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Reduction of calcium release site models via fast/slow analysis
and iterative aggregation/disaggregation

Yan Hao,' Peter Kemper,? and Gregory D. Smith’
]Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA
2Depan‘memt of Computer Science, College of William and Mary, Williamsburg, Virginia 23187, USA

(Received 15 February 2009; accepted 17 August 2009; published online 18 September 2009)

Mathematical models of calcium release sites derived from Markov chain models of intracellular
calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon
of calcium puffs and sparks. Such models often take the form of stochastic automata networks in
which the transition probabilities of each channel depend on the local calcium concentration and
thus the state of the other channels. In order to overcome the state-space explosion that occurs in
such compositionally defined calcium release site models, we have implemented several automated
procedures for model reduction using fast/slow analysis. After categorizing rate constants in the
single channel model as either fast or slow, groups of states in the expanded release site model that
are connected by fast transitions are lumped, and transition rates between reduced states are chosen
consistent with the conditional probability distribution among states within each group. For small
problems these conditional probability distributions can be numerically calculated from the full
model without approximation. For large problems the conditional probability distributions can be
approximated without the construction of the full model by assuming rapid mixing of states con-
nected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to
obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several
different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the ef-
fectiveness of automated calcium release site reduction utilizing the Koury—McAllister—Stewart

method. © 2009 American Institute of Physics. [DOI: 10.1063/1.3223663]

Mathematical modeling has played an important role in
understanding the relationship between single channel
gating of intracellular calcium (Ca?*) channels and the
stochastic dynamics of Ca?* release events known as Ca**
puffs and sparks. Ca** release site models are defined by
the composition of single channel models whose transi-
tion probabilities depend on the local calcium concentra-
tion and thus the state of the other channels. Because the
large state space of such models impedes computational
analysis of the dynamics of Ca?* release sites, we imple-
ment and validate the application of several automated
model reduction techniques that leverage separation of
time scales, a common feature of single channel models
of inositol 1,4,5-trisphosphate receptors (IP;Rs) and
ryanodine receptors (RyRs). The authors show for the
first time that memory-efficient iterative aggregation/
disaggregation (IAD)-based numerical schemes are effec-
tive for fast/slow reduction in compositionally defined
Ca?* release site models.

I. INTRODUCTION

Localized intracellular Ca’* elevations known as puffs
and sparks arise from the concerted gating of IP;Rs and
RyRs, intracellular Ca?* channels that are clustered at release
sites on the surface of the endoplasmic reticulum or sarco-
plasmic reticulum."” When Markov chain models of these
intracellular Ca**-regulated Ca>* channels are coupled via a
mathematical representation of a Ca** microdomain, simu-
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lated Ca®* release sites may exhibit the phenomenon of “sto-
chastic Ca®* excitability” where channels open and close in a
concerted fashion reminiscent of Ca?* puffs and sparks.&9
Detailed modeling and analysis of the stochastic dynamics of
Ca?* release have helped to develop our understanding of the
relationship between single channel kinetics and emergent
phenomena that lead to localized Ca®* elevations such as
Ca* puffs and spalrks.()_19 However, the state-space explo-
sion that results when Ca?* release site models are composi-
tionally defined in terms of single channel models is a chal-
lenge to physiologically realistic modeling of the stochastic
dynamics of Ca** release.®?

Quasistatic approximation based on a separation of time
scales is a well-established approach to reducing single chan-
nel models of Ca®*-regulated Ca®* channels. Ordinary differ-
ential equation (ODE) models of the dynamics of whole cell
Ca’* responses are often reduced through the observation
that Ca”* activation of IP;Rs or RyRs is a faster process than
Ca?*-dependent or independent inactivation. For example,
the four-state Keizer—Levine®! RyR model shown in Fig. 1
can be reduced to a two-state model that can be represented
by a single Hodgkin—Huxley-style gating variable in whole
cell models of Ca’* oscillations, because the C;« O, and
0, O5 transitions are fast compared to the O, C, transi-
tions.  Similarly, the well-known eight-state De
Young—Keizer22 IP;R subunit model can be reduced to two
states by assuming both IP; potentiation and Ca®* activation
are fast compared to Ca>* inactivation.”

© 2009 American Institute of Physics
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FIG. 1. State-transition diagram for the Keizer-Levine RyR model (Ref.
21). This model includes two closed (C; and C,) and two open (O, and O5)
states. The C;— O, and O,— Oj transitions involve binding of four and
three Ca* ions, respectively, while the other transitions do not involve Ca*.
Parameters as in Ref. 21: k;,=1500 uM™* s7'; ky3=1500 uM=3s7';in s
k2, =28.8, k3,=385.9, ky,=1.75, and ky,=0.1.

The fast/slow analysis that occurs in many ODE models
of intracellular Ca* responses is straightforward because the
intracellular channels are coupled to the bulk cytosolic
[Ca*], the dynamics of which are assumed to be slow com-
pared to the fast transitions within identified groups of states
(e.g., C}, O,, and Os in Fig. 1). While fast/slow reduction
can be applied to Markov chain models of Ca®* release sites,
the kinetics of domain Ca?* near clusters of intracellular
channels are considerably faster than the kinetics of bulk
Ca* (milliseconds as opposed to seconds). Consequently, in
the release site models that are the focus of this paper, the
domain [Ca?*] is assumed to be an instantaneous function of
the number of open channels at a release site. That is, do-
main Ca’* is not an environmental variable extrinsic to the
Ca?* release site model, but rather an intrinsic aspect of the
model that is algebraically determined from the current re-
lease site state.'”'*'*** The focus of this paper is the imple-
mentation and validation of automated fast/slow reduction
procedures for this particular class of Ca>* release site mod-
els, which are large structured time-homogeneous Markov
chains.

The remainder of this paper is organized as follows. In
Secs. II and III we motivate our model formulation and show
a representative simulation of a Ca®* release site composed
of multiple Keizer—Levine RyRs interacting via a common
domain [Ca**]. In Secs. IV and V we demonstrate and vali-
date fast/slow reduction in compositionally defined Ca>* re-
lease site models. Importantly, the conditional probability
distributions required for fast/slow reduction can be numeri-
cally approximated without the construction of the full
model, resulting in a memory-efficient implementation. In
Secs. VI and VII we show how IAD methods can be em-
ployed to obtain a reduced Ca®* release site model through
exact calculation of the required conditional probability dis-
tributions. In Sec. VIII we show how a fast/slow reduced
Ca’* release site model can be used to efficiently compute
puff/spark statistics, such as the probability distribution of
the time required to achieve a specified number of refractory
channels after a step increase in [Ca’*]. Section IX discusses
limitations and possible extensions this approach to reduc-
tion in Ca>* release site models.

