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PREFACE

This thesis manuscript is in review for publication in the American Fisheries 
Society Symposium Series (number to be determined) entitled Benthic Habitat and the 
Effects o f Fishing. The body of this thesis therefore follows the style and construction of 
a journal or book chapter publication. Information important to the thesis, but not 
suitable for peer review publication due to space constraints and publication costs, have 
been included in the appendices at the end of the manuscript. The neural network fish 
classifier software developed during this work is documented in Appendix A. Appendix 
B is a primer on image processing and describes the steps used during this project to pre- 
process the sonar data. Image processing algorithms are also presented here. Raw data 
examples and notes taken from experiences learned in the field are given in Appendix C. 
This research represents a potential new method to augment traditional fisheries stock 
assessment. It offers significant advantages over trawl-based population estimation, but 
is just one method of many. A short introduction to hydroacoustic principals and 
alternative methods of acoustic species identification and stock assessment are reviewed 
in Appendix D. While the impetus for this research was to provide a new tool for 
fisheries management and fisheries research, it cannot be ignored that the remote species 
classification technology invented here would benefit, among other tasks, homeland 
defense and harbor security initiatives. Appendix E introduces potential future uses and 
beneficiaries of this technology.
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ABSTRACT

There is a direct link between the quality of fisheries data and the effectiveness of 
fisheries management. Increasing the quality and quantity of data on which stock 
assessments and management decisions are based is a critical national issue (National 
Research Council 2000). I approach this challenge through the creation and 
demonstration of a novel stock assessment tool. A new method of remote fish species 
identification and quantification is presented. The technique uses a Radial Basis 
Function artificial neural network classifier to discriminate and enumerate selected fish 
species from high-resolution sidescan sonar images. To demonstrate this technology, I 
have trained the classifier to successfully discriminate sharks (Caracharias taurus) from 
jacks (Caranx hippos). The classifier achieved a 97 % accuracy level when presented 
novel images and 100 % accuracy when tested with training images. Additional species 
can be easily added to the classifier’s library. Data were acquired using a 600 kHz 
sidescan sonar (Marine Sonic Technology Ltd.) deployed on a Fetch-class Autonomous 
Underwater Vehicle (AUV) and a conventional towfish. Deployment of the AUV was 
found to have the following advantages over a towfish: useful images can be gathered by 
an AUV under rough seas, when the heave in a towfish cable could result in distorted 
imagery; the AUV was immune to boat electrical noise that produces artifacts in sonar 
images; and auxiliary sensors (video, CTD, O2, pH) can be used on the AUV to 
simultaneously characterize the water column and bottom type during surveys. Fish 
avoidance reactions are also lessened with use of AUVs. Once equipped with analysis 
tools such as the one presented here, AUVs will provide scientists a new tool to 
unobtrusively document fish stock behavior and population size, thus yielding data that 
may help to better tune stock assessment models. I also predict such tools will become 
valuable in the delineation and characterization of essential fish habitat.

x



AUTOMATED FISH SPECIES CLASSIFICATION USING ARTIFICIAL 

NEURAL NETWORKS AND AUTONOMOUS UNDERWATER VEHICLES



INTRODUCTION

Stock assessment is concerned with the prediction of fluctuations, and quantification 

of abundance in fish populations. A quantitative understanding of ecological processes is 

nearly impossible without accurate estimates of population size or trends (Krebs 1989). 

Abundance data also facilitates our understanding of population, community, and 

ecosystem dynamics of marine ecosystems (Fogerty and Murawski 1998). Furthermore, 

the ability to empirically test ecological hypotheses in the field are constrained by how 

accurately population sizes can be determined (Krebs 1989; Gunderson 1993). Fisheries 

science practitioners have struggled with generating accurate population estimates for 

decades with limited success, as evidenced by the number of stocks listed as overfished 

or collapsed altogether (National Research Council 1999). It is important to note that 

stock assessment failures are not the only cause for stock collapse or over-fishing. Other 

causes include poor enforcement of fishery regulations, mismatches between harvesting 

capacity and stock sizes, excessive lags between management changes and fluctuations in 

stock sizes, and technological innovations in fish catching operations (Murawski et al. 

2000). Although cessation of fishing effort is assumed to allow recovery of depleted fish 

populations (Hilborn and Walters 1992), there is evidence that recovery is not guaranteed 

even after a period of fifteen years (Hutchings 2000). Timely, accurate stock assessments 

are thus vital for effective resource management.
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The application of new sonar, image processing, and computer technologies that 

would allow stock assessment teams and working fishermen to accurately and reliably 

discriminate between fish species would be a major step towards solving the problems of 

unwanted and wasteful bycatch. Additionally, such technologies would give a more 

detailed insight into the composition and size of fish stocks and would likely result in the 

reduction of the biases and imprecision that are inherent in trawl surveys, and the 

resulting stock assessments (National Research Council 1998).

The development and application of acoustic remote sensing tools have already 

produced significant benefits to the marine environment while concurrently assisting 

commercial harvesters with reducing their costs. In Nova Scotia, scallop fishermen have 

partnered with scientists to create high-resolution multi-beam and sidescan sonar habitat 

base maps of the fishing grounds (Molyneaux 2002, Kostylev et al. 1999). These base 

maps allow scallop fishermen to target habitats that are likely to produce larger catches, 

while reducing the number of hours that their gear is scraping the sea floor. As an 

example, one scalloper dredged for 162 hours over 729 nautical miles to harvest a 27,280 

pound quota. The next year, armed with habitat base maps, the same scallop vessel 

harvested an identical quota in 42 hours and only dredged over 250 nautical miles of 

seafloor (Molyneaux 2002).

Although ship-based trawl surveys are arguably the most common method of stock 

assessment, reasonable estimates of fish population abundance and distribution can be 

found with hydroacoustic techniques (MacLennan and Simmonds 1992) and direct count 

methods, such as aerial surveys (McDaniel et al. 2000), SCUBA transects (Ault et al.

1998), camera sleds (Conan and Maynard 1987), and electro-fishing (Kruse et al. 1998).
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Another survey technique is ichthyoplankton sampling (Phillips and Mason 1986; 

Pennington and Berrien 1984), which requires surveying the water column for eggs and 

larvae of target species, and then estimating the size of the spawning stock required to 

produce the number of larvae or eggs sampled. Gunderson (1993) provides a complete 

discussion of these methods of fisheries resource surveys.

Autonomous Underwater Vehicles (AUVs) are currently being developed worldwide 

at government, academic, and private research laboratories, with dozens of AUVs already 

in operation. Combining AUV technology with high-resolution sidescan sonar should 

provide a useful tool for stock assessment and related fisheries questions, including the 

delineation of essential fish habitat. This is especially useful in areas that are hard to 

sample, such as reef environments or shallow waters. Currently, AUVs are useful tools 

for seabed surveys, oceanographic data collection, offshore oil and gas operations, and 

military applications (Doolittle 2003, Jones 2002). Data collected from AUVs represent 

significant cost savings in terms of reduced personnel hours, 24-hour sampling 

capabilities, and reduced surface ship support. Ship-based surveys for offshore pelagic or 

demersal fisheries resources can cost anywhere from 10,000 dollars per day for surveys 

in northwest Atlantic ocean waters (T. Azarovitz, National Marine Fisheries Service, 

Woods Hole, MA. Personal Communication) up to 38,000 dollars per day for Antarctic 

fisheries research (Office of Polar Programs, National Science Foundation, personal 

communication), excluding salaries of onboard personnel.

Sidescan sonar is an acoustic imaging technology that uses high frequency, ranging 

from 100 kHz to 2.4 MHz, focused sound waves to “illuminate” the sea floor and 

produce realistic pictures of what lies beneath, and unique to this research, in the water

4



column. As sound waves propagate away from the sidescan transducers, objects in the 

path of the beam reflect some of the acoustic energy back to the sonar instrument, and 

these signals are then amplified, processed, and passed on to either a display or printer 

(Figure 1). The earliest imaging sonar research is credited to the British and Germans 

beginning in the 1920s and 1930s, but it suffered from the limitations of analog 

technology, namely attenuation of the sonar signal as it traveled along copper wires and 

deficiencies with signal display and recording equipment (Fish and Carr 2001). Today, 

advances in digital signal processing and increased computational power have largely 

overcome these problems. Modern high frequency systems can reliably image objects 

that are smaller than 1 cm3 and digital software can “stitch” together sonar records to 

make high-resolution, geo-referenced, digital mosaics of the seafloor (Figure 2).

Sidescan sonar proved its capabilities during the 1960s and 1970s as an 

indispensable tool to locate wrecks, mines, lost nuclear weapons, and downed submarines 

and aircraft. The petroleum industry pioneered the commercial use of sidescan sonar for 

pipeline routing and inspection in the 1970s and 1980s as offshore drilling became 

popular (Fish and Carr 1990). As the 1990s progressed, sidescan sonars became 

available in higher and higher frequencies allowing significant advances in image 

resolution. With increased resolving power, sidescan sonar has been used to map and 

classify marine fisheries habitats (McRea et al. 1999; Edsall et al. 1993), detect and 

enumerate salmon during their upstream migrations (Trevorrow 1998, 2001), investigate 

trawl damage to marine habitat (Friedlander et al. 1999), and map relic oyster reefs in 

turbid, low visibility environments (DeAlteris 1988).
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Figure 1. Left: 600 kHz image of Sand Tiger shark (Carcharias taurus) imaged by AUV 

in a public aquarium at 5 m range. Center: 1200 kHz image of a rubber tire at 5 m range 

(note tread pattern on outer perimeter). Right: 600 kHz image of WWII aircraft at 50 m 

range. (Center and Right images courtesy MSTL).
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Figure 2. A. Sample output of a digital sidescan mosaic, gathered by an AUV at 2.2 kt 

(1.1 m/s) in depth-following mode (2.5 m depth, water column 5.5 m deep). B. 

