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INTRODUCTION

Estuarine sediments support microbial communi-
ties that provide important ecosystem services rang-
ing from the decomposition of organic material to the
recycling and removal of nutrients. The microbial
communities that provide these ecosystem services
can vary with environmental conditions such as tem-
perature, nutrient availability, and salinity (Bouvier &
del Giorgio 2002, Bernhard et al. 2007, Baron et al.

2013). However, the environmental conditions in
estuarine ecosystems may undergo substantial
changes in the future resulting from continued urban
development and global climate change. An exem-
plar of this is the dredging of estuarine channels and
the addition of canals to accommodate shipping traf-
fic, which may lead to seawater intrusion into the
freshwater portions of estuaries (Newport 1977,
Hackney & Yelverton 1990, Zhang et al. 2012). Pre-
dicted sea level rise over the next century (IPCC
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2007) may further promote seawater intrusion, lead-
ing to greater shifts in the water chemistry of affected
areas that may have ecological consequences.

The removal of nutrients from estuarine sediments
through microbially mediated processes can have im-
portant implications for the health of estuaries (Pinck-
ney et al. 2001, Christian et al. 2010). Primary produc-
tion in estuaries is typically limited by the availability
of nitrogen (N; Ryther & Dunstan 1971, Howarth &
Marino 2006). Therefore, N removal processes can
help to alleviate the effects of eutrophi cation caused
by anthropogenic nutrient loading (Anderson et al.
2002). The processes of denitrification and anaerobic
ammonium oxidation (anammox) convert reactive
forms of N to di-nitrogen (N2) gas in estuaries. Denitri-
fication produces N2 gas from nitrate (NO3

–), while
anammox combines ammonium (NH4

+) with nitrite
(NO2

–) to produce N2. The N2 gas produced by these
processes is freely exported from black water estuaries
because most organisms cannot use it. Although N
fixation, which converts N2 gas to NH4

+, can be impor-
tant in some estuarine systems with ammonium-satu-
rated sediments (Gardner et al. 2006), fixation rates
are likely low in ammonium-rich, low-light sediments
such as those found in many estuaries, allowing for
the export of N2 gas (Ohmori & Hat tori 1974, Cejudo
et al. 1984, Boynton & Kemp 2008).

Denitrification and anammox can be either uncou-
pled (direct) or coupled to N transformation pro-
cesses such as nitrification or dissimilatory nitrate
reduction to ammonium (DNRA). Direct N removal
processes produce N2 from N in the form in which it
enters the estuary, while coupled removal processes
consume the products of microbial N transformation
processes (Jenkins & Kemp 1984). For example, deni-
trification and anammox can utilize NO3

– and NO2
–

produced by nitrification. Anammox can also utilize
NH4

+ and NO2
– produced by DNRA. The strength of

coupling between N removal and transformation
processes relative to direct removal processes can
have important implications for N residence time and
the N removal capacity of estuaries (Thamdrup &
Dalsgaard 2002, Seitzinger et al. 2006, Santoro 2010).

Alterations in the coupling strength of N removal
and transformation processes may exacerbate eu -
trophication. Seawater intrusion can facilitate de -
sorption of NH4

+ in estuarine sediments as a result of
cation exchange, making it available to planktonic
algae (Gardner et al. 1991, Seitzinger et al. 1991,
Hou et al. 2003, Giblin et al. 2010, Weston et al.
2010). Further, because denitrification is the domi-
nant N removal pathway, a strong coupling between
nitrification and denitrification is necessary to re -

move the NH4
+ before it can be assimilated into algal

biomass. Salinity increase and other environmental
changes derived from seawater intrusion can also
repress the rates of N removal and transformation
processes (Dong et al. 2000). For example, nitrifica-
tion rates typically decrease at elevated salinities due
to sulfide inhibition (Joye & Hollibaugh 1995, Rys-
gaard et al. 1999), while DNRA activity tends to
increase along a salinity gradient (Giblin et al. 2010).
Under elevated salinity conditions, estuaries could
experience weakened coupling of microbial N pro-
cesses that may substantially hinder the N removal
services that estuaries provide (Craft et al. 2009).

Ecosystem network analysis (ENA) provides a
means to evaluate the strength of coupling between
N removal and transformation processes, along with
the potential effects of environmental changes on
these relationships (Christian et al. 2011, Hines et al.
2012, Small et al. 2014). Ecosystem networks provide
a whole-ecosystem perspective in which thermo -
dynamically conserved material and material fluxes
comprise network nodes and edges, respectively. ENA
is a set of analyses derived from economic input−
output analyses that are applied to mass- balanced
network models to evaluate the flow of energy and
matter through an ecosystem (Hannon 1973, Patten et
al. 1976, Fath & Patten 1999, Ulanowicz 2004). Envi-
ron analysis, a form of flow analysis in ENA, is used to
partition the flow of energy-matter in an ecosystem
network to track material moving through the ecosys-
tem (Patten 1978, 1982, Fath & Patten 1999). Compar-
isons among different para meterizations of ecosystem
networks using ENA tools can provide insight into
how differences in network organization can affect
the system behavior. For example, Christian et al.
(2005) compared ecological trophic networks of dif-
ferent estuaries at different seasons to draw conclu-
sions about the effects of stress on the system. We
 applied environ analysis in ENA to estimate the
 coupling of N transformation and removal processes
in N cycling networks (Hines et al. 2012).

To determine the potential steady-state effect of
seawater intrusion on the sedimentary N cycle, we
compared 2 N cycling networks parameterized at
oligohaline and polyhaline sites, respectively, in the
Cape Fear River Estuary (CFRE), North Carolina,
USA. We used environ analysis to evaluate the
strengths of the coupling of nitrification to denitrifi-
cation as well as of nitrification and DNRA to anam-
mox at each site. Because of the negative effects of
seawater on the process of nitrification, we hypo -
thesized that nitrification coupled to the removal
 processes of denitrification and anammox would be
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lower in the polyhaline network. However, we hypo -
thesized that DNRA coupled to anammox would be
higher in the polyhaline network due to the resili-
ence of DNRA to seawater conditions. To evaluate
the potential effect of seawater intrusion on the
microbial N cycle, we compared the model results
between the oligohaline and polyhaline sites and
used a space-for-time substitution to make predic-
tions (Pickett 1989). This approach assumes that, at
steady-state, the oligohaline site will resemble the
polyhaline site after the seawater has replaced the
freshwater. Further, we evaluated the robustness of
the model results to parameter uncertainty. Thus, this
study used network modeling and analyses to (1)
synthesize disparate field measurements to estimate
the direct and coupled N removal from denitrification
and anammox, (2) test hypotheses about the effect of
seawater intrusion on process coupling, and (3) eval-
uate the N removal capacity of estuarine sediments
under different salinity conditions. Insight into differ-

ences in how N moves through networks at oligo -
haline and polyhaline sites was used to predict
potential changes in the N cycling of the estuary
resulting from seawater intrusion, such as that pre-
dicted by the IPCC climate change scenarios (IPCC
2007), where it is expected that the polyhaline area of
the estuary will increase at the expense of the oligo-
haline area and all other factors will remain equal.

