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Abstract

The UN estimates that the global population could reach 9.7 billion by 2050 (United
Nations). As a result, the amount of food required to feed humanity is thought to double by
2050 (Ray et al., 2012). Humanity must find a way to increase crop production without
increasing fertilizer usage and eutrophication, which can be done using the soil microbiome.
Using potted plants with soils inoculated with Pseudomonas alcaligenes, Pseudomonas
denitrificans, Bacillus polymyxa, and Mycobacterium phlei, both the shoot and root growth of
pea and cotton plants was significantly increased (Egamberdieva & Hoflich, 2004). In this study,
utilizing a random forest model, the presence or absence of inflorescences of an Asclepias
(milkweed) plant was predicted using the soil microbiome as an input with 64% accuracy on
test data. Euryarchaeota, Acidobacteria, and Chlorobi were identified as the most important
phyla in predicting the presence of inflorescences.
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Introduction

Motivation

The UN estimated that the global population could reach 9.7 billion by 2050 (United
Nations). As a result, the amount of food required to feed humanity is thought to double by
2050 (Ray et al., 2012); whereas other studies forecast a 50% to 75% required increase in
certain areas of crop production (Prosekov & lvanova, 2018). From 1985 to 2005, the total
amount of crops produced increased by 28%. However, crop yields have begun to stagnate, and
even decline, in some parts of the world (Ray et al., 2012). Additionally, climate change
threatens current crop production and is expected to cause crop loss in the US, with corn,
soybean, and cotton production expected to decrease by 30% to 36% (Schlenker & Roberts,
2009) Cai, Wang, and Laurent (2009) predict the rainfed corn yield in central Illinois to decrease
by 23% to 34% by 2055. With the increase in demand, and predicted decline in yields, humanity
must find a way to increase crop production.

To keep pace with the current demand for food, the amount of fertilizer used by the United
States, India, and China has increased from 9.31 million tons in 1961, to 92.63 million tons in
2006 (Adesemoye & Kloepper, 2009). These numbers are expected to increase as food demand
rises. However, fertilizers are not environmentally sustainable methods of boosting crop
production, with fertilizer usage resulting in nutrient run-off, causing eutrophication
(Adesemoye & Kloepper, 2009). Zhu and Chen (2002) found that up to 19% of Nitrogen in
fertilizers is lost to leeching, while 1.5% to 2% was lost to runoff. However, other studies
estimate that 82% of fertilizer nutrients are left behind after crop harvests (Khan &
Mohammad, 2014).

The primary cause for eutrophication, Phosphorus, has increased in cycling from land to
ocean by more than three times, from 8 teragrams to 22 teragrams per year (Howarth & Choi,
2005). Harmful algal blooms, caused by excessive nutrients, can make water unsafe to drink
and harm aquatic food sources (Wurtsbaugh et al., 2019). With the increase of demand for food
to feed a growing population, novel and sustainable farming methods must be utilized to keep
pace with demand while also causing less damage to the surrounding environment. These
affected environments also include the soil microbiome, which, to be analyzed, first needs to be
sequenced and identified.

DNA sequencing — History and Methodology

DNA sequencing has recently become economical for research usage as the cost of
sequencing and time required have drastically decreased while the amount of bases identified
and the accuracy have dramatically increased (Mardis, 2017; Shendure et al., 2017). With the
advent of Sanger sequencing roughly 40 years ago, development in the field of bioinformatics
has moved at a blistering pace to the Next-Generation sequencing (NGS) of today (Shendure et
al., 2017).

In 1977, Sanger and his team sequenced the genome of the phiX174 bacteriophage, the
first genome to ever be fully sequenced (Men et al., 2008). This genome contained about 5,000
bases of DNA, or 0.005 Mb. In just a couple decades, the human genome was sequenced in
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2004 with a size of 3,200 Mb (Lander et al., 2001). The cost of using Sanger Sequencing was
roughly $1 per 1,000 bases, or 1 kb. (Men et al., 2008). From just 2007 to 2012, the cost of
sequencing per base decreased by 400% (Shendure et al., 2017). These numerous gains in
efficiency were due to the implementation of novel sequencing techniques. However, it is
important to start with the past to understand the present.

