
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

8-2016 

Copper(I) Oligomers and Polymers with Dicyanobenzene and Copper(I) Oligomers and Polymers with Dicyanobenzene and 

Cyanopyridine Ligands Cyanopyridine Ligands 

Mark K. Broderick 

Congqi Yang 

Robert D. Pike 
William & Mary, rdpike@wm.edu 

Aaron Nicholas 

et al. 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Broderick, Mark K.; Yang, Congqi; Pike, Robert D.; Nicholas, Aaron; and et al., Copper(I) Oligomers and 
Polymers with Dicyanobenzene and Cyanopyridine Ligands (2016). Polyhedron, 114, 333-343. 
https://doi.org/10.1016/j.poly.2016.01.005 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=scholarworks.wm.edu%2Faspubs%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


 1

 

 

 

Copper(I) Oligomers and Polymers with Dicyanobenzene and 

Cyanopyridine Ligands.   

Mark K. Broderick, Congqi Yang, and Robert D. Pike* 

Department of Chemistry, College of William and Mary, Williamsburg, VA 23187. 

Aaron Nicholas, Daniel May and Howard H. Patterson 

Department of Chemistry, University of Maine, Orono, ME 04469. 

 

Abstract:  The reaction of [Cu(MeCN)4]BF4 with o-, m-, or p-dicyanobenzene (DCB) or o-, m-, or 

p-cyanopyridine (CPy) in the presence of two equivalents of PPh3 produces DCB- or CPy-

bridged copper(I) complexes. Cyclic dimers are formed for the ortho ligands, and zigzag 

polymers are formed using the para ligands. m-DCB produces a polymer, however m-CPy results 

in a cyclic trimer. Multiple lattice-bound solvates are formed upon crystallization of the o-DCB 

dimer from various solvents. A total of 11 X-ray crystal structures are reported for 

[Cun(PPh3)2n(bridge)n](BF4)n•(solvent): bridge = o-DCB, n = 2, solvent (per dimer) = none, ½ 

CH2Cl2, CH2Cl2, 2 CHCl3/H2O, or 2 THF; bridge = m-DCB, n = ∞, solvent = none; bridge = p-

DCB, n = ∞, solvent = CH2Cl2 (two polymorphs), bridge = o-CPy, n = 2, solvent (per dimer) = 2 

toluene; bridge = m-CPy, n = 3, solvent = none; bridge = p-CPy, n = ∞, solvent = ½ acetone. All 

complexes are photoluminescent with excitation in the range 340–400 nm. The meta complexes 

emit in the blue region, while the other complexes emit in the green. Dimer complexes of o-DCB 

exhibit structural flexibility in the central macrocyclic ring. Complexes of m-DCB and p-CPy 

show orientational disorder in the ligand. Polymeric complexes show helicity. Smaller Stokes 
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shifts are noted for DCB than for CPy complexes, suggesting less excited state distortion for 

cyanoaromatic ligand complexes of Cu(I). 

 

Keywords: Copper complexes; Crystal structures; Dicyanobenzene; Cyanopyridine; Dimer; 

Trimer; Metal-organic polymer; Luminescence; Solvento complexes 

 

1. Introduction 

 The study of copper(I) networks has been particularly intensive in recent recent years as a 

result of the structural flexibility and diversity of this d10 center, as well as its diverse 

photophysical behavior [1]. The electronic transitions undergone by Cu(I) can include d → p 

metal-centered (MC), metal-to-ligand * charge transfer (MLCT), halide-to-metal charge transfer 

(XMCT), and cluster-centered (CC) transitions. Lifetimes for the resulting excited states are 

typically in the s range, and thus are indicative of phosphorescence. The quantum yield values 

for some of these Cu(I) complexes have reached 0.5 or better; therefore, Cu(I) species have been 

investigated as potential organic light-emitting diode materials [2]. 

Bridging of Cu(I) centers by halide and pseudo halide ligands with or without additional 

bridging organic ligands produces networks with a wide and often unpredictable variety of 

structural motifs [3]. In contrast, the use of non-coordinating anions allows for greater control 

over networking behavior through manipulation of metal:organic ligand stoichiometry. Thus, 

when two bidentate bridging ligands per copper atom are used, 3-D diamondoid networks 

[Cu(bridge)2]+ are typically produced [4]. The addition of monodentate “capping” ligands, may 

be used to reduce network dimensionality. For example, the use of two equivalents of PPh3 per 

Cu(I) produces the Cu(PPh3)2
+ secondary building unit (SBU), which has been shown to produce 

metal-organic polymers and oligomers with bridge = pyrazine, 4,4'-dipyridine, and 3,4'-dipyridine 
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[5],[6]. These compounds have been noteworthy for their formation of multiple crystalline forms 

containing various levels of solvation, and for emission that is highly dependent on solvation.  

Nitrile R–C≡N−Cu(I) bonding is well-recognized, in large measure due to the great 

importance of the acetonitrile ligand in copper(I) chemistry. Bridging polycyanoorganic ligands 

have been used to produce dimeric [7], polymeric [8], and network [9] complexes of copper(I). 

Amongst these categories, polymers and oligomers are less common. This is because most such 

compounds are ternary in nature, requiring the use of SBUs with capping ligands to restrict 

network growth. Here, we report the formation of dimers and polymers of the SBU Cu(PPh3)2
+ 

using the isomers of dicyanobenzene (DCB) and cyanopyridine (CPy) as bridging ligands. 

 

2. Experimental 

2.1. General methods 

All syntheses were carried out under nitrogen or argon atmosphere. Microanalyses for C, 

H, and N were carried out by Atlantic Microlab, Inc., Norcross, GA. All ligands were purchased 

from Aldrich or Acros. o-Dicyanobenzene (oDCB) and m-dicyanobenzene (mDCB) were 

recrystallized from 95% ethanol, and m-cyanopyridine (mCPy) was recrystallized from 

xylenes/hexanes. All other ligands were used as received. [Cu(NCMe)4]BF4 was prepared from 

Cu2O and HBF4 in acetonitrile as described in the literature [10]. Toluene was dried over CaH2. 

