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ABSTRACT

The relationship between food web structure and function across two ocean
biomes was investigated, using an inverse method to recover solutions of food web
carbon and nitrogen flows. The study focused on food webs in the North Atlantic Ocean
and the western Antarctic Peninsula. Plankton food web data were synthesized for input
into the inverse solution method, including measured flows and biomasses from the
North Atlantic Bloom Experiment (NABE study) and the western Antarctic Peninsula
(WAP: Palmer Station LTER study). Inverse food web solutions were recovered for
NABE and the WAP. The inverse model solutions were analyzed with network analysis,
sensitivity analysis and other techniques.

North Atlantic carbon and nitrogen inverse solutions were found representing 2
weeks in May 1989, during the spring phytoplankton bloom. Microzooplankton and
protozoan grazing dominated in both the nitrogen and carbon solutions. Detritus was less
important in these solutions than DOC and DON. Active recycling was seen, especially
in the nitrogen solution, and much of the new production was not realized in the export of
particulate organic matter from the surface ocean, but was stored and recycled in the food
web. Carbon inverse solutions for the western Antarctic Peninsula were found for
January 1996, following a year of relatively high areal coverage of sea ice and high
primary production and January 1999, following a year of relatively low areal coverage
of sea ice and low primary production. Krill grazing was the dominant flow of carbon in
the food web in both years. Salps played a significant role in altering the food web
structure and function in 1999. A comparison between the NABE carbon inverse
solution and the WAP 1996 carbon inverse solution showed key differences in the food
webs. Recycling and the activity of the microbial food web were much more important
in the NABE food web than in the WAP. However in the WAP inverse solution, the
microbial food web was just as significant as the short food web (diatoms to krill to
penguins), that is traditionally believed to be dominant.



INVERSE MODEL ANALYSIS OF PLANKTON FOOD WEBS IN THE NORTH

ATLANTIC AND WESTERN ANTARCTIC PENINSULA



Chapter 1. Introduction



The goal of my project was to investigate the relationship between food web
structure and function in different ocean ecosystems (biomes). Food web structure refers
to the organisms within a food web and the flows of matter, such as carbon and nitrogen,
between them. Ocean environments in different regions of the world have different food
web structures that have adapted to the regional conditions (Lochte et al., 1993;
McCarthy et al. 1996; Karl, 1999(1)). Two very different regions, where large studies of
food webs have been done are the North Atlantic and the western Antarctic Peninsula. I
used a modeling technique known as the inverse method (Vezina & Platt, 1988; Jackson
& Eldridge, 1992) to describe fully plankton food web structure in these regions. The
inverse method uses observed data to recover snapshots that provide estimates of all the

flows within a food web, many of which have rarely been measured.

Important processes in food webs that are influenced by food web structure
include particle export, nutrient regeneration, and dissolved organic matter (DOM)
production. Particle export is the loss of matter through the sinking of dead organisms,
attachment of detrital matter to sinking particles, or the packaging of matter into the
dense fecal pellets of mesozooplankton (Eppley & Peterson, 1979; Karl, 1999). Nutrient
regeneration includes the processes that recycle phytoplankton nutrients (Dugdale &
Goering, 1967). New production is defined as the amount of phytoplankton production
that is driven by the supply of allochthonous nutrient inputs to the euphotic zone, while

regenerated production is that primary production that is driven by nutrients recycled



within the euphotic zone (Eppley & Peterson, 1979). Ocean environments are often
described with an f-ratio, the amount of new production divided by the total production
(new + regenerated), indicating the degree of reliance on external inputs. Ocean
environments that have a large input of new nutrients have a large f-ratio that is close to
1, and environments with a small input of new nutrients have low f-ratios close to 0.
Dissolved organic carbon (DOC) includes dissolved carbon compounds that have been
released by plankton through various processes including direct release, inefficient
grazing (“sloppy feeding”), excretion and death (Karl, 1999(1)). DOC has been shown to
play a significant role in the export of carbon (Carlson et al., 1994) and also is a major
resource for bacterial consumption. There is a large pool of DOC in the ocean but little is
known about DOC production and DOC flux within food webs (Legendre and Gosselin,
1989). The lack of knowledge of the DOC pool presents a significant roadblock to

modeling the open-ocean microbial food web (Karl, 1999(1)).

Previous researchers have investigated and found links between food web
structure and the behavior of key food web processes. Eppley and Peterson (1979)
related ocean environments with very different food web structures to the export of
particulate organic matter out of the surface ocean. They calculated f-ratios for regions
ranging from the oligotrophic central North Pacific to the highly productive upwelling
region off the coast of Peru. The central North Pacific had a low f-ratio of about 0.05,
indicating a system dominated by the recycling of nitrogen and a relatively high
residence time for nitrogen in the surface ocean. In the Peru upwelling region, half of the
total production was new production fueled by nitrate upwelled from the deep waters,

giving an f-ratio of about 0.5. Legendre and Rassoulzadegan (1996) investigated links



between food web structure and the export of carbon with a model and data from the
literature. They concluded that the flows of biogenic carbon are strongly influenced by
the size distribution of the primary producers and the matching between primary
producers and grazers (Legendre & Rassoulzadegan, 1996), two key aspects of food web

structure.
The specific objectives of this study were:

Objective 1: Synthesize plankton food web data including measured flows and biomasses
from the North Atlantic Bloom Experiment (NABE study) and the western Antarctic
Peninsula (WAP: Palmer Station Long Term Ecological Research study) for input into
the inverse solution method. Obtain both carbon and nitrogen data for the NABE study
and carbon data for the WAP inverse solutions. Gather and average data over specified
time periods, and convert to standard depth integrated units for flows (mmols m™d"of
Carbon or Nitrogen) and biomass (mmols m 2 of Carbon or Nitrogen). Define constraints

on biological processes (respiration, assimilation, etc.).

Objective 2: Recover inverse food web solutions for the North Atlantic (NABE) and the
western Antarctic Peninsula (WAP). Use generic models for both systems as well as
region-specific models. The solutions include all of the inter-compartmental flows within

each model, staying consistent with measured data and the biological constraints.

Objective 3: Analyze the inverse model solutions for the NABE and WAP food webs
with network analysis, sensitivity/stability analysis and other techniques such as the food

web classification used by Legendre and Rassoulzadegan (1996).



Background

Ocean Carbon Cycle and Biological Pump:

The euphotic zone plays a key role in delivering carbon to the deep ocean through
the biological, carbonate, and solubility “pumps”. The ocean contains by far the largest
pool of freely exchanging carbon on the earth equal to 4 x 10" g with 97% in the form of
dissolved inorganic carbon (Karl, 1999(1)). The “biological pump” is the sum of the
processes carried out by the pelagic ecosystem in taking up dissolved inorganic carbon
from the surface ocean and converting it into soft tissue that can be exported to the
interior of the ocean (Longhurst & Harrison, 1989). Some organisms convert dissolved
inorganic carbon into hard parts like calcite and aragonite that can also be exported to the
interior of the ocean through the “carbonate pump” (Longhurst & Harrison, 1989). Over
geological time, the carbonate pump has made the most significant contribution to
sequestering carbon in sediments (Lalli & Parsons, 1993). On shorter time scales of
concern to society, the biological pump along with the carbonate pump is important in
exporting carbon below the euphotic zone where it remains for tens to hundreds of years
(Longhurst & Harrison, 1989). The biological pump starts with phytoplankton reducing
dissolved inorganic carbon and combining it with dissolved nitrogen and phosphorous
into soft organic tissue. The resultant organic matter provides energy for organisms both
within the surface ocean and below in the deep ocean. This “biological pump” exports
carbon out of the surface ocean by gravitational settling of phytoplankton and detritus,
the advection and diffusion of dissolved organic matter, and the vertical migrations of

heterotrophic organisms and phytoplankton (Karl, 1999(1)). The solubility pump is the



downward flux of dissolved inorganic carbon driven by the differential solubility along
the vertical temperature gradient (Longhurst & Harrison, 1989). This flux proceeds

independently of biology and is difficult to monitor and quantify.
Ocean Plankton as Components of the Biological Pump:

The structure of the plankton community dictates the activity of the biological
pump. The type of organisms in the plankton food web and the size and distribution of
flows between them make up the food web structure. Eppley & Peterson (1979)
proposed that the export of organic carbon from the surface ocean was equal to the new
production by phytoplankton. Other researchers have gone on to investigate the
relationship between community or food web structure and the amount of new production
and export. By using a simple model of oceanic food webs, Michaels and Silver (1988)
concluded that the size distribution of phytoplankton and the trophic structure of the
consumer populations control the type and quantity of export. Legendre and
Rassoulzadegan (1996), also using a simple model, found that the size structure of the
phytoplankton and the degree of matching between primary production and grazing
largely determined export. In a review of changing views of the North Pacific
Subtropical Gyre (NPSG), Karl (1999(1), p197) states: “Community structure controls
all.” Karl discusses the role of large eukaryotic autotrophs like diatoms in controlling
export in a system that is normally driven by the recycling of nutrients. In the NPSG, the
normal background community of small phytoplankton dominated by prokaryotic
autotrophs is at times of external nutrient supply, “overprinted” by large eukaryotic algae
like diatoms. Diatoms usually either sink out of the euphotic zone after dying or are

grazed upon by zooplankton, which can package unassimilated food into dense fecal



pellets that also rapidly sink to depth. Thus episodic inputs of new nutrients foster

enhanced growth of large organisms and their export.

Legendre and Rassoulzadegan (1996) describe a method of predicting the function of
five different types of plankton food webs, ranging from a system dominated by the
sinking of ungrazed phytoplankton (high export) to the microbial loop (low export). The
primary production within the food web is given three fates including sinking out of the
euphotic zone, remineralization within the euphotic zone, and transfer through the food
web. For each type of food web, values for the three potential fates of the primary
production were calculated depending upon the amount of primary production that is
accounted for by large vs. small phytoplankton and by the matching between grazing and
primary production. The microbial loop is described as an almost closed system with low
primary production and consisting mainly of heterotrophic bacteria and nanoflagellate
grazers. The grazers feed on the bacteria and release DOM that is in turn used as a
substrate by the bacteria. The microbial loop is believed to be an unstable and transient
system (Legendre & Rassoulzadegan, 1996). On the other hand, the multivorous food
web with characteristics in between the two extremes mentioned above, is considered to
be a stable system in which mesozooplankton and microzooplankton grazing are closely

matched with primary production.
Regional Variations & Contrasts:

Food web structure varies throughout the world’s oceans. Upwelling regions
have classically been characterized by short food webs consisting of three main trophic

levels: large phytoplankton, mesozooplankton grazers, and fish (Ryther, 1969), with high



f-ratios and high export. Oligotrophic gyres are characterized by a more complex food
web consisting of small phytoplankton, protozoans, microzooplankton, mesozooplankton
grazers, and finally fish (Karl, 1999(1)). For example, the North Pacific Subtropical
Gyre (NPSG) is considered to be a “microbial ecosystem” dominated by prokaryotic
autotrophs that are grazed upon by active protozoan and microzooplankton communities
(Karl, 1999(1)). High nutrient, low chlorophyll (HNLC) areas of the ocean have
relatively high concentrations of macronutrients and lower than expected phytoplankton
biomass. The Equatorial Pacific, subarctic Pacific and the Southern Ocean are all HNLC
regions (Landry et al., 2000). In the Equatorial Pacific small phytoplankton usually
dominate the autotrophic community and are grazed on by an active microzooplankton
community (Landry et al., 1995). High latitude systems are characterized by diatom

blooms and mismatches between production and grazing (Pesant et al., 1998).

WAP vs. NABE:

The North Atlantic is among the areas of the open ocean that absorb the most CO,
from the atmosphere, and the western Antarctic Peninsula is also believed to be a strong
sink of CO,. Comparing and contrasting the roles of the different plankton food webs in
these two regions will help further knowledge of the biological pump. The western
Antarctic Peninsula has a relatively short food web with as few as two links between the
primary producers and apex predators. The North Atlantic has a short food web during
the beginning of the spring bloom but also a longer food web that develops soon after the
bloom starts that depends more on smaller organisms and the microbial loop. Comparing
the amount of recycling and export between these two different food webs will be helpful

in understanding the effects of food web structure on food web function. In a previous
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study in the area of the WAP (Karl et al. 1996), the bacterial community was uncoupled
from the phytoplankton community during bloom conditions, while in NABE the
bacterial community was more closely coupled with the phytoplankton bloom (Ducklow
et al., 1993). The differences in the role of the microbial loop may shed further light on

its function in both areas and on its role in the cycling of DOC.
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Methods

The following methods apply to the inverse solutions for both the North Atlantic
and the western Antarctic Peninsula. Specific methods sections for the two regions can
be found in each respective chapter. I use an inverse method to recover solutions of food
webs. The method uses measured values and assumptions to obtain an inverse solution to
the food web that gives estimates for all the flows in the system. This method has been
borrowed and adapted from the physical sciences (Parker 1977; Wunsch, 1978). It is has
also been adapted by Pauly & Christensen (2000) to infer stocks of fish species using the
program, ECOPATH. It was first used for plankton food webs by Vezina & Platt (1988)
for an English coastal system and then later by other researchers (Jackson & Eldridge,

1992; Eldridge & Jackson, 1993; Vezina & Pace, 1994; Donali et al., 1998, Niquil et al.,

1998).

The inverse method uses as much of the observed data as possible to arrive at a
solution to the desired unknowns in the system. In the physical sciences, the inverse
method has been used in such problems as inferring ocean circulation from current,
temperature and salinity measurements (Wunsch and Minster, 1982) and in estimating the
inner structure of the earth from seismic waves (Wiggins, 1972). In each of these
problems, as with plankton food webs, the number of unknown variables can far
outnumber the independent measurements taken. The inverse technique supplies a
solution to these problems that is consistent with the measured data and other known
constraints (Vezina & Platt, 1988). Usually models of food webs use the a priori

approach of assuming rate parameters and running the model over time to observe
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changes in the system. Direct measurements of most of the flows and rate parameters in
food webs are usually not available (Vezina & Platt, 1988). The inverse method works
opposite from a priori models in that it uses observations of the standing stocks and
flows, along with known biological constraints to solve for unknown flows and rate
parameters in the system. The solution is consistent with real data from the system,

satisfies conservation of mass, and obeys biological constraints (Vezina & Platt, 1988).

The first step in the inverse method for food webs is deciding on the components
of the model and the possible flows between them. Groups are categorized by their
function and or size, such as large and small primary producers. Figure 1 shows the
model components and carbon flows for a general oceanic plankton food web, based on
the Vezina and Platt (1988) food web for the North Atlantic off the English coast and the
Jackson and Eldridge (1992) food web for the southern California Bight. The living
components are small phytoplankton, large phytoplankton, bacteria, protozoans,
microzooplankton, and mesozooplankton. The nonliving components are DOC and
detritus. Inputs to the system are the gross primary production for large phytoplankton
and small phytoplankton, respectively. Outputs from the system are sinking detritus,
mesozooplankton production that is consumed by higher trophic levels not represented in
the model, and respiration. Export is represented by the flows entering the export
compartment and respiration by the gray arrows pointing away from the center of the
diagram. The export of fecal pellets from the euphotic zone follows the path from the
mesozooplankton to detritus to the export box. Phytoplankton were split into large (>5

um) and small (0.2 ~ S wm) size fractions. These classes were used by Legendre and

Rassoulzadegan (1996), in a general open ocean plankton model to distinguish the
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smaller phytoplankton that mesozooplankton can’t efficiently graze from the larger
phytoplankton that mesozooplankton can graze. Also, the large phytoplankton along
with other particles >5 um are more likely to form aggregates and sink to depth. The
protozoans represent the smallest heterotrophic organisms (< 10 um) including
zooflagellates and ciliates (Capriulo, 1990) that feed upon bacteria and each other.
Microzooplankton include heterotrophic organisms between 10-200 um such as large
zooflagellates and dinoflagellates, ciliates, sarcodines and copepod nauplii (Verity,
1993). Heterotrophic organisms greater than 200 um that can be captured in plankton
nets such as copepods and euphausiids make up the mesozooplankton (Vezina & Platt,
1988). The mesozooplankton are restricted from grazing on the small phytoplankton in
the model, hence there is not a flow arrow from small phytoplankton to
mesozooplankton. The grazers, including the protozoans, microzooplankton and
mesozooplankton are allowed to consume other grazers, as long as their food source is
smaller in size. However, the mesozooplankton are restricted from grazing on bacteria,
which like small phytoplankton fall into the class of organisms less than 5 um that they
can’t graze efficiently. All of the grazers are allowed to consume detritus. All of the

living components are permitted to contribute to DOC.

Sensitivity analysis and various network analysis techniques were used to analyze
model results. Two of the important network analysis techniques used were dependency
coefficients and effective trophic levels. Dependency coefficients give an indication of
the proportion of a component’s input or diet that comes from another component over
direct or indirect pathways. Effective trophic levels rank each component according to

where they feed in the food web. The input parametes to the models were varied by +/-
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10% in order to test the sensitivity of the model flows to small changes in the inputs. The
sensitivity analysis highlights measurements that the modeled food web is sensitive to, as
well as organisms in the model that are sensitive. Detailed descriptions of the network
analysis techniques used to analyze model output and the sensitivity analysis can be

found in the Appendix. Also, a detailed description of the inverse method is in the

Appendix.



Chapter II. The North Atlantic Bloom Experiment
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Introduction

The Joint Global Ocean Flux Study (JGOFS) began in 1987, with the goal of
understanding the mechanisms that affect the flux of carbon and its associated elements
in the ocean (SCOR, 1987). JGOFS was a multinational and multidisciplinary program
involving scientists from more than 30 nations (Buessler et al., 2001). One of the major
tasks of JGOFS was conducting multidisciplinary regional process studies. Four such
studies were done across the world’s oceans including the North Atlantic, Equatorial
Pacific, Arabian Sea, and the Southern Ocean. The Synthesis and Modeling Project
(SMP) is an initiative within JGOFS that set out to model the data obtained in JGOFS
studies. One goal of the SMP is to understand mechanistic controls of local carbon
balances, especially the role of food web structure in controlling particle flux, particle
export, nutrient regeneration and DOC production. This project is part of the JGOFS -

SMP.

The pilot regional process study of JGOFS was the North Atlantic Bloom
Experiment (NABE). Each year in the spring, an enormous phytoplankton bloom takes
place across the North Atlantic Ocean. The bloom is obvious from space in satellite
chlorophyll maps (Feldman, 1993). In late winter deep mixing in the eastern North
Atlantic brings nitrate up from the depths to the surface ocean (Ducklow and Harris,
1993). As the temperature increases and winds calm down in April-May, the surface

ocean stratifies and phytoplankton thrive.
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NABE included seven primary stations from 18° N to 72° N, sampled from
March — July 1989 by six research vessels from the U.S.A., Canada, Germany, the
Netherlands and the U.K. (Ducklow and Harris, 1993). During NABE researchers
developed and refined analytical techniques for CO; analysis and collected a large
number of surface pCO; measurements. At 47°N, 20°W, CO, was removed from the

mixed layer at a rate of about 75% of primary production (Ducklow and Harris, 1993).
Some findings did not conform to the classical idea of a bloom. The most surprising
feature of NABE was the intense nutrient recycling during a diatom bloom with f-ratios
across the study area ranging from 0.3 in the western North Atlantic (Harrison et al.,
1993) to 0.45 in the eastern North Atlantic (Martin et al., 1993). All of the new
production may not have been exported due to the intense recycling (Garside and
Garside, 1993). Over 50% of the primary production was by cells less than 5 um, which
is indicative of recycling (Lochte et al., 1993). Mesozooplankton contributed only a
small portion to the total plankton biomass and grazed a small percentage of the primary
production (Dam et al., 1993). Dam et al. also concluded that mesozooplankton fecal
pellets contributed less than five percent of the export. However, Lenz et al. (1993)
aboard the R. V. Meteor believed that the particle flux was dominated by
mesozooplankton fecal pellets, because of their estimated high community grazing rates
for mesozooplankton and the low amount of chlorophyll found in sediment traps. The
Meteor was at 46° N and 17.5 — 19 °© W during May, but not within the same water mass
that Dam’s measurements were taken from at 47°N, 20°W. Also, the grazing estimates
by Lenz et al. (1993) were maximum consumption rates, because they assumed that the

zooplankton only acted as herbivores. Dam et al. (1993), upon comparing measured
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phytoplankton ingestion with estimated metabolic and excretion rates, suggest that just

50% of the mesozooplankton diet came from phytoplankton.

