
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

5-2011 

Emergence of Switch-Like Behavior in a Large Family of Simple Emergence of Switch-Like Behavior in a Large Family of Simple 

Biochemical Networks Biochemical Networks 

Dan Siegal-Gaskins 

Maria K. Mejia-Guerra 

Gregory D. Smith 
William & Mary, gdsmit@wm.edu 

Erich Grotewold 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Siegal-Gaskins, Dan; Mejia-Guerra, Maria K.; Smith, Gregory D.; and Grotewold, Erich, Emergence of 
Switch-Like Behavior in a Large Family of Simple Biochemical Networks (2011). PLoS Computational 
Biology, 7(5). 
https://doi.org/10.1371/journal.pcbi.1002039 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholarworks.wm.edu%2Faspubs%2F1932&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Emergence of Switch-Like Behavior in a Large Family of
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Abstract

Bistability plays a central role in the gene regulatory networks (GRNs) controlling many essential biological functions,
including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit
bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of
components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico
survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two
transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes).
We find that there exist reaction rate constants leading to bistability in ,90% of these GRN models, including several
circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of
which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-
gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable
networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork). The large number of
previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with
relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of
CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein
interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs
predicted to behave in a bistable fashion.
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Introduction

Bistability–the coexistence of two stable equilibria in a

dynamical system–is responsible for the switch-like behavior seen

in a wide variety of cell biological networks, such as those involved

in signal transduction [1], cell fate specification [2–4], cell cycle

regulation [5], apoptosis [6–8], and in regulating extracellular

DNA uptake (competence development) [9]. Evidence for bistable

networks has been found in experimental observations of the

hysteretic (i.e., history dependent) response to stimuli that is

commonly associated with bistability [10,11], for example in the

Cdc2 activation circuit in Xenopus egg extracts [12,13] and in the

lactose utilization network in E. coli [14]. Complementing

experimental analyses, mathematical tools such as bifurcation

theory can be used to determine if a particular network–written as

a set of ordinary differential equations (ODEs) –is bistable [15].

However, because the dynamical behavior of a network is

dependent on the values of the system parameters (e.g., reaction

rates), and the number of parameters required for an accurate

description of even simple systems is typically large and uncertain,

new bistable circuit architectures tend to be identified only slowly

and on a network-by-network basis.

Chemical reaction network theory (CRNT), which gives

conditions for the existence, multiplicity, and stability of steady

states in systems of nonlinear ODEs derived from mass-action

kinetics [16–18], offers a novel framework for the rapid

identification of network topologies with the capacity for bistability

(herein referred to as bistable networks). Importantly, CRNT is

applicable without specific knowledge of the system parameters.

This ability to study network characteristics in a parameter-free

context is particularly beneficial in cell and developmental biology,

given the high level of uncertainty in parameter values [19]. As a

result, CRNT has found a number of biological applications [20–

23]. Still, considering its potential for large-scale analyses, the use

of CRNT has been fairly limited.

Here, we apply CRNT to reaction network models representing

a broad class of small gene regulatory networks (GRNs): those

consisting of two transcription factor (TF)-coding genes and their

associated proteins. Our comprehensive parameter-free survey

resulted in the identification of 36,771 bistable GRN architectures

(out of a total of 40,680), including eleven without the TF

cooperativity typically associated with switch-like circuits. Approx-

imately 40% of the bistable systems were confirmed as such using

existing computational tools, with the remainder identified
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through the novel concept of network ancestry, in which the

presence of a bistable subnetwork can under certain conditions be

used to establish bistability in a larger network if the condition that

the two network structures have an identical stoichiometric

subspace is met (see the following section on CRNT basics).

Despite its large size, the entire two-gene bistable network family

can be understood as descended from a set of only eleven minimal

bistable networks, that is, bistable networks that do not contain

within them a smaller bistable subnetwork and, as a consequence,

are rendered monostable by the removal of one or more network

reactions. Using experimental protein-protein interaction, protein-

DNA interaction, and gene expression data from Saccharomyces

cerevisiae, we demonstrate how a general theoretical survey of this

kind has unique predictive power to identify bistable modules in

organisms that have not been fully explored from a functional

genomics perspective. Our results are further suggestive of a role

for parameter-free modeling in simplifying the study of complex

regulatory networks, understanding network evolution, and

designing new synthetic biological circuits.

Results

Two-gene network construction
As done previously [23], we assume classical chemical kinetics

and specify gene regulatory networks (GRNs) as sets of elementary

biochemical reactions. For a network consisting of N transcription

factor genes Xi and associated proteins Pi (i~1, . . . ,N), the

essential reactions are basal protein production (Xi? XizPi) and

degradation (Pi ?1). Networks may also contain protein

dimerization reactions (PizPj ' PiPj ), binding of both TF

monomers and dimers to the gene promoters (XizPj ' XiPj and

XizPjPk ' XiPjPk), and protein production from a bound gene

(XiPj ? XiPjzPi and XiPjPk ? XiPjPkzPi). For reactions of

this last type, under our parameter-free framework, the rate of

protein production from a bound gene is unspecified and thus may

be either higher or lower than the basal rate but cannot be zero.