Proton NMR spectra were collected in 5 mm o.d. NMR tubes on a Varian Mercury 400VX NMR 

spectrometer operating in the pulse Fourier transform mode. Chemical shifts were measured with 

respect to internal solvent. All coupling constants are reported in Hz and JHH. Thermogravimetric 

analyses (TGA) were conducted using a TA Instruments Q500 in the dynamic (variable temp.) 

mode with a maximum heating rate of 50 oC/min. to 800 oC under 60 mL/min. N2 flow. Steady-

state  photoluminescence spectra were recorded with a Model QuantaMaster-1046 

photoluminescence spectrophotometer from Photon Technology International. The instrument 
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was equipped with two excitation monochromators and a single emission monochromator with a 

75W xenon lamp.  

 

2.2. Synthesis of Complexes 

[Cu2(PPh3)4(oDCB)2](BF4)2 (1) 

[Cu(NCMe)4]BF4 (315 mg, 1.00 mmol) and PPh3 (525 mg, 2.00 mmol) were suspended 

in 20 mL dry toluene. To this mixture solid oDCB (128 mg, 1.00 mmol) was added, producing a 

white suspension. The mixture was refluxed overnight, forming a pale yellow suspension. The 

solid was collected via filtration, washed with ethyl ether, and dried under vacuum (755 mg, 

0.470 mmol, 94% yield). 1H NMR (CDCl3) δ 7.88 (m, 4 H, oDCB), 7.84 (m, 4 H, oDCB), 7.38 (t, 

J = 6.8, 12 H, PPh3), 7.26 (m, 48 H, PPh3). Anal. Calcd for C88H68N4B2Cu2F8P4: C, 65.81; H, 

4.27; N, 3.49. Found: C, 64.78; H, 4.36; N, 3.71. TGA Calcd for Cu2(PPh3)4(BF4)2: 84.1. Found: 

84.2 (175–225 ºC). Calcd for CuBF4: 14.8. Found: 18.7 (225–275 ºC). Calcd for CuF: 9.5. Found: 

9.8 (350–560 ºC). 

{[Cu(PPh3)2(mDCB)](BF4)}∞ (2) 

The procedure for 1 was followed using mDCB. A white solid was isolated (93%). 1H 

NMR (CDCl3/DMSO-D6) δ 8.38 (s, 1 H, mDCB), 8.14 (d, J = 8.0, 2 H, mDCB), 7.79 (t, J = 7.8, 1 

H, mDCB), 7.47 (t, J = 7.4, 6 H, PPh3), 7.36 (t, J = 7.6, 12 H, PPh3), 7.29 (br s, 12 H, PPh3). Anal. 

Calcd for C44H34N2BCuF4P2: C, 65.81; H, 4.27; N, 3.49. Found: C, 64.16; H, 4.26; N, 3.47. TGA 

Calcd for Cu2(PPh3)4(BF4)2: 84.1. Found: 83.7 (190–235 ºC). Calcd for CuBF4: 14.8. Found: 12.6 

(235–280 ºC). Calcd for CuF: 9.5. Found: 9.5 (280–465 ºC). 

{[Cu(PPh3)2(pDCB)](BF4)}∞ (3) 

The procedure for 1 was followed using pDCB. A yellow solid was isolated (92%). 1H 

NMR (CDCl3/DMSO-d6) δ 8.04 (s, 4 H, pDCB), 7.47 (t, J = 7.4, 6 H, PPh3), 7.36 (t, J = 7.4, 12 

H, PPh3), 7.29 (br s, 12 H, PPh3). Anal. Calcd for C44H34N2BCuF4P2: C, 65.81; H, 4.27; N, 3.49. 

Found: C, 65.66; H, 4.41; N, 3.46. TGA Calcd for Cu2(PPh3)4(BF4)2: 84.1. Found: 80.8 (180–240 
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ºC). Calcd for CuBF4: 14.8. Found: 15.8 (240–275 ºC). Calcd for CuF: 9.5. Found: 11.6 (295–455 

ºC). 

[Cu2(PPh3)4(oCPy)2](BF4)2 (4) 

The procedure for 1 was followed using oCPy. A golden-yellow solid was isolated 

(77%). 1H NMR (CDCl3) δ 8.43 (d, J = 7.8, 2 H, oCPy), 8.01 (t, J = 7.8, 1 H, oCPy), 7.44 (s, 1 H, 

oCPy), 7.38 (t, J = 7.4, 6 H, PPh3), 7.24 (t, J = 8.0, 12 H, PPh3), 7.16 (br s, 12 H, PPh3). Anal. 

Calcd for C84H68N4B2Cu2F8P4: C, 64.76; H, 4.40; N, 3.60.  Found: C, 64.52; H, 4.73; N, 3.59. 

TGA Calcd for CuBF4: 19.3. Found: 19.4 (80–290 ºC). Calcd for CuF: 10.6. Found: 10.1 (290–

500 ºC). 

[Cu3(PPh3)6(mCPy)3](BF4)3 (5) 

The procedure for 1 was followed using mCPy. A white solid was isolated (83%). 1H 

NMR (CDCl3) δ 8.69 (d, J = 5.1, 3 H, mCPy), 8.63 (s, 3 H, mCPy), 7.92 (dt, J = 8.2, 1.8, 3 H, 

mCPy), 7.56 (dd, J = 8.3, 5.5, 3 H, mCPy), 7.38 (t, J = 7.4, 18 H, PPh3), 7.18 (t, J = 7.7, 36 H, 

PPh3), 7.04 (br s, 36 H, PPh3). Anal. Calcd for C126H102N6B3Cu3F12P6: C, 64.76; H, 4.40; N, 3.60. 

Found: C, 63.70; H, 4.44; N, 3.24. TGA Calcd for Cu2(PPh3)4(BF4)2: 86.6. Found: 86.4 (135–235 

ºC). Calcd for CuBF4: 19.3. Found: 13.7 (235–270 ºC). Calcd for CuF: 9.9. Found: 10.7 (350–455 

ºC). 

{[Cu(PPh3)2(pCPy)](BF4)}∞ (6) 

The procedure for 1 was followed using pCPy. A bright yellow solid was isolated (96%). 

1H NMR (CDCl3/DMSO-d6) δ 8.87 (br s, 2 H, pCPy), 7.79 (br s, 2 H, pCPy), 7.46 (t, J = 7.4, 6 H, 

PPh3), 7.35 (t, J = 7.7, 12 H, PPh3), 7.28 (br s, 12 H, PPh3). Anal. Calcd for C42H34N2BCuF4P2: C, 

64.76; H, 4.40; N, 3.60. Found: C, 64.48; H, 4.47; N, 3.59. TGA Calcd for Cu2(PPh3)4(BF4)2: 

86.6. Found: 85.9 (165–225 ºC). Calcd for CuBF4: 19.3. Found: 12.6 (225–275 ºC). Calcd for 

CuF: 9.9. Found: 9.6 (335–455 ºC). 

