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ABSTRACT Combination of CuI and tetrahydrothiophene (THT) in MeCN or neat THT produces 

various phases depending upon experimental conditions. Green luminescent product (CuI)4(THT)2 (1) 

consists of Cu4I4 cubane units knit into a 3-D network by 2-THT ligands. Yellow luminescent 

(CuI)10(THT)7(MeCN) (2) contains {[Cu4I4(THT)](2-THT)2(Cu2I2)(2-THT)2[Cu4I4(NCMe)]} “rungs” 

linked into 1-D ladders by pairs of 2-THT ligands. Two molecular (CuI)4(THT)4 phases were found: 
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orange luminescent 3a and dull yellow luminescent 3b. Triclinic 3b is the more stable phase at 25 °C, 

but undergoes endothermic transformation to monoclinic 3a at 38 °C. 3a transforms to a triclinic phase 

(3a') that retains orange emission at −60 °C. Non-emissive (CuI)3(THT)3•MeCN (4) is a 2-D sheet 

structure in which Cu3(THT)3 rings are linked in trigonal directions by rhomboid Cu2I2 dimer units. The 

previously reported (CuI)2(THT)4 (5) is a molecular dimer. Temperature and mixing ratio domains for 

the formation of the CuI-THT phases from MeCN are presented. Luminescence in 1, 2, 3a, and 3b is 

rationalized based on varying degrees of halide-to-metal charge transfer (XMCT) and metal-centered 

(MC) behavior. Low temperature spectra reveal reversible changes, including modest red shifts for 1 

and 2, and splitting into two excitation/emission band pairs for 3a and 3b. 

Introduction 

The complexes of copper(I) iodide with nitrogen, phosphorus, and sulfur ligands (L) are of interest 

both structurally and photophysically. Building upon our own work1 and that of others2 involving 

discrete CuI-L complexes, we have shown that photoluminescent CuI-L adducts form spontaneously 

when films of CuI are exposed to vapor samples of volatile amines or sulfides.3 During the course of 

this work, we noted remarkable behavior of tetrahydrothiophene (THT) with CuI surfaces, yielding a 

mixture of green and orange emission under 365 nm irradiation at room temperature, and a strong 

yellow-green peak at 77 K. These results were highly suggestive of the existence of multiple CuI-THT 

phases. While multiple stoichiometries are not particularly unusual in CuI-L complexes, it appeared that 

this system was especially complex. The results of the current study confirm this suspicion. In addition 

to a previously identified phase,4 we herein report five new phases that result when CuI and THT are 

combined in acetonitrile (MeCN). Four of these compounds show luminescence behavior. 

The structural chemistry of CuI-sulfide complexes encompasses three major classes, as shown in 

Scheme 1. A molecular cubane tetramer Cu4I4 with monodentate sulfide ligands has been reported,5 as 

have numerous molecular Cu2I2 dimers4,6 and a single CuI stair step polymer7 containing chelating 

disulfide ligands. Far more common are structures in which bridging disulfide ligands link the rhomboid 
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dimers, cubane tetramers, or stair step chains into network arrangements.8,9 Much rarer is the occurrence 

of CuI cubane tetramers or rhomboid dimers linked into networks by monosulfide ligands in which a 

single sulfur atom acts as the bridge.10,11 This phenomenon has only been observed to date for dimethyl 

sulfide and diethyl sulfide. 

 

The photophysics of the CuI-L system have been explored computationally by Ford12 and other 

researchers.1,11b,13 The cubane cluster acts as a rather intense luminophore. Most (CuI)4L4 compounds 

absorb exclusively in the UV and therefore appear white under visible light. They usually emit in the 

visible, giving a variety of colored responses under black light. Thermochromism is quite common. Two 

emission bands are often seen for the (CuI)4L4 cubanes. The ubiquitous low energy (LE) emission 

usually occurs in the green-red region. It is attributed to a triplet cluster-centered (3CC) transition, which 

combines halide-to-metal charge transfer (XMCT) and metal-centered (MC) behavior. Owing to its 

sensitivity with respect to distortions within the Cu4I4 cluster, the 3CC band is subject to significant 

thermochromic and rigidochromic effects. A second, high energy (HE) emission band in the blue region 

is typically observed when ligands having * orbitals are used. This band is the result of a triplet halide-

to-ligand charge transfer (3XLCT). Transitions in CuI dimers1 and hexamers9a have been less 

extensively studied. However, 3CC and 3XLCT transitions appear to be important in these species as 

well. 

 

Experimental 

Materials and Methods. All reagents were purchased from Aldrich, Acros, or Strem Chemicals and 

were used as received. Experimental temperatures in the product formation studies were maintained 
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using either a thermostated refrigerated recirculating bath or thermostated heated oil bath. Analysis for 

C and H were carried out by Atlantic Microlabs, Norcross, GA. Thermogravimetric analyses (TGA) 

were conducted using a TA Instruments Q500 in the dynamic (variable temp.) mode with a maximum 

heating rate of 50 °C/min to 800 °C under 60 mL/min N2 flow. Differential scanning calorimetry (DSC) 

was conducted using a TA Instruments Q20 in the ramp mode with a scanning rate of 3 °C/min from 0 

to 50 °C.  

Steady-state photoluminescence spectra were recorded with a QuantaMaster-1046 photoluminescence 

spectrophotometer from Photon Technology International. The instrument is equipped with two 

excitation monochromators and a single emission monochromator with a 75 W xenon lamp. Low 

temperature steady-state photoluminescence measurements were achieved by using a Janis St-100 

optical cryostat equipped with a Honeywell temperature controller. Liquid nitrogen was used as coolant. 

Steady-state photoluminescence spectra were collected for compounds 1, 2, 3a, and 3b. Spectra were 

collected as sequential emission scans to form a 3-D matrix with excitation as the x axis, emission on 

the y axis, and intensity on the z axis. The wavelength of the exciting light was run from high to low 

wavelength at increments of 3 nm between 500 and 200 nm to avoid photobleaching, oxidation or other 

forms of degradation.  