For simplicity, we assume that the promoter of each gene may only

be bound by a single monomer or dimer species at any given time,

or they may remain unoccupied. We further assume that, while

degradation is considered for monomeric TFs, all TF dimers are

stable to proteolytic degradation; the validity of this assumption

and its implications are discussed below.

A variety of networks may be constructed by combining these

reactions, subject to certain logical constraints (e.g., the presence of

a dimer-promoter binding reaction requires the inclusion of the

dimer formation reaction) and with the requirement that every

network includes the necessary basal TF production and

degradation reactions. In the two-gene case (N = 2), there are 4

essential reactions and 23 additional reactions (Table 1) that may

be combined to form 40,680 different networks. The total number

of networks is smaller than might be expected (i.e., less than 223) as

a result of reaction dependencies (Table 1) and network

symmetries; for example, the network consisting of reactions k, q,

and w is functionally equivalent to the that with reactions i, l, and

r, and as a result we do not include the latter and other symmetric

networks like it in the total.

It should be noted that within this set of two-gene networks

there are a small number for which there is no coupling between

the two genes. Given that there are twelve possible one-gene

networks for both X1/P1 and X2/P2 independently (see [23]), the

total number of unique decoupled two-gene networks is 12(12+1)/

2 = 78, the number of distinct pairs of one-gene circuits. The

presence of 78 decoupled two-gene networks was verified by

searching through the full list of 40,680 networks for those lacking

the basic coupling reactions b, c, j, n, and o (Table 1).

Chemical reaction network theory basics
Given the centrality of CRNT to our analysis, we provide here a

primer on the relevant aspects of the theory and illustrate them

with the rudimentary two-gene network that consists of only the

essential basal protein production and degradation reactions

(Figure 1).

At the heart of the theory is the concept of network complexes,

formally the chemical species or linear combinations of species

which occur on either side of a chemical equation. A reaction

network can be visualized as a directed graph where each of these

complexes appears only once at the heads and/or tails of reaction

arrows. A collection of complexes connected by arrows is referred

to as a linkage class. The complexes and linkage classes for our

rudimentary network are highlighted in Figure 1 in yellow and

with dashed lines, respectively.

Every complex in the network can also be represented as a

vector in an appropriate vector space; in a network of N species,

the complex vectors lie in RN . Reactions also have associated

vectors (termed reaction vectors), which are constructed by subtract-

ing the reactant complex vectors from the product complex

vectors. The size of the largest linearly independent set of reaction

vectors is the rank of the network, and the set of all possible linear

combinations of reaction vectors (i.e., their span) is referred to as

the stoichiometric subspace of the network. This subspace plays an

important role in setting boundaries on the system behavior:

although the species’ concentrations may evolve with time, they

are ultimately constrained within surfaces that are parallel

translations of the stoichiometric subspace. Exactly which surface

(or stoichiometric compatibility class) the concentrations are constrained

to is defined by the initial conditions.

For a system with n complexes, l linkage classes, and rank s, the

network deficiency d is defined as d = n2l2s. A number of theorems

regarding the stability properties of networks are based on the

deficiency, including the deficiency zero and deficiency one

theorems [16,17].

Author Summary

Switch-like behavior is found across a wide range of
biological systems, and as a result there is significant
interest in identifying the various ways in which biochem-
ical reactions can be combined to yield a switch-like
response. In this work we use a set of mathematical tools
from chemical reaction network theory that provide
information about the steady-states of a reaction network
irrespective of the values of network rate constants, to
conduct a large computational study of a family of model
networks consisting of only two protein-coding genes. We
find that a large majority of these networks (,90%) have
(for some set of parameters) the mathematical property
known as bistability and can behave in a switch-like
manner. Interestingly, the capacity for switch-like behavior
is often maintained as networks increase in size through
the introduction of new reactions. We then demonstrate
using published yeast data how theoretical parameter-free
surveys such as this one can be used to discover possible
switch-like circuits in real biological systems. Our results
highlight the potential usefulness of parameter-free
modeling for the characterization of complex networks
and to the study of network evolution, and are suggestive
of a role for it in the development of novel synthetic
biological switches.

Emergence of Switch-Like Behavior in Networks
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Advanced deficiency theory (ADT) [18] is required for networks

with a deficiency greater than one. The ADT algorithm, detailed

in [24] and implemented in the Chemical Reaction Network

Toolbox software package (http://www.chbmeng.ohio-state.edu/

,feinberg/crntwin/), constructs and attempts to solve systems of

equalities and inequalities that are based on the network structure.