 

2.3. Crystallizations 
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All compounds except 3 and 6 were separately crystallized from CHCl3 and CH2Cl2 

solutions with ether diffusion. Compound 3 was insufficiently soluble in CHCl3 and was 

crystallized from CH2Cl2 solution only; compound 6 was not soluble in either chlorinated solvent, 

and was therefore crystallized from acetone solution. Compound 1 was additionally crystallized 

from THF and acetone solutions. In all cases, the compound was dissolved in the appropriate 

solvent at 30 mM (monomer basis) and the solution was layered in 5 mm tubes or 1 or 2 dram 

vials with ethyl ether and allowed to stand at ambient temperature. In all cases crystals resulted 

within a few days. Structures 1a, 1b, 1c, 3a, 3b, 4a, and 5 were solved from crystals grown in 

CH2Cl2/ether. The structures of 1d and 2 were solved from crystals grown in CHCl3/ether, and 

those of 1e and 6a were solved from crystals grown in THF/ether and acetone/ether, respectively. 

 

2.4. X-ray data collection, structure solutions and refinements 

All measurements were made using graphite-monochromated Cu K radiation on a 

Bruker-AXS three-circle diffractometer, equipped with a SMART Apex II CCD detector. Initial 

space group determination was based on a matrix consisting of 120 frames. The data were 

corrected for Lorentz and polarization [11] effects and absorption using SADABS [12]. The 

structures were solved by use of intrinsic phasing or direct methods. Least squares refinement on 

F2 was used for all reflections. Structure solution was performed using the SHELXTL [13] 

package of software. Least-squares refinement was carried out for all structures on F2 using 

ShelXle [14]. The non-hydrogen atoms were refined anisotropically. Crystallographic parameters 

for all complexes are provided in Table 2. Selected bond lengths and angles are provided in Table 

3. 

 

3. Results and discussion 

3.1. Synthesis  
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Reaction of one equivalent of the solvento-Cu(I) compound [Cu(NCMe)4]BF4 with two 

equivalents of PPh3 and a single equivalent of o-, m-, or p-dicyanobenzene (oDCB, mDCB, 

pDCB) or o-, m- or p-cyanopyridine (oCPy, mCPy, pCPy) in refluxing toluene yielded product 

compounds showing 1:2:1 stoichiometry CuBF4:PPh3:DCB/CPy. In order to replace all of the 

acetonitrile ligands, the toluene suspensions were refluxed for 18-20 hours prior to work-up. In 

each case, pure products were collected directly from the suspension after washing with ethyl 

ether. The carbon analyses for compounds 1, 2, and 5 were found to be 1.6–2.7% lower than 

expected, probably due to traces of included solvent. The six product compounds were formed in 

in good to nearly quantitative yield. The lowest yield was noted for the oCPy product (77%), in 

which case only the toluene filtrate retained significant yellow color. The polymeric products of 

mDCB, pDCB, and pCPy described below were also formed when reactions were carried out in 

refluxing CH2Cl2 or CHCl3. However, in the cases of oDCB, oCPy, and mCPy, reflux in 

chlorinated solvents led to the formation of the known bis(acetonitrile) complex, 

[Cu(PPh3)2(NCMe)2]BF4 [15] rather than the oligomeric products decribed below. Therefore, the 

higher-boiling toluene was chosen as the preferred reaction solvent. In one case (oCPy complex, 

4, see below) a toluene solvate was formed. The toluene could be removed from 4 via vacuum 

drying. However, crystallization of the undried product from CH2Cl2/ether yielded a toluene 

solvate structure.  

Although the CuBF4:PPh3:DCB/CPy stoichiometry of all six complexes was determined 

to be 1:2:1 by elemental analysis, the degree of oligomerization as identified via X-ray 

crystallography (see below) varied depending upon the ligand used. Thus, the oDCB complex (1) 

proved to be a cyclic dimer: [Cu2(PPh3)4(oDCB)2](BF4)2, while the mDCB and pDCB products (2 

and 3) were polymers: {[Cu(PPh3)2(mDCB)](BF4)}∞ and {[Cu(PPh3)2(pDCB)](BF4)}∞. Similar to 

their DCB analogs, oCPy yielded a cyclic dimer, [Cu2(PPh3)4(oCPy)2](BF4)2 (4) and pCPy 

produced a polymer {[Cu(PPh3)2(pCPy)](BF4)}∞ (6). However, unlike mDCB, mCPy formed a 

cyclic trimer [Cu3(PPh3)6(mCPy)3](BF4)3 (5) rather than a polymer. 
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Ortho and para complexes 1, 3, 4, and 6 appeared yellow under visible light and were 

brightly emissive in the yellow to blue-green region under 365 nm black light irradiation. In 

contrast the meta complexes 2 and 5 were both white under visible light and brightly emissive in 

the blue region under black light (see below). 

 

3.2. X-ray Structures  

Solvated o-Dicyanobenzene Dimers  

It was readily apparent that compound 1 (oDCB dimer complex) was highly subject to 

solvent inclusion in the crystal lattice. Therefore, crystals of the solvent-free yellow powder 

initially precipitated from toluene were grown from CH2Cl2, CHCl3, THF, and acetone solutions 

via liquid diffusion of ethyl ether. Compound 1 yielded a mixture of yellow and nearly colorless 

block crystals when grown from all solvent combinations, except acetone/ether. The distribution 

of solvent-free (1a) and solvent-containing (1b–1e) crystals in these experiments is summarized 

in Table 1. In situ photographs of these crystals under room light and 365 nm black light are 

shown in Figures 1 and S1 (supporting information). The yellow solvent-free crystals dominated 

when 1 was crystallized from chlorinated solvents and acetone (in the latter case 1a was the only 

product). Colorless solvent-containing crystals were dominant only in the case of THF solvent. 

Slower crystallization (e.g. in the freezer) tended to produce higher proportion of solvento 

crystals. In addition, allowing a mixture of the two crystal types to remain under the 

crystallization solvent caused slow conversion: yellow → colorless. While the yellow crystals 

exhibited intense yellow luminescence emission under 365 nm black light, the colorless crystals 

showed greatly diminished luminescence emission.  
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Figure 1. Photographs under room light (top) and 365 nm black light (bottom) of 1–6 (right to 

left). The arrows for 1 point out a crystal of colorless non-emissive 1b or 1c amidst yellow 

emissive crystals of 1a. 