For lifetime measurements for 1, 2, 3a, and 3b at 293 K and 77 K, excitation was provided by an 

Opolette™ (HE) 355 II UV tunable laser operating at 335 nm. The 335 nm excitation was chosen since 

all samples could be excited at this wavelength. The laser has a Nd:YAG flashlamp pumped with a 

pulse repetition rate of 20 Hz and an average output power 0.3 mW. The detection system is composed 

of a monochromator and photomultiplier from a JobinYvon Ramanor 2000M Raman spectrometer. Data 

were collected by a Le Croy 9310C dual 400 MHz oscilloscope collecting data every 10 ns for 50 µs per 

sweep averaging 1000 sweeps per sample. Each sample was run 3 times through this 1000 sweep cycle 

and the results were averaged. The decay curves from these measurements were fitted using an 

exponential decay fitting method in Origin Pro 8. The lifetimes were observed at the ideal emission 



 

5 

wavelengths for compounds 1, 2, 3a, and 3b as determined by luminescence spectroscopy. 

Syntheses 

(CuI)4(THT)2, 1. 2.0 mL of 150 mM CuI in MeCN (0.30 mmol) and 2.0 mL of 250 mM THT in 

MeCN (0.50 mmol) were combined in a capped vial at 40 °C with stirring. A white precipitate with 

green luminescence formed immediately. The powder was collected by decanting, washed using ethyl 

ether, and vacuum dried (0.029 g, 0.031 mmol, 41%). Anal. Calcd. for C8H16Cu4I4S2: C, 10.24; H, 1.72. 

Found: C, 10.34; H, 1.66. TGA Calcd. for CuI: 81.2. Found: 81.6 (105−125 °C). Crystals of 1 were 

produced by layering 1.0 mL of 150 mM THT in MeCN (0.15 mmol) over 0.40 mL of 150 mM CuI in 

MeCN (0.060 mmol) in a capped vial at 40 °C and allowing diffusional mixing at 40 °C. 

 (CuI)10(THT)7(MeCN), 2. 2.8 mL of 150 mM CuI in MeCN (0.42 mmol) and 2.0 mL of 150 mM 

THT in MeCN (0.30 mmol) were combined in a capped vial at −10 °C with stirring. A white precipitate 

with yellow luminescence formed immediately. The powder was collected by decanting and 

immediately placing under vacuum for 2 h (0.065 g, 0.025 mmol, 60%). Anal. Calcd. for 

C30H59Cu10NI10S7: C, 14.06; H, 2.32. Found: C, 14.17; H, 2.23. TGA Calcd. for CuI: 74.3. Found: 74.5 

(80−125 °C). Crystals of 2 were produced by layering 2.0 mL of 150 mM CuI in MeCN with 2.0 mL of 

250 mM THT in MeCN and allowing diffusional mixing at room temp. 

(CuI)4(THT)4 (orange emission), 3a. 2.0 mL of 150 mM CuI in MeCN (0.30 mmol) and 2.0 mL of 

400 mM THT in MeCN (0.80 mmol) were combined in a capped vial at room temp. A white precipitate 

with orange luminescence formed immediately upon stirring. The powder was collected by decanting 

and immediately placing under vacuum for 2 h (0.035 g, 0.031 mmol, 42%). Anal. Calcd. for 

C16H32Cu4I4S4: C, 17.25; H, 2.87. Found: C, 17.12; H, 2.88. TGA Calcd. for (CuI)4(THT)2: 84.2. Found: 

85.6 (90−100 °C). Calcd. for CuI: 68.4. Found: 70.6 (100−125 °C). Crystals of 3a were produced by 

layering 2.0 mL of 150 mM CuI in MeCN with 2.0 mL of 250 mM THT in MeCN and allowing 

diffusional mixing at room temp. 

(CuI)4(THT)4 (dull yellow emission), 3b. 1.5 mL of 150 mM CuI in MeCN (0.225 mmol) and 3.0 
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mL of 150 mM THT in MeCN (0.45 mmol) were combined in a capped vial at 0 °C. A white precipitate 

with dull yellow luminescence formed immediately upon stirring. The powder was collected by 

decanting and immediately placing on vacuum for 2 h (0.033 g, 0.030 mmol, 53%). Anal. Calcd. for 

C16H32Cu4I4S4: C, 17.25; H, 2.87. Found: C, 17.03; H, 2.79. TGA Calcd. for (CuI)4(THT)2: 84.2. Found: 

84.5 (60−75 °C). Calcd. for CuI: 68.4. Found: 69.1 (75−115 °C). Crystals of 3b were produced by 

layering 1.0 mL of 100 mM CuI in MeCN with 0.35 mL of neat THT and allowing diffusional mixing at 

5 °C. 

(CuI)3(THT)3•MeCN,  4.  0.80 mL of 150 mM CuI in MeCN (0.12 mmol) and 2.0 mL of 150 mM 

THT in MeCN (0.30 mmol) were combined in a capped vial at −5 °C with stirring. A white precipitate 

with no luminescence formed immediately (0.012 g, 0.014 mmol, 34%). All attempts to isolate this 

product with drying caused traces of orange luminescence (indicative of 3a) to develop immediately, 

rendering elemental analysis impossible. TGA Calcd. for (CuI)4(THT)4: 95.3. Found: 95.2 (40−55 °C). 

Calcd. for (CuI)4(THT)2: 80.2. Found: 79.7 (80−105 °C). Calcd. For CuI: 65.2. Found: 64.6 (125−140 

°C). Crystals of 4 were produced by layering 2.0 mL of 150 mM CuI in MeCN with 5.0 mL of 150 mM 

THT in MeCN and allowing diffusional mixing at −8 °C. 

