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Abstract 25 

Zooplankton diel vertical migration (DVM) during summer in the polar oceans is presumed to be 26 

dampened due to near continuous daylight. We analyzed zooplankton diel vertical distribution 27 

patterns in a wide range of taxa along the Western Antarctic Peninsula (WAP) to assess if DVM 28 

occurs, and if so, what environmental controls modulate DVM in the austral summer. 29 

Zooplankton were collected during January and February in paired day-night, depth-stratified 30 

tows through the mesopelagic zone along the WAP from 2009-2017, as well as in day and night 31 

epipelagic net tows from 1993-2017. The copepod Metridia gerlachei, salp Salpa thompsoni, 32 

pteropod Limacina helicina antarctica, and ostracods consistently conducted DVM between the 33 

mesopelagic and epipelagic zones. Migration distance for M. gerlachei and ostracods decreased 34 

as photoperiod increased from 17 to 22 h daylight. The copepods Calanoides acutus and 35 

Rhincalanus gigas, as well as euphausiids Thysanoessa macrura and Euphausia 36 

crystallorophias, conducted shallow (mostly within the epipelagic zone) DVMs into the upper  37 

50 m at night. Rhincalanus gigas, T. macrura, and L. h. antarctica DVM behavior was 38 

modulated by chlorophyll a concentration, mixed layer depth, and depth of the subsurface 39 

chlorophyll a maximum, respectively. Carnivorous and detritivorous taxa – including the 40 

calanoid copepod Paraeuchaeta antarctica, ostracods, chaetognaths, and Tomopteris spp. 41 

polychaetes – as well as seasonally migrating copepods, were most abundant in the mesopelagic 42 

zone regardless of the diel cycle. Paraeuchaeta antarctica underwent reverse DVM within the 43 

top 100 m. The impacts of Antarctic zooplankton summer DVM and the resident mesopelagic 44 

assemblage on carbon export should be better quantified.  45 
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1. Introduction 46 

Many zooplankton and fishes throughout the world’s oceans undergo diel vertical 47 

migration (DVM), feeding in productive surface waters at night and seeking refuge from visual 48 

predators at mesopelagic depths during the daytime (Hays, 2003). A global estimate suggests 49 

~50% of sound-scattering mesopelagic biomass performs DVM (Klevjer et al., 2016). Diverse 50 

zooplankton taxa independently evolved DVM behavior, as it optimizes the adaptive balance 51 

between feeding and predator evasion (Zaret and Suffern, 1976; Stich and Lampert, 1981; 52 

Gliwicz, 1986; Hays, 2003). While predator avoidance is the accepted evolutionary driver for 53 

DVM, shifts in downwelling irradiance at sunrise and sunset are the dominant proximate cues for 54 

this behavior (Ringelberg and Van Gool, 2003; Cohen and Forward, 2009). Thus, it was assumed 55 

that DVM is restricted in polar regions and may cease altogether in mid- winter and summer 56 

during 24-h darkness and light, respectively (Blachowiak-Samolyk et al., 2006). 57 

DVM studies in the polar oceans show seasonal variability in behavior, with DVM 58 

magnitude changing in relation to photoperiod. During moored Acoustic Doppler Current 59 

Profiler deployments in the Ross, Lazarev, and Weddell Seas, DVM continued through Antarctic 60 

winter but ceased during the period of extended daylight from November to February (Cisewski 61 

et al., 2010; Cisewski and Strass, 2016; Picco et al., 2017). Persistent winter DVM occurs as far 62 

north as 77°N (Hobbs et al., 2018), although zooplankton DVM is restricted to small-scale (6 to 63 

8 m) migrations within the upper 30 m during Arctic winter (Ludvigsen et al., 2018). Therefore, 64 

the apparent pause of DVM during Antarctic summer may in fact be due to seasonal changes in 65 

DVM amplitude as some species undertake shallower migrations during summer that go 66 

undetected by conventional sampling (Flores et al., 2014; Daase et al., 2016). Asynchronous 67 
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migrations throughout the diel cycle may also explain why acoustic records do not detect 68 

summer DVM in the Southern Ocean (Cottier et al., 2006). 69 

In addition to photoperiod, other environmental conditions are likely to influence the 70 

amplitude of zooplankton DVM during polar summer. Phytoplankton blooms may halt DVM as 71 

zooplankton remain in surface waters to feed (Cisewski et al., 2010; Cisewski and Strass, 2016). 72 

The depth of the subsurface chlorophyll a maximum can also influence zooplankton DVM, as 73 

observed with Arctic copepods (La et al., 2015a). Similarly, vertically migrating Arctic 74 

zooplankton concentrate just below the mixed layer (Berge et al., 2014). In the southern 75 

California Current, increased light attenuation results in a decreased amplitude of copepod DVM 76 

(Ohman and Romagnan, 2016). The interaction between light conditions and phytoplankton 77 

distribution is thus likely to be a key driver of Antarctic zooplankton vertical distribution. 78 

Few studies address polar mesopelagic zooplankton composition and  79 

taxon-specific variability in DVM behavior. Arctic zooplankton demonstrate asynchronous 80 

DVM patterns, which are explained by variation in feeding ecology, predation risk, and seasonal 81 

migration behavior (Fortier et al., 2001; Cottier et al., 2006; Falk-Petersen et al., 2008). Prior 82 

studies assessing zooplankton vertical distribution along the Western Antarctic Peninsula (WAP) 83 

have either focused on specific taxonomic groups (e.g., Nordhausen, 1994a; Lopez and Huntley, 84 

1995) or lacked the comparable day and night sampling necessary to assess DVM behavior 85 

(Marrari et al., 2011). Additionally, there have not been any comprehensive studies resolving 86 

polar DVM variability over interannual timescales. 87 

 We analyzed zooplankton diel vertical distribution patterns along the WAP during  88 

mid-summer as part of the Palmer Antarctica Long-Term Ecological Research (PAL LTER) 89 

program. Zooplankton were sampled at discrete depth intervals through the epi- and mesopelagic 90 
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zones in paired day and night net tows using a MOCNESS (2009-2017) to assess taxon-specific 91 

zooplankton vertical distribution. Day and night epipelagic net tows (1993-2017) throughout the 92 

PAL LTER sampling region provided additional information on DVM behavior. We examined 93 

environmental controls (e.g., photoperiod, mixed layer depth) on DVM amplitude in taxa 94 

showing clear DVM. Our results show diverse zooplankton DVM modes, depth distributions, 95 

and responses to phytoplankton biomass and vertical distribution, all of which can affect 96 

zooplankton-mediated carbon export during Antarctic summer. 97 

2. Materials and Methods 98 

2.1. Study region 99 

The PAL LTER study region ranges from Anvers Island (64.77ºS, 64.05ºW) in the north 100 

to Charcot Island (69.45ºS, 75.15ºW) in the south, extending from the WAP coast to the 101 

continental slope (Ducklow et al., 2012) (Fig. 1). The PAL LTER research grid is composed of 102 

sampling lines running perpendicular to the Peninsula every 100 km, and standard grid stations 103 

within each line are separated by 20 km (Waters and Smith, 1992). From 1993-2008, the 104 

sampling plan included all stations on grid lines 600 to 200. In more recent years, the study area 105 

has expanded to include lines 100, 000, and -100, with sampling resolution reduced to three 106 

stations per line. As in previous studies, three latitudinal sub-regions were designated to 107 

represent hydrographic, sea ice, and ecological gradients (Martinson et al., 2008; Stammerjohn et 108 

al., 2008; Steinberg et al., 2015) (Fig. 1), with regional boundaries along sampling grid lines as 109 

follows: ‘North’ (lines 600 to 400), ‘South’: (lines 300 and 200), and ‘Far South’ (lines 100 to  110 

-100).  111 
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 112 

Figure 1. PAL LTER study area along the Western Antarctic Peninsula. ‘North,’ ‘South,’ and 113 

‘Far South’ regions are indicated. Circles indicate epipelagic sampling stations (1993-2017). 114 

Stars indicate paired day-night MOCNESS sampling locations on the shelf (2009-2017). Cross 115 

indicates paired day-night MOCNESS sampling station on the slope (2017). Shading indicates 116 

bathymetry. An: Anvers Island; Ad: Adelaide Island; MB: Marguerite Bay; Ch: Charcot Island.  117 
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2.2. Zooplankton collection 118 

Zooplankton were sampled during austral summer (02 January to 13 February) on annual 119 

PAL LTER research cruises aboard the MV Polar Duke (1993-1997) and ARSV Laurence M. 120 

Gould (1998-2017). Zooplankton sampling was conducted using two types of gear as described 121 

below. 122 

2.2.1. Multiple discrete depth sampling through the epi- and mesopelagic zones   123 

A 1.4-m2 frame, 500-µm mesh Multiple Opening/Closing Net and Environmental 124 

Sensing System (MOCNESS) (Wiebe et al., 1985) was used to collect meso- and 125 

macrozooplankton in discrete depth intervals from 2009-2017. Each year, paired day (10:07-126 