If no solutions (which together with the equality and inequality

systems are known as ‘signatures’ of the reaction network) can be

found, then the network does not have the qualitative capacity to

support multiple steady states. However, if signatures can be

found, then the network can support multiple steady states, and

the Toolbox will produce example rate constants and associated

steady states consistent with the mass-action ODE description of

the network, as well as report the stability characteristics of the

steady states. It should be emphasized that ADT cannot guarantee

bistability even if the network does support multiple steady states,

as they may be unstable. Nevertheless, with its substantial

analytical power and ease of use, ADT has played a role in a

number of recent studies [23,25–28].

Preliminary bistable network identification
All of the two-gene networks modeled were found by the

Chemical Reaction Network Toolbox (herein referred to as simply

the Toolbox) to have a deficiency of two or more, necessitating the

use of ADT in their analyses. Screening the Toolbox-generated

ADT analysis reports, we determined that of the 40,680 networks

Table 1. Reactions combined to generate the 40,680 unique networks of two genes and two gene products.

Reaction label ri Reaction Dependencies Biochemical process

* X1 R X1+P1 – gene X1 basal protein production

* X2 R X2+P2 – gene X2 basal protein production

* P1 R 0/ – protein P1 degradation

* P2 R 0/ – protein P2 degradation

a X1+P1 ( X1 P1 – binding of P1 to the X1 promoter

b X1+P2 ( X1 P2 – binding of P2 to the X1 promoter

c X2+P1 ( X2 P1 – binding of P1 to the X2 promoter

d X2+P2 ( X2 P2 – binding of P2 to the X2 promoter

e X1 P1 R X1 P1+P1 a production of P1 from a P1-bound gene

f X1 P2 R X1 P2+P1 b production of P1 from a P2-bound gene

g X2 P1 R X2 P1+P2 c production of P2 from a P1-bound gene

h X2 P2 R X2 P2+P2 d production of P2 from a P2-bound gene

i P1+P1 ( P1 P1 – homodimerization of P1

j P1+P2 ( P1 P2 – heterodimerization of P1 and P2

k P2+P2 ( P2 P2 – homodimerization of P2

l X1+P1 P1 ( X1 P1 P1 i binding of P1 P1 dimer to the X1 promoter

m X1+P1 P2 ( X1 P1 P2 j binding of P1 P2 dimer to the X1 promoter

n X1+P2 P2 ( X1 P2 P2 k binding of P2 P2 dimer to the X1 promoter

o X2+P1 P1 ( X2 P1 P1 i binding of P1 P1 dimer to the X2 promoter

p X2+P1 P2 ( X2 P1 P2 j binding of P1 P2 dimer to the X2 promoter

q X2+P2 P2 ( X2 P2 P2 k binding of P2 P2 dimer to the X2 promoter

r X1 P1 P1 R X1 P1P1+P1 i, l production of P1 from a P1 P1-bound gene

s X1 P1 P2 R X1 P1P2+P1 j, m production of P1 from a P1 P2-bound gene

t X1 P2 P2 R X1 P2P2+P1 k, n production of P1 from a P2 P2-bound gene

u X2 P1 P1 R X2 P1P1+P2 i, o production of P2 from a P1 P1-bound gene

v X2 P1 P2 R X2 P1P2+P2 j, p production of P2 from a P1 P2-bound gene

w X2 P2 P2 R X2 P2P2+P2 k, q production of P2 from a P2 P2-bound gene

*These reactions occur in every network.
doi:10.1371/journal.pcbi.1002039.t001

Figure 1. Rudimentary two-gene network consisting of only
basal protein production and degradation. In the ‘CRNT picture’,
complexes are highlighted in yellow and linkage classes are identified
with dashed lines. Labeling scheme is adopted from [77].
doi:10.1371/journal.pcbi.1002039.g001

Emergence of Switch-Like Behavior in Networks
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surveyed, 18,352 (*45%) have the capacity for multiple steady

states, with 14,721 of these being confirmed as bistable with

example rate constants (see Materials and Methods for a

description of the screening procedure). Only 2,654 networks

(*6.5%) cannot be bistable regardless of the parameter values.

For the remaining 19,674 networks, ADT could neither establish

nor rule out the capacity for multiple steady states, and as a result

we refer to these as ‘unknown’ networks. It is noteworthy that the

fraction of networks of a given size (that is, a given number of

reactions) that are unknown increases as the size increases; for

example, w90% of networks with more than 21 reactions, and all

networks with more than 24 reactions, are unknown (Figure 2). As

expected, the stabilities of the decoupled two-gene networks are

the same as the constituent one-gene systems previously studied

[23].