MATERIALS AND METHODS

Network construction

We compared 2 N cycling networks for the CFRE,
one at an oligohaline site (Oligo) and one at a poly -
haline site (Poly; Fig. 1). The Oligo network was con-
structed by Hines et al. (2012) and models a section of
river called Horseshoe Bend (34° 14’ 37.464” N,
77° 58’ 11.280”W), which typically experiences salin-
ities ranging from 0.1 to 5.0, with occasional salinities
as high as 8 (Mallin et al. 2009, 2010). We constructed
a second N cycling network for comparison at the
Poly site, a section of river at channel marker 35
(34° 2’ 2.688”N, 77° 56’ 21.948”W) with a mean salin-
ity consistently above 10 (Mallin et al. 2009, 2010).
The modeled sites were similar in depth, tidal range,
sediment grain size, dissolved oxygen, total sus-
pended solids, and percent organic matter (Table 1).

Both networks had identical topologies to facilitate
comparison (e.g. Baird et al. 1991), but the parameter
values representing the magnitudes of N storages and
fluxes for each network varied according to differ-
ences in the N cycle observed at each site. The means
of direct measurements of N storages and transforma-
tions at each site were used to parameterize the net-
works whenever possible; values of fluxes reported in
the literature for similar sites were used when direct
measurements were not available (Table 2). The mod-
els were parameterized to represent the average con-
ditions at the site during a single day in the summer
months (June−August, 2008 and 2009).

Each network represented a volume of adjacent
1 cm3 segments of the water column and sediment at
the water−sediment interface at the Oligo and Poly
sites, respectively. Like past network analyses of es-
tuarine ecosystems (Baird & Heymans 1996, Christian
& Thomas 2003), the modeled volumes were assumed
to be at a steady-state to meet the requirements of
ENA mathematics. As a prerequisite to conducting
ENA, each network should encompass all aspects of
the ecosystem of interest through re presentation as
storages or fluxes (Fath et al. 2007). The small scale of
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Fig. 1. Cape Fear River Estuary, North Carolina, USA. Horse -
shoe Bend (oligohaline, Oligo) and Marker 35 (poly haline,
Poly) study sites marked by arrows. The city of Wilmington 

is shown by a black circle
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these models enabled the networks to focus on the
microbial processes involved in N cycling by consid-
ering the N contributions of macroorganisms and
large detritus as boundary inputs and outputs to the
modeled volume (Hines et al. 2012). Specifically, the
N contributions of macro organisms and large detritus
to the networks were through dissolved N inputs to
the modeled volume, and were accounted for in di -
rect measurements of N in puts to each site (Table 2).
The small-scale perspective of these models allows
them to meet the requirements of ENA analysis (Fath
et al. 2007) while capturing the interactions between
microbial processes, and thus they are useful for ob-
serving changes in these interactions.

In each network, N was divided into pools of ammo-
nium (NH4), nitrate and nitrite (NOX), the N stored
in microbial biomass (M), and a combination of dis-
solved and particulate organic N (ON). Each N pool
was assigned a node in the network and pools were
repeated in the water column (W-) and sediment (S-),
yielding a total of 8 network nodes (Fig. 2). N2 gas
was considered as part of the external environ -
ment, and N removal processes were represented as
boundary fluxes from nodes to the environment. N
fixation was not explicitly represented in this model
due to high levels of environmental NH4

+ (Hines et al.
2012), but is included in the boundary inputs to NH4

compartments. N transformation processes were mea -
sured in units of nmol N cm–3 d–1 and were used to
guide the construction of network links. A detailed
description of the storages and internal fluxes in the
networks as well as a complete justification for each
element of the network design can be found in Hines

et al. (2012). The values used for each network flux
and storage, and the sources from which these values
were obtained, can be found in Table 2.

ENA

ENA is applied to steady-state ecosystem networks
to characterize the flow of energy-matter through the
system (Patten et al. 1976, Ulanowicz 1986), and con-
sists of several different mathematical analyses in -
cluding flow and environ analyses. Here, we provide
a brief conceptual description of the ENA algorithms
used in this work; detailed reviews of ENA can be
found in Fath & Patten (1999), Ulanowicz (2004), and
Schramski et al. (2011). This study applied ENA to the
Oligo and Poly N networks using the enaR package
for R (Lau et al. 2012, Borrett & Lau 2014). Complete
models were formatted for each site ac cor ding to the
Scientific Committee on Ocean Re search standards
(SCOR files, Ulanowicz & Kay 1991, see Supplement
at www.int-res.com/articles/suppl/ m524 p137_supp.
pdf). The difference between the input and output
fluxes of each network node were less the 5% follow-
ing targeted mass-balancing, which modified only
the least certain parameters during the model con-
struction (Hines et al. 2012). Thus, the networks were
considered to be at steady-state. The results of ENA
were used to estimate the coupling of microbial
 processes at the Oligo and Poly sites, and were com-
pared to make predictions about the potential effects
of seawater intrusion on the microbial N cycle in estu-
arine sediments. The Supplement contains detailed
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                                                           Oligohaline                              Polyhaline                                    Source

