

W&M ScholarWorks

Reports

5-21-2018

# Simple Parameterized Models for Predicting Mobility, Burial and re-exposure of underwater munitions. SERDP Final Report MR-2224

Carl Friedrichs Virginia Institute of Marine Science

Sarah E. Rennie Johns Hopkins University Applied Physics Laboratory

Alan Brandt Johns Hopkins University Applied Physics Laboratory

Follow this and additional works at: https://scholarworks.wm.edu/reports

🔮 Part of the Environmental Engineering Commons, and the Oceanography Commons

#### **Recommended Citation**

Friedrichs, C., Rennie, S. E., & Brandt, A. (2018) Simple Parameterized Models for Predicting Mobility, Burial and re-exposure of underwater munitions. SERDP Final Report MR-2224. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.25773/gk95-bb88

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         |             | Form Approved                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|--|--|
| REPORT DO                                                                                                                                                                                                                                                                                                  |                                                                                                                 | OMB No. 0704-0188                                                                                                                                                                                                                                       |             |                                       |  |  |
| Public reporting burden for this collection of information is e<br>data needed, and completing and reviewing this collection of<br>this burden to Department of Defense, Washington Headqu<br>4302. Respondents should be aware that notwithstanding i<br>valid OMB control number. PLEASE DO NOT RETURN Y | wing instructions, searce<br>y other aspect of this co<br>(0704-0188), 1215 Jeffe<br>for failing to comply with | ching existing data sources, gathering and maintaining the<br>pllection of information, including suggestions for reducing<br>erson Davis Highway, Suite 1204, Arlington, VA 22202-<br>n a collection of information if it does not display a currently |             |                                       |  |  |
| 1. REPORT DATE (DD-MM-YYYY)                                                                                                                                                                                                                                                                                | 2. REPORT TYPE                                                                                                  |                                                                                                                                                                                                                                                         | 3. 🛙        | DATES COVERED (From - To)             |  |  |
| 21-05-2018                                                                                                                                                                                                                                                                                                 | Final                                                                                                           |                                                                                                                                                                                                                                                         | Ma          | rch 2012 - May 2018                   |  |  |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                      |                                                                                                                 | M. h. ' 1. ' L                                                                                                                                                                                                                                          | 5a.         |                                       |  |  |
| Simple Parameterized Model                                                                                                                                                                                                                                                                                 | s for Predicting                                                                                                | MODILITY, BUL                                                                                                                                                                                                                                           |             |                                       |  |  |
| and Re-Exposure of Underwa                                                                                                                                                                                                                                                                                 | ter Munitions                                                                                                   |                                                                                                                                                                                                                                                         | 50.         | GRANT NUMBER                          |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         | 5c.         | PROGRAM ELEMENT NUMBER                |  |  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                         | 5d.         | PROJECT NUMBER                        |  |  |
| <sup>1</sup> Friedrichs, Carl T.                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                         | MR          | -2224                                 |  |  |
| <sup>2</sup> Rennie Sarah E                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                         | 5e.         | TASK NUMBER                           |  |  |
| <sup>2</sup> Brandt Alan                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| Diana, man                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                         | 5f. '       | WORK UNIT NUMBER                      |  |  |
| 7 PERFORMING ORGANIZATION NAME(                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         | 2 C         |                                       |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         | 5. F        | IUMBER                                |  |  |
| <sup>1</sup> Virginia Institute of Mari                                                                                                                                                                                                                                                                    | .ne <sup>2</sup> Johns Hopł                                                                                     | kins University                                                                                                                                                                                                                                         |             |                                       |  |  |
| Science                                                                                                                                                                                                                                                                                                    | Applied Ph                                                                                                      | ysics Laborator                                                                                                                                                                                                                                         | су.         |                                       |  |  |
| Box 1346, 1375 Greate Road                                                                                                                                                                                                                                                                                 | 11100 John                                                                                                      | s Hopkins Road                                                                                                                                                                                                                                          |             |                                       |  |  |
| Gloucester Point, VA 23062                                                                                                                                                                                                                                                                                 | Laurel, MD                                                                                                      | 20723                                                                                                                                                                                                                                                   |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 9. SPONSORING / MONITORING AGENCY                                                                                                                                                                                                                                                                          | NAME(S) AND ADDRES                                                                                              | S(ES)                                                                                                                                                                                                                                                   | 10.         | SPONSOR/MONITOR'S ACRONYM(S)          |  |  |
| Strategic Environmental                                                                                                                                                                                                                                                                                    | 4800 Mark                                                                                                       | Center Drive                                                                                                                                                                                                                                            | SE          | RDP                                   |  |  |
| Research and Development                                                                                                                                                                                                                                                                                   | Suite 17D0                                                                                                      | 8                                                                                                                                                                                                                                                       |             |                                       |  |  |
| Program (SERDP)                                                                                                                                                                                                                                                                                            | Alexandria                                                                                                      | , VA 22350-3600                                                                                                                                                                                                                                         | ) 11.       | SPONSOR/MONITOR'S REPORT<br>NUMBER(S) |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 12. DISTRIBUTION / AVAILABILITY STATI                                                                                                                                                                                                                                                                      | EMENT                                                                                                           |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| Approved for public release                                                                                                                                                                                                                                                                                | o. distribution                                                                                                 | is uplimited                                                                                                                                                                                                                                            |             |                                       |  |  |
| Approved for public release                                                                                                                                                                                                                                                                                | e, distribution                                                                                                 | 15 dillimited                                                                                                                                                                                                                                           |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 13 SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| N/A                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 14. ABSTRACT                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| A compilation of 761 obser                                                                                                                                                                                                                                                                                 | vations of scour                                                                                                | -induced buria                                                                                                                                                                                                                                          | L and 406 c | bservations of initiation             |  |  |
| of motion of UXO-like obje                                                                                                                                                                                                                                                                                 | cts are presente                                                                                                | d. The main fac                                                                                                                                                                                                                                         | ctors that  | increase the scour-induced            |  |  |
| burial-to-diameter ratio (1                                                                                                                                                                                                                                                                                | B/D) under (i) c                                                                                                | urrents and (if                                                                                                                                                                                                                                         | i) waves ar | e the (i) Shields                     |  |  |
| parameter ( $	heta$ ) and (ii) Keu                                                                                                                                                                                                                                                                         | legan-Carpenter                                                                                                 | number. For cyl                                                                                                                                                                                                                                         | inders und  | ler waves, B/D additionally           |  |  |
| increases as the current c                                                                                                                                                                                                                                                                                 | omponent paralle                                                                                                | l to wave orbit                                                                                                                                                                                                                                         | als decrea  | ases, as $\theta$ increases, and      |  |  |
| as the angle between wave orbitals and a cylinder's axis increases. Cylinders bury most, then                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| spheres, and conical frustums bury least. Simple models dependent on these variables explain                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 85% of observed variance in B/D. Onset of motion is parameterized by $f_I \Theta_{Ucrit}$ , where $\Theta_{Ucrit}$ is                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| the critical object mobility parameter, and $f_{\scriptscriptstyle \rm I}$ accounts for inertia forces from time-varying                                                                                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| pressure gradients. $\Theta_{	ext{ucrit}}$ is observed to decrease systematically as D/k increases, where k is                                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| the bed roughness. Theory combined with observations lead to $f_I \Theta_{Ucrit} = a_1 (D/k)^{b1}$ . Observations                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| give $a_1 = 1.75$ and $b_1 = -0.72$ , which explains 89% of the observed variance in $f_{\tau}\Theta_{\text{maximage}}$ .                                                                                                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                         |             |                                       |  |  |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                          | · <b>L</b>                                                                                                      |                                                                                                                                                                                                                                                         |             | ÷ Utill.                              |  |  |
| underwater munitions, unex                                                                                                                                                                                                                                                                                 | ploded ordnance,                                                                                                | scour-induced                                                                                                                                                                                                                                           | burial, in  | nitiation of motion                   |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 47 LIMITATION                                                                                                                                                                                                                                           |             |                                       |  |  |
| 10. SECURITE CLASSIFICATION OF:                                                                                                                                                                                                                                                                            |                                                                                                                 | OF ABSTRACT                                                                                                                                                                                                                                             | OF PAGES    | Carl T. Friedrichs                    |  |  |

| 10. SECORITI CLAS | SIFICATION OF.   |                   | OF ABSTRACT | OF PAGES | Carl T. Friedrichs                                                 |
|-------------------|------------------|-------------------|-------------|----------|--------------------------------------------------------------------|
| a. REPORT<br>U    | b. ABSTRACT<br>U | c. THIS PAGE<br>U | SAR         | 72       | <b>19b. TELEPHONE NUMBER</b> (include area code)<br>(804) 684–7303 |