Chaos 19, 037107 (2009)

Il. MODEL FORMULATION

Stochastic models of single channel gating often take the
form of continuous-time discrete-state Markov chains (for
review see Refs. 25 and 26). For example, Fig. 1 shows the
state-transition diagram for the four-state Keizer-Levine
RyR that includes both fast Ca’* activation and slower
Ca?*-independent inactivation.”! Under the assumption that
domain [Ca®*] changes are fast compared to channel transi-
tions, this single channel model is continuous-time Markov
chain with infinitesimal generator matrix @=(g,;) given by

O 0 0

Q: k21 O k23(Coc+C*)3 k24 ’ (1)
0 ks o 0
0 kp 0 o

where the states have been ordered C;, O,, O3, and C,4. The
off-diagonal entries of the Q-matrix for this irreducible and

time-homogeneous Markov chain are transition rates defined
by

g;;= lim LPlr[S(t + A1) =j|S() =], (2)
Ar—0 At

where i#j and S(7) € {1,2,3,4} indicates the state of the
stochastically gating channel at time ¢. The diamonds on the
diagonal entries of the Q-matrix indicate values leading to
row sums of zero, g;;=—2 i+#i4;j<0. Note that the rate con-
stants ko, (and k,,) for Ca**-independent inactivation of the
RyR (and recovery from inactivation) have units of time™".
The dissociation rate constants k,; and k3, also have units of
time™!. The association rate constants k,; and k;, have units
of conc™” time™' where 7=3 or 4 is the cooperativity for
Ca’* binding to the regulatory site of the channel. Consistent
with the assumption of fast [Ca**] changes, the background
[Ca®*] denoted by c., is used for the C,— O, transition,
while the concentration c,.+c, is used for the O, — O5 tran-
sition. The parameter c, denotes the elevation over back-
ground Ca’* experienced by the Ca®* regulatory site of the
channel when the channel is open.

Using the parameters of Fig. 1, c,.=0.1 uM, and c.
=0.065 wuM, the equilibration rates for the three pairs of
states in the Keizer-Levine RyR model are kpoct +ksy
=28.9 57! (C; 0,), kys(Cotci) +k3,=393 57! (0, 05),
and ko, +kgr=1.85 s7! (0, C,). The solid lines of Fig. 2(a)
correspond to the fast C;« O, O; transitions in the
Keizer—Levine RyR, while the dotted line corresponds to the
slow O, <« C, transition.

All of the statistical properties of the Keizer—Levine RyR
can be calculated from its Q-matrix [Eq. (1)]. For example,
the conditional probability of finding the channel in state j at
time ¢ provided it was in state i at time zero is

pi(0) =[] =P S(1) = j|S(0) = ], 3)

where t=0 and [e’Q],-j indicates the element in the ith row
and jth column of the matrix exponential. In fact, because
the Markov chain is time homogeneous, Pi[S(¢+s)
=j|S(s)=i]=p;(1) for all t=0 and s=0.
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FIG. 2. (a) Topology of the four-state Keizer-Levine RyR model showing
fast and slow transitions (solid and dotted lines, respectively). (b) Topology
for the ten-state release site composed of two Keizer—Levine RyRs. Gray
boxes indicate groups of states connected by fast transitions. The ordered
M-tuples (N|,N,,...,N,,) satisfy N;€{0,...,N} and ,N;=N where N;=n
indicates n channels in state i.

The Ca®* release site models that are the focus of this
paper involve N identical Keizer—Levine RyRs interacting
via changes in local [Ca?*] under the assumption of “instan-
taneous mean-field coupling.”g’lo’11 That is, we assume that
the increase in local [Ca®*] experienced by each channel is
an instantaneous function of the number of open channels
(No),

[Ca®*](1) = coo + C.N((1). (4)

Because identical channels coupled in this manner are indis-
tinguishable, a release site composed of N M-state channels
includes

N+M—1>_(N+M—1)! )

E(N’M):< N )TN M)

distinct states. Each of the B(N,M) states can be written as
the ordered M-tuple (N,,N,,...,N,;), where N;=n indicates
n channels in state i, N;€{0,...,N}, and 2;N;=N. Figure
2(b) uses this notation to illustrate the topology of a ten-state
Ca’* release site model composed of two coupled Keizer—
Levine RyRs. In this case the states take the form
(N¢,sNo,.No,.N¢,) and, for example, the rate for the
2000— 1100 transition is given by

NclkIZ(COO + Noc*)4 = 2](1261,

where Np=Np,+No,=0 and N¢, =2 accounts for the fact that
either one of the two channels can make a C;— O, transi-
tion. Similarly, the rate for the 0110— 0020 transition is
given by

N02k23(coc + N0C*)3 = k23(COO + 2C*)3

because No,=1 and NO:N02+NO3:2. Consistent with Fig.
2(a), the solid and dotted lines in Fig. 2(b) indicate those
transitions associated with fast Ca®*-dependent activation
and slow Ca**-independent inactivation, respectively.

Ill. REPRESENTATIVE CALCIUM RELEASE
SITE SIMULATIONS

Figure 3(a) shows the stochastic dynamics of a Ca>* re-
lease site composed of eight identical Keizer-Levine RyRs
coupled in the fashion described in Sec. II. In each of the
three simulations shown, the single channel model param-

Chaos 19, 037107 (2009)
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FIG. 3. (a) Representative Ca’* release site simulations involving eight
Keizer-Levine RyRs instantaneously coupled via a domain [Ca®*] given by
c=co+Nyc, where ¢,=0.1 uM and c,=0.06 (top), 0.065 (middle), and
0.07 uM (bottom). When the coupling strength ¢, is sufficiently large, the
stochastic dynamics of the number of open channels at a release site (N,) is
reminiscent of puffs/sparks. (b) Probability distribution of the number of
open channels directly calculated from the generator matrix of the Ca**
release site Markov chain models and the corresponding puff/spark Score of
0.19 (top), 0.25 (middle), and 0.34 (bottom). Asterisks indicate truncated bar
for Pr[N,=0]=0.9576 (top), 0.9561 (middle), and 0.9537 (bottom).

eters follow Fig. 1, the background [Ca®*] is ¢,=0.1 uM,
and simulations are performed using the exact numerical
method attributed to Gillespie.27 When the coupling strength
c, is relatively small (0.06 uM, top panel), increases in the
number of open channels usually involve one or a few Ca**
channels, reminiscent of the experimentally observed phe-
nomena of Ca?* blips and quarks.zg’29 However, when the
coupling strength is increased to ¢,=0.065 and 0.07 uM
(middle and bottom panels), the stochastic dynamics of the
number of open channels at a release site (N,) becomes
more robust and concerted. These events often involve a sig-
nificant fraction of the channels at the release site. Event
durations (100-300 ms) and interevent intervals (20-50 s)
are similar to the experimentally observed localized Ca* el-
evations known as Ca®* puffs and sparks.