High microbial activity was seen during NABE. Bacterial biomass increased
fivefold at 47°N, 20°W (Ducklow et al., 1993). Bacterial production measured at 47°N,
20°W was on average thirty percent of the primary production and was most likely
supported by grazer mediated release and particle decay (Ducklow et al., 1993).
Mesoscale eddies were prevalent during the study. Three large eddies were tracked in the
vicinity of 47°N, 20°W by the GeoSat satellite measuring sea-surface height and through
the use of XBT’s released from ships (Robinson et al., 1993). The eddy structure

complicates sampling as well as analyses of the resulting data.

The inverse method is useful to better estimate the food web exchanges that led to
the observations in the NABE study. The organisms and processes most responsible for
the intense recycling can be better understood by inferring the unknown flows in the food
web. The inverse method will also help identify potential pathways for the new

production that was not realized in the export.



Methods

The majority of the data for the NABE inverse model was taken from the May 18
-31, 1989 cruise by the research vessel Atlantis II. This period has the most inclusive
data for the study, including in most cases daily measurements of phytoplankton
production and biomass, new and regenerated production, bacterial production and
biomass, microzooplankton grazing and biomass, mesozooplankton grazing and biomass,
and export. The carbon model components and the possible flow interconnections for
NABE are the same as seen in Figure 1 for the general open ocean model. Carbon and
nitrogen measurements were averaged over the two-week observation period to arrive at
mean values to be used in the inverse analysis. The measurements were integrated to 35
m, the depth of thorium estimates of export (Buessler et al., 1992). The components and
interconnections of the nitrogen model are shown in Figure 19. A detailed description of
the inverse method can be found in the Appendix. Data were downloaded from

http://usjeofs.whoi.edu/jg/serv/igofs/nabe/atlantisIl and are also available from the

United States JGOFS Process Study Data 1989-1998 CD-ROM, released by the Woods
Hole Oceanographic Institution that is referenced as the source for the measurements. A
number of techniques were used to analyze the output of the models including
descriptions of the fate of the primary production, the zooplankton diet, and the
particulate export. Also network analysis techniques were used to characterize the
solutions including the index of recycling, indices of relative activity, dependency
coefficients, and effective trophic levels. Further details of these techniques can be found
in the Appendix. A sensitivity analysis was performed to determine the effects on the

solution resulting from varying the input parameters by a small amount (+/- 10%).


http://usigofs.whoi.edu/ig/serv/igofs/nabe/atlantisll
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Results

Data Synthesis

Primary Production and Phytoplankton Biomass

The net primary production measurements (Martin et al., 1993) were used to
indirectly supply the inputs for the system. The average primary production was assumed
to be split evenly between the small phytoplankton and large phytoplankton, because the
week before May 18, Joint et al. (1993) found that the large and small phytoplankton
each contributed 50% of the primary production (Lochte et al., 1993). The inputs to the
system are in terms of gross primary production, so the model was configured to back-
calculate the gross primary production based on the measured net primary production

plus the inferred phytoplankton respiration.

The carbon primary production was measured about every other day over the
period of May 18-31, 1989 by Martin et al. (1993) aboard the Atlantis II (Figure 2a).
Carbon-14 incorporation was measured in water samples to a depth of 65 mat 5Sto 15 m
intervals. The primary production measurements were integrated to a depth of 35 m,
equal to the depth of export measurements made by Buessler et al. (1992) using 2%Th:
=8y disequilibria. On the days primary production was not measured, it was estimated
from the measured PAR (photosynthetic available radiation), using a regression equation
defined by Martin et al. (1993), who found that production varied strongly with light over
the cruise (r*=0.88). The average primary production integrated to 35 m was 88 mmols
Cm™d" and nearly equal to the production integrated to the depth of the entire euphotic

zone of 90.4 mmols Cm™d™! (Martin et al., 1993).
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Figure 2. Carbon and nitrogen primary production measurements made aboard the
Atlantis IT at 47°N, 20° W. Figure 2a: Carbon primary production measurements using
14C by Martin et al. (1989). Figure 2b: New production by NOj3 incorporation (McCarthy
and Nevens, 1989). Figure 2¢: Regenerated production measured by NHs uptake by
McCarthy and Nevins (1989). ND = no data taken on that day.



Nitrogen-based primary production was measured using NHy urea and NO5
uptake experiments taken about every other day by McCarthy and Nevins (1989) on the
Atlantis II. New production was estimated by integrating the NOs uptake measurements
to 35 m (Figure 2b). Regenerated production was estimated by integrating the NH, and
urea uptake measurements to 35 m (Figure 2c). The urea measurements were only made
on four days. The ratio of NH4 uptake to urea uptake ratio over these four days was used

to infer the urea uptake on the days it was not measured.

Phytoplankton biomass (Figure 3) was estimated from Chl a measurements made
by Dan Repeta (1989) using HPLC (High Performance Liquid Chromatography). The
Chl a measurements were integrated to 35 m and then converted to carbon units using a
C:Chl a ratio of 80 (Ducklow et al., 1993). Nitrogen phytoplankton biomass was

estimated from the carbon phytoplankton mass using Redfield ratio of 6.6 C : 1 N.

Bacterial Productivity and Biomass

Bacterial production was estimated daily from May 18-31 by Ducklow et al.
(1993) on the Atlantis II using H-thymidine incorporation. Measurements were
downloaded from the JGOFs database (Ducklow et al., 1989), and integrated to 35 m
(Figure 4). Nitrogen bacterial production was estimated by using the ratio 4.5 C: 1 N
(Goldman et al., 1987). Bacterial biomass was measured daily by acridine orange direct
counts (Figure 5) for nitrogen and carbon. Numbers of cells were converted to carbon
biomass using the factor of 2 x 10 g C cell” (Duckow et al., 1993; Lee and Fuhrman,

1987). Bacterial nitrogen biomass was derived using the conversion of 4.5 C: 1 N.
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Figure 3. Phytoplankton biomass at 47° N, 20° W measured by Repeta et al. (1989).
Nitrogen biomass was derived by dividing the carbon measurements by the Redfield

ratio (6.625 C:N). ND = no measurement taken on that day.
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Microzooplankton Grazing and Biomass

Dilution experiments were done on 3 days of the Atlantis II cruise and provide
grazing rates for zooplankton smaller than 200 pm, including both the protozoan and
microzooplankton size classes in the models (Verity et al., 1993). The ‘protozoans’ in
the model represent microzooplankton less than 10 pm in diameter. While, the
‘microzooplankton’ include the size class of 10 — 200 um. Water for the experiments
was taken from 10 meters. The grazing rates, expressed in terms of a fraction of the
primary production, were multiplied by 88 mmols C m™d™, the average production for
the upper 35 meters (Figure 6a). Microzooplankton grazing in terms of nitrogen was
derived by multiplying the fraction of the primary production grazed by the nitrogen total

primary production (Figure 6b).

Total microzooplankton biomass (Figure 7) was derived from measurements of
density and group specific biomass of ciliates, dinoflagellates, and microflagellates
(Verity et al., 1993). Nitrogen microzooplankton biomass was derived by multiplying the

carbon biomass by a C:N ratio of 4.5 (Moloney & Field, 1991).

Mesozooplankton Grazing and Biomass

Mesozooplankton grazing and biomass were estimated from trawl surveys aboard
the Atlantis II (Dam et al. 1989, 1993). Dam et al. (1993) estimated grazing using gut
fluorescence and gut clearance experiments for mesozooplankton split into three size
classes: 0.2 — 0.5mm, 0.5 — 1.0 mm and 1.0 — 2.0 mm. Dam et al. (1993) estimated the

total zooplankton grazing to be an average of 2.7% of daily primary production for the
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Figure 6. Microzooplankton Grazing at 47° N, 20° W in the North Atlantic measured by
dilution experiments by Verity et al. (1993). The carbon grazing is shown in Figure 6a and
the nitrogen grazing in Figure 6b. Grazing rates, originally given as a fraction of the carbon
primary production and the nitrogen primary production (new + regenerated production),

were multiplied by the daily primary production integrated to 35 m. ND = no measurement

made on that day.
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Figure 7. Microzooplankton Biomass at 47° N, 20° W in the North Atlantic measured by
Verity et al. (1993). Abundance and individual carbon content from Table 8 in Verity et al.
(1993) were used to estimate the total biomass of microzooplankton. The nitrogen biomass
was found by dividing the carbon values by a C:N ratio of 4.5 for microzooplankton

(Moloney & Field, 1991). ND = no measurement made on that day.
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periods, April 25 — May 7 and May 18-31, with no significant difference in the grazing
between these periods (Figure 8). The nitrogen mesozooplankton grazing was calculated
as 2.7% of the nitrogen primary production (Figure 8). Dam et al. (1989) measured
mesozooplankton carbon biomass (Figure 9a) and nitrogen biomass (Figure 9b)

independently from the trawls and these were each integrated to 35 meters.

Export

The export from the system was estimated from measurements of 4Th: B8U
disequilibria (Buessler et al., 1992). Buessler reported low and high estimates at 35 m
and 150 m for both carbon and nitrogen export. The estimates at 35 m were used to
constrain the export for the carbon and nitrogen models and are shown along with all of

the model input data in Tables 1 and 2.

Model Inputs

Each of the above measurements was averaged over the period May 18 —~ 31 and
is shown in Table 1 for carbon and Table 2 for nitrogen. The standard deviations of the
rate measurements were used to set minimum and maximum constraints on the calculated
flows. The measurements, +/- one standard deviation, were entered into the constraint
equation for the model. In cases where the standard deviation was not available, such as
for microzooplankton grazing, minimum and maximum constraints of 0.5 X and 1.5 X

the measured value were used.

Regressions were performed on the biomass measurements vs. time to determine

if there were significant changes over the study period. Changes were found in bacteria,
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Figure 9. Mesozooplankton biomass at 47° N, 20° W in the North Atlantic
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0.5 - Imm, and 1 - 2 mm. Figure 9a shows the carbon biomass. Figure 9b shows the
nitrogen biomass measured independently from the carbon biomass.

ND = no data taken on that day.
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microzooplankton, and NOs (Tables | and 2, Figure 7). Bacterial biomass showed
increases of 6.3 mmols Cm™day™ and 1.4 mmols Nm~>day". Microzooplankton biomass
showed increases of 9.2 mmols Cm™day'and 2.0 mmols Nm™day™. The NO; pool
decreased 5.3 mmols Nm™day™. The changes for bacterial and microzooplankton
biomass were entered into the balance equations for bacteria and microzooplankton,
respectively, forcing the model to account for the increases in these compartments. The
decrease in the NO; pool could not be included in the model, because the NO; pool is an
external source in the model, with a supply rate that is the average of NO; uptake over the
study period. A significant change in the NO; pool would have affected the daily NO;

uptake rates.

Constraints on respiration, ingestion, excretion, assimilation, and production for
all living components were included for the nitrogen and carbon models (Tables 3 and 4).
The average biomasses were used as inputs to the allometric equation described by

Moloney and Field (1989) to constrain the maintenance respiration for each component.

Model Results

The bacterial ingestion of DOM and grazing by microzooplankton and protozoans
dominated the flows of carbon and nitrogen in the inverse solutions. Flow diagrams for
the carbon and nitrogen inverse solutions are shown in Figures 10 and 11, with the widths
of the arrows between components proportional to the magnitudes of the flows. Arrows
that are black represent allowed flows the model found to be equal to zero. Bacterial
ingestion of DOC was the largest flow in the carbon model (40.7 mmols Cm*d") and

was equal to 65% of the net primary production (Figure 10 and Table 5). The largest
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Table 5. NABE Carbon flows generated using the inverse method with measurements as constraints.

Flows are expressed as absolute flows in mmols C m>d™ and as a fraction of the net primary production.

Flows mmols C m’d"  {Normalized to Net PP
Large phytoplankton gross primary production 33.2 0.53
Large phytoplankton respiration 1.7 0.03
Microzooplankton grazing of large phytoplankton 15.3 0.24
Mesozooplankton grazing of large phytoplankton 32 0.05
Large phytoplankton sinking 3.9 0.06
Large phytoplankton release of DOC 9.2 0.15
Small phytoplankton gross primary production 33.2 0.53
Small phytoplankton respiration 1.7 0.03
Protozoan grazing of small phytoplankton 133 0.21
Microzooplankton grazing of small phytoplankton 119 0.19
Small phytoplankton to detritus 0.5 0.01
Small phytoplankton release of DOC 5.8 0.09
Microzooplankton consumption of protozoans 0.5 0.01
Mesozooplankton consumption of protozoans 1.4 0.02
Protozoan respiration 9.8 0.16
Protozoans to detritus 1.8 0.03
Protozoans to DOC 4.9 0.08
Microzooplankton respiration 11.6 0.18
Mesozooplantkton consumption of microzooplankton 0.7 0.01
Microzooplankton to detritus 3.1 0.05
Microzooplankton to DOC 6.7 0.11
Mesozooplankton respiration 1.2 0.02
Mesozooplankton to detritus (Faecal pellets) 0.8 0.01
Mesozooplankton to DOC 1.2 0.02
Bacterial respiration 12.6 0.20
Bacteria to protozoans 5.1 0.08
Bacteria to microzooplankton 3.7 0.06
Bacteria to detritus 5.2 0.08
Bacteria to DOC 7.7 0.12
Protozoan consumption of detritus 0.0 0.00
Microzooplankton consumption of detritus 0.0 0.00
Mesozooplankton consumption of detritus 0.0 0.00
Detritus to DOC 5.3 0.08
Bacterial ingestion of DOC 40.7 0.65
Total Particulate Export out of the top 35 m 10.2 0.16
Mesozooplankton to export (Consumption by higher :
trophic levels or death) 2.1 0.03
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Table 6. NABE Nitrogen flows generated using the inverse method with measurements as constraints.

Flows are expressed as absolute flows in mmols N m™d™ and as a fraction of the total new primary production and the

total primary production.

Flows munols C m*d’! Normalized to Total New Production Normalized to Total Primary Production
Large phytoplankton new production 2.33 0.48 0.27
Microzooplankton grazing of large phytoplankton 1.85 0.38 0.21
Mesozooplankton grazing of large phytoplankton 0.45 0.09 0.05
Large phytoplankton sinking 0.71 0.15 0.08
Large phytoplankton release of DON 1.17 0.24 0.14
Smail phytoplankton new production 2.58 0.52 0.30
Protozoan grazing of small phytoplankton 1.42 0.29 0.17
Microzooplankton grazing of small phytoplankton 1.60 0.33 0.19
Small phytoplankton to detritus 0.47 0.10 0.05
Stall phytoplankton release of DON 0.93 0.19 0.11
Sinall phytoplankton regenerated production 1.85 0.38 0.21
Large phytoplankton regenerated production 1.85 0.38 0.21
Bacterial uptake of NH4 3.43 0.70 0.40
Microzooplankton consutnption of protozoans 0.14 0.03 0.02
Mesozooplankton consumption of protozoans 0.22 0.04 0.03
Protozoans to detritus 0.25 0.05 0.03
Pratozoans to DON 0.26 0.05 0.03
Protozoans to NH4 1.61 0.33 0.19
Mesozooplantkton consumption of microzooplanktor] 0.00 0.00 0.00
Microzooplankton to detritus 0.50 0.10 0.06
Microzooplankton to DON 0.58 0.12 0.07
Microzooplankton to NH4 1.92 0.39 0.22
Mesozooplankton to detritus (Fecal pellets) 0.11 0.02 0.01
Mesozooplankton to DON 0.00 0.00 0.00
Mesozooplankton to NH4 0.87 0.18 0.10
Protozoan consumption of bacteria 0.89 0.18 0.10
Microzooplankton consumption of bacteria 1.07 0.22 0.12
Bucteria to detritus 0.73 0.15 0.09
Bucteria to DON 1.38 0.28 0.16
Bacteria to NH4 2.72 0.55 0.32
Protozoan consumption of detritus 0.16 0.03 0.02
Microzooplankton consumnption of detritus 0.34 0.07 0.04
Mesozooplankton consumption of detritus 0.42 0.09 0.05
Detritus to DON 0.46 0.09 0.05
Bacterial ingestion of DON 4.77 0.97 0.55
Total Particulate Export out of the top 35 m 1.40 0.29 0.16
Mesozooplankton to export (Consumption by higher

trophic levels or death) 0.11 0.02 0.01
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flow in the nitrogen solution is the bacterial ingestion of DON (4.77 mmols Nm'zd‘l), and
is equal to 97% of the new production and 55% of the total production (Table 6 and
Figure 11). The microzooplankton and protozoans dominated grazing in the carbon and
nitrogen solutions. Microzooplankton grazing of small and large phytoplankton carbon
is equivalent to 43% of the net primary production (Table 5). Microzooplankton grazing
of small and large phytoplankton nitrogen accounted for 71% of the total new production
and 40% of the total nitrogen production (Table 6). Protozoan grazing of small
phytoplankton is equal to 21% of the net carbon primary production (Table 5) and 17%
of the total nitrogen production (Table 6). Mesozooplankton grazing of large
phytoplankton is equal to just 5% of both the net carbon primary production and the total

nitrogen primary production.

The inferred large phytoplankton and small phytoplankton carbon primary
production were equal (Figure 10 and Table 5). The small phytoplankton nitrogen
production was slightly larger than the large phytoplankton nitrogen production in the
solution: 2.58 vs. 2.33 mmols Nm™d™', respectively (Table 6). Although the nitrogen
production is assumed to be equally split among small and large phytoplankton, the
standard deviation of the data used in the constraint equations for the model allows for

variance from a 50% split in the solution.

The total throughputs of the dissolved organic matter pools are 2 -3 times that of
the detritus pool in the carbon and nitrogen solutions. The total throughput of the detritus
pool in the carbon solution is 15.4 mmols Cm?day’, equal to 24% of the net primary

production. The total throughput of the DOC pool is 40.6 mmols Cmday™ equal to 65%



43

of the net primary production. The largest flow leaving the carbon detritus pool is the
particulate export, 10.2 mmols Cm™d™ and the next largest flow is detrital decompositon
into the DOC pool, 5.3 mmols Cm™d". The total throughput of the detritus pool in the
nitrogen solution is 2.8 mmols Nm“day, equal to 32% of the net primary production.
The total throughput of the DON pool is 4.8 mmols Nm™d™" or 55% of the total nitrogen
primary production. The largest flow leaving the detritus pool is the particulate export,
1.4 mmols Nm™d™ and the next largest flow is detrital decompostion into the DON pool,

0.46 mmols Nm™d™!.