# **Table of Contents**

|              | Table of Contents                                                             | i   |
|--------------|-------------------------------------------------------------------------------|-----|
|              | List of Tables                                                                | i   |
|              | List of Figures                                                               | ii  |
|              | List of Acronyms                                                              | ii  |
|              | Key Words                                                                     | iii |
|              | Acknowledgements                                                              | iii |
| 1            | Abstract                                                                      | 1   |
|              | 1.1 Objectives                                                                | 1   |
|              | 1.2 Technical Approach                                                        | 1   |
|              | 1.3 Results                                                                   | 1   |
|              | 1.4 Benefits                                                                  | 2   |
| 2            | Objective                                                                     | 3   |
|              | 2.1 SERDP Relevance.                                                          | 3   |
| _            | 2.2 Technical Objectives                                                      | 3   |
| 3            | Background                                                                    | 4   |
|              | 3.1 Self-burial of Objects on Sandy Beds by Scour.                            | 4   |
|              | 3.2 Initiation of Motion of Objects on Sandy Beds                             | 6   |
| 4            | Materials and Methods.                                                        | 9   |
|              | 4.1 Compilation and Analysis Methods for Self-Burial of Objects by Scour      | 9   |
|              | 4.1.1 Self-burial of Objects Under Mean Currents Only                         | 10  |
|              | 4.1.2 Self-burial of Objects Under Waves Only                                 | 11  |
|              | 4.1.3 Self-burial of Objects Under Waves Plus Mean Currents                   | 12  |
| _            | 4.2 Compilation and Analysis Methods for Initiation of Motion of Objects      | 12  |
| 5            | Results and Discussion.                                                       | 15  |
|              | 5.1 Results and Discussion for Self-Burial of Objects by Scour                | 15  |
|              | 5.1.1 Self-burial by Scour Under Mean Currents Only                           | 15  |
|              | 5.1.2 Self-burial by Scour Under Waves and Under Waves Plus Currents          | 18  |
| $\mathbf{c}$ | 5.2 Results and Discussion for Initiation of Motion of Objects                | 24  |
| 07           | Literature Cited                                                              | 20  |
| /            | Annendiy A. Date Compilation for Equilibrium Solf Durial of Objects by Secure | 28  |
|              | Appendix A. Data Compliation for Equilibrium Self-Burial of Objects by Scour  | 32  |
|              | Appendix D. Data Compliation for Initiation of Motion of Objects              |     |
|              | Appendix C. List of Scientific/Technical Publications                         | 08  |

# List of Tables

| Table 1. Properties of cylinders and pipe segments used in self-burial by scour experiments  | 9   |
|----------------------------------------------------------------------------------------------|-----|
| Table 2. Properties of additional shapes used in scour burial experiments                    | 10  |
| Table 3. Environmental properties associated with observations of equilibrium burial depth   | .10 |
| Table 4. Properties at initiation of motion of objects with $D > 0.5$ cm on beds composed of |     |
| objects or roughness elements smaller than D                                                 | .13 |
| Table A1. Individual observations of self-burial of objects by scour, including object and   |     |
| environmental properties                                                                     | 32  |

| Table A2. Notes regarding sources of individual parameters in Table A1                                                                                   | .51 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table B1. Observations of initiation of motion of gravel clasts and spheres in steady flow                                                               | 54  |
| Table B2. Laboratory observations from William (2001) of initiation of motion of cylinders of                                                            | n a |
| smooth bed under waves                                                                                                                                   | 60  |
| Table B3. Laboratory observations of initiation of motion of cylinders placed on smooth and       Initiation of motion of cylinders placed on smooth and |     |
| rough beds under currents in the absence of waves                                                                                                        | 62  |
| Table B4. Notes regarding sources of individual parameters in Tables B1 to B3                                                                            | 66  |

## **List of Figures**

| Figure 1. Schematic of an object of diameter, D, that has buried to an equilibrium depth, B,          |     |
|-------------------------------------------------------------------------------------------------------|-----|
| below the mean height of the far field sand bed                                                       | .4  |
| Figure 2. Mobilizing forces on an object resting on the seabed                                        | . 6 |
| Figure 3. All observations of $B/D$ plotted as a function of $\theta$ and $KC$                        | 14  |
| Figure 4. All observations of <i>B/D</i> under steady currents in the absence of waves plotted as a   |     |
| function of $\theta$                                                                                  | 16  |
| Figure 5. B/D for steady currents normalized by the power-law relations from Fig. 4 and plotted       | t   |
| as a function of $\rho_o/\rho$ for large cylinders                                                    | 17  |
| Figure 6. All available observations of <i>B/D</i> for currents in the absence of waves, plotted as a |     |
| function the final parameterized model for <i>B/D</i> under steady flow                               | 18  |
| Figure 7. All observations of <i>B/D</i> that include waves, plotted as a function of <i>KC</i>       | 19  |
| Figure 8. (a) B/D normalized by the power-law relations from Fig. 7 and plotted as a function o       | f   |
| $U_{c  }/U_m$ . (b) <i>B/D</i> additionally normalized by the exponential relation from Fig. 8a and   |     |
| plotted as a function of $\cos \alpha$                                                                | 20  |
| Figure 9. B/D normalized by the functional relationships from Fig. 7 and Fig. 8, and plotted as       | a   |
| function of $\theta$ for all cases that include waves                                                 | 21  |
| Figure 10. B/D normalized by the functional relationships from Fig. 7 through Fig. 9, for all nor     | n-  |
| fluidized live-bed data from Fig. 9 available within the range $1.7 < \rho_o/\rho < 3.3$              | 22  |
| Figure 11. All available, non-fluidized, live-bed observations of <i>B/D</i> under waves (including   |     |
| cases with waves plus currents), plotted as a function of the final parameterized model for           | ſ   |
| <i>B/D</i> under waves                                                                                | 23  |
| Figure 12. Threshold for the initiation of motion of underwater objects                               | 25  |

### List of Acronyms

APL: Applied Physics Laboratory DoD: Department of Defense ESTCP: Environmental Security Technology Certification Program JHU: Johns Hopkins University SERDP: Strategic Environmental Research and Development Program UnMES: Underwater Munitions Expert System UXO: unexploded ordnance VIMS: Virginia Institute of Marine Science

#### Keywords

underwater munitions, scour burial, initiation of motion, parameterized models

#### Acknowledgements

Funding was provided by the Munitions Response program area of SERDP. We thank the investigators and program managers associated with the underwater munitions burial and mobility component of Munitions Response for their insights and feedback, including Joe Calantoni, Diane Foster, Marcelo Garcia, Blake Landry, Herb Nelson, Meg Palmsten, Jack Puleo, Mike Richardson, and Peter Traykovski.

# 1 Abstract

#### 1.1 Objectives

The objectives of this project were: (i) to identify and compile existing quantitative data from the scientific literature and from the coastal engineering, geology and Department of Defense (DoD) communities regarding the mobility, burial and re-exposure of unexploded ordnance (UXO) and UXO-like objects; (ii) to utilize these data to further develop and constrain simple, rational, parameterized models for UXO mobility, burial and re-exposure; and (iii) to provide these data and improved parameterized model formulations to SERDP investigators for use within a more sophisticated Underwater Munitions Expert System (UnMES) as well as providing them to the larger SERDP, DoD, coastal engineering, and scientific communities.

#### 1.2 Technical Approach

Relevant data were identified and compiled through searches of academic journals, thesis and dissertation databases, DoD reports, interlibrary loan, and the internet. SERDP colleagues also provided new data through targeted laboratory experiments designed to fill crucial gaps in parameter space. Development of parameterized models for (a) initiation of motion and (b) scour-induced burial were guided most directly by (a) geological literature on the motion of gravel and cobbles in streams and (b) coastal engineering literature addressing seabed pipelines. Data and improved parameterizations were provided to SERDP investigators through an iterative approach such that gaps in the data supporting parameterized model development were used to guide new lab experiments. Results were provided to the larger community via two peerreviewed articles: Friedrichs et al. (2016), which concentrated on object burial by scour, and Rennie et al. (2017), which focused additionally on the initiation of object motion. The findings of Friedrichs et al. (2016) and Rennie et al. (2017) that are most relevant to the objectives of MR-2224 are provided in this report. In addition, extensive tables in appendices to this report contain a tabular version of data synthesized by Friedrichs et al. (2016) and Rennie et al. (2017) and provide more detailed explanations of the sources of the individual data points.

## 1.3 Results

A compilation of 761 observations of scour-induced burial and 406 observations of initiation of motion of UXO-like objects are presented. The main factors that increase scour-induced burial-to-diameter ratios (B/D) under steady currents without waves are found to be an increased Shields parameter ( $\theta$ ) and small D (< 3 cm). For larger D, greater cylinder density also increases B/D under steady currents. The main factor that increases scour-induced B/D under wave-dominated conditions is an increased Keulegan-Carpenter number (KC). B/D additionally increases as the mean current component parallel to wave orbitals decreases. For cylinders under waves, B/D also increases as  $\theta$  increases and as the angle between wave orbitals and a cylinder's axis increases. All else being equal, cylinders bury most, then spheres, and conical frustums bury least. Parameterized models dependent on the above variables explain 85% of observed variance in B/D. The force balance for onset of motion is parameterized by the mobility criteria,  $f_I \Theta_{Ucrit}$  where  $\Theta_{Ucrit}$  is the critical object mobility parameter, and  $f_I$  accounts for the possible effect of a time-varying horizontal pressure gradient. The threshold mobility parameter for an object on a

rigid seabed is observed to systematically decrease as D/k increases, where k is the bed roughness. Theory combined with observations suggested a power law relationship of the form  $f_I \Theta_{Ucrit} = a_1 (D/k)^{b_1}$ . Using all complied data with D > 1 cm, the best-fit power-law coefficients at 95% confidence is determined here to be  $a_1 = 1.75 \pm 0.16$  and  $b_1 = -0.72 \pm 0.03$ , which explains 89% of the observed variance in  $f_I \Theta_{Ucrit}$ .

#### 1.4 Benefits

This project (MR-2224) led to a highly successful collaboration between the Virginia Institute of Marine Science (VIMS) and the Johns Hopkins University Applied Physics Laboratory (JHU/APL) (via SERDP MR-2227, led by S. Rennie and A. Brandt) in support of the Underwater Munitions Expert System (UnMES). Via this project and its collaboration with MR-2227, simple parameterized process models for initiation of motion and scour-induced burial of seabed UXO by waves and currents were incorporated into the initial version of UnMES by Rennie and Brandt. Before this effort, existing data on the initiation of motion and scour-induced burial of UXO-like objects had not been as thoroughly compiled and synthesized. The lack of simple, robust parameterizations based on a sufficiently wide range of lab and field data may have limited the ability of DoD to efficiently determine the potential for underwater UXO burial and/or migration. Through the results of this project, a better understanding and predictive ability regarding the initiation of motion and scour-induced burial of UXO has been made possible, potentially enhancing the ability of DoD to productively detect, characterize and remediate UXO-related safety hazards. The scientific and engineering communities has also benefited from a better and more unified understanding of fundamental controls on the interaction of sediment with UXO-like objects, based on a synthesis encompassing a wide range of object sizes, shapes and densities.