 

The X-ray structure of the cubic yellow blocks that grew from 1 in all solvents used 

showed a solvent-free dimeric compound [Cu2(PPh3)4(oDCB)2](BF4)2 (1a). Two Cu(I) centers are 

bridged by a pair of o-DCB ligands and capped by four PPh3 ligands to complete the distorted 

tetrahedral coordination sphere at each metal center (Figures 2, 3, and S2). The structure is half-

independent, being centered about a crystallographic inversion center. Fluorine positional 

disorder was present in BF4
−, and was modelled over two sites. The bond lengths and angles (see 

Table 3) are within normal ranges for Cu(I) nitrile complexes [7]–[9],[16]. Unsurprisingly, the 

N−Cu−N angle is relatively small: 105.01(8)°, and the P–Cu–P angle relatively large: 120.94(2)°. 

Interestingly, the N–Cu–P angles spanned a very wide range: 97.71(5), 104.67(6), 108.27(6), and 

117.47(6)°. At the center of the dimer is a 14-membered Cu2(o-DCB)2 ring. This macrocycle is 

fairly planar in 1a. The copper atoms were not perfectly linear with the cyano groups, with 

Cu−N−C angles being 159.54(17) and 168.42(18)°. The 6-atom oDCB least-squares ring planes 

are nearly parallel with one another, with an interplanar angle of 0.009°. The DCB planes are 

displaced from one another by a mere 0.279 Å. The Cu atom is displaced from the DCB planes by 

0.300 and 0.579 Å. The Cu…Cu distance is 6.276 Å. 
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Figure 2. (A) Thermal ellipsoid (50%) drawing of 1a. Hydrogen atoms and BF4
− omitted. Color 

key for all X-ray structures: Cu = orange, P = pink, N = blue, C = grey.  

 

Crystallization of 1 from CH2Cl2/ether gave colorless blocks in addition to the yellow 1a 

crystals described above. Amongst these colorless blocks, two closely-related crystal 

compositions were identified: [Cu2(PPh3)4(oDCB)2](BF4)2•½CH2Cl2 (1b) and 

[Cu2(PPh3)4(oDCB)2](BF4)2•CH2Cl2 (1c). Crystal structures were solved for both solvate dimers 

(see Figures 3 and S3–S6). In contrast to 1a, the dimer unit in 1b is fully independent 

crystallographically, with two independent copper atoms. The bond lengths and angles are in the 

same range as those of 1a, although the two P−Cu−P angles are somewhat more open: 122.38(3), 

126.25(3)°. Due to the lack of molecular inversion center, the DCB planes in 1b are not at all 

coplanar, having an interplanar angle of 49.88°, and the macrocycle is highly puckered. The 

copper atoms lie between the planes defined by the DCB rings. Cu1 lies at positions 0.679 and 

−1.093 Å with respect the N1/N2 and N3/N4 DCB planes, respectively. The analogous values for 

Cu2 are −0.999 and +0.495 Å. The Cu…Cu distance is 6.162 Å. The half CH2Cl2 molecule in 1b 

was centered on an inversion center. Fluorine disorder was again present in one BF4
− ion, and was 

modelled over two positions. 
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Figure 3. Clockwise from upper left, overlays of 1a (red) with 1b (green), 1c (blue), 1d (orange), 

and 1e (purple). Cu, N, and P atoms shown as ball and stick; C atoms shown as wireframe. 

Hydrogen atoms, phenyl groups, solvent molecules, and BF4
− anions are omitted. 

 

Similar to 1a, but in contrast to 1b, the dimer in solvate complex 1c was centered on an 

inversion site located at the center of the 14-membered ring. As for 1b, the CH2Cl2 molecule in 1c 

lay on an inversion center postion. Thus, both the dimer unit and the solvent in 1c are half-

independent. The bond lengths and angles are relatively similar to those of 1a and 1b; however, 

the N−Cu−N is rather small and P−Cu−P is rather large: 95.46(7) and 123.86(2)°, respectively. 

The oDCB ring itself is slightly less planar that those in 1a or 1b, but as is the case in 1a, the two 

DCB rings in the dimer are parallel (interplanar angle = 0°), being displaced from one another by 

a distance of 0.403 Å. The copper atoms are elevated above the DCB planes by 0.804 and 1.207 

Å. The Cu…Cu distance is 6.486 Å. A face-to-face intramolecular -stacking arrangement 

(centroid…centroid distance = 4.081 Å) is noted between phenyl rings attached to P1 (C9−C14) 

and P2 (C39−C44) at a common Cu1 atom. 
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The colorless crystals that formed in CHCl3/ether along with 1a proved to be 

[Cu2(PPh3)4(oDCB)2](BF4)2•2CHCl3•H2O (1d). Crystallization of 1 from THF produced mostly 

colorless crystals, which proved to be [Cu2(PPh3)4(oDCB)2](BF4)2•2THF (1e) (see Figures 3 and 

S7–S10). Chloroform/water solvate dimer 1d is (along with 1b) one of two oDCB dimers herein 

for which the macrocycle lacks inversion symmetry. It also shows an interesting twist in the 

macrocycle, causing the two antiparallel oDCB ring planes to lie at an angle of 18.37° to one 

another. Both copper atoms lie within the cleft between these planes at distances of 0.237 and 

0.576 Å for Cu1…plane and of 0.522 and 0.737 Å for Cu2…plane. The five other 

crystallographically independent species in the structure: two CHCl3 molecules, two BF4
– ions, 

and a H2O molecules were all fully ordered, and no intermolecular interactions were noted 

between any of the entities present. 

Like 1a and 1c, the half-independent structure of 1e featured an inversion site at the 

center of the macrocycle. The THF molecule was fully independent and ordered; the anion was 

also fully ordered. The bond lengths and angles are quite similar to those of the other structures of 

1. The distance between the two oDCB rings is 0.638 Å and the interplanar angle between them is 

0°. In this case the cyano groups are somewhat out of plane from the DCB rings. One of the 

C≡N–Cu groups lies above the DCB plane by 0.181, 0.354, and 0.143 Å for C, N, and Cu 

respectively, while the other C≡N–Cu arm is displaced downward by 0.197, 0.434, and 0.780 Å. 

The Cu…Cu distance is 6.452 Å. 