The particulate nitrogen and carbon export sinking out of the top 35 m are equal
to 16% of both the net carbon primary production and the total nitrogen primary
production (Table 7). Two components of the detrital export, mesozooplankton fecal
pellets and the sinking of large phytoplankton, account for 7% of the carbon primary
production and 9% of the nitrogen primary production (Table 7). These flows are
represented in the model by the paths from large phytoplankton to detritus and from
mesozooplankton to detritus (Figures 10 and 11). It is assumed that these contributions
to the detritus pool sink readily, taking the model pathway from detritus to export. The
remaining detrital export, equal to 9% of the net carbon primary production and 7% of
the total nitrogen primary production, comes from the aggregation of detritus from other
living sources, into particles that are large enough to sink. The model solution does not
explicitly assign this export to specific components. However, examining the
contributions to the detritus pool shown in Table 8, gives some insight as to the relative
contributions of the living components to sinking particles. Small phytoplankton,

bacteria, protozoans, and microzooplankton make up 69% of the carbon inputs to the



Table 7. Export flows from the upper 35 m in the NABE carbon and nitrogen models.
The sinking of large phytoplankton, mesozooplankton fecal pellets, and detrital
particles formed from the aggregation of other living components (See Table 8).
Flows are expressed as a % of the net carbon primary production and the

total nitrogen primary production.

% of Net Carbon PP {% of Total Nitrogen PP

Sinking of Large Phytoplankton ' 6 8
Mesozooplankton Fecal Pellets 1 1
Aggregation of Detritus into sinking particles| 9 7

Total Detrital Export 16 16
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Table 8. Contributions to the detritus pool from the
upper 35 m, in terms of carbon and nitrogen as a %
of the total inputs to the pool.

% Contribution to Detritus Pool

Carbon | Nitrogen
Large Phytoplankton 25 26
Small Phytoplankton 3 17
Bacteria 34 26
Protozoans 12 9
Microzooplankton 20 18
Mesozooplankton 5 4

45
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detritus pool and 70% of the nitrogen inputs. These small particles likely aggregate into
particles that are large enough to sink, explaining the difference between large sinking
particles, including large phytoplankton and mesozooplankton fecal pellets, and the total
detrital export in Table 7. Bacteria make the greatest contributions to the detritus pool
equal to 34% of the carbon and 36% of the nitrogen. Microzooplankton, the largest sized
organism in Table 8, contribute 20% of the carbon and 18% of the nitrogen entering the
detrital pool. Due to their size (20-200 um), the microzooplankton are the most likely

contributors to sinking by the aggregation of small detrital particles.

Another potential export flow, separate from the detrital export, is
mesozooplankton production that is equal to 3% of the carbon net primary production
(Table 5) and 1% of the nitrogen total primary production (Table 6). Mesozooplankton
production represents the growth of mesozooplankton that can be consumed by higher
trophic levels or can sink out of the surface ocean when the mesozooplankton die. The
mesozooplankton production and the particulate export together make up the model’s
estimated export ratio or e-ratio. In the carbon solution, the ec-ratio is 0.16 + 0.03 = 0.19
and in the nitrogen solution the en-ratio is 0.16 + 0.01 = 0.17. The f-ratio can be

estimated from the flows for large and small phytoplankton in the nitrogen solution:
f = New Production / (New + Regenerated Production) =
(2.33 +2.58) mmols Nm™>d™ /(2.33 + 2.58 + 1.85 + 1.85) mmols Nm™d"' = 0.57

The model e-ratios are much lower than the f-ratio of 0.45, estimated for the same area by

Martin et al. (1993), and the model f-ratio is larger than Martin’s estimate.
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The dominance of microzooplankton and protozoan grazing is also shown in the
fates of both the net carbon primary production (Figures 12a) and the total nitrogen
production (Figurel2b). The microzooplankton consumed 48% of the large
phytoplankton carbon production and 37% of the small phytoplankton carbon production
(Figure 12a). Protozoans consumed 43% of the small phytoplankton carbon production
(Figure 12a). Mesozooplankton grazing was relatively small, equal to 10% of the large
phytoplankton carbon production. The fate of the nitrogen primary production in the
food web (Figure 12b) is similar to the fate of the carbon primary production, except the
protozoans graze about 10% more of the small primary production in the carbon solution
and the detritus pool receives 7% more of the primary production in the carbon solution.
The differences in the fates of carbon and nitrogen are most likely the result of obtaining
separate solutions for carbon and nitrogen. In nature one would expect the carbon and
nitrogen fates to be equal, because a grazer can’t consume carbon without nitrogen. This
could be addressed in future simulations by using a C/N ratio as a constraint on the

zooplankton feeding to bring agreement between the carbon and nitrogen solutions.

The three zooplankton classes relied mainly on phytoplankton in their diet and the
consumption of detritus was important in the nitrogen solution but was absent in the
carbon solution (Figures 13a and 13b). Protozoans receive about 72% of their carbon
diet from small phytoplankton and 28% from bacteria (Figure 13a). Small phytoplankton
make up a smaller proportion of the protozoan diet, 57% in the nitrogen solution and
bacteria is more important in the protozoan nitrogen diet, making up 37% of the nitrogen
diet (Figure 13b). Microzooplankton have the most varied diet in both the nitrogen and

the carbon solution (Figures 13a and 13b). Large phytoplankton and small phytoplankton



= T TT oo

60
%Total PP

c % Small Phyto PP
'—?& 50 - % Large Phyto PP
o
:H 40 -
CL
>,
o
% 30 -
E 20 -
o
in
\

10
®
i H £L

a Protozoa Microzoo Mesozoo DOC Detritus

¢
0 I 1%Total PP
o i : i% Small Phyto PP
’g 40 - s 1 % Large Phyto PP
a
>,
@
E 30 -
3
0 20
2
0

10 -
0
N
i)

Protozoa Microzoo Mesozoo DON Detritus

Figure 12. The fate of the carbon (a) and nitrogen (b) primary
production for NABE. The primary production is expressed as total,
large (>5 pm), and small (<5 pm) primary production that is consumed
by the 3 size classes of zooplankton:protozoans (<10 pm),
microzooplankton (10-200 pm), and mesozooplankton (> 200 pm), goes

to detritus, or is released as DOC / DON.

48



80
i' 1Sm Phyto

i Lg Phyto
70 i
18 mmols C mid™" Bac
Detritus
12) 0 Pro
31 mmols C mXd'1 Microzoo
(0] 60
n
@© 40
0 251
5 mmols Cm<d
2 30
0]
h
o, 20
0S¥
10

Protozoans Microzooplankton Mesozooplankton
70
I I Sm Phyto
I I Lg Phyto
60 H i i Bac
m m  Detritus
& 2.5 mmols N m'2d'1 Pro
Q 50 [
C
z>> 40 5 mmols Nm d
1 mmols N m'2j
30 -
©
0 20 -
10 -

n O

Protozoans Microzooplankton Mesozooplankton

Figure 13. Zooplankton diet composition for the carbon (a) and

nitrogen (b) solutions for NABE. The percentage of the diet contents
-2
for each zooplankton size class is shown. The total input in mmols C m

for each zooplankton size class is also shown.



50

make up 48% and 38% of their carbon diet, respectively. The microzooplankton
consume the most carbon (31 mmols Cm?d™") and nitrogen (5 mmols Nm2d") of the
zooplankton. Microzooplankton consume twice as much bacteria, as a percentage of
their diet, in the nitrogen solution than they do in the carbon solution. Detritus makes up
7% of the microzooplankton nitrogen diet. Mesozooplankton consume the least amount
of carbon (5 mmols Cm’zd'l) and nitrogen (1 mmol Nm'zd'l) of the zooplankton, which
they mostly receive from grazing of large phytoplankton. Detritus is a large part of the
mesozooplankton nitrogen diet equal to 38%. Mesozooplankton do not consume any
microzooplankton in the nitrogen solution but gain 13% of their diet from
microzooplankton in the carbon solution. (Figures 13a and 13b). The consumption of
detritus for all three zooplankton classes takes place in the nitrogen solution, but was zero
for all in the carbon solution. This result is impossible in nature, like the differences in
the fate of phytoplankton described above. Differences in zooplankton diet composition
of nitrogen and carbon could also be resolved by using a C/N ration between the carbon
and nitrogen solutions. However, some differences are possible, if for example
microzooplantkon were more nitrogen rich than protozoans, the microzooplantkon would
make up a greater percentage of the mesozooplankton’s nitrogen diet than their carbon

diet.

The greatest contributors to the DOC and DON pools are large phytoplankton and
bacteria (Figures 14 a and 14 b). None of the inputs to the DOC and DON pools were
measured. Large phytoplankton and bacteria each contribute 21% of the inputs to the
DOC pool (Figure 14 a). Bacteria are the greatest contributors to DON (31%). Large

phytoplankton are the second greatest contributor to the DON pool, providing 26% of the
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nitrogen (Figure 14b). Protozoans made a smaller contribution to the DON (6%) pool
than the DOC pool (21%). Detritus also made a smaller contribution to the DON pool
(3%) than the DOC pool (13%). Note that some components of the DOC pool could lack

nitrogen, explaining the uncoupling of these flows.

Network Analysis

Network analysis indices were calculated for the solution (Table 8). The index of
recycling, L is an estimate of the number of times an average carbon atom passes through
the system before leaving (Jackson & Eldridge, 1992). L is calculated by dividing the
total of all internal flows within the system by the net primary production. This index
revealed that the average carbon atom is cycled through the food web 2.6 times and the
average nitrogen atom 7.2 times before leaving through respiration (carbon only), sinking
detritus, or fecal pellets (Table 9). Another index of recycling, the Total ingestion / pp
is equal to all of the zooplankton ingestion flows plus the bacterial ingestion of DOC
divided by the net primary production (Table 9). The Total ingestion/ pp of 1.6 for the
carbon solution indicates that 60% of the carbon ingestion comes from recycling in the
food web. For the nitrogen solution, this index was 2.5 indicating 150% of the ingestion

was from recycled nitrogen.

Other indices were used to show the relative activity of each living compartment.
Fbac is equal to the ratio of bacterial production to net primary production. Fpro, Fmic,
and Fmes are the ratios of the total flows through each compartment to the total flows
through all three grazer compartments (Niquil et al., 1998). The bacterial production was

equal to 22% of the net carbon primary production and 55% of the total nitrogen
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production as shown by Fbac (Table 9). The microzooplankton processed the most
carbon (Fmic = 48%), followed by the protozoans (Fpro = 41%) and mesozooplankton
(Fmes = 11%) (Table 9). The same order of consumption was seen in the nitrogen

solution.

The dependency coefficients, calculated by the network analysis program by
Ulanowicz (1986), indicate the percentage of a component’s input that passes through a
donor compartment on its way to the recipient compartment, over all possible pathways
(Table 10). For example, 85% of the carbon ingestion of protozoans passed through
small phytoplankton before reaching the protozoans (Table 10a). Diagonal elements
represent the amount of carbon that passed through the same compartment earlier, cycled
through the food web and was returned to the compartment. The small phytoplankton
and large phytoplankton columns are filled with zeros because the input of carbon is an
external flow and is not supplied by recycling of carbon within the food web. This is a
reasonable assumption for carbon models because carbon is not a limiting nutrient for

phytoplankton in the ocean.

The protozoan carbon diet depends heavily on small phytoplankton with 85% of
their input passing through them (Table 10a). Protozoans depend on bacteria for 28% of
their carbon diet, which they mostly consume directly. Large phytoplankton have a
significant indirect effect on the protozoan carbon diet equal to a 15% dependency, even
though large phytoplankton are too large for them to consume directly.
Microzooplankton depend heavily on large and small phytoplankton for 55 and 45% of

their diet, as shown previously in the summary of the carbon flows (Table 5) and in the
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zooplankton diet composition (Figure 15). Bacteria are the next most significant
contributor to the microzooplankton diet accounting for 12%. Protozoans,
mesozooplankton, and detritus each contribute less than 5% of the microzooplankton,

diet either directly or indirectly.

Mesozooplankton depend on small phytoplankton for 28% of their carbon diet,
even though they do not consume small phytoplankton directly (Table 10a). Bacteria
depend on DOC for 100% of their diet, because all of their carbon ingestion comes from
the DOC pool. Bacteria depend indirectly on small phytoplankton for 47% of their diet
and large phytoplankton for 53% of their diet. This DOC from the primary producers
comes from direct release and sloppy feeding. Bacteria depend on microzooplankton the
most of the zooplankton, which indirectly account for 27% of their diet. Protozoans also
contribute a significant portion of the bacteria carbon diet, equal to 20%. The detrital
pool depends on all of the other components for significant contributions. The
mesozooplankton contribute just 7% of the input but this contribution represents
zooplankton fecal pellets, which sink quickly out of the surface ocean. The DOC pool
receives contributions making up at least 20% of its diet from each of the other
components, except for mesozooplankton and detritus. The diagonal elements in Table
10a are in most cases less than 10% indicating very low recycling of carbon. This is
another result of the recycling flows for carbon not being modeled, except for recycling
through the DOC and detritus pools. The bacteria and DOC diagonal elements are each

30%, indicating recycling of carbon through these components.
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Large dependencies can be found throughout the dependency matrix for the
nitrogen solution (Table 10b), indicating active recycling of nitrogen in the food web.
All nitrogen components rely significantly on bacteria, which mediate at least 30% of
each component’s diet (Table 10b). Also, all components are very dependent upon the
NH, pool, resulting in dependency coefficients no less than 0.4. The large phytoplankton
depended upon the NHy pool for 44% of their nitrogen input. This agrees closely with
the calculated f-ratio above of 0.57 that indicated 57% of the primary production was
equal to new production and 43% regenerated production, fueled by NHy. Large
phytoplankton were dependent upon bacteria next, which mediate 31% of their nitrogen
input. Small phytoplankton mediate 30% of the large phytoplankton nitrogen input. The
small phytoplankton rely on the NHy pool for 42% of their nitrogen input. This also
agrees closely with the f-ratio calculated earlier. Bacteria mediate 29% of the small

phytoplankton’s nitrogen input.

The effective trophic levels of the carbon and nitrogen components show
similarities for the mesozooplankton and differences for the protozoans and
microzooplantkon (Table 11). Due to the simplified nature of the model food web, no
consumer has a trophic level of 3 or more. The primary producers, and nonliving
components including DOC and detritus, are assigned trophic levels of 1 in the carbon
solution. In the nitrogen solution, the small and large phytoplankton have trophic levels
greater than 1, because the uptake of NH, is modeled and NH, has a trophic level equal to
1. The bacteria have a trophic level of 2, because their diet comes entirely from DOC or
DON with a trophic level of 1. In both the carbon and nitrogen solution, the

mesozooplankton ingest herbivores and large phytoplankton in an equal amount, giving



Table 11. Effective trophic level of the components in the NABE
carbon and nitrogen models, found using the network analysis program,
NETWRK.exe by Ulanawicz (1986). The nonliving components,
DOC, DON, NH, and Detritus are assigned trophic levels of 1.

Effective Trophic Level

Component Carbon Nitrogen
Small Phytoplankton 1 1.42
Large Phytoplankton 1 1.44
Protozoans 2.28 2.6
Microzooplankton 2.14 2.56
Mesozooplankton 2.49 2.51
Bacteria 2 2
DOC / DON 1 1
Detritus 1 1
NH, - 1
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them trophic levels of 2.49 and 2.51 for the carbon and nitrogen solutions, respectively.
The mesozooplankton trophic level equal to 2.51 agrees closely with its carbon trophic
level of 2.49. The protozoans and microzooplantkon have carbon trophic levels close to
2, indicating they mainly act as herbivores. In the nitrogen solution, their trophic levels
are each above 2.5, indicating they act as carnivores more often than herbivores. For the
protozoans, this increase is entirely the result of the increase of protozoan bacterivory and
a decrease in grazing of phytoplankton in the nitrogen solution vs. the carbon solution.
For microzooplankton, the increase is largely due to the increase in microzooplankton
bacterivory and also to a small increase in the consumption of protozoans in the nitrogen

solution.
Sensitivity Analysis

The input parameters to the carbon and nitrogen models were successively varied
by + and — 10% and the inverse solution was recalculated for each change to assess the
sensitivity of the model. The input parameters that had the greatest effect on the carbon
solution were the net large and small primary production (Figure 15), and
microzooplankton grazing (Figure 16). Each of these brought about changes greater than
10% in between 11 and 13 of the 36 total food web flows (Tables 12 and 13). The flows
that were the most sensitive to changes in the input parameters were small phytoplankton
to detritus and the mesozooplankton consumption of microzooplankton. Small
phytoplankton to detritus increased 450% with an increase in 10% on the net small
primary production and decreased to 0 with a decrease of 10% in the net small primary

production (Figure 15). Mesozooplankton consumption of microzooplankton increased
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Figure 15. Sensitivity analysis for changes in the input parameters: large and small

phytoplankton production in the North Atlantic carbon model. The input parameters,
representing measurements, were varied by + and - 10 %, individually. The response
of the food web flow is the new value resulting from the +/- 10 % change in the input

parameter divided by the original value of the flow. Food web flow numbers are

described in Tables 12 and 13.
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Figure 16. Sensitivity analysis for changes in the input parameters:
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microzooplankton grazing and bacterial production in the North Atlantic
carbon model. The input parameters, representing measurements, were varied
by + and - 10 %, individually. The response of the food web flow is the new
value resulting from the +/- 10 % change in the input parameter divided by the
original value of the flow. Food web flow numbers are described in

Tables 12 and 13.
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95% with a decrease of 10% in the net large primary production and decreased by about
40% with increases in both the net small and large primary production (Figure 15).
Changes in the input parameters also brought about the consumption of detritus in some
cases. In the original solution the consumption of detritus by all three zooplankton size
classes was zero. However, with a 10% decrease in the microzooplankton feeding, the
protozoans consumed 0.46 mmols Cmd ™ and the mesozooplankton 0.055 mmols Cm2d"
! (Figure 16 and Table 13). With the increases in the net small and large primary
production, the protozoans consumed 0.28 and 0.38 mmols Cm™d™" of detritus,

respectively (Figure 15 and Table 12).

In the nitrogen solution, the input parameters that showed the greatest effects on
the flows were the change in microzooplankton biomass, and the small and large
regenerated production. Manipulations of + and — 10% in the change in
microzooplankton biomass, brought about changes greater than 10% in 10 of the total 36
flows (Figure 17, Tables 14 and 15). Changes in the small and large regenerated
production, triggered changes greater than 10% in 4 of the flows (Figure 18, Tables 14
and 15). The flows that were the most sensitive were the microzooplankton consumption
of protozoans and detritus. The microzooplankton consumption of protozoans increased
101% with a 10% increase in the change in microzooplankton biomass and decreased to 0
with a 10% decrease (Figure 17). The microzooplankton consumption of detritus
increased 50% with a 10% increase in the change in microzooplankton biomass and
decreased 50% with a decrease. There were much fewer changes greater than 10% in the

flows for the nitrogen sensitivity analysis than for the carbon sensitivity analysis.
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Figure 17. Sensitivity analysis for changes in the input parameter, change in
microzooplankton biomass in the North Atlantic nitrogen model. The input
parameters, representing measurements, were varied by + and - 10 %, individually.
The response of the food web flow is the new value resulting from the +/- 10 %
change in the input parameter divided by the original value of the flow. Food web

flow numbers are described in Tables 14 and 15.
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Figure 18. Sensitivity analysis for changes in the input parameters: large and

small phytoplankon regenerated production in the North Atlantic nitrogen model.
The input parameters, representing measurements, were varied by + and - 10 %,
individually. The response of the food web flow is the new value resulting from the
+/- 10 % change in the input parameter divided by the original value of the flow.

Food web flow numbers are described in Tables 14 and 15.
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Discussion

The largest flow in each model was the consumption of dissolved organic matter.
Bacteria consumed 65% of the carbon primary production as DOC and 55% of the
nitrogen primary production as DON. Microzooplankton and protozoan grazing
dominated in both the carbon and nitrogen solutions. Microzooplankton grazed 43% of
the carbon primary production and 40% of the total nitrogen primary production.
Protozoans grazed 21% of the carbon primary production and 17% of the total nitrogen
primary production. Mesozooplankton grazed a much smaller proportion, 5% of both the

carbon and nitrogen primary production.