Figure 3(b) shows the steady-state probability distribu-
tion of the number of open channels at these simulated Ca>*
release sites, that is, Pr[N,=n] where n €{0,1,...,N}. Note
that these distributions are not estimated via Monte Carlo
simulation, but rather directly calculated from the stationary
distribution of the 165-state expanded Markov chain corre-
sponding to eight coupled Keizer-Levine RyRs [165
=B(8,4) in Eq. (5)]. That is, after constructing the Q matrix
for the Ca2* release site model, we numerically solve

@Q =0 subject to me=1, (6)

where @ is a 165 X 165 matrix, 7r is 1 X 165 row vector, and
e is a 165X 1 column vector of ones (see Appendix A). Each
element of the probability distribution of the number of open
channels (Pr[N,=n]) is then constructed as the sum of the
appropriate elements of 77. Note that for the different values
of the coupling strength used in Fig. 3(b), only subtle differ-
ences in the probability distribution of N, are visible. On the
other hand, the presence or absence of puff/sparks in Ca>*
release site simulations such as Fig. 3(a) can be assessed
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from Pr[N,=n] without recourse to Monte Carlo simulation
using a response measure dubbed the puff/spark Score,?

Varlfo] _ 1 Var[No]
Elfo] ~ N EN]

where fp=Ny/N is the fraction of open channels. The puff/
spark Score takes values between 0 and 1, and a Score of
greater than approximately 0.25 indicates the presence of
robust stochastic Ca®* excitability [as in the middle and bot-
tom panels of Fig. 3(b)].

In the Ca®" release site model composed of eight
Keizer-Levine RyRs (Fig. 3), higher values of the Ca®* cou-
pling strength (c,.>0.1 wM) lead to sparks with physiologi-
cally unrealistic duration and ultimately a tonically active
release site with low puff/spark Score (c,>0.4 uM, not
shown). Of course, release site simulations using a different
number of channels (N) or a different single channel model
lead to results distinct from the representative simulations of
Fig. 3. Such modeling has played an important role in under-
standing the relationship between the single channel gating
of intracellular Ca®* channels and the stochastic dynamics of
Ca’* puffs and sparks (for review see Ref. 30).

Score =

()

IV. FAST/SLOW REDUCTION FOR CALCIUM RELEASE
SITE MODELS

In the context of ODE modeling of whole cell Ca’* re-
sponses, the Keizer—Levine RyR model was reduced from
four to two states by observing that transition rates between
the disinactivated states (C;, O,, and Os) are much faster
than the transition rates to and from the inactivated state
C,.*' Similarly, the four-state Markov chain of Eq. (1) can be
reduced to a two-state model,

q12
(disinact)C; U O, U O3= Cy(inact), (8)
4o
where C;U O,U O5 indicates the disinactivated macrostate.
While the transition rate from the inactivated state to the
disinactivated macrostate in the reduced model can be “read
off” the full model (§,;=q4, see Fig. 1), determining the
transition rate from the disinactivated macrostate to the inac-
tivated state (§,,), requires an estimate of the steady-state
conditional probability of being in state O, given that the
channel is in C; U O, U O3, because the product of this con-
ditional probability and g,4 gives rate of inactivation in the
reduced model. Under the assumption of rapid mixing of
disinactivated states, this conditional probability can be
found using Hill’s diagrammatic method®! applied to the sub-
graph C; < O, Oj resulting in the expression

9124932
421932t 412932 + 412923

PT[OZ|C1 U 02 @) 03] =

Thus,
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FIG. 4. Partition and contraction of the two-channel Keizer-Levine release
site transition matrix. The transition matrix of the original model (left) is
partitioned into blocks and corresponds to the groups formed by classifying
fast and slow transitions.

4124932
421932t 412932 + 412923

)

412= 92

is the required transition rate for disinactivation in the re-
duced Keizer-Levine RyR [Eq. (8)]. In the reduced single
channel model, the open probability conditioned on occupa-
tion of the disinactivated macrostate is

912932+ 412923
92193+ 912930+ 912423

PI'[0|C1 U 02 U 03] =

where O=0,U Os, while the open probability conditioned
on occupation of the inactivated state is zero.

Fast/slow reduction for Ca’* release sites composed of
several channels can be illustrated by considering N=2
Keizer-Levine RyRs coupled via a common domain [Ca*].
As discussed in Sec. III, we assume [Ca®*](f)=c.,+c.Ny(1),
where Ny(7) is the number of open channels (0, 1, or 2).
Figure 2(b) shows the transition state diagram for two
coupled Keizer-Levine RyRs where each release site state is
labeled by four digits nynynsn, with n;€{0,1,2} and
>;n;=2. As mentioned above, the solid lines correspond to
fast C; < O, Oj transitions, while the dotted lines corre-
spond to slow O,<« C, transitions. The gray boxes of Fig.
2(b) indicate groups of states connected by fast transitions
that are good candidates for lumping during a fast/slow re-
duction procedure that will result in a three-state Ca>* release
site model.

As illustrated in Fig. 4, the fast/slow reduction procedure
begins by constructing the @-matrix for two coupled chan-
nels consistent with the partitioning in Fig. 2(b). The result-
ing matrix takes the form

01 On O
0=05 0O»n 0x| (10)
05 Oxn 0O

where block Q@ is 6 X 6, block 05, is 3 X 3, and block Q55 is
1 X1 (see Fig. 4). To perform the model reduction, we re-
quire an estimate of the conditional probability of being in
the various substates of each block. Under the assumption of
rapid mixing within lumped states, these conditional prob-
ability distributions are well approximated by the solutions
of the linear systems,
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@,05=0 subject to 7re;=1, (11)
where i €{1,2,3}. In this expression, Q}; is given by
0;=0;+ diag( > Qi_fe_i), (12)
j#i

where the sum is over two column vectors, the “diag” opera-
tion converts the resulting column vector into a diagonal
matrix commensurate with Q;;, the unknowns 7, 7r,, and 7r;
are 1 X6, 1 X3, and 1 X 1, respectively, and the e j are com-
mensurate column vectors of ones. The approximate condi-
tional probability distributions 7; are then used to calculate
the transition rates between lumped states yielding the re-
duced model

an div 43
0=4xn 42 4| (13)
g1 4» 43
where
gij=mQ;e; (14)

for i# j and §;=2;.,~q;;- Pseudocode for this fast/slow re-
duction procedure is presented in Algorithm 1.