Navigation track lines interpolated by the mosaicking software, Sonar Web Pro 

(Chesapeake Technology). C. Geo-reference mosaic shown on aerial photo of the York 

River, Virginia (37° 13.61' North, 76° 29.25’ West), where these data were gathered.
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Given that individual fish (Treverrow 2000) and fish shoals (O’Driscoll and 

McClatchie 1998) can be discerned from modern sidescan imagery, we believe that 

significant progress can be made using sidescan sonar coupled with novel image 

processing algorithms to automatically classify and enumerate individual fish, with the 

goal of augmenting traditional stock assessment.

The processing algorithms introduced here include a Radial Basis Function (RBF) 

neural network classifier that can recognize individual fish. The goals of the study were 

to (1) successfully integrate sidescan sonar into an AUV and use it to image fish in the 

wild, in underwater pens, and public aquaria, (2) develop image extraction and 

classification algorithms capable of robustly distinguishing two species of fish from one 

another to demonstrate proof-of-concept, and (3) identify steps necessary for the 

automation and integration of the classifier algorithms into the AUV control software for 

future adaptive sampling needs, for example, re-sampling or following a fish school.



MATERIALS AND METHODS

Autonomous Underwater Vehicle and sidescan sonar equipment

A  Fetch-class AUV (Sias Patterson, Inc.; Patterson 1998, Patterson and Sias 1998,

1999) equipped with a 600 kHz sidescan sonar (Marine Sonics Technology, Ltd.) was 

used to acquire ground-truthed sonar images of fishes from the Virginia Marine Science 

Museum (Figure 3) and from test pens (Figure 4) placed in the York River, Virginia, a 

sub-estuary of the Chesapeake Bay. In the river, range settings of 5, 10, and 20 m, with a 

5 m range delay were used, and in the aquarium, 5 or 10 m with no range delay were 

used. A range delay of 5 m combined with a 10 m range setting was used most 

frequently in the field, as it provided a good compromise between acoustic resolution and 

area surveyed. The focal point of our particular transducer geometry was approximately 

10 m (M. Wilcox, Marine Sonic Technology Limited, White Marsh, VA. personal 

communication). Fixed gain settings were found to be ineffective for image collection in 

dynamic environments. We enabled MSTL Host-Remote commands onboard the AUV 

to ensure automatic setting of the time varying gain (TVG) levels using a fuzzy-logic 

based algorithm (Scott and Wilcox 1998).

The AUV collected data on natural fish abundance and fish avoidance behavior on 

several occasions, surveying a shallow tidal creek (Sarah Creek, York River, VA. 37° 

15.29’ N. 76° 28.84’ W. 1- 4 m depth), and the lower York River itself (37° 14.20’ N. 76°
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Figure 3. Fetch-class AUV, with 600 kHz sidescan transducer (mounted on nosecone) 

deployed in a tank at the Virginia Marine Science Museum. Vehicle was suspended by 

ropes 1.5 m above floor of tank. Time-stamped Hi-8 mm analog videos of fishes passing 

in the beam of the transducer were recorded. The pinging rate of the sonar was adjusted 

to be appropriate for the swimming speed of fishes transiting in a gyre around the 

periphery of the tank.

Following page. Detailed view of the AUV with sidescan sonar transducers, depth and 

pressure sensors, conductivity -  temperature -  density (CTD), navigation and telemetry 

equipment labeled.
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Figure 4. A. Diagram of circular mesh and hoop cage used to confine fishes during 

groundtruthing of the sidescan sonar in the York River, Virginia. Cage is 1.2 m (3.9 ft) 

high and hoops are 1.53 m (5 ft) in diameter with 2.5 cm (lin) square mesh monofilament 

netting stretched around them. A 49.9 kg (110 lb) weight was used to anchor the pen to 

the river floor while a 35 cm diameter (14 in) plastic buoy was tethered just below the 

river surface. The buoy provided 15 kg (33 lbs) of buoyancy and served to keep the mesh 

cage from collapsing in the river current. B. Image of mesh pen being deployed from a 

small 7.9 m (26 ft) vessel. C. Sample 600 kHz sidescan sonar image (range 10 m) of net 

pen with an encaged 71.2 cm (28 in) striped bass (Morone saxatilis).
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28.00’ W. 2 - 25 m depth). This latter survey occurred in conjunction with sampling by a 

Virginia Institute of Marine Science (VIMS) research vessel conducting a fisheries stock 

assessment trawl. Additional sonar images were acquired with a similar 600 kHz towfish 

and topside computer system deployed from a VIMS Garvey class, small vessel.

During the sampling in the aquarium, we discovered sources of noise and crosstalk 

in the recorded sidescan images that were corrected in later field deployments. These 

corrections included isolating and eliminating sources of common-mode noise inside the 

AUV (filtering the switching power supplies to eliminate a power supply harmonic at 600 

kHz), eliminating a five degree starboard roll in the AUV in order to produce a more 

uniform sonar image on both channels, tilting the sonar transducers down five degrees 

from the horizontal to reduce cross-talk between the sensors, and installing a barium- 

loaded vinyl sheeting underneath each transducer to further eliminate transducer cross

talk.

Sonar target extraction

Raw sidescan images were exported from the sonar collection software (Seascan 

PC, Marine Sonic Technology Ltd.) as Tagged Image File Format (TIFF) files. The 

image files were 1024 lines by 500 pixels wide, and a time-stamp marking each ping 

return line (corresponding to a horizontal row of pixels) was also saved by using a 

customized TIFF field. Lab VIEW 6.1 with IMAQ Vision 6.0 (National Instruments) 

was used to develop extraction algorithms that separated regions of interest (ROIs) from 

unwanted targets in the remainder of the image. For this project, ROIs are those regions

12



first bottom return, and the air-water interface. The extraction algorithm performed the 

following image transformations: rotation, image masking, color plane extraction, 

histogram creation, and basic and advanced morphological operations. These steps are 

briefly expanded below. Each image was first rotated from the dimensions of 1024 by 

500 pixels to 500 by 1024 pixels to return the image to the dimensions under which it 

was originally collected. This step was required to maintain the proper aspect ratio of 

each sonar target. Next, if the image containing the ROI exceeded a window size of 220 

pixels by 220 pixels (as most of the shark images did), an image mask was created 

around the ROI, thus isolating it from the background. The red color plane was then 

extracted from the red, green, blue (RGB) TIFF image to allow the calculation of a pixel 

intensity histogram. Once length, width, area, and mean pixel intensity values were 

calculated, a threshold operator was applied, followed by a dilation and/or erosion 

operation, in order to remove any spurious pixels from the frame before particle analysis 

operators were invoked. Some images required further morphological operators to be 

applied. This was warranted when some artifact of the original sonar image, such as the 

air -  water interface, was corrupting the bounding box surrounding the ROI. When this 

occurred, a morphological operator that removes pixels touching the borders of the 

bounding box was applied. Particle analysis was then performed on the extracted ROIs, 

using algorithms already available in IMAQ Vision.

Metrics extracted by this procedure are listed in Table 1. All data were not collected 

at the same range settings. Therefore affine transformations were performed on metrics 

when appropriate to provide dimensional similarity in the resulting data sets, to ensure all
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images used for training and classification by the neural network showed all objects 

at the same size.

Radial Basis Function artificial neural network model

Artificial neural networks (ANNs) are computational models that are inspired by 

advances in neuroscience and neurobiology. Essentially, a neural network is composed 

of many simple processors, called units or nodes, organized into layers that may possess 

discreet amounts of local memory. Each of these layers and individual units are 

connected to each other and carry various sorts of numerical data. Each unit processes 

and passes on, or halts, the data that it receives from other units or layers. From a 

biological model, each node or unit is similar to a neuron and the connections between 

units are similar to synapses. It is important to note that artificial neural networks take 

their design from biological models but do not attempt to replicate real neural 

connections. Neural networks were first reported in the early 1940s and have sustained 

periods of great popularity in the 1980s (Werbos 1994), and again more recently. Much 

of the current popularity is due in part to advances in desktop computing and the 

availability of numerous robust ANN models.

We identified the Radial Basis Function (RBF) model as the best candidate for 

classification of sidescan sonar imagery. RBF networks offer the advantages of high 

levels of noise immunity (Li and Leiss 2001) and a great ability in solving complex, non

linear problems in the fields of speech and pattern recognition, robotics, real time signal 

analysis and other areas dominated by non-linear processes.
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Table 1. Components of the image vector used by the RBF neural net classifier for 
species identification. Region of interest (ROI) was manually extracted from the raw 
TIFF file and then passed to scripts written in Lab VIEW IMAQ Vision 6.0 for automatic 
extraction of vector components.