# 2 Objective

## 2.1 SERDP Relevance

As a result of past military training and weapons testing activities, many former DoD military bases and test sites are contaminated with abandoned underwater munitions that need to be remediated (SERDP, 2010). These unexploded ordnance (UXO) may have been displaced from their original locations due to local water currents and often are buried under sediment making them difficult to locate during cleanup efforts. Better understanding and predictive ability regarding the mobility, burial and re-exposure of UXO will enhance the ability of DoD to productively detect and thus characterize and remediate these environmental and safety hazards. Topics of interest to the Munitions Response Program within SERDP explicitly include, "...predicting the location of munitions relative to the sea floor: whether they are found proud of the sea bottom, partially buried, or completely buried in the sediment as a function of historical use and site conditions" (SERDP, 2011).

In order to be useful under real-world conditions, a spatially large yet locally-resolved modeling effort aimed at helping determine the likely location of munitions relative to the sea floor must be reasonably accurate and reliable, but also simple and cost-effective enough to practically execute in a timely fashion. Furthermore, some dynamic aspects of UXO interaction with the sea bed are, at this point in time, simply too complicated to predict from "first principles". Parameterized models utilize rationally-based physical scales to search for robust, site-independent empirical relationships between independent forcings and dependent physical behavior of interest. Parameterized modeling has a long history of success in numerous disciplines within science and engineering, including coastal processes and sediment dynamics.

## 2.2 Technical Objectives

The objectives of this project were:

(i) To identify and compile existing quantitative data from the scientific literature and from the coastal engineering, geology and DoD communities regarding the mobility, burial and re-exposure of UXO and UXO-like objects;

(ii) To utilize these data to further develop and constrain simple, rational, parameterized models for UXO mobility, burial and re-exposure; and

(iii) To provide these data and improved parameterized model formulations to SERDP/ESTCP investigators for use within a more sophisticated Underwater Munitions Expert System (UnMES) as well as providing them to the larger DoD, coastal engineering and scientific communities.

# **3** Background

## 3.1 Self-burial of Objects on Sandy Beds by Scour

When an object sitting on the bed extends above the surrounding bed roughness, the object will alter the local flow pattern relative to the far field boundary layer. Such perturbations increase the velocities and stresses impinging on surface sediment immediately adjacent to the object. Nearby grains tend to be dispersed, resulting in a scour pit or pits that deepen until the tendency for sediment to be dispersed is balanced by a tendency for sediment to fall back into the pit(s). The difference in pressure at the bed upstream and downstream of the object may also drive seepage flow that can cause piping and tunnel erosion under the object (Whitehouse 1998, Sumer & Fredsøe, 2002, Voropayev et al., 2003).



Figure 1. Schematic of an object of diameter, *D*, that has buried to an equilibrium depth, *B*, below the mean height of the far field sand bed. Modified from Cataño-Lopera et al. (2007).

As a result of the above processes, the object may eventually become unstable and settle into the scoured depression, reducing the object's exposure height (Fig. 1). For a given object, surrounding sediment, and far field hydrodynamics, an equilibrium value for the depth of scour-induced self-burial (B) is anticipated to be a function of the far field waves and currents, the properties of the surrounding sediment, and the size, shape and density of the object (Sumer & Fredsøe, 2002, Cataño-Lopera et al., 2007, 2011).

Two parameters have been identified most often in the literature as fundamental, overarching controls on the equilibrium depth of self-burial by scour for objects on sandy beds: the Shields parameter and the Keulegan-Carpenter number.

The sediment Shields parameter ( $\theta$ ), which is a dimensionless representation of bed shear stress ( $\tau_b$ ), is given by:

$$\theta = \tau_b / \left[ \left( \rho_s - \rho \right) g \, d_{50} \right] \tag{1}$$

where  $\rho_s$  is grain density (2.65 g/cm<sup>3</sup> for quartz sand),  $\rho$  is fluid density (taken here to be 1.0 g/cm<sup>3</sup>), g is acceleration due to gravity (9.81 m<sup>2</sup>/s), and  $d_{50}$  is the median bed grain size. The Shields parameter is proportional to the drag force acting on a sand grain, which tends to mobilize the grain, divided by the immersed weight of the sand grain, which tends to keep the grain stationary.

If an object enhances turbulence enough to initiate local sediment motion, but far-field  $\theta$  is below its critical value for sediment motion ( $\theta_{cr}$ ), then scour around the object is known as clear-

water scour. For  $\theta > \theta_{cr}$ , (where  $\theta_{cr} \approx 0.03$  to 0.06 for well-sorted sand with  $(\tau_b/\rho)^{1/2} d_{50}/v^3 \ge 4$ , and v is kinematic viscosity), scour around an object is known as live-bed scour (Whitehouse, 1998).

The Keulegan-Carpenter number (KC), is given by:

$$KC = U_m T D \tag{2}$$

where  $U_m$  is maximum near-bed wave plus current velocity, T is wave period, and D is object diameter. KC is proportional to the ratio of the maximum orbital particle excursion distance,  $A = U_m T/(2\pi)$ , to the object diameter, such that  $KC = 2\pi A/D$ . (Note that  $U_m \ge U_w$ , where  $U_w$  is the amplitude of the wave orbital velocity alone; i.e.,  $U_m$  includes the near-bed mean current,  $U_c$ , while  $U_w$  does not.)

If *KC* is small, vortices are more likely to be concentrated closer to the object, while if *KC* is large, vortices will be swept farther from the object. Thus narrower, steeper scour pits may be expected at small *KC*, while wider, more gently sloped scour pits may be expected at larger *KC*. Wider scour pits may then, in turn, shelter an object from ambient flow less, exposing the object to higher near-bed velocities and ultimately lead to deeper scour (Sumer & Fredsøe, 2002). *KC* is also proportional to the ratio of the wave boundary thickness ( $\delta$ ) to object diameter, and it has previously been found that the depth of scour tends to increase with greater  $\delta$ . (Sumer & Fredsøe, 2002).

Based on the existing literature, it is not immediately clear if  $\theta$  or *KC* is typically more important, or if both are usually needed to successfully predict *B/D*. For individual sets of observed data describing the self-burial of objects by scour on sandy beds, several authors have previously found  $\theta$  to be the dominant parameter (Whitehouse, 1998; Cataño-Lopera et al., 2007, Demir & García, 2007, Friedrichs 2007). Some have found only *KC* to be necessary (Sumer et al., 2001; Truelsen et al., 2005; Cataño-Lopera et al., 2011); and others have argued that both are needed (Stansby & Starr, 1992; Voropayev et al., 2003; Cataño-Lopera & García, 2006.)

When the direction of a relatively weak mean current is parallel to wave orbital velocity, the depth of scour under pipelines and self-burial of cylinders has been found to decrease as the strength of the near-bed mean current ( $U_c$ ) increases (up to  $U_c/U_m \approx 0.5$ ) (Sumer & Fredsøe, 2002, Cataño-Lopera & García, 2006). This occurs because, if  $U_c$  and  $U_w$  are parallel, the wave and current oppose each other during half of wave cycle, reducing the intensity of the lee wake on one side.

Depth of scour under pipelines and self-burial of cylinders has also been found to decrease if the angle ( $\alpha$ ) between maximum velocity and a pipeline or cylinder's axis remains small throughout the scour process (Sumer & Fredsøe, 2002, Cataño-Lopera & García, 2007).

The density of the object ( $\rho_o$ ) can further affect *B/D*. Under conditions of a liquefied sand bed, pipelines tend to rise through the bed for  $\rho_o < \rho_{cr}$ , and sink for  $\rho_o > \rho_{cr}$ , where  $\rho_{cr}$  is the critical density for object flotation (Sumer, 2014). In the absence of liquefaction, Cataño-Lopera & García (2006) still observed a tendency for heavy cylinders to bury deeper. Cataño-Lopera et al.

(2007) found bed fluidization rather than classic scour to dominate burial of cylinders in sand for  $\theta > 0.7$  to 0.8.

Far-field geological affects, including bedform migration (Voropayev et al., 1999), subsurface resistant layers (McNinch et al., 2006), and large-scale erosion or deposition (Jenkins et al., 2007), can also affect the burial depth of objects subject to scour on a sandy bottom. Since bedform height and length both scale with grain size, and objects settle at least to the base of troughs if bedform wavelengths are large compared to *D* (Voropayev et al., 1999), one may expect *B/D* to increase as  $d_{50}/D$  increases (after accounting for the inverse effect of  $d_{50}$  in  $\theta$ ).

Finally, the shape of the object is likely to affect the depth of scour-induced burial. For example, Cataño-Lopero et al. (2011) found that conical frustums produce significantly less scour and selfburial than cylinders of similar *D* under similar wave forcing. This is likely because cone shapes offer less resistance to flow than cylinders and thus shed weaker vortices (Sumer & Fredsøe, 2002).

#### 3.2 Initiation of Motion of Objects on Sandy Beds

The underwater initial movement of various objects, including gravel, cobbles and spheres, has been parameterized in the past by considering the competing forces of fluid drag ( $F_D$ ), lift ( $F_L$ ), immersed weight ( $F_W$ ), and inertia ( $F_I$ ), the magnitudes of which are reasonably well represented by the following equations and schematically shown in Fig. 2a (Wiberg & Smith, 1987).



Figure 2. Mobilizing forces on an object resting on the seabed. (a) Object on a rough bed subject to a steady current and the presence of a bottom slope  $\beta$ ; (b) Object of diameter *D* partially blocked by neighboring objects of diameter  $d_{bed}$  with effective roughness length scale *k*, and friction angle  $\phi$  about pivot point *P*. In this hypothetical example, the Nikuradse effective roughness  $k \approx 0.75 d_{bed}$  for spheres. Diagram adapted from Kirchner et al. (1990) and Wiberg & Smith (1987).