Sanger Sequencing was the first sequencing methodology, published in 1977 (Men et al.,
2008). The DNA sequences were identified by first separating the chains into different lengths
by synthesizing new DNA while incorporating ddNTPs to halt any further sequence addition.
The ddNTPs are added in a small amount so that the chain termination is random, yielding
differentially lengthened sequences. These ends were also capped with radioactive isotopes of
phosphorus or sulfur (Shendure et al., 2017). Then, the DNA chains of various lengths were
drawn through polyacrylamide gel (PAG) electrophoresis to sort them by size at a resolution up
to one base length (Men et al., 2008).

After sorting, the ends were identified using radiography and their positions were read
along the four lanes of the gel, one for each base (Shendure et al., 2017). This methodology was
time consuming, as the target DNA sequences were not quickly amplified by PCR, but instead
were grown as clonal plasmids in bacteria, most commonly E. coli., or as phage vectors (Mardis,
2017). Today, NGS has dramatically evolved output with multiple novel sequencing methods.
One of those new methods is Illumina sequencing.

Illumina sequencing has revolutionized sequencing technology by expanding throughput
while decreasing costs (Bronner et al., 2013). With Illlumina, the DNA is attached to
oligonucleotides that protrude from the inside of a glass flow cell. The DNA is then amplified to
increase read signals. Next, fluorescently tagged nucleotides are washed over the DNA
sequences, each base having a unique color that illuminates when binding to the target DNA
sequence. This signal is then read to determine the sequence of the complementary strand.
Read lengths can be as long as 250bp per read. The cost to sequence DNA using lllumina
sequencing is roughly $41 per gigabase (gb), or 1,000,000 kb. This technique, sequencing by
synthesis, can be used in large industrial sized machines or benchtop machines. The advent of
NGS has allowed researchers to conduct research using DNA sequences in different ways to
answer novel questions.

The research of microbial life has been revolutionized by NGS (Liu et al., 2021;
Nannipieri et al., 2019). Using two flavors of DNA sequencing, amplicon sequencing or shotgun-
metagenomics, scientists can study the community compositions of microbiomes in depth (Liu
et al., 2021). In amplicon sequencing, the 16S ribosomal DNA is amplified in a sample and
sequenced. This method results in fewer reads and a quicker analysis, but at the cost of lower
taxonomic resolution.

With metagenomic sequencing, all DNA is just sequenced. This allows for identification
down to the species or strain level, while also allowing for analysis beyond simple taxonomic
classification and can amplify signals of uncultured bacteria. However, this method is expensive
and generates lots more data to analyze than amplicon sequencing. With the advantages of
either type of sequencing, scientists can tailor their methodology to better address their
research question. After the sequences have been read, they need to identify what organism
the DNA came from.
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Taxonomic Identification with Metalign

Metalign is a novel taxonomic identification software, with a focus on accuracy and
speed (LaPiere, et al.,2020). Metalign efficiently aligns sequences to its extensive 243 GB
database, which contains all completed and partial microbial genomes from NCBI, GenBank,
and RefSeq. It does not contain any animal or plant genomes. While this extensive genome can
result in high accuracies, it would be time consuming to align each sequence to the entire
database.

Here, the researchers implement a novel subsetting method called ‘containment min-
hash’. This method defines a subset of the database that accurately represents the subset of
the sample sequences aligned to the entire database and runs the rest of the samples on the
subset database, which is roughly 100 times smaller than the original. For calculating what taxa
belong in the subset database, the Jaccard index is calculated and a threshold value of 0.01 or
greater is required to be included in the subset data.