(CuI)2(THT)4,  5. CuI (0.50 g, 2.6 mmol) was dissolved in 0.46 mL (5.3 mmol) neat THT in a capped 

vial at room temp. A white precipitate with no luminescence formed upon sonication. The powder was 

collected on a frit under vacuum (0.84 g, 1.1 mmol, 88%). All attempts to isolate this product with 

drying caused traces of orange luminescence (indicative of 3a) to develop rapidly, rendering elemental 

analysis impossible. TGA Calcd. for (CuI)4(THT)4: 76.0. Found: 77.1 (45−75 °C). Calcd. For CuI: 51.9. 

Found: 52.7 (95−145 °C). Crystals of 5 were synthesized by producing a saturated solution of CuI in 

neat THT and storing at −8 °C.  

 

X-ray Analysis: Crystals were mounted on glass fibers and analyzed at 100 K, except for 3a which 

was run at 250 K. Crystals of 4 and 5 were highly sensitive to solvent loss and were coated in Paratone 
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N oil and flash-cooled to 100 K. All measurements were made using graphite-monochromated Cu Kα 

radiation on a Bruker-AXS three-circle diffractometer, equipped with a SMART Apex II CCD 

detector.14 Initial space group determination was based on a matrix consisting of 120 frames. The data 

were reduced using SAINT+,15 and empirical absorption correction applied using SADABS.16 

Structures were solved using SIR-9217 or SHELX.18 Least-squares refinement was carried out for all 

structures on F2 using SHELX-13 and ShelXle.19 The non-hydrogen atoms were refined anisotropically. 

In all cases, hydrogen atoms were located the Fourier difference map and then placed in theoretical 

positions. Details of the X-ray experiments and crystal data are summarized in Table 1. Selected bond 

lengths and bond angles are given in Table 2. Crystallographic data for new structures reported herein 

were deposited with the Cambridge Crystallographic Data Centre and allocated the deposition numbers 

CCDC 977480-977484. These data can be obtained free of charge from the Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Powder X-ray diffraction (PXRD) data for 1, 2, 3a, and 3b were collected using Rigaku Miniflex 

diffractometer with Cu Kα radiation. Scans were carried out from 3 to 60° 2 theta at 2 deg./min. For 

compound 3b a 10 h scan was necessary due to weak response. In this case, the compound was mulled 

with Paratone N oil to prevent its conversion to 3a. The data were processed using the MDI-Jade 6.1 

software package.20 Powder X-ray diffraction (PXRD) data for 4 and 5 were collected using Bruker 

instrument described above as mulls using Paratone N oil. Three 180 s frames were collected, covering 

5–60º 2. Frames were merged using the SMART Apex II software14 and were further processed using 

DIFFRAC-Plus and EVA software.21 All calculated powder patterns from single crystal structural data 

were produced using Mercury software.22 

 

Results and Discussion 

CuI-THT Phases 

Following our previous observation of multiple luminescence emission colors in CuI films that had 
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been exposed to THT vapor (see Introduction),3 an initial crystallization experiment with CuI and THT 

in MeCN was carried out. In this case 35 µL THT were added to one mL of 40 mM CuI solution in 

MeCN, following which the mixture allowed to stand at ambient temperature. Visualization of the 

resulting colorless crystals using 365 nm black light revealed four distinct species: (1) octahedra having 

green luminescence, (2) prisms having yellow luminescence, (3) prisms having orange luminescence, 

and (4) prisms having dull yellow luminescence. These phases later proved to be 1, 2, 3a, and 3b, 

respectively. The readily observed formation of at least four distinct phases led us to study the CuI-THT 

system in MeCN carefully. Pre-temperature-equilibrated MeCN solutions of CuI (150 mM) and THT 

(150 mM) were combined in capped vials and stirred at controlled temperature. In all cases white 

precipitates formed over the course of several minutes to several hours, excepting relatively CuI-rich 

mixtures at relatively high temperatures which failed to afford solid. The identities of the solid products 

were assigned initially via observation of luminescence emission color, and then further confirmed 

through a combination powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), as 

described below. The results of this phase domain study are shown in Figure 1. 

 

Fig. 1. Precipitate domains for CuI/THT mixtures in MeCN at various mixing ratios and temperatures. 
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Five phases were identified during the above study. At relatively high temperatures and high CuI 

contents, a green-emitting phase having the stoichiometry (CuI)4(THT)2 (1) precipitated. At somewhat 

lower temperatures and CuI contents, a dull yellow-emissive phase was formed. This proved to have the 

unusual formulation (CuI)10(THT)7(MeCN) (2). In a very limited domain near room temperature, but 

with very low CuI concentration, an orange-emitting precipitate was formed. This material proved to be 

a cubane compound (CuI)4(THT)4 (3a). If, instead of lowering CuI amount from the 2 domain, the 

temperature was lowered, a different (CuI)4(THT)4 cubane, having yellow emission (3b) was produced. 

Finally, at temperatures <0 °C and very low CuI amounts, a non-emissive phase having the formula 

(CuI)3(THT)3•MeCN (4) was formed. Not found in any of the precipitation products from MeCN was 

the known phase (CuI)2(THT)4 (5), for which the question of photoluminescence was not addressed in 

the literature report (it proved to be non-emissive).4 

Samples of the CuI-THT phases 1, 2, 3a, 3b, and 4 were synthesized according to optimized 

conditions as suggested by the results in Figure 1. Non-emissive compound 5 was prepared following a 

modification of the literature procedure in which CuI (rather than Cu/KI) was dissolved in neat THT.4 

Blacklight photos under 365 nm excitation of the four emissive phases 1, 2, 3a, and 3b are shown in 

Figure 2. The compounds 1−5 were studied using a variety of techniques including TGA (Figure 3), 

single crystal X-ray diffraction, PXRD (Figures S12−S17, Supporting Information), and elemental 

analysis. However, compounds 4 and 5 proved to be highly susceptible to loss of MeCN and THT 

respectively, making elemental analysis impossible in these cases. These non-emissive compounds 

quickly developed patches of orange luminescence upon drying, indicating partial conversion to 3a. For 

all six TGA traces, the sample mass remaining after the temperature had reached 150 °C corresponded 

very closely to the % CuI in the initial complex. Initial mass loss temperatures were consistent with the 

relative stabilities noted for the complexes during routine handling. Thus, the particularly stable 1 did 

not lose mass until 105 °C. Compounds 2 and 3a were somewhat less stable, showing mass losses 

commencing below 100 °C. Compound 3b proved less stable to heating than 3a by differential scanning 
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calorimetry (DSC, see below). Accordingly, 3b underwent mass loss beginning at 60 °C, 30 °C below 

the analogous point for 3a. Mass losses for 4 and 5 began at very modest temperatures, with a clear 

MeCN loss step evident for 4. 