Algorithm 1: Fast/slow reduction

require: 5> matrices {Q;;} where b is size of
reduced model
for i=1,---,5

Qi —Q;+diag{Z;,.0,e;}

solve 7,Q;;=0 subject to 7r,e;=1
endfor
for i:l,---,l;

for j=1,---,i-1,i+1,---,b do

qij—7Qie

endfor

C?ii‘—zjs&i—élj
endfor

return Q= (C?ij)

V. VALIDATION OF FAST/SLOW REDUCTION
FOR RELEASE SITES COMPOSED
OF SEVERAL CHANNELS

This section validates the numerical approach to fast/
slow reduction outlined in Sec. IV using a release site model
composed of eight four-state Keizer—Levine RyRs. Mean-
field coupling of these channels leads to a 165X 165
Q-matrix [cf. Eq. (10)] that is partitioned into 81 blocks
when states C;, O,, and O; are lumped. The nine square
blocks on the diagonal of the partitioned generator matrix are
of size 45, 36, 28, 21, 15, 10, 6, 3, and 1 (see Appendix B).
The fast/slow reduction procedure outlined in Algorithm 1
leads to a reduced model specified by the 9 X 9 matrix Q [cf.
Eq. (13)].

Perhaps the most straightforward way to validate this
approach is to compare the transition probability matrices of

the reduced model (P=¢'?) to the transition probability ma-

Chaos 19, 037107 (2009)

0.25+
0.2+

E 0.1549

max

01 B /‘ \s

0.05+

10 10 10> 100 100 10
time (s)

FIG. 5. Error of fast/slow reduction (Algorithm 1) for a release site com-
posed of eight four-state Keizer—Levine RyRs quantified as in Eqgs.
(15)—(19). Solid, dashed, and dotted lines use Ca>* coupling strengths of
¢,=0.06, 0.065, and 0.07 uM, respectively (cf. Fig. 3). Background [Ca>*]
is ¢,,=0.1 uM and other parameters are as in Fig. 1.

trix of the full model (P=¢?), see Eq. (3). Assuming the full

and reduced models have b and b states, respectively, we
write

E(1)=P(t) - UP(1)V, (15)

where V is a b X b collector matrix,32

e, 0 - 0
0 e, =+ 0

the e; are column vectors of ones with lengths commensurate
with Q;, and U is a b b distributor matrix given by

m 0 - 0
0 @ = 0

v=| . . (16)
0 0 - m

The exact conditional probability distributions 77; that com-
pose U are row vectors given by

=L (17)
e
where
a=[m,m, ..., 7] (18)

is the conformally partitioned exact stationary distribution of
the full model satisfying Eq. (6).

The solid line of Fig. 5 shows the maximum absolute
error

Eppox(1) = max|E (1) (19)
ij

for a nine-state fast/slow reduced Ca’* release site model
obtained by contracting a full model with eight four-state
Keizer-Levine RyRs and a coupling strength of
c.=0.06 uM [as in the top panel of Fig. 3(a)]. For small
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FIG. 6. Logarithmic plot of the error of fast/slow reduction [Eq. (19)] when
Algorithm 1 is applied to a release site composed of eight four-state Keizer—
Levine RyRs with parameters as in Fig. 5 (solid line). Dashed and dotted
lines show that the error of fast/slow reduction is decreased when slow
transition rates are decreased by 10 and 100X, respectively. Other param-
eters as in Fig. 5.

values of ¢ both P and P are approximated by identity ma-
trices and consequently E,,.(7) = 0. Note that E,,,(7) reaches
a peak of 0.05 at 7= 10 s and approaches a limiting value of
0.02 as t— 0, a value that corresponds to the maximum ab-
solute error of the stationary distribution of the reduced
model when compared to the contracted stationary distribu-
tion of the full model. [To see this, recall that the columns of
lim,_., P() are identical and each row is given by the ele-
ments of the stationary probability distribution for the full
model that satisfies Eq. (6).] The total absolute error of the
stationary distribution of the fast/slow reduced model is
SE ()| = 0.047.

The dotted and dashed lines of Fig. 5 show E,,,(#) for
the fast/slow reduced model when the coupling strength is
increased to ¢,=0.065 and 0.07 uM [as in the middle and
bottom panels of Fig. 3(a)]. Stochastic Ca?* excitability is
more pronounced and the puff/spark Score increases for
these values of ¢, [see Fig. 3(b)] and both the peak (0.10 and
0.26) and steady state (0.06 and 0.13) errors show a corre-
sponding increase. Perhaps more importantly, Fig. 6 repeats
this analysis using the standard value of the Ca®>* coupling
strength (c,=0.065 uM) and modified parameter sets for the
Keizer—Levine RyR model in which the rate of the slow
transitions (k,4 and ky,) is decreased by 10 and 100X (dashed
and dotted lines, respectively). Note that E,,,,(f) decreases as
the separation of time scales between Ca*-dependent activa-
tion and Ca2+—independent inactivation  increases,
thereby validating the fast/slow reduction procedure of Algo-
rithm 1.

Because Fig. 5 indicates a significant model reduction
error, we considered alternative fast/slow reduction proce-
dures that follow a solution method for nearly completely
decomposable Markov chains presented in Stewart’s mono-
graph (Ref. 33, pages 285-294). This approach is distinct
from Algorithm 1 in that the diagonal elements of the diag-
onal blocks Q;; of the partitioned generator matrix are not
adjusted to remove negative entries corresponding to slow
transitions between lumped states [Eq. (11)]. Because the
transition rates between macrostates are slow, this is a subtle
difference. Nevertheless, Fig. 7 shows a decreased model
reduction error using this modified fast/slow reduction pro-
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FIG. 7. Error of fast/slow reduction [Eq. (19)] when Algorithms 1 (solid
line), 2 (dotted line), and 3 (dashed line) are applied to a release site com-
posed of eight four-state Keizer—Levine RyRs. Parameters: c¢.,=0.1 uM,
¢,=0.065 uM, and as in Fig. 1.

cedure (Algorithm 2, dotted line) compared to the previously
discussed method (Algorithm 1, solid line). Note that an im-
portant step in Algorithm 2 involves solving for the Perron
vector of P;;, a substochastic matrix given by P;=I+Q;;/
for suitable 6. The Perron vector u; solves u,P;=\u; subject
to we;=1, where \ is the spectral radius of P; (see
Appendix A).

Algorithm 2: Modified fast/slow reduction
require: 52 matrices 19}

for i=1,---,l;
&—max;|Q;(k, k)|
PiiHI+Qii/ (S
u;<—the Perron vector of P;;
endfor
for i:l,---,l;
for j=1,---,i—1,i+1,---,b
Gij— 70,
endfor
C?i%—zm—éij
endfor

return Q= (éij)

VI. REDUCTION USING CORRECT
CONDITIONAL PROBABILITY IS SUPERIOR
TO FAST/SLOW REDUCTION

As discussed in Sec. V, the reduction error obtained us-
ing both the original and modified fast/slow reduction meth-
ods (Algorithms 1 and 2) is initially zero and asymptotically
approaches a finite value as t— o0 (solid and dotted lines of
Fig. 7). As expected, inspection of numerical results associ-
ated with Figs. 5-7 confirms that the reduction error is larger
when the conditional probability distributions estimated in a
block-by-block fashion by Algorithms 1 and 2 become less
accurate (not shown). That 1is, the vector norms
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|#,—7|—with #; and 77, given by Egs. (11) and (17),
respectively—are larger when Algorithms 1 and 2 are not
performing well. Thus, the error present in the fast/slow re-
duction approach is potentially avoidable, provided a better
approximation of the conditional probability distributions
can be obtained.