Metalign employs Minimap2 as an alignment software, with the strict requirement of
95% perfect sequence alignment to taxonomically identify a sequence. The identified
sequences are reported by their relative abundance. Unique mappings count as one point
towards the absolute abundance, while multiple mappings to a sequence allocates a proportion
of that point compared to the proportion of the unique mappings of each taxa the initial read
mapped to. When compared to other identification methods, including Kraken2, DIAMOND,
MEGANS®, and others, Metalign consistently produced some of the highest ratios of precision to
recall. Metalign was in the middle in terms of required CPU time compared to the other
models. Utilizing this software, researchers can explore entire microbiomes and study their
compositions across numerous environments.

The Soil Microbiome and its Effects on Plant Fitness

Microbiome communities are not random and are influenced by the host plant and their
location relative to it as well as abiotic factors (Bulgarelli et al., 2013; Gopal and Gupta, 2016;
Trivedi et al., 2020). Plant microbiome community compositions differ along the rhizosphere
and phyllosphere, but are similar between the rhizosphere and bulk soil (Trivedi et al., 2020).
Across the rhizosphere and bulk soils, there is a common core community structure.

The largest abundance of bacterial taxa in the rhizosphere and bulk soil are from the
phyla Proteobacteria, Actinobacteria, and Acidobacteria, along with many other less abundant
phyla (Trivedi et al., 2020). Other microbes have been shown to influence the soil microbiome
community composition (Trivedi et al., 2020). These microbes are denoted as ‘hub
microorganisms’ and are thought to interact with the plant or other microorganisms to drive
changes in community structure.

Soil microbiomes have also been shown to vary based upon abiotic factors, such as pH,
soil type (Chang et al., 2017, Jiao et al.,2019), or temperature (Jiao et al., 2019; Lulakova et al.,
2019). The amount of NH4 has also been shown to explain the amount of variation in microbial
carbon (Cmic) by 39.2% and variation in the soil microbiome community composition by 22.8%
(McGee et al., 2019). Conversely, through random forest analysis, bacterial diversity has been
shown to predict the multi-nutrient cycling index of soil (Jiao et al.,2019).
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Different taxa were also identified contributing to specific nutrients, with Euryarchaeota
informing the prediction of NO3 and pH and Acidobacteria informing the prediction of pH and
organic matter. Leveraging these biotic and abiotic interactions, we increase crop production to
feed a growing population by tailoring the crop’s soil microbiome to promote higher crop yields
and increasing crop fitness.

Plant microbiomes have been shown to increase plant health, by contributing to disease
suppression (Peralta et al., 2018; Wei et al., 2019), growth and development (Panke-Buisse et
al., 2016), and nutrient uptake (Taffner et al., 2020; Trivedi et al., 2020). Plant growth
promoting rhizobacteria have been shown to increase many facets of plant health, with the
increased uptake of nutrients thought to arise from stimulation of root formation leading to
bigger root systems with more root hairs (Adesemoye & Kloepper, 2009). Arbuscular
mycorrhiza fungi (AMF) have been shown to increase phosphorus uptake in plants. By
engineering soils comprising these beneficial microbes, researchers can create crops with
higher yields.

Using potted plants with soils inoculated with Pseudomonas alcaligenes, Pseudomonas
denitrificans, Bacillus polymyxa, and Mycobacterium phlei, both the shoot and root growth of
pea and cotton plants was significantly increased (Egamberdieva & Hoflich, 2004). These
artificial microbiomes, curated by the researchers, were shown to increase plant health.
However, in vivo, these communities are dynamic and affected by many factors, including the
host plant. With the vast array of microbial taxa affecting the plant directly, indirectly, and
through combinations of other interactions, it is important to disentangle and identify the
microorganisms contributing to these beneficial interactions. This identification can be made
with machine learning models.