The two smallest bistable networks identified exhibit canonical

switch topologies (Figure 3). In the double negative feedback

circuit shown in Figure 3A, we find that dimerization of only one

of the TFs is sufficient for bistability. The autoregulatory positive

feedback network shown in Figure 3B is an example of a

decoupled two-gene network, with bistability in the concentration

of one TF only. We note that while CRNT does not take into

account the strength of the regulation in determining a network’s

capacity for multiple steady states, the fact that an autoregulatory

circuit requires positive feedback in order to achieve bistability is

well-established (see, e.g., [29,30]). Bistability via positive

autoregulation has also been demonstrated experimentally with

synthetic gene circuits in both prokaryotes [31] and eukaryotes

[32].

Identifying bistability through network ancestry
The bistable networks shown in Figure 3, each containing

seven reactions, can be ‘grown’ into new eight-reaction networks

through the addition of reactions from Table 1: reactions a, b, d,

g, i, j, q, or t to the circuit shown in Figure 3A, and reactions a, b,

c, d, i, j, or n to the circuit shown in Figure 3B. In all cases, the

new larger networks were also confirmed by the Toolbox to be

bistable. We may then ask: is bistability, once established in a

‘parent’ network of N reactions, guaranteed in any ‘descendant’

network of Nz1 reactions? ADT alone is not sufficient to answer

this question, since systems were less likely to be characterizable

as they increased in size (Figure 2). However, CRNT does

provide a basis for establishing bistability in networks which

contain subnetworks known to be bistable: if following the

addition of a reaction the stoichiometric subspace of the

Figure 2. Fraction of networks which cannot have their stability
established by advanced deficiency theory (ADT), as a function
of network size.
doi:10.1371/journal.pcbi.1002039.g002

Figure 3. The smallest two-gene bistable networks found with
ADT. (A) A double negative feedback circuit, in which dimerization of
only one of the TFs is sufficient for bistability. (B) An autoregulatory
positive feedback circuit. The two genes are uncoupled and the
bistability is in the concentration of one TF only. In both (A) and (B),
degradation of the TF monomers is not shown.
doi:10.1371/journal.pcbi.1002039.g003

Figure 4. The fraction of networks of each size that were
established as bistable by ADT, bistable by network ancestry,
having multiple steady states with unconfirmed stability,
monostable, or with an unknown capacity for multiple stable
steady states. Network size is determined only by the number of
reactions (from Table 1) that are present. The total number of networks
of each size is shown in parentheses.
doi:10.1371/journal.pcbi.1002039.g004

Emergence of Switch-Like Behavior in Networks
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descendant network is identical to that of the parent, then the

larger network is also bistable for some set of parameter values.

As an intuitive example, one can imagine a situation in which a

reaction is added to an existing network, that the surface

containing the dynamical trajectories of the network species’

concentrations is not changed as a result of the addition, and that

the added reaction has only a very small rate constant. In this

case we should not expect a change from whatever qualitative

phenomena were there before. Thus, if the parent network had

two stable equilibria, the descendant network will also have two

stable equilibria. Example reactions that do not result in a change

in the stoichiometric subspace if added include protein produc-

tion from a TF-bound gene (XiPj ? XiPjzPi, since the reaction

vectors can be written as linear combinations of the vectors

associated with XizPj ' XiPj , Pi ?1, and Pj ?1). Beginning

with the 14,721 known bistable networks and using this

‘ancestry’-based method, we identified an additional 22,050

bistable networks. Some of these networks had been previously

found by the Toolbox to have the capacity for multiple steady

states, but for which no example parameter sets leading to stable

equilibria were given. The number of networks of each type–

bistable by ADT, bistable by ancestry, multiple steady states with

unconfirmed stability, monostable, or unknown–are shown as a

function of network size in Figure 4.

Figure 5. Minimal bistable networks. Only 11 of the 36,771 bistable networks identified lose bistability by the removal of any network reaction.
That is, only 11 of the bistable networks contain no subset of reactions which is also bistable. Dashed-and-colored lines indicate regulation by
heterodimer. Horizontal bars represent purely-repressive TF binding, and arrows indicate TF production from a bound gene (at a non-zero rate that
may be either higher or lower than the basal rate). Degradation of the TF monomers is not shown.
doi:10.1371/journal.pcbi.1002039.g005

Emergence of Switch-Like Behavior in Networks
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Minimal bistable networks
Of the 36,771 bistable systems identified, only eleven do not

contain within them a smaller subnetwork that is also bistable. For

these eleven networks, the removal of any single reaction would

result in a loss of bistability. We refer to these networks as minimal

bistable networks (MBNs). Named according to the reaction labels in

Table 1, the MBNs are: kqw, ckn, bcdh, ikno, jmpsv, bfjpv, abejp, jknptv,

jkmnps, dhjknp, and aejknp. The two networks shown in Figure 3 are

minimal (kqw and ckn); the full set is shown in Figure 5. Arrows

containing the symbol (+) are used in the figure and all that

follow to emphasize that, in assessing a networks capacity for

multiple steady states, CRNT does not distinguish between up-

regulation and down-regulation that results in reduced but non-

zero expression. With the exception of bcdh (discussed in more

detail in the following section), all of these networks contain one or

more of the TF dimerization reactions common in bistable GRNs

[23]. It can also be seen that each MBN contains feedback loops

that for some parameter sets will be made positive, a characteristic

shown to be generally necessary for multiple steady states in a

system of ODEs [33].