15:15 local start time) and night (23:03-01:46) MOCNESS tows were carried out in coastal or 127 

shelf waters in the ‘North’, and in most years also the ‘South’ and ‘Far South’ (Fig. 1). Sampling 128 

time and location were used to calculate solar elevation at the start of tows (Meeus, 1998); 129 

daytime solar elevation was > 35.51° and nighttime solar elevation < 0.56°. The MOCNESS was 130 

towed obliquely at a speed of 2-2.5 knots, with a typical tow duration of 2.25-3 h. On average, 131 

790 m3 (range 161-1900 m3) of water was filtered within a single depth interval as measured by a 132 

flow meter mounted on the system. 133 

Eight discrete depth intervals were sampled during the upcast as follows: 500-400, 134 

400-300, 300-250, 250-200, 200-150, 150-100, 100-50, and 50-0 m. Occasionally, the deeper 135 

intervals were not sampled when towing in waters shallower than the deep target depths. On four 136 

occasions, two depth intervals were combined due to net sampling errors. In these cases, the 137 

taxon density in each interval was assumed to equal the density calculated for the combined 138 

interval. Sea ice conditions occasionally prevented MOCNESS sampling in the South and Far 139 

South regions, therefore, the sample size n = 7 for paired day/night tows in the North, while n = 140 



	

	 9	

6 for the South, and n = 4 for the Far South from 2009-2015. Data from additional paired 141 

MOCNESS tows in 2016 and 2017 are presented for euphausiids and salps only (for these taxa, n 142 

= 10 for the North, n = 8 for the South, and remains n = 4 for the Far South). 143 

A pair of day (09:54 local start time) and night (22:03) tows was also carried out over the 144 

continental slope in 2017 (Fig. 1). In this case, eight discrete depth intervals were sampled during 145 

the upcast as follows: 1000-750, 750-500, 500-400, 400-300, 300-200, 200-100, 100-50, and  146 

50-0 m (100-0 m for day, due to a net sampling error). Salp data from this slope sample are 147 

presented independent of the coastal and shelf data. 148 

2.2.2. Epipelagic sampling 149 

Macrozooplankton were also collected from 1993-2017 throughout the PAL LTER study 150 

area using a 2 x 2 m square, 700-µm mesh Metro net towed obliquely to 120 m (Ross et al., 151 

2008, Steinberg et al., 2015) (Fig. 1). The net depth and tow profile were monitored with a depth 152 

sensor linked to the conducting hydro wire. Average volume filtered was 9023 m3 (range 1715-153 

71929 m3), calculated using a General Oceanics flow meter suspended in the net opening. Ship 154 

speed was 2–2.5 knots while towing, and typical tow duration was 30–35 minutes. 155 

Epipelagic samples were designated night tows when the sun was below the horizon, 156 

accounting for atmospheric refraction (calculated solar elevation ≤ -0.833° at the start of the tow) 157 

(Atkinson et al., 2008; Steinberg et al., 2015). Sample size varied by taxon (day n = 966-1071 158 

and night n = 181-198), as not all taxa were identified during shipboard processing throughout 159 

the time series. 160 

2.3. Taxonomic composition 161 

 2.3.1. Discrete depth samples  162 
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All euphausiids and salps collected in MOCNESS tows were identified and quantified at 163 

sea. Whole samples were then preserved in sodium borate-buffered 4% formaldehyde and 164 

shipped to the Virginia Institute of Marine Science (Gloucester Point, VA, USA) for further 165 

taxonomic analysis to quantify all non-euphausiid or salp taxa. Samples were size-fractionated 166 

using a 5-mm mesh, with all individuals in this larger size fraction identified and counted. This 167 

size-fractionation step removed large, abundant taxa (i.e., salps and euphausiids) from the 168 

microscopic analysis. At least 1/64 of the < 5-mm size fraction was counted under a stereo 169 

dissecting microscope after dividing the sample with a plankton splitter. A minimum of 100 170 

individuals of the most abundant species was enumerated in this smaller size fraction. 171 

Discrete depth analyses focused on abundant taxonomic groups. Five common calanoid 172 

copepod species were included: Metridia gerlachei, Calanoides acutus, Calanus propinquus, 173 

Rhincalanus gigas, and Paraeuchaeta antarctica. Identification included adults and conspicuous 174 

copepodites. Discrete depth-stratified data were only analyzed for the smaller, but abundant, 175 

euphausiids Thysanoessa macrura and Euphausia crystallorophias, because the larger Antarctic 176 

krill Euphausia superba was underrepresented due to avoidance of the 1.4-m2 MOCNESS 177 

(Nordhausen, 1994b). The pelagic tunicate Salpa thompsoni was included. The thecosome 178 

(shelled) pteropod Limacina helicina antarctica was analyzed individually while the gymnosome 179 

(shell-less) pteropods Clione antarctica and Spongiobranchea australis were grouped together 180 

(as in Thibodeau et al., 2019). Tomopteris spp. polychaetes were combined into a single group 181 

including T. carpenteri. Other groups were analyzed by major taxa, such as ostracods, 182 

amphipods (including the hyperiids Themisto gaudichaudii, Cyllopus lucasii, Hyperiella 183 

macronyx, Hyperoche medusarum, Primno macropa, Vibilia stebbingi, Scina spp., and the 184 
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gammarid Eusirus spp.), and chaetognaths (inclusive of large, conspicuous Pseudosagitta 185 

gazellae and P. maxima). 186 

2.3.2. Epipelagic samples 187 

Grid-wide epipelagic tows were sorted at sea as reported in Steinberg et al. (2015). All 188 

above taxa were included in the analysis of epipelagic samples except for the calanoid copepods 189 

and ostracods. The Antarctic krill Euphausia superba was included in analysis of epipelagic 190 

samples. 191 

2.4. Vertical structure 192 

Night to day ratios (N:D) were calculated to identify diel changes in surface abundance of 193 

each taxon. For paired day and night MOCNESS samples, abundance was integrated to 150 m 194 

and to 50 m (individuals m-2) when a taxon was present in both the day and night tows (Steinberg 195 

et al., 2008). These values are referred to as MOCNESS 150 m N:D and MOCNESS 50 m N:D, 196 

respectively. MOCNESS N:D data typically ranged across multiple orders of magnitude and 197 

were positively skewed. A relatively few large values were influential on the mean MOCNESS 198 

N:D values, typically resulting in large mean values compared to the median (Supplemental 199 

Tables 1 and 2). Therefore, the median was used to describe the central tendency of MOCNESS 200 

N:D data. Additionally, mean day abundance and mean night abundance were calculated from 201 

epipelagic (0-120 m) samples to calculate grid-wide N:D ratios for 1993-2017. These values are 202 

referred to as grid-wide 120 m N:D. 203 

The vertical distribution of taxa in the MOCNESS discrete depth samples was quantified 204 

using weighted mean depth (WMD). WMD (m) is calculated as follows: 205 

!"# =%('( × *( × +() /%('( × *() 206 
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where for depth interval i, di is the midpoint (m), zi is the interval thickness (m), and ni is 207 

abundance (no. m-3) (Andersen et al., 2001). WMD was only calculated for tows reaching 500 m. 208 

Night WMD was subtracted from day WMD to determine the amplitude of diel migration 209 

(ΔWMD, m). Data used in the analyses are available at: https://pal.lternet.edu/data. 210 

2.5. Environmental controls 211 

 The environmental water column data used in this analysis was collected at sampling 212 

stations where paired day-night MOCNESS tows were conducted. Discrete chlorophyll a (chl-a) 213 

measurements were made fluorometrically (Parsons et al., 1984). Primary productivity rates were 214 

measured with 24-h incubations of 14C uptake at various light levels (Steemann Nielsen, 1952; 215 

Schofield et al., 2018). Both chl-a and primary production were depth-integrated to 100 m. The 216 

depth of the subsurface chl-a maximum (ZSCM) and euphotic zone defined by the 1% isolume 217 

(Z1%) were determined with a fluorometer and a photosynthetically active radiation (PAR) 218 

sensor, respectively, mounted on the CTD rosette. Mixed layer depth (MLD) was calculated as 219 

the depth of maximum buoyancy frequency from the same CTD casts (Carvalho et al., 2017). 220 

Photoperiod (hours) was calculated for all day-night MOCNESS tow pairs using latitude and day 221 

of year (Kirk, 2011). 222 

2.6. Statistical analyses 223 

Single-factor ANOVA was used to test for differences in ΔWMD and log-adjusted 224 

MOCNESS N:D ratios among the North, South, and Far South sub-regions. The significance 225 

level (α) was set at 0.05. There was no significant difference among latitudinal sub-regions for 226 

any taxa for MOCNESS 150 m N:D or MOCNESS 50 m N:D (ANOVA; p > 0.06). All statistical 227 

tests were conducted with R version 3.3.2 (R Core Team, 2016). 228 
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Differences between day and night surface abundance (0-150 m and 0-50 m) from 229 