The Soil Microbiome as a Predictor in Machine Learning Models

Researchers have utilized machine learning models with microbiomes as the input
features to predict important host health traits (Chang et al., 2017; Dong et al., 2020; Weinroth
et al., 2019). Weinroth et al. (2019) investigated the formation of liver abscesses in cattle
treated with tylosin while comparing their soil and fecal microbiomes. The fecal microbiomes
did not differ, but the soil microbiome around the cows did. Utilizing a Least Absolute Shrinkage
and Selection Operator (LASSO) model, the researchers chose six microbial taxa to evaluate for
correlations to liver abscess: Euryarchaeota, Fibrobacteres, candidate phyla Cloacimonetes
[WWE1], WPS2, Deferribacteres and Firmicutes.

These identified microbial communities at the phylum level in both the fecal and soil
samples explained 75% of the variation in presence of liver abscesses. LASSO regression models
have also been used to predict disease in humans (Dong et al., 2020). Using the gut
microbiome, along with the age and sex of the patient, the LASSO model created by Dong et al.
(2020) was able to predict with 80% accuracy if a person had Parkinson’s disease.

Other machine learning methods have also been applied to agriculture, with Chang et al
(2017) utilizing a Random Forest model to predict whether an area in a crop field was a high or
low productive plot by examining the soil microbiome. After investigating the soil
characteristics and using a logistic regression that showed no association with crop productivity
and 26 tested soil characteristics, the researchers ran a PCA that showed a difference in the soil
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microbiome community composition between high and low productive fields. The Random
Forest model, evaluating the soil microbiome at the taxonomic level of Order, had an accuracy
of 79% when predicting field productivity. The model also identified multiple nitrogen utility-
related taxa as important to making the prediction, such as the phyla Actinobacteria,
Proteobacteria, and Cyanobacteria.

These studies have shown that machine learning can be used to identify potential
interactions between the soil microbiome and the host. These interactions can then be further
explored to determine their effects on the host plant and what artificially created microbiome
will create healthier plants. In this study, | will use the soil microbiome as the features in a
machine learning model to predict whether an Asclepias plant has zero or 1 or more
inflorescences.

Methods

Sample Collection

Samples of Asclepias (Common Milkweed) were gathered in the summers of 2020 and
2021 in locations throughout Virginia (Figure 1).

0

e
0" o

Figure 1: Map of sampling locations across Virginia. In total, 14 sites were used in this analysis.
Sites were sampled over the summer months in 2020 and 2021.

At each site, the Asclepias plants were measured for phenotypic traits, such as height
and number of leaves, and soil cores were taken near the plant, but far enough to minimize
root mass being collected in the soil core. The leaf and soil samples were then frozen and
brought to the lab for DNA extraction. Soil samples were sent to Waypoint Analytics to
determine elemental composition of the soil and other factors such as organic matter content.

DNA Extraction and Sequencing

DNA extraction was carried out using the FastDNA Spin Kit for Soil. The DNA was then
cleaned using Zymo Research DNA clean and concentrator because the initial DNA libraries sent
were not easy to sequence and the cleaning kit was used to remove expected small, charged
molecules from the DNA. The DNA was then packed into libraries and sent to Michigan State
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University and sequenced on a Novaseq 6000 S4 lane with paired-end 150 bp reads (University
of Oregon GC3F facility).

Taxonomic Identification with Metalign

The quality scores of the received paired-end fastq files were examined to ensure clean
sequencing. Once the files were evaluated, the paired-end sequence files were concatenated.
The concatenated files were then uploaded to the William & Mary High Performance Cluster to
run the identification software Metalign on each file using the mode “sensitive”. Metalign has
been shown to classify taxa accurately and quickly (LaPierre et al., 2020).

Random Forest Modeling

After the sequences were run through Metalign, the data were input into a Random
Forest model for predicting whether any inflorescences were present on the Asclepias sample
based upon the input microbiome. A grid search was performed to identify the best out of this
list of hyperparameters: taxonomic level, number of trees and max tree depth. The taxa in the
dataset were also described by their percent presence across all samples and this became
another hyperparameter labeled percent required. A grid search was conducted from 0% to
70% required identification across all samples in 10% increments.