Site characteristics
Depth (m)                                           11                                              15                                                  M. McIver pers. comm.
Tidal range (m)                                  1.2                                             1.5                                                 M. McIver pers. comm.
Grain size (µm)                                  180.1 ± 264.9                            314.7 ± 229.9                                Hirsch (2010)
Salinity (psu)                                      4.6 ± 2.8                                    20.5 ± 4.4                                      Mallin et al. (2009, 2010)
Water DO (mg l−1)                             4.9 ± 0.8                                    6.7 ± 0.4                                        Mallin et al. (2009, 2010)
Total suspended solids (mg l−1)        12.5 ± 3.7                                  10.1 ± 2.4                                      Mallin et al. (2009, 2010)
Sediment% organic                           5.7 ± 7.4                                    3.0 ± 3.4                                        Hirsch (2010)

Network characteristics
Total N input (nmol N cm–3 d–1)       3802.0 (3045.5−4577.5)           3068.4 (2557.5−3574.0)               Present study
NH4

+ input (nmol N cm–3 d–1)           1370.0 (739.0−1947.3)             1047.6 (581.3−1511.6)                 Present study
NOx input (nmol N cm–3 d–1)            1193.0 (881.3−1504.3)             726.6 (523.5−926.1)                     Present study
TST (nmol N cm–3 d–1)                      7088.7 (5852.3−8377.1)           5322.3 (4631.9−6028.8)               Present study
FCI                                                      0.20 (0.12−0.28)                       0.17 (0.13−0.21)                           Present study
APL                                                     1.9 (1.6−2.2)                             1.7 (1.6−2.0)                                 Present study

Table 1. Characteristics of the oligohaline and polyhaline sites and network models. Standard deviation indicated by ±, while
parentheses indicate 95% confidence intervals from network models. DO: dissolved oxygen; TST: total system throughflow; 

FCI: Finn’s Cycling Index; APL: average path length

http://www.int-res.com/articles/suppl/m524p137_supp.pdf
http://www.int-res.com/articles/suppl/m524p137_supp.pdf
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calculations to replicate the results of all of the ENA
subroutines used in this work.

Flow analysis

Flow analysis is used to determine how much
material travels across the different pathways and

through the different nodes in an ecosystem network
(Finn 1980, Hannon 1985). Several network-level
indicators are used to characterize the movement of
energy or matter through an ecosystem. This study
examined 3 of these statistics to compare the move-
ment of N through the Oligo and Poly networks: total
system throughflow (TST), Finn’s Cycling Index
(FCI), and average path length (APL). TST, which is
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Flux                                  Oligo              Poly             Source

Boundary → W-NH4       130.0               72.5             Direct measurements (Ensign et al. 2004, Hirsch 2010)
Boundary → W-NOX      1020.0             381.1           Direct measurements (Ensign et al. 2004, Hirsch 2010)
Boundary → W-M           3.9 × 10–5        3.9 × 10–5    Whitman et al. (1998)
Boundary → W-ON        1160.0             1255.1         Direct measurements (Ensign et al. 2004, Mallin et al. 2010)
Boundary → S-NH4        1238.2             975.1           Mass-balance
Boundary → S-NOX        173.2               345.5           Direct measurments (Ensign et al. 2004, Hirsch 2010)
Boundary → S-ON         79.0                 39.1             Jordan et al. (1983)
W-NH4 → boundary       276.0               132.4           Direct measurements (Ensign et al. 2004, Hirsch 2010)
W-NOX → boundary       1008.6             380.9           Direct measurements (Ensign et al. 2004, Hirsch 2010)
W-M → boundary           3.9 × 10–5        3.9 × 10–5    Whitman et al. (1998)
W-ON → boundary        1159.6             1246.8         Direct measurements (Ensign et al. 2004, Mallin et al. 2010)
S-NH4 → boundary        1080.0             1006.9         Tobias et al. (2001)
S-NOX → boundary        6.0                   127.3           Tobias et al. (2001)
S-ON → boundary          104.1               32.7             Jordan et al. (1983)
S-NH4 anammox             2.5                   1.8               Direct measurements (Hirsch 2010)
S-NOX anammox            2.5                   1.8               Direct measurements (Hirsch 2010)
S-NOX denitrification     172.0               136.7           Direct measurements (Hirsch 2010)
S-NOX burial                   0.3                   7.8 × 10–3    Estimation from sea level rise
S-M burial                       3.9 × 10–7        3.9 × 10–7    Estimation from sea level rise
S-ON burial                     3.9                   2.0               Estimation from sea level rise
W-NH4 → W-NOX           1.7                   0.7               Kemp et al. (1990)a, Berounsky & Nixon (1993)a, Whitman et al. (1998)b

W-NH4 → W-M               1.9                   1.7               Veuger et al. (2004)
W-NH4 → S-NH4             5.5                   1.5               Cowan et al. (1996)
W-NOX → W-M              9.8                   0.5               Veuger et al. (2004)
W-NOX → S-NOX           14.1                 7.7               Cowan et al. (1996)
W-M → W-NH4               3.1                   3.1               Mass-balance
W-M → W-ON                16.0                 0.5               Mass-balance
W-M → S-M                    119.2               119.2           Cowan et al. (1996)
W-ON → W-NH4             5.2                   5.4               Pujo-Pay et al. (1997)
W-ON → W-M                7.4                   1.4               Veuger et al. (2004)
W-ON → S-ON               853.9               425.8           Estimation from sea level rise
S-NH4 → S-NOX             144.0               77.5             Hansen et al. (1981)b, Henriksen & Kemp (1988)a, Kemp et al. (1990)a

S-NH4 → S-M                 212.8               186.2           Whitman et al. (1998)b, Veuger et al. (2004)a

S-NH4 → W-NH4             136.5               55.3             Mass-balance
S-NOX → S-NH4             39.0                 104.4           Direct measurements (Graham 2008)
S-NOX → S-M                 109.0               53.2             Whitman et al. (1998)b, Veuger et al. (2004)a

S-NOX → W-NOX           2.1                   7.3               Cowan et al. (1996)
S-M → S-NH4                  146.7               146.7           Mass-balance
S-M → S-ON                   257.1               253.2           Mass-balance
S-M → W-M                    119.2               119.2           Cowan et al. (1996)
S-ON → S-NH4               150.0               100.0           Blackburn (1988)
S-ON → S-M                   82.0                 159.6           Whitman et al. (1998)b, Veuger et al. (2004)a

S-ON → W-ON               850.0               423.8           Grant et al. (1997)
aused for Oligo network only; bused for Poly network only