Equation (5) indicates that a Ca?* release site model
composed of eight four-state Keizer—Levine RyRs includes
B(8,4)=165 distinguishable states. For this relatively small
release site model, the exact conditional probability distribu-
tions 77; can be calculated using Egs. (17) and (18) because
the numerical solution of the stationary distribution of the
full problem is tractable [4r, Eq. (6)]. In this case the rate
constants for the reduced model are given by g;;=,Q;e; for
i # j [cf. Eq. (14)]. For any given partitioning of states—i.e.,
the b* matrices {Q;;}—the reduced model thus obtained will
be referred to as the “gold standard” because the conditional
probability distributions used to perform the reduction are
exactly calculated. While this reduction may not be optimal,
the fact that P()=UP(x)V [cf. Eq. (15)] means that the
error of the gold standard reduced model does at least ap-
proach zero as r— 0. The dashed lines of Fig. 7 show how
this important feature of the gold standard reduced model
(Algorithm 3) leads to finite integrated error, which is not a
property of the other reductions. In addition, the peak value
of E,, obtained (0.03) is significantly smaller than the re-
sults of Algorithms 1 and 2 (0.10 and 0.05, respectively).

Algorithm 3: Gold standard reduction with substantial
storage requirement
require: b> matrices {Q,;}
solve 77Q =0 subject to mme=1 where Q@=(Q))
for i:l,'-',l;

;] we; where w=[m, 1, ", )
endfor
for i=1,---,b

A

for j=1,---,i-1,i+1,---,b
Gij—mQie;
endfor
C}ii‘—zjaei—éij
endfor

return Q= (éij)

Because Algorithm 3 uses the exact conditional prob-
ability distributions 7; [Eq. (17)], its reduction error—the
dashed line of Fig. 7—indicates that the time scales of
Ca*-dependent activation and Ca>*-independent inactivation
in the release site model are not completely separated. Figure
8 shows that when this gold standard reduction procedure is
repeated using modified parameter sets for the Keizer—
Levine RyR model in which the rate of the slow transitions
(kys and kyy) is decreased by 10 and 100X, the peak error
decreases from 0.03 to 5.7X 107 and 6.6 X 107, respec-
tively (cf. Fig. 6).
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FIG. 8. Logarithmic plot of the error of fast/slow reduction [Eq. (19)] when
Algorithm 3 is applied to a release site composed of eight four-state Keizer—
Levine RyRs with parameters as in Fig. 5 (solid line). Dotted and dashed
lines show a decreased error when the rate of slow transitions is decreased
by 10 and 100X, respectively.

VIl. ITERATIVE AGGREGATION/DISAGGREGATION
METHODS

Using Ca’* release sites composed of a small number of
channels, Sec. VI showed that model reduction using exact
conditional probability distributions (77, Algorithm 3) is su-
perior to fast/slow reduction procedures that use approximate
conditional probability distributions (4, Algorithms 1 and 2).
On the other hand, the storage requirements of Algorithm
3are far in excess of Algorithms 1 and 2. (Recall that Algo-
rithm 3 solves for the full model stationary distribution [Eq.
(6)], Algorithm 1 sequentially solves for the stationary dis-
tributions of the various blocks of the partitioned generator
matrix of the full model [Eq. (11)], and Algorithm 2 sequen-
tially solves for the Perron vectors of P;=I+Q);;/ 6.) Indeed,
the substantial storage requirements of Algorithm 3 make it
inappropriate as a fast/slow reduction procedure for Ca’* re-
lease sites with a large number of states.

IAD methods are a well-known alternative to direct
methods for calculating the stationary distribution of large
Markov chains.”® Because these methods often perform well
when a Markov chain is irreducible and nearly completely
decomposable, we implemented a memory-efficient version

TABLE I. Benchmark calculations using two IAD algorithms: KMS and
Vantilborgh. The number of iterations (Iter) before convergence of the itera-
tion vector (tolerance=107% in Algorithm 4) and the residual (Resid) of the
calculated stationary distribution vector 7 given by ||7Q||, are shown. Pa-
rameters: ¢,,=0.1 uM, ¢,=0.06 wM, and as in Fig. 1. Because the Ca**
coupling strength is fixed, release sites with large N are tonically active
resulting in low puff/spark Score (cf. Table II).

KMS Vantilborgh
N Iter Resid Iter Resid Score
10 15 1.9x 10710 15 7.4x10710 0.35
20 36 2.6X107° 85 29x% 1078 0.49
30 33 23%107° 99 5.6%1078 0.33
40 28 22%X107° 73 3.8% 1078 0.23
50 22 29%107° 59 45%1078 0.15
60 13 45%10710 14 3.4x107 <0.01
70 5 1.2x 107 8 9.4x 10710 <0.01
80 9 1.31x107° 15 1.88 %107 <0.01
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of Algorithm 3 that solves for the stationary distribution of
the full model using the Koury—McAllister—Stewart (KMS)
(Ref. 34) TAD method (see Algorithm 4). For comparison,
we also implemented release site reduction procedures that
utilize the TAD methods of Vantilborgh and Takahashi (algo-
rithms not shown).*

Algorithm 4: Reduction using Koury—McAllister—
Stewart iterative aggregation/disaggregation

require: 5> matrices {Q,;} and rolerance
&+ max; max|Q;;(k,k)|

for i=1,---,b

P[i(_I+Qii/5

y50)<—row vector of 1/b commensurate with
P;;

forj=1,---,i—1,i+1,---,l;

endfor
endfor

0) (0 (0)
y(0)<_|.—)7(1 ),y(2)9‘“sybA ]
m+«—0, change «— »
while change > tolerance

m—m+1
for i=1,~~-,l; do
-1 m—1 m—1
5Dy )
endfor

for i=1,-~~,l; do

endfor
solve wD(Am-D_1)=0
where [[w||,=1
Z(m)‘_[w(fn_l)y(lm_l),"',Wi;m l)ém 1)]
for j=b,b—1,---,1 do
solve y;’"):
YOS PSP,
endfor
change<—|{y(m)_y(m—l)”l
endwhile

return O — SA”D-1) and 7 y-D

Table I shows the number of iterations required for con-
vergence of the KMS and Vantilborgh algorithms for Ca?*
release sites composed of up to 80 four-state Keizer—Levine
RyRs when ¢,,=0.1 uM and c.=0.06 uM. The residuals
given by ||7Q||; calculated in a block-by-block fashion from
{m;} and {Q;;} are also shown. Small residuals indicate con-
vergence of the IAD methods to the correct stationary prob-
ability distribution 77, yielding the exact conditional prob-
ability distributions 77, [Eq. (18)] and a gold standard
reduced model Q:(c}ij) where §;=m,Q;e; for i#j. Our
implementation of the Takahashi IAD method was less suc-
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TABLE II. Benchmark calculations using ¢, values chosen so that the puft/
spark Score of the full model indicated robust Ca>* excitability. See legend
of Table I.