Formation of [Cu(PPh3)2]+ dimers by dicyanoorganic compounds has been seen in four 

previous cases [7b],[7d],[17]. The bridging ligands involved have been short, rigid, anionic 

linkers, such as dicyanamide, substituted dicyanomethanides and pentacyanocyclopentadienide. 

Similar to the various solvates of 1 reported herein, these literature dimers show N–Cu–N in the 

range of 92.8–104.1°, and P–Cu–P in the range of 124.1–126.6°. However, literature Cu…Cu 

values in the range of 6.76–6.98 Å are somewhat longer than those seen for oDCB (6.162–6.566 

Å). This is probably the result of the more rigid ligands used in the literature structures.  
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m- and p-Dicyanobenzene Polymers  

Crystallization of [Cu(PPh3)2(mDCB)]BF4 (2) from either CH2Cl2 or CHCl3 afforded 

colorless prism crystals. These solved by X-ray diffraction as a solvent-free zigzag polymer 

(Figures 4 and S11). The crystallographic repeat unit consists of [Cu(PPh3)2(mDCB)]+ and BF4
− 

units. Expansion of the structure along a 21 axis produces an mDCB-bridged polymer. The 

polymer represents a hypothetical ring-opening of the dimers seen in 1a−1e. The 

…Cu−DCB−Cu−DCB… backbone lies very nearly within a plane, but the slight bending of the 

Cu−N≡C angles (169.49(19) and 161.67(18)°) produce a helical arrangement when viewed along 

the backbone (Figure S11). Adjacent mDCB least-squares planes lie at 6.84° angles to one 

another. The two Cu(I) centers bonded to a DCB ligand lie 0.203 Å above and 0.683 Å below the 

plane defined by the ligand ring. Adjacent chains experience a face-to-face -stacking interaction 

(centroid…centroid distance = 3.998 Å) between mDCB (C2−C7) and a phosphane phenyl 

(C21−C26). The P−Cu−P angle is relatively large: 128.50(2)°. The Cu…Cu distances along the 

chain are 10.523Å, and the Cu…Cu…Cu angle is 104.03°. The BF4
− counterions sit in the vacant 

spaces created by the zigzag shape of the polymer. 
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Figure 4. Thermal ellipsoid (50%) drawing of the crystallographic repeat unit in 2. Hydrogen 

atoms omitted. 

 

Crystallization of [Cu(PPh3)2(pDCB)]BF4 (3) from CH2Cl2 produced yellow needle and 

block crystals. Two polymorphs with nearly identical structures were identified: monoclinic 3a 

(see Figures 5, 6, and S12) and triclinic 3b (see Figures 6, S13 and S14). Both structures show a 

zigzag polymer arrangement with one molecule of CH2Cl2 per monomer unit in the lattice. An 

overlay of the polymorphs is shown in Figure 6. In both polymorphs, the crystallographic repeat 

unit contains a portion of the cationic polymer two monomer units in length, two BF4
− ions (one 

of which is disordered) and two positionally disordered CH2Cl2 molecules. As is the case with 2, 

the BF4
− ions sit within the angles of the zigzag chain. The solvent molecules lie between the 

polymer chains. The bond lengths and angles around copper are similar to the others seen herein. 

The Cu…Cu distances along the chain are 11.398 Å and 11.786 Å, and all Cu…Cu…Cu angles are 

97.32°. In contrast to 2, the polymer chains in 3a and 3b do not lie neatly within planes. In both 

polymorphs, one of the pDCB ligands shows unusually large C≡N–Cu bending: 140.7(3), 

148.5(3)° in 3a and 140.32(18), 149.58(19)° in 3b. This produces a slight “figure-8” type helicity 

along the polymer chains (see Figures S12 and S14). The pairs of planes defined by the two 

pDCB rings in 3a and 3b lie at angles of 9.35 and 6.38° to one other.  
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Figure 5. Thermal ellipsoid (50%) drawing of the crystallographic repeat unit in 3a. CH2Cl2 and 

BF4
− omitted. 

 

Figure 6. Overlay of 3a (red) and 3b (blue). Cu, N, and P atoms shown as ball and stick; C atoms 

shown as wireframe. Hydrogen atoms, phenyl groups, CH2Cl2, and BF4
− are omitted. 

 

Cyanopyridine Complexes  

 Crystallization of undried oCPy complex 4 (prepared in toluene) from CH2Cl2 yielded a 

dimeric solvate structure (4a), related to 2a–2c (Figures 7 and S15). The dimer, centered about an 

inversion center, is half independent. A single crystallographically independent molecule of 

toluene is present. Thus two toluene molecules and one copper dimer are present in the triclinic 

unit cell. The toluene molecule is disordered over two non-overlapping positions. However, the 

BF4
– is ordered. Likewise, the oCPy ligand is ordered, providing a contrast to the mCPy and 

pCPy ligands in 5 and 6a (see below). The Cu atoms in the dimer are separated from one another 



 16

across the 10-membered ring by 5.494 Å, significantly shorter than those in 1a–1c due to the 

more compact ligand. The least squares planes defined by the two oCPy ligands are perfectly 

parallel and these planes are separated by 0.059 Å. The unique Cu atom lies 0.325 Å and 0.385 Å 

above the oCpy planes. The Cu–NPy distance is significantly greater than Cu–NC, as is commonly 

the case in Cu(I) complexes. Interestingly, both the N–Cu–N and P–Cu–P angles are very large: 

107.02(6)° and 130.763(19)°, respectively. The former is, no doubt, the result of the rigid 

macrocyclic ring based on the fixed angle between the cyano group and NPy in the ligand. 

 

Figure 7. Thermal ellipsoid (50%) drawing of 4a. Hydrogen atoms, BF4
−, and toluene molecules 

omitted. 

 

 The mCPy complex (5) yielded a solvent-free trimeric structure, whether crystallized 

from CHCl3 or CH2Cl2 (Figures 8, S16, and S17). The space group is trigonal R3c. The trimeric 

structure is 1/3 independent, with a single crystallographically independent Cu atom and bridging 

mCPy. Three 1/3 independent BF4
– ions (one positionally disordered) are present, each lying on a 

three-fold axis and centered along the c-axis coincident with the center of the Cu trimer. The 

mCPy ligands show disorder (see Figures S16 and S17) between cyano and pyridine bonding at 
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Cu with NPy and Ncyano′ lying in nearly identical locations. The mCPy orientation shown in Figure 

8 was preferred over the other orientation by 69:31. The two ligand planes in the disordered 

positions lie at a 24.35° angle to one another. The pyridine rings are canted slightly out of the Cu3 

ring plane (13.71°), forming a shallow bowl-like arrangement around the three-fold axis. These 

Cu3 ring planes are stacked parallel to the crystallographic c-axis with anions located vertically 

between them. The Cu…Cu distance across the triangular molecular core of a trimer is 8.607 Å. 