Table 2. Fluxes, parameter values, and sources for the oligohaline (Oligo) and polyhaline (Poly) networks. Boundary flows re -
present network inputs and outputs, while internal fluxes represent flows from one compartment to another. Parameter values
are in nmol N cm–3 d–1. Values for the Oligo model were previously presented in Hines et al. (2012). In each network, N was
divided into pools of ammonium (NH4), nitrate and nitrite (NOX), the N stored in microbial biomass (M), and a combination of
dissolved and particulate organic N (ON). Each N pool was assigned a node in the network and pools were repeated in the 

water column (W-) and sediment (S-)
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the sum of all activity across all nodes (Fath & Patten
1999), was used to quantify the amount of flow in
each network. FCI, which reports the amount of
material in a specific network node that leaves that
node and returns to it at least once before exiting the

network (Finn 1980), was calculated to
gain insight into differences in N
cycling at each site. APL was used to
compare the residence time of N in
each network. It is the average num-
ber of paths material crossed before
exiting each network (Fath & Patten
1999), and is akin to the multiplier
effect in economics. We used flow
analysis statistics to obtain a broad
overview of the differences between
the Oligo and Poly networks. A
detailed description of flow analysis
mathematics can be found in the liter-
ature (Patten et al. 1976, Borrett et al.
2010, Schramski et al. 2011).

Environ analysis

Environ analysis is a subset of flow
analysis that partitions the quantified
flows in a network to show where
material comes from before it exits the
network (time-backward, input orien-
tation) or where material goes after it
enters the network (time- forward, out-
put orientation, Patten 1978, 1981,
1982). The environs produced by env-
iron analysis are non-overlapping
subnetworks that can be summed to
recover the original network (Patten
1978). For this analysis, we used real-
ized input environs, which are scaled
by the observed system boundary
flows (Whipple et al. 2007, Borrett &
Freeze 2011). These techniques were
applied to each of the Oligo and Poly
networks to facilitate a comparison of
process coupling at each site (see Sup-
plement).

Coupling quantification

The realized input environs gener-
ated by environ analysis were used to
estimate the coupling of (1) nitrification

to denitrification, (2) nitrification to anammox, and (3)
DNRA to anammox. Coupled N2 production was de-
fined as N transfer across an internal network
pathway immediately prior to export from the network
across an N2 production pathway, while N crossing an
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Fig. 2. Network models constructed at the (A) oligohaline and (B) polyhaline
sites. Network structure was identical between the 2 sites, while flux magni-
tudes varied. Arrow widths approximate relative flux magnitudes within each
network. Labeled loss arrows represent anammox removal (a), denitrification
removal (b), nitrate and nitrite burial (c), microbial burial (d), and organic N
burial (e). Italicized numbers in the bottom left of node boxes represent stand-
ing stock concentrations, while underlined numbers in the top left of node 

boxes show the node label number. See Table 2 for abbreviations
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N2 production pathway without crossing any internal
network pathways was considered to be direct N2

production. Fig. 3 shows an example of how the deni-
trification environs for each network were used to cal-
culate nitrification coupled to denitrification. N in the
S-NOX node was assumed to have a probability of ex-
iting the network through the denitrification pathway
(pd) equal to the proportion of N involved in the deni-
trification pathway relative to all N exiting the node in
the realized denitrification environ so that

(1)

where A is the magnitude of the denitrification flux,
B is the uptake of NOX by microbes in the sediments,
C is the movement of NOX from the sediments to the
water column, and D is the conversion of NO3

– and
NO2

– to NH4
+ in the sediments through DNRA

(Fig. 3). The amount of N involved in nitrification
coupled to denitrification (Couplednd) was calculated
by multiplying the amount of N crossing the nitrifica-
tion pathway in the denitrification environ (X) by the
probability of N in the S-NOX node exiting the net-
work through denitrification (pd) so that

(2)

The strength of the coupling of nitrification to deni-
trification (CSnd) was obtained by dividing the cou-
pled nitrification to denitrification by the total deni-
trification removal, resulting in

(3)

The strength of the coupling (CSnd) was then multi-
plied by 100 to determine the percentage of nitrifica-

tion coupled to denitrification (%CSnd). Similar calcu-
lations were used for the S-NH4 and S-NOX nodes in
the realized anammox environs to determine nitrifi-
cation coupled to anammox and DNRA coupled to
anammox.

Nitrogen removal efficiency

The magnitudes of microbial N removal processes
with respect to the N inputs at each site revealed the
relative ability of the microbial communities to utilize
the available resources. Coupled and direct N re -
moval processes at the Oligo and Poly sites were
scaled to the inputs of each network by dividing each
removal process (Rp) by the sum of the appropriate
input vector (z) such that the relative process magni-

tudes were , where n is the number of nodes in

the network.

Model uncertainty

The model quantifications of coupling and N re -
moval efficiency at the Oligo and Poly sites are based
on calculations that rely on the network parameter -
ization at each location. However, the data used to
assign flow magnitudes to individual fluxes were
averaged across multiple summer seasons and,
therefore, contained uncertainty that differed among
each flux. Further, some model parameters were
obtained from literature measurements in similar
estuaries or by mass balance, adding to the uncer-
tainty in the parameterization of each network.
These uncertainties, which are common in models
(Oreskes et al. 1994), imply that a range of plausible
networks and associated coupling quantifications
exists for each of the Oligo and Poly sites (e.g. Borrett
& Osidele 2007).