KMS

N Iter Resid Cy Score
30 44 1.7X107° 0.04 0.50
30 39 2.9%107° 0.05 0.41

30 33 2.3%x107° 0.06 0.33

40 53 1.7%x107° 0.03 0.51

40 46 1.6 X 107° 0.04 0.39
40 33 3.3%x107° 0.05 0.30
50 57 3.3x107° 0.03 0.44
50 46 2.1X107 0.04 0.30
50 28 4.4%x107 0.05 0.22
60 97 3.01 X107 0.02 0.52
60 64 3.54%x107° 0.03 0.36
60 38 1.47x107° 0.04 0.23

cessful than the KMS and Vantilborgh methods and did not
converge for N=30 (not shown).

Table I shows that the number of iterations required for
the KMS and Vantilborgh IAD methods first increases and
then decreases as a function of N, presumably reflecting the
fact that the Ca®* release site dynamics change significantly
when N is increased with fixed ¢, (note that the puff/spark
Score increases and decreases in a similar fashion). In fact,
for N=50 the low puff/spark Scores in Table I reflect toni-
cally active Ca’* release sites.

To ensure that the success of model reduction using the
KMS method for large N is not dependent on the release sites
being tonically active, benchmark calculations were repeated
using c, values selected to ensure that the full model exhib-
ited robust Ca®* excitability (Score>0.25). Using these pa-
rameters, Table II demonstrates successful release site reduc-
tion using the KMS method (Algorithm 4) with up to 60
Keizer—Levine RyRs. While the number of iterations re-
quired for convergence depends on the Ca?* coupling
strength, the residuals are consistently small.

In both Tables I and II, the N+ 1-state reduced Ca2* re-
lease site models are contractions of full models with B(N,4)
states [Eq. (5)]. The largest Ca’* release site model success-
fully reduced using the KMS TAD method (see Algorithm 4)
included B(80,4)=91 881 states and 2X38(80,3)
=531 360 transitions, where 3 corresponds to the number of
edges in the state-transition diagram for the Keizer-Levine
RyR [Fig. 2(a)] and 38(80,3) is the number of edges in
state-transition diagram of the 80-RyR Ca’* release site [cf.
Fig. 2(b)].

Viil. EXAMPLE OF DIRECT CALCULATIONS
USING FAST/SLOW REDUCTION

As mentioned in Sec. I, automated fast/slow reduction
techniques are of interest because they may facilitate studies
of Ca®* release site dynamics that would otherwise be intrac-
table due to the state-space explosion that occurs when mul-
tiple single channel models are coupled; below we illustrate
this point. The thin solid lines of Fig. 9 show the number of
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FIG. 9. Monte Carlo simulation (solid lines) and direct calculation (broken
lines) of the number of open (N,)) and refractory (Ng) channels in a stochas-
tic simulation of a Ca®* release site composed of 60 Keizer-Levine RyRs
that are either independently gating (thin lines, ¢,=0) or coupled (thick
lines, ¢,=0.02 uM) following an increase in the background [Ca**] from
¢=0.1 to 0.35 and subsequently to 0.5 uM (bottom panel).

open (Ny) and refractory (Ng) channels as a function of time
in a stochastic simulation of a Ca®* release site composed of
60 independently gating Keizer—Levine RyRs (c,.=0). While
the background [Ca®*] is initially c,,=0.1 wM, this value is
increased to 0.35 and 0.5 uM at times indicated in the lower
panel. Note that the increase in N, upon the second step in
[Ca?*] corresponds to the phenomenon of “Ca** adaptation”
that is an important aspect of the paper that introduced the
RyR model used here [cf. Fig. 2¢ in Ref. 21]. For compari-
son, the thick solid lines of Fig. 9 show results for a Cat
release site composed of 60 coupled Keizer—Levine RyRs
(c.=0.02 wM); interestingly, in this case adaptation is no
longer observed.

More important to our present purposes are the broken
lines of Fig. 9, which show exact results obtained from the
probability distribution 7(¢) directly calculated using matrix
exponentials of fast/slow reduced release generator matrices,
that is,

70, t<t1,
n=t<t, (20)

11.Oe(tz—rl)é | e(f—fﬂéz’ h=t,

(1) = ﬂoe(t_")él ,

where ﬂ0Q0=0 subject to mpe=1, and QO, Ql, and Q2 are
generator matrices reduced from the full model evaluated
with ¢,,=0.1, 0.35, and 0.5 uM, respectively. While it is
possible to obtain similar results by performing many Monte
Carlo simulations and averaging, direct numerical calcula-
tion is computationally more efficient because the matrix ex-
ponential calculations of Eq. (20) use the 61-state reduced
generator matrix (0 <N, =N) as opposed to the 39 711-state
full model [B(60,4) in Eq. (5)].

Figure 10 gives another example of how automated fast/
slow reduction can be used in conjunction with matrix ana-
lytic formulas to probe the stochastic dynamics of Ca>* re-
lease sites, the size of which would otherwise make direct
numerical calculations unfeasible and Monte Carlo simula-
tion inefficient and unreliable. Using N=8, 12, and 16 chan-
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FIG. 10. Directly calculated probability density of the time until the number
of refractory channels (Ng) increases to N/2, half the total number of chan-
nels in the release site model. Solid lines show the results obtained using the
full model generator matrices for 8, 12, and 16 channels [sizes 165-969; see
Eq. (5)]. Dashed lines show the results obtained using the fast/slow reduced
generator matrix for 8, 12, 16, 40, 60, and 80 channels (sizes 9-81). In all
calculations the initial probability distribution is the stationary distribution
for ¢,=0.1 uM; at time zero this background [Ca%*] is increased to c.,
=0.35 uM. The coupling strengths were chosen so that ¢,N=0.52 uM
(e.g., in the eight channel case ¢,=0.065 uM).

nels, the solid lines of Fig. 10 present direct calculations of
the probability density of the time until the number of refrac-
tory channels (Ng) increases to N/2, half the total number of
channels in the release site model. These were calculated by
permuting the generator matrix of the full model into the
following form:

Qaa Qab )
= , 21
¢ <sz Op» 2!