MOCNESS pairs were tested using the Wilcoxon signed-rank test. This non-parametric test does 230 

not require transformation of non-normal data and gave comparable results to the paired t-test 231 

using log-transformed data (Supplemental Tables 1 and 2). Differences between unpaired day 232 

and night grid-wide epipelagic abundance (0-120 m) were tested using the Wilcoxon rank-sum 233 

test. 234 

Multiple linear regression was used to identify environmental controls on ΔWMD for 235 

taxa that made DVMs from the mesopelagic zone into the epipelagic zone. Only M. gerlachei 236 

and ostracods were included in this analysis; ΔWMD was not a sensitive metric for L. h. 237 

antarctica, because it was concentrated in the epipelagic zone, and Salpa thompsoni was 238 

excluded due to an insufficient sample size. ΔWMD did not differ among latitudinal sub-regions 239 

for M. gerlachei or ostracods (ANOVA; p > 0.96). Therefore, data for the analysis were 240 

combined across the entire sampling region. 241 

MOCNESS 50 m N:D was a sensitive metric for taxa that were concentrated in the 242 

epipelagic zone or conducted DVM within the epipelagic zone. These taxa included L. h. 243 

antarctica, C. acutus, R. gigas, T. macrura, and E. crystallorophias. Generalized linear models 244 

with a gamma distribution and log link function were used to identify environmental controls on 245 

MOCNESS 50 m N:D. The gamma distribution is appropriate for ratios, because it is constrained 246 

to positive, continuous values. The log link function also ensures positive fitted values. 247 

Significant model fits were not achieved for the shallow migrators C. acutus and E. 248 

crystallorophias. 249 

A suite of nine models was fitted for each individual taxon included in ΔWMD analysis 250 

(multiple linear regression) and in MOCNESS 50 m N:D analysis (generalized linear model with 251 
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gamma distribution and log link function). The water column properties investigated in this study 252 

were correlated with one another and therefore were not included in the same models to avoid 253 

problematic collinearity. For example, as MLD deepened so did ZSCM (Pearson’s r = 0.69; p = 254 

0.0004). Z1% deepened as depth-integrated chl-a decreased (Pearson’s r = -0.60; p = 0.004) and 255 

as ZSCM deepened (Pearson’s r = 0.44; p = 0.044). None of the water column properties were 256 

correlated with photoperiod. Therefore, the nine models included each explanatory variable 257 

individually (i.e., photoperiod, chl-a, ZSCM, Z1%, and MLD) as well as photoperiod paired with 258 

each of the water column properties. Model selection statistics are presented in Supplemental 259 

Tables 3-7. Final models were selected according to the lowest Akaike Information Criterion 260 

value corrected for small sample size (AICc) (Hurvich and Tsai, 1989) using the model.sel 261 

function in the MuMIn package (Bartoń, 2016). Presented models satisfied assumptions as 262 

verified by plotting residuals versus fitted values and explanatory variables. 263 

3. Results 264 

3.1. Environmental conditions 265 

 Mean photoperiod during MOCNESS sampling was 20 h 11 min (range: 17 h 41 min to 266 

21 h 47 min), and mean Z1%, was 47 m (range: 16-81 m). Mean depth-integrated chl-a was 126 267 

mg m-2 (range: 13-517 mg m-2), and mean depth-integrated primary production was 2489 mg C 268 

m-2 d-1 (range: 605-5354 mg C m-2 d-1). Mean MLD was 28 m (range: 5-79 m), and mean ZSCM 269 

was 20 m (range: 4-60 m). 270 

3.2. Diel vertical depth distributions by taxon 271 

 3.2.1. Calanoid copepods 272 

 The calanoid copepod Metridia gerlachei was the most abundant taxon in MOCNESS 273 

tows and a strong diel vertical migrator (Fig. 2), with a median MOCNESS 150 m N:D of 8.0 274 
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(Wilcoxon signed-rank test p = 0.002) (Table 1). Much of the M. gerlachei population did not 275 

migrate and resided between 300-500 m, particularly in the North (Fig. 2a). The M. gerlachei 276 

depth distribution was more even in the South and Far South (Fig. 2b-c). Calanoides acutus was 277 

the second-most abundant calanoid and although its abundance from 0-150 m did not differ 278 

significantly between day and night (Wilcoxon signed-rank test p = 0.64) (Table 1), it was more 279 

abundant during night tows from 0-50 m with a median MOCNESS 50 m N:D of 2.3 (Fig. 3d; 280 

Table 2) (Wilcoxon signed-rank test p = 0.001). Like M. gerlachei, C. acutus vertical distribution 281 

also varied with latitudinal sub-region. Calanoides acutus was distributed relatively evenly with 282 

depth in the North and South (Fig. 3a-b) but was concentrated between 250-400 m in the Far 283 

South (Fig. 3c), where it was also an order of magnitude more abundant at this depth zone 284 

compared to the other sub-regions. 285 

 In contrast to M. gerlachei and C. acutus, Calanus propinquus, Rhincalanus gigas, and 286 

Paraeuchaeta antarctica were an order of magnitude less abundant and did not vary appreciably 287 

with latitudinal sub-region. Calanus propinquus was most abundant in the surface 50 m (Fig. 4a) 288 

unlike other calanoid copepods, which had peak abundances in the mesopelagic zone (day and 289 

night). Epipelagic C. propinquus abundance did not differ between day and night (Tables 1 and 290 

2). Rhincalanus gigas was most abundant from 250-300 m during the day and from 200-250 m at 291 

night (Fig. 4b), and abundance in the surface 50 m was significantly greater at night than during 292 

the day (Wilcoxon signed-rank test p = 0.004). Median R. gigas MOCNESS 50 m N:D was 36.6 293 

(Table 2). Paraeuchaeta antarctica was most abundant from 300-500 m and mostly remained 294 

resident in the mesopelagic zone during day and night (Fig 4c). Although scarce in the epipelagic 295 

zone, P. antarctica was significantly more abundant from 0-50 m during the day (Wilcoxon 296 

signed-rank test p = 0.012) (Table 2), which suggests this species conducted reverse DVM.297 
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Table 1. Diel, depth-integrated zooplankton abundance (0-150 m) from MOCNESS tows along the WAP continental shelf. For 298 

euphausiids and Salpa thompsoni, Day and Night n = 22 (samples from 2009-2017). For all other taxa, Day and Night n = 17 (samples 299 

from 2009-2015). Night:Day n varies because taxa were not always present in both day and night paired tows. p-values are for the 300 

Wilcoxon signed-rank test comparing paired day-night abundance values when a taxon was present in both tows. 301 

 Day (individuals m-2)  Night (individuals m-2)  Night:Day 

Taxon Median Range  Median Range  Median 
25% - 75% 
Quantiles p n 

Calanoid copepods           
     Metridia gerlachei 32.7 0.1 - 1975.0  249.5 3.1 - 2860.8  8.0 6.2 - 32.0 0.002 17 
     Calanoides acutus 37.1 4.2 - 230.6  51.6 7.3 - 269.1  1.0 0.8 - 1.5 0.64 17 
     Calanus propinquus 4.8 0.0 - 165.4  7.3 1.0 - 75.7  1.7 0.4 - 4.4 0.67 16 
     Rhincalanus gigas 4.2 0.3 - 20.3  3.9 0.0 - 14.8  1.2 0.5 - 2.3 0.82 16 
     Paraeuchaeta antarctica 0.9 0.0 - 4.5  1.4 0.0 - 7.1  1.1 0.6 - 2.3 0.68 12 
Euphausiids           
     Thysanoessa macrura 5.0 0.2 - 60.4  9.9 0.1 - 74.9  1.4 1.1 - 2.5 0.003 22 
     Euphausia crystallorophias 0.2 0.0 - 18.3  0.1 0.0 - 61.6  0.7 0.5 - 5.6 0.58 11 
Other crustaceans           
     Ostracoda 3.8 0.0 - 38.2  20.1 1.2 - 219.1  2.9 1.7 – 7.4 0.0003 16 
     Amphipoda 1.9 0.0 - 8.5  1.3 0.0 - 16.4  0.9 0.6 – 2.1 0.56 15 
Gelatinous zooplankton           
     Salpa thompsoni † 0.0 0.0 - 19.4  0.0 0.0 - 174.4  9.0 4.5 - 9.0 0.75 3 
     Limacina helicina antarctica 1.2 0.0 - 53.2  3.4 0.0 - 56.1  1.7 1.2 - 3.6 0.021 13 
     Gymnosomata 0.5 0.0 - 25.3  0.6 0.0 - 3.3  0.8 0.5 - 1.3 0.34 12 
     Chaetognatha 24.0 0.7 - 118.6  21.8 1.7 - 84.1  1.0 0.6 - 1.6 0.75 17 
     Tomopteris spp. 0.04 0.0 - 1.1  0.4 0.0 - 1.6  1.2 1.1 - 6.7 0.30 9 
† See Figure 7b for Salpa thompsoni data from the continental slope. 
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Table 2. Diel, depth-integrated zooplankton abundance (0-50 m) from MOCNESS tows along the WAP continental shelf. For 303 

euphausiids and Salpa thompsoni, Day and Night n = 22 (samples from 2009-2017). For all other taxa, Day and Night n = 17 (samples 304 

from 2009-2015). Night:Day n varies because taxa were not always present in both day and night paired tows. p-values are for the 305 