Recycling was important in the North Atlantic food web. The indices of
recycling, L = 2.4 for carbon and L = 7.2 for nitrogen indicated that carbon and nitrogen
atoms were actively recycled in the food web. The Total ingestion / PP for carbon and
nitrogen revealed that 60% of the carbon ingestion and 150% of the nitrogen ingestion
were provided by recycling. The higher indices are seen in the nitrogen solution, where
metabolic products are recycled rather than respired. In the carbon solution, respired
carbon goes to an infinite sink and is not recycled. The high dependency coefficients
found for almost all the components in the nitrogen solution (Table 10b) are also

indicative of high recycling.

Detritus was less important in these solutions than DOC. The throughput was
24% of net carbon primary production vs. 74% for DOC and 32% of total nitrogen
primary production vs. 55% for DON, indicating a system dominated by DOC and DON.

The results are similar to measurements of the activity of DOC in the Sargasso Sea, a
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subtropical, low nutrient region, where the accumulation of DOC during blooms made up
86% of the total organic carbon, while particulate organic carbon or detritus accounted
for 14% (Carlson et al., 1998). Even though the productivity is normally higher in the
North Atlantic than the Sargasso Sea, the NABE models suggest the production and

cycling of DOC is high in North Atlantic blooms also.

After bacteria, the microzooplankton and protozoans were the most active
processors of carbon and nitrogen. Microzooplankton and protozoans were important in
the sensitivity analysis, where changes in the microzooplankton grazing (including
protozoan grazing) and in the observed increase in microzooplankton biomass brought
about many significant changes in the estimated food web flows. Microzooplankton have
been shown to be significant grazers in the ocean, passing organic matter up the food web
and recycling nutrients for primary producers (Landry et al., 1982; Gaul et al., 1999;
Verity et al., 1985). Researchers at 47°N, 20°W did witness a very active
microzooplankton community at times consuming up to 100% of the primary production
(Verity, 1993). This high degree of grazing is not uncommon. Measurements of
microzooplankton grazing in the equatorial pacific showed that microzooplankton
balanced primary production by pyrmesiophytes, and consumed a high proportion of the

picoplankton production (Verity et al., 1996).

The contribution to export by mesozooplankton fecal pellets in the model was
only 3% of the carbon net primary production and 1% of the nitrogen primary
production. Dam et al. (1993) found mesozooplankton fecal pellets were less than 5% of

the particulate organic carbon flux at 47°N, 20°W. The modeled mesozooplankton export
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was 8% of the particulate carbon flux in the carbon inverse solution, slightly higher than
the findings by Dam et al. (1993). The modeled nitrogen export was consistent with the
carbon solution and equal to 8% of the particulate nitrogen flux. Lenz et al. (1993), who
found no ungrazed phytoplankton in sediment traps at 46° N, 19° W in May, 1989 and
estimated much higher grazing rates than Dam, concluded that zooplankton fecal pellets
dominated the particle flux. Lenz found a mesozooplankton biomass of 313 mg Cm™d”,
much higher than the biomass of 90 mmols Cm™d™" found by Dam at 47°N, 20°W. There
was a difference in the study area (i.e. different water mass), but'also Dam and Lenz
made very different assumptions in their calculations of the impact of mesozooplankton.
Dam estimated mesozooplankton grazing using copepod gut pigment and gut
fluorescence anlalyses, while Lenz used mesozooplantkon biomass and respiration
measurements along with an assumption that during bloom conditions, mesozooplankton
respiration was equal to 1/3 of ingestion. Lenz assumed that mesozooplankton only
ingested phytoplankton. Dam estimated that about 50% of the mesozooplankton
ingestion was from phytoplankton, by comparing measured nitrogen excretion rates with
daily ingestion of carbon and nitrogen. Lenz admitted that the ingestion of
microzooplankton and detritus would have decreased their grazing estimates. The
effective trophic levels of mesozooplantkon in the carbon and nitrogen inverse model
solutions (Table 11) agree with Dam’s conclusions about the mesozooplankton diet and
suggest that the mesozooplankton received 50% of their diet from phytoplankton and the
remaining food from microzooplankton and detritus (nitrogen solution only). It is likely
that Lenz’s estimates of mesozooplankton grazing and contributions to the export flux

were overestimated.
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The differences between the export ratios and f-ratios calculated from the models
suggest a very different view of export than the traditional view of export equaling new
production. The export ratios from the carbon and nitrogen solutions were very similar:
0.19 and 0.17. The f-ratio calculated from the nitrogen solution was 0.57. The much
lower export ratios indicate that much of the new production was not exported during
May 18- 31, but remained in the food web. Garside and Garside (1993) modeled the
seasonal new production in the North Atlantic using measurements of nitrate from the
NABE study and historical data of deep-water nitrate concentrations and mixed layer
depths. They concluded that the new production is not immediately exported during the
bloom, but may be incorporated into the food web and recycled during the year. In the
models, increases in the components and the flows of matter through the recycling pools
balanced the difference between the f-ratio and e-ratios. Carbon and nitrogen that was
not exported remained in the system in a recycled form or went into the biomass of
bacteria and microzooplakton. The Garside and Garside (1993) modeling study covered
seasonal production, starting with the beginning of the bloom and ending in early June.
The inverse model solutions for NABE covered just a 2-week period during the late
bloom ending at the end of May. It is not surprising that the export was not equal to the
new production in the inverse solutions, when they were not equal in a study

encompassing the entire bloom period.



Chapter IIl. Western Antarctic Peninsula
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Introduction

The western Antarctic Peninsula (WAP) has been intensely studied for the past 12
years (1990- 2002) under the leadership of the Long-Term Ecological Research Program
(LTER). The LTER program was started by the National Science Foundation in 1980 in
order to monitor and compare long-term ecological phenomena across different
ecosystems and now includes 24 sites (LTER website: http:/lternet.edu/, 2002). The
research at WAP is led by the Palmer Long-Term Ecological Research program (PAL)
and based out of Palmer Station, Antarctica. A central tenet of PAL is that the annual
advance and retreat of sea ice drives changes in the structure and function of the food
webs in the area (Smith et al., 1998). A sampling grid was set up by PAL, encompassing
an area 900 km along the west coast of the Antarctic Peninsula by 200 km offshore
(Smith et al., 1998). The research has included ten annual summer cruises (1993 - 2002)
coincident with the Adélie penguin nesting period and five cruises investigating fall,
winter, and spring processes. Also, weekly sampling was carried out each year, by
zodiac between October/November and March/April, within a two-mile boundary of
Palmer Station. The measurements taken at Palmer Station include: primary production,
phytoplankton pigments, nutrient concentrations, sediment trap flux, bacterial abundance
and production, krill biomass and reproduction, and penguin abundance and feeding

(Smith et al., 1998).


http://ltemet.edu/
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The food web in the western Antarctica Peninsula (WAP) is very short with only
a few links between primary producers and apex predators (Smith et al., 1998). The
shortest path through the food web is from large autotrophs like diatoms to krill
(Euphausia superba) to the apex predator, Adélie penguins (Pygoscelis adeliae). The
other key apex predator is the south polar skua (Catharacta maccormicki) whose favored
prey is silverfish (Pleuragramma antarcticum). Although short paths through the food
web are available, the microbial loop is still present in the WAP as it is throughout the
world’s oceans (Smith et al., 1998; Karl et al. 1996). Microbial processes in the Southern
Ocean are poorly understood, mainly because of the ever changing physical environment
and the barriers to sampling presented by ice (Karl et al. 1996). During the RACER
program, a previous study in the WAP, measurements during bloom conditions revealed
an uncoupling between the bacteria and phytoplankton assemblages (Karl et al. 1996).
The bacterial biomass and production remained very low relative to the phytoplankton

biomass and production.

The western Antarctica Peninsula is characterized by two functional subdivisions,
a highly productive Coastal and Continental Shelf Zone (CCSZ) and a productive
Seasonal Ice Zone (SIZ) (Tréguer and Jacques, 1992; Smith et al., 1998). The CCSZ is
the area close to the Peninsula that usually exhibits large blooms (Smith et al., 1998).
The SIZ is the area of expanding and retreating ice that can overtake the CCSZ and
modify the intensity of the blooms (Smith et al., 1998). The WAP is also characterized
by two distinct climates: to the north a maritime climate of relatively warm moist air and
to the south a continental climate of cool dry air (Smith et al., 1998). Through

paleoecological and historical data Smith et al. (1998) show that the WAP region has
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been warming rapidly over the last century, coincident with a shift in abundance and
distribution of penguin species. The warming of 4 to 5 °C during midwinter observed
over the last fifty years is believed to be responsible for a decline in Adélie penguins,
monitored by William Fraser of Montanna State University (Kaiser, 1997). A decrease in
frequency of heavy ice years, resulting from increasing temperatures is believed to be the
main cause behind the large decline of over one third of the breeding pairs of Adélies
from 1975 to 1997 (Kaiser, 1997). In addition, Fraser found Adélies abandoning nesting
sites on the southwest sides of islands where snow accumulation was greatest, and
believes it is possible that an increase in snowfall over the period contributed to the
decline in Adélies (Kaiser, 1997). Increased precipitation is a consequence of climate
warming. The historical record of snowfall in the WAP is too limited to make a
conclusion but other regions in Antarctica have shown an increase in snowfall since

1975.

The inverse method can illuminate the many unknown flows within the plankton
food web in the western Antarctic Peninsula. A better understanding of this food web
will help answer questions like: “What are the relative roles of the short and microbial
food webs?” and “What are the differences in the food web between a year of relatively
high sea ice and high primary production and a year with relatively low sea ice and low
primary production?”. Answers to these questions are key to understanding the response

of the food web to climate change.
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Methods

The WAP measurements used for the model inputs were taken from the January
cruises in 1996 and 1999 in the Palmer LTER regional grid (Figure 19) and from
sampling near Palmer Station (Figure 20), also during January. January is a crucial time
for Adélie penguin chick development and is coincident with the créche period, when
both parents leave the chicks on land and forage, doubling the food provided to the chicks
(Salihoglu et al., 2000). Data for the models was taken from stations within the foraging
area of the Adélie penguins (Figure 21). The sampling areas are defined by a circular
area with its center on Anvers Island, the home of the local Adélie colony, and with a
radius equal to the foraging distance of the adult Adélies. The back 1/3 of the circular
area was not included in the sampling area because this area lies over land. The foraging
distance was estimated from the measured durations of foraging trips, found with radio
transmitters fixed to adult Adélies (Fraser pers.comm., 2003 and Salihoglu et al., 2000)
and assuming an average swimming speed for Adélies (Fraser pers.comm., 2003 and
Culik & Wilson, 1991). For the 1995-1996 field season, the maximum foraging range
was 113 km and for the 1998-1999 field season, it was 208 km (Fraser, 2003

pers.comm.).

The basic carbon model components and the possible flow interconnections for
the WAP are shown in Figure 1, for the general open ocean model. Carbon
measurements were averaged over the month of January for both 1996 and 1999 to arrive
at mean values to be used in the inverse analysis. Krill were the only mesozooplankton

represented in the model because they are usually the dominant zoolplankton in the area
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(Ross et al., 1996). Also, even though there may have been significant numbers of other
zooplankton such as copepods, the model was designed to estimate the impact of the
traditional short food web including large phytoplankton, krill, and penguins. For the
1996 model, myctophids and Adélie penguins were included (Figure 28). In the 1999
model, myctophids, Adélie penguins, and salps were included in the model (Figure 34).
A detailed description of the inverse method can be found in the Appendix. A number of
techniques were used to analyze the output of the models including descriptions of the
fate of the primary production, the zooplankton diet, and the particulate export. Network
analysis techniques were used to characterize the solutions including the index of
recycling, indices of relative activity, dependency coefficients, and effective trophic
levels. Further details of these techniques can be found in the Appendix. A sensitivity
analysis was performed to determine the effects on the solution resulting from varying

the input parameters by a small amount (+/- 10%).



Results

Data Synthesis

Primary Production and Biomass

Primary production for January 1996 (Figure 22, was measured using Carbon-14
incorporation in water samples collected to the 2% light level (Smith et al., 1998 and
LTER website: http:/Iternet.edu/, 2002) and was integrated to a depth of 35 m to allow
comparison with the North Atlantic models. The 2% light level was almost always above
35 m, so the integrated production is representative of the entire euphotic zone.
Production measurements at stations within the Adélie foraging area with a radius of 113
km were averaged, along with the near shore stations. Figure 23 shows the primary
production measured for January 1999, also using Carbon-14 incorporation in water
samples collected to the 1% light level (Smith et al., 1998 and LTER website:
http://Iternet.edu/, 2002). Stations were sampled within the Adélie foraging area with a
radius of 208 km. The primary production was integrated to 35 m, which was much
shallower than the depth of the euphotic zone with an average depth for the 1% light level
of 69 m. However, the average integrated primary production for the full euphotic zone,

(35 mmols Cm™d™") was not very different from the upper 35 m (29 mmols Cmd™).

Phytoplankton Biomass was measured by flourometry in water samples taken
down to depths of at least 50 m (Smith et al., 1998 and LTER website: http://Iternet.edw/,

2002). Chlorophyll a was converted to carbon, using a C:Chl ratio of 50 (Mitchell &
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Figure 22. WAP Primary Production measurements from January, 1996 regional cruise and

14
Palmer near shore station E, using  C incorporation (Smith et al., 1995 and

LTER website: http:/lternet.edu/, 2002). For the regional grid stations, the first 3 numbers
are grid line along shore and the last 3 after the "." are the km offshore. For example station,

600.100 is on the 600 grid line and is 100 km offshore and 600.035 is on the 600 grid line
and 35 km offshore.
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Figure 23. WAP Primary Production measurements from January, 1999 regional cruise

14

and Palmer near shore stations B and E, using  C incorporation (Smith et al., 1995 and

LTER website: http:/lternet.edu/, 2002).
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Holm-Hansen, 1991) and the biomass was integrated to 35 m. Figures 4 and 5 show the

phytoplankton biomasses for January 1996 and January 1999, respectively.

Bacterial Production and Biomass

Bacterial production was estimated by “H labeled-leucine incorporation (Karl et
al., 1996 and LTER website: http://Iternet.edu/, 2002). Data required for the conversion
to carbon mass units were not given, so the results reported in the website were not used.
Instead bacterial production was defined as a percentage of the primary production. The
bacterial production was constrained between zero and fifty percent of the primary

production for both 1996 and 1999.

Bacterial biomass was determined from measurements of particulate
lipopolysaccharide (Karl et al., 1996 and LTER website: http://Iternet.edu/, 2002). Water
samples from depths down to at least 75 m were analyzed for bacterial carbon and the
measurements were integrated to 35 m. Figures 30 and 31 show the bacterial biomass for

January 1996 and January 1999, respectively.

Microzooplankton Grazing and Biomass

Microzooplankton grazing, including protozoans with diameters < 20
micrometers and microzooplankton 20 - 200 micrometers in diameter, was not measured
as part of the Palmer LTER study. Estimates from the literature from different areas of
the Southern Ocean including the Ross Sea (Caron et al., 2000), and the Atlantic sector
(Froneman and Perissinotto, 1996; Becquevort, 1995) were used to provide a wide range

of potential microzooplankton grazing from 0 — 75% of primary production.
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Figure 24. WAP Phytoplankton Biomass measurements from January, 1996

regional cruise and Palmer near shore station E (Smith et al., 1995 and

LTER website: http://lternet.edu/, 2002).
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Figure 25. WAP Phytoplankton Biomass measurements from January, 1999

regional cruise and Palmer near shore stations E, B, and LeMaire. Fluorometry

was used to find Chl a (Smith et al.,1998 and LTER website: http:/lternet.edu/, 2002)
and biomass was found by using a C:Chl a ratio of 50 (Mitchell & Holm-Hansen, 1991)

and integrating to 35m.
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Figure 26. Bacterial Biomass determined from measurements of particulate lipopolysaccharide
(Karl et. al, 1996 and LTER website: http://lternet.edu/, 2002). Biomass was integrated to 35 m.
For example station, 600.100 is on the 600 grid line and is 100 km offshore and 600.035 is on
the 600 grid line and 35 km offshore.
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Figure 27. Bacterial Biomass determined from measurements of particulate

89

lipopolysaccharide (Karl et. al, 1996 and LTER website: http://lternet.edu/, 2002).

Biomass was integrated to 35 m.
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Microzooplankton biomass was not measured, so the microzooplankton respiration was

left unconstrained.

Krill Grazing and Biomass

Antarctic krill (Euphasia superba) biomass was estimated from penguin stomach
content data, trawl data, and from estimates from the literature (Table 16). Penguins are
opportunistic visual predators that do not discriminate between different sizes of krill, so
the size distribution of krill in their stomachs is a good approximation of the size
distribution of krill in the area (Salihoglu et al., 2001). Fraser (unpublished data)
provided the size distribution of over 2000 krill from penguin stomach contents for both
the 1995-1996 and 1998-1999 summer seasons. The average sizes for 1995-1996 and
1998-1999 were 48 mms and 43 mms, respectively. The average krill sizes were used to
estimate the individual wet weight of an average krill, using regressions found by Ross
and Quetin (unpublished, 2003 and LTER website: http:/Iternet.edu/, 2002) between
length and wet weight of krill measured in trawl catches. The density of krill measured
in trawls was then used to find the biomass of krill (Table16). The biomass of krill was
also estimated from acoustic data (Table 16), taken with an echo sounder from the

regional grid (Lascara et al., 1999).

Krill grazing was estimated from a feeding relationship, found by experiments
during 1991 and 1992 by Ross et al. (1998), (Table 17). The average phytoplankton
concentration in the upper 35 m was used in the feeding relationship to estimate the
specific feeding rate of krill. The acoustic and trawl biomass measurements were used to

find grazing estimates for the krill community for January 1996 and January 1999.
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Adélie Penguin Grazing and Biomass

The Adélie penguin grazing was estimated using counts of penguins and grazing
estimates from a modeling simulation of penguin chick feeding. The total number of
penguins to be included in the model was tallied from surveys of penguins on the islands
within the vicinity of Palmer Station that were likely to feed in the Adélie foraging areas
(Fraser et al., unpublished data), (Table 18). Penguins were tallied from the local islands
within a 2-mile radius of Palmer Station including Christine, Cormorant, Humble,
Litchfield, and Torgersen Islands, and nearby colonies including Biscoe Point and Dream
Island (Table 18). An additional 10,000 penguins were added to include estimates of
uncounted Adélie and Gentoo penguins south of Palmer Station that also are active in the
area (Fraser, pers. comm., 2003). Surveys of chicks on the islands were used to find a
ratio of chicks/adult pairs (Table 18). The feeding rate, in mmols Cm™d™ for chicks was
then found (Table 18) based on a modeling study that estimated the feeding required for
Adélie chicks to acquire experimentally measured fledging weights, which are
remarkably consistent from year to year (Salihoglu, Fraser, and Hoffman, 2001). The
feeding rate was an average value for the créche period, equal to the feeding at day 40 in
the simulation (Fig 3 A in Salihoglu, Fraser, and Hoffman, 2001). The feeding rate for
all penguins, in mmols Cm™d™, including adults and chicks was estimated by using the
assumption that the adults provide a maximum of 54% of their stomach contents to the

chicks during the creéche period (Salihoglu, Fraser, and Hoffman, 2001).

The penguin biomass was estimated from penguin weights for males, females,

and chicks measured on Torgensen Island by Fraser et al. (unpublished data, 2003;
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Salihoglu, Fraser, and Hoffman, 2001). The total number of penguins was used along
with the weights to find the penguin biomass in mmols Cm for January 1996 and

January 1999 (Table 18).