where each partition contains rates for transitions between
(or within) aggregate classes of states where Ny <N/2 (a)
and Nr=N/2 (b). The probability distribution is given
by 67

f(t) == ¢aerQauQaaea >0, (22)

where e, is a commensurate column vector of ones, ¢, is a
row vector giving the initial probabilities of each state, and
for simplicity we assume ¢,= 1,/ m,e,, where = (a7, ) is
the stationary distribution solving wQ=0. The dashed lines
of Fig. 10 repeat these calculations using the generator ma-
trix for the fast/slow reduced model. Not only does the
agreement validate the reduction method, but perhaps more
importantly, by using the fast/slow reduced generator matrix
we are able to calculate the distributions for release sites
composed of 40, 60, and 80 channels (dashed lines). Because
the matrix exponential in Eq. (22) must be calculated for
many different values of #, full model calculations are ex-
tremely time consuming if not impossible due to storage
limitations. On the other hand, calculating the matrix expo-
nentials in the reduced model case takes less than a second.
While performing the model reduction using the IAD-based
reduction method (Algorithm 4) is overhead, this step need
be performed only once.
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IX. DISCUSSION

We have implemented and validated several numerical
procedures for reducing compositionally defined calcium re-
lease site models through fast/slow analysis. In all the ap-
proaches presented here, rate constants in the single channel
model are categorized as either fast or slow, groups of states
in the release site model that are connected by fast transitions
are identified and lumped, and transition rates between re-
duced states are chosen consistent with exact or approximate
conditional probability distributions among states within
each group. For Ca’* release site models that are small
enough to allow direct calculation of the stationary distribu-
tion of the full model, Algorithm 3 is preferred in spite of its
substantial storage requirements because the exact condi-
tional probability distributions result in a reduced model that
is natural for the chosen partitioning of states. For release
sites composed of many channels, the conditional probability
distributions can be approximated without the construction
of the full model by assuming a rapid mixing of states con-
nected by fast transitions (Algorithms 1 and 2). Alternatively,
an IAD method can be employed to obtain a reduced Ca>*
release site model in a memory-efficient fashion.

We compared the convergence properties of reduction
algorithms using three IAD methods: KMS, Vantilborgh, and
Takahashi.***> Our results suggest that KMS TAD-based re-
duction method is superior in the context of Ca’* release site
modeling (Algorithm 4). Calculations performed using Van-
tilborgh IAD required more iterations to converge than KMS,
while those using the Takahashi method often did not con-
verge (not shown). Note that memory-efficient implementa-
tion of model reduction using Algorithm 4 begins with enu-
meration of the state space of a full Ca’* release site model.
This preliminary step must also be performed without exces-
sive storage requirements (see Appendix B and Algorithms 5
and 6).

We were able to validate Algorithms 1-4 by confirming
that the transition probability matrix of the reduced model
well approximates the corresponding contraction of the full
model transition probability matrix, provided the separation
of time scales between fast and slow processes is large
enough (Figs. 6 and 8). As expected, both Algorithms 1 and
2 yield more error than the memory-inefficient reduction that
uses the exact conditional probability distributions (Algo-
rithm 3). Note that the KMS IAD-based Algorithm 4pro-
duces the same reduced model as Algorithm 3. The essential
difference between Algorithms 3 and 4 is the numerical
scheme used to calculate the exact conditional probability
distributions. Because Algorithm 3 is not tractable for large
Ca?* release site models, we recommend Algorithm 4 to in-
vestigators interested in Ca’* release site model reduction
based on a separation of time scales.

It is important to note that while we have validated the
four model reduction procedures presented here (Algorithms
1-4), the performance of a particular reduced model is a
complicated matter that will depend on the single channel
model used and, of course, the choice of parameters that
influence the time scale separation of transitions identified as
fast and slow.
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FIG. 11. Reduction error of gold standard reduction procedure (Algorithm
3) for release sites composed of 8 (solid line), 12 (dotted line), and 16
(dashed line) four-state Keizer-Levine RyRs. ¢,,=0.1 uM, ¢,=0.065 uM,
and other parameters as in Fig. 1.

While the error measure based on transition probability
matrices [Eq. (15)] is sufficient for our present purposes, we
have not yet performed a detailed study of puff/spark dura-
tion and interevent interval in full and reduced Ca®* release
site models. The extent to which model reduction may per-
turb measures of particular relevance to the stochastic dy-
namics of Ca®* release is a question that deserves further
consideration. Because puff/spark statistics are coarser mea-
sures of release site dynamics than the transition probability
matrix itself, a reduced model could perform well with re-
spect to the distribution of spark durations (for example),

even when Emax(t) is not promising. While it is of some

concern that Emax(t) often grows with the number of chan-
nels (Fig. 11), this does not adversely affect the reduced
model probability densities of Fig. 10.

Although beyond the scope of this paper, Algorithm 4
can be implemented in a distributed parallel fashion. Such
implementation would likely be required to perform fast/
slow reduction when Ca®* release sites are composed of
single channel models with many states. For example, a De
Young—Keizer-like IP;R model** that includes four indepen-
dent eight-state subunits—each with one binding site for 1P
and two binding sites for Ca?*—results in a single channel
model with B(4,8)=330 distinguishable states [Eq. (5)]. As-
suming fast IP;-potentiation, fast Ca®*-activation, and slow
Ca”*-inactivation, the topology of the fast and slow transi-
tions results in two groups of four states for each subunit.
This results in five groups with 35, 80, 100, 80, and 35 states
for the single channel model, that is, B(7gisinact>4) B(Minact>4)
for ni,=0,1,2,3,4 and njpe+Ngisinacc=4- Assuming a re-
lease site composed of N De Young—Keizer-like IP;Rs, Fig.
12 shows the state space size of the full model (solid line)
and the size of the largest (dashed line) and average (dotted
line) diagonal block [cf. Eq. (10)]. Note that the limiting
slopes for the De Young—Keizer IP;R are much greater than
those observed for the Keizer—Levine RyR. For the Keizer—
Levine RyR, the number of states in the full model is
B(N,4)~N? and the largest block size is B(N,3)~N? (all
channels in the largest group that includes three states; see
Fig. 2). For the De Young—Keizer-like IP;R, the number of
states in the full model is O(N*°) and the largest block size
is O(N3%9) (326=330 states—5 groups+1).
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FIG. 12. State space size [Eq. (5)] of the full Ca?* release site model (solid
line), size of the largest (dashed line) and average (dotted line) diagonal
block of the partitioned generator matrix for 1 =N = 100 four-state Keizer—

Levine RyRs (see Fig. 4). The reduced release site model has h=N+1 states
(not shown) because slow transitions in the Keizer-Levine RyR separate
two groups of states (Fig. 2).