 

Fig. 2. Photographs of emissive phase samples under 365 nm excitation. 

 

Fig. 3. TGA traces for CuI-THT phases.  

 

X-ray Structures 



 

11 

Crystals were grown for the five new compounds in the current study, and the X-ray structures were 

solved. Refinement details for all structures are summarized in Table 1 and selected bond lengths and 

angles are given in Table 2. All new structures were tested for porosity using PLATON SQUEEZE, 

which identifies voids having spherical radii of ≥1.2 Å.23 No significant voids were found in any case. 

Complex 1 crystallizes in non-centrosymmetric space group P212121 with a degree of racemic 

twinning present (Flack parameter = 0.138(12)). Its structure is shown in Figures 4, S1, and S2. The 

repeat unit consists of a Cu4I4 cubane unit and two THT ligands. These ligands bridge cubane units 

through single sulfur atoms, forming a 3-D network. This results in a degree of crowding which is 

apparent in some unusual compressed and open I−Cu−S bond angles, especially around Cu4 (range = 

93.64(12)−117.00(13)°). Single-sulfur bridging of CuI clusters is very rare, having been previously 

reported only in [(CuI)4(Me2S)3] and [(CuI)4(Et2S)3].
10,11 Neither of these previous structures contains 

true “closed” cubanes. In [(CuI)4(Me2S)3] the cubanes are opened, such that only three Cu atoms show 

the usual I3S coordination sphere, while the fourth Cu atom has an I2S2 environment; all THT ligands 

are 2-bridging, affording a 3-D network. In [(CuI)4(Et2S)3], 1-D chains of (THT-Cu)2(2-I2) dimers 

result from 2-bridging by a third THT ligand. In contrast, the closed cubane units in 1 are linked to 

form puckered (Cu4I4)6(2-THT)6 rings. These rings are found in each of three orthogonal directions, 

coming together at cubane nodes. In this regard the current structure more closely resembles other 

cubane networks that are linked by disulfide ligands, such as EtS(CH2)4SEt.8c The latter networks tend 

to contain more open space due to their longer bridges. The cuprophilic Cu…Cu distances 

(2.636(3)−2.759(3) Å) are slightly shorter than that van der Waals radius sum of 2.8 Å, as is typical for 

Cu4I4 cubanes. Bond lengths and angles in 1 are otherwise relatively unremarkable. 
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Fig. 4. X-ray structure of 1. Key to Figs. 4–8: Copper and iodine atoms shown as spheres. THT ligands 

are shown as wireframe. Color scheme for all X-ray figures: orange = Cu, purple = I, yellow = S, grey = 

C, blue = N. Hydrogen atoms omitted. 

 

The X-ray structure of 2 (Figures 5 and S3−S5) is complex and unprecedented, the 

crystallographically independent unit containing eight unique Cu atoms, seven unique I atoms, and six 

unique THT ligands. It crystallizes in the monoclinic P21/m space group, but with significant disorder in 

the three THT ligands that lie on the crystallographic mirror plane. In addition, the Cu atom bearing the 

MeCN ligand is disordered over two sites (Cu8 and Cu9). Two independent cubane units are present. 

Atoms Cu3, Cu4, Cu4' (prime indicates a mirror symmetry position), Cu5 and I2, I3, I4, I4' form an 

open cubane, similar to that described above for [(CuI)4(Me2S)3]. Thus, Cu3, Cu4, and Cu4' have I3S 

coordination, while Cu5 has I2S2. One of these THT ligands (containing S4 atom) on Cu5 is 

monodentate. Cu3 and Cu5 are bridged by 2-THT ligands (S1 and S2 atoms) to a central rhomboid 

dimer Cu2I2 (Cu1, Cu2, I1 and I1'). The other side of this dimer is bridged through two more 2-THT 

ligands (S5 and S6 atoms) to another cubane (Cu6, Cu7, Cu7', Cu8/9, I5, I6, I7, and I7'). This cubane is 

also open when reckoned using Cu8 (90% occupancy, see Figure 5), but “closed” when containing Cu9 



 

13 

(10% occupancy, see Figure S3). The sole MeCN ligand on Cu8 is analogous to the S3 THT insofar as 

it acts a monodentate capping ligand. The (Cu4I4)-(2-THT)2-(Cu2I2)-(2-THT)2-(Cu4I4) structure thus 

described forms a long 1-D chain (I3…I6 = 18.7 Å). These chains are knit together like rungs on a ladder 

by bridging 2-THT (S3 atom) ligands which link Cu4 and Cu7. The ladders are not further crosslinked 

into 2-D sheets, but the direction of the rungs (Cu4−Cu7 vs. Cu7−Cu4) alternates along each ladder. The 

cuprophilic Cu…Cu distances from the cubane Cu’s to the “swung out” Cu (Cu3…Cu5 = 2.691(4), 

Cu6…Cu8 = 2.601(4) Å) do not significantly differ from those within the cubanes (Cu3…Cu4 = 

2.700(3), Cu6…Cu7 = 2.680(3) Å). The Cu…Cu spacing in the dimer (Cu1…Cu2) is somewhat longer at 

2.754(3) Å, but all Cu…Cu in 2 are less than the van der Waals sum value. The Cu−I−Cu bond angles in 

both dimer and cubane clusters tend to be in the range of 58−63°; however, in the present case, there are 

two outlying values: Cu8−I7−Cu7' = 192.70(8) and Cu5−I4−Cu4' = 97.58(7). These are the result of the 

opening of the cubanes. 