To evaluate the robustness of our model conclu-
sions to these parameter uncertainties, we performed
an uncertainty analysis (Saltelli et al. 2008). This is a
Monte Carlo analysis that determines the variation in
a model output given the uncertainties in the model
input. We used a linear inverse modeling approach
based on the techniques presented by Kones et al.
(2009) to create 10 000 plausible model parameter -
izations for each site. We used the limSolve package
for R (Soetaert et al. 2009) to execute the analysis.
Plausible models were considered to (1) be at steady
state and (2) contain parameters with values within
the range of uncertainty for each network flux.
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The accuracy and validity of model results are
directly related to the quality of the information
used to develop the model. As an initial tool to
assess quality in a network model, Hines et al.
(2012) classified the information used to parameter-
ize the fluxes in the Oligo model using an informa-
tion-ranking rubric developed by Costanza (1992).
According to this rubric, high quality information
comes from direct measurement, medium quality

data comes from calculations based on direct meas-
urement, and low quality data comes from plausible
estimation. We applied the Costanza (1992) rubric
in a similar manner to qualify the quality of informa-
tion used in the construction of the Poly model
(Table 3). These quality classifications were used to
inform the parameter restrictions applied to the
uncertainty analysis, which used a stratified sam-
pling technique.
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Flux                                    Quality                                 Oligo                                                                        Poly
                                                                  % Dist.         Mean                  SD                       % Dist.         Mean                  SD

Boundary → W-NH4              H                   40              129.8                 29.8                          41               72.7                  16.8
Boundary → W-NOX              H                   32             1020.3               185.2                         37              379.1                 80.8
Boundary → W-ON               H                   47             1158.1               210.9                         28             1254.9               114.8
Boundary → S-NOX               H                   16              172.9                 15.8                          43              345.5                 55.0
W-NH4 → boundary              H                   38              276.2                 60.5                          17              131.7                 12.4
W-NOX → boundary              H                   37             1010.3               187.0                         38              379.0                 80.8
W-ON → boundary                H                   28             1158.5               186.4                         11             1246.9                77.2
S-NH4 anammox                    H                   47                2.5                    0.6                           36                1.8                    0.4
S-NOX anammox                   H                   47                2.5                    0.6                           36                1.8                    0.4
S-NOX denitrification            H                    9               171.2                  9.5                           42              136.6                 31.8
S-NOX → S-NH4                    H                   23               38.9                   5.1                           19              104.4                 11.4
Boundary → W-M                  M                   47          3.9 × 10–5         1.1 × 10–5                     47          4.0 × 10–5         1.1 × 10–5

Boundary → S-ON                M                   47               78.9                  21.3                          47               39.1                   9.5
W-M → boundary                  M                   47          3.0 × 10–5         1.1 × 10–5                     47          4.0 × 10–5         1.1 × 10–5

S-NH4 → boundary               M                   47             1081.1               266.1                         47             1013.9               251.8
S-NOX → boundary               M                   47                6.0                    1.6                           47              127.1                 34.6
S-ON → boundary                 M                   47              104.2                 28.1                          47               33.0                   8.0
W-NH4 → W-NOX                  M                   47                1.7                    0.5                           47                0.7                    0.2
W-NH4 → W-M                      M                   47                1.9                    0.5                           47                1.8                    0.5
W-NH4 → S-NH4                   M                   47                5.5                    1.5                           47                1.5                    0.4
W-NOX → W-M                     M                   47                9.8                    2.7                           47                0.5                    0.1
W-NOX → S-NOX                  M                   47               14.1                   3.7                           47                7.7                    2.1
W-M → S-M                           M                   47              118.9                 29.4                          47              119.5                 31.3
W-ON → W-NH4                    M                   47                5.2                    1.4                           47                5.4                    1.5
W-ON → W-M                       M                   47                7.4                    2.0                           47                1.4                    0.4
S-NH4 → S-NOX                    M                   47              143.4                 32.6                          47               77.1                  21.1
S-NH4 → S-M                        M                   47              213.2                 57.4                          47              186.9                 47.0
S-NOX → S-M                        M                   47              109.0                 28.9                          47               53.1                  14.4
S-NOX → W-NOX                  M                   47                2.2                    0.6                           47                7.3                    1.9
S-M → W-M                           M                   47              118.9                 29.3                          47              119.5                 31.2
S-ON → S-NH4                      M                   47              149.9                 40.9                          47               99.9                  23.8
S-ON → S-M                          M                   47               82.3                  20.0                          47              159.2                 39.9
S-ON → W-ON                      M                   47              851.4                230.1                         47              422.6                114.8
Boundary → S-NH4                L                  100            1241.5               283.0                        100             982.3                260.2
S-NOX burial                           L                  100               0.3                    0.2                          100         7.8 × 10–3         4.5 × 10–3

S-M burial                               L                  100         3.9 × 10–7         2.2 × 10–7                    100         4.0 × 10–7             2.6 × 10–7

S-ON burial                            L                  100               3.9                    2.2                          100               2.0                    1.2
W-M → W-NH4                       L                  100               3.1                    1.8                          100               3.1                    1.8
W-M → W-ON                        L                  100              15.9                   8.2                          100               0.5                    0.3
W-ON → S-ON                       L                  100             854.9                254.3                        100             424.4                128.3
S-NH4 → W-NH4                    L                  100             137.3                 69.2                         100              54.5                  20.7
S-M → S-NH4                         L                  100             146.6                 83.5                         100             146.0                 76.1
S-M → S-ON                          L                  100             257.9                 99.2                         100             253.2                 89.1

Table 3. Network fluxes by parameter quality according to the Costanza (1992) rubric; high (H), medium (M), low (L). 
% disturbance (Dist.) shows the restriction range above and below the original network values used in the whole network
uncertainty analysis. Mean and SD are shown for the distributions of parameter values observed in the plausible networks at 

the Oligo and Poly sites. Parameter values have units of nmol N cm–3 d–1



Hines et al.: Estuarine nitrogen cycle

For the uncertainty analysis, high quality para -
meters under the Costanza (1992) rubric were re -
stricted to within 1 SD of the mean measured value.
Medium quality parameters were restricted to within
a percent age of the value in the original networks
(Table 2) equal to the largest percent variation
observed in the high quality data (±47%), while low
quality parameters were allowed to vary by ±100%.
The classification of each network flux along with the
percentage of disturbance used for plausible model
construction can be found in Table 3.

For each model realization in the uncertainty ana -
lysis, we performed the ENA and coupling analysis.
This let us determine the 95% confidence intervals for
the couplings and removal capacities at the Oligo and
Poly sites and generally estimate the robustness of the
model results to the underlying model uncertainty.

RESULTS

Model evaluation

The Oligo model was constructed from 26% high,
51% medium, and 23% low quality information ac -
cording to the Costanza (1992) evaluation rubric
(Hines et al. 2012). This distribution implies that 77%
of the information used in the model construction is
based on empirical measurements. The Poly model
displayed the same 26%, 51%, and 23% high, me -
dium, and low quality distribution among the rank-
ing categories as the Oligo model. Further, the qual-
ity of parameters used for each network flux was
identical between the 2 models, facilitating their
comparison (Table 3).