Wilcoxon signed-rank test comparing paired day-night abundance values when a taxon was present in both tows. 306 

 Day (individuals m-2)  Night (individuals m-2)  Night:Day 

Taxon Median Range  Median Range  Median 
25% - 75% 
Quantiles p n 

Calanoid copepods           
     Metridia gerlachei 4.0 0.0 - 153.8  7.6 0.0 - 948.6  1.8 1.4 - 7.0 0.013 13 
     Calanoides acutus 9.0 0.0 - 76.0  13.8 0.0 - 155.5  2.3 1.6 - 2.9 0.001 12 
     Calanus propinquus 0.2 0.0 - 159.5  4.0 0.0 - 62.0  2.1 0.9 - 4.2 0.38 8 
     Rhincalanus gigas 0.3 0.0 - 4.9  13.8 0.0 - 155.5  36.6 18.2 – 112.4 0.004 9 
     Paraeuchaeta antarctica 4.0 0.0 - 62.0  0.1 0.0 - 1.6  0.2 0.1 - 0.4 0.012 9 
Euphausiids           
     Thysanoessa macrura 0.2 0.0 - 54.8  3.1 0.1 - 47.1  11.7 3.6 - 19.4 0.006 16 
     Euphausia crystallorophias 0.0 0.0 - 4.7  0.1 0.0 - 56.3  8.8 4.3 - 13.1 0.047 7 
Other crustaceans           
     Ostracoda 1.0 0.0 - 23.3  0.9 0.0 - 24.0  1.3 1.0 - 2.1 0.24 11 
     Amphipoda 0.3 0.0 - 8.0  0.3 0.0 - 3.2  0.7 0.5 - 2.4 0.85 10 
Gelatinous zooplankton           
     Salpa thompsoni 0.0 0.0 - 5.4  0.0 0.0 - 63.0  1.2 0.6 - 6.5 0.75 3 
     Limacina helicina antarctica 0.6 0.0 - 28.4  0.9 0.0 - 31.7  2.8 1.7 – 3.6 0.13 9 
     Gymnosomata 0.0 0.0 - 25.0  0.1 0.0 - 2.5  1.2 0.4 - 1.3 1.00 6 
     Chaetognatha 1.9 0.0 - 14.2  1.6 0.0 - 10.4  0.9 0.7 - 1.5 0.68 13 
     Tomopteris spp. 0.0 0.0 - 1.1  0.0 0.0 - 0.8  0.5 NA NA 1 
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 308 

Figure 2. Mean day (light gray, left) and night (dark gray, right) abundance of the calanoid 309 

copepod Metridia gerlachei in the North (a), South (b), Far South (c) sub-regions, and full shelf 310 

sampling region (d) at discrete depth intervals from 0-500 m. Error bars indicate one standard 311 

error. North n = 5-7; South n = 5-6; Far South n = 2-4; Full n = 12-17.  312 
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 313 

Figure 3. Mean day (light gray, left) and night (dark gray, right) abundance of the calanoid 314 

copepod Calanoides acutus in the North (a), South (b), Far South (c) sub-regions, and full shelf 315 

sampling region (d) at discrete depth intervals from 0-500 m. Error bars indicate one standard 316 

error. North n = 5-7; South n = 5-6; Far South n = 2-4; Full n = 12-17. Note different scaling on 317 

x-axes.  318 
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 319 

Figure 4.  Mean day (light gray, left) and night (dark gray, right) abundance of the calanoid 320 

copepods Calanus propinquus (a), Rhincalanus gigas (b), and Paraeuchaeta antarctica (c) 321 

sampled at discrete depth intervals from 0-500 m for the full shelf sampling region. Error bars 322 

indicate one standard error. Full n = 12-17. Note different scaling on x-axes.  323 
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 3.2.2. Euphausiids 324 

 The abundant krill species Thysanoessa macrura was concentrated in the epipelagic zone 325 

during day and night, but ascended at night, especially into the upper 50 m (Fig. 5a). Some 326 

degree of DVM by T. macrura was supported by all metrics tested. This species was 327 

significantly more abundant in 0-50 m depths at night compared to day (Wilcoxon signed-rank 328 

test p = 0.006) (Table 2), and T. macrura median MOCNESS 50 m N:D was 11.7. Thysanoessa 329 

macrura was also more abundant at night vs. day in the upper 0-150 m (MOCNESS tows; 330 

Wilcoxon signed-rank test p = 0.003; median MOCNESS 150 m N:D = 1.4) (Table 1) and from 331 

0-120 m during nighttime grid-wide epipelagic tows (Wilcoxon rank-sum test p = 0.0003; grid-332 

wide 120 m N:D = 1.6) (Table 3). Euphausia crystallorophias was less abundant than T. 333 

macrura, but similarly was concentrated in the upper 100 m (Fig. 5b) and migrated into the top 334 

50 m at night, as indicated by higher abundance from 0-50 m at night than day (Wilcoxon 335 

signed-rank test p = 0.047) and a median MOCNESS 50 m N:D of 8.8 (Table 2). Euphausia 336 

superba remained in the epipelagic zone through the diel cycle with a grid-wide 120 m N:D of 337 

0.93 (Table 3). 338 

 3.2.3. Other crustaceans 339 

 Ostracods migrated nightly into the upper 200 m (Fig. 6a), with significantly higher 340 

abundance from 0-150 m at night vs. day (Wilcoxon signed-rank test p = 0.0003) and a median 341 

MOCNESS 150 m N:D of 2.9 (Table 1). Mean ostracod abundance peaked in the 200-250 m 342 

layer, where they were about 50% more abundant during day than night (Fig. 6a). Most of the 343 

ostracod community did not migrate and resided between 200-500 m throughout the diel cycle. 344 

Amphipods were an order of magnitude less abundant than ostracods, with two distinct 345 

abundance peaks in the mesopelagic zone during day, and highest abundance from 100-200 m at 346 
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night (Fig. 6b). Amphipods were significantly more abundant in nighttime epipelagic tows and 347 

had a grid-wide 120 m N:D of 2.1 (Wilcoxon rank-sum test p = 2.6 x 10-12) (Table 3). 348 
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Table 3. Diel, depth-integrated zooplankton abundance (0-120 m) from grid-wide epipelagic tows across the PAL LTER sampling 349 

region from 1993-2017. n varies because not all taxa were identified consistently throughout the time series. p-values are for the 350 

Wilcoxon rank-sum test. 351 

 Day (individuals m-2)  Night (individuals m-2)    
Taxon Mean SE n  Mean SE n  Night:Day p 
Euphausiids           
     Thysanoessa macrura 22.9 2.0 1063  36.9 6.8 197  1.6 0.0003 
     Euphausia crystallorophias 2.9 0.38 1067  6.2 2.3 196  2.1 0.77 
     Euphausia superba 13.7 2.0 1071  12.7 6.1 198  0.9 0.001 
Other crustaceans           
     Amphipoda 0.36 0.025 1026  0.75 0.13 185  2.1 2.6 x 10-12 
Gelatinous zooplankton           
     Salpa thompsoni 4.9 1.4 1069  12.5 3.0 197  2.6 7.7 x 10-17 
     Limacina helicina antarctica 7.3 0.62 1056  9.9 1.1 195  1.4 0.004 
     Gymnosomata 0.22 0.014 1050  0.31 0.039 193  1.4 0.0002 
     Chaetognatha 1.5 0.16 994  0.88 0.20 183  0.6 0.088 
     Tomopteris spp. 0.051 0.0049 966  0.095 0.014 181  1.9 0.0002 

 352 
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 353 

Figure 5. Mean day (light gray, left) and night (dark gray, right) abundance of the euphausiids 354 

Thysanoessa macrura (a) and Euphausia crystallorophias (b) sampled at discrete depth intervals 355 

from 0-500 m for the full shelf sampling region. Error bars indicate one standard error. Full n = 356 

17-22. Note different scaling on x-axes. 357 

 358 

 359 

Figure 6. Mean day (light gray, left) and night (dark gray, right) abundance of ostracods (a) and 360 

amphipods (b) sampled at discrete depth intervals from 0-500 m for the full shelf sampling 361 

region. Error bars indicate one standard error. Full n = 12-17. Note different scaling on x-axes.  362 
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 3.2.4. Salps 363 

 Salpa thompsoni was a strong diel vertical migrator. Mean abundance over the 364 

continental shelf was highest from 200-400 m during the day, and from 0-200 m at night (Fig. 365 

7a). Salpa thompsoni median MOCNESS 150 m N:D was 9.0, although salps were only present 366 

in three day-night MOCNESS tow pairs along the continental shelf (Table 1). Salps were also 367 

significantly more abundant at night in epipelagic tows, with a grid-wide 120 m N:D of 2.6 368 