Myctophid Grazing and Biomass

Biomass and grazing estimates from the literature were used to estimate the
impact of myctophids in the western Antarctic Peninsula (Table 19). Data for the
silverfish, Pleuragramma antarcticum, common to the area were not found, but data for
other myctophid species were used, including the most abundant fish in the Southern
Ocean, Electrona antarctica (Greely et al., 1999). The growth rate of Electrona
antarctica is consistent with the growth rates of all other myctophid species investigated
(Greely et al., 1999). Minimum and maximum densities of myctophids were taken from
measurements made in 1988 as part of the AMERIEZ study in the Marginal Ice Zone in
the Atlantic sector of the Southern Ocean (Lancraft et al., 1991 in Pakhomov et al.,
1996), (Table 19). Conversion factors for wet weight (Donnelly et al., 1990) and carbon
content (Childress et al., 1990) were used to calculate an average biomass in mmols Cm™

(Table 19).

Myctophid Grazing was estimated using specific grazing rates and the biomass
estimates (Table 19). Minimum and maximum grazing estimates were taken from
Pakhomov et al. (1996), who used data from five South African cruises to the Southern

Ocean from 1985 — 1995.
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Salp Grazing and Biomass

Salp grazing was estimated from the measured abundance of salps caught in
zooplankton trawl surveys, as part of the regional cruise (Ross et al., LTER website:
http://lternet.edu/, 2002), (Table 20). Salp grazing is only shown for 1999, because in
1996 salps were not observed in the trawls. Minimum and maximum specific grazing
rates are from a study in the Lazarev Sea (Perissinotto and Pakhomov, 1998). The
abundance of salps was multiplied by the specific grazing rates to find minimum and

maximum limits for the salp grazing in mmols Cmd”.

Export

The export was measured at a sediment trap located near Palmer Station at a depth
of 350 m (Karl et al, LTER website: http://Iternet.edu/, 2002), (Table 21). The export at
35 m was estimated using the measurements at 350 m and assuming a normalized power
function derived for open ocean environments by Martin et al.(1987): F = Fygo (2/ IOO)b.
The known export at 350 m was used to estimate Fjo using the above equation and
assuming b = - 0.858 (Martin et al., 1987). The export at 35 m was then estimated using

the above equation.

Model Inputs

The measurements were each averaged over the month of January to provide an
average value to use in the models for 1996 and 1999 (Table 21). The standard
deviations of the rate measurements were used to set minimum and maximum constraints

on the calculated flows. The measurements, +/- one standard deviation, were entered into


http://ltemet.edu/
http://ltemet.edu/

Table 20. 1999 Salp Grazing based on trawl surveys (Ross & Quetin, LTER Database) and
feeding relationship used by Perissonotto and Pakhomov (1998).

Salp Grazing Estimates

References

Average # Salps/1000 m"3

122.39

Minimum grazing rate ug Chl a /salp day

3.00

Perissonotto and Pakhomov (1998)
for Larger salps > 5 cm.

Maximum grazing rate ug Chl a/ salp day

160.00

Perissonotto and Pakhomov (1998)
for Larger salps > 5 cm.

Minimum grazing rate ug C /salp day

154.65

Conversion to Carbon from Chli
using rel. from Pakhomov (1998):
C=80*(Chi a)~0.6.

Maximum grazing rate ug C/ salp day 1680.98
Minimum grazing rate mmols C /salp day 0.01
Maximum grazing rate mmols C/ salp day 0.14
Min Grazing mmols C/m"2 day 0.06
Max Grazing mmols C/mA2 day 0.60

98
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the constraint equation for the model. The measured biomasses are used to set the
maximum constraints for respiration, so there are no minimum and maximum constraints
listed for the biomasses. For some of the measurements, such as salp grazing and
myctophid grazing, the minimum and maximum constraints were provided by the
assumptions used from the literature. For other measurements, where the standard
deviation was not available (e.g. Adélie grazing and export), the minimum and maximum

constraints were set equal to 0.5 and 1.5 X the January average.

The measurements for the western Antarctic Peninsula were not a time series, like
in NABE, but were taken across different sites throughout the regional and local grids
over the month of January. Given the sampling scheme, it was not possible to estimate
changes in the biomasses of food web components over the study period. It was assumed
that biomass did not change over the month and the balance equations for each

component were set to zero.

The average biomasses were used as inputs to the allometric equation from
Moloney and Field (1989) to constrain the maintenance respiration for each component
(Table 22). Additional constraints on ingestion, excretion, assimilation, and production

for all living components were included (Table 22).

The primary production was split among the small, < 5 pm and large > 5 um
phytoplankton, with 2/3 of the measured production assigned to the large phytoplankton
and 1/3 to the small. The phytoplankton community in the southern ocean is believed to
be dominated by larger cells during bloom conditions (Laws, 1985). The standard

deviation of the data to be used in the constraints for the primary production was split in
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the same ratio as the production with 2/3 assigned to the large phytoplankton and 1/3 to

the small.
1996 Carbon Model Results

The largest flows within the food web, inferred by the 1996 carbon model inverse
solution, are krill grazing and respiration (Figure 28 and Table 23). The next most
important flows are microzooplankton respiration and bacterial ingestion of DOC,
channeling a significant amount of carbon into the microbial food web. The inferred
small and large gross primary production are 31 and 62 mmols Cm™d?, respectively, just
slightly above their minimum constraints of 29 and 59 mmols Cm™d?, respectively
(Table 23). The largest flow within the food web is the grazing of large phytoplankton
by krill equal to 37 mmols Cm™d" and 42% of the net primary production (Table 23).
Kfrill respiration is the second largest flow equal to 17 mmols Cm™d'and 20% of the
primary production. The third largest flow is the ingestion of DOC by bacteria, equal to
13 mmols Cm™d™ or 14% of the net primary production. The fourth largest flow is
microzooplankton respiration equal to 15 mmols Cm™dor 16% of the net primary

production.

The flows for the upper trophic levels including penguins and myctophids are

much smaller than for the lower trophic levels. Myctophids consume 1.08 mmols

Cmd™" of krill equal to 1% of the net primary production and the penguins consume 0.11

mmols Cm™d™ of krill equal to 0.1% of the production, an order of magnitude less than

myctophids.
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Table 23. WAP 1996 carbon inverse solution flows. Flows are expressed as
absolute flows in mmols C /m*2/d and as a fraction of the net primary production.

Flows mmols C m*“d” Normalized to Net PP
Large phytoplankton gross primary production 62.32 0.70
Large phytoplankton respiration 3.12 0.04
Microzooplankton grazing of large phytoplankton 9.84 0.11
krill grazing of large phytoplankton 37.10 0.42
Large phytoplankton sinking 8.86 0.10
Large phytoplankton release of DOC 3.40 0.04
Small phytoplankton gross primary production 31.16 0.35
Small phytoplankton respiration 1.56 0.02
Protozoan grazing of small phytoplankton 11.43 0.13
Microzooplankton grazing of small phytoplankton 8.72 0.10
Small phytoplankton to detritus 7.75 0.09
Small phytoplankton release of DOC 1.70 0.02
Microzooplankton consumption of protozoans 1.20 0.01
krill consumption of protozoans 0.37 0.00
Protozoan respiration 11.03 0.12
Protozoans to detritus 1.58 0.02
Protozoans to DOC 1.58 0.02
Microzooplankton respiration 14.52 0.16
Mesozooplantkton consumption of microzooplankton 2.07 0.02
Microzooplankton to detritus 2.07 0.02
Microzooplankton to DOC 2.07 0.02
krill respiration 17.46 0.20
krill to detritus (Faecal pellets) 2.38 0.03
krill to DOC 3.97 0.04
Bacterial respiration 12.20 0.14
Bacteria to protozoans 0.64 0.01
Bacteria to microzooplankton 0.00 0.00
Bacteria to detritus 0.00 0.00
Bacteria to DOC 0.00 0.00
Protozoan consumption of detritus 3.69 0.04
Microzooplankton consumption of detritus 0.98 0.01
krill consumption of detritus 0.14 0.00
Detritus to DOC 0.00 0.00
Bacterial ingestion of DOC 12.84 0.14
Total Particulate Export out of the top 35 m 17.83 0.20
Krill to export (Consumption by higher trophic levels or death 14.69 0.17
Myctophid consumption of krill 1.08 0.01
Penguins consumption of krill 0.11 0.001
Penguins to detritus 0.03 0.000
Penguins to DOC 0.01 0.000
Penguin respiration 0.03 0.000
Penguin to export (Consumption by higher trophic levels or death) 0.03 0.000
Myctophids to detritus 0.32 0.004
Myctophids to DOC 0.11 0.001
Myctophids to respiration 0.32 0.004
Myctophids to export (Consumption by higher trophic levels or death) 0.32 0.004
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The particulate export sinking out of the top 35 m is equal to 18 mmols Cm™d™! or
21% of the primary production (Table 23). The export of krill, representing krill
production that can be consumed by higher trophic levels or can sink when the krill die,
is 15 mmols Cm™d™ or 17% of the primary production. The estimated e-ratio is equal to
the sum of the particulate export, the krill export, the penguin export and the myctophid

export in terms of the primary production:
e-ratio =0.20 + 0.17 + 0 + 0.004 = 0.37.

The total carbon throughput of the paticulate organic carbon or detritus pool is
about twice that of the dissolved organic carbon (DOC) pool. The total throughput of the
detritus pool is 23 mmols Cm™d™ or 26% of the primary production. The total

throughput of the DOC pool is 13 mmols Cmd™ or 14% of the primary production.

Krill grazing dominates the fate of the carbon primary production (Figure 29).
Krill consume 42% of the total primary production. Microzooplankton consume 21%
and protozoans 13% of the total primary production. The detrital pool receives 26% of
the small phytoplankton production and 15% of the large phytoplankton production. The

DOC pool receives 6% of the total primary production.

The krill consumed the most carbon of the zooplankton (40 mmols Cm'zd'l), 94 %
of which consisted of large phytoplankton (Figure 30). Microzooplankton consumed less
carbon than krill (21 mmols Cm'zd']), receiving most of their carbon from small (42%)
and large phytoplankton (47%) and smaller contributions from protozoans (6%) and
detritus (5%). Protozoans consumed the least amount of carbon (16 mmols Cm‘zd‘l) and

received a small portion of their diet (4%), from bacteria and a large portion from detritus
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Figure 29. The fate of the carbon primary production for the western Antarctic Peninsula
in January, 1996. The primary production is expressed as total, large (>5 pm), and

small (<5 pm) primary production that is consumed by protozoans, microzooplankton,

or krill, goes to detritus or is released as DOC.

goes to detritus, or is released as DOC.
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Figure 30. Zooplankton diet composition for the carbon solution for the western Antarctic

Peninsula in January, 1996. The percentage of the diet contents for each zooplankton size
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class is shown. The total input in mmols Cm d for each zooplankton size class is

also shown.
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(5%). The diet compositions of the myctophids and penguins are not shown here,
because the only food source provided for them in the model was krill, their main food

source in the western Antarctic Peninsula.

The exports from the surface ocean are shown in Table 24. The sinking of large
phytoplankton, equal to 10% of the primary production, makes the greatest contribution
to the flux. The aggregation of detritus from smaller particles into sinking particles is
equal to 7% of the primary production and krill fecal pellets account for 3% of the
primary production. The contributors to the particulate carbon pool, not shown in Table
24, that can provide smaller particles that can aggregate and sink are small
phytoplankton, protozoans, and microzooplankton (Table 25). Small phytoplankton
contribute 34% of the carbon to the particulate carbon pool, protozoans, 9% and

microzooplankton, 7%.

Kirill and large phytoplankton make the greatest contributions to the DOC pool,
31% and 27% respectively (Figure 31). Significant contributions also come from

microzooplankton (16%), small phytoplankton (13%), and protozoans (12%).
Network Analysis (1996 Carbon Model)

The index of recycling, L revealed that the average carbon atom is cycled through
the food web 1.4 times before leaving through respiration, sinking detritus, or fecal
pellets (Table 26), about the same as in NABE (Ch. 2). Another index of recycling, the
Total ingestion / pp equal to 1.3 indicates that 30% of the carbon ingestion comes from
recycling in the food web. The bacterial production was equal to only 0.7% of the net

primary production as shown by Fbac (Table 26). The krill processed the most carbon
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Table 24. Export flows from the upper 35 m in the 1996 WAP carbon model.

The sinking of large phytoplankton, and mesozooplankton fecal pellets

contribute to the total detrital export. These two flows that are likely to sink are much greater
than the Total Detrital Export. The consumption of detritus by protozoans is very high

in the model, acting as a sink for detritus (see Table 30).

% of Net PP exported

Sinking of Large Phytoplankton 10
Krill Fecal Pellets 3
Aggregation of Detritus into Sinking Particle 7

Total Detrital Export 20




Table 25. Contributions to the detritus pool as a % of the
total inputs to the pool for the WAP 1996 carbon inverse solution.

[% Contribution to Detritus Pool
Small Phytoplankton 34
Large Phtyoplankton 39
Bacteria 0
Protozoans 7
Microzooplankton 9
Krill 10
Myctophids 1.4
Penguins 0.1

110
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Penguins 0.1 %
and
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Figure 31. Contributions to the DOC pool as a % of the total flows entering it in the
1996 western Antarctic Peninsula carbon inverse solution.
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(Fkri = 51%), followed by the microzooplankton (Fmic = 27%) and protozoans (Fpro =

21%).

The bacteria depend on small phytoplankton for 33% of their carbon input and
large phytoplankton for 67% (Table 27). All of the direct uptake of carbon comes to
bacteria through the DOC pool, so the bacterial dependency on DOC is 1.0. Bacteria
depend indirectly on protozoans, microzooplankton, and krill for between 14 and 33% of
their uptake of carbon. Protozoans depend upon large phytoplankton for 16% of their
diet, by way of indirect pathways, because they can not consume large phytoplankton
directly. Protozoans have the highest dependency on detritus of any organism, equal to

24% of their diet.

The krill depend almost exclusively on large phytoplankton for 97% of their diet.

Krill depend on other sources for a maximum of 5% (microzooplankton) of their diet.
The myctophids and penguins both depend on krill for 100% of their diet as designated in
the model structure. The other dependencies for myctophids and penguins mirror the
dependencies of krill, because each predator inherits the krill dependencies by relying
100% on krill as a food source. The DOC pool depends strongly on phytoplankton for
33% and 67% of its inputs from small and large phytoplankton, respectively. Protozoans,
microzooplankton, and krill all make siginificant contributions to the DOC pool by direct

or indirect pathways, resulting in dependencies between 14 and 33%.

The effective trophic levels indicate the protozoans mainly act as grazers on small
phytoplankton and consume only a relatively small amount of bacteria, giving them a

trophic level of 2.04 (Table 28). Microzooplankton and krill both act chiefly as grazers



Table 26. Network analysis indices for the WAP 1996 carbon inverse solution.

L is the index of recycling equal to the number of times a carbon atom cycles through

the food web before leaving through respiration, sinking, or predation by higher trophic levels
The Total ingestion/ PP is the total ingestion of all animal components plus the ingestion

of DOC by bacteria divided by the net primary production.

Fbac is the ratio of bacterial production to net primary production.

Fpro, Fmic, and Fkri, Fmyc, and Fpen are the ratios of the total flows through

each compartment to the total flows through all five animal compartments.

Index

L 14

Total Ingestion/ PP 1.2

Fbac (%) 0.7

Fpro (%) 20.7
Fmic (%) 27.2
Fkri (%) 50.5
Fmyc (%) 1.4

Fpen (%) 0.1
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of phytoplankton, giving them trophic levels of 2.06 and 2.07, respectively. Myctophids
and penguins have trophic levels exactly 1.0 greater than the krill trophic level, because

they both depend on krill for 100% of their diets.

1999 Carbon Model Results

Krill and microzooplankton grazing were the largest flows within the food web in
carbon model inverse solution for 1999 (Figure 32 and Table 29). The inferred small and
large gross primary production were equal to 2.7 and 5.4 mmols Cm?d™, just slightly
above their minimum constraints of 2 and 5 mmols Cm™d™ and equal to just about 10%
of the 1996 production (Table 29). The largest flow within the food web is krill grazing
of large phytoplankton equal to 1.6 mmols Cm2d" or 21% of the primary production.
The next largest flow within the food web is microzooplankton grazing of large
phytoplankton equal to 1.2 mmols Cm™d 'or 17% of primary production. Other large
flows in the food web include large phytoplankton sinking, microzooplankton respiration,
and bacterial respiration equal to 16, 15, and 15% of the primary production,

respectively.

The particulate export sinking out of the top 35 m is equal to 1.4 mmols Cm™d’
or 18% of the primary production. The export of krill, representing krill production that
can be consumed by higher trophic levels or can sink when the krill die, is 0.6 mmols
Cm2d™" or 8% of the primary production. The estimated e-ratio is equal to the sum of the
particulate export, the krill export, the penguin export, the myctophid export, and the salp

export as a fraction of the primary production (Table 29):

e-ratio =0.18 + 0.08 + 0 + 0.01 + 0.08 = 0.35.
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Table 28. Effective trophic levels of the components

in the WAP 1996 carbon model, found using the network

analysis program, NETWRK .exe by Ulanawicz (1986).

The nonliving components, DOC and Detritus are assigned trophic levels of 1.

Component _ |Effective Trophic Level
Small Phytoplankton 1

Large Phytoplankton 1

Bacteria 2
Protozoans 2.04
Microzooplankton 2.06

Krill 2.07
Myctophids 3.07
Penguins 3.07

DOC 1
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Table 29. WAP 1999 carbon inverse solution flows. Flows are expressed as
absolute flows in mmols C /m”2/d and as a fraction of the net primary production.

Salps to export

Flows mmols G m“d" Normalized to Net PP
Large phytoplankton gross primary production 5.400 0.70
Large phytoplankton respiration 0.270 0.04
Microzooplankton grazing of large phytoplankton 1.271 0.17
krill grazing of large phytoplankton 1.627 0.21
Large phytoplankton sinking 1.246 0.16
Large phytoplankton release of DOC 0.400 0.05
Sinall phytoplankton gross primary production 2.705 0.35
Sinall phytoplankton respiration 0.135 0.02
Protozoan grazing of small phytoplankton 0.958 0.12
Microzooplankton grazing of small phytoplankton 0.707 0.09
Simall phytoplankton to detritus 0.682 0.09
Small phytoplankton release of DOC 0.200 0.03
Microzooplankton consumption of protozoans 0.000 0.00
krill consumption of protozoans 0.021 0.00
Protozoan respiration 0.870 0.11
Protozoans to detritus 0.124 0.02
Protozoans to DOC 0.124 0.02
Microzooplankton respiration 1.186 0.15
Mesozooplantkton consumption of microzooplankton 0.167 0.02
Microzooplankton to detritus 0.200 0.03
Microzooplankton to DOC 0.200 0.03
krill respiration 0.966 0.13
krill to detritus (Fecal pellets) 0.132 0.02
krill to DOC 0.220 0.03
Bucterial respiration 1.132 0.15
Bacteria to protozoans 0.008 0.00
Bacteria to microzooplankton 0.000 0.00
Bacteria to detritus 0.000 0.00
Bacteria to DOC 0.000 0.00
Protozoan consumnption of detritus 0.276 0.04
Microzooplankton consumption of detritus 0.025 0.00
krill consumption of detritus 0.381 0.05
Detritus to DOC 0.000 0.00
Bucterial ingestion of DOC 1.335 0.17
Total Particulate Export out of the top 35 m 1.401 0.18
Krill to export (Consumption by higher trophic levels or death) 0.584 0.08
Myctophid consumption of krill 0.264 0.03
Penguins consumption of krill 0.030 0.00
Penguins to detritus 0.009 0.00
Penguins to DOC 0.003 0.00
Penguin respiration 0.009 0.00
Penguin to export (Consumption by higher trophic levels or death) 0.009 0.00
Myctophids to detritus 0.079 0.01
Myctophids to DOC 0.026 0.00
Myctophids to respiration 0.079 0.01
Myctophids to export (Consuinption by higher trophic levels or death) 0.079 0.01
Salps consumption of large phytoplankton 0.587 0.08
Salps consumption of small phytoplankion 0.023 0.00
Salps consumption of bacteria 0.195 0.03
Salps consumption of protozoans 0.103 0.01
Salps consumption of microzooplankton 0.249 0.03
Salps consumption of detritus 0.463 0.06
Salps respiration 0.648 0.08
Salps to detritus (fecal pellets) 0.162 0.02
Salps to DOC 0.162 0.02
0.648 0.08
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The total throughput of the detritus pool is twice that of the DOC pool, like in the
WAP 1996 solution. The total throughput of the detritus pool is 2.6 mmols Cm™d™ or
34% of the primary production. The throughput of the DOC pool is 1.3 mmols Cm2d ™" or

17% of the primary production.