Flow analysis

The TST, FCI, and APL statistics did not show
strong evidence that the movement of N through the
study sites differed in magnitude or organization
from a whole-network perspective (Table 1). Al -
though TST showed that more N moved through the
Oligo network (7088.7 nmol N cm–3 d–1) than the Poly
site (5326.8 nmol N cm–3 d–1), the uncertainty ana -
lysis revealed a 7% overlap in the 95% confidence
intervals of TST at these sites. In addition, FCI and
APL were greater at the Oligo site, but their values
showed 100% and 67% overlaps in their 95% confi-
dence intervals between the Oligo and Poly sites,
respectively (Table 1). Despite the similarity between
the Oligo and Poly models at the whole-network

level, other forms of ENA showed potentially impor-
tant differences between the 2 sites.

Environ analysis

Environ analysis generated 12 realized input envi-
rons for each network, one for every network bound-
ary output. Each environ revealed the amount of N
traveling across input and internal pathways that was
associated with a specific output boundary flux for
a given network. In the denitrification environs,
77.1 nmol N cm–3 d–1 was involved in sediment nitrifi-
cation (S-NH4 → S-NOX) at the Oligo site, while only
25.1 nmol N cm–3 d–1 was involved in sediment nitrifi-
cation at the Poly site (Fig. 4). In the anammox envi-
rons, 1.2 nmol N cm–3 d–1 and 0.1 nmol N cm–3 d–1

were involved in sediment nitrification and DNRA
(S-NOX → S-NH4), respectively, at the Oligo site;
0.4 nmol N cm–3 d–1 and 0.2 nmol N cm–3 d–1 were in -
volved in the same processes, respectively, at the Poly
site (Fig. 5).

Calculation of coupling

Environ results were used to calculate the coupling
of microbial N processes at the Oligo and Poly sites.
At the Oligo site, an estimated 43.5% (74.8 nmol N
cm–3 d–1) of denitrification was coupled to nitrifica-
tion, while the remaining 56.5% (97.2 nmol N cm–3

d–1) was a result of direct denitrification. At the Poly
site, coupled nitrification to denitrification was res -
ponsible for just 18.0% (24.6 nmol N cm–3 d–1) of de -
nitrification activity, while 82% (112.1 nmol N cm–3

d–1) was attributed to direct denitrification (Fig. 6).
Direct anammox was greater than coupled anam-

mox at both study sites; however, differences in the
strength of coupling between the Oligo and Poly sites
were observed. Nitrification coupled to anammox
and DNRA coupled to anammox at the Oligo site
were responsible for 22.7% (1.1 nmol N cm–3 d–1) and
1.8% (0.1 nmol N cm–3 d–1) of anammox activity, res -
pectively. The remaining 75.4% (3.8 nmol N cm–3 d–1)
was a result of direct anammox. At the Poly site, how-
ever, the strength of nitrification coupled to anam-
mox weakened to 9.6% (0.3 nmol N cm–3 d–1), while
the strength of DNRA coupled to anammox increased
to 4.8% (0.2 nmol N cm–3 d–1). The remaining 85.6%
(3.1 nmol N cm–3 d–1) of anammox activity was a re -
sult of direct anammox (Fig. 6).

The process coupling values for the Oligo network
presented in this study were not identical to values
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published for the same network in previous work
(Hines et al. 2012) as a result of differences in the
software used to conduct the analyses. However, all
of the differences were less than 2% of the flux mag-
nitudes and do not affect the conclusions of this
study.

Nitrogen removal efficiency

Little change was seen in the ability of
the microbial communities to remove N
relative to the N inputs at each site. The
amount of N removed by denitrification
and anammox was higher at the Oligo
site (177.0 nmol N cm–3 d–1) than the
Poly site (140.2 nmol N cm–3 d–1). How-
ever, relative to the total N inputs into
the Oligo and Poly networks, total N2

production from these 2 processes was
4.7% and 4.6%, respectively (Fig. 7).

Coupling uncertainty analysis

Table 3 shows the mean and SD of
each network flux in the 10 000 plausi-
ble networks generated for our uncer-
tainty analysis. The 95% confidence
intervals of nitrification coupled to
denitrification and DNRA coupled to
anammox did not overlap between the
Oligo and Poly sites (Fig. 8). The 95%
confidence intervals of nitrification cou-
pled to anammox, however, overlapped
by 16% between the 2 sites. There was
little difference between the 95% confi-
dence intervals of N removal capacity
at the 2 sites, which ranged from 3.8 to
5.8% and 2.8 to 6.7% of N input at the
Oligo and Poly sites, respectively.

DISCUSSION

Network model comparison

The network models for the Oligo and
Poly sites had comparable characteris-
tics. The uncertainty ana lysis showed
that the NH4

+, NOx and total N inputs to
each network, as well as the TST, FCI,
and APL network statistics generated
by flow analysis, were not significantly
different between sites (Table 1). The

similarity in the various boundary inputs of N to these
models suggests that the differences observed in
their internal flows may be a result of differences in
the ability of the microbial community to conduct
various N transformations under the environmental
conditions at each site. The lack of difference be -
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tween TST and FCI metrics at each site suggests that
overall activity and movement of N through these
networks was similar, and the fact that APL was
greater than one for each network helps to demon-
strate that coupling is present at both sites (Hines et
al. 2012).

The similarities between the net-
work models used in this study facili-
tate their comparison, as the iden tical
topologies and similar flow regimes
meet the  criteria for network compari-
son (Baird et al. 1991, Fath et al. 2007).
Furthermore, little difference was re -
ported in depth, tidal height, sediment
grain size, water column dissolved
oxy gen, or percent organic matter
(Table 1). The only major difference ob -
served between sites was the degree
of influence from seawater, facilitating
a space-for-time comparison to esti-
mate the effects of seawater intrusion.