Cooperativity-free switches
Although cooperativity in gene regulation–via either the non-

independent binding of TFs to multiple promoter sites or the

multimerization of TFs into functional units–is an important

component of some bistable networks [34,35], it is not necessary

for bistability. Indeed, a number of recent mathematical models of

GRNs have shown deterministic bistability without cooperativity

of any kind [36–38]. Among the 40,680 two-gene networks are 45

lacking cooperativity, and of these 31 were found to be

monostable, eight were identified as bistable directly by ADT,

and three more were identified as bistable by network ancestry. All

of the bistable networks lacking cooperativity can be derived from

the MBN bcdh, which is shown in Figure 6 along with a bifurcation

diagram showing the existence of two stable equilibria (and an

unstable equilibrium) for a range of P1 degradation rate constants.

The complete set of cooperativity-free bistable networks is shown

in Figure 7. An essential feature of these circuits is the competitive

binding of P1 and P2 to the X2 promoter. Similar competitive or

sequestration-type processes have been found to be key compo-

nents in some switch-like systems [36–40].

Two-gene networks in S. cerevisiae
To investigate how an in silico network topology survey such as

this can be used to better understand experimental results, we

searched for real biological examples of the bistable networks

identified in this study in the model organism S. cerevisiae. To our

knowledge, there is no single database that contains S. cerevisiae

GRN architecture, thus we combined protein-protein and protein-

DNA interaction data with gene expression data to establish the

large-scale empirical network shown in Supplementary Figure S1.

Included in this network are 148 TFs participating in 205 protein-

protein interactions (61 heterodimerization and 144 homodimer-

ization reactions), along with 1,249 interactions between 139 TFs

and 208 genes (37 ‘self-binding’ and 1,212 ‘cross-binding’

reactions). To establish which of the two-gene bistable circuits

are present in the yeast network, it was first necessary to ‘translate’

the bistable models from their ideal, theoretical description (that

distinguishes between and allows for each elementary reaction)

into a format that is more amenable to experimental data mining;

see Supplementary Text S1. We were then able to identify in the

yeast data a total of 1,289 two-gene GRNs, twelve of which have

topologies consistent with members of the MBN set (Table 2).

Examples of these are highlighted in the next section.

Discussion

The idea of studying theoretical network models generated via

‘random wiring’ was suggested at least fifty years ago by Monod

and Jacob [41]. Only recently, with the development of powerful

computational tools, have a variety of simple gene regulatory and

metabolic network topologies been studied with surveys over large

ranges of parameter space [42,43]. Parameter-free techniques such

as CRNT are particularly well-suited for general surveys aimed at

bistable network discovery, as they may more definitively answer

questions regarding a mass action system’s ability to support

multiple steady states. For example, using only the advanced

deficiency theory (ADT) algorithm implemented in the Chemical

Reaction Network Toolbox we were able to establish that *36%

of the 40,680 possible unique two-gene networks are bistable for at

least some sets of network parameters, another *9% have the

capacity for multiple steady states (which may or may not be

stable), and only *6.5% are monostable regardless of the network

parameters.

As network size and complexity increases, the ability of ADT to

draw conclusions becomes limited (Figure 2). One method put

forward as a way to extend the usefulness of CRNT to larger

networks involves the analysis of simpler subnetworks correspond-

ing with elementary flux modes of the system [25]. We have

introduced a complementary subnetwork analysis method for

identifying bistability, termed network ancestry, which requires

only a topological sorting of the networks based on the presence or

absence of individual reactions followed by inspection of the

network reaction vectors. If the parent network is determined to be

bistable, and if the reaction vectors of the bistable parent and

unknown descendant have the same span (i.e., the networks have

an identical stoichiometric subspace), then the descendant is also

bistable. As a result of network ancestry, we were able to identify

an additional 22,050 networks with previously unknown stability

as bistable, *54% of the total (Figure 4). We emphasize that a

change in the size of the stoichiometric subspace does not in and of

itself imply that bistability will be lost; however, from a purely

topological perspective, it may not be obvious what the effect of

the change may be. Our network ancestry method may thus be

considered a relatively conservative one for establishing bistability

in larger networks.