In Eq. (3) to (6),  $\rho_o$  is the object density;  $C_D$ ,  $C_L$  and  $C_I$  are drag, lift and inertia coefficients;  $A_D$  and  $A_L$  are the projected vertical and horizontal cross-sectional areas of the object exposed to drag and lift; and  $V_T$  and  $V_I$  are the total object volume and the object volume exposed to flow. (Note that  $F_I/C_I$  is equal to the inertial response of an object-sized volume of water responding to a time-varying horizontal pressure gradient. Thus  $F_I$  is a measure of the time-varying horizontal pressure gradient force acting on the object.) Following James (1993), U is defined to be the far field velocity at a height near the top of the object. In this context, U is defined as the instantaneous velocity, averaged over turbulent scales but not averaged over waves.

The threshold of motion condition occurs when the sum of mobilizing forces acting on the object just exceeds the sum of stabilizing forces. If initial motion occurs by rotation about a single pivot point, P, then it is appropriate to evaluate the moments of force about P, where the pivot angle,  $\phi$ , is the angle between the horizontal (x) axis and a line tangential to P (see Fig. 2b) (Komar & Li, 1988, James, 1993). If the distance from P to the line of action for each force is about the same, then the threshold condition is given simply by balancing the sum of forces in the horizontal and vertical directions:

$$(\cos\phi) (F_D + F_I + F_W \sin\beta_b) = (\sin\phi) (F_W \cos\beta_b - F_L)$$
(7)

where  $\beta_b$  is the slope of the bed and  $\phi$  is also known as the angle of repose. Under conditions of no flow,  $F_D = F_L = F_I = 0$ , and incipient motion occurs when  $\phi = \beta_b$ . For homogeneous gravel-sized particles, the angle of repose measured in laboratory experiments ranges from 20° to 40° (Li & Komar, 1986), depending on particle shape and pivot geometry.

If initial motion occurs by more complex motion than pivoting (e.g. sliding),  $\phi$  can be operationally defined by Eq. (7) (i.e. independent of pivoting), such that tan  $\phi$  is set equal to the ratio of the net force in the horizontal direction relative to the net force in the vertical when incipient motion occurs (Garcia, 2008). With that logic mind,  $\phi$  is also known as the friction angle (Kirchner et al., 1990) and  $\mu = \tan \phi$  is known as the friction coefficient (Garcia, 2008). In this context,  $\mu$  can be used to quantify frictional resistance to initiation of motion whether an object initially moves by pivoting, by sliding, or by some more complex motion.

To highlight the role of fluid drag relative to submerged weight, one can re-express  $F_I$  and  $F_L$  in terms of  $F_D$ , and place the ratio of  $F_D$  to  $F_W$  to the left hand side of the balance. Doing so for threshold conditions then yields

$$f_{I} \Theta_{Ucrit} = \alpha_{t} \gamma [\mu (\cos \beta_{b}) - (\sin \beta_{b})] / [1 + \mu (f_{L}/f_{I})]$$
(8)  
where  $f_{I} = |F_{D} + F_{I}|/F_{D}$ ;  $\gamma = (2 V_{T})/(C_{D} D A_{D})$ ;  $f_{L} = F_{L}/F_{D}$ ; and  
 $\Theta_{U} = U^{2}/[g D (\rho_{o}/\rho - 1)]$ 
(9)

where  $\Theta_U$  is the object's mobility number (Nielsen, 1992), and the subscript "crit" in Eq. (8) indicates the critical value for initiation of object motion. The parameter  $\alpha_t$ , where  $\alpha_t \le 1$ , is

introduced in Eq. (8) to allow for the role of turbulent fluctuations in U causing brief peaks in the mobilizing forces, which reduces  $\Theta_{Ucrit}$  (Komar & Li, 1988).

Additional simplifications to Eq. (8) are common when considering the initiation of motion of objects such as gravel or cobbles. Often, the far-field bed is considered to be effectively horizontal ( $\beta_b \approx 0$ ) although it is simple to reintroduce bed slope when relevant. If flow is steady, or for a situation where surface waves are present and the wave orbital excursion distance is much larger than *D*, then  $f_I \approx 1$ . In that case Eq. (8) reduces to

$$\Theta_{Ucrit} = \alpha_t \gamma \mu / (1 + \mu f_L)$$
(10)

Studies of mixed sediment sizes as well as mixed sizes of ellipsoids and spheres (Miller & Byrne, 1966; Li & Komar, 1986) suggest that the friction coefficient,  $\mu = \tan \phi$ , for individual objects sitting atop a non-cohesive sediment bed is a systematically decreasing function of the diameter of the object, *D*, relative to the roughness of the surrounding bed, *k*, expressed in terms of the ratio *D/k*. The physical basis for a decrease in  $\mu$  as *D/k* increases is that the larger *D* is relative to *k*, the larger the protrusion of the object into the flow, and the easier it is for an object to pivot or slide over the underlying bed roughness. Conversely, the smaller *D* is relative to *k*, the more likely the underlying bed roughness will prevent object motion. In sediment dynamics (Soulsby, 1997), the roughness of the sea bed is characterized by the roughness length  $z_0$ , which is defined by the structure of the velocity profile within the bottom boundary layer, where  $U(z) \approx (u*(0.41) \log(z/z_0))$ , and  $u* = (\tau_b/\rho)^{1/2}$ . Alternately,  $z_0$  is estimated by the Nikuradse roughness, which gives  $k = 30 z_0$  under fully rough turbulence (Soulsby, 1997).

For the case of spheres of various sizes, a complete solution for  $\gamma \mu/(1 + \mu f_L)$  for the right hand side of Eq. (10) as a function of D/k can be obtained from existing literature values. For a sphere placed atop a closely packed bed of similar underlying spheres, geometry (with  $V_T = (4/3)\pi(D/2)^3$ and  $A_D = \pi(D/2)^2$ ), gives  $\gamma = 4/(3 C_D)$ . For the present focus on UXO-like objects, the range of object Reynolds numbers is  $Re = DU/\nu \approx 10^3$  to  $10^5$  (with  $D \approx 1$  to 20 cm,  $U \approx 10$  to 50 cm/s, and  $\nu \approx 10^{-2}$  cm<sup>2</sup>/s). For that range of Re, spheres have  $C_D \approx 0.4$  (Schlichting & Gersten, 2000), therefore  $\gamma = 3.33$ , and  $f_L \approx 0.8$ . Laboratory measurements of the angle of repose for spheres, Li & Komar (1986) found a good fit to  $\phi$  in degrees of  $\phi = 20.4^{\circ} (D/d_{bed})^{-0.75}$  where  $d_{bed}$  is the bed sphere diameter. Defining k as the bed Nikuradse roughness (Garcia, 2008), such that  $k = 30 z_0$  in rough turbulence, then the results of Schlichting & Gersten (2000) for a bed of close-packed spheres gives  $k = 0.75 d_{bed}$ , so that  $\phi = (25.3 (D/k)^{-0.75})^{\circ}$ . Putting these all together, we then have for spheres:

$$\Theta_{Ucrit} = 3.3 \ \alpha_t \tan[(25.3(D/k)^{-0.75})^{\circ}] \left\{ 1 + 0.8 \ \tan[(25.3(D/k)^{-0.75})^{\circ}] \right\}^{-1}$$
(11)

Given the explicit dependence of Eq. (11) on D/k,  $\mu/(1 + \mu f_L)$  in Eq. (10) is expected to be a function of D/k for UXO-like objects, and therefore the critical object mobility number will depend on the ratio of the object diameter to the bed roughness. Translating degrees to radians and solving for the asymptote for (11) at large D/k gives  $\Theta_{Ucrit} \approx 1.46 \alpha_t (D/k)^{-0.75}$ .

For bottom-sitting objects subjected to short period waves, the inertial response to time-varying pressure gradients,  $F_I$ , can be a significant contributor relative to the drag force,  $F_D$ . For a nearbed wave orbital described by  $U = U_W \sin(2\pi t/T)$ , it follows from the definitions of  $f_I$ ,  $F_D$ , and  $F_I$  that the maximum value for  $f_I$  over the wave cycle in the absence of a mean current is approximately

$$f_I = (F_D^2 + F_I^2)^{1/2} / F_D \approx (1 + 16\pi^2 (C_I / C_D)^2 (KC)^{-2})^{1/2}$$
(12)

Sumer & Fredsoe (2006) indicate that for a cylinder on a bed,  $C_I/C_D \approx 2$  for  $KC < \sim 30$ . (As  $KC \rightarrow \infty$ , the flow becomes effectively steady;  $F_D$  dominates  $F_I$ , and  $f_I \rightarrow 1$ .) Thus, to compare  $\Theta_{Ucrit}$  for conditions where the ambient flow is oscillatory or otherwise accelerating to those where the flow is steady, the values of  $\Theta_{Ucrit}$  for the former can be divided by  $f_I$  to account for the role of the time-varying pressure gradient.