Throughout this paper we assume that the fast and slow
transitions of the single channel model are identified by the
modeler, and this specification is used to partition the full
model generator matrix (cf. Fig. 2). While this makes sense
given the likely prior understanding of time scales of single
channel kinetics, this approach neglects the effect of [Ca”*]
changes on separation of time scales. That is, a
Ca”*-dependent transition such as C; — O, or O, — Oj in the
Keizer-Levine RyR may be slow or fast depending on Ny(1).
While the memory-efficient Algorithm 4 leads to the gold
standard reduced model for any given partitioning, the ap-
proach to partitioning used here may not be optimal. In fact,
when a 165-state release site is reduced to nine states as in
Figs. 5-8, there are 8(9165)~3 X 10'* possible partitioning
schemes. Given the separation of time scales in the Keizer—
Levine RyR, the chosen partitioning scheme is presumably
among the best, but it is unclear how to demonstrate this
without enumerating all the possibilities and comparing re-
duction errors. An important topic for future work is auto-
mated determination of the optimal partitioning of a full
model generator matrix to achieve a target number of re-
duced model states. In cases where the reduction error is
defined in terms of a puff/spark statistic of interest (e.g.,
spark duration), the optimal partitioning schemes would pre-
sumably be sensitive to the aggregate classes of states being
lumped (e.g., closed versus open) as well as separation of
time scales.”’ In future work we hope to combine the auto-
mated fast/slow reduction procedure presented here with
whole cell modeling techniques that include a probability
density-based description of the local [Ca®*] experienced by
clusters of intracellular and plasma membrane Ca’*
channels.***
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APPENDIX A: IMPLEMENTATION OF FAST/SLOW
REDUCTION PROCEDURES

Algorithms 1-6 were implemented in MATLAB (The
MathWorks, Inc.). Equations of the form xA=0 subject to
xe=1 were solved by evaluating x<— (0 1)/(A e) where the
slash corresponds to MATLAB’s MRDIVIDE command. When
solving an equation of the form xP=Ax subject to xe=1 we
used MATLAB’s EIGS command to find the eigenvector corre-
sponding to the eigenvalue with largest real part and then
normalized the result. In our implementation of Algorithm 4,
the aggregation and disaggregation steps were solved using
EIGS and MLDIVIDE, in spite of the fact that the aggregated
system for nearly completely decomposable Markov chains
is expected to be ill conditioned (Ref. 33, pages 321-322). It
is possible that the inferior performance of the Takahashi
method could be improved with a different implementation
of these steps (Table I).

APPENDIX B: GENERATION OF STATE SPACE
AND BLOCKS OF PARTITIONED FULL MODEL

Instantaneous mean-field coupling of N identical M-state
channels yields a Ca®* release site model with B(N, M) states
where

N+M—1>_(N+M—1)!

ﬁ(N’M)=< N )TN Tm-1

Assuming transitions in the single channel model are labeled
fast or slow in a manner that results in L groups of states of
size mj,m,,...,my; with EiLzlmi=M, the partitioned matrix
corresponding to Eq. (10) will have B(N,L) blocks, each of
which can be labeled as nyn,- - -n; indicating n; channels in
group i where ZiL:In,:N. The diagonal block corresponding
to macrostate nn,---n; is a square matrix of size

ﬁ(ni+mi—l).

i=1 n;

An important aspect of the memory-efficient model re-

duction approach of Algorithm 4 is construction of the b2
input matrices {Q;;}. To ensure that the storage requirements
of specifying the full model are not limiting, it is helpful to
construct the Q;; independently. This was accomplished us-
ing a recursive function B(nball,nbin) that returns a matrix
enumerating (in antilexicographical order) the number of
ways that nball indistinguishable items can be arranged in
nbin distinguishable locations (Algorithm 5). For example,
the full state space for two four-state channels is the 10X 4
matrix

B(2,4) = (B1)

._,_,_Nl
oS O = O
oS = O O
= O O O
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Algorithm 5: B(nball,nbin) Recursive state space gen-
eration
require: nball, nbin
if nbin=1 return nball
if nball=0 return 1 X nbin matrix of zeros
B0 (an empty matrix)
for ¢=nball,nball-1,---,0
Br=B(nball-€ ,nbin—1)
B; < column vector of €’s with same number
of rows as By
B—[B:B,B;]
endfor
return B

When the state space of the full model (B(N,M)) is
large, the state space of the reduced model (B(N,L)) is con-
structed instead, where L is the number of groups of states
separated by slow transitions (L <M). Denoting the rows of
B(N,L) as {nn,---n;} where n,;=0,1,...,m;, n,
=0,1,...,m,, etc., the states in the full model that compose
any particular lumped state nn,---n; can be enumerated as
follows:

Bl(”h"ﬁ) Bl(’lz,mz) B1("L,mL)
Bi(ny,my)  Bj(ny,m,) By(ny,my)
Bl(”h"ﬁ) Bl(nZamZ) BK(”LamL) s
Bl(nlsml) Bz(nmmz) B1(”L,mL)
_BK(nl’ml) Bg(ny,m;) Bglng,mp) i

where By(ny,m,) indicates the kth row of B(n,,m,) and an
upper case K indicates the final row.

With the subset of the full model state space correspond-
ing to a particular lumped state nn,---n; available, it is
possible to construct the blocks Q;; of the partitioned full
model without knowledge on the entire state space. This is
accomplished using Algorithm 6, which takes as input a ma-
trix B corresponding to a set of states and returns as output
the matrix R(B)=R=(ry), where the ry, are nonzero if and
only if a transition is possible between states B, and B, and,
when a transition is possible, the origin and destination states
of the one channel that changes state are r;, and r, respec-
tively. For example, focusing on the subsequence of rows of
Eq. (BI) corresponding to zero inactivated channels
(N cz=0),

2000

1 100

1 010
B= ,

0200

0110

0020

the function R(B) evaluates to
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011000
202110
33001 1
RB=10 5002 0 (B2)
032302
003030

The diagonal block of the full model corresponding to tran-

sitions within states of B is then given by

Opp=

q21
q31

q12

q32
q21
q3)

q13
q23

q21
q31

q12

q32

q13
912 413
923

423
q32

where the dots indicate zero, the g;; are the i—j transition
rates of the single channel model that either do not depend
on [Ca®*] or are evaluated using N, consistent with the rel-
evant row of B, and the indices for these transition rates are
chosen by reading off the elements of R(B) and R(B)”. Off-
diagonal blocks of the full model corresponding to transi-
tions between two groups of states (B_ and B,) are found in
a similar manner, beginning with the evaluation of

(|:B_:|> |:R__ R_+}

R =

B+ R+— R++

using Algorithm 6. The matrices R_, and R_, provide indices
of the single channel model transition rates that need to pro-

duce QB_B+ and QB+B_'

Algorithm 6: R(B) Determine transition rates for a given
block of the full model

require: origin and destination states B
n<«—number of rows of B
R —n X n matrix of zeros
for i=1,---,n
for j=i+1,i+2,---,n do
A « jth row of B—ith row of B
if A contains exactly one —1 and one 1 then
R(i,j) < index of the —1 in A
R(j,i) < index of the 1 in A
endif
endfor
endfor
return R
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