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Abstract

In this thesis, we study the symmetries of the putative generalized quadrangle of

order 6. Although it is unknown whether such a quadrangle Q can exist, we show

that if it does, that Q cannot be transitive on either points or lines. We first cover the

background necessary for studying this problem. Namely, the theory of groups and

group actions, the theory of generalized quadrangles, and automorphisms of GQs. We

then prove that a generalized quadrangle Q of order 6 cannot have a point- or line-

transitive automorphism group, and we also prove that if a group G acts faithfully on

Q such that 259 | |G|, then G is not solvable. Along the way, we develop techniques

for studying composite order automorphisms of a generalized quadrangle. Specifically,

we deal with automorphisms of order pk and pq, where p and q are prime.
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Chapter 1

Introduction

A (finite) generalized quadrangle Q is a finite geometric structure, similar to a finite

projective plane, which consists of a set of points P , a set of lines L, and a symmetric

point-line incidence relation I between them. In addition, Q has parameters s and t,

and must obey the following axioms:

(i) There are exactly s+ 1 points incident to each line, and for each pair of points

there is at most one line which is incident to both points in the pair.

(ii) There are exactly t + 1 lines incident to each point, and for each pair of lines

there is at most one point which is incident to both lines in the pair.

(iii) (The GQ Axiom) For a point P ∈ P and ℓ ∈ L with P not incident to ℓ, there

exists a unique point P ′ and a unique line ℓ′ such that P I ℓ′ I P ′ I ℓ.

If a generalized quadrangle Q has s + 1 points incident to each line, and t + 1 lines

incident to each point, we say that Q has order (s, t), and if Q has order (s, s), then

we say that Q has order s.

It has been a long-standing problem to develop restrictions on the possible orders

(s, t) that a generalized quadrangle can have. The most well known restrictions are

that s + t must divide st(s + 1)(t + 1) and that s ≤ t2 and t ≤ s2 (see Propositions
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3.7 and 3.8 respectively). However, these restrictions leave many open cases. Many

examples of generalized quadrangles with a variety of different orders exist. In par-

ticular, if q is a prime power, then GQs of order (q, q), (q, q2), (q2, q), (q2, q3), (q3, q2),

(q+1, q− 1), and (q− 1, q+1) have all been constructed [7]. The variety of possible

orders indicates that the feasible orders of generalized quadrangles follow no obvious

pattern, so it is difficult in general to construct or rule out a given order.

One possible GQ order whose feasibility remains open is (6, 6). From the above

paragraph, generalized quadrangles of order 1, 2, 3, 4, and 5 have been constructed,

so s = 6 is the smallest order such that the existence of a GQ of order s is unknown.

It is likely that the techniques used to decide the existence of the GQ of order 6

can be generalized to GQs of higher order. This problem has been recognized in [12,

Appendix E, Problem 4] to be of import, and so it will be our goal in this thesis to

make progress towards solving it.

In pursuit of this goal, we will use techniques relating to group actions and sym-

metry. Generalized quadrangles were invented by Jaques Tits [11] in order to be acted

on by certain classical groups, so it is only natural that group actions play a large role

in their study. An automorphism of a GQ is a bijection which maps points to points,

lines to lines, and preserves incidence. Naturally, the collection of all automorphisms

of a given GQ forms a group, and for the known examples of GQ, such groups are

generally large enough to be interesting.

The question we ask is whether the GQ of order 6 – if it exists – admits a point-

transitive or line-transitive automorphism group. In [1], Afton and Swartz developed

a suite of techniques for studying prime order automorphisms of generalized quadran-

gles, and then applied those techniques to show that the putative GQ of order (4, 12)

cannot have a point- or line-transitive automorphism group. We extend their work

to the putative generalized quadrangle of order (6, 6), in order to prove the following

result.
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Theorem. Let Q be a generalized quadrangle of order (6, 6). Then the full automor-

phism group of Q is not point-transitive or line-transitive.

Generalized quadrangles are highly regular structures – all points of a GQ tend

to “look the same,” and so group actions on generalized quadrangles tend to be

transitive. (That is, generalized quadrangles tend to have the property that for any

points P and Q, there exists an automorphism x such that P x = Q.) The fact that

no GQ of order 6 has a point- or line-transitive automorphism group serves as a point

against the existence of such an object (although this fact does not constitute a proof

that no such object can exist).

Along the way to this result, we also find a useful technique for dealing with

automorphisms of generalized quadrangles structure with prime power order.

Proposition. Let Ω be a finite set and let x ∈ Sym(Ω) have order pk, for k ≥ 2 and

p prime. Then if N is the size of the fixed point set of xpk−1
, then N ≡ |Ω| (mod pk).

Although this proposition is phrased purely in the language of group actions,

it has particular use for generalized quadrangles. We have access to many tools for

studying prime order automorphisms of generalized quadrangles, and we can generally

achieve a very sharp restriction on the size of the fixed point sets and fixed line sets of

prime order automorphisms. This proposition lets us take automorphism x of prime

power order, power it up to a prime order automorphism y, and achieve additional

restrictions on the fixed point and fixed line sets of y. This proposition is likely to be

applicable in other places where much is known about the prime order automorphisms

of some structure.

Finally, we develop a sufficient condition to show that a group acting on a gener-

alized quadrangle of order 6 is not solvable.

Proposition. Let G be a group acting faithfully on the generalized quadrangle Q of

order 6 such that 7 and 37 divide |G|. Then G does not admit a Hall {7, 37}-subgroup,
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and in particular, G is not solvable.

It is still unknown whether a GQ of order 6 necessarily has automorphisms of

order 7 and 37, so it is still unknown whether or not the full automorphism group of

this GQ is solvable.

The rest of this thesis is organized into three chapters and an appendix. Chapter 2

covers the notions of groups, group actions, and quasiprimitive actions, and develops

much of the theory we will need to prove our results on the algebraic side. Chapter 3

covers the theory of generalized quadrangles. We prove some basic restrictions on the

parameters (s, t) that are feasible for a GQ, and develop a lot of the technology relating

to automorphisms of a generalized quadrangle. Chapter 4 is devoted completely to

original results, as well as some of the more advanced techniques we need to prove

them. We spend Section 4.1 proving the result about prime power automorphisms,

and then using it to restrict the possible automorphism orders for the GQ of order

6. In Section 4.2, we prove that the GQ of order 6 is not point-transitive or line-

transitive, and in Section 4.3, we prove the sufficient condition for the automorphism

group of the GQ of order 6 to be nonsolvable. Finally, in Appendix A, we review

the classification of simple groups whose orders have exactly n prime divisors, for

n = 3, 4, 5.
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Chapter 2

Group Actions

2.1 Basic Facts

Groups are essential to the study of any kind of symmetry, so this thesis will largely

be concerned with the theory of groups. In this section, we will review many of the

basic properties of groups, and state some group-theoretic theorems we will use later.

Definition 2.1. A group is an ordered pair (G, ·) such that G is a set, · is a binary

operation G×G → G, and the following axioms hold:

(i) For every x, y, z ∈ G, (x · y) · z = x · (y · z).

(ii) There exists an element 1 ∈ G such that for every g ∈ G, g · 1 = 1 · g = g.

(iii) For every g ∈ G, there exists an element g−1 ∈ G such that g ·g−1 = g−1 ·g = 1.

Example 2.2. The set Z is a group under the binary operation of addition. For any

set K, the set Sym(K) of bijections K → K is a group under function composition.

Now, we establish some notation. Normally, we omit the binary product · in favor

of concatenation, i.e., we write gh = g · h for g ∈ G and h ∈ H. Due to this, we also

refer to a group as a set, not as an ordered pair of set and operation. (That is, we

say “let G be a group” rather than “let (G, ·) be a group.”)
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Let g ∈ G and n ∈ Z. If n > 0, define gn to be the product of n copies of g.

If n < 0, define gn to be the product of |n| copies of g−1, and define g0 = 1. This

exponential notation obeys many of the laws one would expect of such notation. In

particular for m,n ∈ Z, gm+n = gmgn, and gmn = (gm)n. It is important to note that

it does not hold in general that (gh)n = gnhn for g, h ∈ G and n ∈ N.

The order of a group G is the cardinality of the underlying set G. A subgroup of

a group G is a subset H ⊆ G such that H is a group under the binary operation of

G. If H is a subgroup of G, we write H ≤ G. For a group G with finite order, there

is an elegant theorem relating the order G to the order of its subgroups.

Proposition 2.3 (Lagrange’s Theorem). Let G be a finite group and H ≤ G. Then

|H| divides |G|.

To prove this theorem, we must develop the notion of cosets. Let G be a group

and H ≤ G. The (right) cosets of H in G are the sets Hg = {hg | h ∈ H} for each

g ∈ G. These sets have the nice property that for any g, g′ ∈ G, either Hg = Hg′

or Hg ∩ Hg′ = ∅. Suppose that Hg and Hg′ have a nonempty intersection. Say

x ∈ Hg = Hg′. Then there exist h, h′ ∈ H such that hg = x = h′g′. Since H is a

subgroup, then H = Hh = Hh′. Thus, Hg = Hhg = Hh′g′ = Hg′.

So the cosets of H in G are pairwise disjoint, and the coset Hg automatically

contains any g ∈ G. Thus, the cosets of H partition G. Noting that the map h 7→ hg

is an invertible map H → Hg, we see that every coset of H is the same size as H.

Since G is partitioned by sets, each of which has size |H|, it follows that |H| must

divide |G|. This proves Lagrange’s theorem.

The set of cosets of H in G is labeled G/H. The size of this set, labeled |G : H|,

is called the index of H in G. Lagrange’s theorem, then, is the statement that for

any group G and H ≤ G, we have |G| = |G : H| · |H|.

An important question to ask is when G/H can be equipped with a group struc-

ture in a “natural” way. We would want to evaluate multiplication of cosets by
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multiplication of elements in G. That is, we would want (Hx)(Hy) = Hxy for every

x, y ∈ G. However, we can, in general have x′ ̸= x such that Hx = Hx′, so this

multiplication is not necessarily well defined. (Indeed, for many groups G and many

subgroups H ≤ G, the multiplication (Hx)(Hy) = Hxy is not well defined.)

The concept of normal subgroups solves this problem. A subgroup N ≤ G is called

a normal subgroup of G if g−1Ng = N for every g ∈ G. If N is a normal subgroup of

G, we write N ⊴G.

Proposition 2.4. Let G be a group and N ⊴ G. Then the set G/N is a group

with multiplication (Ng)(Nh) = Ngh and identity N . The group G/N is called the

quotient of G by N .

Proof. First, we show that multiplication is well defined. Suppose Ng = Ng′ and

Nh = Nh′. We wish to show that Ng′h′ = Ngh. Since N is normal in G, then

Ng = gN . Note that setwise multiplication in groups is associative. So

Ng′h′ = (Ng′)h′ = (Ng)h′ = (gN)h′ = g(Nh′) = g(Nh) = (gN)h = (Ng)h = Ngh.

Thus, multiplication is well defined in G/N . Associativity, identity, and inverses in

G/N are all proven easily from associativity, identity, and inverses in G.

Another important question to ask is when two groups are “the same up to re-

labelling.” A small example is the multiplicative group G = {1, i,−1,−i} ⊆ C, and

the group Z4 = {0, 1, 2, 3} of integers modulo 4. In this case, swapping 0 ↔ 1, 1 ↔ i,

2 ↔ −1, and 3 ↔ −i reveals the same group structure on two different sets. (One

may write out the multiplication tables of these groups, and see that up to relabelling,

they are the same.) We can identify groups that “are the same up to relabelling”

more generally using the concept of isomorphism.

Definition 2.5. Two groupsG andH are isomorphic if there is a bijection ϕ : G → H

11
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such that ϕ(x)ϕ(y) = ϕ(xy) for every x, y ∈ G. If an isomorphism exists between G

and H, we say G is isomorphic to H, and write G ∼= H.

Such a map preserves the group structure and serves to identify elements of G

and elements of H. Isomorphic groups can be viewed as “essentially the same” or

“the same up to relabelling.” As one would expect, ∼= is an equivalence relation.

Given a group G, there is an easy way to generate subgroups of G. It can be shown

that the intersection of a family of subgroups of G remains a subgroup. Thus, for a

subset A ⊆ G, we can take the group ⟨A⟩, which is the intersection of all subgroups

of G containing A. This is particularly useful when A is a singleton. For x, y ∈ G,

we abbreviate ⟨x⟩ = ⟨{x}⟩. Then ⟨x⟩ is equal to the set {. . . , x−2, x−1, 1, x, x2, . . . }.

If G is finite, and x ∈ G, then ⟨x⟩ must be finite as well. Therefore, we define the

order of x, denoted |x|, to be the order of ⟨x⟩. Although this is a rather elementary

notion, it will be of chief importance to the results of this thesis. As such, we outline

some facts about group orders and groups of the form ⟨x⟩.

• By Lagrange’s Theorem, |x| divides |G| for any x ∈ G.

• If x ̸= 1, then |x| is the smallest integer n such that xn = 1. This is useful for

ascertaining the order of a group element.

• If |x| = ab for some a, b ∈ Z, then xa has order b, since (xa)b = xab = 1.

Not only is it fruitful to study the order of x, but it is also fruitful to study

the group ⟨x⟩ itself. Such groups, generated by a single element, are called cyclic

groups. Cyclic groups are extremely well understood – their isomorphism type and

subgroups are completely determined by their size. The following proposition codifies

this relationship. The proof of (b) is taken from [4, X.6 Lemma and X.7 Corollary].

Proposition 2.6. Let ⟨x⟩ be a finite cyclic group, and put |⟨x⟩| = n. Then the

following hold:
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(a) If Zn is the group of integers modulo n, with operation addition modulo n, then

⟨x⟩ ∼= Zn.

(b) If d | n, then there exists a unique subgroup of ⟨x⟩ of order d, which is cyclic.

Proof. We leave as an exercise to the reader that the map ϕ : Zn → ⟨x⟩ by n 7→ xn is

well defined, injective, and surjective. We may calculate ϕ(m+n) = xm+n = xmxn =

ϕ(m)ϕ(n). Therefore, ϕ is an isomorphism. This proves (a).

Next, let d | n and put Gd = ⟨xn/d⟩. Then xn/d has order d, and so Gd is a

cyclic subgroup of G of order d. In order to prove (b), it suffices to show that every

subgroup of ⟨x⟩ is of the form Gd.

Suppose that H ≤ G. If |H| = 1, then H and G1 are both trivial and so they

are isomorphic. If |H| > 1, let k be the smallest positive integer such that xk ∈ H.