The total primary production 1s more evenly split among grazers, detritus and
DOC than in the January 1996 inverse solution (Figure 33). Microzooplankton consume
the highest amount of the total primary production (26 %). Krill consume 21% of the
total production in 1999, much less than the 42% in 1996 (Figure 33). Other differences
between the 1999 and 1996 fates of the primary production are the amount of production
going to detritus and the introduction of salps. Salps consume 8% of the total primary
production, the majority coming from the large phytoplankton of which they consume

11%. More production goes to detritus in the 1999 solution, 25% vs. 18% for 1996.

Krill consume the most carbon, and 90 % of their diet is large phytoplankton (2.3
mmols Cmd’! ), (Figure 34). The microzooplankton consume a little less carbon than
the krill (2.1 mmols Cm™d™") and have a less varied diet in 1999 than in 1996, consuming
mainly large and small phytoplankton (Figure 34). Protozoans consume the least carbon,
1.5 mmols Cm™d™, 77% coming from small phytoplankton and a significant portion,
25% coming from detritus. Salps have the most varied diet, with 36% coming from large
phytoplankton, 29% from detritus and the rest from bacteria, protozoans, and

microzooplankton (Figure 34).

The sum of the large particle flows that one would expect to contribute to sinking

is 22% of the primary production and exceeds the model’s estimated sinking flux by 4%
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Figure 33. The fate of the carbon primary production for the western Antarctic Peninsula
in January, 1999. The primary production is expressed as total, large (>5 pum), and

small (<5 pm) primary production that is consumed by protozoans, microzooplankton, or krill,

goes to detritus, or is released as DOC.
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Figure 34. Zooplankton diet composition for the carbon solution for the western Antarctic

Peninsula in January, 1999. The percentage of the diet contents for each zooplankton size

2 -1
class and salps is shown. The total input in mmols Cm d for each consumer is also shown.
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(Table 30). It is possible that some of these flows are consumed as detritus by other
organisms before sinking. The sum of detrital consumption by protozoans,
microzooplankton, krill, and salps is 15% of the primary production (Table 31). The
model structure assumes that all of the large phytoplankton and fecal pellets going to
detritus sink. However, the high consumption of detritus suggests that some of these
particles were consumed, explaining the difference of 4% between the sum of large

sinking particles and the realized sinking shown in Table 30.

Large phytoplankton supply 30% of the carbon to the DOC pool and krill supply
16.5%, 10% less than they contributed in 1996 (Figure 35). The salps contribute 12%, a

significant contribution to the DOC pool.
Network Analysis (1999 Carbon Model)

The index of recycling, L revealed that the average carbon atom is cycled through
the food web 1.7 times before leaving through respiration, sinking detritus, or fecal
pellets (Table 32). The Total ingestion/ pp of 1.3 indicates that 30% of the carbon
ingestion comes from recycling in the food web (Table 32). The bacterial production was
still very low, just 2.6% of the net primary production as shown by Fbac. The krill
processed the most carbon (Fkri = 28%), followed by the microzooplankton (Fmic =

26%) and protozoans (Fpro = 17%).

Salps, microzooplankton, and krill indirectly provide between 13 and 20% of the
bacterial uptake of carbon (Table 33). Krill depend on large phytoplankton for 90% of
their diet and small phytoplankton for 10%, which comes through indirect pathways

(Table 33). The salps depend strongly on large phytoplankton for 74% of their diet. The



Table 30. Export flows from the upper 35 m in the 1999 WAP carbon model.
The sinking of large phytoplankton, and fecal pellets from krill, salps, and myctophids
account for more than 122 % of the sinking detrital export flow.

% of Net PP exported
Sinking of Large Phytoplankton 16
Krill Fecal Pellets 2
Salp Fecal Pellets 2
Myctophid Fecal Pellets 2
Sum of Large sinking particles 22
Sinking Detrital Export 18
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Table 31. Outputs from the detritus pool as a % of the primary production.

The consumption of detritus by protozoans, microzooplankton, and salps

adds up to 14.8 % of the primary production, more than enough to explain the 4 %
difference between large particles and realized sinking shown in Table 37.

Outputs as % of PP
Sinking Detrital export 18.2
Protozoan consumption 3.6
Microzooplankton consumption 0.3
Salp consumption 6.0
Krill consumption 4.9
Detritus to DOC 0.0
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Figure 35. Contributions to the DOC pool in the 1999 western Antarctic Peninsula
carbon inverse solution as a % of total flows entering pool.
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Table 32. Network analysis indices for the WAP 1999 carbon inverse solution.

L is the index of recycling equal to the number of times a carbon atom cycles through

the food web before leaving through respiration, sinking, or predation by higher trophic levels.
The Total ingestion/ PP is the total ingestion of all animal components plus the ingestion

of DOC by bacteria divided by the net primary production.

Fbac is the ratio of bacterial production to net primary production.

Fpro, Fmic, and Fmes, Fmyc, Fsal and Fpen are the ratios of the total flows through

each compartment to the total flows through all six animal compartments.

Index
L 1.7
Total Ingestion/ PP 1.3
Fbac (%) 0.1
Fpro (%) 17.0
Fmic (%) 26.1
|Fmes (%) - 284
Fmyc (%) 39 ©
Fsal (%) 24.1
Fpen (%) 04
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salps depend on all other components except for myctophids and penguins for at least 5%
contributions to their diet. The DOC pool depends on krill, microzooplankton,

protozoans, and salps for between 11 and 20% of its carbon input.

The effective trophic levels for the 1999 carbon inverse solution are very similar
to the 1996 trophic levels (Table 34). The protozoans, with a trophic level of 2.01, act
almost entirely as grazers on small phytoplankton and consume only a relatively small
amount of bacteria. Microzooplankton act entirely as grazers on small and large
phytoplankton, and consumers of detritus giving resulting in a trophic level of 2. Kirill
act chiefly as grazers of plankton resulting in a trophic level of 2.09. Myctophids and
penguins have trophic levels exactly 1.0 greater than the krill trophic level, because they
both depend on krill for 100% of their diets. Salps feed at a trophic level of 2.34,

reflecting their varied diet.
Sensitivity Analysis

In the 1996 inverse solution, the input parameters that brought about the most
changes in the food web flows, were the large and small net primary producti(?n. The +/-
10% chaqges in the large net primary production, caused between 20 <-10% change) and
25 (+10% change) of the flows to change by more than 10% (Figure 36, Tables 35 and
36). The +/- 10% changes in the smail net primary production, triggered changes of
greater than 10% in between 25 (-10% change) and 30 (+10% change) of the 46 total

flows (Figure 36, Tables 35 and 36).

The flow that was most sensitive to changes in the input parameters was the krill

consumption of detritus. The 10% increase in the large phytoplankton primary
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Table 34. Effective trophic level of the components

in the WAP 1999 carbon model, found using the network

analysis program, NETWRK .exe by Ulanawicz (1986).

The nonliving components, DOC and Detritus are assigned trophic levels of 1.

Component Effective Trophic Level
Small Phytoplankton 1
Large Phytoplankton 1
Bacteria 2
Protozoans 2.01
Microzooplankton 2
Krill 2.09
Myctophids - 3.09
Penguins 3.09
Salps 2.34
DOC 1
Detritus 1
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production, increased the consumption of detritus by krill by 12 X and the decrease of
10% decreased the consumption to zero (Figure 36, Tables 35 and 36). The 10% increase
in the small phytoplénkton primary production, increased the consumption of detritus by
krill by 24 X and the decrease of 10% also decreased the consumption to zero (Figure 36,
Tables 35 and 36). Other flows that showed large changes to manipulations of the input
parameters were the release of DOC by large and small phytoplankton. The large
phytoplankton release of DOC increased by about 2 X with 10% increases in large
phytoplankton primary production and minimum bacterial production (Figure 37, Tables
35 and 36). The small phytoplankton release of DOC increased 4.6 X with the increase

in minimum bacterial production (Figure 37, Tables 35 and 36).

The input parameters that had the greatest effects on the flows in the 1999 inverse
solution, as seen in the 1996 model, were the large and small primary production. The
+-10% changes in the large phytoplankton production, brought about changes greater
than 10% in between 35 (+10% change) and 41 (-10% change) of the total 56 flows
(Figure 38, Tables 37 and 38). The +/- 10% changes in the small primary prodliction,
triggered changes greater than 10% in between 24 (-10% change) and 27 (+10% change)
of the flows (Figure 38, Tables 37 and 38). The increase in minimum bacterial
production changed 34 of the 56 flows by more than 10% (Figure 39, Tables 37 and 38).
Changes in penguin feeding and in salp maximum feeding brought about changes of

greater than 10% in 7 or fewer flows (Tables 37 and 38).

There wasn’t one flow that stood out as being the most sensitive in the 1999

solution. Many of the flows were altered by more than 10% by changes in 3 of the input
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parameters. The microzooplankton consumption of bacteria, bacteria to detritus, and
bacterial release of DOC were zero in the original solution and made positive by the
increase in the minimum bacterial production (Figure 39, Tables 37 and 38). The
minimum bacterial production was zero in the original solution, so the increase forced

positive bacterial production.
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Figure 36. Sensitivity analysis for changes in the input parameters: large and small net
primary production in the western Antarctic Peninsula, 1996 carbon model. The input
parameters, representing measurements, were varied by + and - 10 %, individually.
The response of the food web flow is the new value resulting from the +/- 10 % change

in the input parameter divided by the original value of the flow. Food web flow numbers

are described in Tables 34 and 35.
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Figure 37. Sensitivity analysis for changes in the input parameters: minimum bacterial
production and krill minimum feeding in the western Antarctic Peninsula, 1996 carbon model.
The input parameters, representing measurements, were varied by + and - 10 %, individually.
The response of the food web flow is the new value resulting from the +/- 10 % change in the
input parameter divided by the original value of the flow. Food web flow numbers are

described in Tables 34 and 35.
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Figure 38. Sensitivity analysis for changes in the input parameters: large and small net
primary production in the western Antarctic Peninsula, 1999 carbon model. The input
parameters, representing measurements, were varied by + and - 10 %, individually.

The response of the food web flow is the new value resulting from the +/- 10 % change
in the input parameter divided by the original value of the flow. Food web flow numbers

are described in Tables 37 and 38.
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Figure 39. Sensitivity analysis for changes in the input paraméters: large and small net primary
production in the western Antarctic Peninsula, 1999 carbon model. The input parameters,
representing measurements, were varied by + and - 10 %, individually. The response of the

food web flow is the new value resulting from the +/- 10 % change in the input parameter divided

by the original value of the flow. Food web flow numbers are described in Tables 37 and 38.
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Table 38. Sensitivity Analysis with change in input parameters by - 10 % for the WAP 1999 carbon model.
The ratio shown is the model flow resulting from the 10 % change in the input parameter divided by the original model flow.
A '+’ before a value indicates the value was 0 in original solution and increased to the # mmols C m-2d-1 shown.

Kl s
LurgoNef Sl Nei Minitowed  Makimund Misinina Maitoas] Rel] waxisind Myctophid  Myctopi Selp ulp
Primary  Privany Bacteriuf Bucteriu]  minitsun e Krill Penguig Minimuny  Maximun, yctopl i
Flow ¥ Productioe]_Procuctioe Expord Production] _Productioe] Busterisl Bionssd o Feesiing Fooding _Tep] feodin _feoding Biomwss) _Focting _Feotin Bionuss foing_|feeating
Large phytoplankton gross
1 nary production 0.61 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 100 | 100 1.00 1.00 1.00 1.00 1.00 1.00
2 [Large phywplankon respimation | 061 | _1.00 100 (00 {100 1.00 1.00 1.00 100 | 100 100 | 100 | 100 | 10 | 100 100 | 100 | 100
|Microzooplankton grazing of .
large phytoplankton 055 101 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 100 | too 1.00 1.00 1.00 1.00 1.00 1.0t
0.62 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 100 | 100 ) 1.00 1.00 1.00 1.00 1.00 1.00 1.01
5 & ankton sizcin 0.59 1.02 1.00 1.00 100 1.00 1.00 1.00 1.00 | 100 | 100 | 100 1.00 1.00 1.00 1.00 1.00 1.01
Large phywoplatikton release of
& |ooc 090 | 1.00 1.00 100 | 100 1.00 100 1,00 100 | 100 | 100} 100 | 100 ]* 100 1.00 100 | 100 ) 100
Smuall phytoplankion gross
7 rizary production 1.00 0.61 1.00 100 1.00 1.00 1.00 1.00 100 | 100 [ 100 | 1.00 1.00 1.00 1.00 1.00 100 .00
8 |Small phytoplaniaon respiration | 100 | 068 1.00 1.00 100 1.00 100 1.00 100 | 1 100 | 100 | 100 1.00 1.00 100 | oo | too
Protozoan grazing of sl —
9 |phytoplankton 080 | o067 100 1.00 1.00 1.00 1.00 10D 1.00 100 | 100 1.00 100 | 100 | tor
[ Microzooplankion grazing of
10__|snall phytoplankion 091 | 054 100 100 | 100 1.00 1,00 1.00 100 | 100 | 100 100 | 100 [ 1oo 100 1o | 100 | 101
11 Snual] phyoplankion 1 detritus 1.00 0.54 100 1.00 1.00 1.00 1.00 1.00 100 | 100 100 | 1.00 1.00 1.00 1.00 1.00 1.00 101
Sinall phytoplankion release of
12 DOC 1.00 0.90 100 100 1.00 1.00 1.00 1.00 100 | 1.00 100 | 100 1.00 1.00 1.00 1.00 1.00 1.00
Microzooplankton consumption E
13 |of protozoans 022 | 216 1.00 1.00 1.00 100 100 1.00 100 | 100 | 100 | 100 | 096 [ 1.00 1.00 100 | 1.00 | 103
14 |ioill consumption of protozoans | 335 | 034 1.00 1.00 1.00 100 1.00 1.00 100 | 1.00 | 1.00 [ 100 | 099 | 1.00 100 100 | 100 | 035
15 Prowzoan respiration 0.72 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 100 | 100 j 1.00
16 |Protozoans to detritus om | om 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 100 | 1.00
17 __|Protozoans to DOC 072 0.79. 1.00 1.00 1.00 1.00 1.00 100 100 | 100 | 1.00 | 100
18 __{Microzooplankton respiration | 066 | 0.87 100 100 1.00 1.00 1.00 1.00 100 | 100 | 100 | 100} 100 1,00 100 100 | 100 | 100
Mesozooplantkion consusaption
19 |of microzoaplankton 100 | 068 1.00 100 | 100 100 100 1.00 100 | 100 | 100 { 100! 100 | 100 1.00 100 | 100 | 100
20 Microzooplankion to detrifnug 0.67 084 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.01
21 1on to DOC 067 | 084 1.00 100 | 100 100 1.00 1.00 100 | 100 | 100 [ 100] 100 | 100 100 100 [ 100 | 1ot
0.69 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.69 0.50 1.00 1.00 1.00 1.00 1.00 1.00 100 | t00 | 100 | 1.00 1.00 1.00 100 1.00 1.00 1.00
0.69 0.9 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
075 | 088 100 1.00 1.00 1.00 100 1.00 100 | 100 { 100} too | 100 | 100 100 100 | 100 | 1.00
493 | 748 100 1.00 1.00 100 100 100 100 | 100 | too | 1oo | 090 | 1oo 100 100 | 100 | 047
015 | 262 1.00 1.00 1.00 100 100 1.00 100 | 100 | 1.00 | 1.00 | 084 Lul)_‘_l,_ol_1 100 | 1.00 | 15§
w96 | tae9 | 100 | 100 | 100 1.00 1,00 100 100 | 100 | 100 | 100 | 1087 | 100 | 100 | voo | w0 | 2681
000 | 000 1.00 1.00 1.00 1.00 1.00 100 1.00 | 100 { 100 { (00 | 282t | 1.00 100 1.00 0.00
Protozoan consamption of . ]
30__|dearitus 032 | 100 | 1eo | 100 | 1o 100 100 100 100 100 100 o0 | woo | o0 | 1oo | 100 1.00
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Table 38. Continued.

Minimuny Kril Sulp Sl
Large Net| - Soall Ne Bacterial] Mazimuns Miniinun] Mazimumy Krill] omxinug Myctophid] Myetophi P o
Prinury|  Privuary] Productic] Bucteriaf| Bucterial i rinimuny o  Keil] Peuguin| Minimum Meximun| Myciophid{ Minimun | maximum
Flow # Production| Production] _Ex ion]_Biouns Feediug Foudity| _ Templ focding| fecding] Biomass Feeding|  Feeding) Fecding] _ Biomssdfecding _|fecding
[Microzooplankton
31 _{consumption of detritus 000 | 045 | 100 ] 100 | 100 | 100 1.00 1.00 1.00 | 100 | 1.00 | 100 [ 100 | 100 1.00 1.00 100 | 102
32__|krill consumnption of detritus | 073 | 077 | 100 | 100 | 100 | 1.00 1.00 1.00 100 | 100 | 100 | oo ! 100 [ 100 1.00 1.00 100 | 1.00
| 100 | 100 | | 100 3 100 | 100 1 100 | 100 | 100 | 100 | 100 | 1.00 |}
33 |Detritus to DOC 100 | 100 | 100 | 100 | 100 | 100 1.00 1.00 100 | 1.00 | 100 | 100 | 100 | 100 1.00 1.00 100 | 100
| 100 [ 100 | 1.00 | 100 | L 100 | | 100 | 100 | 100 } 100 | 100 | 100 | 100 |

Bucterinl ingestion of DOC 0.7y 0.91 1.00 1.00 1.00 1.00 1.00 1.00 "M 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00
Total Purticulute Export out

of the top 35 0.90 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
by higher trophic tevels or
36 [deatl) 0.86 090 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 4 100 1.00 1.00
{ 090 | 100 | 100 | 100 / (100 1 100 L 100 1oy 1O (100 4 100 |
Myctophid consusption of
37 [knll 0.28 090 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
100 | 100 | 100 | 100 | 100 | 1.00 [ 109 | 100 | 100 |
38 [Penguins conswinption of krill 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 | 100 | 090 1.00 L00 1.00 1.00 1.00
39 |Penguins to detritus 033 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 090 1.00 1.00 1.00 1.00 1.00
40__|Penguins to DOC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 100 | 090 1.00 1.00 100 1,00 1.00
41 |Penguin respiration 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 | 090 1.00 1.00 1.00 1.00 1.00
Penguin to export
(Consuption by higher
42 |uophic levels or death) 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 090 1.00 1.00 1.00 1.00 1.00
43 _|Myctophids to detritus 024 0.90 1.00 £.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 100 1.00 1.01
44__ [Myctophids to DOC 0.28 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.01
45 _jMyciophids to respiration 0.24 090 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
e | 100 | 19 10 1y 2 L e Ml L B
(Consusuption by higher
46 |woplic levels or death) 0.38 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
Salps consunption of lurge
10 nk 0.56 1.04 1.00 1.00 1.00 1.00, 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 094
1205 0.00 1.00 1.00 100 100 1.00 1.00 1.00 [ 100 | £00 | 100 | 1.00 1.00 1.00 1.00 1.00 0.00
090 0383 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03
0.18 088 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06
[ 100 | 109 | | 100 3 100 { 100 | 1.00 | 100 | 100 1 100 1 100 | 106 |
Salps consumption of
51__|microzooplankion 0.46 079 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05
52__|Sulps consutnption of detril 0.48 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03
53 __{Salp respiration Q.71 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 0.98
Salps to detritus (Faecal
54 lots) 0.7t 0.89 1.00 1.00 100 1.00 1.00 1.00 100 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 098
55 [Sulps to DOC 071 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 100 | 1.00 1.00 1.00 1.00 1.00 0.98
100 ) 1.00 3 100 | | 100 | 100 | 1.00 | 100 | 1.00 | 100 |
56 |Salps to export 0.71 0.89 I.OL‘ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 { 1.00 | 100 1.00 1.00 1.00 1.00 0.98
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Discussion

There were many similarities between the WAP 1996 and 1999 inverse carbon
solutions. Although production was about 10 X greater in the 1996 WAP inverse
solution, the sinking particulate flux as a % of the primary production was very similar in
1999, 0.18 vs. 0.20. The e-ratio was also very similar in 1999, 0.35 vs. 0.37 in 1996.
Salps made a large contribution to the model export in 1999. Salp fecal pellets exported
2% of the primary production and salp production available for higher trophic levels
made up 8% of the primary production. Salps also made a significant contribution to the
DOC pool, 12% in 1999, réplacing the 14% decrease in the Krill’s contribution between
1996 and 1999. Salps have been attributed to consurrﬁng more than 100% of the primary
production in Antarctic coastal waters (Perissinotto & Pakhomov, 1998). In the 1999
model they consumed 8% of the primary production. The occurrence of salps was very
patchy in the area of the western Antarctic Peninsula, ranging from .08 to 1600 salps /
1000 m® , with an average of 122 salps / 1000 m’ . The salps must have had a much more
significant effect on the food web on smaller spatial scales, where they were in high

abundance.