(Wilcoxon rank-sum test p = 7.7 x 10-17) (Table 3). Over the continental slope, S. thompsoni 369 

migrated mostly from daytime residence depths in the 200-300 m layer into the surface 100 m at 370 

night (Fig. 7b), with MOCNESS 100 m N:D = 94.6 and MOCNESS 200 m N:D = 6.3. Salps 371 

were relatively scarce below 300 m, although a small, deep peak occurred from 750-1000 m on 372 

the slope. 373 

 3.2.5. Pteropods 374 

The thecosome (shelled) pteropod Limacina helicina antarctica was concentrated in 375 

surface waters but also migrated from 150-250 m during the day into the upper epipelagic zone 376 

at night (Fig. 8a). This result is supported by their higher abundance in the upper 150 m at night 377 

from MOCNESS tows (Wilcoxon signed-rank test p = 0.021) (Table 1) and from 0-120 m at 378 

night in epipelagic tows (Wilcoxon rank-sum test p = 0.004) (Table 3). Median L. h. antarctica 379 

MOCNESS 150 m N:D was 1.7 (Table 1), and grid-wide 120 m N:D was 1.4 (Table 3). 380 

Gymnosome (shell-less) pteropods were less abundant than L. h. antarctica in the epipelagic 381 

zone and were distributed relatively evenly with depth, with highest mean gymnosome 382 

abundance from 0-50 m during the day (Fig. 8b). However, DVM by gymnosomes is indicated 383 

grid-wide, with significantly higher abundance at night in the epipelagic zone and a grid-wide 384 

120 m N:D of 1.4 (Wilcoxon rank-sum test p = 0.0002) (Table 3). 385 
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 386 

Figure 7. Mean day (light gray, left) and night (dark gray, right) abundance of Salpa thompsoni 387 

from the full continental shelf sampling region (a) and a single pair of tows on the continental 388 

slope (b) sampled at discrete depth intervals from 0-500 m and 0-1000 m, respectively. Error 389 

bars indicate one standard error. Full Shelf n = 17-22; Slope n = 1. Note different scaling on y-390 

axes. 391 

 392 

 393 

Figure 8. Mean day (light gray, left) and night (dark gray, right) abundance of the pteropod 394 

Limacina helicina antarctica (a) and gymnosome pteropods (b) sampled at discrete depth 395 

intervals from 0-500 m for the full shelf sampling region. Error bars indicate one standard error. 396 

Full n = 12-17. Note different scaling on x-axes.  397 



	

	 27	

 3.2.6. Gelatinous carnivores 398 

 Chaetognaths and Tomopteris spp. polychaetes were mostly resident in the mesopelagic 399 

zone and relatively scarce from 0-100 m (Fig. 9). Mean abundance of both taxa was highest from 400 

200-250 m during the day and from 150-200 m at night (Tomopteris spp. also had a second night 401 

peak at 300-400 m) (Fig. 9). Median chaetognath MOCNESS 150 m N:D was 1.0 (Table 1) and 402 

although grid-wide 120 m N:D was 0.6, epipelagic abundance did not differ between day and 403 

night (Tables 1-3), suggesting chaetognaths did not undergo DVM. However, Tomopteris spp. 404 

polychaetes did appear to undergo DVM as they were significantly more abundant during night 405 

epipelagic tows and had a grid-wide 120 m N:D of 1.9 (Wilcoxon rank-sum test p = 0.0002) 406 

(Table 3). 407 

 408 

Figure 9. Mean day (light gray, left) and night (dark gray, right) abundance of chaetognaths (a) 409 

and Tomopteris spp. polychaetes (b) sampled at discrete depth intervals from 0-500 m for the full 410 

shelf sampling region. Error bars indicate one standard error. Full n = 12-17. Note different 411 

scaling on x-axes.  412 
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3.3. Environmental controls on DVM 413 

For strong migrators traveling between the mesopelagic and epipelagic zones, migration 414 

distance (i.e., ΔWMD) was sensitive to photoperiod and vertical water column structure. For the 415 

copepod M. gerlachei, photoperiod and ZSCM best explained ΔWMD (Table 4), with M. 416 

gerlachei making shorter vertical migrations as photoperiod grew longer and when ZSCM was 417 

shallower (Fig. 10a). Similarly, photoperiod and MLD best explained ostracod ΔWMD (Table 418 

4). Ostracods made shorter DVMs as photoperiod grew longer and when MLD was deeper (Fig. 419 

10b; note– an outlier that was excluded prior to model selection for ostracods is included for 420 

visualization in this figure). 421 

 For taxa making shorter-distance DVMs mostly within the epipelagic zone, the 422 

magnitude of DVM into the surface layer (i.e., MOCNESS 50 m N:D) was best explained by 423 

phytoplankton abundance and distribution. The final models each included a different, single 424 

explanatory variable for the copepod R. gigas, euphausiid T. macrura, and pteropod L. h. 425 

antarctica. Rhincalanus gigas DVM into the surface 50 m decreased as depth-integrated chl-a 426 

increased (Fig. 11a; Table 5). Thysanoessa macrura DVM decreased when MLD was deeper 427 

(Fig. 11b), and similarly L. h. antarctica DVM decreased when ZSCM was deeper (Fig. 11c – a 428 

finding robust to the inclusion of an outlier value – see inset) (Table 5). 429 
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Table 4. Statistics from multiple linear regression models assessing the impact of environmental variables on zooplankton DWMD 430 

from MOCNESS tows (0-500 m) along the WAP continental shelf from 2009-2015. 431 

Variable n Coefficient SE t p Partial R2 
Metridia gerlachei ΔWMD (adjusted R2 = 0.76; p = 0.001) 11      
     Photoperiod  -19.8 4.6 -4.3 0.003 0.70 
     Depth of chl-a maximum  2.27 0.47 4.8 0.001 0.75 
     Intercept  400.0 92.5 4.3 0.003         
Ostracoda ΔWMD (adjusted R2 = 0.79; p = 0.002) 10      
     Photoperiod  -12.1 3.0 -4.1 0.005 0.70 
     Mixed layer depth  -0.666 0.23 -2.9 0.022 0.55 
     Intercept  283.8 59.7 4.8 0.002  

  432 
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Table 5. Statistics from generalized linear models (with a gamma distribution and log link function) assessing the impact of 433 

environmental variables on zooplankton 50m N:D from MOCNESS tows along the WAP continental shelf from 2009-2015 (for 434 

Rhincalanus gigas and Limacina helicina antarctica) and 2009-2017 (for Thysanoessa macrura). 435 

Variable n Coefficient SE t p 
Rhincalanus gigas 50m N:D (deviance explained = 35%) 8     
     Chl-a concentration  -0.0088 0.0031 -2.8 0.031 
     Intercept  5.15 0.41 12.6 1.5 x 10-5       
Thysanoessa macrura 50m N:D (deviance explained = 27%) 15     
     Mixed layer depth  -0.035 0.011 -3.1 0.008 
     Intercept  3.67 0.42 8.7 8.8 x 10-7       
Limacina helicina antarctica 50m N:D (deviance explained = 40%) 8     
     Depth of chl-a maximum  -0.055 0.020 -2.7 0.035 
     Intercept  2.06 0.61 3.4 0.015 

  436 
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 437 

 438 

Figure 10. Environmental controls on ΔWMD. (a) Depth of chlorophyll a maximum versus 439 

Metridia gerlachei ΔWMD. (b) Photoperiod versus Ostracod ΔWMD. Solid lines indicate the 440 

linear regression with all M. gerlachei data points and without the ostracod outlier value, 441 

indicated by an open diamond. M. gerlachei: n = 11, p = 0.048, R2 = 0.30; Ostracod (without 442 

outlier): n = 10, p = 0.005, R2 = 0.60.  443 
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 444 

Figure 11. Environmental controls on 50 m N:D. (a) Depth-integrated chlorophyll a 445 

concentration versus Rhincalanus gigas 50 m N:D. (b) Mixed layer depth versus Thysanoessa 446 

macrura 50 m N:D. (c) Depth of chlorophyll a maximum versus Limacina helicina antarctica 50 447 

m N:D. Inset includes an outlier L. h. antarctica 50 m N:D value indicated by an open diamond. 448 

Solid line indicates generalized linear model fit. Dashed lines indicate one standard error. R. 449 

gigas: n = 8, p = 0.031, deviance explained = 35%; T. macrura: n = 15, p = 0.008, deviance 450 

explained = 27%; L. h. antarctica (without outlier): n = 8, p = 0.035, deviance explained = 40%. 451 

  452 



	

	 33	

4. Discussion 453 

4.1. Zooplankton DVM modes    454 

 4.1.1. DVM between epipelagic and mesopelagic zones 455 

Four taxa performed consistent DVM between the mesopelagic zone during day and 456 

epipelagic zone at night. The copepod Metridia gerlachei migrated into the upper 100 m at night, 457 

consistent with results from prior studies in the northern WAP (Hopkins, 1985; Lopez and 458 

Huntley, 1995; King and LaCasella, 2003). Similarly, a portion of the ostracod community made 459 

relatively extensive (~100 m) DVMs resulting in a 21% decrease in abundance from 200-300 m 460 

and a 3.5-fold increase in abundance from 0-200 m at night. Ostracod DVM is well-documented 461 

in the Atlantic and Pacific Oceans (Angel, 1979; Steinberg et al., 2008). Population-wide DVM 462 

by Salpa thompsoni from 300 m into surface waters supports previous observations throughout 463 

the Southern Ocean during summer (Piatkowski, 1985; Casareto and Nemoto, 1986; Perissinotto 464 

and Pakhomov, 1998; Pakhomov et al., 2011). Although rarely encountered deeper than 300 m 465 

during summer, the pteropod Limacina helicina antarctica underwent DVM between the 466 

epipelagic and upper mesopelagic zones. In the Lazarev Sea, L. h. antarctica also conducted 467 