#### **4** Materials and Methods

#### 4.1 Compilation and Analysis Methods for Self-Burial of Objects by Scour

Sufficiently complete data on the equilibrium self-burial depth of objects on sandy beds, associated object and sand properties, and wave and current forcing were identified in 18 papers, reports, theses and dissertations (see Tables 1 to 3). A total of 761 data points for *B/D* were compiled, including 667 measurements for self-buried cylinders, 58 for conical frustums, 25 for spheres, and 11 for tapered cylinders. The data include 379 cases measured under waves only, 256 under waves plus mean currents, and 126 under steady currents; 694 are laboratory measurements, while 67 are field measurements. The compiled data sets are provided in detailed tabular form in Appendix A of this report.

| $\overline{N}$ | Reference                   | D         | L         | $\rho_0$          |
|----------------|-----------------------------|-----------|-----------|-------------------|
|                |                             | cm        | cm        | g/cm <sup>3</sup> |
| 1              | Carstens & Martin (1963)    | 1.3-8.8   | 5.1-35.1  | 2.7               |
| 2              | Starr (1989)*               | 1.3-2.5   | 15.0-45.0 | 1.8-10.6          |
| 3              | Sumer & Fredsøe (1994)*     | 11.0      | 198       | 1.3-6             |
| 4              | Sumer et al. (2001)*        | 2.0-10.0  | 59.4-198  | 1.3-6             |
| 5              | Cataño-Lopera (2005)        | 5.1-25.4  | 20.3-102  | 2.0-7.8           |
| 6              | Demir & García (2007)       | 7.5-12.5  | 20.0-34.4 | 2.3-7.8           |
| 7              | Cataño-Lopera et al. (2007) | 8.6-10.0  | 20.0-34.4 | 2.3-2.7           |
| 8-14           | ONR-MBP <sup>+</sup>        | 47.0-53.3 | 150-203   | 2.0-2.4           |
| 15             | Rennie et al. (2017)        | 2.5-10.5  | 9.9-32.0  | 1.2-7.9           |

Table 1. Properties of cylinders and pipe segments used in self-burial by scour experiments. N = reference number, D = diameter (vertical dimension), L = length (horizontal dimension),  $\rho_0 =$  object density. Dashes indicate range of values reported.

\*Cylinders horizontally fixed; others free to move horizontally. +Office of Naval Research Mine Burial Program data sources are (8) Bower et al. (2007), (9) Bradley et al. (2007), (10) Mayer et al. (2007), (11) Traykovski et al. (2007), (12) Trambaris et al. (2007), (13) Wolfson (2005), and (14) Wolfson

et al. (2007), (12) Trembanis et al. (2007), (13) Wolfson (2005), and (14) Wolfson et al. (2007).

| $\overline{N}$ | Reference                                         | D        | L         | $\rho_{0}$        |
|----------------|---------------------------------------------------|----------|-----------|-------------------|
|                |                                                   | cm       | cm        | g/cm <sup>3</sup> |
| 16             | Truelsen et al. (2005)<br>(spheres)               | 3.0-7.3  | 3.0-7.3   | 2.0-4.0           |
| 17             | Cataño-Lopera et al. (2011)<br>(conical frustums) | 7.5-25.0 | 15.0-50.0 | 2.0               |
| 18             | Pang & Liu (2014)<br>(tapered cylinders)          | 5.0      | 22.0      | 2.7               |
| 19             | Rennie et al. (2017)<br>(tapered cylinders)       | 7.9      | 31.8      | 2.4               |

Table 2. Properties of additional shapes used in scour burial experiments. Symbols as in Table 1.

Table 3. Environmental properties associated with observations of equilibrium burial depth, including range of values. N = reference number,  $d_{50}$  = median bed grain size,  $U_w$  = wave orbital velocity amplitude, T = wave period,  $U_c$  = current velocity, h = water depth, B/D = burial depth/object diameter.

| $\overline{N}$    | <i>d</i> <sub>50</sub> | $U_w$  | Т        | Uc     | h         | B/D       |
|-------------------|------------------------|--------|----------|--------|-----------|-----------|
|                   | mm                     | cm/s   | sec      | cm/sec | т         |           |
| 1*                | 0.30-0.59              | 27-76  | 3.6      | 0      | 0.30      | 0.29-1.59 |
| 2                 | 0.22                   | 0-29   | 1.6-2.6  | 0-37   | 0.25      | 0.04-0.81 |
| 3-4               | 0.18-0.20              | 0-50   | 1.5-3.5  | 0-54   | 0.20-0.33 | 0.19-0.82 |
| 5                 | 0.25                   | 15-55  | 1.4-6.9  | 0-17   | 0.56      | 0.02-0.77 |
| 6-7*              | 0.25                   | 0-80   | 3.0-12.0 | 0-45   | 0.60      | 0.15-1.00 |
| 8-14 <sup>+</sup> | 0.14-0.65              | 50-128 | 6.1-9.6  | 10-40  | 12-13     | 0.02-1.17 |
| 15                | 0.42                   | 0      | $\infty$ | 20-60  | 0.46      | 0.02-2.27 |
| 16                | 0.18                   | 0-42   | 1.1-480  | 0-40   | 0.30-0.54 | 0.02-0.57 |
| 17                | 0.25                   | 20-65  | 1.5-5.7  | 0-15   | 0.60      | 0.02-0.15 |
| 18                | 0.12-0.21              | 25-39  | 1.5-2.0  | 0      | 0.30      | 0.58-1.06 |
| 19                | 0.42                   | 0      | $\infty$ | 30-58  | 0.46      | 0.12-1.17 |

\*U-tube; +field observations ( $U_w = U_{w1/3}$ ); others lab flumes.

**4.1.1 Self-burial of Objects Under Mean Currents Only:** The far-field bed stress  $(\tau_b/\rho = u_*^2)$  under mean currents in the absence of waves was calculated following Yalin (1992) as presented in García (2008). The mean current,  $U_{obs}$ , observed at height  $z_{obs}$  above the far-field mean bed elevation was used to solve for shear velocity,  $u_*$ , in

$$\frac{U_{obs}}{u_*} = \frac{1}{\kappa} \log\left(\frac{z_{obs}}{k}\right) + B_s \tag{13}$$

where  $B_s$  in an empirical function of the roughness Reynolds number,  $Re_* = u_*k/v$ , which is given by

$$B_{s} = 8.5 + \left[2.5\log(Re_{*}) - 3\right]e^{-0.12l\left[\log(Re_{*})\right]^{2.42}}$$
(14)

In the above, v is kinematic viscosity of water (set to  $10^{-6} \text{ m}^2/\text{s}$ ),  $\kappa = 0.41$  is the von Karman constant, and  $k = 2.5d_{50}$  is the bed roughness height. An advantage of Eqs. (13) – (14) is that they simultaneously represent hydraulically smooth and rough turbulence, as well as the transitional range between them (García, 2008).

The Shields parameter under mean currents was calculated via Eq. (1) using the value of  $\tau_b/\rho = u^{*2}$  determined from Eqs. (13) – (14). In applying Eqs. (13) – (14) in our analysis,  $u^*$  represents skin friction, and we do not adjust  $u^*$  to compensate for the possible effects of bedforms. Under steady currents in the absence of waves, the value assigned to the Keulegan-Carpenter number is  $KC = \infty$ .

**4.1.2 Self-burial of Objects Under Waves Only:** Bed stress under waves in the absence of currents was calculated via the equation

$$\tau_b = 0.5\rho f_w U_w^2 \tag{15}$$

where  $f_w$  is the wave friction factor, and  $U_w$  is the amplitude of the near-bed wave orbital velocity. All the wave-only data identified for this analysis was collected in lab flumes, and  $U_w$  is taken to be equal to the amplitude of the near-bed orbital velocity as reported in the references or as calculated from observed wave height assuming linear wave theory. No further adjustment of  $U_w$  was made to account for the elevation of the observation relative to the bed.

The wave friction factor was calculated using the formulation of Myrhaug & Slaattelid (1990) as presented by Demir & García (2007):

$$\frac{0.32}{f_w} - 1.64 = \left\{ \log(6.36f_w^{0.5}A/k) - \log\left[ 1 - \exp\left(-0.262\frac{R_w f_w^{0.5}}{(A/k)}\right) + \frac{4.71(A/k)}{R_w f_w^{0.5}}\right] \right\}^2$$
(16)

where  $R_w = U_w A/v$  is the wave Reynolds number and  $A = U_w T/(2\pi)$  is the amplitude of the wave orbital excursion distance. Like Eq. (14), Eq. (16) has the advantage of representing hydraulically smooth and rough turbulence as well as the transitional range between them (Demir & García, 2007). In the absence of currents,  $KC = U_m T/D = U_w T/D$ , because  $U_m = U_w$ when  $U_c = 0$ .

**4.1.3 Self-burial of Objects Under Waves Plus Mean Currents:** For the case of waves plus mean currents, where  $U_c$  is significantly less than  $U_w$ , Eqs. (15) and (16) can still be used to estimate  $\tau_b$ , but with  $U_w$  supplemented by an appropriate contribution from  $U_c$  (Cataño et al., 2011). The maximum wave plus current velocity  $(U_m)$ , which replaces  $U_w$  in the presence of waves plus currents, was calculated in the present study as

$$U_{m} = \sqrt{U_{w}^{2} + U_{c}^{2} + 2U_{w}U_{c} \left|\cos\beta\right|}$$
(17)

where  $\beta$  is the angle between  $U_w$  and  $U_c$ , and  $U_c$  is calculated as described in Section 2.1. Under waves plus currents,  $U_m$  is used in calculating A,  $R_w$  and  $f_w$ , as well as  $\tau_b$  and KC. For collinear combined waves and currents in wave flume observations,  $\beta = 0$ .

For the field observations examined in this paper,  $U_w$  in Eq. (17) was estimated from observations following the guidance of Myrhaug & Ong (2009) for a natural oceanic random wave spectrum. The orbital velocity amplitude corresponding to the highest 1/3 among random waves ( $U_{w1/3}$ ) in a stationary narrow-band sea state is used here, as it is reasonable to assume that it is mainly the highest waves that are responsible for the scour process (Myrhaug & Ong, 2009). Here  $U_w = U_{w1/3}$  is calculated as  $U_{w1/3} = 2\sigma_U$  (Dean & Dalrymple, 1991), where  $\sigma_U$  is the standard deviation of the instantaneous velocity time-series over the course a ~10 minute "burst". Following Friedrichs (2007), the most energetic burst preceding each observation of B/D is chosen to represent  $U_w$ . It is assumed that each high-energy wave event (each typically a day to several days in duration) lasted long enough for self-burial to reach its equilibrium value.