Ring strain in the cyclic trimer is evident in the C2–C1–N2 angle of 166.7(16)°, contrasting with 

the other Cring–C≡N angles seen herein, none of which are more than 5.5° from linearity. 

 

Figure 8. Thermal ellipsoid (50%) drawing of 5. Hydrogen atoms, minor oCPy position, and BF4
− 

omitted. 

 

 The pCPy complex (6) proved to be a polymer (see Figures 9, S18, and S19), 

crystallizing from acetone as a hemi-acetone solvate (6a) in the monoclinic space group C2/c. In 
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contrast to both polymorphs of the pDCB polymer (3), the repeat unit in 6a consisted of a single 

monomer unit: [Cu(PPh3)2(pCPy)]BF4, along with half a molecule of acetone. As was the case for 

the mCPy ligand in trimer 5, the pCPy ligand adopted two disordered positions with nearly 

overlapping NPy and Ncyano′ positions. The occupancies of the positions were slightly unequal 

(55.5:45.5). In addition, the single BF4
– ion was disordered over two positions. The two ligand 

planes created by the disordered pCPy positions lie at an angle of 22.14° with respect to one 

another. Using the least-squares plane from the major ligand plane position, the Cu atom shows a 

step behavior along the chain, lying more nearly in-plane in one direction (0.205 Å) than in the 

other (0.636 Å). The Cu atom shows nearly equidistant displacement with respect to the minor of 

the two disordered ligand planes (displacement = 0.404 and 0.444 Å in opposite directions along 

the chain). The Cu…Cu distances along the chain are 9.414 Å, and the Cu…Cu…Cu angles are 

102.45°. As was noted for the other polymers herein, the polymer chain is slightly helical. Bond 

lengths and angles in 6 are unremarkable, except for the exceptionally large P–Cu–P of 

132.34(7), the largest such value seen in this study. 

 

Figure 9. Thermal ellipsoid (50%) drawing of the crystallographic repeat unit in 6a. Hydrogen 

atoms, minor pCPy position, acetone, and BF4
− omitted. 
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3.3. Photophysics  

Solid state luminescence studies show moderate to intense response for compounds 1–6, 

as shown in Table 4, Figures 10 and 11 (298 K) and Figures S26–S31 (77 K). All samples were 

vacuum dried and were therefore solvent-free. Excitation spectra reveal that all complexes excite 

in the UV to near visible range (340–400 nm), with subsequent emission in the visible region. 

The meta complexes 2 and 5 are excited at somewhat higher energies than are complexes 1, 3, 4, 

and 6. Peak excitation values lying farther into the UV for 2 and 5 correlate to the white color of 

these complexes under visible light, in contrast to the yellow color of complexes 1, 3, 4, and 6. In 

addition the meta ligand complexes 2 and 5 show emission of varying intensities in the blue 

region (485 nm and 493 nm), while the ortho and para complexes show moderate to intense 

emission in the green region (509–546 nm). mDCB polymer complex 2 shows the largest Stokes 

shift amongst the three DCB complexes and the shortest emission wavelength amongst all 

complexes: 7,870 cm–1 and 485 nm, respectively. Interestingly, complex 5, the corresponding 

mCPy species, also exhibits the shortest emission wavelength amongst CPy species.  

Comparing the DCB complexes to their CPy analogs, it will be noted that in all cases the 

room temperature Stokes shifts are much larger for the CPy complexes. Interestingly, oDCB and 

oCPy both yield emission at a wavelength of 518 nm. Nevertheless, the stark difference in Stokes 

shift between oDCB and oCPy complexes is still seen. The meta and para ligands reveal a red 

shift as DCB ligands are replaced with CPy. While solid state quantum yields were not 

determined, emission intensity differences amongst the complexes were apparent. Replacement of 

DCB with CPy results in a drastic decrease in emission intensity for the meta and para 

complexes. Conversely, the ortho species (1 and 4) show an increase in emission intensity when 

the oDCB ligand is replaced with oCPy. As a result, complex 4 clearly shows the highest 

emission intensity of the CPy species, while 2 and 3 show the stronger emission intensities 

amongst the DCB species.  
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Figure 10. Solid state luminescence excitation spectra of 1–6 at 298 K. Emission monitored at 

max for each complex (see Table 4). 

 

 

Figure 11. Solid state luminescence emission spectra of 1–6 at 298 K. Excitation carried out at 

max for each complex (see Table 4). 

Metal-to-ligand charge transfer (MLCT) has been identified as underlying the intense 

luminescence noted in previous studies of pyridine-type diimine Cu(I) complexes [5],[18]. In 

these previous cases, the Stokes shifts have been relatively large, in the range of 9,000−11,000 

cm−1. Such shifts are suggestive of large excited state distortions. However, we know of no such 

photophysical results in the literature for cyanoaromatic Cu(I) complexes. Thus, it is of interest to 
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examine the trend moving from polymers constructed from aromatic diimines such as pyrazine 

(Pyz) or 4,4′-dipyridyl (Bpy) to those constructed from dicyanoaromatics such as pDCB: 

{[Cu(PPh3)2(Pyz)]BF4}∞ → {[Cu(PPh3)2(pCPy)]BF4}∞ (6) → {[Cu(PPh3)2(pDCB)]BF4}∞ (3) 

We previously identified Stokes shift values of 10,240 cm–1 for {[Cu(PPh3)2(Pyz)]BF4}∞ and 

12,160 cm–1 for {[Cu(PPh3)2(Bpy)]BF4}∞, although these particular polymers showed weak 

quantum efficiencies of 0.07 [5].  In the present work, the dicyanoaromatic complexes 1 and 3 

showed remarkably small Stokes shifts in the range of 5350 and 5820 cm–1, while meta complex 

2 showed a moderate value of 7870 cm–1. The larger Stokes shift and high intensity retention of 

complex 2 might indicate a resistance to quenching behavior connected to π-stacking interactions 

and ion pairing. In any case, the relatively small shifts observed for the DCB species suggest that 

the excited state distortions in the M–N≡CR complexes are more modest than those of M–

pyridine type species. Alternatively, large-shift MLCT might be of lesser importance in the cyano 

complexes, leaving metal centered (MC) d → p transitions as the dominant behavior. The larger 

Stokes shifts (>9,000 cm–1 for 4 and 5 and 8,000 cm–1 for 6) observed for the CPy species are 

consistent with the presence of pyridine-type nitrogen coordination as seen in previous studies. 