DVM from November to February (Hunt et al., 2008). Collectively, M. gerlachei, ostracods, S. 468 

thompsoni, and L. h. antarctica constitute an assemblage of strong vertical migrators along the 469 

WAP during summer. 470 

Evidence for amphipod, gymnosome pteropod, and Tomopteris spp. polychaete DVM 471 

was less consistent than for the above species, but these taxa were each more abundant at night 472 

compared to day in grid-wide epipelagic tows. All amphipod species were grouped together, but 473 

DVM is likely species-specific. For example, the hyperiid amphipod Cyllopus lucasii was more 474 

abundant through the upper 200 m at night during summer, autumn, and winter in the Lazarev 475 
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Sea where there was no evidence for DVM by the hyperiids Hyperiella dilatata and Primno 476 

macropa (Flores et al., 2014). Themisto gaudichaudii (synonym Parathemisto gaudichaudii) is 477 

abundant along the WAP (Steinberg et al., 2015), and this amphipod made DVMs from ~200 m 478 

to the surface 50 m in the Atlantic Ocean (Williams and Robins, 1981). Prior evidence for Clione 479 

antarctica and Spongiobranchia australis DVM is inconsistent (Hunt et al., 2008), but our 480 

epipelagic day-night abundance data suggest these gymnosome pteropods conduct DVM, likely 481 

to feed on their primary prey L. h. antarctica (Lalli and Gilmer, 1989; Van der Spoel and Dadon, 482 

1999) in the epipelagic zone at night. At night, Tomopteris spp. polychaete abundance decreased 483 

37% from 200-300 m and increased 3-fold in the surface 0-200 m. We suggest a portion of the 484 

amphipod, gymnosome, and Tomopteris spp. assemblage conducted DVM to feed in the upper 485 

200 m while other individuals remained at depth. 486 

 4.1.2. DVM within epipelagic zone 487 

 The copepods Calanoides acutus and Rhincalanus gigas made shallow DVMs from the 488 

50-100 m layer into the upper 50 m at night. Shallow DVMs within the upper 70 m for C. acutus 489 

and upper 90 m for R. gigas were also reported in January near South Georgia (Atkinson et al., 490 

1992a, 1992b). A study in the Drake Passage and northern Antarctic Peninsula found no C. 491 

acutus DVM during December to March (Huntley and Escritor, 1991), but was limited to vertical 492 

resolution of 0-100 and 100-200 m, making it unlikely to detect shallow DVM.  493 

The krill species Thysanoessa macrura and Euphausia crystallorophias performed 494 

shallow DVM. DVM within the epipelagic zone was reported during spring and autumn further 495 

north of our study site for T. macrura (Loeb and Shulenberger, 1987; Nordhausen, 1994a) and E. 496 

crystallorophias (using acoustics; Everson, 1987). Summer surveys in the northern WAP 497 

(Nordhausen, 1992) and Amundsen Sea (La et al., 2015b) did not detect DVM by T. macrura 498 
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and E. crystallorophias, respectively, possibly due to limitations of sampling methods in 499 

detecting shallow DVM. Net avoidance by the larger, faster E. crystallorophias was not apparent 500 

in the northern WAP during winter (Nordhausen et al. 1994b) but was during autumn (Everson, 501 

1987), which could exaggerate the shallow DVM signal and contribute to higher nighttime 502 

abundance depicted in Figure 5b. 503 

 4.1.3. DVM within mesopelagic zone 504 

Chaetognaths and the copepod R. gigas both undertook a modest DVM within the 505 

mesopelagic zone between 150 and 300 m, possibly indicating predator-prey coupling. The 506 

chaetognaths Eukronia hamata and Sagitta gazellae predominately fed on the copepods C. 507 

acutus, C. propinquus, and M. gerlachei in the upper 200 m of the Weddell Sea in autumn 508 

(Hopkins and Torres, 1989). Chaetognaths along the WAP mainly remained in deeper layers 509 

during summer to feed on abundant copepod prey. Although less numerous, R. gigas is a larger 510 

(Gleiber, 2014), and perhaps preferable, copepod prey item compared to M. gerlachei or C. 511 

acutus. 512 

 4.1.4. Reverse DVM 513 

 The copepod Paraeuchaeta antarctica made relatively short reverse DVMs, from 0-50 m 514 

during the day to 50-100 m at night. The primarily carnivorous P. antarctica is the largest 515 

copepod in this study (mean adult prosome length 7 mm; Gleiber, 2014), making it particularly 516 

vulnerable to visual predators in surface waters (Aksnes and Giske, 1993; Ohman and 517 

Romagnan, 2016). Reverse DVM is adaptive for species susceptible to predators that undertake 518 

normal DVM (Ohman et al., 1983). The reverse DVM of P. antarctica is likely used to avoid 519 

vertically migrating visual predators. 520 

4.2. Non-migrating zooplankton 521 
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 4.2.1. Epipelagic non-migrators 522 

 The copepod Calanus propinquus was concentrated in the upper 50 m and did not 523 

consistently undertake DVM. Calanus propinquus feeds omnivorously (Atkinson, 1998; 524 

Pasternak and Schnack-Schiel, 2001) and was concentrated in the upper 100 m year-round in the 525 

Scotia Sea (Atkinson and Sinclair, 2000). Therefore, it appears C. propinquus typically remains 526 

resident in surface waters on both seasonal and diel time scales. 527 

 The negligible difference between night and day E. superba abundance in our 120 m 528 

tows was expected since this depth was selected to collect Antarctic krill across its main summer 529 

depth range (Ross et al., 1996). Acoustic studies have documented sporadic DVM within the 530 

upper 100 m during summer while DVM is more pronounced during spring and autumn 531 

(Everson, 1983; Godlewska and Klusek, 1987; Demer and Hewitt, 1995; Ross et al., 1996). The 532 

daytime formation of larger schools and nighttime dispersal into smaller schools may be a more 533 

consistent predator avoidance behavior for E. superba in the summer (Everson, 1983; Zhou and 534 

Dorland, 2004; Tarling et al., 2018). 535 

 4.2.2. Mesopelagic carnivores and detritivores 536 

 The copepod P. antarctica, ostracods, chaetognaths, and Tomopteris spp. polychaetes 537 

were concentrated in the mesopelagic zone regardless of the diel cycle, and together compose a 538 

deep carnivorous and detritivorous assemblage. The carnivorous P. antarctica (synonym 539 

Euchaeta antarctica) preyed mainly on other copepods in the Weddell Sea (Hopkins and Torres, 540 

1989) and near South Georgia where feeding continued through winter (Øresland and Ward, 541 

1993). Thus, P. antarctica likely remains resident in the mesopelagic zone where metazoan prey 542 

is sufficiently abundant throughout the year. While vertically migrating ostracods feed in 543 

productive surface waters, the more numerous mesopelagic residents feed as carnivores or 544 
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detritivores (Angel, 1972; Lampitt et al., 1993; Vannier et al., 1998). Elevated ostracod 545 

abundance from 200-500 m was also observed in the northern WAP during summer 546 

(Blachowiak-Samolyk and Żmijewska, 1997) and in Marguerite Bay during autumn (Marrari et 547 

al., 2011). Chaetognaths along the WAP likely remained in deeper layers during summer to feed 548 

on abundant copepod prey as previously discussed. Chaetognaths were the numerically dominant 549 

macrozooplankton in the mesopelagic zone throughout the year in the Lazarev Sea (Flores et al., 550 

2014) and are similarly important in the WAP mesopelagic zone. Small Tomopteris spp. 551 

polychaetes in the epipelagic zone fed on phytoplankton in the northern WAP during summer 552 

(Phleger et al., 1998) and during autumn in the Weddell Sea (Hopkins and Torres, 1989). 553 

However, Tomopteris spp. polychaetes in the mesopelagic zone are carnivores or detritivores 554 

(Steinberg et al., 1994; Jumars et al., 2015). In particular, individuals larger than 20 mm are 555 

primarily carnivorous (Jumars et al. 2015), and large Tomopteris spp. individuals in our study 556 

exceeded 60 mm, further supporting their role as carnivores in the mesopelagic zone. 557 

 Amphipods and gymnosome pteropods were distributed throughout the water column, 558 

with a substantial portion of the population residing in the mesopelagic zone during day and 559 

night. A diet study in the Weddell Sea during March found multiple amphipod species were 560 

feeding mainly on copepods, larval euphausiids, and gelatinous zooplankton (Hopkins and 561 