The field observations considered here were collected on the inner shelf, between 1 and 10 km offshore, and all at  $h \approx 12$  m (Trembanis et al., 2007). During wave events large enough to induce significant seabed scour at these locations,  $U_w$  and  $U_c$  tend to be at a relatively large angle to each other, and here we let  $\beta = 90^\circ$  in Eq. (17) for the field cases.

Finally, Eqs. (13) – (14) were used to adjust  $U_{obs}$  to a consistent mean current reference value,  $U_c$ , that could be used to compare current forcing across experiments. Here we define  $U_c$  to be the current speed that is predicted by Eqs. (13) – (14) at z = D.

## 4.2 Compilation and Analysis Methods for Initiation of Motion of Objects

Sufficiently complete data on the initiation of motion of objects under waves or currents with object diameters larger than the surrounding roughness were identified in 14 papers, reports, theses and dissertations (Table 4). A total of 406 data points for initiation of motion were compiled, including 182 measurements for gravel clasts, 28 for glass spheres, and 196 for cylinders of various densities. 132 of the gravel measurements were from natural streams; all other measurements were from lab experiments. 68 of the cylinder measurements were collected under waves; all other measurements were under unidirectional flow. For gravel and spheres, only cases for which D > 0.5 cm and for which D is larger than the bed grain size are reproduced here. The compiled data sets are provided in detailed tabular form in Appendix B of this report.

Compilation of the data summarized in Table 4 required definitions for bed roughness, k, and procedures for estimating  $U_{crit}$  at z = D. For observations over rough beds, k was taken to be the far-field effective bed roughness as defined by the Nikuradse equivalent roughness height. Following this convention, the effective roughness of gravel beds in the absence of bedforms is approximately  $k = 2.5 d_{50}$  (Garcia, 2008) and that for a bed of close-packed uniform spheres is  $k = 0.75 d_{bed}$  (Schlichting & Gersten, 2000). For steady flow over smooth beds,  $z_0 = v/(9u_*)$ , and k was set to a minimum value of  $k = 30 v/(9u_*)$ . For cases with a carpeted bed, following Rennie et al. (2017), k was set to 0.5 times the carpet's fiber height. For cylinders on a smooth bed roughned with a coating of sand of diameter  $d_{coat}$ , a contribution of  $k = 2.5 d_{coat}$  was utilized in the ratio D/k, but the far field k relevant to log-layer structure did not include  $d_{coat}$ . For sandroughened cylinders on a carpeted bed,  $k = d_{coat} + 0.5$  times the carpet's fiber height (Rennie et al. 2017).

Table 4. Properties at initiation of motion of objects with D > 0.5 cm on beds composed of objects or roughness elements smaller than D. Objects include: gravel clasts on mobile beds in natural streams (N = 1-4) and in lab flumes (5-10); spheres on beds formed of fixed, close-packed spheres (11); cylinders on a smooth bed under waves (12) or under steady flow (13-14); and cylinders on a rough, fixed bed under steady flow (14). N = reference number, D = object diameter (vertical dimension for cylinders),  $\rho_0 =$  object density,  $\Theta_{Ucrit} =$  object's critical mobility number,  $f_I =$  inertial force factor (see Eq. (12)), and T = wave period.

| $\overline{N}$ | Reference                      | D       | D/k      | $\rho_o/\rho$ | $\boldsymbol{\Theta}_{Ucrit}$ |
|----------------|--------------------------------|---------|----------|---------------|-------------------------------|
|                |                                | cm      | g/cm³    |               |                               |
| 1              | Hammond et al. (1984)*         | 0.8-3.5 | 0.42-1.9 | 2.7           | 1.5-2.3                       |
| 2              | Carling (1983)*                | 2.1-43  | 0.43-8.6 | 2.7           | 0.93-4.8                      |
| 3              | Milhous (1973)*                | 2.4-11  | 0.48-2.3 | 2.7           | 1.0-2.6                       |
| 4              | <b>Mao &amp; Surian (2010)</b> | 1.6-6.4 | 0.46-1.9 | 2.7           | 0.85-4.2                      |
| 5              | Kuhnle (1993)                  | 0.7-1.0 | 2.8-8.1  | 2.7           | 0.92-1.8                      |
| 6              | Patel & Ranga Raju (1999)      | 0.5-1.4 | 0.59-2.0 | 2.7           | 1.4-2.3                       |
| 7              | Wilcock (1987)**               | 0.5-0.6 | 0.47-1.3 | 2.7           | 0.90-1.4                      |
| 8              | Day (1980)**                   | 0.5-0.7 | 1.2-1.5  | 2.7           | 1.0-1.1                       |
| 9              | Misri et al. (1984)**          | 0.5-1.3 | 0.52-1.5 | 2.7           | 1.2-1.5                       |
| 10             | Dhamotharan et al. (1980)**    | 0.5-0.7 | 0.94-1.3 | 2.7           | 1.8-2.0                       |
| 11             | James (1993)                   | 0.6-2.2 | 1.6-5.8  | 2.3-2.6       | 0.23-0.86                     |
| 12             | Williams (2001)                | 1.8-11  | 59-440   | 2.1-7.6       | 0.0093+-0.11                  |
| 13             | Davis et al. (1999)            | 4.8-12  | 74-360   | 1.6-3.2       | 0.016-0.035                   |
| 14             | Rennie et al. (2017)           | 2.5-11  | 10-460   | 1.2-7.9       | 0.020-0.41                    |

\*As reported by Komar (1996); \*\*as reported by Wilcock & Southard (1988);  ${}^{+}f_{I}\Theta_{Ucrit}$  values with T = 1-9 sec.

For steady flow cases where published values were of the critical Shields parameter ( $\Theta_{crit}$ ) rather than the critical flow velocity ( $U_{crit}$ ),  $U_{crit}$  at a height z = D above the bed was estimated based on a log-profile. If an observed  $U_{crit}$  under unidirectional flow was provided at a height other than z = D, a boundary layer log-profile was used to adjust  $U_{crit}$  to its expected value at z = D. For unidirectional flow over beds intermediate between smooth and fully rough turbulent,  $z_0$  for use in the log adjustment was determined as a function of u \* k/v following Yalin (1992) as presented by Garcia (2008) (see Eqs. (13) – (14) above).

For smooth beds under waves, the effective roughness for D/k was computed as  $k = 30 v/(9u_*)$ , with  $u_* = (f_w/2)^{1/2}U_w$ , such that  $U_w$  is the wave orbital velocity amplitude just above the wave boundary layer. The wave friction factor,  $f_w$ , for smooth beds was calculated iteratively from the below equation following Pedocchi & Garcia (2009):

$$f_w = \left(1.9\log\left(0.7f_w\frac{U_w^2}{\omega v}\right)\right)^{-2} \tag{18}$$



Figure 3. All observations of B/D plotted as a function of (a)  $\theta$  and (b) *KC*. Cylinders with waves plus currents in the field = \* (all others are lab measurements); cylinders with  $\alpha < 60^\circ = \times$  (all others have  $\alpha \ge 60^\circ$ ); cylinders with D < 2.6 cm for waves only =  $\Delta$  and for currents only =  $\Box$  (all other objects have  $D \ge 3.0$  cm); other cylinders and spheres with currents only =  $\nabla$ ; cylinders with waves plus currents =  $\diamond$ ; cylinders and spheres with waves only =  $\circ$ ; conical frustums with waves only = +; conical frustums with waves plus currents = •; tapered cylinders with currents only = \*.

where  $\omega = 2\pi/T$ . At initiation of motion under waves,  $U_{crit}$  at the top of the object was taken to be equal to  $U_w$ , such that the top of the object was assumed to extend above the top of the wave boundary layer.

# 5 Results and Discussion

#### 5.1 Results and Discussion for Self-Burial of Objects by Scour

All data for equilibrium burial depth of objects by scour (B/D) are plotted as a function of the Shields parameter ( $\theta$ ) in Fig. 3a and as a function of the Keulegan-Carpenter number (KC) in Fig. 3b. The distinct trends in equilibrium burial depth seen for different classes of objects under various forcing scenarios in Fig. 3a and Fig. 3b strongly suggest that neither  $\theta$  alone nor KC alone can adequately predict B/D for all the available observations involving currents, waves, and combinations of both. For example, cylinders subject to currents alone systematically bury deeper at a given value of  $\theta$  than similar objects subject to wave forcing (Fig. 3a). And the cylinders observed in the field buried significantly deeper for a given value of KC than cylinders observed in the lab (Fig. 3b).

These and other distinct trends in B/D as a function of  $\theta$ , KC, and additional parameters can be better understood by considering current- versus wave-forced cases separately, and by systematically examining the influence of several of the possible governing factors for each case via an informal step-wise multiple regression.

**5.1.1 Self-burial by Scour Under Mean Currents Only:** Although  $KC = U_m T/D$  is correlated to B/D under waves (Fig. 3b), KC cannot be used to predict different degrees of burial under mean currents because KC is effectively infinite for all mean flows. Authors such as Sumer & Fredsøe (2002) who predict B/D under mean flows based on KC alone have argued that under conditions of live-bed scour ( $\theta > \theta_{cr}$ ), self-burying objects of the same shape will all eventually reach the same equilibrium burial depth (in the absence of bed liquefaction or other complicating effects as outlined in Section 3.1). For cylinders, Sumer et al. (2001) found the universal live-bed value of B/D under mean currents to be about 0.7, while for spheres, Truelsen et al. (2005) found the live-bed value of B/D to be about 0.5. These authors recognize that  $\theta$  will still increase B/D under clear-water scour, and  $\theta$  also decreases the time-scale needed to reach equilibrium B/D under live-bed conditions.

In contrast to *KC*, the Shields parameter,  $\theta = \tau_b / [(\rho_s - \rho)gd_{50}]$ , can effectively distinguish among mean current forcing scenarios as bottom stress and sand grain vary (Fig. 4). The data compiled for mean current forcing in Fig. 4 suggest that B/D increases as a function  $\theta$  for live-bed scour, as well as for clear-water scour, although the exponents relating B/D to  $\theta$  are of smaller magnitude for live-bed scour.