For each xℓ ∈ H, write ℓ = qk + r where 0 ≤ r < k. Then, xr = (xk)−qxℓ ∈ H.

By minimality of k, we must have r = 0, and so k | ℓ. Thus, every element in H

is a power of xk, and so H = ⟨xk⟩. In particular xn = x0 ∈ H, so k | n. Thus,

H = ⟨xk⟩ = ⟨xn/d⟩ = Gd, where d = n/k. This proves (b).

Let ⟨x⟩ be a cyclic group of prime order. Then by the above proposition, the only

subgroups of ⟨x⟩ are {1} and ⟨x⟩. Any group G must have subgroups {1} and G,

but for the case of ⟨x⟩, these are the only subgroups. It turns out that this property

characterizes cyclic groups of prime order. It is unreasonable to expect that a group

in general has no nontrivial subgroups. However, we can ask that a group has no

nontrivial quotients, and study a broader class of groups.

Definition 2.7. Let G be a group. If the only normal subgroups of G are {1} and

G, then G is said simple.

Such groups have no nontrivial quotients, since a nontrivial quotient of G would

imply a nontrivial normal subgroup of G.

13
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Just as the prime numbers can be viewed as the multiplicative building blocks of

integers, the simple groups can be viewed as the building blocks of groups. Although

it is beyond the scope of this thesis, there is a foundational result called the Jordan-

Hölder Theorem, which allows us to uniquely “factor” a group into a series of simple

groups. (Two nonisomorphic groups may share the same series of factors, however

two groups that have distinct factors cannot be isomorphic.) A proof of this theorem

can be found in [9, Theorem 5.11 and Theorem 5.12].

Due to their chief importance in understanding the structure of all groups, it has

long been a goal of mathematics to find all of the finite simple groups. Fortunately,

this has been done, as a result of the work of hundreds of mathematicians. This

theorem, known as the Classification of Finite Simple Groups, is often regarded as

one of the crowning achievements of 20th century mathematics.

We will not need the full power of the classification. However, the full classifi-

cation bears mentioning, since we will use several other classification results which

are derived from this larger result. (For instance, we use the classification of simple

groups whose orders have only three prime divisors.)

2.2 Group Actions

Groups often arise as the set of symmetries of some structure. Aside from the sym-

metric group Sym(K), the famous group D2n of isometries of the regular n-gon also

serves as an example. Indeed, the entire field of representation theory is built on

viewing groups as symmetries of vector spaces. This connection between groups and

symmetry is made rigorous via the concept of group actions.

Definition 2.8. Let G be a group and Ω be a set. A group action of G on Ω if there

is a map Φ : Ω×G → Ω such that

(i) Φ(P, 1) = P for every P ∈ Ω,

14



(ii) Φ(Φ(P, g), h) = Φ(P, gh) for every P ∈ Ω and g, h ∈ G.

If such a Φ exists, we say G acts on Ω.

If G acts on Ω, we abbreviate Φ(P, g) = P g. Then the two group action axioms

may be written more concisely:

(i) P 1 = P for every P ∈ Ω,

(ii) (P g)h = P gh for every P ∈ Ω and g, h ∈ G.

Example 2.9. The group Sym(Ω) acts on the set Ω by P ϕ = ϕ−1(P ) for P ∈ Ω

and ϕ ∈ Sym(Ω). Moreover, if G is any group, then G acts on itself via right

multiplication. That is, for g, h ∈ G, we set gh = gh.

In this section, we will cover many notions and results relating to group actions

and symmetry. The first of these is the orbit. If a group G acts on a set Ω, the orbit

of P ∈ Ω is the set PG = {P g | g ∈ G}. It can be shown that for P,Q ∈ Ω, either

PG = QG, or PG ∩ QG = ∅. This is because the relation ∼ where P ∼ Q exactly

when there exists g ∈ G such that P g = Q is an equivalence relation on Ω, and the

orbit of P is the class of P under this relation. As such, the orbits of all the points

in Ω partition Ω.

Another important concept is that of the stabilizer. For a point P ∈ Ω, the

stabilizer of P is the group GP = {g ∈ G | P g = P}. It turns out, that the orbit of a

point and its stabilizer are deeply related. Indeed, the size of one can be counted using

the size of the other. This result, called the Orbit-Stabilizer Theorem, is fundamental

to the study of group actions.

Theorem 2.10 (Orbit-Stabilizer). Let G be a group acting on a set Ω. Then for any

P ∈ Ω, there is a bijection from the set G/GP to the set GP . In particular, if G is a

finite group, then |G|/|GP | = |G : GP | = |G/GP | = |PG|.

15



Proof. Let ϕ : G/GP → PG be defined by GPh 7→ P h. We first show that this map

is well defined. Suppose GPh = GPh
′. Then there exists g ∈ Gp such that gh = h′.

Then,

ϕ(Gph) = P h = (P g)h = P gh = P h′
= ϕ(GPh

′).

Thus, ϕ is well defined. Next, we show that ϕ is injective. Let GPh,GPh
′ ∈ G/GP

such that ϕ(GPh) = ϕ(GPh
′). That is, P h = P h′

. Then P = P h′h−1
, so h′h−1 ∈ GP .

Thus, h′ = (h′h−1)h ∈ GPh, and so GPh = GPh
′.

Finally, we show that ϕ is surjective. Given any point P h ∈ PG, we have that

ϕ(GPh) = P h. Thus, ϕ is surjective. Therefore, ϕ is a well-defined bijection from

G/GP to PG. The result follows.

Although we deal with the set G/GP , it is not necessarily true that GP ⊴G, and

so it does not necessarily hold that G/GP is a group. However, the primary power of

Orbit-Stabilizer is in counting arguments, and so this issue is of little concern.

Another notion we must develop are those of fixed points and invariant sets. Let

G be a group acting on a set Ω. We say that P ∈ Ω is a fixed point of G if P g = P

for every g ∈ G. We say U ⊆ Ω is G-invariant if for every P ∈ U , P g ∈ U for each

g ∈ G. An interesting property of G-invariant sets is that the action of G on Ω may

be restricted to a G-action on a G-invariant subset U ⊆ Ω. As such, G-invariant sets

are also partitioned by G-orbits, and indeed, the G-orbit of P may be viewed as the

smallest G-invariant set containing P .

An important example of a group action is a group G acting on itself via right

multiplication. This action has the property that it only has one orbit. Indeed, for

any h ∈ G, hG = {hg | g ∈ G} = hG = G. This means by Orbit-Stabilizer that

|Gh| = |G|/|hG| = |G|/|G| = 1. Thus, the stabilizer of any point is trivial. Finally,

we can note that the only g ∈ G for which hg = h for all h ∈ G is g = 1. These

properties of the action of G on itself by right multiplication may be generalized,
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inspiring the following definitions.

Definition 2.11. Let G act on a set Ω.

• We say G acts transitively on Ω if there is a unique G-orbit on Ω. That is, G

acts transitively on Ω if for every P,Q ∈ Ω there exists g ∈ G such that P g = Q.

• We say that G acts semiregularly or fixed point freely on Ω if the stabilizer of

every point P is trivial. That is, G acts fixed point freely on Ω if P g = P

implies g = 1 for every P ∈ Ω.

• If G acts on Ω semiregularly and transitively, we sat that G acts regularly on

Ω.

• The kernel of the action ofG on Ω is the setK = {g ∈ G | P g = P for every P ∈

Ω}. If K = {1}, we say G acts faithfully on Ω.

Remark 2.12. Upon seeing the definition of a faithful action, one may wonder in

what sense faithful actions are faithful. Let G act faithfully on Ω, and consider

the map ρ : G → Sym(Ω) given by ρ(g) : P 7→ P g. Since G acts faithfully on

Ω, we can show that the map ρ is injective. Note that for g, h ∈ G and P ∈ Ω,

P ρ(g)ρ(h) = (P ρ(g))ρ(h) = (P g)h = P gh = P ρ(gh). Thus, ρ(gh) = ρ(g)ρ(h). Also, we can

immediately see that ρ(g)−1 = ρ(g−1). Then if g, h ∈ G such that ρ(g) = ρ(h), we

have

P gh−1

= (P ρ(g))h
−1

= (P ρ(g))ρ(h)
−1

= P.

for every P ∈ Ω. This means that ifK is the kernel of the action of G, then gh−1 ∈ K.

However, G acts faithfully, so gh−1 = 1. Therefore, g = h, and so ρ is injective.

The result of this discussion is that each g ∈ G may be uniquely identified with

a bijection on Ω. Since the map ρ is isomorphic onto its image, G is isomorphic to a

subgroup of Sym(Ω). Since ρ never sends distinct elements of G to the same place,

the action of G on Ω is said faithful.
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Suppose that G acts regularly on Ω. Then, fixing a distinguished point P ∈ Ω,

the map g 7→ P g is a bijection from G to Ω. (The map is surjective by transitivity of

the action and injective, otherwise P would have a nontrivial stabilizer.) Thus, the

elements of G may be identified with the elements of Ω, so it is as if G acts on itself.

In this way, the regular action of G on Ω directly generalizes the right multiplication

action of G on itself.

The right multiplication action of G on itself has applications in pure group theory.

Specifically, it may be applied to prove a very powerful theorem providing a partial

converse to Lagrange’s Theorem. The proof we show is due to Wielandt, and is

printed in [4, 1.7. Theorem].

Theorem 2.13 (Sylow E). Let G be a finite group and p be a prime dividing |G|. If

we write |G| = pam where p ∤ m, then G has a subgroup X of order pa. Such a group

is called a Sylow p-subgroup of G.

Proof. Let Ω be the set of subsets of G having cardinality pa. Then G acts on Ω

via right multiplication. Then Ω is partitioned into G-orbits. It is an exercise in

combinatorics to prove that
(
pam
pa

)
≡ m (mod p), and a proof may be seen in [4, 1.8

Lemma]. Then

|Ω| =
(
pam

pa

)
≡ m ̸≡ 0 (mod p),

and so there must be an orbit O with length not divisible by p. Now let X ∈ O.

Then by Orbit-Stabilizer, |O| = |G|/|GX | = pam/|GX |. Thus, pa | |GX |, otherwise

p | |O|. In particular, |GX | ≥ pa. Since GX stabilizes X under multiplication, then

for any y ∈ X, yGX ⊆ X. Thus, |GX | = |yGX | ≤ |X| = pa. Thus, |GX | = pa, and

the result follows.

Corollary 2.14. [4, 1.9 Corollary] Let G be a finite group and p a prime dividing

|G|. Then G has an element of order p.

Proof. Let X be a Sylow p-subgroup of G. Since |X| is the largest power of p dividing
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G, then X is nontrivial. So take some nonidentity x ∈ X. Then ⟨x⟩ is a cyclic group.

By Lagrange’s Theorem, |⟨x⟩| divides |X|, so |⟨x⟩| is a power of p. If we put |⟨x⟩| = pa,

then |x| = pa. Therefore, if we put y = xpa−1
, then yp = (xpa−1

)p = xpa = 1. Thus, y

is order p as desired.

Another way G can act on itself is via conjugation. For g, h ∈ G, we set gh =

h−1gh. It is important to note that the conjugation action of G on itself is different

than the right multiplication action of G on itself. Indeed, the singleton {1} is an

orbit in the former action, whereas in the latter action it is not.

The interesting thing about the conjugation action of G on itself is that the map

x 7→ xg is an isomorphism from G to G. Since isomorphisms from a group to itself are

often called automorphisms, then G can be said to act via automorphisms on itself.

This concept comes into play with another useful theorem about Sylow subgroups.

The proof is, again, taken from [4, 1.11 Theorem].

Theorem 2.15 (Sylow C). Let P be an arbitrary p-subgroup of a finite group G, and

let X be a Sylow p-subgroup of G. Then P ≤ Xg for some g ∈ G. In particular, if P

is another Sylow p-subgroup of G, there exists g ∈ G such that P = Xg.

Proof. Let Ω = {Xy | y ∈ G}. SinceX is a Sylow p-subgroup ofG, then |Ω| = |G : X|

is not divisible by p. Since G acts by right multiplication on Ω, and P ≤ G, then

P does as well. As such, Ω is partitioned into P -orbits. Since |Ω| is not divisible by

p, there must exist some P -orbit O whose length is not divisible by P . By Orbit-

Stabilizer, |O| divides |P |, and so |O| must be a power of p. The only power of p not

divisible by p is 1, so |O| = 1.

Since the members of Ω are cosets of X, and O is a singleton subset of Ω, we can

label Xg the unique member of O. That is, Xg is a fixed point of P . So for any

u ∈ P , Xgu = Xg. Then gu ∈ Xg, and so u ∈ g−1Xg. Thus, P ⊆ g−1Xg = Xg as

desired.
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In the case that P is a Sylow p-subgroup, then since the order of P is equal to

the order of Xg, then P = Xg.

Let P and X be Sylow p-subgroups of G and retrieve g ∈ G such that P = Xg.

Then the map x 7→ xg is a bijection from X to P . However, this bijection is also

an isomorphism, so X is isomorphic to P . We have therefore proven that all Sylow

p-subgroups of G are isomorphic.

We will use Sylow C to prove a technical-sounding but surprisingly applicable

lemma known as the Frattini Argument. In order to understand this lemma, we must

develop the notion of normalizers.

Definition 2.16. Let G be a group and H ≤ G. The group NG(H) = {g ∈ G |

g−1Hg = H} is called the normalizer of H in G.

For G a group and H ≤ G, NG(H) is the largest subgroup of G in which H is

normal. The Frattini Argument follows, and the proof is taken from [4, 1.13 Lemma].

Lemma 2.17 (The Frattini Argument). Let G be a group, N ⊴ G, and P a Sylow

p-subgroup of N . Then G = NG(P )N .

Proof. Choose g ∈ G arbitrarily, and note that P g ⊆ N g = g−1Ng = N . Thus, P g is

a subgroup of N which is isomorphic to P . Then P g is a Sylow p-subgroup of N . It

follows by Sylow C that there exists n ∈ N such that P gn = P . Since (gn)−1P (gn) =

P gn = P , it follows that gn ∈ NG(P ). Therefore, g ∈ NG(P )n−1 ⊆ NG(P )N . Since

g ∈ G was chosen arbitrarily, it follows that G ⊆ NG(P )N .

2.3 Quasiprimitive Actions

In this section, we briefly review the notions of primitivity and quasiprimitivity from

the theory of permutation groups, as well as state a theorem restricting the types of

groups that can act quasiprimitively.
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Definition 2.18. Let G be a group acting transitively on a set Ω. A block is a subset

∆ ⊆ Ω such that for any g ∈ G, either ∆g = ∆ or ∆g ∩∆ = ∅. A block ∆ is called

trivial if either ∆ is a singleton or ∆ = Ω. If the only blocks for G on Ω are trivial,

we say that G acts primitively on Ω, or that G is primitive.