Further investigation would be required to determine to what extent these shifts are indicative of 

MLCT and/or MC d → p behavior.  

 

4. Conclusions 

Ternary mixtures of [Cu(NCMe)4]BF4, 2 PPh3 and o-, m-, or p-DCB, or o-, m-, or p-CPy undergo 

self-assembly reactions to form oligomeric complexes [Cun(PPh3)2n(DCB/CPy)n](BF4)n. The 

oligomer number (n) value is 2 (dimer) for oDCB and oCPy, 3 (trimer) for mCPy, and ∞ 

(polymer) for mDCB, pDCB, and pCPy. While solvent inclusion structures are seen for pDCB (2 

polymorphs with CH2Cl2), oCPy (toluene), and pCPy (acetone), the oDCB dimer complex is 

particularly apt to form solvates. Complexes of the oDCB dimer with ½ CH2Cl2, 1 CH2Cl2, 2 

CHCl3 and 1 H2O, and 2 THF molecules per dimer have been characterized. Dimer complexes of 
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oDCB exhibit a degree of structural flexibility in the central macrocyclic ring. Complexes of 

mCPy and pCPy show orientational disorder in the ligand. Polymeric complexes show chain 

helicity. All complexes are photoluminescent, undergoing excitation in the near UV and emitting 

in the blue (meta complexes) or green regions. Relatively small Stokes shifts for dicyanoaromatic 

complexes suggests that such ligands experience less excited state distortion than do pyridine, or 

mixed cyano/pyridine ligands in copper(I) complexes. 
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Table 1.  Crystallization results for compound 1 

solventa CH2Cl2 CHCl3 THF acetone 

major product 1a 1a 1e 1a 

minor product(s) 1b, 1c 1d 1a none 

a30 mM solution with liquid diffusion of excess ethyl ether 
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Table 2.  Crystal and Structure Refinement Data. 

complex 1a 1b 1c 

CCDC deposit no. 1421639 1421640 1421641 

color and habit yellow prism yellow prism yellow block 

size, mm 0.46  0.28  0.07 0.26  0.21  0.12 0.29  0.23  0.18 

formula C88H68B2Cu2F8N4P4 C88.5H69B2ClCu2F8N4P4 C89H70B2Cl2Cu2F8N4P4 

formula weight 1606.04 1648.50 1690.97 

space group P21/c (#14) P21/c (#14) P1 (#2) 

a, Å 10.2544(4) 11.6763(2) 12.3208(2) 

b, Å 21.8677(9) 41.8821(8) 12.8799(2) 

c, Å 17.5324(7) 17.3564(3) 14.1028(2) 

, deg 90 90 110.3800(10) 

, deg 100.6235(15) 106.9395(8) 96.3860(10) 

, deg 90 90 104.2460(10) 

volume, Å3 3864.1(3) 8119.5(3) 1985.04(5) 

Z 2 4 1 

calc, g cm3 1.380 1.349 1.415 

F000 1648 3380 866 

(Cu K), mm1 2.028 2.240 2.607 

temperature, K 100 100 100 

residuals:a R; Rw 0.0402; 0.0992 0.0439; 0.1099 0.0371; 0.0970 

goodness of fit 1.079 1.101 1.045 

Flack − − − 

aR = R1 = ||Fo|  |Fc||/|Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data.  
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Table 2.  Cont’d. 

complex 1d 1e 2 

CCDC deposit no. 1421642 1421643 1421644 

color and habit colorless block colorless block colorless prism 

size, mm 0.29  0.23  0.23 0.41  0.34  0.09 0.50  0.15  0.14 

formula C45H36BCl2CuF4N2P2 C96H84B2Cu2F8N4OP4 C44H34BCuF4N2P2 

formula weight 1862.79 1750.25 803.02 

space group P1 (#2) P1 (#2) P212121 (#19) 

a, Å 12.6821(2) 12.2640(2) 14.7185(3) 

b, Å 14.6601(2) 12.8363(2) 15.7165(4) 

c, Å 23.5991(4) 14.4960(2) 16.5877(4) 

, deg 96.7010(10) 71.3510(10) 90 

, deg 96.2570(10) 89.6950(10) 90 

, deg 98.3950(10) 78.9790(10) 90 

volume, Å3 4275.29(12) 2118.51(6) 3837.12(16) 

Z 2 1 4 

calc, g cm3 1.447 1.372 1.390 

F000 1900 904 1648 

(Cu K), mm1 3.607 1.912 2.042 

temperature, K 100 100 100 

residuals:a R; Rw 0.0397; 0.1077 0.0367; 0.0989 0.0199; 0.0515 

goodness of fit 1.026 1.018 1.048 

Flack − − −0.005(4) 

aR = R1 = ||Fo|  |Fc||/|Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data.  
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Table 2.  Cont’d. 

complex 3a 3b 4a 

CCDC deposit no. 1421645 1421646 1421647 

color and habit yellow prism yellow block yellow block 

size, mm 0.29  0.21  0.12 0.50  0.46  0.32 0.36  0.33  0.21 

formula C45H36BCl2CuF4N2P2 C45H36BCl2CuF4N2P2 C98H84B2Cu2F8N4P4 

formula weight 887.95 887.95 1742.27 

space group P21/c (#14) P1 (#2) P1 (#2) 

a, Å 12.3905(3) 12.5424(3) 12.2522(2) 

b, Å 49.5897(12) 13.7376(3) 12.9592(2) 

c, Å 13.7956(3) 25.7877(6) 15.3617(2) 

, deg 90 104.8960(10) 72.5680(10) 

, deg 96.8549(14) 96.9140(10) 84.6590(10) 

, deg 90 97.4130(10) 64.7630(10) 

volume, Å3 8416.0(3) 4203.06(17) 2103.28(6) 

Z 8 4 1 

calc, g cm3 1.402 1.403 1.376 

F000 3632 1816 900 

(Cu K), mm1 3.057 3.060 1.906 

temperature, K 100 100 100 

residuals:a R; Rw 0.0600; 0.1452 0.0401; 0.0969 0.0334; 0.0870 

goodness of fit 1.098 1.089 1.055 

Flack − − − 

aR = R1 = ||Fo|  |Fc||/|Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data.  
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Table 2.  Cont’d. 