Microbial N process coupling

The model comparison supported
the hypothesis that the coupling of
nitrification to denitrification would be
higher at the Oligo site than the Poly
site. Nitrification coupled to denitrifi-
cation was responsible for 43.5 and
18.0% of N2 production through de -
nitrification at the Oligo and Poly sites,
respectively, and the 95% confidence
intervals of these estimations gener-
ated by the uncertainty analysis did
not overlap (Fig. 8). These predicted
values fell within the range of reported
values for measurements of nitrifica-
tion coupled to denitrification in estu-
arine sediments (Nishio et al. 1983,
Jenkins & Kemp 1984, Rysgaard et al.
1993, Koop-Jakobsen & Giblin 2010),
suggesting that these models are pro-
ducing plausible results. The fact that
differences in the movement of N
through these networks were ob ser -
ved despite similarities in the sum-
mary statistics generated by flow ana -
lysis (Table 1) highlights that network
summary statistics, while useful, can
be too broad to capture potentially
important network features (Hines &

Borrett 2014). Furthermore, the fact that the topology
of both networks was identical implies that the differ-
ence in coupling of nitrification to denitrification was
a result of differences in the amount of material
 moving across internal and boundary N fluxes at
each site.
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The majority of the reduction in denitrification
between the Oligo and Poly sites was a result of
decreased coupling to nitrification (Fig 6). This find-
ing is consistent with literature observations, which
suggest that denitrification rates in estuaries can be
greatly reduced when nitrification is inhibited (An &
Joye 2001, Kemp et al. 2005). These results suggest
that if seawater intrusion causes the N cycling pro-
cesses at the Oligo site to more closely resemble
those at the Poly site, a decoupling of nitrification to
denitrification may be observed at the Oligo site.

The model results also suggested that direct anam-
mox was responsible for the majority of anammox N2

production at both sites. This finding suggests that
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Fig. 7. Total amount of direct and coupled microbial pro-
cesses involved in (A) N2 production and (B) the proportion
of N involved in removal processes relative to the N input at 

each site. See Fig. 6 for abbreviations

Fig. 6. Estimated coupling of N transformation and removal
processes at oligohaline (O) and polyhaline (P) sites for
(A,B) denitrification and (C,D) anaerobic ammonium oxida-
tion (anammox) in (A,C) absolute units and (B,D) as a per-
centage of each process. Direct DNT: direct denitrification,
NTR−DNT: nitrification coupled to denitrification, direct
AMX: direct anammox, DNRA−AMX: dissimilatory nitrate
reduction to ammonium (DNRA) coupled to AMX, NTR−

AMX: NTR coupled to AMX
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anammox organisms capable of reducing NO3
– may

play an important role in the CFRE (Kartal et al. 2007,
2012). Nitrification coupled to anammox was greater
at the Oligo site. However, the uncertainty analysis
revealed that the 95% confidence intervals of plausi-
ble estimations for this coupling overlapped by 16%
and therefore did not support the hypothesis that
nitrification coupled to anammox would be greater at
the Oligo site. While these models estimate that nitri-
fication coupled to anammox makes up less than
25% of anammox N2 production at each site, other
research has suggested that this coupling may be the
principal form of N2 production in some environ-
ments (Lam et al. 2007), and more empirical work is
required to investigate its role in estuaries.

Despite lower total anammox rates at the Poly site,
possibly driven by lower nitrification coupled to
anammox, the percentage of N2 production resulting
from DNRA coupled to anammox was nearly 3 times
higher at the Poly site; a finding that was robust
to the uncertainty analysis (Fig. 8). Therefore, the
model results suggest that DNRA may play an in -
creasingly important role in estuarine N removal as a
result of seawater intrusion, although this coupling
was responsible for less than 5% of anammox N2 pro-
duction at each site. Previous research corroborates
the observation that the coupling of DNRA to anam-
mox was weaker at the Oligo site than the Poly site
by suggesting that DNRA plays a relatively minor
role in freshwater sediments (Scott et al. 2008).

The fact that DNRA coupled to anammox was
responsible for only a minor part of anammox N2 pro-
duction at both sites suggests that this coupling may
not increase dramatically as a result of seawater in -
trusion in the CFRE. However, the models presented
in this study aggregated NO3

– and NO2
– pools into

NOx, and likely underestimated the contribution of
DNRA coupled to anammox by only reporting anam-
mox coupled to complete reduction to NH4

+ (Kartal et
al. 2007). Anammox coupled to incomplete reduction
of NO3

– to NO2
– was excluded from coupling estima-

tions in this study because NO3
– and NO2

– were ag -
gregated into the NOx nodes. Bacterial processes
including both incomplete DNRA and incomplete
denitrification produce NO2

–, and the higher sulfide
concentrations associated with seawater intrusion
may enhance these processes (An & Gardner 2002,
Laverman et al. 2007). In some ecosystems, DNRA
can provide the main NO2

– input for anammox (Jen -
sen et al. 2011), and the ephemeral nature of NO2

– in
estuaries suggests that strong coupling may exist
between anammox and NO3

– reduction pathways.
Therefore, the effects of seawater intrusion on DNRA

coupled to anammox may be greater than suggested
by these models.

The total increase of N2 produced by DNRA cou-
pled to anammox at the Poly site compared to the
Oligo site (0.1 nmol N cm–3 d–1) was 2 orders of
magni tude smaller than the decrease in N2 produced
by nitrification coupled to denitrification and anam-
mox at the same 2 locations (51.0 nmol N cm–3 d–1).
Despite the potential for underestimating the propor-
tion of DNRA coupled to anammox in these models, it
is clear that the reduction in nitrification coupled to
denitrification is greater than all of anammox N2 pro-
duction, which is often a small fraction of total N2

production in estuaries (Koop-Jakobsen & Giblin
2009). This result implies that, even if DNRA were
completely coupled to anammox, this process would
not be able to compensate for a reduction in N2 pro-
duction by nitrification coupled to denitrification and
anammox caused by saltwater intrusion.

Seawater intrusion and the microbial N cycle

As seawater intrusion from dredging and sea level
rise continues to progress, the environmental condi-
tions for the microbial communities at the Oligo site
may shift to more closely resemble the conditions at
the Poly site. While the model analysis predicts a de -
coupling of nitrification to denitrification and en -
hance ment of DNRA coupled to anammox, the rela-
tive amount of N removed at both the Oligo and Poly
sites was similar (4.7 and 4.6% of total N input, res -
pectively; Fig 7). These findings were robust to the
uncertainty analysis and are consistent with reported
percentages of denitrification removal in estuaries
with similar flushing times, which ranged from 2 to
8% (Nielsen et al. 1995, Nowicki et al. 1997). Estuar-
ies with longer flushing times will likely have higher
percentages of N inputs removed through microbial
processes (Joye & Anderson 2008). For example, the
nearby New River Estuary, North Carolina, which
has a flushing time approximately 10 times longer
than the CFRE (Ensign et al. 2004), likely converts a
higher percentage of its N inputs to N2 gas.