Example 2.19. Let G be a group acting on itself by right multiplication. Then

each subgroup H ≤ G is a block for G. If G is cyclic of prime order, then G acts

primitively on itself.

Suppose G is a group acting faithfully and transitively on a set Ω. Suppose further

that G has a nontrivial normal subgroup N which is not transitive on Ω. Then take

any P ∈ Ω and consider the orbit PN . We see that for any g ∈ G,

(PN)g = PNg = P gN = (P g)N .

So raising the orbit PN to the power of G gives us another N -orbit. Since the N -

orbits of Ω partition Ω, then either (PN)g = PN , or PN ∩(PN)g = ∅. As such the set

PN is a block for Ω. Indeed, since we assumed N not transitive, there are multiple

such blocks, and since N is a nontrivial group that acts faithfully on Ω, each N -orbit

has size larger than 1. This shows that PN is a nontrivial block on Ω. Thus, the

action of G on Ω is not primitive.

Not every block of a group action can necessarily be induced from a non-transitive

nontrivial normal subgroup ofG. However, many of the properties of primitive actions

can be attained by disallowing these types of blocks. This inspires the following

definition.

Definition 2.20. Let G be a group acting faithfully and transitively on a set Ω. We

say G acts quasiprimitively on Ω if every nontrivial normal subgroup of G is transitive.

Since the block PN is nontrivial if and only if N is not transitive or N is trivial,

then PN must be a trivial block if G acts quasiprimitively on Ω.
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If a group G acts quasiprimitively on a set Ω, we can say a lot about its struc-

ture. Praeger [8] proved a powerful restriction on the types of groups that can act

quasiprimitively. However, we need a couple definitions in order to understand this

restriction. Let G be a group. A minimal normal subgroup is a nontrivial normal

subgroup N ⊴ G such that there is no normal subgroup H ⊴ G with {1} < H < N .

The socle of G is the setwise product of all minimal normal subgroups of G. Note

that the socle of G is itself a normal subgroup of G. So if G is quasiprimitive, then the

socle of G must be transitive. Finally, define Aut(G) to be the set of all isomorphisms

G → G.

Note that if T is a nonabelian simple group, then T acts on itself via conjugation.

Since T acts nontrivially on itself, T must also act faithfully on itself, since the kernel

of any group action is a normal subgroup. Thus, T is isomorphic to a subgroup

of Sym(T ). However, T acts on itself via conjugation, so each t ∈ T is sent to an

automorphism of T . Thus, T is isomorphic to a subgroup of Aut(T ), and so we may

write T ≤ Aut(T ) by abuse of notation.

We are now ready to state Praeger’s restriction on quasiprimitive groups. The

theorem Praeger proves has many conclusions which are beyond the scope of this

thesis, so we omit them for the sake of brevity.

Theorem 2.21. [8, Theorem 1] Let G be a finite group acting quasiprimitively on a

set Ω, and let B be the socle of G. Then B ∼= T k for a finite simple group T , and one

of the following holds:

(I) T ∼= Zp, B is the unique minimal normal subgroup of G, and B acts regularly

on Ω. In particular, |Ω| = pk.

(II) k = 1, T is a nonabelian simple group, and T ≤ G ≤ Aut(T ).

(III) k ≥ 2 and T is a nonabelian simple group.
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Chapter 3

Generalized Quadrangles

The primary object of study in this thesis will be finite geometric structures called

generalized quadrangles. Similar to finite projective planes, these structures consist

of a set of points, a set of lines, and an incidence relation governing which points

are incident to which lines, and which lines are incident to which points. However,

generalized quadrangles are subject to more axioms, which we outline in the following

definition.

Definition 3.1. A generalized quadrangle (or GQ) of order (s, t) is an ordered trio

Q = (P ,L, I) where P and L are disjoint nonempty sets, which we view as the set of

points and lines respectively. The relation I is a symmetric incidence relation between

Figure 3.1: The generalized quadrangle of order 2, taken from [10].
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P and L such that the following axioms hold:

(i) There are exactly s+ 1 points incident to each line, and for each pair of points

there is at most one line which is incident to both points in the pair.

(ii) There are exactly t + 1 lines incident to each point, and for each pair of lines

there is at most one point which is incident to both lines in the pair.

(iii) (The GQ Axiom) For a point P ∈ P and ℓ ∈ L with P not incident to ℓ, there

exists a unique point P ′ and a unique line ℓ′ such that P I ℓ′ I P ′ I ℓ.

If Q has order (s, s), we say that Q is a generalized quadrangle of order s.

An important observation to make is that switching the words “line” and “point”

in the previous definition gives an equivalent condition. Therefore, we may switch

the roles of lines and points, and the resulting structure will still be a generalized

quadrangle. Also, if Q = (P ,L, I) is a GQ of order (s, t), then S = (L,P , I) must be

a GQ of order (t, s). This result – called duality – is vitally important to the study

of generalized quadrangles.

Similarly to the case of groups, we can tell that two generalized quadrangles have

the same structure via a map called an isomorphism.

Definition 3.2. Let Q = (P ,L, I) and Q′ = (P ′,L′, I′). An isomorphism from Q to

Q” is a bijection ϕ : P ∪L → P ′ ∪L′ which sends points to points, lines to lines, and

preserves incidence. That is, for every P ∈ P and ℓ ∈ L, ϕ(P ) ∈ P ′, ϕ(ℓ) ∈ L′, and

P I ℓ if and only if ϕ(P ) I′ ϕ(ℓ). If there exists an isomorphism between tow GQs Q

and Q′, we say that Q and Q′ are isomorphic.

Since an isomorphism preserves points, lines, and the incidence relation, it pre-

serves all of the structure of a GQ. Like isomorphic groups, isomorphic GQs can be

thought of as “the same up to relabelling.”
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Figure 3.2: The GQ of order (2, 1) and its dual.

Example 3.3. Pictured in Figure 3.1 is the generalized quadrangle Q of order (2, 2),

often referred to as “The Doily.” This quadrangle has 3 lines incident to each point,

3 points incident to each line, 15 total lines, and 15 total points. This is the smallest

example of a thick generalized quadrangle, i.e., a quadrangle of order (s, t) where

s > 1 and t > 1. There is a unique GQ of order (2, 2), so Q is isomorphic to its dual.

Example 3.4. A grid with parameters (a, b) is an incidence structure S = (P ,L, I)

with point set P = {Pij | 0 ≤ i ≤ a, 0 ≤ j ≤ b} and line set L = {ℓ0, . . . , ℓa,m0, . . . ,mb},

where Pij I ℓk iff k = i and Pij Imk iff k = j. A dual grid with parameters (a, b), as

the name suggests, is a structure obtained by switching the roles of points and lines

for a grid with parameters (a, b).

A grid with parameters (a, a) is a generalized quadrangle of order (a, 1), since each

line would then be incident to exactly a+1 points, and each point would be incident

to exactly 2 lines. Similarly, a dual grid with parameters (a, a) must be a generalized

quadrangle of order (1, a). See Figure 3.2 for the a = 2 case.

If two points P1 and P2 of a generalized quadrangle are incident to a common

line, we say they are collinear and write P1 ∼ P2. Similarly, if two lines ℓ1 and ℓ2 are

incident to a common point, we say that ℓ1 is concurrent to ℓ2 and write ℓ1 ∼ ℓ2.

3.1 Basic Facts

We will now prove some basic facts about generalized quadrangles which will be of

use later. First and foremost, we can calculate the number of points (or lines) in a
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generalized quadrangle in terms of its order.

Proposition 3.5. [7, 1.2.1] Let Q = (P ,L, I) be a generalized quadrangle of order

(s, t) Then |P| = (s+ 1)(st+ 1) and |L| = (t+ 1)(st+ 1).

Proof. Let v = |P| and w = |L|. First, we show that v = (s + 1)(st + 1). Fix a line

ℓ ∈ L. We will count the number N of ordered pairs (P,m) ∈ P × L with P ̸ I ℓ,

P Im, and m ∼ ℓ.

First, fixing a point P ̸ I ℓ, then by axiom (iii), there is exactly one line m such

that P Im and m ∼ ℓ. Therefore, the ordered pairs (P,m) are in bijection with the

number of points not on ℓ. Thus, N = v − (s+ 1).

Next, we count this quantity a different way. There are s + 1 points on ℓ, and

each such point is incident to t lines m ̸= ℓ. On each line m, there are s points not

incident to ℓ. This makes for (s+ 1)st ordered pairs (P,m) such that m ∼ ℓ, m I P ,

and P ̸ I ℓ. Thus N = (s+ 1)st.

Since v − (s + 1) = N = (s + 1)st, then v = (s + 1)(st + 1) as desired. To

conclude that w = (t + 1)(st + 1), we need only apply duality. We just proved that

the quadrangle Q = (P ,L, I) of order (s, t) has (s + 1)(st + 1) points. However, we

may apply this same logic to show that the quadrangle S = (L,P , I) of order (t, s)

has (t+ 1)(st+ 1) points. Thus, w = |L| = (t+ 1)(st+ 1) as desired.

A generalized quadrangle Q has an underlying graph Γ associated to it, where the

vertices of Γ are the points of Q, and the edges of Γ are the pairs {P,Q} such that

P ̸= Q and P ∼ Q. The graph Γ is called the point graph of Q.

One may easily count that there are exactly (t+ 1)s points collinear with a given

point P , so Γ is regular of valency (t + 1)s. Given a pair of collinear points P and

Q, we may also count that there are exactly s − 1 points collinear to both, since all

the point collinear to P and Q are contained on one line. Finally, we may count the

number of points collinear with both P and Q when P ̸∼ Q, of which there are t+1.
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Figure 3.3: A strongly regular graph with parameters (10, 3, 0, 1).

The fact that these quantities are constant motivates the following definition.

Definition 3.6. A strongly regular graph with parameters (v, k, λ, µ) is a graph Γ

such that Γ has exactly v vertices, every vertex of Γ has exactly k neighbors, each

pair of vertices with an edge between them has exactly λ mutual neighbors, and each

pair of vertices with no edge between them has exactly µ mutual neighbors.

By the above discussion, it becomes clear that the point graph Γ of a generalized

quadrangle Q is a strongly regular graph with parameters ((s+1)(st+1), (t+1)s, s−

1, t+1). This relation allows us to use graph theoretic techniques to study generalized

quadrangles, and vice versa. The following proposition is a demonstration of this fact.

Proposition 3.7. [7, 1.2.2] Let Q = (P ,L, I) be a generalized quadrangle of order

(s, t). Then s+ t divides st(s+ 1)(t+ 1).

Proof. Let Γ = (P , E) be the point graph of Q, and label v = (s + 1)(st + 1) and

P = {P1, P2, . . . , Pv}. Define a v × v matrix A = (aij) where aij = 1 if {Pi, Pj} ∈ E,

and aij = 0 otherwise. That is, aij = 1 exactly when i ̸= j and Pi ∼ Pj. Then A is

called the adjacency matrix of Γ.

Label A2 = (cij). Then the entry cij counts the number of points collinear with

both Pi and Pj. Since Γ is a strongly regular graph with parameters ((s + 1)(st +

1), (t + 1)s, s − 1, t + 1), this means cii = (t + 1)s, cij = s − 1 if Pi ̸= Pj ∼ Pi, and

cij = t+ 1 if Pi ̸∼ Pj. As such, A
2 − (s− t− 2)A− (t+ 1)(s− 1)I = (t+ 1)J , where
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I is the v× v identity matrix, and J is the v× v matrix whose entries are constantly

equal to 1.

Now, we study the eigenvalues of A. Since the valency of Γ is constantly equal to

(t + 1)s, the row sum of A is constantly equal to (t + 1)s. Thus, if u = [1, . . . , 1]T ,

then Au = (t + 1)su, and so (t + 1)s is an eigenvalue of A. Taking the matrix J as

a linear map Rv → Rv, we see immediately that the rank of J is 1, so the nullity of

J is v − 1. Therefore, J has the eigenvalue 0 with multiplicity v − 1. Since Ju = vu,

then J has the eigenvalue v with multiplicity 1.

Since ((t+1)s)2−(s−t−2)((t+1)s)−(t+1)(s−1) = (t+1)(st+1)(s+1) = (t+1)v,

the eigenvalue (t+1)s of A corresponds with the eigenvalue v of J , and so (t+1)s has

multiplicity 1. This entails that the other eigenvalues of A are roots of the equation

x2−(s−t−2)x−(t+1)(s−1) = 0. Denote the multiplicities of these eigenvalues θ1, θ2

by m1,m2 respectively. Solving this polynomial, we have θ1 = −t− 1 and θ2 = s− 1,

v = 1 + m1 + m2, and s(t + 1) − m1(t + 1) + m2(s − 1) = tr(A) = 0. Solving this

system, we get m1 = s2(st + 1)/(s + t) and m2 = st(s + 1)(t + 1)/(s + t). Since m1

and m2 are integers, the result follows.

Aside from demonstrating the effectiveness of graph theoretic techniques on the

study of generalized quadrangles, this lemma provides a useful restriction on the

feasible (s, t) pairs such that a GQ of order (s, t) exists. Another popular restriction

on the parameters s and t exists, however, we will not use it in this thesis. As such,

we merely state it without proof.

Proposition 3.8. [7, 1.2.3 and 1.2.5] Let Q be a generalized quadrangle of order

(s, t). If s > 1 and t > 1, then s ≤ t2 and t ≤ s2. Furthermore, if s ̸= t2, then

s ≤ t2 − t, and if t ̸= s2, then t ≤ s2 − s.

When we study any sort of mathematical structure, it is natural to look at sub-

structures of the same type. For graphs, these are subgraphs, for vector spaces, these
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are subspaces, and for groups, these are subgroups. For generalized quadrangles, we

have the notion of subquadrangles.

Definition 3.9. IfQ = (P ,L, I) is a generalized quadrangle, then S is a subquadrangle

of Q if Q if S = (P ′,L′, I′) is a generalized quadrangle such that P ′ ⊆ P , L′ ⊆ L, and

I′ is the restriction of I to P ′ and Q′. If P ′ is a proper subset of P or L′ is a proper

subset of L, we say that S is a proper subquadrangle of Q.

It is easy to see that if Q is a GQ of order (s, t), S is a proper subquadrangle of

Q, and S has order (s′, t′), then either s′ < s or t′ < t. For, if s′ = s and t′ = t,

then S has (s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines, implying that P ′ = P and

S ′ = S.