The best performing model constituted 300 trees, with a max depth of 1, and all other
hyperparameters were set to default. There was no increase in accuracy across the taxonomic
levels, so phylum was used to shorten runtime. The optimum percent presence value was 0%.
Therefore, the input data consisted of all 142 phyla identified, regardless of their rarity across
all samples. Due to a class imbalance of 75% of the samples having at least one inflorescence,
the parameter “class_weight” was set to “balanced_subsample”. This parameter will add
weights to the Gini Impurity calculated in the tree based upon the composition of classes in the
bootstrapped subset. No scaling or transformations were applied to the data. The model was
then put through Leave One Out cross-validation and train and test scores were calculated as
averages across all k-folds.
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Results

Description of Microbiome Data Results

The dataset consisted of 156 plant samples with their number of inflorescences
guantified and soil cores extracted. A large proportion of the plants had one or more
inflorescences, 75%, or 116 samples, which created an imbalanced dataset with the remaining
25%, or 40 samples, having no inflorescences. Soil characteristics and plant measurements
were found to differ significantly by site, with all one-way ANOVAs resulting in p<0.05.
Collectively, 142 phyla, 164 classes, 372 orders, 836 families, 3,017 genera, and 22,645 species
were identified across all soil samples using Metalign. The strain identifications were reported
by Metalign; however, only the most accurately identified strain is reported. Therefore, the
number of strains identified is artificially low as other strains of the same species identified at
high accuracies would not be reported. The community composition when examining phyla
across all samples was dominated by Proteobacteria and Actinobacteria (Figure 2).

Phylum community composition

I Bacteria|Proteobacteria
Imm Bacteria|Actinobacteria
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Figure 2: Phylum community composition. This figure contains two samples from each site and
plots the relative abundance of each taxon. The communities were dominated in abundance by
Proteobacteria and Actinobacteria. The communities also displayed similar compositions
throughout all samples except for three, which are not depicted here.
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The samples also displayed a similar distribution in species richness between zero
inflorescences and one or more inflorescences plants across all taxonomic levels (Figure 3).

Species richness for each taxonomic level
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Figure 3: Species Richness for each taxonomic level comparing zero inflorescences and one or
more inflorescences. The distribution of species richness across samples is similar between
zero and one or more inflorescences in all taxonomic levels.
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The level of phylum also displayed a high percentage of rarer taxa compared to the
other taxonomic levels (Figure 4).

Percent representation of identified taxa across all samples for each taxonomic level

N
80
60
40
20
+

0

Percent representation across samples

Superkingdom Phylum Class Order Family Genus Species

Figure 4: Percentage of representative of identified taxa across all samples for each
taxonomic level. The level of phylum displayed the largest variation in percent representation
for each taxon across all samples and also contains the lowest average of around 22% average

representation across all samples. One sample contained one identification of a viroid.
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The microbiome displayed high levels of multicollinearity, which could complicate
analysis of important taxa (Figure 5) as correlation vs causation cannot be discerned by feature
importance in the model.

Phylum Correlation Matrix
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Figure 5: Correlation matrix of all phyla. Overall, some microbe groups were highly correlated
with others while there also being numerous smaller correlations throughout. Interestingly,
there were not many if any negative correlations seen.