Relationships for clear-water and live-bed scour displayed in Fig. 4 were found by fitting relationships of the form  $B/D = f\theta = a\theta^b$  for  $\theta$  greater and less than 0.04, respectively. The intersection of the best-fit lines for clear-water and live-bed scour occurred near  $\theta_{cr} = 0.04$  for

both smaller (D < 2.6 cm) and larger ( $D \ge 8.6$  cm) cylinders. (No burial data were identified in the literature for cylinders with D between 2.6 and 8.6 cm under steady flow conditions.)



Figure 4. All observations of B/D under steady currents in the absence of waves plotted as a function of  $\theta$ . Cylinders with  $D < 2.6 \text{ cm} = \Box$ ; other cylinders (all  $D \ge 8.6 \text{ cm}$ ) =  $\nabla$ ; tapered cylinders (D = 8 cm) =  $\star$ ; spheres (all  $D \ge 3.0 \text{ cm}$ ) =  $\circ$ . The coefficients *a* and *b* displayed above and associated with the dashed lines are utilized in  $f\theta$  as part of the relations applied in Fig. 5 and Fig. 6. For  $\theta < 0.04$ , the power-law fit to  $\nabla$  is used for  $\star$ ; for  $\theta > 0.04$ , the power-law fit to  $\Box$  is used for  $\star$ .

The dashed lines in Fig. 4 highlight different relationships between  $\theta$  and B/D for larger and smaller cylinders, especially under conditions of live-bed scour, with a distinct behavior seen in the available observations with D < 2.6 cm. Small cylinders may bury deeper (in terms of B/D) because small cylinders are more likely to interact with sandy bedforms. A continuous relationship between B/D and  $d_{50}/D$  of the form  $B/D = a(d_{50}/D)^b$  was also examined for steady currents across all D, but it was not found to be significant at 90% confidence (p-value > 0.1). Also, its use tended to degrade the overall predictive power of the individual relationships for B/D within the larger and smaller cylinder populations respectively.

There are not sufficient data available to resolve detailed relationships between B/D and  $\theta$  under steady currents for shapes other than cylinders. The dashed line in Fig. 4 associated with spheres (all the spheres have  $D \ge 3$  cm) is also a relationship of the form  $B/D = f\theta = a\theta^b$ , where b was set equal to the value of b found for larger cylinders, but with a reduced by a best-fit factor of 0.84. Based on available observations, one may reasonably infer that spheres tend to bury less under mean currents than cylinders likely because their more rounded shape sheds eddies more weakly (c.f., Truelsen et al. 2005). However, more observations are needed before the best-fit exponential relation with  $\theta$  can be confidently resolved for spheres.

In contrast to spheres, available data on tapered (i.e., bullet-shaped) cylinders suggest that they bury deeper than non-tapered cylinders of the same diameter. This may be associated with their tendency to rotate their blunt end toward the flow at an angle relatively close to  $45^{\circ}$ , enhancing the intensity of vortex shedding (Rennie et al., 2017). This is consistent with the finding of Sumer & Fredsøe (2002) that square pilings oriented at  $45^{\circ}$  toward flow scour more intensely than round pilings or than square pilings oriented at  $90^{\circ}$ .



Figure 5. *B/D* for steady currents normalized by the power-law relations from Fig. 4 and plotted as a function of  $\rho_0/\rho$  for large cylinders. Coefficients *a* and *b* in the above figure are associated with the dashed line and are utilized in  $f\rho_0$  as part of the relationship applied in Fig. 6. The above coefficient for  $f\rho_0$  is used only for large cylinders,  $\nabla$ .  $f\rho_0 = 1$  for the other object classes subject to steady currents in the absence of waves.

After normalizing by the relationships between  $\theta$  and B/D displayed in Fig. 4, parameterizations of the form  $f_{\rho_0} = a(\rho_0/\rho)^b$ , where  $\rho_0$  is object density, were tested against  $(B/D) (f\theta)^{-1}$ , which represents the remaining unexplained variance in B/D. A statistically significant relationship was found between object density and residual variance for larger cylinders (*p*-value < 0.05), but not for small cylinders, tapered cylinders or spheres. For all available cylinders with D > 2.6 cm, significantly deeper burial was found under steady flow as  $\rho_0/\rho$  increased (Fig. 5). This trend is consistent with the findings of Cataño-Lopera & García (2006) for self-burying cylinders under waves and supports the conclusion that greater density of objects can favor deeper self-burial, even in the absence of bed fluidization.

After normalizing by the relationships between  $\theta$  and B/D, parameterizations of the form  $f_{L/D} = a(L/D)^b$  were also tested against  $(B/D) (f\theta)^{-1}$ , but no significant relationships were found.



Figure 6. All available observations of B/D for currents in the absence of waves, plotted as a function the final parameterized model for B/D under steady flow,  $(B/D)_{predicted} = f\theta f\rho_0$ . Symbols are as in Fig. 4. The formulations and coefficients for  $f\theta$  and  $fr_0$  are provided in Fig. 4 and Fig. 5. To calculate  $f\theta$  for  $\star$ , the coefficients for  $\nabla$  and  $\Box$  were used for  $\theta$  less than and greater than 0.04, respectively. (Cases with  $U_w > 0$ , e.g., the field cases in Tables 1 and 2, are not included in Figs. 4, 5 or 6.)

Combining the above results, the final parameterized model for predicted B/D for self-burying objects subject to currents in the absence of waves is

$$(B/D)_{predicted} = f\theta f\rho_0 \tag{20}$$

with the formulations and coefficients for  $f\theta$  and  $f\rho_0$  provided in Fig. 4 and Fig. 5. To calculate  $f\theta$  for tapered cylinders, the coefficients for large and small cylinders were used for  $\theta$  less than and greater than 0.04, respectively. For tapered cylinders, spheres and small cylinders,  $f\rho_0 = 1$ . Fig. 6 compares Eq. (20) to all 126 available observations of self-burial of objects in sandy beds under steady currents in the absence of waves. For these cases, Eq. (20) explains 85% of the observed variance in B/D.

**5.1.2 Self-burial by Scour Under Waves and Under Waves Plus Currents:** In contrast to steady currents, *KC* alone is better correlated to *B/D* in the presence of waves ( $R^2 = 0.2$ ) than is  $\theta$  alone ( $R^2 = 0.07$ ), at least when all 635 available observations of object self-burial including waves from Fig. 3 are utilized. Thus the first parameter we consider in our step-wise multiple regression for *B/D* under wave-dominated conditions is *KC*.



Figure 7. All observations of B/D that include waves, plotted as a function of KC. Symbols are as in Fig. 2 except that here  $\bigcirc$  = cylinders with waves only and  $\triangleright$  = spheres with waves only. Best-fit relationships are shown above for  $\bigcirc$  and for + (conical frustums with waves only). The coefficients a and b displayed above are utilized in  $f_{KC}$  as part of the relations applied in Fig. 8 through Fig. 11. (o) = assumed outlier not included in analysis.

Among the various classes of objects, simultaneously strong and very distinct relationships between *KC* and *B/D* were seen (i) for conical frustums under waves only (pluses in Fig. 7) and (ii) for cylinders under waves only (circles in Fig. 7, specifically for  $D \ge 3$  cm and  $\alpha > 60^\circ$ ). Here we define  $f_{KC} = a(KC)^b$  to be the form of the power law function that represents the contribution of *KC* to our final parameterized model for *B/D* for all objects. The best-fit values for *a* and *b* for conical frustums under waves were also applied to conical frustums under waves plus currents. The best-fit values for *a* and *b* for cylinders under waves were applied to all the other cases in Fig. 7. (The best-fit lines in Fig. 7 were constrained almost exclusive by live-bed data, since 97% of the o and + points in Fig. 7 are cases for which  $\theta > 0.05$ .)

The results found here for B/D as a function of KC are consistent with those reported by previous authors. Cataño-Lopera et al. (2011), the original source of the conical frustum data, reported a similar value for b, namely  $B/D \sim KC^{4/5}$  (here we found  $B/D \sim KC^{0.79}$ ). However, they did not present a corresponding value for a. The best-fit power law relationship found here for the self-burial of cylinders,  $B/D = 0.10 KC^{0.51}$ , is nearly identical to that reported by Sumer & Fredsøe (1990) for the depth of scour (S) by waves under vertically fixed pipelines,  $S/D = 0.10 KC^{0.50}$ .

After normalizing by the relationship between *KC* and *B/D* that is displayed in Fig. 7, an equation of the form  $f_{Uc||} = \exp[-c(U_{c||}/U_m)]$  was tested against the remaining unexplained variance in burial,  $(B/D) f_{KC}^{-1}$ . In the above exponential relation,  $U_{c||}$  is the component of the mean current that is parallel to wave orbital velocity. In lab flumes we let  $U_{c||} = U_c$ , whereas for

field data during storms on the inner shelf we assume  $U_{c||}/U_m \approx 0$ . (Note that in the field data, the effect of  $U_c$  on scour is still included through its enhancement of  $U_m$  in Eq. (17) and via the replacement of  $U_w$  by  $U_m$  in Eqs. (15) and (16).) The reason an exponential relation is used rather than a power law is that  $f_{Uc||} = \exp[-c(U_{c||}/U_m)] = 1$  for  $U_{c||}/U_m = 0$ . This allows a single value of c to be used for both cases with waves alone and also cases with waves plus currents. Consistent with previous findings (Cataño-Lopera & García, 2006, Cataño-Lopera et al., 2011), B/D was found to decrease as  $U_{c||}/U_m$  increased (Fig. 8a). Fig. 8a pools cases for  $U_{c||}/U_m > 0$  for both cylinders and conical frustums in order to derive a single value of c = -1.1 valid for all available observations.