The following proposition restricts the size of a subquadrangle of a GQ Q in terms

of the order of Q.

Proposition 3.10. [7, 2.2.1] Let Q = (P ,L, I) be a generalized quadrangle of order

(s, t) and S = (P ′,L′, I) be a proper subquadrangle of Q, with order (s′, t′). If s′ < s

and t′ < t, then s ≥ s′t′ and t ≥ s′t′.

Proof. If P is a point in Q such that P is incident to a line in L′, but P /∈ P ′, we

say P is tangent to Q′. We can quickly count that there are (t′ + 1)(s′t′ + 1)(s− s′)

such points in Q. If P is not tangent to Q′ and not a point in Q′, we say that

P is external to Q′. If V is the set of points external to Q, we can count |V | =

(s+ 1)(st+ 1)− (s′ + 1)(s′t′ + 1)− (t′ + 1)(s′t′ + 1)(s− s′).

Put |V | = d label V = {P1, . . . , Pd}, and let ti be the number of points of P ′

that are collinear with Pi. We count the number of ordered pairs (Pi, Q) such that

Pi ∈ V , Q ∈ P ′, and Pi ∼ Q. Näıvely, the total works out to
∑

i ti, but we can count

it another way. For each point Q ∈ P ′, there are t− t′ lines incident to Q which are

not in ℓ′. On each such line, there are s points which are not Q, each of which is

29



external to Q′. Every external point has such a Q and such a line, so the total also

works out to (s′ + 1)(s′t′ + 1)(t− t′)s. Thus,
∑

i ti = (s′ + 1)(s′t′ + 1)(t− t′)s.

Similarly, count the number of ordered triples (Pi, Q,Q′) such that Pi ∈ V , Q,Q′ ∈

P ′, Q ∼ Pi ∼ Q′, and Q ̸= Q′. By a similar counting argument to the above

paragraph, we obtain the equality
∑

i ti(ti−1) = (s′+1)(s′t′+1)s′2t′(t−t′). Combining

this equality with the equality achieved in the previous paragraph, we obtain the

identity
∑

i t
2
i = (s′ + 1)(s′t′ + 1)(t− t′)(s+ s′2t′).

Since the average of the squares of a sequence of numbers is greater than or

equal to the square of the average of that sequence of numbers, we can derive the

inequality d
∑

i t
2
i − (

∑
i ti)

2. Applying algebra to this, we obtain the inequality

(s′ +1)(s′t′ +1)(st+ s′2t′2)(t− t′)(s− s′)(s− s′t′) ≥ 0. Since t− t′ > 0 and s− s′ > 0

by assumption, we must have s ≥ s′t′. Dually, t ≥ s′t′.

3.2 Automorphisms of Generalized Quadrangles

If our goal is to study symmetries of generalized quadrangles, then we must develop

some notion of symmetry of a generalized quadrangle. Recall that a symmetry of

a graph maps vertices to vertices and edges to edges in such a way that preserves

incidence. We will define symmetries of generalized quadrangles similarly.

Definition 3.11. An automorphism of a generalized quadrangle Q = (P ,L, I) is a

bijection x : P ∪ L → P ∪ L such that P x ∈ P for every P ∈ P , ℓx ∈ L whenever

ℓ ∈ L, and P x I ℓx exactly when P I ℓ. Equivalently, an automorphism of Q is an

isomorphism from Q to itself.

Since an automorphism x of Q is bijective, maps points to points, lines to lines,

and preserves incidence, then x preserves every relevant aspect of Q. (For instance, x

maps sub-GQs to sub-GQs.) The collection of automorphisms ofQ forms a group, and

so is subject to group-theoretic techniques. However, more combinatorial techniques,
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such as counting fixed point sets of automorphisms, are also fruitful.

In this vein is Benson’s Lemma, which relates several quantities arising from an

automorphism of a GQ. Let x be an automorphism of a generalized quadrangle Q.

Define α0(x) to be the number of fixed points of x, define α1(x) to be the number of

points P ∈ P such that P ̸= P x and P ∼ P x, and define α2(x) to be the number

of points P ∈ P such that P ̸∼ P x. We can similarly define the quantities β0(x),

β1(x), and β2(x) replacing the word “point” with “line” and P with L in the previous

definition. Näıvely, we can calculate |P| = α0(x)+α1(x)+α2(x), but we can achieve

a more useful restriction using Benson’s lemma.

Benson’s lemma uses linear algebraic techniques, so we must define several ma-

trices associated to a generalized quadrangle. All matrices will be over C. Let

Q = (P ,L, I) be a generalized quadrangle of order (s, t) with P = {P1, P2, . . . , Pv}

and L = {ℓ1, ℓ2, . . . , ℓb}. Recall the adjacency matrix A = (aij) of the point graph of

Q is the v× v matrix where aij = 1 exactly when Pi ∼ Pj, and aij = 0 when Pi ̸∼ Pj.

Also let D = (dij) be the v × b matrix where dij = 1 if Pi I ℓj and dij = 0 otherwise.

Now consider the matrix M = DDT . Noting that the ij-entry of M counts the

number of lines incident to both Pi and Pj, we see that M = A + (t + 1)I. By this

equality, we may retrieve the eigenvalues of M by adding t + 1 to the eigenvalues

of A. Recalling the eigenvalues of A from Proposition 3.7, we may easily calculate

that M has eigenvalues τ0 = (1 + s)(1 + t), τ1 = 0, and τ2 = s + t, with respective

multiplicities m0 = 1, m1 = s2(st+ 1)/(s+ t) and m2 = st(s+ 1)(t+ 1)/(s+ t).

Now let x be an automorphism of Q, and define Q = (qij) to be the v × v matrix

such that qij = 1 if P x
i = Pj and 0 otherwise. Similarly, define R = (rij) to be the b×b

matrix such that rij = 1 if ℓxi = ℓj and 0 otherwise. Then Q and R are permutation

matrices, and we leave as an exercise to the reader that QD = DR. Since Q and R
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are permutation matrices, then QT = Q−1 and RT = R−1. Then,

QM = QDDT = DRDT = DR(Q−1DR)T = DRRTDT (Q−1)T = DDT (Q−1)T = MQ.

Hence, Q and M commute. We are now ready to prove Benson’s Lemma.

Theorem 3.12. [7, 1.9.1 and 1.9.2] Let Q be a generalized quadrangle of order (s, t)

and x an automorphism of Q. Then

(t+ 1)α0(x) + α1(x) ≡ st+ 1 (mod s+ t)

and

(t+ 1)α0(x) + α1(x) = (s+ 1)β0(x) + β1(x).

Proof. Suppose that x has order n. Then (QM)n = QnMn = Mn. Therefore, the

eigenvalues of QM are the eigenvalues of M multiplied by some root of unity. Note

that the ij-entry of M = DDT counts the number of lines incident to both Pi and

Pj. Let J be the v × v matrix where every entry is 1. Then the ij-entry of MJ is

the sum of the ith row of M . However, this is constantly equal to (s + 1)(t + 1), so

MJ = (s + 1)(t + 1)J . Then QMJ = (s + 1)(t + 1)QJ = (s + 1)(t + 1)J . Thus,

(s+1)(t+1) is an eigenvalue of QM . Since M has the eigenvalue (s+1)(t+1) with

multiplicity m0 = 1, then so does QM .

Also recall that 0 is an eigenvalue of M with multiplicity m1 = s2(st+1)/(s+ t).

Since Q is a permutation matrix, the same holds for QM .

By the discussion above, the remaining eigenvalues of QM take the form ξ(s+ t),

where ξ is some nth root of unity. Since the characteristic polynomial of QM has real

coefficients, each primitive dth root of unity contributes the same number of times to

the eigenvalues of QM . That is, if d | n and ξd and ξ′d are primitive dth roots of unity,

then the multiplicity of the eigenvalue ξd(s+ t) is the same as the multiplicity of the
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eigenvalue ξ′d(s+ t). Call this multiplicity ad.

For each divisor d of N , let Ud denote the sum of the primitive dth roots of unity.

It is left to the reader to prove (via induction) that Ud is an integer. Then we have

tr(QM) = (1 + s)(1 + t) +
∑
d|n

ad(s+ t)Ud.

Thus, tr(QM) ≡ 1 + st (mod s+ t).

Note also that the ii-entry of QM counts the number of lines incident with Pi and

P x
i . Thus, tr(QM) = (t+ 1)α0(x) + α1(x). Hence, we achieve the equivalence

(t+ 1)α0(x) + α1(x) = tr(QM) ≡ st+ 1 (mod s+ t).

This proves the first part of the theorem.

Next, we prove the second part of the theorem. Let N be the number of pairs

(P, ℓ) for which P I ℓ, P ∼ P x ̸= P and ℓ ∼ ℓx ̸= ℓ. Now count the number M of

pairs (P, ℓ) for which P I ℓ, P ∼ P x, and ℓ ∼ ℓx. This total works out to

M = (t+ 1)α0(x) + α1(x) +N/2.

The (t+ 1)α0(x) term counts the number of pairs (P, ℓ) for which P x = P . Next, we

account for the pairs (P, ℓ) where P is not fixed by x. Note that if (P, ℓ) is such that

P I ℓ, P ∼ P x ̸= P , and ℓ ∼ ℓx ̸= ℓ, then either ℓ = PP x or ℓ = PP x−1
. Otherwise, ℓ,

ℓx, and PP x are all distinct lines, each of which is concurrent to the others, which is

disallowed by the GQ axiom. Then, the α1(x) term counts the number of pairs (P, ℓ)

for which ℓx = ℓ or ℓ = PP x ̸= ℓ. The remaining N/2 term counts the number of

pairs for which ℓ = PP x−1 ̸= ℓ.

Thus, the identity above holds. By duality, we also achieve the equality M =
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(t+ 1)β0(x) + β1(x) +N/2. Therefore, we have the equality

(t+ 1)α0(x) + α1(x) = M −N/2 = (t+ 1)β0(x) + β1(x).

More important to the results in this thesis, however, is the classification of fixed

substructures of automorphisms of Q. If x is an automorphism of a GQ Q, define

Qx to be the collection of points and lines fixed by x. This collection maintains the

geometric structure of Q, since we can restrict the incidence relation I to Qx. As

such, Qx is called the fixed substructure of x.

Theorem 3.13. [7, 2.4.1] Let x be an automorphism of a GQ Q. Then the fixed

substructure Qx takes one of the following forms:

(0) The substructure Qx is empty, i.e., there are no fixed points and no fixed lines.

(1) At least one point is fixed, there are no fixed lines, and no fixed points are

collinear.

(1′) At least one point is fixed, there are no fixed points, and no fixed lines are

concurrent.

(2) There exists some fixed point P such that P ∼ P ′ for each fixed point P , there

exists at least one fixed line, and every fixed line is incident to P .

(2′) There exists some fixed line ℓ such that ℓ ∼ ℓ′ for each fixed line ℓ, there exists

at least one fixed point, and every fixed point is incident to ℓ.

(3) The substructure Qx is a grid with parameters (a, b) such that a < b.

(3′) The substructure Qx is a dual grid with parameters (a, b) such that a < b.

(4) The substructure Qx is a generalized subquadrangle of order (s′, t′).
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Proof. For any P,Q ∈ P , denote by PQ the unique line incident to both P and Q, if

it exists. Similarly, for any ℓ,m ∈ L, denote by ℓm the unique point incident to both

ℓ and m, if it exists.

Let Qx = (Px,Lx, I) be the fixed substructure of x, and suppose that Qx is not

(0), (1), (1′), (2), (2′), (3), or (3′). We wish to show that Qx is a sub-GQ. We first

show that the GQ Axiom holds for Qx. Since Qx is not (0), (1), or (1′), then Px and

Lx are both nonempty. Take P ∈ Px and ℓ ∈ Lx such that P ̸ I ℓ. Let Q ∈ P and

m ∈ L such that P Im IQ Iℓ. Then P x Imx IQx Iℓx, i.e., P Imx IQx Iℓ. By uniqueness,

m = mx and Q = Qx. So m ∈ Lx and Q ∈ Px. This proves the GQ Axiom for Qx.

Next, we prove axiom (ii), and note that axiom (i) follows by duality. For a point

P ∈ Px, denote by v(P ) the number of lines in Lx incident with P . Call this the

valency of P . First, we show that if P ̸∼ Q, then v(P ) = v(Q). Let P ̸∼ Q ∈ Px and

suppose ℓ I P . Then there exist unique R, ℓ′ such that P I ℓ I R I ℓ′ I Q. Performing

this process for distinct lines maps different lines ℓ I P to different lines ℓ′ I Q, so

v(P ) ≤ v(Q). Similarly, v(Q) ≤ v(P ), and so v(P ) = v(Q).

Thus, fixing a point P ∈ Px, we see that v(Q) = v(P ) if Q ̸∼ P . It suffices to

show that if Q ∼ P , then v(Q) = v(P ). Suppose P ∼ Q ∈ Px. If there exists a point

R ∈ Px such that P ̸∼ R ̸∼ Q, then v(P ) = v(R) = v(Q) and we are done. So, for

the remainder of the proof, we may assume that every point of Qx is collinear with

P or collinear with Q.

We first show that P and Q both have valency 2 or larger. If P has valency 1, then

every point of Qx is collinear to Q, implying that Qx is type (2). Thus, v(P ) ≥ 2,

and similarly v(Q) ≥ 2.

Suppose a point R is collinear with P and Q. Then by the GQ axiom, P , Q,

and R are mutually incident with a distinguished line ℓ. Now suppose that every

point of Qx is incident to ℓ. Then Qx is type (2′), a contradiction. Thus, there must

be a point S ̸ I ℓ. This point must be collinear to P or Q, but not both. Assume
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without loss of generality that S ∼ P . Then, there is a line m IQ which is not equal

to ℓ, so applying the GQ axiom with m and S, we retrieve a point T ∼ Q. Then

P ̸∼ T ̸∼ R ̸∼ S ̸∼ Q, so v(P ) = v(T ) = v(R) = v(S) = v(Q) as desired.

Thus, for the remainder of the proof, we may assume that no point in Qx \{P,Q}

is collinear with both P and Q. Since every point in Qx must be collinear with P or

collinear with Q, it follows that every point R ∈ Px \ {P,Q} is collinear with either

P or Q, but not both. Our goal will be to prove that Qx is a dual grid. Relabel

P = P0, Q = Q0, v(P ) = t′ + 1, and v(Q) = t′′ + 1, and let ℓ0,0 ∈ Lx be the unique

line through P and Q. Label the lines incident to P but not Q ℓ0,j for 1 ≤ j ≤ t′,

and similarly label the lines through Q but not P ℓi,0 for 1 ≤ i ≤ t′′.