complex 5 6a

CCDC deposit no. 1421648 1421649 

color and habit colorless prism yellow block 

size, mm 0.49  0.31  0.11 0.29  0.26  0.20 

formula C126H102B3Cu3F12N6P6 C43.5H37BCl2CuF4N2O0.5P2 

formula weight 2337.00 808.04 

space group R3c (#161) C2/c (#15) 

a, Å 23.0603(6) 28.2785(6) 

b, Å 23.0603(6) 14.6785(3) 

c, Å 36.0481(10) 19.8536(4) 

, deg 90 90 

, deg 90 110.2040(10) 

, deg 120 90 

volume, Å3 16601.3(10) 7733.9(3) 

Z 6 8 

calc, g cm3 1.403 1.388 

F000 7200 3328 

(Cu K), mm1 2.104 2.037 

temperature, K 100 100 

residuals:a R; Rw 0.0558; 0.1417 0.0915; 0.2221 

goodness of fit 1.052 1.305 

Flack 0.80(5) − 

aR = R1 = ||Fo|  |Fc||/|Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data.  
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Table 3. Selected Bond Distances (Å) and Angles (deg). 

 1a 1b 1c 

Cu–N 2.003(2), 2.0472(19) 2.003(3), 2.100(3), 

2.022(3), 2.051(3)            

2.0443(18), 2.0810(18) 

Cu–P 2.2547(6), 2.2717(6) 2.2527(8), 2.2638(8), 

2.2453(9), 2.2685(9) 

2.2685(5), 2.2827(6) 

Cu…Cu 6.276 6.162 6.486 

N–Cu–N 105.01(8) 103.09(11), 103.82(11) 95.46(7) 

P–Cu–P 120.94(2) 122.38(3), 126.25(3) 123.86(2) 

N–Cu–P 97.71(5), 104.66(6), 

108.27(6), 117.47(6) 

107.16(8), 109.30(8), 

116.05(8), 96.38(8), 

115.60(8), 103.04(8), 

101.23(8), 104.51(8) 

102.95(5), 119.48(5), 

114.30(5), 97.76(5) 

Cu–N≡C 159.54(17), 168.42(18) 164.6(3), 153.5(3), 

151.9(3), 166.7(3) 

160.14(19), 149.60(17) 

 

aNPy 
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 Table 3. Contd. 

 1d 1e 2 

Cu–N 2.014(2), 2.020(2), 

2.059(2), 2.074(2),  

2.0166(16), 2.0712(16) 2.0185(18), 2.037(2) 

Cu–P 2.2628(6), 2.2631(6), 

2.2663(6), 2.2832(6) 

2.2610(5), 2.2735(5) 2.2598(6), 2.2653(6) 

Cu…Cu 6.566 6.452 10.523 

N–Cu–N 100.61(8), 101.69(8) 104.92(6) 100.32(8) 

P–Cu–P 117.27(2), 124.93(2) 126.841(19) 128.50(2) 

N–Cu–P 96.72(6), 100.97(6), 

106.34(6), 107.99(6), 

109.33(6), 110.55(6), 

115.52(6), 115.61(6) 

99.16(5), 100.52(5), 

106.12(5), 116.56(5) 

103.24(6), 104.16(6), 

104.46(6), 112.36(6) 

Cu–N≡C 158.47(19), 162.20(19), 

171.5(2), 172.7(2) 

164.43(16), 167.46(16) 161.67(18), 169.49(19) 

aNPy 
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Table 3. Contd. 

 3a 3b 4a 

Cu–N 2.007(3), 2.032(3), 

2.087(3), 2.098(3)           

2.0104(18), 2.0277(19), 

2.0793(19), 2.0810(19) 

2.0184(15), 2.1438(15)a 

Cu–P 2.2519(10), 2.2639(10), 

2.2656(10), 2.2880(10) 

2.2510(6), 2.2602(6), 

2.2698(6), 2.2918(6) 

2.2724(5), 2.2779(5) 

Cu…Cu 11.398, 11.785 11.405, 11.801 5.494 

N–Cu–N 95.89(13), 95.91(13) 95.90(8), 97.29(8) 107.02(6) 

P–Cu–P 123.92(4), 125.23(4) 124.37(2), 125.45(2) 130.763(19) 

N–Cu–P 98.74(9), 101.98(10), 

103.31(10), 104.61(10), 

107.09(10), 112.02(10), 

113.90(9), 121.43(10) 

99.47(5), 101.66(6), 

102.60(6), 105.30(6), 

105.98(6), 112.04(6),  

113.07(6), 120.85(6) 

100.40(4), 103.72(5), 

105.15(5), 108.03(4) 

Cu–N≡C 140.7(3), 148.5(3), 

161.9(3), 169.1(3) 

140.32(18), 149.58(19), 

162.11(19), 169.22(19) 

170.04(15) 

aNPy 
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Table 3. Contd. 

 5 6a 

Cu–N 1.89(2), 1.933(9), 

2.221(9)a, 2.39(2)a 

1.98(4), 2.05(2), 

2.14(3)a, 2.15(2)a 

Cu–P 2.276(2), 2.281(2) 2.2641(18), 2.2800(18) 

Cu…Cu 8.607 9.414 

N–Cu–N 94.9(8), 96.9(4) 99.4(9), 102.7(13) 

P–Cu–P 119.05(6) 132.34(7) 

N–Cu–P 96.3(5), 98.6(2), 

109.9(5), 112.8(3), 

113.0(3), 113.3(2), 

115.2(6), 115.9(7) 

96.2(15), 96.9(11), 

97.5(6), 101.0(7), 

103.9(7), 110.6(5), 

116.0(11), 117.0(15) 

Cu–N≡C 168.5(11) 165(4), 173.5(16) 

aNPy 
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Table 4: Solid state luminescence data for complexes 1–6. 

Complex Temp., K λmax, Excitation (nm) λmax, Emission (nm) Stokes Shift (cm-1) 

1  298 398 518    5,820 

   77 398 518    5,820 

2  298 351 485    7,870 

   77 346 488    8,410 

3  298 400 509    5,350 

   77 380 512    6,780 

4  298 352 518    9,100 

   77 354 564  10,500 

5  298 341 493    9,040 

   77 355 509    8,520 

6  298 380 546    8,000 

   77 356 559  10,200 
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