Figure 6. Example of a bistable network lacking cooperativity.
TF P2 plays a dual role as an activator of X2 and a repressor of X1 . The
bifurcation plot shows the stable (solid lines) and unstable (dashed
lines) steady state protein concentrations, in units relative to the DNA
concentration, for one set of parameter values as a function of the P1

degradation rate. The network ODEs and parameter values are given in
the Supplementary Text S1.
doi:10.1371/journal.pcbi.1002039.g006
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The assumption of mass action kinetics is an important aspect

of CRNT. Consequently, Michaelis-Menten and Hill-type

expressions are not used in our CRN approach, as they require

approximations to mass action that cannot be validated in a

parameter-free context. In addition, it was recently demonstrated

for a generic two-protein interaction network that bistability

present under the ‘inconsistent’ assumption of Michaelis-Menten

kinetics is lost when the system is ‘unpacked’ into its fundamental

chemical steps [44]. For our two-gene networks, the Michaelis-

Menten and CRN descriptions could be approximately equiva-

lent only for specific parameters, and only if those parameters

were such that 1) the DNA-binding reactions reach their

equilibria much more quickly than other reactions in the

network, and 2) the equilibrium concentrations of any dimer

species were proportional to the product of their constituent

monomer concentrations [45].

In addition to the inherent consistency of CRN models, the

mathematical theory applicable to deterministic CRNs offers

significant computational advantages over other methods, in

particular stochastic simulation. Furthermore, many deterministi-

cally bistable networks have been shown to retain two long-lived

states when their models are reformulated to take stochasticity into

Figure 7. Bistable networks without cooperativity. Of the 45 two-gene networks lacking dimerization, 11 were identified as bistable either
directly by advanced deficiency theory analysis or via network ancestry. All the dimer-free bistable networks shown here can be derived from the
minimal bistable network bcdh through the addition of reactions from Table 1. Horizontal bars represent purely-repressive TF binding, and arrows
indicate TF production from a bound gene (at a non-zero rate that may be either higher or lower than the basal rate). Degradation of the TF
monomers is not shown.
doi:10.1371/journal.pcbi.1002039.g007
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account [37,44,46,47]. Still, as biochemical noise has been shown

to drive some systems to exhibit switch-like behavior not predicted

by deterministic models [37,47–50], it should be considered in any

complete study of a specific network of interest. For models

already formulated as CRNs, stochastic simulation is relatively

straightforward (see, e.g., [44,51]).

We attempted to capture the most prevalent and basic

biochemical processes involved in transcriptional regulation in

our network model construction, but our formalism is by no

means exhaustive. One mechanism not included and through

which networks can achieve the nonlinearity required for

bistability is the direct degradation of TF dimers (PiPj ?1)

[38]. Given that dimerization regularly protects against proteol-

ysis (see, e.g., [52,53]), its exclusion from our reaction set is

reasonable. Furthermore, for most of the networks analyzed here,

the addition of a dimer degradation reaction would have no effect

on their capacity for bistability: since the reaction vector for PiPj

?1 can be written as a linear combination of the vectors

associated with reactions PizPj ' PiPj , Pi ?1 and Pj ?1,

any descendant network grown from a bistable parent via the

addition of a dimer degradation reaction would have the same

stoichiometric subspace and would be bistable as a result of

network ancestry.

There remains a large amount of additional biological detail

which could be incorporated in future surveys, including post-

translational modification, multiple promoter binding sites, and

the location of regulatory elements relative to the genes (which

has been shown to play a role in network bistability [54]).

However, any increase in the level of detail would result in an

increase in the combinatorial complexity and the size of the

survey. For example, whereas the set of one-gene networks are

constructed using combinations of 5 different reactions [23], and

our two-gene networks using 23 reactions (Table 1), the addition

of a third gene alone would lead to 60 different reactions that

could be ‘wired’ together. With the current version of the

Toolbox taking (at best) many seconds to import, analyze, and

export the results for every network model, it is perhaps not an

ideal software package for surveys significantly larger than this

one. New software implementations of CRNT continue to be

developed (e.g., [55]), and we anticipate that future programs will

allow for even more comprehensive computational studies. In the

meantime, network ancestry offers an attractive solution to the

problem of scalability and applicability of CRNT to more

complex networks: once all fundamental chemical reactions

involved in any network of interest are identified, one could

assemble the minimal network topologies covering all possible

unique stoichiometric subspaces and probe that smaller set of

networks for bistability. In essence, network ancestry allows for

the reduction of the problem of determining a large network’s

qualitative capacity for bistability to one of identifying the

minimal bistable subnetworks within it.