Vector component Description

Pixels 

Length 

Width 

Aspect ratio 

Area

Variance pixel 

Mean pixel 

Intensity ratio 

Image area 

Center mass x 

Center mass y 

Left column x 

Top row y 

Right column x 

Bottom row y 

Box width 

Box height

Longest segment length

Longest segment left column (x)

Longest segment top row (y)

Perimeter

Sum x

Sum y

Number of pixels contained within ROI 

Number of pixels in longest segment of ROI 

Number of pixels in widest segment of ROI 

Length measurement divided by width measurement 

Surface area of ROI

Standard deviation of pixel values within ROI 

Mean intensity of pixels within ROI

Standard deviation divided by mean intensity of pixels within ROI

Surface area of bounding rectangle surrounding ROI

X-coordinate of center of mass of ROI

Y-coordinate of center of mass of ROI

Left x-coordinate of the bounding rectangle

Top y-coordinate of the bounding rectangle

Right x-coordinate of the bounding rectangle

Bottom y-coordinate of the bounding rectangle

Width of the bounding rectangle in pixels

Height of the bounding rectangle in pixels

Length of the longest horizontal line segment

Leftmost x-coordinate on the longest horizontal line segment

Top y-coordinate on the longest horizontal line segment

Length of the outer contour of the ROI

Sum of the x-axis for each pixel of the ROI

Sum of the y-axis for each pixel of the ROI
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Sum xx 

Sum yy 

Sum xy

Corrected projection X 

Corrected projection Y 

Moment of inertia Ixx 

Moment of inertia Iyy 

Moment of inertia Ixy 

Mean chord X 

Mean chord Y 

Max intercept

Mean intercept perpendicular 

Target orientation 

Equivalent ellipse minor axis

Ellipse major axis

Ellipse minor axis

Ratio of equivalent ellipse axis

Rectangle big side

Rectangle small side

Ratio of equivalent rectangle sides 

Elongation factor

Sum of the x-axis squared for each pixel of the ROI

Sum of the y-axis squared for each pixel o f the ROI

Sum of the x-axis and y-axis for each pixel of the ROI

Sum of the vertical segments in a ROI

Sum of the horizontal segments in a ROI

Inertia matrix coefficient in xx

Inertia matrix coefficient in yy

Inertia matrix coefficient in xy

Mean length of horizontal segments

Mean length of vertical segments

Length of the longest segment in the convex hull of the ROI 

Length of the chords in an object perpendicular to its max intercept 

Direction of the major axis of the ROI

Total length of the ellipse axis having the same area as the ROI and

a major axis equal to half the max intercept

Total length of the major axis having the same area and perimeter 

as the ROI in pixels

Total length of the minor axis having the same area and perimeter 

as the ROI in pixels

Ratio of the length of the major axis to the minor axis

Length of the larger side of a rectangle that has the same area and 

the same perimeter as the ROI in pixels

Length of the smaller side of a rectangle that has the same area and

the same perimeter as the ROI in pixels

Ratio of rectangle longest side to rectangle shortest side

Ratio of the longest segment within the ROI to the mean length of

the perpendicular segments
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Compactness factor 

the ROI

Heywood circularity factor

Type factor

Hydraulic radius 

Waddel disk diameter 

Diagonal

Ratio of ROI area to the area of the smallest rectangle containing

Ratio of the ROI perimeter to the perimeter of the circle within the 

same area (a circle has a Heywood circularity factor of 1). 

Complex factor that relates the ROI surface area to ROI moment 

of inertia

Ratio of the ROI’s area to its perimeter

Diameter of the disk that has the same area as the ROI in pixels 

Diagonal of an equivalent rectangle (with area equal to the ROI) in 

pixels
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An RBF network has locally tuned overlapping receptive fields (Broomhead and 

Lowe 1988), which are well suited to classification problems. In the recent past, 

multilayer perceptron (MLP) ANN models were considered to be superior for 

classification problems. Today, RBF networks have several advantages over MLP 

designs including faster convergence, smaller extrapolation errors, less sensitivity to how 

training data is presented, and a greater reliability against noisy data (Hogan et al. 2001). 

Figure 5 shows a model of a Radial Basis Function network, and a formal description, as 

described in Li and Leiss (2001), follows below.

RBFs are a class of feed-forward networks that possess a single hidden layer of 

neurons, or processing units. The transfer functions for the hidden units are defined as 

radially symmetric basis functions (cp) that are Gaussian, and are given by:

where pi is the center, or mean, of the i-th Gaussian and of is its variance.

Given an No-observation data set D = {(x,y;)|/ = 1,...,ND}, the RBF can be thought of 

as a function approximation that performs the following mapping:

( 1)

(2)

such that

y i = A(xl) + ei, i= 1, ...,No, (3)
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where X is the regression function, the error term Ej is a zero-mean random variable of 

perturbation, Ni is the dimension of the input space, and x; and y;, are the i-th components 

of the input and output vectors, respectively.

Each unit in the hidden layer of the RBF forms a localized receptive field in the 

input space X that has a centroid located at c, and whose width is determined by the 

variance a  of the Gaussian equation. This allows a smooth interpolation over the total 

input space. Therefore, unit i gives a maximal response for input stimuli close to q. The 

hidden layer then performs a nonlinear vector-valued mapping (J) from the input space X 

to an Ne-dimensional “hidden” space O {0(x.)|i = 1,...,Â D},

Each nonlinear basis function (J)(x) is then defined by some radial basis function (p

<f>(x): <R N‘ (4)

where

(f){x) = [(^(x),...,^ (x) \ i s  an Nh dimensional vector.

(5)

where IIJI is the Euclidean norm on 9iw' .
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Finally, the output layer performs a linear combination of the nonlinear basis

A

function (j)i to generate the function approximation by X :

X (x,D) = Y j wi</>i(x). (6)
/=i

The overall scheme of the procedure is shown in Figure 6. We used an 

implementation of a RBF model in the LabVIEW-based software package ZDK (General 

Vision) to map image vectors to three outputs: jack, shark, or not jack or shark (Figure 7). 

The image vector data extracted by the Lab VIEW IMAQ Vision algorithms are stored in 

an Excel spreadsheet and imported into the ZDK-based recognition engine. Image vector 

components are automatically scaled to 8-bit resolution, to comply with ZDK input 

requirements.

Influence fields are important features of the learning process of the ZDK RBF 

neural network and are defined here in order to more clearly describe the subsequent 

learning and recognition tasks. The Active Influence Field (AIF) of a neuron describes 

the area around the stored prototype (or the variance around the Gaussian center in the 

RBF model described earlier). The AIF of a neuron is automatically adjusted as new 

vectors are introduced during network training. The Maximum Influence Field (MAF) 

defines the largest influence field value that can be assigned to one neuron, while the 

Minimum Influence Field (MIF) defines the smallest influence field value when a 

reduction in the AIF occurs during the learning of a new prototype (Silicon Recognition 

2002). When a neuron’s AIF is reduced and limited to this value, the neuron prototype 

lies very near the boundary of its category space and is likely to be overlapped by another

20



category space. When this happens, the neuron is considered to be “degenerated” and is 

flagged for removal from the network.

21



Figure 5. Architecture of a Radial Basis Function artificial neural network used in the 

ZDK Lab VIEW software engine (General Vision, Inc.). Connections between the input 

and hidden layers never change. Weights established during the training phase are stored 

in the layer containing hidden neurons. Connections between the hidden layer and the 

output layer are dynamically established during the training process.
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Figure 6. Schematic diagram of the image classification approach used in this study. 

Features (components of the image vector) are extracted from the raw sidescan sonar 

images and input to the RBF neural net classifier. The RBF architecture allows the 

classifier to be easily scaled up to classify new species as ground-truthed data become 

available.
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Figure 7. Screen shot of the front panel graphical user interface developed in Lab VIEW 

and ZDK to process and classify image vector data. Vectors are imported in from an 

comma separated (csv) spreadsheet, and scaled to 8 bits before processing.
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A learning process is required to train the neurons with prototype, or ground-truthed 

sidescan sonar images. The learning process can result in the following actions:

(1) if the presented vector is not within the influence field of any

prototypes already stored in the network, then a new neuron is 

committed to that vector;

(2) if the input vector falls within the influence field of an already

learned vector, no change is made to the network connections or 

influence fields;

(3) if the input vector falls within the wrong influence field, or is

mismatched to its category, then one or more influence fields are 

readjusted. Adjustment of the influence field occurs at the MAF or 

the MIF. If the MIF is adjusted to a minimum threshold level it is 

considered a “degraded” neuron and is subsequently flagged for 

removal. This process is graphically illustrated in Figure 8.

Once the network has been trained with prototypes or ground-truthed imagery, it is 

ready to perform recognition tasks on previously unseen data. Formally, classification 

consists of evaluating whether an N-dimensional input vector lies within the AIF of any 

prototype in the network. If the vector is not within any AIF in the network it is 

classified as not recognized. If the vector is within an AIF, the input is recognized as 

belonging to that AIF’s corresponding category. If the input vector lies within two or 

more prototype’s AIF that are assigned to two different categories, then the input is coded
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Figure 8. Conceptual flowchart for modification of the weights of the RBF ANN by new

prototypes, i.e., new training image vectors. Adapted from General Vision (2001).
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as "recognized but not formally identified." The classification process is shown in 

Figure 9.