If every point of Qx is incident to ℓ0,0, then Qx is type (2′), so there must be a

point R which is not incident to ℓ0,0. This point must be collinear with either P0 or

Q0, but not both, so assume without loss of generality that R ∼ P0. Then by the

GQ axiom, there exist points P1, . . . , Pt′′ such that Qi I ℓi,0 for each i. Applying this

same logic with the point P1, we may construct points Q1, . . . , Qt′ such that Qj I ℓ0,j

for every j.

Suppose that Px has more points than P0, . . . , Pt′ and Q0, . . . , Qt′ . Say that R is

one of these points. Then either R ∼ P or R ∼ Q, so R I ℓ0,j for some j, or R I ℓi,0

for some i. Assume without loss of generality that R I ℓ0,1. Then by the GQ axiom,

R is incident to a point S I ℓ1,0. Since S ∼ R, then by the GQ axiom, S ̸∼ Q1. Thus,

P0 ̸∼ S ̸∼ Q1 ̸∼ Q0, so v(P ) = v(S) = v(Q1) = v(Q0). In this case, the GQ axiom

follows, so for the rest of the proof, we may deal with cases where P0, . . . , Pt′ and

Q0, . . . , Qt′ are all of the points of Qx.

In this case, each line ℓi,0 and ℓ0,1 is incident to exactly two points. Applying the

GQ axiom, we may construct lines ℓi,j ∈ Lx such that Pi I ℓi,j and Qj I ℓi,j for all

0 ≤ i ≤ t′ and 0 ≤ j ≤ t′′. Since Pi ̸∼ P0 for i > 1, then v(Pi) = v(P0) = t′ + 1 for all

i. Similarly, v(Qj) = t′′+1 for all j. Each point Pi is incident with the lines ℓi,0, . . . ℓi,t′
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so no other lines can be incident with Pi. Similarly, each point Qj is incident with all

the lines ℓ0,j, . . . , ℓt′′,j. Since each line of Qx must be incident to a point, by the GQ

axiom, so there are no other lines in Qx. Since the Pi’s and Qj’s are the only points,

and the ℓi,j’s are the only lines, then Qx must be a dual grid with parameters (t′, t′′).

Since Qx is not (3′) we must have t′ = t′′, and so v(P ) = v(Q). Thus, in all cases

v(P ) = v(Q), and so axiom (ii) follows.

Finally, we prove a useful lemma about abelian groups acting regularly on points

of a GQ Q. Recall that a group G is abelian if for any g, h ∈ G, gh = hg. Many

famous groups are abelian, such as the group Z of integers, taken additively, and the

group Q× of nonzero rational numbers taken multiplicatively. More relevant to our

purposes, all cyclic groups are abelian.

Lemma 3.14. [2, Lemma 2.1] Let Q = (P ,L, I) be a generalized quadrangle of order

(s, t) and let G ≤ Aut(Q) be an abelian group acting regularly on P . Then for any

line ℓ ∈ L, the stabilizer Gℓ is size s + 1. In particular, an abelian group G cannot

act regularly on both points points and lines.

Proof. Let ℓ be a line in Q and fix a point P I ℓ. Since G acts regularly on P , there

is a bijection P → G mapping Q ∈ P to the unique g ∈ G such that P g = Q. If T =

{P = P0, P1, . . . , Ps} is the set of points incident to ℓ, then let S = {g0 = 1, g1, . . . , gs}

be the image of T under this bijection. We show that S is a subgroup of G stabilizing

ℓ.

Consider elements gi, gj ∈ S such that i ̸= 0 ̸= j. Then P ∼ P gi implies P gi ∼

P gigj and P ∼ P gj implies P gj ∼ P gjgi = P gigj . Thus, P gigj is collinear to two

distinct points incident to ℓ, and so P gigj is incident to ℓ as well. It follows that

ℓgi = (PP gj)gi = P giP gigj = ℓ. Thus S stabilizes ℓ, so S ⊆ Gℓ.

Note that any g ∈ Gℓ must map P to another point incident to ℓ. Since there

are at most s + 1 points of ℓ, there are at most s + 1 points to which Gℓ can move
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P . Since Gℓ acts semiregularly on P , this means |Gℓ| ≤ s + 1. From the inclusion

S ⊆ Gℓ, we can conclude S = Gℓ, and so |Gℓ| = s+ 1.

3.3 Automorphisms of Prime Order

The restrictions above hold for automorphisms of any order. However, if x is an

automorphism of prime order, we can say much more. Specifically, we can narrow

down the type of Qx by the classes of s + 1 and t + 1 modulo p. This is a powerful

technique utilized in [1], so all of the results in this section are taken from that paper.

Here, we reproduce several lemmas helpful to the study of the GQ of order 6, although

more results are available in [1].

Lemma 3.15. [1, Lemma 3.2] Let x be an order p automorphism of a GQ Q, where

p is prime. If Qx has type (0), then either t + 1 ≡ s + 1 ≡ 0 (mod p), or st + 1 ≡ 0

(mod p). Furthermore, if p is an odd prime, then s + 1 ≡ t + 1 ≡ 0 (mod p) if and

only if st+ 1 ̸≡ 0 (mod p).

Proof. Since Qx is type (0), it follows that α0(x) = β0(x) = 0, which implies that

p | (s+1)(st+1) and p | (t+1)(st+1). If p ∤ st+1, then by Euclid’s lemma, p | s+1

and p | t+ 1. Finally, if p is an odd prime, and s+ 1 ≡ t+ 1 ≡ 0 (mod p), then

st+ 1 ≡ (−1)(−1) + 1 ≡ 2 ̸≡ 0 (mod p).

Lemma 3.16. [1, Lemma 3.3] Let x be an order p automorphism of a GQ Q, where

p is prime. If Qx has type (1), then t + 1 ≡ 0 (mod p). If Qx has type (1′), then

s+ 1 ≡ 0 (mod p).

Proof. Suppose Qx is type (1). Then there are no fixed lines, but at least one fixed

point. Let P be such a point, and let S be the set of lines incident with P . Then

38

□ 

□ 



|S| = t + 1. Also note that S is invariant under x, since ℓ I P implies ℓx I P x = P .

Then S may be partitioned into ⟨x⟩-orbits. Since x does not fix any lines, then these

orbits are all size P . and so p | |S| = t + 1. The analogous result if Qx is type (1′)

follows by duality.

Lemma 3.17. [1, Lemma 3.4] Let x be an order p automorphism of a GQ Q, where

p is prime.

(i) If Qx has type (2) and α0(x) = 1, then s+ 1 ≡ 1 (mod p).

(ii) If Qx has type (2) and α0(x) > 1, then t+ 1 ≡ 1 (mod p).

(iii) If Qx has type (2′) and β0(x) = 1, then t+ 1 ≡ 1 (mod p).

(iv) If Qx has type (2′) and β0(x) > 1, then s+ 1 ≡ 1 (mod p).

Proof. We will prove (i) and (ii), since (iii) and (iv) then follow by duality. Suppose

Qx is type (2) and assume that α0(x) = 1. Then there is a unique fixed point P

which is incident with a fixed line ℓ. The remaining s points incident to ℓ form an

⟨x⟩-invariant set. Since all of these points are moved by x, then p | s showing that

s+ 1 ≡ 1 (mod p), and so (i) follows.

Next, assume that α0(x) > 1. Let P and Q be two fixed points, and assume by

hypothesis that P ′ ∼ P for every fixed point P ′. Hence, Q ∼ P , and so x also fixes

the unique line ℓ such that P I ℓ I Q. None of the other t lines incident with Q are

fixed by x, so they must be partitioned into ⟨x⟩-orbits of size p. Thus, t + 1 ≡ 1

(mod p), and so (ii) follows.

Lemma 3.18. [1, Lemma 3.6] Let x be an order p automorphism of a GQ Q, where

p is prime. If Qx has type (3), then t + 1 ≡ 2 (mod p), and a ≡ b ≡ s (mod p). If

Qx has type (3′), then s+ 1 ≡ 2 (mod p), and a ≡ b ≡ t (mod p).

Proof. Assume Qx is type (3), and let P be a fixed point of the grid. Then there

are exactly two fixed lines incident with P , and so the remaining t− 1 lines incident
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with P are partitioned into ⟨p⟩-orbits of size p. Thus, t+1 ≡ 2 (mod p). Now, there

are two types of lines in the grid, one of which contains a + 1 fixed points, and the

other which contains b+1 fixed points. If ℓ contains a+1 fixed points, the remaining

(s+1)− (a+1) fixed points are partitioned into ⟨p⟩-orbits of size p. Thus, s− a ≡ 0

(mod p), so s ≡ a (mod p). Similarly, s ≡ b (mod p). If Qx is type (3′), the result

follows by duality.

Lemma 3.19. [1, Lemma 3.8] Let x be an order p automorphism of a GQ Q, where

p is prime. If Qx has type (4) such that Qx is a subquadrangle of order (s′, t′), then

s′ ≡ s (mod p) and t′ ≡ t (mod p).

Proof. Let ℓ be a fixed line. Then exactly s′ + 1 points on ℓ are fixed, so the other

s+1− (s′ +1) = s− s′ are partitioned into ⟨x⟩-orbits of size p. Therefore, s− s′ ≡ 0

(mod p), and so s ≡ s′ (mod p). Dually, t′ ≡ t (mod p).

Lemma 3.20. [1, Lemma 3.9 and 3.10] Let x be an order p automorphism of a

generalized quadrangle Q of order (s, t), where p is prime. If Qx is a subquadrangle

of order (s, t′), then α1(x) = 0 and s+ t divides st′(st+ 1).

Proof. First, we show that α1(x) = 0. Let P be a point not fixed by x. If ℓ is a line

fixed by x, since Qx is a subquadrangle of order (s, t′), then all points incident with

ℓ are fixed by x. This means P is not incident with ℓ, so by the GQ axiom, there

must be a unique point Q I ℓ such that P ∼ Q. Let ℓ′ be the line incident with both

P and Q. Since Q I ℓ, then Q is fixed. So (ℓ′)x is also incident with Q. However, we

cannot have P ∼ P x, otherwise P , P ′, and Q are a triangle. Thus, P ̸∼ P x, for every

P ∈ P , and so α1(x) = 0.

Next, we show that s + t divides st′(st + 1). Note that α0(x) = (s + 1)(st′ + 1).

By Benson’s lemma,

(t+ 1)(s+ 1)(st′ + 1) = (t+ 1)α0(x) + α1(x) ≡ st+ 1 (mod s+ t).
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Then,

st′(st+ 1) = (st′ + 1)(st+ 1)− (st+ 1) ≡ (st′ + 1)(st+ s+ t+ 1)− (st+ 1)

= (st′ + 1)(t+ 1)(s+ 1)− (st+ 1) ≡ 0 (mod s+ t).

The result follows.

The results so far in this section help narrow down the fixed substructure of an

automorphism, which are useful for establishing properties of a specific automorphism.

However, these results also have use in a more general context, as they establish a

strong restriction on the types of primes that can divide the automorphism group of

a GQ of order (s, t).

Lemma 3.21. [1, Lemma 3.13] Let p be a prime that divides the automorphism

group of a generalized quadrangle Q of order (s, t). Then either p | st + 1 or p ≤

max{s+ 1, t+ 1}.

Proof. Assume p ∤ st + 1. If t = 1, then Q is a grid with symmetry group Ss+1 ≀ 2.

Then p ≤ s + 1. Dually, if s = 1, then p ≤ t + 1. Therefore, we may assume that Q

is a thick generalized quadrangle.

Assume for contradiction p > s+ 1 and p > t+ 1, and let x be an automorphism

of Q of order p. Since Q is thick, we have s+ 1 ̸≡ 0, 1, 2 (mod p) and t+ 1 ̸≡ 0, 1, 2

(mod p). Applying Lemmas 3.16, 3.17, and 3.18, we may conclude that Qx is not

type (1), (1′), (2), (2′), (3), or (3′). Since p > s + 1 ≥ 2, then p must be an odd

prime. Since s+1 ̸≡ 0 (mod p), t+1 ̸≡ 0 (mod p), and st+1 ̸≡ 0 (mod p), then by

Lemma 3.15, we conclude that Qx is not type (0). Therefore, Qx must be type (4).

Assume Qx is a subquadrangle of order (s′, t′). Then by Lemma 3.19, s′ ≡ s

(mod p). However, p > s ≥ s′, and so s′ = s. A similar argument shows that t′ = t.

Therefore, Qx = Q, and so x is the identity automorphism, which in particular is not

order p. The result follows via contradiction.
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Chapter 4

A Generalized Quadrangle of

Order 6

We now turn our attention to a generalized quadrangle of order 6. The parameters

(6, 6) are not immediately ruled out by Proposition 3.7, so the existence of a GQ

with these parameters is still an open question. If such an object Q exists, we know

immediately that it must have 7 points incident to each line, 7 lines incident to each

point, and its point set and line set must both be size 7 · 37 = 259. Lemma 3.21 tells

us that the only primes that may divide the automorphism group of Q are 2, 3, 5,

7, and 37. We can also apply the theory developed in the previous section to restrict

the fixed substructures of automorphisms of Q.

Lemma 4.1. Let x be a prime-order automorphism of Q. Then |x| = 2, 3, 5, 7, or

37. Furthermore, if Qx is the fixed substructure of x, then the following hold:

(a) If |x| = 2, then Qx is type (2), (2′), or (4). In the last case, the sub-GQ must

have order (2, 2).

(b) If |x| = 3, then Qx is type (2) or (2′).

(c) If |x| = 5, then Qx is type (3), (3′), or (4). In the case of (3) (resp., (3′)),
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the grid (resp., dual grid) must have parameters (1, 6). In the case of (4), the

sub-GQ must have order (1, 1).

(d) If |x| = 7, then Qx is type (0), (1), or (1′).

(e) If |x| = 37, then Qx is type (0).

Proof. The constraint on the possible orders of x follows from Lemma 3.21.

(a) First, assume |x| = 2. By Lemma 3.15, Qx does not have type (0) and by

Lemma 3.16, Qx does not have type (1) or (1′). By Lemma 3.18, Qx does not have

type (3). So Qx must be type (2) or (4). If Qx is type (4), then Qx is a sub-GQ of

order (s′, t′), and by Lemma 3.19, s′ ≡ 6 ≡ 0 (mod 2) and t′ ≡ 6 ≡ 0 (mod 2). The

orders (4, 2) and (4, 4), and (4, 6) are ruled out by Proposition 3.10. The order (6, 2)

is ruled out by Proposition 3.7. Therefore, Qx must be a GQ of order (2, 2). Thus

(a) holds.