 

Fig. 5. X-ray structure of 2. Disordered Cu9 (10% occupancy) and hydrogen atoms omitted. 
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Compounds 3a and 3b are polymorphs, each having the simple cubane formula (CuI)4(THT)4 

(Figures 6 and S6−S8). Formation of a pair of cubane polymorphs has previously been described for 

(CuI)4(PPh3)4, which (like 3a and 3b) also showed luminescence emission that differed between the two 

polymorphs.24 The X-ray structure of 3a was analyzed at 250 K because of a destructive phase change 

that occurred at 213 K producing a triclinic cell (see below). The monoclinic structure for 3a (P21/n) 

shows two crystallographically independent cubane units in the unit cell. One of these contains a 

disordered THT in which two ligand positions are bonded to Cu8. Polymorph 3b crystallizes in the 

triclinic P−1 space group with a single cubane molecule showing no disorder. Bond lengths and angles 

reveal no meaningful differences amongst the three cubanes in 3a and 3b: For example, Cu−I distances 

in 3a are 2.651(2)−2.710(2) and 2.647(2)−2.709(3) Å, and in 3b are 2.650(3)−2.728(3)  Å; and Cu…Cu 

distances in 3a are 2.673(2)−2.761(2) and 2.669(2)−2.837(3) Å, and in 3b are 2.639(3)−2.768(3)  Å. 

 

Fig. 6. X-ray structures of 3a (left) and 3b (one molecule only shown, right). Hydrogen atoms omitted. 

 

As is the case with 1 and 2, compound 4, (CuI)3(THT)3•MeCN, shows bridging THT behavior leading 

to network formation (Figures 7 and S9−S11). It crystallizes in the monoclinic C2/c space group and 

contains a non-coordinated MeCN molecule. The crystallographically independent unit consists of three 

each Cu, I, and THT, and a single disordered MeCN. Dimeric Cu2I2 units are linked via 2-THT to form 

six-membered Cu3S3 rings. These rings are further tiled into (Cu2I2)6(THT)6 macrocycles which form 

nearly flat 2-D sheets. The THT rings point toward the centers of these larger rings. The MeCN 
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molecules are trapped between the 2-D sheets, being aligned with the center of the large rings. The 

separation between the 2-D sheets is quite small with an interplanar I…I distance of about 4.3 Å. Once 

again, fairly short Cu…Cu interactions (2.9653(14), 2.9722(9) Å) are present in the Cu2I2 units; 

however, in this compound they are longer than the van der Waals sum. This effect is further reflected 

in the relatively open Cu−I−Cu bond angles of 69.06(3)−69.43(2)°. 

 

Fig. 7. X-ray structure of 4. MeCN molecule and hydrogen atoms omitted. 

 

The final CuI-THT compound identified herein, 5, has previously been characterized at 200 K as the 

simple dimer (CuI)2(THT)4 (Figure 8).4 Cu−I distances of 2.637(1) and 2.639(1) Å, and Cu−S distances 

of 2.331(3) and 2.318(2) Å are well within the ranges seen for compounds 1−4. A single independent 

Cu…Cu cuprophilic interaction of 2.675(2) Å was noted.  
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Fig. 8. X-ray structure of 5.4 Hydrogen atoms omitted. 

 

Freshly prepared bulk samples of all complexes were examined by PXRD and their patterns compared 

to those calculated from the X-ray crystal structures (Figures S12−S17). Compounds 1, 2, and 3a 

yielded excellent matches between experimental and calculated data. Oddly, compound 3b showed very 

weak response by PXRD. A ten-hour scan carried out under oil showed only weak response from the 

compound, which must be presumed to have lost its crystallinity. This lengthy scan brought out minor 

impurity peaks. As noted above, compounds 4 and 5 were very susceptible to loss of MeCN and THT, 

respectively. In these cases it was necessary to flash freeze an oil suspension of the compound in order 

to collect the PXRD data. Although these patterns also showed evidence of minor impurities, 

presumably due to loss of volatiles, they matched the calculated patterns of 4 and 5, respectively. 

 

Phase Conversion Studies 

The existence of multiple phases containing only CuI and THT presented the opportunity to study the 

interrelationship between them. Differential scanning calorimetry (DSC) was used to examine the 

conversion between polymorphs 3a (orange emission) and 3b (dull yellow emission) at modest 

temperatures. As can be seen in Figure 9, an endothermic transition was apparent for 3b at 38 °C. This 

presumably corresponded to the conversion 3b → 3a. In order to confirm this hypothesis, separate dry 

samples of 3a and 3b were heated to 35 and 45 °C in an oil bath while observing their luminescence 

emission color. At 45 °C the dull yellow emissive 3b sample was seen to convert to orange emissive 3a 

over the course of about an hour, while the 3a sample remained unchanged. At 35 °C the opposite 

transformation behavior was observed (3a → 3b, 3a remaining unchanged), this time taking overnight 

due to significant activation energy in the solid state. In the precipitation study from MeCN solution 

described above (see Figure 1), 3a also proved to be the (CuI)4(THT)4 polymorph formed at higher 

temperatures. The density of 3b (2.588 g/cm3) exceeds that of 3a (2.461 g/cm3). Thus, according to 
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Kitaigorodskii’s rule,25 it is expected that 3b is the more stable form at room temperature. This appears 

to be the case based on the results from DSC and controlled temperature solid state reactions. However, 

3a seems to be the kinetically favored product based on the grinding studies described below. 

 

Fig. 9. DSC traces for 3a and 3b. 