Analysis o f Neural Network Identification Success

The reliability and performance of any neural network model is dependent upon 

the selection and available amount of training data, associated weights, and selection of 

correct input vectors. Neural network accuracy (percentage of correct classifications) 

will be the primary evaluation criteria. If the neural network is unable to satisfactorily 

classify the sonar data it is given, then more vectors will need to be learned by the 

network and new prototypes (or training examples) will be added to the neural network 

model. If additional training input data is not sufficient to yield high percentages of 

correct classifications, then the model may be then cleared and rebuilt using the same 

input vectors but adjusting the influence fields. If new influence field settings will not 

yield satisfactory results, then selection of new input vectors will be required. Evaluation 

of each network was accomplished with the cross validation technique known as a Leave 

One Out (LOO) method (Hogan et al. 2001). This technique takes N patterns or images 

and uses N-l for training and 1 for testing over N iterations.
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Figure 9. Conceptual flowchart for the classification process used by the RBF ANN,

when presented with new data Adapted from General Vision (2001).
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RESULTS

Identification success

Table 2 shows the results of classifying thirty-three novel images. Twelve of these 

images were of sand tiger sharks, fourteen of crevalle jack, and seven of fish that were 

not sharks or jacks. Non-shark or jack test data included sonar images of barracuda 

(■Sphyraena guachancho), spadefish (Chaetodipterus faber), tarpon {Megalops 

atlanticus), and cobia (Rachycentron canadum). The overall success of the most 

successful network ranged from 90.1 % to 97.0 % with one image being incorrectly 

classified and two images classified correctly but with uncertainty. The success of the 

classifier on all training images was 100 %. Following Nelson and Illingworth (1991), we 

deem our classifier successfully trained because we achieved 100% classification 

accuracy on the training images and an acceptably high (90.1 % to 97.0 %) accuracy 

level with novel images. The goal is to classify a putative target at some predetermined 

successful percentage rate, using the fewest number of classification metrics in the 

prototype (training) and test images. In other words, the image vector should contain 

enough information to successfully classify the target.

Surveys in the field revealed that the AUV can easily count individual fishes, even in 

schools, if the range setting is kept to 10 m or 5 m. When the AUV passed through a 

school of fish, turning motions of the school away from the AUV were minimal, even 

when the vehicle was within 2 m of the targets. Furthermore, the AUV imaged abundant
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putative fish targets in the water column in the York River when surveying over 2.5 

nautical miles of this habitat in depth-following mode, swimming 3 m deep, while a 

simultaneous trawl by a 65' research vessel caught no fish.
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Table 2. Results of classification process reported as the percentage of images (n = 33) 
correctly classified. The RBF network classifies image vectors as “identified”, 
“uncertain”, or “unknown”. Unknown classifications are an indication that more training 
vectors are needed or that the ANNs perimeters require adjustment. An uncertain 
classification may still be correct but that particular vector is likely near the edge of the 
Active Influence Field of the ANN. Results are reported as a range of percentages for 
each network setting. The lower bound of the range reflects a conservative evaluation of 
that particular network as an “uncertain” classification was considered as incorrect, even 
though the network correctly, but uncertainly, identified that particular vector.
Evaluation of each network was accomplished with a Leave One Out (LOO) method of 
training the network n-1 times and presenting the unknown vector to the classifier and 
recording the classification result.

Results and settings Network 1 Network 2 Network 3

Percent success 100 100 100(training images)

MIFa
settings 2 2 75

MAFb
settings 2123 4096 3072

“Unknown” A 0 1classifications 4

“Uncertain” Q
classifications Z L 3

Incorrect
i l 1

Classifications

Percent success 
(novel images) 7 8 .8 -8 4 .8 90.1 -9 7 .0 84.8 -  87.9
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a The Minimum Influence Field (MIF) is the lower limit of the neurons influence field. The greater the 

MIF value the more the possibility exists for overlapping categories and will likely result in a more 

“uncertain” classifications.

b The Maximum Influence Field (MAF) defines the variance around the center of the neuron. Tuning this 

value to the a smaller number is preferred as it will result in more “identified” responses.
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DISCUSSION

The research described herein combines the scientific fields of fisheries science, 

hydroacoustics in the form of sidescan sonar, digital image processing, and artificial 

neural network modeling, or more commonly named, neurocomputing. Additionally, it 

utilizes a sampling platform that is quickly becoming a major research tool at many 

universities and government research laboratories, Autonomous Underwater Vehicles. 

This interdisciplinary convergence of several research fields will result in the creation of 

tools and methods that may be viewed as a significant development for marine science in 

general, and fisheries science in particular, namely automated species identification from 

sidescan sonar records.

This research is a departure from traditional hydroacoustic methods in that it 

develops an algorithm that uses 2-dimensional (2D) image data, instead of the more 

commonly used signal strength data. By using image-processing techniques combined 

with artificial neural net classifiers, we leverage the considerable advantages of these 

tools and apply them to an element of the side scan sonar record that is traditionally 

ignored, the water column. Given advances in imaging science and the computational 

ability of modern computers, image-processing techniques that utilize artificial neural 

networks for classification are arguably superior (Egmont-Petersen et al. 2002) for 

pattern recognition tasks over more traditional acoustic signal processing and
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classification methodologies such as principal components analysis (PCA) and cluster 

analysis (Lane and Stoner 1994).

Within the field of fisheries science, a critical issue is the quality and quantity of data 

that stock assessments and management decisions are based upon (National Research 

Council 1998). Stock assessments and other scientific information are the foundation for 

the rational and sustainable utilization of renewable resources (Hilborn and Walters 

1992). Fish population (stock) assessments require data on the biology of the species, 

catches, abundance trends, and stock characteristics such as age composition, which are 

used to estimate the current status of the stock and its past history. This understanding 

aids managers in the selection of fishing quotas to be achieved and thresholds or limits to 

be avoided (National Research Council 1998). The increasing numbers of stocks listed as 

over-fished, failed rebuilding schemes and schedules, and the number of collapsed or 

declining fisheries are poignant reminders that the current models and tools are in need of 

improvement.

Errors associated with trawl surveys

Fisheries management decisions are largely influenced by commercial landings data 

sets that are calibrated against the results of independent fishery resource surveys. Data 

from commercial and research surveys are often found to be biased and imprecise and 

therefore of limited utility. However, in many cases, these are the best, or only, data 

available. Bias may come from under-reporting of catch by commercial fishers (Castillo 

and Mendo 1987; Hearn et al. 1999) or from over-reporting (Watson and Pauly 2001). 

Imprecision is often introduced during “expeditionary” research cruises where the
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distance between samples is typically ten to hundreds of kilometers. As an example, 

independent groundfish surveys conducted by the Northeast Fisheries Science Center 

typically make only one trawl every 690 km2 (Sissenwine et al. 1983). Variability of fish 

populations, especially in coastal ocean and estuarine ecosystems, likely occurs at much 

smaller spatial scales then can be adequately resolved by traditional trawl sampling 

schemes. Even at small spatial scales, a traditional trawl survey may still be imprecise in 

its ability to resolve population density and abundance values for species that utilize 

shallow waters for some part of their life history (Rozas and Minello 1997). For 

example, the Virginia Institute of Marine Science (VIMS) Juvenile Finfish Survey is 

unable to sample in water shallower then 1.2 m due to vessel draft limitations (P. Geer, 

Virginia Institute of Marine Science, Gloucester Point, VA. personal communication). 

Using National Ocean Survey data, VIMS has assigned the Virginia portion of the 

Chesapeake Bay into 0.46 km2 grids in order to calculate the number of possible stations 

available to trawl. Of the total grids, 19% (6,056 out of 31,337) are in waters too 

shallow for the VIMS vessel to sample. Additional bias may be introduced in tidally 

dominated estuarine habitats such as the Chesapeake Bay, due to spatial and temporal 

changes in the nekton distribution with each tide (Peterson and Turner 1994).

Abundance indices derived from bottom trawl surveys often have the implicit 

assumption that a constant area is swept by the trawl during survey tows (Engas and 

Godo 1989). It has been shown that basic changes in trawl geometry can drastically bias 

catch results (Byrne et al. 1981; Carrothers 1981; Koeller 1991; Andrew et al. 1991) and 

gear performance, thus changing efficiency measurements. Estimates of survey and 

commercial gear efficiency have profound impacts on the precision and robustness of
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fisheries stock assessments. For surveys, gear efficiency estimates provide the means of 

converting relative indices of abundance to absolute indices. In commercial fisheries, 

estimates of gear efficiency can provide meaningful insights on absolute abundance, 

potential impacts of gear on the environment, and the fraction of the resource that can be 

economically and sustainably harvested.

Selectivity (and efficiency) of trawls is also sensitive to towing speeds (Dahm et al. 

2002) and tow duration (Somerton et al. 2002). Acoustic techniques for stock estimation, 

however, are fairly immune to such variability given the fact that the beam geometry and 

range data are well known for each acoustic application.

Another source of significant bias results from avoidance behavior by the target 

species. Observations of fish avoidance behavior during interactions with fishing gear 

have been widely documented (Foster et al. 1981; Carrothers 1981; Rose 1996; 

Kennleyside 1997; Morgan et al. 1997). Fish can normally detect the presence of trawl 

gear. Each species reacts differently to the fishing gear, thus biasing estimates of species 

composition and mortality in favor of those species with less effective avoidance 

strategies. Avoidance behavior will generally result in under-estimation of abundance 

and over-estimation of mortality rate (DeAlteris and Morse 1997). Studies conducted by 

Ona and Godo (1990) documented vessel avoidance behavior from the sea surface to 200 

m depth and at distances of 2.0 km for gadoids and other demersal fish species.

Radiated vessel sound may also cause fish to disperse. Misund et al. (1997) 

demonstrated that horizontal avoidance close to the vessel might have caused an under

estimation of the biomass of herring of about 20% during a single survey. Gartz et al.