Description of Random Forest Modeling results

The resulting Random Forest Classifier model was put through leave-one-out cross
validation on 156 observations, which contained relative abundance values of 142 phyla
identified across the samples. To identify the optimal model parameters, a grid search was
conducted across the following model and data parameters: number of trees, model depth,
required percent presence across samples, and taxonomic level. The model parameters used in
the final model consisted of 300 trees, a max depth of 1, zero taxa dropped from the data
frame, and using the taxonomic level of phylum. The target variable, originally ranging from
zero to ten, was changed to a binary variable where zero was all values equal to zero, and one if
the values were above zero. This equates to predicting the presence of inflorescences. Through
cross validation, the model had a training accuracy of 0.78% and testing accuracy of 0.64%. A
confusion matrix was produced to describe the effectiveness of the model at predicting certain
classes by their counts as well as by the percentage of that class overall (Figure 6).
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Prediction counts of LOO valiated model  Prediction percent of each class of LOO valiated model
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Figure 6: Confusion matrices of Random Forest model predictions for zero and one or
more inflorescences. The matrix on the left details the count of class predictions by the
Random Forest model. The model produced more false positive predictions than true
negatives. The model was more accurate when predicting true positives overall, but still made
many false negative predictions. These predictions are also reflected in the left matrix, which
displayed the prediction counts as a percentage of the actual class.

Next, the important features of the model were determined by averaging the
importance values across all 300 trees in the model for each fold in the leave-one-out cross-
validation. Then, the importance values for each fold were also averaged. The result showed a
clear top three phyla: Euryarchaeota, Acidobacteria, and Chlorobi, and 98 of 142 phyla had non-
zero importance values (Figure 7).
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Important Features for Random forest model
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Figure 7: Feature importance values of Random Forest model. The top 13 most important
features from the model ran show a clear top three most important phyla when predicting the
presence of inflorescences.

Normalized decrease in impurity

Due to variance in the ranking of important features when running the models using the
same hyperparameters and different random states, the feature importances of 50 models
through leave-one-out cross-fold validation were calculated to elucidate more clearly
consistently important features. The importance features across all 300 trees were averaged for
50 models run through leave-one-out cross-fold validation and then those averages were
averaged to determine the consistently important input features for the model. Of the 142
phyla in the dataset, 130 had an importance value greater than zero. The results for the top 13
informative taxa from the 50 models ran are reported in figure 8. The distribution of those
importance values across all 142 phyla is reported in figure 9.
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Important Features averaged across 50 models
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Figure 8: Important features in Random Forest model. These are the top 13 features for
predicting the presence of inflorescences averaged across 50 models. All values had a low level
of importance, with the top three features slightly standing out from the rest.
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Important Features distribution averaged across 50 models
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Figure 9: Distribution of important features. The important features show the same top three
and then a descent down in importance value.
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The abundance of the 13 most important phyla also exhibited strong correlations with one
another (Figure 10).

Important Phyla Correlation Matrix
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Figure 10: Correlation matrix of important phyla in the random forest model. Some phyla
showed strong correlations with numerous other phyla, such as Acidobacteria.
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Discussion

As discussed previously, soil microbiomes are reactive communities that respond to
biotic and abiotic factors (Jiao et al., 2019; Luldkovad et al., 2019). This can present an issue
when collecting soil samples for analysis, as the dynamic nature of the microbiome could result
in different conditions being sampled across different sites. Sampling at numerous timepoints
could account for such dynamism (Nannipieri et al., 2019).

A second consideration when sampling is the resilience of the different taxa to change.
Bacterial abundances have been shown to vary in their resilience to environmental effects
based upon their abundance, with taxa in large abundance resilient to change and rare taxa
more sensitive (Jiao et al., 2019). The study also showed higher levels of resilience in
communities with higher levels of diversity. If sampling at a site occurred right after a
disturbance, then the rarer taxa could be missed as they were more susceptible to the change,
resulting in lower community diversity in the sequenced microbial communities.