(b) Next, assume |x| = 3. By Lemma 3.15, Qx does not have type (0) and by

Lemma 3.16, Qx does not have type (1) or (1′). By Lemma 3.18, Qx does not have

type (3). If Qx is type (4), then Qx is a sub-GQ of order (s′, t′), and by Lemma

3.19, s′ ≡ 6 ≡ 0 (mod 3) and t′ ≡ 6 ≡ 0 (mod 3). The order (3, 6) was ruled out by

Dixmier and Zara, a proof of which can be seen in [7, 6.2.2]. The order (3, 3) is ruled

out by Proposition 3.10, so type (4) is impossible. Therefore, Qx must be type (2) or

(2′), and so (b) holds.

(c) Now, assume |x| = 5. By Lemma 3.15, Qx is not type (0), and by Lemma

3.16, Qx is not type (1) or (1′). By Lemma 3.17, Qx is not type (2) or (2′). If Qx

is type (4), then Qx is a sub-GQ of order (s′, t′), and by Lemma 3.19, s′ ≡ 6 ≡ 1

(mod 5) and t′ ≡ 6 ≡ 1 (mod 5). The order (6, 1) is ruled out by Lemma 3.20, and

so Qx must have order (1, 1).

If Qx is type (3), then Qx must be a grid with parameters (a, b) with a < b and

by Lemma 3.18, a ≡ b ≡ 6 ≡ 1 (mod 5). Thus, Qx is a grid with parameters (1, 6).
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Dually, if Qx is type (3′), then Qx is a dual grid with parameters (1, 6). Thus, Qx is

either a grid with parameters (1, 6), a dual grid with parameters (1, 6), or a sub-GQ

of order (1, 1). Thus, (c) holds.

(d) Now, assume |x| = 7. By Lemma 3.17, Qx is not type (2) or (2′), and by

Lemma 3.18, Qx is not (3) or (3′). If Qx is type (4), then Qx is a sub-GQ of order

(s′, t′), and by Lemma 3.19, s′ ≡ t′ ≡ 6 (mod 7). Then s′ = t′ = 6, which is a

contradiction. Thus, Qx is type (0), (1), or (1′). Thus, (d) holds.

(e) Now, assume |x| = 37. By Lemma 3.16, Qx is not type (1) or (1′), by Lemma

3.17, Qx is not type (2) or (2′), and by Lemma 3.18, Qx is not (3) or (3′). If Qx

is type (4), then Qx is a sub-GQ of order (s′, t′), and by Lemma 3.19, s′ ≡ t′ ≡ 6

(mod 37). Then s′ = t′ = 6, which is a contradiction. Thus, Qx is type (0), and so

(e) holds.

With these restrictions established, we are now able to study the symmetries of

the GQ of order 6 in earnest.

4.1 Bounds on Automorphism Orders

4.1.1 Prime Power Automorphism Orders

We begin by establishing some limits on the orders of prime-power order automor-

phisms of Q. For p = 37, 7, 5, we prove that an automorphism of order pk must have

k = 1. In addition, we prove that for p = 2, 3, an automorphism of order pk must

have k ≤ 2.

Since no automorphism of order 37 may fix any points or lines, we can say some-

thing much stronger about 37 – that a Sylow 37-subgroup of Aut(Q) must be trivial

or cyclic of order 37. A very similar situation occurs for a hypothesized GQ of order

(4, 12), so we may adapt Lemma 6.5 of [1] almost directly.
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Lemma 4.2. Let G be the group of automorphisms of Q. Then, a Sylow 37-subgroup

of G must have order at most 37. In particular, there is no automorphism of Q of

order 372.

Proof. Let X be a Sylow 37-subgroup of G and x ∈ X a non-identity element. Then,

x|x|/37 is an element of order 37 in X. By Lemma 4.1, x|x|/37 does not have any fixed

points. If x had a fixed point, then x|x|/37 would fix it as well, so x cannot have

any fixed points. This implies that X acts semiregularly on P , and so |X| divides

|P| = 259. Thus, |X| = 37.

For p = 2, 3, 5, 7, we cannot say as much about the Sylow p-subgroup, however, we

can bound the maximal k such that Q has an automorphism of order pk. In general,

the presence of an automorphism x of order pk imposes restrictions on the fixed point

set of y = xpk−1
. Therefore, the existence of x imposes restrictions on α0(y) and β0(y).

However, for k ≥ 2, y is a prime order automorphism of Q, so we may employ Lemma

4.1 to achieve other restrictions on α0(y) and β0(y). Playing these restrictions against

each other results in a contradiction in every case.

In pursuit of this goal, the following technical proposition helps us count in general

the size of α0(x
pk−1

) given an automorphism x of order pk.

Proposition 4.3. Let Ω be a finite set and let x ∈ Sym(Ω) have order pk, for k ≥ 2

and p prime. Then if N is the size of the fixed point set of xpk−1
, then N ≡ |Ω|

(mod pk).

Proof. For convenience of notation, label y = xpk−1
and let G = ⟨x⟩. Let fixΩ(y) be

the set of y-fixed points and consider K = Ω \ fixΩ(y). Then G = ⟨x⟩ is invariant on

fixΩ(y), and so x is also invariant on its complement K. Thus, G acts on K.

By Orbit-Stabilizer, the possible lengths of G-orbits on K are pj for 0 ≤ j ≤ k,

so we may write

|K| =
k∑

j=1

pjnj,
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where each nj counts the number of length pj orbits on K. We will show that nj = 0

for each j < k.

If we let j < k and assume for contradiction that nj > 0, then there must be some

P ∈ K such that |PG| = pj. Then by Orbit-Stabilizer, |GP | = |G|/|PG| = pk/pj =

pk−j ≥ p. Note that since G is a cyclic group, G has a unique order p subgroup H.

Since GP is a subgroup of G with order larger than p, then GP must also contain H

as a subgroup. However, ⟨y⟩ is an order p subgroup of G, since |y| = |xpk−1| = p. By

uniqueness, ⟨y⟩ = H, and so y ∈ H ≤ GP . Therefore, y fixes P , and so P ∈ fixΩ(y).

However, P cannot be in fixΩ(y) and its complement K at the same time, so this is

a contradiction. Therefore, nj = 0.

Since nj = 0 for every j < k, the sum |K| =
∑k

j=1 p
jnj becomes the equality

|K| = pknk. In particular pk divides |K|. However, since K = |Ω| \ fixΩ(y), then

|K| = |Ω| −α0(y). Therefore, p
k divides |Ω| −α0(y), and so α0(y) ≡ |Ω| (mod pk) as

desired.

For the case of generalized quadrangles, we have the following corollary:

Corollary 4.4. Let Q be a generalized quadrangle of order (s, t) and let x be an

automorphism of Q with order pk, for k ≥ 2 and p prime. Then α0(x
pk−1

) ≡ (s +

1)(st+ 1) (mod pk) and β0(x
pk−1

) ≡ (t+ 1)(st+ 1) (mod pk).

This result allows us to study automorphisms with prime power order using the

techniques developed for prime order automorphisms. The existence of an automor-

phism x of order pk imposes restrictions on the fixed substructure of the automorphism

y of order p that we get by powering up x the appropriate number of times. This

result is likely to be applicable to other contexts in which much is known about prime

order automorphisms of some structure, say in the case of strongly regular graphs, or

other generalized quadrangles.

For the case of a generalized quadrangle Q of order (6, 6), and x an automor-
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phism of order pk, Corollary 4.4 gives us the congruence α0(x
pk−1

) ≡ β0(x
pk−1

) ≡ 259

(mod pk). With this group-theoretic counting tool, we may apply the GQ-theoretic

Lemma 4.1 to prove the desired restrictions on prime-power automorphism orders.

Corollary 4.5. There is no automorphism of Q of order 49.

Proof. Suppose for contradiction that x is an automorphism of order 49 = 72. Then

x7 is an automorphism of order 7, so by Lemma 4.1, Qx7 must be type (0), (1), or

(1′). In particular, either α0(x
7) = 0 or β0(x

7) = 0. However, Corollary 4.4 tells us

that α0(x
7) ≡ β0(x

7) ≡ 259 ≡ 14 (mod 49). In particular, this means that α0(x
7)

and β0(x
7) are both positive, a contradiction.

Corollary 4.6. There is no automorphism of Q of order 25.

Proof. Suppose for contradiction that x is an order 25 automorphism of Q. Then

Corollary 4.4 tells us that α0(x
5) ≡ β0(x

5) ≡ 259 ≡ 9 (mod 25). Since |x5| = 5,

Lemma 4.1 tells us that Qx5 is either a grid with parameters (1, 6), a dual grid with

parameters (1, 6), or a GQ of order (1, 1). In the first case, Qx5 has 14 points, and

so α0(x
5) = 14, contradicting α0(x

5) ≡ 9 (mod 25). In the second case, Qx5 has 14

lines, and so β0(x
5) = 14, contradicting β0(x

5) ≡ 9 (mod 25). In the third case, Qx5

has exactly 4 points, and so α0(x
5) = 4, contradicting α0(x

5) ≡ 9 (mod 25).

Corollary 4.7. There is no automorphism of Q of order 27.

Proof. Suppose for contradiction that x is an automorphism of order 27 = 33. Then

Corollary 4.4 tells us that α0(x
9) ≡ β0(x

9) ≡ 259 ≡ 16 (mod 27). Since x9 is an

order 3 automorphism of Q, then Qx9 is either type (2) or (2′) by Lemma 4.1. In

particular, this means that every fixed line of x9 is contained on one point, or that

every fixed point of x9 is contained on one line. Since there are exactly 7 lines on

each point and exactly 7 points through each line, this means that α0(x
9) ≤ 7 or

β0(x
9) ≤ 7. This contradicts α0(x

9) ≡ β0(x
9) ≡ 16 (mod 27). Therefore, there can

be no automorphism of order 27.
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Corollary 4.8. There is no automorphism of Q order 8.

Proof. Suppose x is an automorphism of Q with order 8 = 23 and put G = ⟨x⟩. Then

x must fix some point P otherwise 2 | |P| = 259. Consider the set A of lines incident

to P . Since x fixes P , then A must be a G-invariant subset of L. There are exactly 7

lines in A, so any G-orbit inside A has size at most 4. Therefore, x4 fixes every line

in A. Thus, β0(x
4) ≥ 7. Similarly, α0(x) ≥ 7.

Now, we employ Lemma 4.1 to see that Qx4 is either type (2), type (2′), or a

GQ of order (2, 2), since |x4| = 2. The last possibility is ruled out by the fact that

the x4-fixed point P has all seven lines incident to it fixed. Thus, Qx4 is either type

(2) or (2′). In particular, this means that every fixed line of x4 is incident with one

distinguished point, or that every fixed point of x4 is incident with one distinguished

line. Since there are exactly 7 lines on each point and exactly 7 points through

each line, this means that α0(x
4) ≤ 7 or β0(x

4) ≤ 7. Since we showed earlier that

α0(x
4) ≥ 7 and β0(x

4) ≥ 7, this means that either α0(x
4) = 7 or β0(x

4) = 7.

Finally, we apply Corollary 4.4 to see that α0(x
4) ≡ β0(x

4) ≡ 259 ≡ 3 (mod 8).

This contradicts the fact that either α0(x
4) = 7 or β0(x

4) = 7. Therefore, no auto-

morphism of order 8 may exist.

Finally, we can use Corollary 4.5 to find a useful restriction on the size of a Sylow

7-subgroup of G = Aut(Q).

Lemma 4.9. Let G = Aut(Q), where Q is the GQ of order 6. Then a Sylow 7-

subgroup of G must have order at most 73.

Proof. Assume for contradiction that X is a Sylow 7-subgroup of G with |X| ≥ 74,

and let P ∈ P . Then let XP be the stabilizer of P in X. Since any X-orbit must have

length smaller than 259, the possible sizes of X-orbits are {1, 7, 49}. Since any orbit

of X is size 72 or smaller, then by Orbit-Stabilizer, |XP | = |X|/|PG| ≥ 74/72 = 72.
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Now consider the incidence graph Γ of Q, whose vertices are the lines and points

of Q, and where there is an edge from ℓ ∈ L to R ∈ P exactly when ℓ is incident

with R. Since G acts faithfully on Q, it must act faithfully on Γ as well. Since XP is

a subgroup of G, it must also act faithfully on Γ.

Let Γ(P ) be a neighborhood of our distinguished point P , i.e., the subgraph

induced by the point P along with its neighbors ℓ1, . . . , ℓ7. The action of XP on Γ

induces an action of XP on ΓP , which has kernel K. I contend that no non-identity

automorphism of XP is in this kernel. Let x ∈ XP \ {1}. Then by Corollary 4.5,

|x| = 7, and so by Lemma 4.1, Qx is either type (0), (1), or (1′). However, x fixes

P , and so Qx must be type (1). Therefore, x fixes no lines, so x acts nontrivially on

Γ(P ). Thus, x /∈ K. Since no nonidentity x is in K, we conclude K = {1}.

Therefore, XP acts faithfully on Γ(P ). However, this entails that XP ≲ S7, since

any x ∈ XP can only permute the lines ℓ1, . . . , ℓ7. This is a contradiction, since

|XP | ≥ 72. Therefore, |X| ≤ 73.

4.1.2 Automorphisms of Order 37p

Next, we show that for p prime, there can be no automorphism of Q with order 37p.

This is desirable, since ruling out automorphisms of order 37p naturally rules out

even more automorphism orders. Indeed, if suppose that for some n ≥ 2 that Q

has an automorphism x of order 37n, consider the cyclic group G = ⟨x⟩. Since for

some prime p, 37p divides 37n, then G must have a cyclic subgroup H of order 37p.

This cyclic subgroup H must contain an automorphism of order 37p, which results

in contradiction. So just by ruling out automorphisms of order 37p for p prime, we

have also ruled out the much broader class of automorphisms of order 37n for n ≥ 2.

In order to achieve this result, Lemma 4.1 tells us that we may restrict our at-

tention to the primes 2, 3, 5, 7, and 37. Lemma 4.2 already tells us that Q has no

automorphism of order 37 · 37, otherwise the Sylow 37-subgroup of Aut(Q) would be
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too large. The case of 7 · 37 is also a special case, which we will handle below.

Lemma 4.10. There is no automorphism of Q of order 7 · 37.