36



(1999) investigated larval avoidance of zooplankton nets and determined a 10% over

estimation of mortality rates for striped bass larvae from the Sacramento-San Joaquin 

Estuary. In the Chesapeake Bay, and other shallow water systems, vessel avoidance may 

be more significant due to propeller wash extending all the way through the water column 

to the sediment water interface and mobilizing large clouds of particulates and cavitation 

bubbles. Franks (2001) has documented wind-driven mixed-layer turbulence avoidance 

behavior in larval fish, and avoidance of bubbles is documented in pelagic schooling 

species (Sharpe and Dill 1997). Sonar data collected from AUVs are of superior quality 

because of reductions in fish avoidance behavior (Fernandes et al. 2000) due to 

significantly lowered underwater-radiated noise signatures (Griffiths et al. 2001).

Habitat impacts due to fishing

An additional benefit of this work is that it may decrease habitat disturbance by 

mobile fishing gears during resource surveys and commercial harvesting. Habitat 

complexity and structure is a key indicator of the overall health of marine ecosystems. 

Mobile fishing gear, such as bottom trawls and scallop dredges, has been shown to 

deleteriously impact biological communities by altering the physical and biogeochemical 

characteristics of marine substrates (Caddy 1973; Mayer et al. 1991; Watling and Norse 

1998; Engle and Kvitek 1998; Auster 1998; Kaiser 1998; Schwinghamer et al. 1998; 

Pilskaln et al. 1998). The burial and mixing of sediments, reduction of habitat 

complexity, and removal of macrofauna by mobile gears has the potential to affect the 

trophic dynamics of the entire biological assemblage from bacteria to apex predators 

(Caddy 1993; Collie et al. 1997; Pilskaln et al. 1998; Schwinghamer et al. 1998; Engel 

and Kvitek 1998). The severity of the impacts and the time to recovery depend on many
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factors, including community structure, intensity and duration of the disturbance, and the 

physical characteristics of the particular environment affected.

A review of the literature, however, offers no clear consensus as to the extent fishing 

gear affects habitat. On one extreme, habitat disturbance by fishing gear has been 

described as resembling forest clear cutting (Watling and Norse 1998) while on the other, 

Currie and Perry (1999) describe nominal impacts to sandy habitats. Other researchers 

cite reductions in habitat complexity and biodiversity as a result of the smoothing of 

bedforms and the removal of macrofauna (Thrush et al. 1995; Collie et al. 1997).

Prospectus for future evolution o f this technology

The ZISC (Zero Instruction Set Computing) chip, recently developed by 

International Business Machines (IBM) and implemented by General Vision Inc., is a 

silicon implementation of the RBF neural network model. This study utilizes a software 

emulation environment of the ZISC technology and allows network optimization before 

being hard coded to the ZISC chips. Currently, each chip has 78 neurons arranged for 

parallel operation and can operate on 64-byte wide vectors. An unlimited number of 

these chips can be connected together resulting in the ability to build an infinitely sized 

neural network engine. For detailed specifications, see Silicon Recognition (2002). In 

the ZISC chip, a neuron is defined as a silicon resource that stores (or remembers) a 

“prototype,” along with its category label and its influence field. The dynamic nature of 

the learning process is due to each ZISC neuron possessing its own logic to perform 

distance calculations and comparisons with the influence field, and being able to adjust 

the influence field dynamically as new prototypes are introduced to the network. The
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neuron “fires” only when it perceives that an input data vector falls within its influence 

field.

One of the most exciting elements of the ZISC chip and its implementation of 

RBF networks is its unmatched speed in pattern recognition tasks. Nearly 500,000 

pattern evaluations per second are possible, allowing real-time pattern classification and 

recognition. This will enable future, real-time adaptive sampling protocols to be 

implemented in hardware onboard the AUV. For instance, aggregations of a species in a 

school can be recognized as the AUV passes by, and the range and bearing computed, 

which can, in turn, be used to control the speed and path of the AUV. We anticipate that 

fisheries research-class AUVs that can follow individual fishes or schools of fish for 

extended periods of time will be developed very soon, providing an unprecedented view 

of habitat utilization and mapping of essential fish habitat. In fact, Iwakami et al. (2002) 

recently reported the ability of a large AUV to locate, via passive sonar tracking 

algorithms, and approach, within 50 m, a humpback whale (Megaptera novaeangliae).

Once remote sensing tools, such as the species identification software proposed here, 

are developed, an AUV equipped with sidescan sonar and other acoustic technologies 

will be a resilient tool for sampling shallow near shore and coastal ocean environments 

for fishery resources. It is anticipated that AUVs will significantly augment more 

traditional stock assessment tools, like trawl surveys, in the near future.
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SUMMARY

Neural network classifiers, using radial basis functions, are a promising tool for 

analyzing putative fish targets in sidescan sonar images. In this study, odontaspids (sand 

tiger shark) and carangids (crevalle jack) were successfully distinguished from several 

fish species unknown to the classifier. These images were gathered in a noise-rich 

environment of a public aquarium and not under acoustically “ideal” conditions, thus 

illustrating the robustness of the RBF classifier. The sidescan sonar was successfully 

deployed from a small AUV, and proved capable of successfully imaging single fish held 

in a pen, and enumerating individual fishes in schools in a tidal creek. Fishes in schools 

also showed minimal avoidance behavior when the AUV passed through an aggregation, 

and on another occasion, the AUV imaged substantial numbers of fishes over a 2 nautical 

mile track when a larger research vessel was unable to catch any fishes in its trawl.

Future research endeavors on this topic will accelerate the emergence of AUV technology 

as the platform of choice for sidescan stock assessment and habitat assessment tasks 

because of its immunity to waves and vessel electrical noise, and its ability to survey 

environments difficult to sample using conventional ship-based technology.
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APPENDIX A

Software Documentation

All image processing routines and construction of the ANN classifier was 

accomplished within the Lab VIEW 6.1 graphical programming environment. Image 

processing scripts were constructed and evaluated with Lab VIEW Vision Builder 6.0.

The ANN classifier was built with ZDK4LV distributed by General Vision Inc.

ZDK4LV consists of a number of sub VI’s (virtual instruments) that are embedded within 

the Lab VIEW environment. What follows in this appendix is a graphical documentation 

of the software code used to complete this project.
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AUV Fish Classifier l.O.vi

Fish species classification engine using ZISC and RBF neural network technology

1) clear ZISC if any neurons are committed.

2) Load a file with vectors and their known category.

3) Learn all vectors.

4) Choose one of the vector of the input file and verify that its output category 
matches the input category when you click the Green button. Distance should be zero.

5) Modify one of the values of the displayed vector and try to recognize again. 
Distance should report the difference between the new and former vector, category 
might be off depending on the contents of the engine built in (3).
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categories are not null), or you can display and classify any element of 
your choice from this array.

Cluster

I ui6n| Input
category
Category of the vector. This value can range between 
0 and 16, 383.

[ua>| Vector
Vector, array of up to 64 elements of 8-bit.

nisi
Load data
Load vectors and their categories from existing data files saved in a CSV 
format as follows:
Context value, category value, [ vector of up to 64 components].

Clear Network 
Connections
Clears the contents of the ZISC netwrok and resets its settings (card 
type, Min and Max influence fields) to the selected values.

Clear data
Clears the Array of vectors and categories.

44
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FuaTl Committed
Neurons
Number of neurons in the network.

Category Selected for Displayed Vector
Array of the categories of the firing neurons listed in increasing order of 
distance.

► u i6 1 Category

Distances to known prototypes
Array of the distances between the input vector and the firing 
prototypes listed in increasing order.

FOrc]

u n

E m

► ui6 i Distance 

Classification Status
This indicator returns the status of the classification of the vector:
- identified, if all firing neurons of the recognition engine agree and return 
the same category value
- uncertain, if several neurons fire and they do NOT return the same 
category values
- Unknown, if no neuron fires

Nework size
Number of committed neurons in the ZISC network.

ZISC
Return the code of the first card detected in the system:
0- None or ZISC simulation mode
1- ZISC PCI card
2- ZISC ISA card
3- NeuroSight_PCI or ZISCBIaster card
4- PCMCIA ZISC card
5- NeuroSight_EMB card

EIE]
E m

E m

IDENTIFIED

UNCERTAIN

UNKNOWN
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APPENDIX B

Digital image processing o f side scan sonar records

Acoustic images gathered by sidescan sonar can now rival photographs as 

frequencies approach 5 MHz. Therefore, it is reasonable that techniques originally 

developed for optical image processing and machine vision applications can be applied to 

sonar images. Image processing is a large field of research and cannot be adequately 

addressed here. The reader is directed to texts such as Jahne (2002), Suel et al., (2000) or 

Jain (1989) for descriptions of image processing theory and algorithms.

It is useful to define exactly what a digital image is, for the concepts presented 

below build upon the basic principles of how an image is defined. A digital image is 

simply a two-dimensional array of values that correspond to some signal intensity; sound 

pressure returning to an acoustic transducer and converted to electrical voltages in the 

case of sonar and light intensity returning to an optical sensor in digital photography. 

Formally, the image is a function of some intensity:

fU y)

where/  represents the brightness or signal intensity at the point, termed pixel, (x, y). 