There is a strong biological motivation to consider individual

networks as parents and descendants with a topological ordering:

rather than appearing de novo, modern GRNs grow from ancestor

network kernels through mechanisms such as gene duplication

and the accretion of protein domains [56–59]. Domain

accretion, for example the acquisition of a DNA-binding domain

by a monomer (modeled in this work by the addition of one of

the promoter binding reactions a, b, c, or d), has been proposed

to be particularly important for eukaryotic evolution [60,61].

And there is evidence suggesting an even more direct role for

bistability in evolution: it is the primary requirement for

epigenetic inheritance mechanisms known to have important

evolutionary effects [62,63], and can also lead to increased

population fitness in stressful or changing environments [64,65]

by driving an increase in phenotypic heterogeneity [66]. Thus,

the eleven MBNs identified here (Figure 5), which differ from

monostable networks by just a single reaction, may represent an

interesting class of networks from the standpoint of evolutionary

biology, as it may be that similarly-minimal networks have

played an important role in functional development and/or

speciation.

We used the results of our in silico analysis to motivate a search

of–and add functional context to–existing yeast protein-DNA and

protein-protein interaction data, and in doing so were able to

identify a number of two-gene systems with topologies consistent

with bistability. For example, the FKH1 and FKH2 genes (and

their associated proteins Fkh1p and Fkh2p, which compete for

target promoter occupancy [67]) compose a network with a

topology similar to the MBN bcdh (Table 2). FKH1 and FKH2

belong to the pervasive winged-helix/forkhead (FOX) family of

TFs and are essential for proper regulation of the yeast cell cycle

[68]. Other FOX genes have previously been shown to be

involved in important biological functions including cell cycle

regulation and cell differentiation [69], two processes for which

GRN bistability has been implicated [2–5].

Additional gene pairs of interest include NRG1/RIM101 and

OAF1/PIP2, which are components of GRNs with topologies

similar to that of MBNs abejp and aejknp, respectively. The

Rim101p and Nrg1p proteins, both identified previously as

transcriptional repressors, are components in an extracellular

pH-responsive differentiation pathway in yeast [70]. Further

evidence suggestive of bistability in this system can be found in

C. albicans, in which Rim101p and Nrg1p homologs regulate the

morphological switch [71] associated with a dramatic change in

the pathogen’s virulence [72]. Oaf1p and Pip2p, on the other

hand, are involved in the production of peroxisomal proteins in

the presence of fatty acids [73], and have been shown to be

involved in the coordination of two different transcriptional

responses to oleate [74]. We emphasize that while the two-gene

networks identified through our analysis are not guaranteed to be

bistable, their known topologies and functions make them

excellent bistable network candidates, providing powerful hypoth-

eses for further experimentation. The same approach may be used

Table 2. Two-gene networks found in S. cerevisiae that have
topologies consistent with members of the minimal bistable
network set.

Bistable model* X1 X2

ckn PDR1 (YGL013C) RPN4 (YDL020C)

bcdh FHL1 (YPR104C) MSN4 (YKL062W)

bcdh HMS1 (YOR032C) YAP6 (YDR259C)

bcdh IXR1 (YKL032C) PHD1 (YKL043W)

bcdh RPN4 (YDL020C) YAP1 (YML007W)

bcdh FKH1 (YIL131C) FKH2 (YNL068C)

jknptv MTH1 (YDR277C) RGT1 (YKL038W)

aejknp OAF1 (YAL051W) PIP2 (YOR363C)

abejp NRG1 (YDR043C) RIM101 (YHL027W)

abejp IFH1 (YLR223C) RAP1 (YNL216W)

bfjpv KSS1 (YGR040W) CST6 (YIL036W)

bfjpv OPI1 (YHL020C) INO2 (YDR123C)

*Model names refer to the constituent reactions as labeled in Table 1.
doi:10.1371/journal.pcbi.1002039.t002
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to provide guidance or functional context to any system for which

the necessary interaction data is available.

High-throughput parameter-free analysis holds potential, not

just as a tool for the study of natural systems, but also as a design

aid in the growing field of synthetic biology [75,76]. For example,

a survey such as this can provide inspiration for the development

of new bistable switches and a library of models to draw from;

already we have proposed a set of novel bistable networks that lack

cooperativity and which may be particularly good designs as a

result (e.g., because they do not require any ‘extra’ engineering of

dimerization domains). At the very least, such a broad application

of CRNT may be used to rule out (possibly large numbers of)

designs incapable of bistability. CRNT can be similarly used to

rule out circuits without the capacity for sustained oscillations [16]

or those which cannot exhibit ‘absolute concentration robustness’

[77].

It is worth emphasizing that the region of parameter space

supporting bistability in any individual network cannot be

determined via parameter-free techniques alone. For example,

it may be that the necessary parameter values lie outside the

range of biological reality or are difficult to engineer, or that the

size of the bistable region of parameter space is exceedingly small.