Proof. Suppose for contradiction that z is an automorphism of order 7 · 37. Then it

may be written as the product z = xy = yx of an automorphism x of order 7 and

an automorphism y of order 37. Since x and y commute, then ⟨z⟩ = ⟨xy⟩ = ⟨x, y⟩.

Thus, z fixes a point P exactly when both x and y fix that point P .

Employing duality and Lemma 4.1, we may assume without loss of generality that

Qx is either type (0) or (1′) so that x fixes no points. Lemma 4.1 also tells us that

Qy is type (0), so y does not fix any points either. Therefore, z does not fix any

points. Since |z| = 259 = |P|, this means that ⟨z⟩ acts regularly on P . However, this

contradicts Lemma 3.14. Therefore, no automorphism of order 7 · 37 may exist.

Luckily, in order to rule out 5 · 37, 3 · 37, and 2 · 37, we can use many of the same

methods. The general structure of the proofs is start with an automorphism of order

37p (for p ∈ {2, 3, 5}) and decompose it into two automorphisms x and y such that x

and y commute, x is order p, and y is order 37. We can then restrict the size of α0(x)

and β0(x) using elementary group-theoretic methods. However, since x is a prime-

order automorphism, we can also restrict the size of α0(x) and β0(x) using Lemma

4.1. Playing these two restrictions against each other results in a contradiction for

each p ∈ {2, 3, 5}.

Lemma 4.11. Let p be prime and suppose x and y are automorphisms of Q with

|x| = p, |y| = 37, and xy = yx. Then α0(x) ≡ β0(x) ≡ 0 (mod 37).

Proof. Let Px be the fixed point set of x. Since x and y commute, y is invariant on

Px. By Lemma 4.1, Qy is type (0), and so y fixes no points. Therefore, y acts fixed

point freely on Px, and so 37 | |Px|. Thus, α0(x) ≡ 0 (mod 37). A dual argument

shows that β0(x) ≡ 0 (mod 37).
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Corollary 4.12. There is no automorphism of Q of order 5 · 37.

Proof. Suppose for contradiction that there exists an automorphism z of order 5 · 37.

Then we may write z = xy = yx for some automorphisms x and y with |x| = 5 and

|y| = 37. Then by Lemma 4.11, α0(x) ≡ 0 (mod 37).

By Lemma 4.1, Qx is either a grid with parameters (1, 6), a dual grid with pa-

rameters (1, 6), or a GQ of order (1, 1). In the first, case α0(x) = 14, in the second

case, α0(x) = 9, and in the third case, α0(x) = 4. Each case contradicts α0(x) ≡ 0

(mod 37), and so there is no automorphism of order 5 · 37.

Corollary 4.13. There is no automorphism of Q of order 3 · 37.

Proof. Suppose for contradiction that there exists an automorphism z of order 3 · 37.

Then we may write z = xy = yx for some automorphisms x and y with |x| = 3 and

|y| = 37. By Lemma 4.1, Qx is either type (2) or (2′). Using duality, we may assume

without loss of generality that Qx is type (2′). Then, x has a fixed point, and all fixed

points of x are incident to a single line. Thus, 1 ≤ α0(x) ≤ 7. However, by Lemma

4.11, α0(x) ≡ 0 (mod 37). This contradicts 1 ≤ α0(x) ≤ 7, and so there can be no

automorphism of order 3 · 37.

Corollary 4.14. There is no automorphism of Q of order 2 · 37.

Proof. Suppose for contradiction that there exists an automorphism z of order 2 · 37.

Then we may write z = xy = yx for some automorphisms x and y with |x| = 2 and

|y| = 37. By Lemma 4.1, Qx is either type (2) or (2′), or is a GQ of order (2, 2).

Using duality, we may assume without loss of generality that Qx is type (2′) or a GQ

of order (2, 2). In the former case, x has a fixed point, and all fixed points of x are

incident to a single line. Thus, 1 ≤ α0(x) ≤ 7. In the latter case, α0(x) = 15. By

Lemma 4.11, α0(x) ≡ 0 (mod 37), which contradicts both of these cases. Therefore,

there can be no automorphism of order 2 · 37.
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Since we have ruled out automorphisms of order 37p for every p ∈ {2, 3, 5, 7, 37},

we conclude that Q has no automorphisms of order 37p for any prime p.

4.2 Proof of Intransitivity

In this section, we prove the following:

Theorem 4.15. Let Q be the generalized quadrangle of order 6 and G its full auto-

morphism group. Then G does not act transitively on either points or lines of Q.

Let G be the automorphism group of Q. Our first objective is to prove that if G

is transitive, then it must also be quasiprimitive. This allows us use Theorem 2.21,

and narrow down the types of groups that may act on Q.

Lemma 4.16. Suppose that G = Aut(Q) is transitive on points. Then G must

act quasiprimitively on points. Dually, if G is transitive on lines, then G must act

quasiprimitively on lines.

Proof. It suffices to show that if G is point-transitive, then it is quasiprimitive on

points, since the corresponding statement for lines follows by duality. Suppose for

contradiction that the action of G on P is not quasiprimitive, i.e., there exists a

normal subgroup N ⊴G which is not transitive on P . Let P be a Sylow p-subgroup

of N for some prime p. By the Frattini Argument, G = NG(P )N . Thus, |G| divides

|NG(P )| · |N |.

The group N is a normal subgroup of a transitive group G, so all the stabilizer

subgroups of N must be the same size. (If Qx = Q′, then NQ = xNQ′x−1 = NQ′ .)

Therefore, all the orbits have got to be the same size. Since N acts intransitively and

nontrivially on P , there are two possibilities:

(1) There are 7 distinct N -orbits of P with size 37

(2) There are 37 distinct N -orbits of P with size 7.
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Suppose first that (1) holds. Let 7k be the largest power of 7 which divides |G|.

Since N acts transitively on a set of size 37, then 37 | |N |. Let P be a Sylow 37-

subgroup of N which has size 37. Since G is transitive on the 7 N -orbits, 7 | |G : N |.

Since G is not divisible by 7k+1 and |G| = |G : N | · |N |, then 7k ∤ |N |.

Note that 7k divides |G| which in turn divides |NG(P )| · |N |. If, for contradiction,

we assume that 7 ∤ |NG(P )|, then by Euclid’s Lemma, 7k | |N |, a contradiction.

Therefore, 7 | |NG(P )|. The automorphism of order 7 must act trivially on the Sylow

37-subgroup of order 37, and so we retrieve an element of order 7 ·37, a contradiction.

Suppose next that (2) holds. Since N acts transitively on a set of size 7, then

7 | |N |. Let P be a Sylow 7-subgroup of N which has size at most 73 by Lemma 4.9.

Since G is transitive on the 37 N -orbits, 37 | |G : N |. Since G is not divisible by 372,

this implies that 37 ∤ |N |. Since 37 divides |G| which in turn divides |NG(P )| · |N |,

then by Euclid’s Lemma, 37 | |NG(P )|. A computer search over all groups of order

7k for 1 ≤ k ≤ 3 reveals that the automorphism of order 37 must act trivially on N .

Therefore, we retrieve an element of order 37 · 7, a contradiction.

In both (1) and (2) we arrive at a contradiction, so therefore the action of G on

P must be quasiprimitive.

Since G is quasiprimitive on points (assuming it must be transitive on points), we

may employ Theorem 2.21. This theorem states that the socle of G must be of the

form T k for T a simple group. Since the set P on which G acts does not have prime

power size, the theorem further implies that T must be a nonabelian simple group.

We can further narrow down the structure of this socle. Let H = T k be the socle

of G. Then H is a normal subgroup of G, being the product of normal subgroups

of G. Since G acts on P quasiprimitively, then its normal subgroup H must act

transitively on G. Then 37 must divide the order of H, and so 37 divides |T k| = |T |k.

Thus, 37 | |T |. However, if k ≥ 2, then 372 | |H| | |G|, contradicting Lemma 4.2.

Therefore, k = 1, and H = T is a nonabelian simple group, which acts transitively
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on P .

In this light, it makes sense to narrow down the finite simple groups which can

act transitively on P . By Lemma 4.1, the only primes which may divide the order

a group G which acts faithfully on Q are 2, 3, 5, 7, and 37. This motivates us to

consider groups whose orders are divisible by a small number of primes.

Definition 4.17. A group G is a Kn-group if the order of G is divisible by exactly

n primes.

For example, the linear group PSL(2, 7) is a K3-group, since its order is 23 · 3 · 7.

The classification of simple Kn-groups is solved for n ≤ 6. For n = 1, it is well known

that the simple K1-groups are abelian of prime order. For n = 2, it is the precise

statement of Burnside’s theorem that every K2-group is solvable. Since such groups

are solvable and divisible by multiple primes, they cannot be simple.

The case of n = 3, 4 is handled in [3], and the case of n = 5, 6 is handled in [5].

For the convenience of the reader, we reproduce the statements of these results for

n = 3, 4, 5 in Appendix A as Theorems A.1, A.2 and A.3 respectively.

Our goal will be to rule out any simple K3-group, K4-group, or K5-group acting

transitively on P . This will result in a contradiction since by the above discussion, a

simple K3-, K4-, or K5-group must act transitively on P . To do this, we will use two

facts:

(1) If T acts transitively on P , then P is a single T -orbit, and so |P| divides |T |.

In particular, this entails that 7 and 37 divide |T |.

(2) If T acts faithfully on P , then the elements of T may be identified with auto-

morphisms of Q. Thus, the only prime order automorphisms of T must have

order 2, 3, 5, 7, or 37, and so the only primes which may divide |T | are 2, 3, 5,

7, or 37.
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(3) If T is a simple group acting on a set Ω, then T acts faithfully on Ω if and only

if T acts nontrivially on Ω. This is because the kernel K of the action of T on

Ω is a normal subgroup of T . If T acts faithfully on Ω, then T obviously acts

nontrivially on Ω. However, if T acts nontrivially on Ω, then K ̸= T , so K = 1

by simplicity of T , and so T acts faithfully on Ω.

We may use the first of these facts to immediately rule out every simple K3-

group. Theorem A.1 states that there are only finitely many simple K3-groups, and

that they may all be found (up to isomorphism) on Table A.1. An inspection of this

table reveals that none of these groups have order divisible by 37, and so by fact

(1), none of them may act point-transitively on Q. Therefore, we have ruled out

K3-groups acting point-transitively on Q.

Next, we turn our attention to the simple K4-groups. Theorem A.2 states that

if T is a simple K4-group, then T must either be isomorphic to PSL(2, q) for some

prime power q, or T is isomorphic to one of the groups listed on Table A.2. This

requires that we rule out our first infinite family of simple groups, a task for which

we must use some higher technology.

For G a group, define P (G) to be the smallest n ≥ 0 such that G acts nontrivially

on a set of size n. If P (G) is greater than 259 for some group G, then G must

act trivially – and therefore intransitively – on points of Q. Thus, a good bound

on P (PSL(2, q)) can limit the number of groups that may act nontrivially on Q.

Fortunately, an explicit calculation of P (PSL(2, q)) is given in [6, Theorem 5.2.2], as

well as calculations of P (T ) for many other families of simple groups. We can now

rule out PSL(2, q) acting transitively on P for any prie power q:

Lemma 4.18. No group of the form PSL(2, q) acts transitively and faithfully on Q.

Proof. Suppose PSL(2, q) acts transitively on Q. Then it acts nontrivially on P . By

[6, Theorem 5.2.2], if PSL(2, q) acts nontrivially on a set of size 259, we must have
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q + 1 = (q2 − 1)/(q − 1) ≤ 259. This means that q ≤ 258. However, recall for odd q,

that |PSL(2, q)| = q(q2 − 1)/2, and so q | |PSL(2, q)|. By Lemma 4.1, it follows that

an odd q must be a power of 3, 5, 7, or 37. Combining these constrains, we glean

that q is one of the following:

2, 4, 8, 16, 32, 64, 128, 256, 3, 9, 27, 81, 243, 5, 25, 125, 7, 49, 37.

The only q among the above list for which 37 | |PSL(2, q)| is q = 37. However, 7

does not divide |PSL(2, 37)|, so q = 37 is ruled out as well. Therefore, no group of

the form PSL(2, q) acts faithfully and point-transitively on Q.

From here, a simple inspection reveals that no group listed on Table A.2 has order

divisible by 37, and so no group on this table may act point-transitively on Q. Since

we also know that no group of the form PSL(2, q) may act point-transitively on Q,

then by Theorem A.2, we know that no K4-group may act point-transitively on Q.

Finally, we rule out every K5-group. Theorem A.3 states that if T is a simple

K5-group, then there are seven possibilities:

(1) T ∼= PSL(2, q) for some prime power q;

(2) T ∼= PSL(3, q) for some prime power q;

(3) T ∼= U3(q) for some prime power q;

(4) T ∼= PSp4(q) for some prime power q;

(5) T ∼= Sz(22m+1) for some m ≥ 1;

(6) T ∼= R(32n+1) for some n ≥ 1;

(7) T is isomorphic to a group listed on Table A.3.
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We have already ruled out the first infinite family of K5-groups, so this leaves us

five more to rule out. We can again use [6, Theorem 5.2.2] for possibilities (2), (3),

and (4). However, for possibilities (5) and (6), more elementary methods suffice.

Lemma 4.19. No group of the form PSL(3, q) acts transitively on Q.

Proof. Suppose PSL(3, q) acts transitively on Q. Then it acts nontrivially on P . By

[6, Theorem 5.2.2], if PSL(3, q) acts nontrivially on a set of size 259, we must have

q2 + q + 1 = (q3 − 1)/(q − 1) ≤ 259. This means that q ≤ 15. Since q is a prime

power, this means q ∈ {2, 4, 8, 3, 9, 5, 7, 11, 13}. We may then manually check that

37 ∤ |PSL(3, q)| for each q ∈ {2, 4, 8, 3, 9, 5, 7, 11, 13}. Thus, PSL(3, q) can never be

transitive on Q.

Lemma 4.20. No group of the form U3(q) acts transitively on Q.

Proof. Suppose that U3(q) acts transitively on Q. Then it acts nontrivially on P .

By [6, Theorem 5.2.2], if U3(q) acts nontrivially on a set of size 259, we must have

q3 + 1 ≤ 259. Therefore, q ≤ 6. Since q is a prime power, our only four possibilities

are q = 2, 4, 3, 5. We can manually check that 37 ∤ |U3(q)| for all such q, and the

result follows.

Lemma 4.21. No group of the form PSp4(q) acts transitively on Q.

Proof. Suppose that PSp4(q) acts transitively on Q. If q = 2, 3, then 37 ∤ |PSp4(2)|,

a contradiction. Thus, q > 3.