Typically, these pixels are spatially mapped to a two-dimensional, Cartesian coordinate 

system where the starting coordinate (0, 0) is the upper left corner of the image.
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The resolution of an image, the number of planes, and definition are three additional 

basic components of a digital image. Image resolution is often expressed as the number 

of pixels in each vertical and horizontal column. As an example, the images presented in 

Appendix C are composed of columns of pixels that number 220 in the vertical and 220 

in the horizontal. One can think of the number of planes within an image as the depth or 

level of complexity of information contained within the image. For example, a gray scale 

image contains only one plane while a true color image has three (or more) planes of 

intensity data, one red, one green, and one blue plane. The bit depth of an image is 

defined by the number of bits used to encode each pixel with a value or shade. As an 

example, image definition, or bit depth, is given by 2n which states that a pixel may have 

n different values. If n is 8 bits, then a pixel may have 256 values. If n is 16 bits, then a 

pixel could have 65,536 different shades or values.

It is important to note that image processing is a collection of multiple steps that are 

scripted together to yield information contained within an image. Hierarchical processing 

schemes are therefore necessary to extract desired information from an image (Jahne, 

2002, Egmont-Petersen et al., 2002). This hierarchy begins with image formation, 

illumination and digitization. Once a digital version of the image is created, it usually 

will require filtering or preprocessing. Operations such as contrast enhancement and 

noise removal could occur during this step. Data reduction via feature extraction or 

image compression is a common next step in the image processing hierarchy. 

Segmentation describes operations that partition an image according to a particular 

criterion or data point, such as texture segregation, color matching, object clustering, etc. 

Object recognition operations often describe an objects position, orientation, and scale of
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targets within an image. Operations common during the recognition phase include: 

template matching, particle analysis, and edge detection. Many of these tasks are 

completed with image transforms, which are mathematical operators that alter the image 

on a pixel-by-pixel basis. There exist two classes of image transforms that can be applied, 

global and point transforms. A global transform is one that acts equally on each pixel in 

the image while a point transform will operate only on each pixel and its immediate 

neighbors.

Particle analysis will receive special mention here as the tools common for that 

operation are useful to this project. Particle analysis can be characterized as a set of tools 

that are used to measure the area, length, coordinates, chords and axes, shape features and 

shape equivalence features of a particle, shape or blob in an image (National Instruments, 

2001; Suel et al., 2000).

Before particle analysis can take place, the image typically requires thresholding. 

Thresholding can turn a n-bit image, in this case an 8 bit gray scale image with pixel 

values ranging from 0 to 255, to a binary image with pixel values of 0 or 1. This process 

results in an image that is segmented into a background region and a particle region. It 

has the benefit of removing objects of interest from the background.

One useful method of changing a pixel’s (or particle’s) overall size and shape is to 

use morphological operators. These work on binary images and process each individual 

pixel based on the values of the pixels in its immediate neighborhood. Morphological 

operators are used when it is desired to smooth edges of particles, expand or reduce the 

size of particles or find the boundaries of particles. The dilation operator serves to fill
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small holes and gaps within a particle. The auto-median operator will generate a lower 

resolution particle and acts to smooth large particles and eliminate small, spurious ones.

Many of these steps were assembled into scripts that were used to pre-process the 

side scan sonar data before it was passed to the artificial neural network classifier. 

Hundreds, if not thousands, of different operators and processes exist that one can use to 

manipulate digital images. I have only briefly described the ones utilized in this work. 

Listed below are the image pre-processing scripts used to process the data. While they 

are automated scripts, each image processed required manual setting of a Region of 

Interest (ROI). Future research should focus on automated detection of appropriate side 

scan targets and target extraction.

Shark Script: used to pre-process images of larger fish targets which typically exceed the 

220 by 220 pixel images output by MSTL’s side scan sonar data viewer.

BEGIN

GEOMETRY: Resampling 

IMAGE MASK: From ROI 

EXTRACT COLOR PLANES: RGB-Red 

THRESHOLD: AUTO THRESHOLD: Clustering 

BASIC MORPHOLOGY: Auto median 

BASIC MORPHOLOGY: Dilate objects 

PARTICLE ANALYSIS

END
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Single Fish Script: used for pre-processing of single fish or multiple fish targets that will 

easily fit in a standard 220 by 220 pixel image produced as an output from MSTL’s sonar 

data viewing and processing software.

BEGIN

EXTRACT COLOR PLANES: RGB-Red

GRAY MORPHOLOGY: Dilate

THRESHOLD: Manual threshold

ADVANCED MORPHOLOGY: Remove small objects

ADVANCED MORPHOLOGY: Remove borders

PARTICLE ANALYSIS

END
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APPENDIX C

Side Scan Sonar Practices for Imaging Water Column Biologic Targets:

Notes from the field

The success of this work relies on the quality, and to some extent, the quantity, of 

the sidescan data that is gathered and the ability to determine relevant, species-specific 

features in the sonograms. The central thesis of this work is that fish species 

identification and quantification is possible through image processing techniques and the 

use of artificial neural network classifiers and does not rely on more traditional hydro

acoustic methods mentioned earlier, such as echo counting and echo integration. Sidescan 

sonar is mostly immune to the shallow water limitations of most vessel-based, downward 

looking sonar methods, especially at the short (~ 10-20 m) ranges that are being used for 

this project. Most traditional sonar sampling methods utilize down looking transducers 

and therefore suffer from much reduced sampling volumes when used in shallow waters, 

such as the Chesapeake Bay and other estuarine and riverine systems.

This is the fundamental reason for utilizing an AUV as our sampling platform 

because it is significantly decoupled from the effects of sea state and produces superior 

imagery over towed systems. An additional advantage of the AUV is that it can enter 

into waters too shallow for a vessel-deployed, towed, sidescan system.

Furthermore, this work is dependent upon the correct selection of species-specific 

variables (e.g. morphology of acoustic returns, packing density, linear size and shape,
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schooling parameters, etc.) that will be used by the neural network program to 

discriminate between species.

While these tasks were accomplished, it was not without significant trial and error 

and the need for several adjustments to the AUV and the side scan sonar system. This 

appendix serves to document our trials and fixes. I hope it serves as a guide to others 

who may use these techniques in the future so that they do not suffer the pitfalls we 

encountered.

During the collection of ground-truthed sidescan images for initial neural network 

training, many lessons were learned in order to optimize data collection of biological 

targets. Although the aquarium experiments are preferred for ground truthing of the 

sidescan imagery due to water clarity for video-based species verification, it was 

discovered that the quality of the images suffer from degradation due to the noisy 

environment found within the aquarium. Sources of noise include tank filtration and 

circulation pumps and visitors tapping on the viewing glass. Another problem seen in 

figure 2a (and all aquarium data gathered at VMSM) is aliasing of fish images, first 

bottom returns and air/water interface returns. We believe that this multipathing is due to 

the fact that Marine Sonics Sonar control hardware does not provide individual 

transducer power on/off options while the control software does allow individual 

transducer display and recording. Therefore, The glass wall facing the sidescan 

transducer acts as a reflecting surface and generates a delayed signal source that lags the 

sound source generated by the transducer facing the interior of the aquarium tank. 

Subsequent aquarium deployments required that the transducer facing the tank wall to be 

covered with barium loaded vinyl sheeting designed to limit sound signal transmission.
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This material can be obtained from McMaster-Carr Inc. (http://www.mcmaster.com). We 

successfully used the 0.042 inch thick by 54 inch wide, STL=20, Catalog # 54665T22 at 

$6.33 per foot. A thicker version is also available at 0.107 inch thick and 54 inch wide, 

STL=26, Catalog # 546656T32 at $8.16 per foot.

During the aquarium exercise, we discovered several necessary improvements to 

the sidescan sonar and the AUV that will be required for improving field-gathered sonar 

imagery. These improvements include: isolation and elimination of sources of suspected 

common-mode noise inside the AUV via installation of filter capacitors to eliminate 

harmonics at 600 kHz on the DC to DC converters inside and robot and the installation of 

ferrite chokes on all power leads, elimination of 3-5 degree of starboard roll in the AUV 

in order to produce a more uniform sonar image on both channels, and lastly, to tilt the 

individual sonar transducers 2-5 degrees down from horizontal to eliminate cross talk 

between the sensors. In addition to adding the barium loaded sheeting behind each side 

scan transducer, we have now increased the lateral distance between them by 2.5 inches 

by refashioning the transducer mount. These improvements have resulted in greatly 

improved sidescan imagery.

Data Examples

Catalogs of raw data examples are presented below. All images are 

groundtruthed unless otherwise noted. Data collected for this project include 

approximately 12 hours of video data with 878 megabytes (729 individual sonar files) of 

concurrent side scan sonar imagery collected from the Virginia Marine Science Museum, 

Virginia Beach, Virginia. In addition to the video/sonar data from the aquarium, there is 

1.35 gigabytes (1298 individual files) of side scan sonar data that has been ground truthed

64

http://www.mcmaster.com


with the acoustic net pen experiments from the York River, VA. All raw and processed 

data is deposited with Dr. Mark Patterson at the Virginia Institute of Marine Science in 

Gloucester Point, Virginia.

65



The Rogues’ Gallery

Selected images of caravel jacks (Caranx hippos)
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Selected images of sandtiger sharks (Caracharias taurus)
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Selected images of striped bass (Morone saxatilis) in York River mesh pens
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APPENDIX D

Basic Acoustic Theory

This study utilizes a specialized form of acoustic imaging, sidescan sonar, and 

offers an alternative to traditional forms of acoustic population estimation methods. It 

may, therefore be useful to review the basic principals of underwater acoustics. The term 

acoustics, as used here, describes the generation, propagation, reception and 

interpretation of sound (pressure) waves traveling through an elastic medium, such as 

seawater.