Torres, 1989). Therefore, carnivory explains increased amphipod density below 100 m where 562 

metazoan prey is abundant. Although the highest gymnosome abundance was in surface waters, 563 

their consistent mesopelagic presence suggests gymnosomes consume other prey in addition to 564 

the shelled pteropod L. h. antarctica. A genetic diet analysis of the Arctic Clione limacina found 565 

this species fed on amphipods and calanoid copepods in addition to shelled pteropods (Kallevik, 566 
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2013). Similar to other mesopelagic zooplankton, amphipods and gymnosome pteropods likely 567 

have multiple feeding modes. 568 

4.2.3. Seasonal vertical migrators 569 

 The copepods M. gerlachei, R. gigas, and C. acutus all make seasonal vertical 570 

migrations, although M. gerlachei and R. gigas feed through winter while C. acutus enters 571 

diapause at depth once it has acquired sufficient lipid reserves (Atkinson, 1998; Pasternak and 572 

Schnack-Schiel, 2001; Schnack-Schiel, 2001). Elevated mesopelagic concentrations for these 573 

species in our study are more similar to autumn or winter depth distributions farther north in the 574 

Scotia Sea (Atkinson and Sinclair, 2000; Ward et al., 2012). High M. gerlachei and R. gigas 575 

concentrations from 200-500 m are likely indicative of carnivorous and detritivorous feeding, 576 

which may be more important along the WAP where the productive season is shorter vs. lower 577 

latitudes. High mesopelagic abundance indicates C. acutus adults were likely in diapause and 578 

had not yet fully begun their ascent (Atkinson and Shreeve, 1995) in the Far South where we 579 

sampled pre-bloom conditions and mean depth-integrated chl-a was only 38 mg m-2. Reduced 580 

seasonal sea ice coverage coincident with increasing phytoplankton biomass in the PAL LTER 581 

study area (Stammerjohn et al., 2008; Montes-Hugo et al., 2009) may result in earlier ascents for 582 

seasonally migrating copepods. 583 

Indications that the pteropod L. h. antarctica conducts a seasonal vertical migration to 584 

feed in WAP surface waters during summer and overwinter at depth include that this species was 585 

concentrated from 0-100 m during our sampling but was most abundant from 100-200 m during 586 

autumn in Marguerite Bay (Marrari et al., 2011). Furthermore, L. h. antarctica is typically absent 587 

from a moored sediment trap sampling at 170 m on the WAP shelf during summer but 588 

commonly collected from June to October (Thibodeau et al., in review). A seasonal vertical 589 
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migration for the closely related Limacina helicina helicina is also suggested in the Arctic Ocean 590 

(Kobayashi, 1974). 591 

4.3. Environmental controls on DVM  592 

4.3.1. DVM between epipelagic and mesopelagic zones 593 

The copepod M. gerlachei and ostracods made shorter DVMs as photoperiod increased 594 

from 17 to 22 h, consistent with previous work demonstrating the sensitivity of polar 595 

zooplankton to seasonal irradiance cycles. Acoustic studies throughout the Southern Ocean 596 

(64°S to 74°S) suggest that DVM ceases during summer (Cisewski et al., 2010; Cisewski and 597 

Strass, 2016; Picco et al., 2017). In these studies, sound scattering layers remained in surface 598 

waters around-the-clock rather than descending during the day. However, our results show some 599 

taxa continue to migrate between the epipelagic and mesopelagic zones, responding to relatively 600 

small changes in photoperiod during Antarctic summer from 64°S to 70°S. 601 

 Metridia gerlachei made DVMs over a greater depth range when ZSCM was deeper, likely 602 

due to changing phytoplankton availability and predation risk. Deeper ZSCM was associated with 603 

reduced light attenuation. With a deep ZSCM, M. gerlachei encountered maximum phytoplankton 604 

concentrations farther from the surface at night, but DVM distance increased as M. gerlachei 605 

migrated deeper to avoid visual predators during day. This finding is consistent with previous 606 

work in the southern California Current, where reduced light attenuation was associated with 607 

longer DVM distances – particularly deeper daytime depths – for migrating copepods (Ohman 608 

and Romagnan, 2016). Metridia gerlachei (mean prosome length 3 mm; Gleiber, 2014) is within 609 

the size range of the strongest vertical migrators in that study, and therefore may be similarly 610 

susceptible to visual predators. ZSCM thus influences M. gerlachei DVM distance directly by 611 
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concentrating prey distribution and indirectly by modulating predation threat (i.e., via light 612 

attenuation). 613 

 Ostracods made shorter DVMs when MLD was deeper, likely because migrating 614 

ostracods ascended from the mesopelagic zone at night until reaching elevated phytoplankton 615 

concentrations in the mixed layer. A shallow mixed layer results in a longer nighttime feeding 616 

ascent and a longer return to mesopelagic daytime residence depth. In an acoustic study during 617 

Arctic autumn, migrating zooplankton sound scattering layers were coincident with, or just 618 

below, the MLD at midnight (Berge et al., 2014). Deeper MLD is associated with reduced sea ice 619 

coverage along the WAP (Schofield et al., 2018), which may result in shorter ostracod DVMs 620 

under future regional climate conditions. 621 

4.3.2. DVM within epipelagic zone 622 

 Depth-integrated chlorophyll a concentration influenced DVM by the copepod R. gigas 623 

within the epipelagic zone. Rhincalanus gigas remained in the surface 0-50 m during day and 624 

night to feed on elevated phytoplankton biomass, as indicated by decreasing N:D with increasing 625 

chl-a. Gut content analysis showed R. gigas feeds primarily on phytoplankton during summer 626 

(Pasternak and Schnack-Schiel, 2001). Elevated chl-a was also associated with increased light 627 

attenuation, reducing the susceptibility of R. gigas to visual predators in surface waters and 628 

limiting any benefit gained by daytime migration out of the upper 50 m. Future long-term 629 

declines in regional sea ice coverage, upper ocean stability, and chl-a concentration in the PAL 630 

LTER study region (Montes-Hugo et al., 2009; Brown et al., 2019) may increase the amplitude 631 

of R. gigas DVM. 632 

 The 0-50 m N:D ratio for the euphausiid T. macrura and for the pteropod L. h. antarctica 633 

increased with shallower MLD and ZSCM, respectively, as these taxa appeared to cue on vertical 634 
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phytoplankton distribution. MLD and ZSCM were positively correlated in our study. We suggest 635 

increased 0-50 m N:D indicates a larger portion of the population migrated into the upper 50 m 636 

at night when phytoplankton was concentrated near the surface. When MLD and ZSCM were 637 

deeper, T. macrura and L. h. antarctica DVM into the upper 50 m likely decreased because 638 

phytoplankton availability and predator avoidance were both maximized below the 50 m 639 

threshold of our sampling resolution. During autumn, Arctic zooplankton sound scattering layers 640 

migrated to the MLD at midnight (Berge et al., 2014). Migrating pteropods and copepods 641 

ascended to the ZSCM at night during Arctic summer (Daase et al., 2016). Deeper MLD under 642 

reduced sea ice conditions along the WAP (Schofield et al., 2018) may result in deeper nighttime 643 

distributions for T. macrura euphausiids and L. h. antarctica pteropods. 644 

4.4. Zooplankton-mediated carbon export 645 

 Zooplankton vertical structure and behavior play key roles in mediating carbon export 646 

(Steinberg and Landry, 2017; Cavan et al., 2019), and regional, taxon-specific data are needed to 647 

accurately model the contribution of zooplankton DVM to the global biological carbon pump 648 

(e.g., Aumont et al., 2018; Archibald et al., 2019). DVM between the epipelagic and mesopelagic 649 

zones by WAP zooplankton through Antarctic summer likely results in substantial active carbon 650 

transport out of the euphotic zone, which may help resolve surprisingly low regional particle 651 

export to primary production ratios (Stukel et al., 2015; Ducklow et al., 2018). Zooplankton 652 

DVM is an important control on POC export in the Scotia Sea (Cavan et al., 2015; Liszka et al., 653 

2019), and likely plays a similar role along the WAP where zooplankton fecal pellets constitute 654 

67% of summer POC flux at 170 m (Gleiber et al., 2012). Future work also should estimate 655 

active transport of dissolved carbon (i.e., respiration of CO2 and excretion of DOC at depth). 656 

Additionally, seasonal vertical migrators (e.g., C. acutus copepods and L. h. antarctica 657 
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pteropods) transfer carbon to the ocean interior as they respire and die in the mesopelagic zone, 658 

but this “lipid pump” (for copepods) is yet to be quantified in the Southern Ocean (Kobari et al., 659 

2008; Jónasdóttir et al., 2015). Abundant mesopelagic zooplankton also consume sinking detritus 660 

and produce fecal pellets, which regulates POC availability to mesopelagic and benthic food 661 

webs (Wilson et al., 2008; Belcher et al., 2017). Our findings show it will be essential to consider 662 

species feeding ecology and variable DVM amplitudes when assessing zooplankton roles in 663 

Southern Ocean carbon cycling. Finally, documented long-term changes in WAP zooplankton 664 

composition (e.g., Steinberg et al., 2015; Thibodeau et al., 2019) as well as phytoplankton 665 

biomass and vertical distribution (e.g., Brown et al., 2019) will alter zooplankton-mediated 666 

export pathways.  667 
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Supplemental Table 1. Diel, depth-integrated zooplankton abundance (0-150 m) from MOCNESS tows along the WAP continental 1017 

shelf. For euphausiids and Salpa thompsoni, Day and Night n = 22 (samples from 2009-2017). For all other taxa, Day and Night n = 1018 