 

There appears to be yet another phase transition accessible to this system. When crystals of 3a were 

cooled on the diffractometer, a phase change was seen in the diffraction pattern at 213 K (−60 °C). 

Cooling of the crystals below 213 K invariably caused them to crack. As a result, their diffraction was 

rendered of lower quality, even after the sample was re-warmed back above 213 K. Of importance was 

the fact that the orange emission persisted when the sample was cooled through the phase change down 

to temperatures as low as 100 K. Therefore, it was apparent that this phase change did not represent 3a 

conversion to 3b. In fact, compound 3b itself showed no evidence of any phase change when cooled 

from ambient temperature to 100 K for data collection. Although the diffraction data of the new low-

temperature phase (3a') were not of sufficient quality to allow for structure determination, the unit cell 

was reliably indexed. Comparison of the unit cell parameters for 3a, 3a', and 3b is offered in Table 3. 

Conversion of 3a to 3a' appeared to alter the cell parameters only slightly, the major difference being 

the loss of right angles, producing a triclinic cell. The very modest nature of the phase change is 
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consistent with a relatively low activation barrier, and therefore kinetically facile phase change 

observed. Since the cell volume is unchanged, the number of unique cubane molecules present must 

increase from two in the 3a unit cell to four in 3a', assuming that centrosymmetry is preserved. In 

contrast to the large unit cell for 3a and 3a' in which the number of molecules (Z) is eight, 3b forms a 

simpler cell with a single independent cubane and a Z value of two.  

Grinding studies were carried out on 1, 2, 3a, and 3b to examine the mechanochemical conversions of 

the phases. The product phases noted in Table 4 were initially identified through observation of 

luminescence emission, and then confirmed via PXRD. Dry grinding of samples in the absence of added 

THT produced the following results: 1 remained unchanged, 2 → 1, 3a → 3a/3b mixture, and 3b → 1. 

Thus, in the absence of added THT, it appears that the more THT-rich phases ultimately convert to the 

most THT-poor compound 1. In the case of 3a added mechanical energy managed to produce some 

conversion to the thermodynamic product (at ambient temp.), i.e. 3b. Grinding results were quite 

different when THT was added to the sample. With a sufficient excess of THT present, all four other 

compounds converted to the non-emissive 5. When only a drop of THT was added, grinding of 1, 2, or 

3b produced 3a, which appears to be the kinetically favored of the cubane phases. Overall, it appears 

that 1 is preferred under moderately THT-deficient conditions, 3a is produced under moderately THT-

rich circumstances, and 5 is preferred in the presence of large THT excesses. These observations are 

consistent with the crystallization of 5 from neat THT, and also with its facile loss of THT from 5 when 

left in air to produce 3a. These results are summarized in Scheme 2. Behavior under vacuum was also 

studied. Compounds 1 and 2 are not affected by overnight vacuum treatment at 50 mTorr. However, 3a 

and 3b both convert to 1 under these conditions.  
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Luminescence Spectroscopy 

Four of the six compounds considered herein are strongly photoluminescent, each showing a distinct 

visible emission color upon irradiation with UV light. Of particular interest was the fact that two of 

these materials were actually polymorphs of the same compound, (CuI)4(THT)4, which appeared to 

exhibit different emission behavior (orange and dull yellow). The luminescence behavior, including 

lifetimes, of 1, 2, 3a, and 3b was studied at ambient and liquid nitrogen temperatures. The results are 

summarized in Table 5 and in Figures 10 and 11. Figure 10 shows excitation and emission traces for 

samples 1, 2, 3a, and 3b at 293 K and 77 K, highlighting thermochromism as well as compound specific 

behavior. For samples 3a and 3b at 77 K, dashed excitation traces correspond with dashed emission 

traces and solid excitation traces are likewise matched to solid emission traces. Figure 11 gives a closer 

view of compound specific emission of samples 1, 2, 3a, and 3b at 77 K.  

 

Fig. 10. Luminescence spectra showing normalized intensity (arbitrary units) for 1, 2, 3a, and 3b at 293 

K (upper traces) and 77 K (lower traces). 
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Fig. 11. Emission spectra of 1, 2, 3a, and 3b at 77 K. 

 

Given their spectroscopic similarity to well-known 3CC transitions seen for amine- and phosphine-

substituted CuI clusters,1,11b,12,13 the results here are interpreted likewise. Nevertheless, unlike nitrogen 

and phosphorus, sulfur donors bear an unused electron pair. Therefore, the possibility of ligand to Cu 

cluster transitions cannot strictly be ruled out without further computational study.  

All four species showed moderate energy peak excitation wavelengths (335−350 nm). However, in all 

cases emission was seen at relatively low energies (LE band, 519−590 nm) depending on the compound. 

Bands that could be described as HE are uniformly absent; this is due to the fact that THT lacks * 

ligand orbitals needed for XLCT or MLCT.12,13  

Modest but fully reversible thermochromic effects were encountered for all compounds. At ambient 

temperature, compound 1 shows single excitation and emission bands at 350 nm and 519 nm, 

respectively, shifting to 339 nm and 528 nm at 77 K. Similarly, 2 revealed excitation and emission 

bands at 335 nm and 552 nm, shifting to 330 nm and 575 nm at 77 K. Compound 3a displayed a very 

broad ambient temperature emission at 590 nm with peak excitation at 344 nm. This asymmetric 

emission band was found to split as the temperature was lowered to 77 K. The result was two coupled 

excitation/emission band pairs: 345/583 nm and 329/545 nm. Compound 3b also showed splitting at 

reduced temperature. The ambient temperature excitation and emission bands at 346 nm and 541 nm 

split into two coupled excitation/emission band pairs: 341/529 nm and 324/576 nm. The emission band 
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splitting seen in 3a and 3b may be the result of symmetry lowering at reduced temperature. It is relevant 

to recall that compound 3a is actually the lower symmetry 3a' at this temperature.  

To a first approximation the bands seen in these compounds are relatively similar to one another. 