Nearly all forms of acoustics utilize some device to generate sound waves and 

listen for returned sound signals. Most often, these devices are electro-mechanical 

transducers manufactured from magnetostricitve elements (such as nickel or ferrites), 

electrostrictive ceramic material, such as barium titanate, or piezoelectric materials, such 

as quartz, Rochelle salt, or lithium sulfate (Albers, 1969). When an electric current is 

passed through the transducer, it oscillates at a specific frequency. This oscillation 

physically moves the adjacent water particles and therefore establishes outgoing pressure 

waves.

Propagation o f sound

Sound (or pressure) waves will propagate through any elastic medium, such as air, 

water, steel, etc. Conversely, there is no sound propagation in space or any vacuum. 

When an air particle or water molecule is displaced from its original position within a 

homogeneous medium, the elastic properties of the surrounding medium push the
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displaced molecule back into its original location. However, inertial forces will act on 

the molecule and when it is pushed beyond its original position and a localized oscillation 

is established (Everest, 2001). This concept is core to describing how sound waves travel 

through seawater, or any other sound-conducting medium.

Density of the medium affects the speed of propagation. To illustrate, imagine 

putting ones ear to a train track. It is possible to hear an oncoming train much earlier 

through the rails. Since the steel track is denser, soundwaves propagate more rapidly 

through metal then in the less dense air. Sound velocity in air is about 330 m/s, 1500 m/s 

in water and about 5000 m/s in steel.

Sonar operating frequency largely determines attenuation loss (absorption) that 

occurs as the sound wave propagates through the water column and is a significant 

determinant of the distance that the wave can be propagated. The duration of the 

transmission pulse and the length of the pulse determine the resolution capability of a 

particular sonar system. The shorter the pulse duration and length, the better the 

resolution of smaller targets. However, range decreases with pulse duration and length. 

See Clay and Medwin (1977) and Gunderson (1993) for detailed explanations of acoustic 

absorption and transmission theory.

Reception and interpretation

The single most important parameter in acoustics is the speed of sound. The speed 

of sound ( c ) in the sea averages 1500 m/s, yet can fluctuate with changes in temperature, 

salinity, and pressure. Equation (D-l) illustrates how c responds to environmental 

fluctuations in seawater.

c= 1449.2 + 4.6T -  0.055T2 + 0.00029T3 + (1.34-0.010T)(S-35)+0.016z (D-l)
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where c = speed (m/s), T = temperature (°C), S = salinity (parts per thousand), and z = 

depth (m).

With the ability to accurately measure the speed of sound, and the use of high

speed digital counters to measure the time between outgoing and reflected sound pulses, 

we are able to use acoustics to “illuminate” the ocean. The word illuminate is 

appropriate, as sound waves behave very much like light waves. As a sound wave moves 

through the ocean, it will typically continue to propagate through the water, interact with 

physical boundaries, and/or scatter when it comes into contact with reflecting objects or 

surfaces (Clay and Medwin, 1977). It is the study and understanding of these processes 

that form the basis for acoustical oceanography and fisheries hydroacoustics. As this 

study focuses on a new tool for fisheries science, acoustical oceanography will not be 

discussed in detail. Clay and Medwin (1977) give a thorough treatment of acoustical 

oceanography and MacLennan and Simmonds (1992) is the seminal text for fisheries 

acoustics. What follows is a review of the history and current state of fisheries acoustics. 

Fisheries acoustics

The beginnings of what I term “traditional” fisheries acoustics can be traced to 

early studies on the acoustical reflecting properties of fish (Rusby et al., 1973) and the 

invention in 1965 of an echo integration system and paper chart recorders (Templemann 

and May, 1965). By traditional, I mean a down-looking transducer with a symmetrically 

spreading, conical beam that seeks to measure the levels of backscatter of acoustic energy 

from organisms in the water column. Since the 1960’s, improvements in echo-sounder 

and time-varied-gain (TVG) accuracy and precision, the development of multibeam 

acoustic systems (Traynor & Ehrenberg, 1979), and the demonstration of the frequency
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dependence of sound scattering by organisms of different sizes, led to increasing efforts 

to interpret acoustic signals quantitatively. In the 1980’s, the advent of high-speed 

analog/digital voltage converters, portable computers, and mass data storage devices, 

coupled with new generations of signal analysis software, enabled more accurate, precise, 

and complex processing and storage of acoustic signals (e.g., Stevens, 1986). These 

technological advances allowed the development of analytical tools and numerical 

models that could estimate fish size and abundance from acoustic data (Dickie et al.,

1983; Rose and Leggett, 1988). Species determination has been elusive though 

(Maclennan and Simmons, 1992).

Classical hydroacoustic stock assessment methods utilize target strengths of 

returning signals to classify fish into stock and biomass distinctions. Target strength can 

be defined as a logarithmic measure of the proportion of the incident energy which is 

reflected or backscattered from the fish or target according to the following formula

TS = 10 log (I2 / Ii) (D-2)

where h  is the reflected intensity at lm from the target and I\ is the incident intensity.

For example, if a fish generated a reflected intensity of 0.00041\, then

TS = 10 log (0.0004) (D-3)

= - 34 dB relative to 1 pPa at 1 m

Most acoustic measurements are reported in decibels (dB) in favor of SI units for 

pressure and intensity given that the logarithmic dB facilitates the use of numbers that 

may be very large or very small, which are commonly found in acoustic applications.

The use of the dB scale allows TS description of acoustic scatters that range in size from
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small zooplankton (-70 dB) to herring (-40 dB) to large whales, (-10 dB) to a submarine 

(30 dB). For underwater acoustics, a common reference intensity (/i) standard for 0 dB is 

a i m  sphere positioned 1 m from the transducer (Kinsler et al., 2000). For comparison, a 

60 mm diameter Cu calibration sphere has a TS of -33.6 dB. These TS signals are then 

processed with echo integration or echo counting techniques, or a combination of both, as 

described in Forbes and Nakken (1972), Thorne (1983) and MacLennan and Simmonds 

(1992).

Target strength integration and counting methods, however, are often stymied by 

changes in fish aspect ratio and tilt angle, discontinuities in the density of the water 

column, and inability to discriminate heterogeneously mixed groups of fish. The result is 

highly variable population estimates (Horne 2000, Gauthier and Rose 2001). A 24 cm 

Atlantic herring may give a TS of -38 dB when in a normal swimming mode, but may 

present a much smaller TS of say -65 dB (not much larger then zooplankton) if it is 

positioned “heads up” or vertically within the acoustic beam. When acoustic surveys are 

conducted in shallow water, additional difficulties arise. Vertical, or “down-looking” 

sonar can only ensonify small volumes of the water column due to short ranges and 

narrow beams of the sonar (Stepnowski and Moszynski, 2000).

Despite the shortcomings of hydroacoustics mentioned above, benefits of 

hydroacoustic surveys that are not available from traditional forms of fishery stock 

assessment methods include: full water column assessment, continuous track-line 

assessment, analysis of fish behavior (which can help limit bias from net or vessel 

avoidance), and ultimately a significant cost savings in equipment and personnel. The 

shortcomings of most trawl surveys are that they are brief synoptic “snapshots” of fish
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populations. Trawl nets are usually deployed for short periods of time over large 

geographic areas. Additionally, trawls are designed to only sample species from a region 

of the water column, typically benthic or pelagic. While trawls cannot be replaced by 

hydroacoustic methods due to the need for ground-truthing the acoustic data and 

providing other biological data (e.g., sex and sexual maturity, food habits, species 

composition, etc.), acoustic data can adeptly augment conventional survey methods. 

Other acoustic technologies

Shoal description and school shape analysis techniques were first developed 

qualitatively by commercial fishermen to improve catch selectivity. The commercial 

fishers developed no formal methods as they relied on observations and catch data to 

interpret the signals shown on their echo sounders. Marine scientists eventually 

developed quantitative measures of echogram returns (Lu and Lee, 1995; Coetzee, 2000; 

Jech and Luo, 2000; LeFeuvre et al., 2000; Lawson et al., 2001). All of these techniques 

however, utilize standard, down-looking, lower frequency (12 -  200 kHz) echosounders.

Researchers have now begun to explore alternate acoustic technologies for 

estimation of fish stock populations. Misund and Coatzee (2000) have utilized horizontal 

beaming, multibeam sonars to investigate school distribution near the sea surface, an area 

often lost to down-looking, hull-mounted, transducers due to vessel avoidance reactions 

of near surface fish schools. Multibeam techniques have also been used for shallow 

water observations (Gerlotto et al., 1998; Gerlotto et al., 2000) and for three-dimensional 

visualization of fish schools (Gerlotto et al., 1999). Ehrenberg and Torkelson (2000) are 

investigating the application of lower frequency (10 kHz) FM slide chirp techniques to 

biomass estimation. Another novel approach to biomass estimation is absorption
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spectroscopy, or acoustic measurements of absorption loss due to swim bladder 

resonance (Diachok, 2000). Demer et al, (2000) reports advances in the use of the 

Doppler effect to study fish behavior by measuring changes in a transmitted signal due to 

fish movement.

These technologies are still based in the domain of acoustic signal processing 

whereas this project is seeking to utilize image processing techniques and neural network 

classifiers for the classification of high-resolution sidescan sonar records. This approach 

is warranted by the increasing quality of sidescan sonar imagery. With frequencies 

approaching 5 MHz and transverse resolutions of <2 mm, these side scan systems are 

good analogs of optically formed images.
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APPENDIX E

Future developments and use ofAUV technology

The following text was recently published in the journal, Underwater Magazine 

(Doolittle, 2003). It presents an overview of the current capabilities and future directions 

of AUV technology. Figures are omitted as they are all found in the main body of this 

thesis.