Along with the core communities around different locations of the plant, there are also
predictable differences in microbiome diversity in the vertical distribution of microbe
communities. Jiao et al. (2018) reported that as depth increases in the soil from 0 to 80 cm the
bacterial and fungal diversity decreases, while the archaeal diversity increases. Bacterial beta-
diversity was linked to multi-nutrient cycling in the deep soil layers and the archaeal beta-
diversity was linked to the superficial soil layers. Therefore, the depth of the soil sample taken
can influence the diversity of the sampled microbiome. Compared with the different depths of
plant roots, standardized sampling practices need to be made to ensure the same area of the
microbiome is captured. The bulk soil microbiome has also been shown to have a higher alpha
diversity than the rhizospheres (Wu et al., 2018). Therefore, while collecting soil cores the
researcher has to balance not gathering much root material while also minimizing the distance
away from the roots to capture more of the rhizosphere than the bulk soil microbiome.

Acidobacteria was one of the most important phyla in informing the model prediction.
This phylum has been shown to increase in abundance as plant growth increases, but to also
increase in abundance in the increasing abundance of PGPR (Kalam et al., 2017). Acidobacteria
abundance was correlated with nearly all other important taxa (Euryarchaeota: 0.15 and
Chlorobi: 0.57). Acidobacteria abundance has also been shown to correlate with stages of plant
development (Chaparro, Badri, & Vivanco, 2014). Acidobacteria abundance increased from
plant seed to vegetative developmental state, but then decreased once the plant started
bolting and flowering.

Euryarchaeota was identified as another important phylum in the model. Euryarchaeota
is a highly diverse phylum of Archaea that has taxa utilizing many different metabolic pathways
(Bomberg & Timonen, 2007). Euryarchaeota can be found in the rhizosphere and are not
uncommonly the most abundant phylum. This taxon is thought to be correlated with the
presence of mycorrhizal fungi and grows in older root tips over growing roots. When evaluating
the correlations within the sampled microbiome, Euryarchaeota had a correlation of 0.48 to the
mycorrhizal fungi phylum Mucoromycota. Archaea have been shown through metagenomic
analysis to influence the host plant in three ways: nutrient supply for the plant, promotion of
plant growth via biosynthesis of auxin, and competition and syntrophic interactions with fungi
and bacteria (Taffner et al., 2020).



Denoncourt 22

The third most important phylum was Chlorobi. This phylum consists of green sulfur
bacteria, most of which are phototrophic anaerobes and found in low-light environments
(Bryant et al., 2012). Most members of this phylum can grow using only N; as a source of
Nitrogen and all require sulfide for their metabolism. This phylum has been identified as an
endophyte (Kuffner et al., 2010); however, there is not much literature on its effects on plant
growth. This phylum was possibly selected as important to model predictions because it is
highly correlated with Acidobacteria (0.57).

For future research, other plants characteristics may be predicted based upon the soil
microbiome. The fitness of the plant may also be quantified based upon the plant’s
characteristics and that value could be predicted as an overall view of how the microbiome
affects the plant’s health. In the future, the researchers may switch to using regression models
such as LASSO or ElasticNet. These models can remove features that do not contribute
information to the prediction of the target, which is useful with datasets like in this study that
have a plethora of features. Correlation terms would also be interesting to explore as certain
microbes have been shown to interact with plants only in the presence of another specific taxa.

Conclusion

As shown before, machine learning algorithms can detect patterns between microbiome
community structures and host phenotypes, while also identifying important microbes within
those communities as contributing the most predictive information. The important phyla for
informing the model prediction have been shown to influence plant health and they have been
shown to be affected by plant developmental stages (Chaparro, Badri, & Vivanco, 2014; Kalam
et al., 2017; Taffner et al., 2020). In this study, the resulting soil microbiomes showed
community compositions expected for the rhizosphere, with Proteobacteria and Actinobacteria
dominating in abundance. Using a Random Forest model, the microbiome was able to
contribute information in predicting the number of inflorescences. In the future, regression
models might be used to yield better interpretations of taxa importance on model predictions.
The important concept that microbes can predict host phenotypes underscores the importance
of researching host microbiome relationships. In the case for agriculture, the soil microbiome
can result in increased crop production by an environmentally sustainable method.
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