The amount of recycling was very similar in 1996 and 1999. In 1999, L was
slightly higher, 1.5 vs. 1.4. The introduction of salps helped increase recycling in the
system by adding more internal flows, but increased recycling due to their relatively

significant contributions to export.

The bacterial production was very low in both models, 0.8% of the primary

production and 2% for 1999. The constraints used for bacterial production were between
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0 and 50% of primary production and the inverse method arrived at solutions close to the
minimum constraints for both years. Despite the low productions, the ingestion of DOC
by bacteria was equal to 16% for 1996 and 17% for 1999 with almost all of this ingestion
being respired by bacteria. The low bacterial production may be a result of the tendency
of the inverse method to minimize flows. It also shows that a higher bacterial producfion

was not necessary to satisfy the measurements of the system.

Leak in the carbon pump?

Huntley et al. (1991) presented a model of a coastal Antarctic marine food web,
that estimated the amount of carbon reaching sea birds and mammals. They estimated
that 20 — 25% of the primary production was respired and introduced to the atmosphere
by these air breathing animals. They argue that sea birds and mammals in the Southern
Ocean provide a major leak in the biological pump. The Huntley et.al model includes a
3 trophic-level, short food web of phytoplankton to zooplankton to sea birds and
mammals. The model presented for the western Antarctic Peninsula is similar but more
specific to the local area, and includes the short food web of large phytoplankton (i.e.
diatoms) to Antarctic krill (Euphasia superba) to Adélie penguins (Pygoscelis adeliae).
The Huntley et al. model includes only one compartment for the microbial loop. Huntley
et al. assign 7/8 of the primary production to the short food web and 1/8 to the microbial
loop. The small proportion going to the microbial loop is based on studies in coastal
Southern Ocean waters where Huntley et al. state that microbial processes seem to be
suppressed (Huntley et al., 1992). Moloney (1992) challenges the findings by Huntley et
al. (1992), arguing that the model is over simplified. Moloney argues that the microbial

loop should contain more than one compartment, so that the grazing of small
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phytoplankton and the trophic transfers within the microbial loop are considered. The
1996 and 1999 models for the western Antarctic Peninsula include bacteria, protozoans,
and microzooplankton, which are all represented by one compartment in the Huntley

model.

The respiration by the Adélie penguins in the WAP models was just 0.04% of the
primary production in 1996 and 0.1% in 1999. The other source of significant production
that could have gone to air breathing animals not in the model, such as whales and seals,
was the krill export production. Assuming that all of the krill export production did go to
whales in 1996, and using the assumptions of Huntley et al. (1991), an estimate of the
total loss of carbon to respiration by air breathing animals can be found. Huntley used
the estimate from Laws (1985) that 10% of the krill production was consumed by whales.
In the WAP models, the total krill production was equal to the sum of the myctoﬁhid
consumption of krill, penguin consumption of krill, and the krill export production. For
1996 the total krill production was 1% + 0.1% + 17% = 18.1%_ of the primary production
and for 1999 it was 3% + 0.4% + 8% = 11.4% of the primary production. The respiration

of mammals and sea birds in the Huntley model was found using the expression:
Ry = (ax ~K1x) Ix

where R, is the respiration of a compartment, a is the assimilation efficiency, Kix
is the growth gross efficiency, and I is the ingestion as a fraction of the primary
production. Assuming values of these parameters from Huntley that will maximize the
respiration and using the total krill production times the percentage of krill consumed by

whales, the 1996 respiration is:
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R, = (0.810 — 0.016) * (0.10 * 0.181) = 0.014
and for 1999is: Ry= (0.810 — 0.016) * (0.10 * 0.114) = 0.010

The total respiration of birds and mammals from the 1996 WAP model is the
penguin respiration of 0.04% plus the whale respiration of 1.4%, equal to 1.44% of the
primary production. For 1999, the total respiration is the penguin respiration of 0.1%
plus the whale respiration of 1% equal to 1.1% of the respiration. These estimates
between 1.1 and 1.44% of the primary production are much lower than the estimate of 20
~25% in Huntley et al. (1991) and are similar to estimates by Moloney (1992) and Banse
(1995). Moloney (1992), using the Huntley (1991) model, assumed that 20% of the
primary production was consumed by zooplankton and 80% went to the microbial loop
and that the microbial loop gross growth efficiency was 0.01 vs. 0.35, assumed by
Huntley. Moloney (1992) estimated that birds and mammals respired 5% of the net
primary production. Karl Banse (1995), in another response to the Huntley et al. paper,
used variations of the Huntley model to argue that <= 3% of the net primary production
was respired by birds and mammals. Banse argued that the food web modeled by
Huntley was over simplified and that the growth efficiencies used were too high. In
response to Moloney’s criticism, Huntley et al. (1992) argued that their model was based
on measurements from Antarctic coastal systems, where as Moloney used assumptions
from the Benguela Current, a low latitude system. Huntley et al. (1992) argued the
microbial food web only receives a small portion of the primary production and its
activity is suppressed in Antarctic coastal systems. Our models were based on
measurements from the western Antarctic Peninsula. They did show a very low bacterial

productibn of less than 2% in both 1996 and 1999, agreeing with Huntley et al.’s
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(1991,1992) assumptions. Measurements of bacterial production or microzooplankton
grazing were not available for the western Antarctic peninsula, so constraints of 0 — 50%
of primary production for bacterial production and 0 — 75% of primary production for
microzooplankton grazing were used. Despite the large ranges assumed, the values
inferred by the inverse method for bacterial production and microzooplankton grazing are
consistent with all of the other measurements used in the model. Although the bacterial
production was very low, agreeing with the assumption of a suppressed microbial loop by
Huntley et al. (1992), the bacteria consumed 14% of the primary production in 1996 and
17% in 1999. Most of this carbon was respired by the bacteria. The total respiration of
the microbial organisms in 1996 was 14% for the bacteria, plus 12% for the protozoans,
plus 16% for the microzooplankton, equal to 42% of the primary production. The
Huntley model predicted the entire microbial loop respired between 0 and 16% of the
primary production, however this model does not consider the many interactions within
the microbial loop that lead to the loss of carbon through respiration in the WAP models

or the potential of bacteria to be active despite a low production.

Despite a magnitude difference in the primary production and the presence of
salps in the food web in 1999, the inverse carbon solutions for 1996 and 1999 showed
many similarities. The particulate flux and estimated export ratios were very similar.
The throughput of the particulate detritus pool was about twice that of the DOC pool in
both years. Bacterial production was very low, but in contrast to the traditional view of
the domination of the short food web (Laws, 1985; Huntley; 1991), the microbial food

web including bacteria, microzooplankton, and protozoans processed a significant
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amount of the primary production. The relative roles of the microbial food web and short

food webs will be examined in more detail in the next chapter.



Chapter IV. Svnthesis
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North Atlantic vs. Western Antarctic Peninsula

The following chapter is a synthesis of the inverse solution results for the North
Atlantic Bloom Experiment (NABE) and the western Antarctic Peninsula (WAP). A
direct comparison is made between the WAP 1996 and NABE carbon models in order to
find differences in the food web functions expressed in the two regions, as a result of the
different food Web structures. The results of the NABE and WAP models are classified
according to the food web types described by Legendre and Rassoulzadegan (1996), to

see where they lie along a continuum of oceanic systems.

A direct comparison between the WAP 1996 carbon inverse solution and the
NABE carbon inverse solution is meaningful because the inferred primary production in
the models were similar: 63 mmols Cm™d™ for NABE and 89 mmols Cmd™* for the
1996 WAP carbon model. Also, many of the results of the WAP 1996 and 1999 models
were similar with respect to the food web flows normalized to the primary production. A
new condensed model for the WAP, with the same components as the NABE model,
except for krill replacing the mesozooplankton in the WAP, was made for the
comparison. The higher trophic lévels including rnyctophidsv and penguins were not
included in the condensed model. The same input measurements and assumptions used
for the original WAP 1996 carbon model shown in Table 21, were used in the condensed

model, except for the higher trophic level measurements that were not required.
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The condensed model inverse solution for the western Antarctic Peninsula is
shown in Figure 40. The condensed model flows were almost identical to the flows in
the original 1996 carbon model. Only 2 flows changed by more than 1%. The krill
consumption of protozoans was 35% smaller in the condensed model, but was less than
1% of the primary production in both models. The krill export flow was 7% larger in the
condensed model than the full model, but increased just 1% with respect to the primary

production.

Table 39 compares the NABE and WAP 1996 carbon flows from the condensed
model, as absolute and normalized flows. The phytoplankton production was divided
differently between the small and large phytoplankton for the NABE and WAP models.
In the NABE model, the phytoplankton production was split 50/50 in the constraint
equations for small and large phytoplankton. In the WAP 1996 model, 2/3 of the
production was designated to the large phytoplankton and 1/3 to the small phytoplankton
in the constraint equations. The model obeyed these constraints, as can be verified by
subtracting the phytoplankton respiration from the corresponding gross production in
Table 39 to find the net primary production. The largest flow within the WAP food web
was the krill grazing of large phytoplankton, while the largest flow within the NABE
food web was bacterial ingestion of DOC. The sum of microzooplankton and protozoan
grazing in the NABE model was twice as great as in the WAP model. Krill grazing in the
WAP model was 8 times larger as a percentage of the primary production than

mesozooplankton grazing in the NABE model.

The DOC release by phytoplankton was equal to 6% of the primary production in

the WAP model vs. a much larger portion of 25% in the NABE model. The bacteria
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Table 39. Comparison of the North Atlantic carbon inverse solution and the 1996
western Antarctic Peninsula condensed inverse solution. Flows are expressed as absolute values
and as a % of the primary production for each area.

: WAP Flows NABE Flows WAP 1996 Flows |NABE Flows

Food Web Flow (mmols Cm?d™") |(mmols Cm?d") |as % of PP as % of PP
Large phytoplankton gross primary production 62.3 33.2 70 53
Large phytoplankton respiration 3.1 1.7 4 3
Microzooplankton grazing of large phytoplankton 9.8 15.3 11 24
krill or mesozooplankton grazing of large phytoplankton 37.1 2.9 42 5
Large phytoplankton sinking 8.9 3.6 10 6
Large phytoplankton release of DOC 3.4 9.7 4 15
Small phytoplankton gross primary production 31.2 33.2 35 53
Small phytoplankton respiration 1.6 1.7 2 3
Protozoan grazing of small phytoplankton 11.5 13.3 13 21
Microzooplankton grazing of small phytoplankton 8.7 11.9 10 19
Small phytoplankton to detritus 7.7 0.1 9 0
Small phytoplankton release of DOC 1.7 6.2 2 10
Microzooplankton consumption of protozoans ' 1.3 0.5 2 1
krill or mesozooplankton consumption of protozoans 0.2 1.5 0

Protozoan respiration 11.1 9.6 12 15
Protozoans to detritus 1.6 1.9 2 3
Protozoans to DOC 1.6 5.9 2 9
Microzooplankton respiration 14.6 11.3 16 18
krill or mesozooplankton consumption of microzooplankton 2.1 0.9 2 1
Microzooplankton to detritus 2.1 3.2 2
Microzooplankton to DOC 2.1 17 2 12
krill or mesozooplankton respiration 173 1.2 20 2
krill or mesozooplankton to detritus (Faecal pellets) . 24 0.8 3 1
krill or mesozooplankton to DOC 3.9 1.2 4 2
Bacterial respiration 12.1 13.5 14 21
Bacteria to protozoans 0.6 6.1 1 10
Bacteria to microzooplankton 0.0 4.6 0 7
Bacteria to detritus 0.0 6.3 0 10
Bacteria to DOC 0.0 9.8 0 16
Protozoan consumption of detritus 3.7 0.0 4 0
Microzooplankton consumption of detritus 1.0 0.0 1 0
krill or mesozooplankton consumption of detritus 0.0 0.0 0 0
Detritus to DOC 0.0 6.1 0 10
Bacterial ingestion of DOC 127 46.7 14 74
Total Particulate Export out of the top 35 m 17.9 9.8 20 16
krill or mesozooplankton to export (Consumption by higher

Jtrophic levels or death) 15.8 2.1 18 3
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were much more active in the NABE model. Bacteria ingested 74% of the primary

production in the NABE model vs. just 14% in the WAP model.

The particulate export leaving the surface ocean was similar for the two models,
20% for the WAP and 16% for NABE. Kiill export production, representing predation of
krill by higher trophic levels like Adélies or an increase in the krill biomass, was 18% of
the primary production, much higher than the 3% export production from
mesozooplankton in the NABE model. The estimated e- ratio from the NABE model is
equal to the sum of the sinking particulate matter, and the mesozooplankton export

production, both normalized to the primary production:
e =0.16 +0.03 =0.19.

The estimated e-ratio from the WAP model is equal to the sum of the sinking

* particulate matter, and the krill export production:
e= 0.20+ 0.18=0.38.
b.‘ Comparison*of short food web vs. microbial food web

The short food web is believed to be the most significant pathway for carbon in
coastal waters of the Southern Ocean (Huntley et al., 1991) and the micrqbial food web is
believed to play an active role in the North Atlantic (Ducklow et al., 1993; Harrison et al.,
1993; Lochte et al., 1993). The relative activities of the short food web and microbial
food webs are given for the WAP 1996 and NABE carbon models in Table 40. All of the
flows within the short food web that lead to export out of the surface ocean through

sinking or potential transfer to higher trophic levels were summed. The flows within the
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Table 40. Comparison of the microbial and short food web flows for the WAP 1996 condensed carbon model
and the NABE carbon model. Flows are normalized to the primary production for each model.
The ratio of the total microbial food web flows to the total short food web flows is shown at the bottom of the table.

WAP 1996 NABE
Microbial Food Web Flows % of PP % of PP
S Phytoplankton to Detritus 8.7 0.1
S Phytoplankton to DOC 1.9 9.9
Protozoan Grazing of S Phytoplankton 12.9 21.1
Protozoan Grazing of Bacteria 0.7 9.6
Microzooplankton Grazing of Bacteria 0.0 73
Microzooplankton Grazing of L Phytoplankton 11.1 24.3
Microzooplankton Grazing of S Phytoplankton 9.8 18.8
Microzooplankton Grazing of Protozoans 14.3 0.7
Bacterial DOC Ingestion 1.8 74.1
Bacterial Release of DOC 0.0 15.6
Bacteria to Detritus 0.0 10.0
Protozoan to Detritus 1.8 3.1
Protozoans to DOC 1.8 9.4
Microzooplankton to DOC 24 12.2
Detritus to DOC 0.0 9.8
Detritus to Protozoans 42 0.0
Detritus to Microzooplankton 1.1 0.0
Microzooplankton to Detritus 24 . 5.1
Total 74.8 231.2
Short Food Web Flows
L. Phytoplankton Sinking 10.0 5.7
Krill Grazing of L Phytoplankton 41.8 4.6
Other Kirill Production 17.8 33
Krill Faecal pellets 2.7 1.3
Total 72.2 14.9
Microbial Food Web Flows / Short Food Web Flows 1.0 15.5
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microbial food web were also summed, including all flows between the microbial
organisms and their interactions with the detritus and DOC pools. The ratio of microbial
to short food web flows for the WAP solution was 1.0, with equal activity from each
group of flows. In NABE, the microbial food web was 15.5 times more active than the
short food web (Table 40). The krill were the main contributor to the short food web
flows in the WAP model. Myctophids and Adélie penguins, not included in this
condensed model, consumed an amount of krill equal to 1.1% of the primary production
in the original model. The other krill production is a significant flow equal to 15.8
mmols Cmd” or 18% of the primary production. This represents krill growth that was

not grazed and is available for predation by higher trophic levels.
Comparison of network analysis indices

A comparison of network analysis indices for the 2 models indicates the bacterial
production is much greater in NABE, where it accounts for 43% of the primary

production vs. 1% in the WAP model (Table 41). The dominance of krill in the western
Antarctic Peninsula is evident with the krill processing 52% (firi = 52%) of the total

carbon passing through all the zooplankton. The dominance of microzooplankton and

protozoans in the North Atlantic is obvious with the total throughput of
microzooplankton and protozoans equal to 89% (f;c = 48, fpro = 41) of the total carbon

passing through all the zooplankton.

The recycling index, L and the Total Ingestion / PP indicate greater recycling in
the North Atlantic than the western Antarctic Peninsula (Table 41). The average carbon

atom passes through the North Atlantic food web 2.6 times before exiting through
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Table 41. Network analysis indices for the WAP 1996 condensed carbon model and the NABE carbon model.
Fbac is the ratio of bacterial production to net primary production.

L is the index of recycling equal to the number of times a carbon atom cycles through

the food web before leaving through respiration, sinking, or predation by higher trophic levels. -

The Total ingestion/ PP is the total ingestion of all zooplankton components plus the ingestion

of DOC by bacteria divided by the net primary production.

Fpro, Fmic, and Fmes are the ratios of the total flows through each compartment to the total

flows through all three grazer compartments.

WAP 1996 NABE
Fbac (%) 1 43
Fpro (%) 21 41
Fmic (%) .2 48
Fkri or Fmes (%) 52 11
L 1.4 2.6
Total Ingestion / PP 1.0 1.6
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respiration or sinking, while L for the western Antarctic Peninsula is 1.4. The Total
Ingestion / PP indicates that in the North Atlantic food web, zooplankton and bacteria
process 160% of the primary production, indicatihg a strong reliance on recycled carbon.
In the western Antarctic Peninsula food web, the zooplankton and bacteria process 100%

of the primary production, indicating no reliance on recycled carbon.