AUV science: present capabilities and future directions.

Autonomous Underwater Vehicles (AUV) are becoming common tools available 

to scientists and other underwater professionals. Traditionally, AUVs have been 

developed for science and military applications but are increasingly becoming viable 

commercial ventures. Broadly speaking, AUVs are emerging as essential tools for 

seabed surveys, oceanographic data collection, offshore oil and gas operations, and 

military applications (Jones, 2002). Data collected from AUVs represent significant cost 

savings in terms of reduced personnel hours, 24-hour sampling capabilities, and reduced 

surface ship support. Given low purchase prices ($147,200 for a Fetch2 class AUV from 

Sias Patterson Inc. to c. $300,000 for a REMUS class AUV from Hydroid Inc) and 

minimal operational budget requirements, it is not difficult to imagine that AUVs will 

significantly augment ship based marine resource surveys in the very near future.

More then 60 vehicle designs are now operational at US and worldwide research 

institutions. This number does not include legacy, or one-off vehicles developed by and
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for the military. This article is not intended to be a complete review of the many 

missions AUV’s have performed while in the service of military or research operations 

but to outline the scientific uses of this robust technology and give a recent example of 

such use. Of particular interest are the small sized AUV’s that are well suited to littoral 

and estuarine research and require relatively simple and inexpensive logistical support 

infrastructure (such as ships, technicians, etc.).

While there are many one-off vehicles in operation, there are currently only 3 US 

commercial vendors of small work-class AUVs. The term work-class denotes the ability 

for sustained mission duration (>4 hours), mission-specific, reconfigurable control 

software, and reasonable sensor payload capacity. Domestic vendors of small AUVs 

include Sias Patterson Inc., Hydroid, and Bluefin Robotics. The small AUV has 

significant benefits over the larger AUVs that are currently in service. Benefits include: 

simplified tooling and consequently lowered manufacturing costs, less cumbersome and 

costly deployment and recovery systems, lowered battery expense and lowered risks to 

collisions and deleterious interactions with other users the coastal ocean.

Survey-class AUV’s, such as the C&C Technologies/Kongsberg Simrad Hugin, 

Subsea 7’s HS Autosub and the Maridan vehicles, tend to be larger, have greater 

endurance and depth capabilities and often greater payload capacity yet suffer from 

significant operational and ownership costs and increased logistical requirements. These 

vehicles have been extensively reviewed elsewhere and will not be discussed here.



Of equal, or possibly greater, importance is the performance of onboard sensors and 

processing capabilities of the AUV. Sensors typically found on most small AUV’s 

include: side scan sonar, multibeam swath bathymetry, nutrient video cameras, current- 

temperature-depth (CTD) sensors, acoustic Doppler current velocimeters (ADCP) and 

numerous other sensor payloads. This article will highlight one recent development in 

neural network based, automated species recognition of fish, in addition to other objects, 

imaged with side scan sonar.

Sias Patterson Inc. Fetch2

The second generation, Fetch-class AUV from Sias Patterson is the newest and 

possibly the most revolutionary of the small work class AUVs currently available. Fetch 

2 is a small commercial, multipurpose, networkable AUV using off-the-shelf components 

that is programmable by non-experts in robotics. Size and performance specifications 

include a length of 1.96 m (77 in), a diameter of 0.29 m (11.5 in) and a weight of 73 kg 

(160 lbs). Typical survey speed is 2.5 m/s (5 kt) with top speed reaching 4.5 m/s (9 kt). 

Mission duration is >22 hours at survey speed and c. 8 hours at maximum speed. Fetch2 

has a maximum rated depth of 150 m (500 ft). A 300 m (1000 ft) model is currently 

under construction and will become commercially available later this year. The Fetch2 

vehicle incorporates a low-drag, hydrodynamic hull shape and has folding forward dive 

planes, aft rudders and communications mast in order to aid launch and recovery. The 

non-cruciform control surface configuration also allows for unparalleled maneuverability.
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Hydroid REMUS

REMUS (Remote Environmental Measuring Unit System) is a small, shallow 

water AUV that was developed at the Woods Hole Oceanographic Institute and is 

licensed to Hydroid Inc. for commercialization. REMUS is one of the smaller AUVs on 

the market with a diameter of 19 cm ( 7.6 in), a length of 160 cm ( 64 in) and a weight 

of 37 kg (80 lb). It’s limited to only 100 m and has an endurance of 22 hours at low 

speeds (1.5 m/s or 3 kt) and a drastically reduced endurance, only 0.8 hours, at its top 

speed of 2.5 m/s (5 kt). While slower than the other vehicles discussed here, REMUS is 

the most prolific AUV on the market currently. There are 20 plus vehicles in service or 

on order and has over 5000 missions logged during the past 10 years

Bluefin Robotics Odyssey III

The Odyssey line of AUVs from Bluefin Robotics, a spin-off company from the 

Ocean Engineering Department of the Massachusetts Institute of Technology, is a study 

in manufacturing and design elegance. It is the only AUV listed here that uses a wet, or 

flooded, hull design. Vehicle and mission components are sealed in pressure vessels and 

placed within a hydrodynamic, very low drag fairing. This allows the vehicle to obtain 

depths of 4500 m yet maintain a relatively small size. The vehicle is 2.5 m (c. 8 ft) long 

and has a diameter of 53 cm (21 in) and weighs 205 kg (450 lbs). Normal survey speed is 

1.5 m/s (3 kt) and has a range of 30 miles (50 km) or about 9.3 hours endurance. Pricing 

for the Odyssey is reported to be around $300,000 for a basic vehicle. The Odyssey is 

now in its third generation and has performed science missions all over the world, 

including under the Arctic ice pack.
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AUV’s are essentially small, inexpensive, research platforms that significantly 

reduce the spatial and temporal variability that is common to ship collected data. The 

future success of AUV deployments will be enhanced by further developments in sensor 

fusion and the creation of new data collection methodologies. This section addresses one 

such development; a neural network classifier of side scan sonar imagery.

Neural Network based fish classifier

Artificial Neural Networks (ANNs) are computational models that are inspired by 

advances in neuroscience and neurobiology. Essentially, a neural network is composed 

of many simple processors, called units or nodes, organized into layers that may possess 

discreet amounts of local memory. Each of these layers and individual units are 

connected to each other and carry various sorts of numerical data. Each unit processes 

and passes on, or halts, the data that it receives from other units or layers. From a 

biological model, each node or unit is similar to a neuron and the connections between 

units are similar to synapses. It is important to note that artificial neural networks take 

their design from biological models but do not attempt to replicate real neural 

connections. Advances in desktop computing and the availability of numerous robust 

ANN models have made neural computing a viable solution for pattern recognition and 

other computational tasks.

The Radial Basis Function (RBF) artificial neural network model has been found to 

excel at classification of sidescan sonar imagery. RBF networks offer the advantages of 

high levels of noise immunity and great ability in solving complex, non-linear problems 

in the fields of speech and pattern recognition, robotics, real time signal analysis and
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other areas dominated by non-linear processes. Once the network has been trained with 

prototypes or ground-truthed imagery, it is ready to perform recognition tasks on 

previously unseen data.

Neural network classifiers, using radial basis functions, are a promising tool for 

analyzing putative fish targets in sidescan sonar images. In this study, odontaspids (sand 

tiger shark) and carangids (crevalle jack) were successfully distinguished from several 

fish species unknown to the classifier. Classifier success ranged between 90 and 96 

percent. These sonar images were gathered in a noise-rich environment of a public 

aquarium and not under acoustically “ideal” conditions thus illustrating the robustness of 

the RBF classifier. The classifier has the capability to learn 100’s of species and such 

networks can make classifications in real time. The constraints on this type of system is 

the requirement of known, or ground truthed, training data and sufficient variability, 

either acoustic intensity or shape of the targets, within the imagery.

Combining AUV technology with high-resolution sidescan sonar should provide a 

useful tool for stock assessment and related fisheries questions, including the delineation 

of essential fish habitat, especially in areas that are hard to sample, e.g., reef 

environments or shallow waters. Next steps for this technology are to identify steps 

necessary for the automation and integration of the classifier algorithms into the AUV 

control software for future adaptive sampling needs. This will enable future, real-time 

adaptive sampling protocols to be implemented onboard the AUV. For instance, 

aggregations of a species in a school can be recognized as the AUV passes by, and the 

range and bearing computed, which can, in turn, be used to control the speed and path of 

the AUV. We anticipate that fisheries research-class AUVs that can follow individual

92



fishes or schools of fish for extended periods of time will be developed very soon, 

providing an unprecedented view of habitat utilization and mapping of essential fish 

habitat. In fact, Iwakami et al. (2002) recently reported the ability of a large AUV to 

locate, via passive sonar tracking algorithms, and approach, within 50 m, a humpback 

whale (Megaptera novaeangliae).

Utilization of ANN models for automated detection and classification of fish species 

is but one of the many new developments underway at AUV labs and companies. 

Significant progress continues with improving navigation, underwater telemetry and 

communication, deployment of AUV swarms and developing new battery and fuel cell 

technologies. A new era of ocean science appears to be on the horizon and it is likely 

that it will be ushered in autonomously.
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