17 (samples from 2009-2015). Night:Day n varies because taxa were not always present in both day and night paired tows. p-values 1019 

are for the paired t-test comparing log-transformed day-night abundance values when a taxon was present in both tows. 1020 

 Day (individuals m-2)  Night (individuals m-2)  Night:Day 
Taxon Mean SE  Mean SE  Mean SE p t-test n            
Calanoid copepods                      
     Metridia gerlachei 168.7 114.0  494.0 169.3  80.2 45.1 0.00004 17            
     Calanoides acutus 71.8 17.1  74.5 17.5  1.5 0.5 0.64 17            
     Calanus propinquus 21.2 9.9  15.5 5.0  3.0 0.9 0.47 16            
     Rhincalanus gigas 5.9 1.4  5.5 1.1  2.9 1.2 0.68 16            
     Paraeuchaeta antarctica 1.3 0.3  1.8 0.4  4.0 2.1 0.39 12            
Euphausiids                      
     Thysanoessa macrura 10.3 3.3  15.1 3.5  5.0 2.2 0.024 22            
     Euphausia crystallorophias 2.0 1.0  3.9 2.8  3.5 1.4 0.56 11            
Other crustaceans                      
     Ostracoda 9.3 2.9  38.4 13.0  7.5 2.7 0.0002 16            
     Amphipoda 2.4 0.5  3.6 1.1  2.5 1.2 0.78 15            
Gelatinous zooplankton                      
     Salpa thompsoni 1.6 1.1  8.4 7.9  6.0 3.0 0.76 3            
     Limacina helicina antarctica 7.5 3.6  10.1 3.5  3.5 1.1 0.008 13            
     Gymnosomata 2.6 1.5  1.0 0.3  1.4 0.5 0.40 12            
     Chaetognatha 31.7 7.5  28.1 5.4  1.6 0.4 0.90 17            
     Tomopteris spp. 0.25 0.1  0.5 0.1  5.1 2.7 0.14 9 

 1021 



	

	 54	

Supplemental Table 2. Diel, depth-integrated zooplankton abundance (0-50 m) from MOCNESS tows along the WAP continental 1022 

shelf. For euphausiids and Salpa thompsoni, Day and Night n = 22 (samples from 2009-2017). For all other taxa, Day and Night n = 1023 

17 (samples from 2009-2015). Night:Day n varies because taxa were not always present in both day and night paired tows. p-values 1024 

are for the paired t-test comparing log-transformed day-night abundance values when a taxon was present in both tows. 1025 

 Day (individuals m-2)  Night (individuals m-2)  Night:Day 
Taxon Mean SE  Mean SE  Mean SE p t-test n            
Calanoid copepods                      
     Metridia gerlachei 29.2 10.9  127.4 64.4  889.5 884.0 0.044 13            
     Calanoides acutus 19.2 5.4  34.7 10.6  2.4 0.3 0.000 12            
     Calanus propinquus 15.6 9.6  10.4 4.2  14.7 12.6 0.25 8            
     Rhincalanus gigas 1.2 0.4  1.6 0.6  79.4 30.3 0.000 9            
     Paraeuchaeta antarctica 10.4 4.2  0.4 0.1  0.3 0.1 0.004 9            
Euphausiids                      
     Thysanoessa macrura 3.4 2.5  8.1 2.3  17.3 5.1 0.000 16            
     Euphausia crystallorophias 0.3 0.2  3.2 2.5  9.9 3.2 0.034 7            
Other crustaceans                      
     Ostracoda 4.1 1.7  5.0 1.8  2.3 0.9 0.53 11            
     Amphipoda 0.9 0.5  0.7 0.2  1.5 0.4 0.66 10            
Gelatinous zooplankton                      
     Salpa thompsoni 0.5 0.3  2.9 2.9  4.3 3.7 0.80 3            
     Limacina helicina antarctica 3.5 1.7  6.0 2.3  8.1 5.9 0.21 9            
     Gymnosomata 1.7 1.5  0.5 0.2  0.9 0.3 0.35 6            
     Chaetognatha 2.9 0.9  2.6 0.8  1.8 0.6 0.44 13            
     Tomopteris spp. 0.06 0.1  0.1 0.1  0.5 NA NA 1 
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Supplemental Table 3. Summary of model selection statistics from multiple linear regression models assessing the impact of 1027 

environmental variables on Metridia gerlachei DWMD from MOCNESS tows (0-500 m) along the WAP continental shelf from 2009-1028 

2015. Statistics – AICc: corrected Akaike Information Criterion; DAICc: difference from lowest AICc; AICc weight – relative model 1029 

support or probability. Explanatory variables – Photoperiod: day length; ZSCM: depth of subsurface chlorophyll a maximum; MLD: 1030 

mixed layer depth; Chl: chlorophyll a concentration depth-integrated to 100 m; Z1%: depth of 1% surface irradiance. 1031 

Explanatory variables AICc ΔAICc AICc weight     
Photoperiod + ZSCM 101.3 0.00 0.967     
ZSCM 109.3 7.95 0.018     
Photoperiod 111.2 9.83 0.007     
MLD 113.9 12.60 0.002     
Chl 114.1 12.72 0.002     
Photoperiod + MLD 114.2 12.85 0.002     
Z1% 114.3 12.99 0.001     
Photoperiod + Z1% 116.4 15.05 0.001     
Photoperiod + Chl 116.4 15.07 0.001     
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Supplemental Table 4. Summary of model selection statistics from multiple linear regression models assessing the impact of 1033 

environmental variables on Ostracoda DWMD from MOCNESS tows (0-500 m) along the WAP continental shelf from 2009-2015. 1034 

Statistics and explanatory variables as defined for Supplementary Table 3. 1035 

Explanatory variables AICc ΔAICc AICc weight     
Photoperiod + MLD 85.2 0.00 0.666     
Photoperiod 87.1 1.96 0.250     
MLD 91.3 6.13 0.031     
Photoperiod + Chl 92.1 6.91 0.021     
Photoperiod + ZSCM 92.8 7.69 0.014     
Photoperiod + Z1% 93.0 7.84 0.013     
Z1% 97.2 12.09 0.002     
ZSCM 97.3 12.18 0.002     
Chl 97.4 12.22 0.001     
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Supplemental Table 5. Summary of model selection statistics from generalized linear models (with a gamma error distribution and 1037 

log link function) assessing the impact of environmental variables on Rhincalanus gigas MOCNESS 50 m N:D along the WAP 1038 

continental shelf from 2009-2015. Statistics and explanatory variables as defined for Supplementary Table 3. 1039 

Explanatory variables AICc ΔAICc AICc weight     
Chl 95.7 0.00 0.386     
ZSCM 96.6 0.88 0.248     
Z1% 97.3 1.56 0.177     
MLD 97.9 2.22 0.127     
Photoperiod 99.7 3.99 0.052     
Photoperiod + Chl 105.0 9.29 0.004     
Photoperiod + ZSCM 105.8 10.10 0.002     
Photoperiod + Z1% 106.0 10.32 0.002     
Photoperiod + MLD 106.7 11.00 0.002     
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Supplemental Table 6. Summary of model selection statistics from generalized linear models (with a gamma error distribution and 1041 

log link function) assessing the impact of environmental variables on Thysanoessa macrura MOCNESS 50 m N:D along the WAP 1042 

continental shelf from 2009-2017. Statistics and explanatory variables as defined for Supplementary Table 3.  1043 

Explanatory variables AICc ΔAICc AICc weight     
MLD 117.8 0.00 0.449     
Photoperiod + MLD 119.2 1.44 0.218     
Z1% 120.7 2.95 0.103     
Chl 121.7 3.96 0.062     
Photoperiod 122.0 4.19 0.055     
ZSCM 122.4 4.64 0.044     
Photoperiod + Chl 123.0 5.19 0.033     
Photoperiod + ZSCM 124.0 6.24 0.020     
Photoperiod + Z1% 124.0 6.59 0.017     
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Supplemental Table 7. Summary of model selection statistics from generalized linear models (with a gamma error distribution and 1045 

log link function) assessing the impact of environmental variables on Limacina helicina antarctica MOCNESS 50 m N:D along the 1046 

WAP continental shelf from 2009-2015. Statistics and explanatory variables as defined for Supplementary Table 3. 1047 

Explanatory variables AICc ΔAICc AICc weight     
ZSCM 35.8 0.00 0.627     
Photoperiod 39.4 3.55 0.106     
Chl 39.7 3.87 0.091     
MLD 39.8 3.96 0.087     
Z1% 40.0 4.19 0.077     
Photoperiod + ZSCM 44.2 8.41 0.009     
Photoperiod + MLD 48.4 12.57 0.001     
Photoperiod + Chl 48.5 12.70 0.001     
Photoperiod + Z1% 48.7 12.86 0.001     
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