Nevertheless, the subtle differences amongst them are instructive. Based on extensive precedent, the LE 

transitions seen may be attributed to 3CC behavior. Previous studies have definitively shown that the 

3CC transition is itself a combination of XMCT and MC components.12,13 Three metrics may be used to 

evaluate the contributions of these components: (1) Stokes shift, (2) thermochromic emission shift, and 

(3) emission lifetime. Because the XMCT involves transition from a largely In-cluster based HOMO to a 

largely Cun-cluster based LUMO (n = 2, 4, 6), it is accompanied by distortion of the cluster, resulting in 

a large Stokes shift. In addition, excited state cluster distortion brings the metal atoms into closer 

proximity to one another, increasing their degree of bonding and thus stabilizing the excited state. 

Longer wavelength emission is the result. A 3CC transition that is more heavily MC (3d10 → 3d94p1) 

would be expected to show a lesser degree of Stokes shift. 3CC transitions usually have lifetimes near 

10−20 s. However, it seems likely that lifetimes are apt to be longer for the more disruptive XMCT 

than for the MC.  

Phases 3a and 3b both show pairs of excitation/emission bands at reduced temperature. Considering 

3b at 77 K first, its pair of coupled bands shows differences in both Stokes shift and lifetime. The higher 

energy Stokes shift and longer lifetime (15.5 vs. 8.99 s) belong to the lower energy (LE1) 324/576 nm 

band (yellow emission). It is reasonable to assert that this 3CC band has greater 3XMCT character than 

does the higher energy band (LE2) 341/529 nm band (green emission). Furthermore, it is reasonable that 

the longer lifetime be associated the more disruptive 3XMCT process. 

For phase 3a at 77 K, it should be noted we are actually considering phase 3a' given the conversion 

noted in the crystallographic observations discussed above. Unlike 3b in which LE2 emission is 

associated with the higher energy excitation band, in 3a' LE2 is associated with the lower energy 
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excitation band. The two bands for 3a' show similar Stokes shifts (LE1 = 12,100 and LE2 = 12,000 

cm−1), but different lifetimes (LE1 = 15.0 s and LE2 = 9.97 s). Thus, using the criteria established 

above, there appears to be a more even balance between 3XMCT and 3MC character in the CC bands for 

3a. 

At 77 K, compound 2 also shows a relatively large Stokes shift (12,900 cm−1) and long lifetime (15.5 

s), and therefore should be regarded as largely 3XMCT in character. At 77 K the cubane network 

complex 1 shows a more modest Stokes shift (10,600 cm−1) and a shorter lifetime (10.4 s). These 

values are similar to those of the LE2 band for 3b and thus should be seen as being more 3MC in nature.  

 

Conclusions 

The CuI-THT system (from MeCN) is comprised of at least six distinct phases: green-emitting 

(CuI)4(THT)2 (1), yellow-emitting (CuI)10(THT)7(MeCN) (2), orange-emitting (CuI)4(THT)4 (3a), dull 

yellow-emitting (CuI)4(THT)4 (3b), non-emissive (CuI)3(THT)3•MeCN (4), and non-emissive 

(CuI)2(THT)4 (5). Compound 1 is a 3-D network consisting of Cu4I4 cubane units and 2-THT ligands. 

Compound 2 is a 1-D ladder consisting of {[Cu4I4(THT)](2-THT)2(Cu2I2)(2-THT)2[Cu4I4(NCMe)]} 

rungs connected by pairs of 2-THT links. Compounds 3a and 3b are simple (CuI)4(THT)4 molecules. 

Denser triclinic 3b is more stable than monoclinic 3a phase at 25 °C, converting to 3a at ≥38 °C. 3a 

shows a transformation to a triclinic phase (3a') that retains orange emission at −60 °C. Compound 4 is 

a 2-D sheet containing Cu3(THT)3 rings trigonally linked by rhomboid Cu2I2 dimer units with MeCN 

solvent molecules occupying large (Cu2I2)6(THT)6 rings. The dimer 5 consists of a Cu2I2 rhomboid core 

decorated with four THT ligands. Precipitation of CuI/THT mixtures from MeCN shows a trend with 

increasing temperature: 4 → 3b → 3a → 2 → 1. CuI-rich conditions, either during precipitation or solid 

state grinding favor the formation of 1. In contrast, reaction of CuI with neat THT or grinding of any of 
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the other solid phases in excess THT produces 5.  

Compounds 1, 2, 3a, and 3b are all photoemissive, showing long wavelength emission (519−590 nm) 

stimulated by near UV excitation (335−350 nm) at room temperature. These bands are attributed to 

cluster centered transitions which combine halide-to-ligand (XMCT) and metal-centered (MC) 

components. Both 3a and 3b show splitting into coupled pairs of excitation/emission bands at 77 K. It is 

hypothesized that the larger Stokes shift-longer lifetime features are associated with greater XMCT 

character. 
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Table 1. Crystal and structure refinement dataa 

 1 2 3a 

CCDC deposit no. 977480 977481 977482 

color and habit colorless block colorless prism colorless prism 

size, mm 0.35  0.25  0.23 0.38  0.12  0.09 0.35  0.16  0.15 

Formula C8H16Cu4I4S2 C30H59Cu10I10NS7 C16H32Cu4I4S4 

formula weight 938.09 2562.60 1114.41 

space group P212121(#19) P21/m (#11) P21/n (#14) 

a, Å 11.7527(2) 11.9107(4) 9.5824(2) 

b, Å 11.8972(2) 12.2273(4) 34.9161(6) 

c, Å 13.3762(2) 21.0371(6) 17.9841(3) 

, deg 90 90 90 

, deg 90 97.434(2) 91.2810(10) 

, deg 90 90 90 

volume, Å3 1870.32(5) 3038.00(17) 6015.62(19) 