However, in many large-scale studies, such as those that resulted

in the yeast data sets used in this work, a high degree of

biochemical detail is simply nonexistent. While this lack of

quantitative detail can make some analyses of biological networks

challenging, it also opens up opportunities for parameter-free

studies to provide experimental guidance and new functional

insights [78]. Once identified, potentially interesting network

architectures may be analyzed in more detail, with rate constants

chosen, for example, by Monte Carlo sampling of parameter

space.

Figure 8. Screening networks for different steady state behaviors. Networks are initially screened by the content of analysis reports
produced by the Chemical Reaction Network Toolbox. The networks designated ‘multiple steady states’ are those determined by ADT to have the
capacity for multiple steady states but for which no example pair of asymptotically stable steady states could be found by the program. Bistable
networks are those for which an example pair of asymptotically stable steady states was reported. The complete sorting procedure is described in
Materials and Methods.
doi:10.1371/journal.pcbi.1002039.g008
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Materials and Methods

Two-gene network construction
Two-gene networks were generated in MATLAB (2009a, The

MathWorks, Inc.) by first enumerating all possibilities and then

removing one network from each symmetric pair (defined by two

functionally-equivalent networks which can be made identical

through a simple change of component subscripts). The hetero-

dimers P1P2 and P2P1 were assumed to be equivalent.

Chemical reaction network theory analysis and network
screening

Advanced deficiency theory analysis was done using a

preliminary version of the Chemical Reaction Network Toolbox

v2.0 (http://www.chbmeng.ohio-state.edu/,feinberg/crntwin/)

made available to us by M. Feinberg and automated with AutoIt

v3 (http://www.autoitscript.com/autoit3/index.shtml).

Networks were screened based on the content of the analysis

reports generated by the Toolbox. These reports, though unique

to each network, all contain one of three statements: either the

network ‘‘DOES have the capacity for multiple steady states’’,

‘‘CANNOT admit multiple positive steady states’’, or ‘‘MAY have

the capacity for multiple steady states’’. Networks with reports

containing one of the latter two statements were labeled

monostable and unknown, respectively. If a network was

determined by ADT to have the capacity for multiple steady

states, the analysis report also contained one (or more) example

set(s) of rate constants and the associated pair(s) of distinct steady

states. However, each steady state may be either asymptotically

stable, unstable, or with a stability that is ‘‘left undetermined’’.

Only those networks that could support multiple steady states and

for which an example pair of asymptotically stable steady states

was given were deemed to be bistable networks. This is not to

imply that multiple steady state networks without such an example

are not bistable, only that we were unable to confirm their

bistability with ADT. The screening procedure is shown

schematically in Figure 8.

Network ancestry and minimal bistable network analysis was

done using MATLAB. Parent and descendant network pairs were

found by simple comparison of the networks stoichiometric

subspaces and their constituent reactions (descendant networks

contain all the same reactions as their parents plus one additional

reaction). Cooperativity-free networks were identified by their lack

of dimerization reactions, since by construction, the model genes

do not have two TF binding sites that could be occupied

simultaneously and there are no multi-protein complexes larger

than dimers.

Additional data analysis was done with MATLAB and

Mathematica (Wolfram Research, Inc.). The bifurcation plot

shown in Figure 6 was generated using XPPAUT (http://www.

math.pitt.edu/,bard/xpp/xpp.html).

Identification of bistable networks in S. cerevisiae
A set of 228 yeast genes previously established as coding for

transcriptional regulators [79,80] was used as the primary source

for candidate network TF genes (Supplementary Table S1).

Protein-protein interactions were retrieved from the BioGRID

database [81] (Supplementary Table S2) and protein-DNA

interactions were retrieved from the Yeastract database [82]

(Supplementary Table S3). The effect of the protein-DNA

interactions on target gene expression (activation or repression)

is usually unknown, and any information suggestive of a particular

effect was used supplementarily in the network discovery process

(Supplementary Table S4).

Supporting Information

Figure S1 Large-scale GRN in S. cerevisiae. GRN was generated

through the combination of protein-protein interaction, protein-

DNA interaction, and gene expression data.

(EPS)

Table S1 List of genes/proteins considered as transcriptional

regulators in yeast. Data taken from [79,80].

(XLS)

Table S2 List of protein-protein interactions. Physical protein-

protein interactions between yeast transcriptional regulators

extracted from BioGRID database [81].

(XLS)

Table S3 List of protein-DNA interactions. Physical protein-

DNA interactions were extracted from Yeastract database [82].

(XLS)

Table S4 Transcriptional effect of protein-DNA interactions.

(XLS)

Text S1 ODEs and parameter values for Fig. 6, and the method

used in translating bistable network models into the experimental

data mining format.

(PDF)
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