Although nitrification coupled to denitrification
and anammox decreased substantially from the
Oligo to the Poly site, direct denitrification increased
from 56.5 to 82.0% of denitrification removal. Rela-
tive to the N inputs at each site, direct denitrification
was able to compensate for reductions in nitrification
coupled to denitrification and anammox in these
models. The similarity in the percentage of N input
converted to N2 gas in each network suggests that
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seawater intrusion may alter which biogeochemical
pathways contribute to N removal, but have little
effect on the total amount of N2 produced. These
findings corroborate the results of Fear et al. (2005),
who observed little change in relative N2 production
despite highly variable denitrification rates across
a range of salinity conditions in the Neuse River
 Estuary, North Carolina. Furthermore, these findings
imply that little change in N2 production may be
observed as a result of seawater intrusion despite the
sulfide inhibition of nitrification (Joye & Hollibaugh
1995, Rysgaard et al. 1999), the release of ammonium
from sediments (Gardner et al. 1991, Seitzinger et al.
1991), and the enhancement of DNRA (Brunet &
 Garcia-Gil 1996, Giblin et al. 2010) associated with
higher salinities, and suggest that microbial commu-
nities will be able to adapt to these changes in envi-
ronmental conditions.

Alternatively, the similarity in relative N2 produc-
tion between the Oligo and Poly sites may be an indi-
cation that factors other than salinity, such as carbon
availability and substrate concentration, play an im -
portant role in regulating the biological removal of N
from these systems. For example, the ratio of carbon
to NO3

– can influence which NO3
– reduction process,

DNRA or denitrification, is dominant in the sedi-
ments (Tiedje et al. 1982, King & Nedwell 1985). In
addition, a recent model by Algar & Vallino (2014)
provides a theoretical basis for the importance of car-
bon to NO3

– ratios for N2 production pathways. Oth-
ers have shown that salinity may not directly inhibit
some N transformations, but the nutrient conditions
that can be affected by seawater intrusion can regu-
late these processes (Magalhães et al. 2005, Weston
et al. 2006). The extent to which salinity versus nutri-
ent conditions and carbon availability influence the
sedimentary N cycle in estuaries is an area of active
research and this study cannot comment directly on
this relationship. Further investigations into this area
will provide insight as to how these factors interact to
influence N2 production in estuaries.

If the N cycle at the Oligo site more resembles that
of the Poly site as seawater intrusion progresses,
these shifts in which biogeochemical pathways con-
tribute to N2 production may have important implica-
tions for the health of estuaries. NH4

+ is converted to
N2 gas primarily through nitrification coupled to
denitrification. The decoupling of these biogeochem-
ical processes and increased importance of direct
denitrification resulting from seawater intrusion, in
combination with the decreased adsorption of NH4

+

to sediments (Hou et al. 2003, Giblin et al. 2010,
Weston et al. 2010), may decrease NO3

– pools avail-

able to algae while increasing available NH4
+ pools.

Under these conditions, the availability of NO3
– could

limit denitrification and anammox N2 production.
Because phytoplankton preferentially take up NH4

+

over other forms of inorganic N (McCarthy et al.
1977, Carpenter & Dunham 1985), increased NH4

+

pools may lead to larger phytoplankton populations,
exacerbating eutrophication.

Limitations

There are several limitations to the techniques
used in this study to estimate the effects of seawater
intrusion on the N cycle. First, the comparison made
in this work assumed that the Oligo and Poly sites
will behave similarly under equivalent conditions,
and cannot address the dynamic processes and
transient effects of seawater intrusion (Pickett 1989).
The transition from oligohaline to polyhaline condi-
tions may not occur as a smooth interpolation be -
tween the Oligo and Poly sites, and may instead
pass through alternative transient states that this
modeling technique cannot predict. Further, the
rate of change in water chemistry may influence
how microbial N cycling communities respond to
seawater intrusion. Second, this substitution as -
sumed that the Oligo system will not reach an alter-
native stable state, different from either the Oligo or
Poly networks, as a result of the transient dynamics
mentioned above or hysteresis. Third, this study
presents a comparison of 2 sites during the summer
in a single estuary. While the CFRE is considered to
represent a typical coastal plain estuary in the
south-eastern USA (Dame et al. 2000), the conclu-
sions of this work may not generalize well to estuar-
ies with different environmental conditions, or to
other seasons. However, despite the drawbacks in -
herent in this work, it is a useful first approximation
to understanding the potential effect of seawater
intrusion on the sedimentary N cycle and provides a
basis for future research.

CONCLUSIONS

The model comparison presented here makes 4
contributions to the scientific understanding of the
effects of seawater intrusion on sedimentary micro-
bial N cycling processes. (1) This work synthesizes
disparate measures of nutrient concentrations and
microbial transformation processes to generate an N
budget for the Poly site that can be used in further
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analyses. (2) This study provides evidence that the
lower observed rates of N2 production in more saline
estuarine sediments are likely a result of de creased
coupling between nitrification and the re moval pro-
cesses. Modeled DNRA coupled to anammox was
strongest at the high salinity site, but accounted for
less the 5% of anammox N2 production, and there-
fore did not compensate for reductions in nitrification
coupled to denitrification and anammox. (3) The
models suggest that seawater intrusion may lead to a
higher contribution of direct denitrification as a result
of nitrification inhibition, limiting the abilities of estu-
aries to produce N2 gas from NH4

+. The similarities in
modeled N2 production relative to N inputs suggests
that the total amount of N2 produced may change lit-
tle as a result of seawater intrusion in estuaries with
an abundance of inorganic N. However, in estuaries
where NO3

– is not abundant, N2 production could
become NO3

– limited as a result of this shift toward a
greater reliance on direct denitrification. (4) Our
findings imply that seawater intrusion into the fresh-
water portions of estuaries may exacerbate the
effects of nutrient loading and eutrophication
through the decreased couplings of nitrification and
N removal pathways. A lessened capacity of estuar-
ies to remove N in the form of NH4

+ could result in
longer N residence times and, therefore, in greater
resource availability for phytoplankton communities.
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