Z 4 2 8 

calc, g cm−3 3.331 2.801 2.461 

F000 1696 464 4160 

(Cu K), mm−1 58.888 46.043 38.037 

temperature, K 100 123 250 

residuals:a R; Rw
 0.0458; 0.1169 0.0545; 0.1531 0.0476; 0.1182 

goodness of fit 1.080 1.140 1.064 
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Flack parameter 0.862(12) − − 

aR = R1 = ||Fo| − |Fc||/ |Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 for all 

data. 
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Table 1. Cont’d  

 3b 4 

CCDC deposit no. 977483 977484 

color and habit colorless prism colorless block 

size, mm 0.31 0.12 0.09 0.47  0.29  0.19 

Formula C16H32Cu4N4S4 C14H27Cu3I3NS3 

formula weight 1114.42 876.86 

space group P−1(#2) C2/c (#15) 

a, Å 9.5915(2) 22.7901(7) 

b, Å 10.8378(3) 13.2617(4) 

c, Å 15.7597(4) 16.0147(5) 

, deg 73.2170(10) 90 

, deg 72.4319(12) 90.1331(11) 

, deg 69.2273(11) 90 

volume, Å3 1429.64(6) 4840.2(3) 

Z 2 8 

calc, g cm−3 2.589 2.407 

F000 1040 3296 

(Cu K), mm−1 40.013 35.514 

temperature, K 100 100 

residuals:a R; Rw
 0.0501; 0.1621 0.0304; 0.0785 

goodness of fit 1.163 1.175 
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Flack parameter − − 

aR = R1 = ||Fo| − |Fc||/ |Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 for all 

data. 
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Table 2. Selected bond lengths (Å) and angles (o) for all complexes. 

 1 2a 3a 3b 4 5b 

Cu−I 2.610(2)-

2.756(3) 

2.6098(14)-

2.703(15) 

2.6469(16)-

2.709(3) 

2.650(3)-

2.728(3) 

2.5887(8)-

2.6418(7) 

2.637(1), 

2.639(1) 

Cu−S 2.312(4), 

2.317(4), 

2.325(4) 

2.307(4)-

2.361(6) 

2.284(3)-

2.380(7) 

2.292(4), 

2.293(4), 

2.302(4), 

2.306(4) 

2.3187(11)-

2.3517(10) 

2.318(2), 

2.331(3) 

Cu…Cu 2.636(3)-

2.759(3) 

2.650(5)-

2.754(3) 

2.6728(19)-

2.837(3) 

2.639(3)-

2.768(3) 

2.9653(14), 

2.9722(9) 

2.675(2) 

I−Cu−I 107.31(8)-

118.02(9) 

110.77(7)-

120.76(11) 

108.06(8)-

116.29(6) 

109.67(9)-

118.22(9) 

110.40(2), 

110.79(3), 

110.86(2) 

119.08(4) 

Cu−I−Cu 58.07(7)-

62.20(7) 

58.61(7)-

63.67(6), 

92.70(8), 

97.58(7) 

59.55(4)-

64.09(5) 

58.29(7)-

62.30(7) 

69.06(3), 

69.27(2), 

69.43(2) 

 

60.92(4) 

I−Cu−S 93.64(12)-

117.00(13) 

98.04(9)-

124.26(17) 

87.44(17)-

118.81(16) 

 

98.97(13)-

114.32(13) 

107.04(4)-

113.51(4) 

104.6(1), 

104.7(1), 

104.7(1), 

109.6(1) 

S−Cu−S − 98.96(17), 

99.08(15), 

105.39(19) 

− − 102.49(4), 

104.10(4), 

104.64(5) 

114.5(1) 

Cu−S−Cu 120.47(17), 

124.08(18) 

117.51(18)-

123.27(13) 

− − 120.26(5), 

121.40(5), 

128.78(5) 

− 

aBonding to Cu9 (10% occupancy) omitted. bData from ref. 4. 
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Table 3. Unit cell parameters for (CuI)4(THT)4 cubane polymorphic phases. 

 3a 3a'a 3b 

Temp., K 250 200 100 

Space group P21/n triclinic P P−1 

a, Å 9.5824(2) 9.69 9.5852(5) 

b, Å 34.9161(6) 16.38 10.8359(5) 

c, Å 17.9841(3) 36.39 15.7749(8) 

, ° 90 87.48 73.253(2) 

, ° 91.2810(10) 88.27 72.470(2) 

, ° 90 88.66 69.213(2) 

Volume, Å3 6015.62(19) 5858 1430.15(12) 

Z 8 (8) 2 

aLimited data set, structure solution not pursued. 
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Table 4. Grinding and vacuum study results. 

Initial 

Compound 

Dry Grinding 

Product  

Grinding Product 

with Drop of 

THT 

Grinding Product 

with Excess THT 

Vacuum Treatment 

(50 mTorr) 

1 1 3a 5 1 

2 1 3a 5 2 

3a 3a/3b 3a 5 1 

3b 1 3a 5 1 
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Compound T (K) λem (nm), [λex (nm)]  Stokes Shift (cm−1) Lifetime (μs) 

(CuI)4(THT)2, 1  293 519, [350] 9,700 12.1 

 77 528, [339] 10,600 10.4 

(CuI)10(THT)7(MeCN), 2 293 552, [335] 11,700 23.7 

 77 575, [330] 12,900 15.5 

(CuI)4(THT)4, 3a 293 590, [344] 10,200 19.1 

 77 583, [345] 12,100 15.0 

 77 545, [329] 12,000   9.97 

(CuI)4(THT)4, 3b 293 541, [346] 10,400 6.60 

 77 529, [341] 10,400 8.99 

 77 576, [324] 13,500 15.5 
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SYNOPSIS TOC: Multiple crystalline phases, including bridged networks and polymorphic Cu4I4 

tetramers, result from the reaction of CuI and tetrahydrothiophene (THT). Formation of the various 

phases from solution as a function of temperature and mixing ratio is studied, as is luminescence 

emission behavior. 
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