[k]],[i,j,k]]

eigval , eigvec = lin.eig(submatrix)

for m in range(3):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err) \

or (eigvec[:,m][0]<com_err \

and eigvec[:,m][1]<com_err \

and eigvec[:,m][2]<com_err):

#check if they are the same signs

print("Not CoP at 3-by-3, w/: " ,\

submatrix ,eigval[m],eigvec[:,m],\

(i,j,k), A)

return 1

#4th , check 4-by-4 principal submatrices

for i in range(4):

for j in range(i+1,7):

for k in range(j+1, 7):

for f in range(k+1, 7):

submatrix = A[[[i],[j],[k],[f]] ,\

[i,j,k,f]]

eigval , eigvec = lin.eig(submatrix)

for m in range(4):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err \

and eigvec[:,m][3]>com_err) \

or (eigvec[:,m][0]<com_err \

and eigvec[:,m][1]<com_err \

and eigvec[:,m][2]<com_err \

and eigvec[:,m][3]<com_err):

#check if they are the same signs

print("Not CoP at 4-by-4, w/" ,\

submatrix ,eigval[m],\

eigvec[:,m])

return 1
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#5th , check 5-by-5 principal submatrices

for i in range(3):

for j in range(i+1,7):

for k in range(j+1, 7):

for f in range(k+1, 7):

for g in range(f+1, 7):

submatrix = A[[[i],[j],[k],[f],[g]] ,\

[i,j,k,f,g]]

eigval , eigvec = lin.eig(submatrix)

for m in range(5):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err \

and eigvec[:,m][3]>com_err \

and eigvec[:,m][4]>com_err) \

or (eigvec[:,m][0]<com_err \

and eigvec[:,m][1]<com_err \

and eigvec[:,m][2]<com_err \

and eigvec[:,m][3]<com_err \

and eigvec[:,m][4]<com_err):

#check if same signs

print("Not CoP at 5-by-5 w/", \

submatrix ,eigval[m],\

eigvec[:,m])

return 1

#6th , check 6-by-6 principal submatrices

for i in range(2):

for j in range(i+1,7):

for k in range(j+1, 7):

for f in range(k+1, 7):

for g in range(f+1, 7):

for h in range(g+1, 7):

submatrix = A[[[i],[j],[k],[f],[g] ,\

[h]],[i,j,k,f,g,h]]

eigval , eigvec = lin.eig(submatrix)

for m in range(6):

if eigval[m]<com_err:

if (eigvec[:,m][0]>com_err \

and eigvec[:,m][1]>com_err \

and eigvec[:,m][2]>com_err \

and eigvec[:,m][3]>com_err \

and eigvec[:,m][4]>com_err \

and eigvec[:,m][5]>com_err)

or (eigvec[:,m][0]<com_err \

and eigvec[:,m][1]<com_err \

and eigvec[:,m][2]<com_err \

and eigvec[:,m][3]<com_err \

and eigvec[:,m][4]<com_err \

and eigvec[:,m][5]<com_err):
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#check if same signs

print("Not CoP 6-by-6 w/", \

submatrix , eigval[m],\

eigvec[:,m])

return 1

print("It’s CoP!")

return None

37


	Modern Theory of Copositive Matrices
	Recommended Citation

	Signed cover sheet