In order to get an indication of the activity of a compartment, all of the flows
entering a compartment can be summed and divided by the net primary production. For
the North Atlantic model, 74% of the primary production passes thfough the DOC pool.
For the WAP model, 14% of the primary production passes through the DOC pool. For

both models 25% of the primary production passes through the detritus pool.

Discussion

Krill were key organisms affecting the flow of carbon in the western Antarctic
Peninsula food web and microbial organisms were key in the North Atlantic. The
greatest flows within the WAP model were related to krill, while the greatest flows
within the NABE model were bacterial ingestion and microzooplankton grazing. The
dominance of krill is not too surprising given that krill usually dominate‘thc zooplankton
biomass in the western Antarctic Peninsula (Ross et al., 1998). In 1996 krill biomass was
227 mmols Cm™ (Table 16) vs. the mesozooplankton biomass of 7 mmols Cm™ (Table 1)
in the North Atlantic in May 1989. The krill biomass was equal to almost 1/3 of the

phytoplankton biomass in the western Antarctic Peninsula.

Active recycling was evident in the North Atlantic model, while weak recycling

was seen in the western Antarctic Peninsula model. The microbial food web flows
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processed 15.5 times more carbon than the short food web flows processed in the NABE
model. In the WAP model, the short food web and microbial food web flows processed
an equal amount of carbon. A carbon atom cycles through the NABE food web, on
average about 2 times more before exiting than in the WAP model. The organisms in the
NABE model depend upon recycled carbon to supply a substantial portion of their diet,
while the organisms in the WAP rely very little on recycling. The NABE food web is
dominated by DOC flows, with 3 more times the amount of carbon passing through the
DOC pool than the detritus pool. In thé W AP model more carbon passes through the

detritus particulate pool than the DOC pool.

Bacterial production was much greater in the NABE model. In the WAP model,
bacterial production was just above zero. The Bacterial ingestion of DOC was about 5
times greater in the NABE model, 74% of prilﬁary production vs. 14% for the WAP.
This result agrees with findings in the area by Karl et al. (1999), who found that the
bacteria were uncoupled with phytoplankton during the spring bloom in the Gerlache
strait, just north of the western Antarctic Peninsula. Bacterial biomass was lowest where
phytoplankton biomass was high and highest where phytoplankton biomass was low in
the Gerlache strait in 1989. High grazing rates of bacteria were measured by dilution
experiments in areas of high phytoplankton biomass, during the bloom. The WAP model
showed very low grazing of bacteria, equal to just 1% of the primary production. The
bacteria respired almost all of their carbon intake. Despite the bacterial production of
almost zero, the bacteria still played an active role in the food web by ingesting 14% of
the primary production. The bacterial production and the microzooplankton grazing

inferred by the WAP models give estimates of these unmeasured flows that are consistent
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with all the other measurements. Large ranges were assigned to the constraints for
bacterial production and microzooplantkon grazing, because these processes are highly
variable across the world’s oceans and not well understood in the Southern Ocean (Caron
et al.,2000; Froneman and Perissinotto, 1996; Becquevort, 1995; Karl, 1999(2)). The
microzooplankton grazing inferred by the inverse method was 21% of the primary
production in 1996 and 26% in 1999. The power of the inverse method is evident when it
provides estimate of microzooplankton grazing that would not have been known
otherwise and was constrained between such a large range of 0 and 75% of the primary

production.

The estimated e-ratio of 0.38 for the WAP model was twice as high as in the
NABE model, e = 0.19. Kiill export production was equal to a large portion of the WAP
primary production, 18%. In the WAP 1996 full carbon model, penguins and myctophids
together just consumed 1.1% of the primary production in the form of krill. This leaves
17% of the primary production that could go to an increase in krill biomass or could be
passed up the food web to other predators not modeled. Baleen whales consume an
estimated 10% of krill production in the Southern Ocean (Laws, 1985) and could have
consumed some of this krill production. The production could have also gone uneaten
and increased the krill biomass. The model assumed no change in the krill biomass over
the month of the study. The month of January is during the summer bloom and krill
biomass is highly variable across seasons with up to an order of magnitude increase from |
fall/ winter to spring / summer (Lascara et al., 1999), so a significant increase in krill

biomass most likely took place.
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The model e-ratio of 0.19 for NABE was lower than the estimated f-ratio of 0.45
found by Martin (1993) using sediment trap data. The model verifies other researcher’s
conclusions (Garside & Garside, 1993) that all of the new production was not realized in
export, but remained in the food web. The model did account for a sink for this
unrealized export with the inclusion of the observed changes in biomass of bacteria and
microzooplankton. The bacterial biomass increase of 6 mmols Cm™2d™” and the

microzooplankton increase of 9 mmols Cmd! were included in the model.

Other food web flows that were inferred by the inverse method that are not
otherwise known include interactions with the detrital pools. In both the NABE carbon
and WAP 1996 models, the total throughput of the detritus pool was 25% of the primary
production. In an inverse analysis of a plankton food web off Southern California,
Jackson and Eldridge (1992) also found detritus was a key component, receiving large
contributions from sinking phytoplankton and making significant contributions to the
dissolved organic matter pool. In the NABE carbon solution, the dissolution of detritus
made up 13% of the input to the DOC pool. In an inverse analysis of a plankton food
web of the Takapoto Atoll in French Polynesia, Niquil et al. (1998) found that detritus
played an important role providing food for all of the zooplankton components. In the
NABE carbon solution there was no consumption of detritus by zooplankton, however in
the nitrogen solution all of the zooplankton components consumed detritus. This
discrepancy is not possible in nature and future solutions could use a C:N ratio to force
either the carbon or nitrogen solution to be more consistent with the other. In the WAP
models, detritus was consumed by almost all of the zooplankton components in 1996 and

all except for microzooplankton in 1999.
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Food web flows of dissolved organic matter are other flows the inverse solution
estimates that were not measured. In the NABE carbon and nitrogen solutions, the
throughputs of the DOC and DON pools were a large portion of the primary production,
74% for carbon and 55% for nitrogen. In the NABE models large phytoplankton,
bacteria and microzooplankton made the largest contributions to the DOC and DON
pools. Bacteria were one of the biggest contributors to their own food source. In the
WAP models, krill, and large phytoplankton were the biggest contributors and sizable

inputs were received from all the living components except for bacteria.

The differences in food web structure between the North Atlantic and the western
Antarctic Peninsula did result in very different food web function in the two regions.
Recycling was strong in the North Atlantic, as evident in the carbon solution and
especially the nitrogen solution. Dissolved organic matter flows were 2 -3 times greater
" than particulate detritus. Recycling in the western Antarctic Peninsula was much less
pronounced and the short food web flows were just as significant as the microbial food
web flows. Particulate detritus flows equaled dissolved organic carbon flows in the
western Antarctic Peninsula. Export in the western Antarctic Peninsula was twice as high
as the export in the North Atlantic with respect to the primary production. The flow of
carbon within the food web of the North Atlantic was dominated by microbial organisms
and interactions with the DOC pool. In the western Antarctic Peninsula, carbon flows

were dominated by krill.
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Classification of Food Webs

Legendre and Rassoulzadegan (1996) dpscn’bed three pathways for carbon to flow
through a food web; the sinking of ungrazed phytoplankton, food web transfer, and
recycling. They related these three food web functions to the size structure of the
phytoplankton and matching of phytoplankton with grazing. Legendre and
Rassoulzadegan derived equations to solve for the proportion of the primary production
going to each of the three pathways based on the ratio of large phytoplankton to total
phytoplankton, PL/Pr and the matching between phytoplankton and grazing, M. They
used values from the literature to estimate the magnitude of these food web functions for
5 different types of food webs. The food web types ranged along a continuum of a
decreasing ratio of export to primary production. On one end of the extreme is the
sinking of ungrazed cells, representing a food web with high primary production that is
not matched by grazing. On the other end of the extreme is the microbial loop, an almost
closed system with near zero input of primary production, and consisting of bacteria and
protozoans. In between the two extremes in order of decreaéing export/ production are
the herbivorous, the multivorous, and microbial food webs. The herbivorous food web is
dominated by large phytoplankton production and grazing by mesozooplankton, while
the microbial food web is dominated by small phytoplankton production and protozoan
and microzooplankton grazing. The multivorous food web includes equal roles of large

and small phytoplankton and herbivorous and microbial grazing.

Using measurements of the size structure of the phytoplankton, Py /Pt and
estimates for the degree of matching, M, Legendre and Rassoulzadegan solved for the 3

pathways of carbon flow in the 5 different food web systems and compared the results to
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estimates from the literature. Legendre and Rassoulzadegan (1996) found good

agreement between their derived values of food web function and the estimates from the
literature (coeffiecient of determination, R* = 0.83), supporting their assumption that the
size structure of the phytoplankton and degree of matching strongly influence food web

function.

Literature estimates for the 3 food web functions from Table 2 in Legendre and
Rassoulzadegan (1996) for five different types of food webs, provide a baseline to
compare estimates of these functions from the WAP carbon models and NABE carbon
model (Table 42). The food web transfer described by Legendre and Rassoulzadegan
(1996), F/Pr includes any carbon passed up the food chain that is exported out of the
surface ocean by sinking or transfer to higher trophic levels, before being recycled. This
includes the fecal pellets and export production of mesozooplankton or krill. In the WAP
models it also includes myctophid, and salp (for 1999) fecal pellets and export
production. Penguin export productioh is also included, but not penguin feces, which are
mostly left on land. The recycling pathway, Rt/Pt was found by subtracting the total
export equal to the sum of Fr/Pr and D1/Pr, from the total net primary production, equal

to 1.0.

The NABE carbon model has food web functions lying somewhere between the
multivorous food web and the microbial loop, even though the segregation of the primary
production Py/Prof 0.5 is much higher than assumed for these systems. The recycling
pathway consumes a high proportion of the primary production, Rt/Pr= 0.9, putting the
North Atlantic food web between the microbial food web and the microbial loop. The

food web transfer, F1/Pr of 0.4 is very low, putting the food web close to the microbial
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loop, while the sinking phytoplankton pathway, D1/Prof 0.10 is the same as in Legendre
and Rassoulzadegan (1996) multivorous food web. The WAP 1999 and 1996 models
show similar results to the Legendre and Rassoulzadegan (1996) analysis. The WAP
1996 carbon model is closest to the multivorous food web, but still leaning towards the
microbial food web. The recycling pathway, Rt/Pt of 0.63 is slightly higher than for the
multivorous food web. The food web transfer pathway, F1/Pt of 0.2 is equal to that of
the microbial food web. The WAP 1999 model is also close to the multivorous food web
with leanings towards the microbial food web. The recycling pathway, R1/Pr = 0.68 is
about halfway between the recycling in Legendre’s multivorous food web and microbial
food web. The food web transfer is close to the microbial food web value, while the

sinking phytoplankton pathway is higher than in the multivorous food web.

The inverse solutions give values of the food web functions that are somewhat
different than would be expected using Legendre and Rassoulzadegan’s (1996)
assumptions of siz¢ distribution of primary production and matching. The size
distribution of primary production for each of the inverse models indicate food webs
lying somewhere between the multivorous and herbivorous food web. However, the food
web functions calculated from the inverse model results put the North Atlantic food web
somewhere between the microbial food web and microbial loop and the western Antarctic
Peninsula food web close to a multivorous food web with leanings towards the microbial
loop. The matching parameter used by Legendre and Rassoulzadegan is an arbitraty
parameter that is not related directly to measurements. For NABE, the matching between
grazers and phytoplankton was likely high because the fast growing microzooplankton

and protozoans dominated the grazing. This high degree of matching would push the
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NABE food web towards higher recycling in the direction of the microbial loop. For the
WAP, the dominance of krill grazing would give a lower degree of matching than in
NABE because of the relatively slower growth of krill to microzooplankton and push the
food web towards the extreme of sinking of ungrazed cells. There is a bias in both of the
inverse solutions towards the microbial loop extreme. The assumptions from Legendre
are based on only a few food webs, so it is possible that with data from more systems
these description of food web types would be different and biased towards higher

recycling.
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Appendix

-The Inverse Method

All of the possible flows in the food web are defined in mass balance equations
(Vezina & Platt, 1988). The flows entering each component must equal the flows leaving
plus any observed or assumed change in biomass of the component over the period
studied (zero for steady state). The observations of flows are used as targets for the
solution. The boundary conditions for the model are defined using measured primary
production as the input and measured sedimentation as the output for the system (Vezina
& Platt, 1988). Observed biomasses are used along with biological constraints, such as
respiration and assimilation efficiency to keep the unknown flows within reasonable
ecological and physiological boundaries (Jackson & Eldridge, 1992). For example, the
biomass of bacteria can be used to find the maximum maintenance respiration for the
bacterial community in the system, using the relationship defined by Moloney and Field
(1989). The inverse method then provides a solution that satisfies the conservation of

mass equations, the boundary conditions, and the biological constraints.

The inverse solution is set up as a matrix problem and solved using least square
techniques including the singular value decomposition (Vezina and Platt, 1988; Jackson
& Eldridge, 1992). A number of linear equations describing the mass balance, boundary
conditions and measured flows of the food web are put into matrix form. For example, if

the measured bacterial production was equal to 10 mmols Cm™d™ then the linear equation

might be:



166

1.0%BactoPro + 1.0*BactoMic + 1.0*BactoDOC = 10 mmols Cm?>d’!

where BactoPro, BactoMic and BactoDet are the consumption of bacteria by protozoans
and microzooplankton, and the contribution of bacterial cells to detritus. The coefficients
before each term go into the state variable matrix A, an m x n matrix, where m is equal to
the total number of equations and » is equél to the number of unknown flows in the food
web. The flows (BactoPro,etc.) go into an n x I vector, r and the measured value of 50
mmols Cm™d™ goes into an n x I vector, b. The mass balance and boundary conditions
are put into matrix form in a similar way to arrive at the continuity equation for the

system:
Ar=>

The number of equations is usually much less than the number of unknowns for
foodwebs. For the mass balance equations, the vector b will hold zero values for a
situation that is assumed to be in steady state or nonzero values for a system where the
changes in components have been measured. The singular value decomposition is used
to arrive at a solution to the continuity equation and assigns estimates of the unknown

flows to the vector r.

Biological constraints on processes like respiration and assimilation can be used
to provide more equations to further constrain and better approximate a solution. For
example if the minimum phytoplankton respiration is assumed to be five percent of gross

primary production the equation would be:

1.0*%Phyres >.05*Gpp
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where Phyres and Gpp are the phytoplankton respiration and gross primary production,

respectively. The above equation can be rearranged as follows:
1.0*%Phyres - 0.05*Gpp >0

The coefficients of the equation are put into an n, x n matrix of inequality
coefficients, G, where n.is equal to the number of inequality equations. The unknown
flows are included in the n x I vector, r, and the right hand side of the equation is put
into an n x I vector of inequality constants, /. The constraint equation for the system is

then written as:
Gr, 2h

The vector r, is the final solution to the unknown flows and contains r, the
solution to the continuity equation plus additional information provided by the solution to
the constraint equation. A least distance algorithm is used to arrive at an estimate for r,,
(Vezina & Platt, 1988). The solution minimizes the sum total of the flows and the
differences between the flows (Vezina & Platt, 1988). Conceptually, the solution gives
the point that is within a space defined by an infinite number of potential solutions (like a
plane in three dimensions) and is the shortest distance from the solution space to the
origin (Vezina & Platt, 1988). The solution is then the simplest of an infinite number of
potential non-trivial solutions. The inverse solution obeys the parsimony principle that
requires that 1) the flows go as directly as possible where required according to all of the
equations that constrain them (mass balance, Boundary conditions, biological constraints,
etc.), 2) when several pathways leaving a component are of equal length the flows are

equally divided among them, and 3) the non-necessary matter exits the food web through
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the shortest possible pathway (Niquil et al., 1998). Niquil et al. describe some potential
problems with using the parsimony principle, such as the number of trophic levels being
artificially shortened because direct flows, such as zooplankton grazing on phytoplankton
are favored over less direct flows, like the microbial loop. Despite some bias introduced
‘with the parsimony principle, it provides a unique solution and has been widely used
(Vezina and Platt, 1988; Ducklow et al., 1989; Jackson and Eldridge, 1992; Niquil et al.,
1998;). We employ it here for ease of calculation and for continuity with earlier

applications.

The inverse analysis was performed using a MatLab program written by
George Jackson of Texas A & M University. The program takes the data input for the
model from an Excel spreadsheet that must be formatted with the continuity and
constraint equations. The output of the program includes the inferred flows written to the
Excel spreadsheet and a flow diagram of the food web model, with flows having widths

proportional to their magnitudes (eg. Fig. 1).
Network Analysis and Sensitivity

There are several network analysis techniques that can be used to evaluate the
food web structure. The NETWRK software package by Ulanowicz and Kay (1986)
supplies several of the following techniques. Fractional outflows can be easily calculated
and give the fraction of the total outputs leaving a compartment that enter another
compartment of interest, over all direct and ihdirect. pathways (Kay et al., 1989). A more
complex technique is determining dependency coefficients that give a measure of how

much each component of the food web depends on every other component. The
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dependency coefficient is the fraction of the total input to a component that passes
through a specific donor component on its way to the recipient. The dependency
coefficient allows one to find ﬁow much of an organism’s diet comes from another
component in the food web, over all direct and indirect pathways (Jackson & Eldﬁdge,
1992). This is more useful in complex food webs where organisms feed at several

trophic levels.

The Lindeman trophic aggregation can be used to find the effective trophic levels
for components in a food web and the tropic efficiency of each trophic level. The
effective trophic level gives an idea of the role the component is playing in the food web.
For example, Ducklow et al. (1989) found for an open ocean plankton model that
mesozooplankton had an effective trophic level of 2.26 for a month when they were
feeding extensively on detritus that had an effective trophic level equal to 1. Normally,
the mesozooplankton had trophic levels above 3 when they fed primarily on
microzooplankton with tropic levels close to 2. The trophic efficiency can be used to
compare organisms within the same trophic level and to track an ofganism’s changing
role with other changes in the model (Kay, 1989). The trophic efficiency is a measure of
the fraction of the total input entering a trophic level that is passed on to the next trophic
level (Rhyther, 1969; Pauly and Christensen,1995). The trophic efficiency can give an
indication of which trophic level and its respective components are most important in

contributing to export from a system.

In addition to network analysis, different techniques can be used to measure the
sensitivity of the model generated by the inverse solution. Jackson & Eldridge (1992)

varied each input variable to their inverse model solution by +/- 10% and compared the
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resulting solutions. Niquil et al. (1998) removed measured flows from the input to their
inverse model solution to test the sensitivity of the solution to the inclusion of particular
measurements. Niquil et al. also varied the food web structure by removing and adding
intercompartmental flows to their model. The inverse solution can give resolutions of the
equations used in the contimllity equation and also for the calculated flows (Vezina &
Platt, 1988). The resolutions are between zero and one and describe how much
independent information each equation within the continuity equation provides for the
solution. The resolutions for the flows indicate the degree that each flow was calculated
independently from all other defined parameters in the model. Another analysis approach
is comparing the model of Legendre & Rassoulzadegan (1996) to the inverse model
results. Legendre & Rassoulzadegan developed equations that calculate food web
functions like downward flux of DOC and food web transfer, depending on the size
structure of the phytoplankton and matching of phytoplankton with grazing. These
functions of the food web can be calculated from the inverse model results and compared

with the classifications of food webs used by Legendre & Rassoulzadegan (1996).
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