Since PSp4(q) acts transitively on Q, it acts nontrivially on P . By [6, Theorem

5.2.2], if PSp4(q) acts nontrivially on a set of size 259 and q > 3, we must have

q3 + q2 + q + 1 = (q4 − 1)/(q − 1) ≤ 259. Thus, q ≤ 6. Since q is a prime power,

and q > 3, this means q = 4, 5. However, we can manually check that 37 ∤ |PSp4(q)|,

for q ∈ {4, 5}, a contradiction. Therefore, no group of the form PSp4(q) can act

transitively on Q.
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For the case of the Suzuki and Ree groups, their orders are much more controlled.

In particular, it is well known that Suzuki groups are 3′-groups, and that Ree groups

are 5′-groups. However, if a K5-group T acts faithfully on Q, then its prime divisors

must be exactly 2, 3, 5, 7, and 37, otherwise G is not a K5-group, or some prime

p /∈ {2, 3, 5, 7, 37} divides |G|, which is not allowed by Lemma 4.1. Since K5 Suzuki

groups do not have 3 as a prime divisor, and K5 Ree groups do not have 5 as a

prime divisor, they cannot act faithfully on Q. Since there are no K4 Ree groups,

and neither of the two K4 Suzuki groups, Sz(2) and Sz(8), have order not divisible

by 37, (see Table A.2), we have eliminated possibilities (5) and (6).

Finally, an inspection of Table A.3 reveals that none of the groups on that table

have order divisible by 37, and so none of those groups can act transitively on points of

Q. Therefore, we have ruled out possibility (7). Since we ruled out the preceding six

possibilities above, then we may invoke Theorem A.3 to say that no simple K5-group

may act point-transitively on Q.

In the discussion above, we have proven that no simple K3-, K4-, or K5-group may

act point-transitively on Q. However, simpleK3-, K4-, orK5-groups are the only non-

abelian simple groups which may act transitively on Q, since the full automorphism

group G of Q has at most five prime divisors. This means that no nonabelian sim-

ple group can act point-transitively on Q. However, the discussion after Lemma

4.16 tells us that if G is transitive, then G must have a normal, nonabelian, sim-

ple subgroup which is also point-transitive. Since no nonabelian simple group may

act point-transitively on Q, we may conclude that G cannot be point-transitive. A

dual argument shows that G cannot be line-transitive either, and so we have proven

Theorem 4.15.
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4.3 Solvability

Let Q be the putative generalized quadrangle of order 6. In this section, we detail

a sufficient condition to show that G = Aut(Q) is not solvable. This condition also

serves to rule out a prime dividing |G| in the case that G is solvable.

Recall that for every finite group G, there exists a series of subgroups N0 =

{1}, N1, . . . , Nk = G such that Ni ⊴ Ni+1 and Ni+1/Ni is simple. Such a series is

called a composition series, and the simple groups Ni+1/Ni are called the composition

factors of G. It is the precise statement of the Jordan-Hölder Theorem that the

isomorphism types and multiplicities of the composition factors of G are the same for

every composition series of G. A solvable group, then, is a group whose composition

factors are all cyclic of prime order. Solvable groups are very well-studied. Indeed,

by a theorem of Burnside, every group whose order is pmqn, for p, q prime, must be

solvable. (See [4, 7.8. Theorem].)

Another fact about solvable groups is that a stronger form of Sylow E applies to

them. If G is a group, and π is a set of primes dividing |G|, a Hall π-subgroup of G is

a subgroup H ≤ G such that p ∤ |G : H| for every p ∈ π. It can be easily seen that if

π = {p}, then a Hall π-subgroup of G is just a Sylow p-subgroup of G. However, Hall

π-subgroups are not guaranteed to exist if π has two or more elements. For instance,

the alternating group A5 has a Hall {2, 3}-subgroup, but no Hall {2, 5}-subgroup or

Hall {3, 5}-subgroup. However, for solvable groups, things are much nicer.

Proposition 4.22. [4, 3.19 Corollary and 3.20 Theorem] Let G be a solvable group,

and π a set of primes, each of which divides |G|. Then G has a Hall π-subgroup.

Let Q be the putative generalized quadrangle of order 6, and G = Aut(Q). It will

be our goal in this section to prove that G cannot have a Hall {7, 37}-subgroup. In

order to do this, we must narrow down the structure of such a group. This necessitates

the following definitions.
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Definition 4.23. Let G be a group, and suppose that G = NH, where N is a normal

subgroup of G and H is merely a subgroup of G, and N and H are nontrivial. Then

H acts on N via conjugation. If the only H-fixed point of N is the identity 1 ∈ N ,

we say that G is a Frobenius group.

If G has normal subgroups N1 and N2 such that N1 ≤ N2, G/N1 is a Frobenius

group, and N2 is a Frobenius group, we say that G is a 2-Frobenius group.

Note that if G = NH is a Frobenius group, then N is partitioned by H-orbits, all

of which are size |H| except for the singleton {1}. As such, if G = NH is a Frobenius

group, then |N | ≡ 1 (mod |H|). In particular, the orders of N and H are coprime.

The second piece we will incorporate is the notion of prime graphs. If G is a finite

group, the prime graph of G, denoted Γ(G), is the graph whose vertices are the primes

dividing |G| such that there is an edge between p and q if there is an element of order

pq in G. However, the complement of the prime graph of G, denoted Γ(G) is more

often studied, since it tells us about the structure of the Hall {p, q}-subgroups of G.

Lemma 4.24. Let G be a group, and suppose that {p, q} is an edge in Γ(G). Then

the Hall {p, q}-subgroup of G, if it exists, is either Frobenius or 2-Frobenius.

Proof. Suppose that {p, q} is an edge in Γ(G) and that H is a Hall {p, q}-subgroup

of G. By Burnside’s famous pq Theorem, H must be solvable. Since G contains no

element of order pq, then neither does H, so {p, q} is still an edge in Γ(H). Thus, the

prime graph of G consists of the disconnected vertices p and q. By [13, Theorem A

and Corollary], this entails that H is Frobenius or 2-Frobenius.

If G is the automorphism group of the GQ of order 6, we showed in Subsection

4.1.2 that {37, p} must be an edge in Γ(G) if 37 | |G| and p | |G|. In particular,

this means that if 259 | |G|, then the Hall {7, 37}-subgroup of G – if it exists – must

be Frobenius or 2-Frobenius. In either case, a Frobenius {7, 37}-group acts on Q.

Therefore, it is of interest to us to investigate whether such a situation can occur.
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Suppose G = NH be a Frobenius {7, 37}-group acting faithfully on Q. Then

|N | ≡ 1 (mod |)H|, so |N | and |H| must be coprime. In particular, either N is a

37-group and H is a 7-group, or N is a 7-group and H is a 37-group. Consider the

former case. By Lemma 4.2, N must have order exactly 37. If |H| = 7k, this means

that H must satisfy

37 ≡ 1 (mod 7k).

However, for k = 1 this fails, and for k ≥ 2, this also fails. So N cannot be a 37-group.

This means that H must be a 37-group, and N must be a 7-group. If |N | = 7k,

then N must satisfy

7k ≡ 1 (mod 37).

By the laws of modular arithmetic, this is eventually satisfied, however the smallest

positive k which satisfies this equation is k = 9. We know that any 7-group acting

faithfully on Q has order not exceeding 73, by Lemma 4.9, so therefore, N cannot be

a 7-group either. Therefore, N is trivial, and so G is not a Frobenius group. This

contradiction shows that no Frobenius {7, 37}-group can act faithfully on Q. We may

combine this result, along with all the notions previously discussed in the section, into

the following proposition.

Proposition 4.25. Let G be a group acting faithfully on the generalized quadrangle

Q of order 6 such that 7 and 37 divide |G|. Then G does not admit a Hall {7, 37}-

subgroup. In particular, G is not solvable.

Proof. Since G acts faithfully on Q, we may take G without loss of generality to

be a subgroup of Aut(Q). Then by Lemma 4.10, {7, 37} is an edge in the prime

graph complement of G. This entails that any Hall {7, 37}-subgroup of G – if any

exist – must be Frobenius or 2-Frobenius. Suppose for contradiction that H is such

a group. In either case, H has a subgroup K which is a Frobenius {7, 37}-subgroup.

However, no such group can exist. Therefore, G has no Hall {7, 37}-subgroup. If G
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were solvable, G would have a Hall {7, 37}-subgroup, so G cannot be solvable.

This proposition provides a sufficient condition for a group G acting faithfully

on Q to be non-solvable (when 7 and 37 divide |G|), and it also provides sufficient

conditions to rule out either an automorphism of order 7, or an automorphism of

order 37 (when G = Aut(Q) is solvable).
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Appendix A

The Finite Simple K3-, K4-, and

K5-Groups

In this appendix, we list the classification results for simple K3-, K4-, and K5-groups.

For each n ∈ {3, 4, 5}, we state the classification of Kn-groups, and provide a table

listing every Kn-group which does not fall into some infinite family of Kn-groups.

The classification of K3- and K4-groups is originally given as one theorem in [3,

Theorem I], however, it is more convenient to split it up into two separate theorems.

Theorem A.1. Let T be a simple K3-group. Then T is isomorphic to one of the

groups listed on Table A.1.

Theorem A.2. Let T be a simple K4-group. Then either T is isomorphic to PSL(2, q)

for some prime power q, or T is isomorphic to one of the groups on Table A.2.

Table A.1 is a reproduction of [3, TABLE 1] and Table A.2 is a reproduction of

[3, TABLE 2].

Next, we deal with the case of K5-groups. The classification result was originally

proven in [5, Theorem A], however an error was made in the statement of this result.

Therefore, we also cite [14, Lemma 2.6], in which a corrected version of the theorem

is given. The theorem follows:

63



T |T |
A5 22 · 3 · 5
A6 23 · 32 · 5

U4(2) 26 · 34 · 5
PSL(2, 7) 23 · 3 · 7
PSL(2, 8) 23 · 32 · 7
U3(3) 25 · 33 · 7

PSL(3, 3) 24 · 33 · 13
PSL(2, 17) 24 · 32 · 17

Table A.1: The simple K3-groups

Theorem A.3. Let T be a simple K5-group. Then one of the following holds:

(1) T is isomorphic to PSL(2, q) for some prime power q.

(2) T is isomorphic to PSL(3, q) for some prime power q.

(3) T is isomorphic to U3(q) for some prime power q.

(4) T is isomorphic to PSp4(q) ∼= O5(q) for some prime power q.

(5) T is isomorphic to Sz(22m+1) for some m ≥ 1.

(6) T is isomorphic to R(32n+1) for some n ≥ 1.

(7) T is isomorphic to one of the groups on table A.3.

Table A.3 is a reproduction of the table immediately following Lemma 2.12 in

[14].
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T |T | T |T |
J2 27 · 33 · 52 · 7 Sp4(4) 28 · 32 · 5 · 17
A7 23 · 32 · 5 · 7 PSL(3, 5) 25 · 3 · 53 · 31
A8 26 · 32 · 5 · 7 PSp4(9) 28 · 38 · 52 · 41

A9
∼= PSL(4, 2) 26 · 34 · 5 · 7 U3(9) 25 · 36 · 52 · 73

A10 27 · 34 · 52 · 7 G2(3) 26 · 36 · 7 · 13
PSL(3, 4) 26 · 32 · 5 · 7 3D4(2) 212 · 34 · 72 · 13
U3(5) 24 · 32 · 53 · 7 PSL(3, 7) 25 · 32 · 73 · 19
U4(3) 27 · 36 · 5 · 7 U3(8) 29 · 34 · 7 · 19

PSp4(7) 28 · 32 · 52 · 74 U3(8) 29 · 34 · 7 · 19
Sp6(2) ∼= O7(2) 29 · 34 · 5 · 7 U3(8) 29 · 34 · 7 · 19

O+
8 (2) 212 · 35 · 52 · 7 U3(7) 27 · 3 · 73 · 43
M11 24 · 32 · 5 · 11 PSL(3, 8) 29 · 32 · 173 · 307
M12 26 · 33 · 5 · 11 Sz(8) 26 · 5 · 7 · 13
U5(2) 210 · 35 · 5 · 11 Sz(32) 210 · 52 · 31 · 41

PSL(4, 3) 27 · 36 · 5 · 13
U3(4) 26 · 3 · 52 · 13

PSp4(5) 26 · 32 · 54 · 13
2F4(2)

′ 211 · 33 · 52 · 13

Table A.2: Simple K4-groups not isomorphic to PSL(2, q)

T |T | T |T |
M22 27 · 32 · 5 · 7 · 11 J3 27 · 35 · 5 · 17 · 19
HS 29 · 32 · 53 · 7 · 11 He 210 · 33 · 52 · 73 · 17
McL 27 · 36 · 53 · 7 · 11 A11 27 · 34 · 52 · 7 · 11
A12 29 · 35 · 52 · 7 · 11 PSL(4, 5) 27 · 32 · 56 · 13 · 31

PSL(4, 7) 29 · 34 · 52 · 76 · 19 PSL(5, 2) 210 · 32 · 5 · 7 · 31
PSL(6, 2) 215 · 34 · 5 · 72 · 31 U4(5) 25 · 34 · 54 · 7 · 13
U4(7) 210 · 32 · 52 · 76 · 43 3D4(3) 26 · 312 · 72 · 132 · 73
G2(4) 212 · 33 · 52 · 7 · 13 G2(5) 26 · 33 · 56 · 7 · 31
G2(7) 28 · 23 · 76 · 19 · 43 G2(8) 218 · 35 · 72 · 19 · 73
S8(2) 216 · 35 · 52 · 7 · 17 U5(3) 211 · 310 · 5 · 7 · 61

PSL(5, 3) 29 · 310 · 5 · 112 · 13 O+
8 (3) 212 · 312 · 52 · 7 · 13

O−
8 (2) 212 · 34 · 5 · 7 · 17 U6(2) 215 · 36 · 5 · 7 · 11

PSL(4, 4) 212 · 34 · 52 · 7 · 17 U4(4) 212 · 32 · 53 · 13 · 17
U4(9) 29 · 312 · 53 · 41 · 73 PSL(3, 9) 27 · 36 · 5 · 7 · 13
U3(17) 26 · 34 · 5 · 174 · 29 S4(8) 212 · 34 · 5 · 72 · 13
S4(17) 210 · 34 · 5 · 174 · 29 O7(3) 29 · 39 · 5 · 7 · 13
S6(3) 29 · 39 · 5 · 7 · 13

Table A.3: Simple K5-groups not isomorphic to PSL(2, q), PSL(3, q), U3(q), S4(q),
Sz(22m+1), or R(q).
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