Figure 8. (a) B/D normalized by the power-law relations from Fig. 7 and plotted as a function of  $U_{c\parallel}/U_m$  for all available data for which the mean current is parallel to the wave orbital velocity. Cylinders =  $\diamond$ ; conical frustums =  $\bullet$ . (b) B/D additionally normalized by the exponential relation from Fig. 8a and plotted as a function of  $\cos \alpha$ , for all available data with  $\cos \alpha > 0.6$ , where  $\alpha$  is final the angle between a cylinder's long axis and wave orbital velocity. The exponential relations associated with the dashed lines (fit to all data in each plot) are utilized in  $f_{Uc\parallel}$  and  $f\alpha$  as part of the relations applied in Fig. 9 through Fig. 11.

Next, after normalizing by  $f_{Uc||}$ , a relationship of the form  $f_{\alpha} = \exp[-c_1(\cos\alpha - c_2)]$  was tested against  $(B/D) f_{KC}^{-1} f_{Uc||}^{-1}$  (Fig. 8b), where  $\alpha$  is the angle between wave orbital velocity and a cylinder's long axis. Consistent with the findings of Cataño-Lopera (2005), the original source of

the data, B/D was found to decrease as  $\alpha$  decreases toward zero. However, the resulting analyses of Cataño-Lopera (2005) and Cataño-Lopera & García (2007) regarding the effects of a were graphical and did not provide a quantitative formulation its effects. The best-fit values of  $c_1$  and  $c_2$  found here, 3.4 and 0.6, provide an explicit method for accounting for  $\alpha$ .

Once the effects of *KC*,  $U_{c||}/U_m$  and *a* had been removed from *B/D*, a strong remaining relationship between scour-induced burial and the Shield's parameter of the form  $f\theta_W = a\theta^b$  was evident for observations of cylinders that involved waves (Fig. 9), including small cylinders observed in the lab (D < 2.6 cm) and relatively large cylinders observed in the field ( $D \approx 50$  cm). The best-fit values for *a* and for *b* for cylinders, displayed in Fig. 9, were well constrained by hundreds of observations of normalized *B/D*. The dozens of observations of normalized *B/D* for conical frustums were sufficient to confirm that no significant relationship exists between  $\theta$  and *B/D* (p = 0.86), and for conical frustums we set  $f\theta_W = 1$ .



Figure 9. *B/D* normalized by the functional relationships from Fig. 7 and Fig. 8, and plotted as a function of  $\theta$  for all cases that include waves. Symbols are as in Fig. 7. The coefficients *a* and *b* displayed above in association with the dashed lines are utilized in  $f_{\theta_W}$  as part of the relations applied in Fig. 10 and Fig. 11. From top to bottom, the dashed lines apply to tapered cylinders, cylinders, and spheres, respectively;  $f_{\theta_W} = 1$  for conical frustums. (\*) = assumed outlier not included in analysis.

Trends for the exponent b were found to be similar to that for cylinders for the cases of tapered cylinders and spheres, but with a larger for tapered cylinders and smaller for spheres, respectively. A tendency for tapered cylinders to bury more and spheres less was likewise noted

for steady currents (see Section 5.1.1). Here the well-constrained value of b found for cylinders was also assigned to tapered cylinders and spheres, and a was then chosen to maximize the overall fit. It should be noted that the small number of observations available under waves for tapered cylinders (6) and for spheres (19) in comparison to cylinders (552) means that the trends for burial of tapered cylinders and spheres under waves are less well constrained than that for cylinders.

Normalized *B/D* as a function of  $\theta$  in Fig. 9 suggests a transition occurs (i) from clear-water scour to classic live-bed scour under waves at  $\theta \approx 0.05$  and (ii) from classic live-bed scour to fluidization of the upper bed via sheet flow at  $\theta \approx 0.6$  (c.f., Dibajnia & Watanabe, 1992). These transition points are supported by the fact that the majority of values for normalized *B/D* for cylinders fall well below the trend line in Fig. 9 for  $\theta < 0.05$  and fall well above the trend line for B/D > 0.6. Thus the best-fit values of *a* and *b* displayed on Fig. 9 were calculated based only on observations for  $0.05 < \theta < 0.6$ .



Figure 10. *B/D* normalized by the functional relationships from Fig. 7 through Fig. 9, for all nonfluidized live-bed data from Fig. 9 available within the range  $1.7 < \rho_0/\rho < 3.3$ . Symbols are as in Fig. 7 with minor random noise added to  $r_0/r$  to prevent complete visual overlap of symbols. Because it performed poorly outside of  $1.7 < \rho_0/\rho < 3.3$ , the power law relation displayed above was not utilized as part of the final parameterized model.

The sudden transition to relatively complete burial for the field data, indicated by \* symbols at high  $\theta$  in Fig. 9, provides evidence to support the use of  $U_{w1/3}$  to estimate  $U_w$  under random

waves as suggested by Myhraug & Ong (2009). If a less energetic value of  $U_w$  were used for the field data in Fig. 9, such as  $U_w = 2^{1/2} \sigma_U$  instead of  $U_w = 2\sigma_U$ , then the transition to an influence of sheet flow/fluidization on burial for the most energetic field data would not be nearly as clear.

Parameterizations of the form  $f_{\rho_{0W}} = a(\rho_0/\rho)^b$ , where  $\rho_0$  is object density, were also tested against the remaining unexplained variance in *B/D* under waves (Fig. 10). A statistically significant relationship was found for non-fluidized live-bed data from Fig. 9 within the range  $1.7 < \rho_0/\rho <$ 3.3, but not outside this range of  $\rho_0/\rho$ . Because  $f_{\rho_{0W}} = a(\rho_0/\rho)^b$  performed poorly outside of  $1.7 < \rho_0/\rho <$ 3.3,  $f_{\rho_{0W}}$  was not utilized as part of the final parameterized model. Other parameters tested for importance to *B/D* under waves included *L/D* and  $d_{50}/D$ . However, neither of these ratios was found to have statistically significant effects on normalized *B/D*, either within specific classes of objects or across multiple classes of objects.



Figure 11. All available, non-fluidized, live-bed observations of *B/D* under waves (including cases with waves plus currents), plotted as a function of the final parameterized model for *B/D* under waves,  $(B/D)_{predicted} = f_{KC} f_{Uc||} f_{\alpha} f_{\theta W}$ . Symbols are as in Fig. 7. The formulations and coefficients for  $f_{KC}$ ,  $f_{Uc||}$ ,  $f_{\alpha}$  and  $f_{\theta W}$  are provided in Fig. 7, Fig. 8 and Fig. 9. (Cases with  $U_w = 0$  in Table 3 are not included in Figs. 7 to 11.)

Combining the above results, the final parameterized model for predicted B/D for self-burying objects subject either to waves alone or to waves in combination with mean currents is

with the formulations and coefficients for  $f_{KC}$ ,  $f_{Uc||}$ ,  $f_{\alpha}$  and  $f_{\theta_W}$  provided in Fig. 7, Fig. 8 and Fig. 9. For  $f_{KC}$ , the *a* and *b* values for lower dashed line in Fig. 7 were applied to conical frustums, while the values for the upper dashed line were applied to all other cases. The relationships in Fig. 8 apply to all observations under waves. In Fig. 9, the lines from top to bottom apply to tapered cylinders, cylinders and spheres, while  $f_{\theta_W} = 1$  for conical frustums. Fig. 11 compares Eq. (19) to all 578 available observations of self-burial of objects in sand under non-fluidized, live-bed conditions under waves. For these cases, Eq. (19) explains 85% of the observed variance in B/D.

(19)

#### 5.2 Results and Discussion for Initiation of Motion of Objects

Fig. 12a displays the critical mobility criteria ( $f_i \Theta_{Ucrit}$ ) determined for 406 cases as a function of object diameter (*D*) divided by effective bed roughness (*k*).  $\Theta_{Ucrit}$  is determined from observations according to Eq. (9), with the values of (i) *U* at z = D needed for  $\Theta_{Ucrit}$  and (ii) bed roughness, *k*, each determined as described in Section 4.2. (See Appendix B, Tables B1 to B3 for additional explanation.) Data covering the higher end of the *D/k* range in the lower-right corner of Fig. 12 (pink triangles and black squares) are for smooth cylinders placed on smooth beds (Davis et al., 1999; Williams, 2001; Rennie et al., 2017), leading to very small values of effective bed roughness and large values for *D/k*. The roughened cylinder and carpeted bed results of Rennie et al. (2017) (red stars) fill the previously existing gap in *D/k* space that is relevant to the initiation of motion of UXO-like objects. Overall, the observed values of  $\Theta_{Ucrit}$  exhibit a clear decrease with *D/k*. Overlaid on Fig. 12 (blue dashed line) is the theoretical equation for the mobility of spheres (Eq. 11) derived in Section 3.2, for which the optimal value of the turbulent fluctuation parameter was found to be  $\alpha_t = 0.86$ .

Without accounting for  $F_I$ , observed values for  $\Theta_{Ucrit}$  for the wave-driven data points (from Williams, 2001) fall well below the trend observed for unidirectional flow (Fig. 12b). It was determined that mobility in the lab data from Williams (2001) was forced by short period waves having a significant contribution from the inertial force,  $F_I$ , associated with time-varying horizontal pressure gradients. To account for this component, in Fig. 12a the mobility number was multiplied by  $f_I$  as given by Eq. (12), using  $C_I/C_D = 2$ . This correction factor can easily be applied to all the data in Fig. 12b, not only to Williams (2001), because all the other data have  $KC = \infty$ , which means  $f_I = 1$ . Note that for object sizes of interest, the low KC regime that produces  $f_I \gg 1$  typically corresponds to short period waves (T < 3 s), which tend to have limited bottom orbital velocities. For the cases of cylinders under waves from Williams (2001),  $f_I$  varied from  $f_I = 1.04$  for T = 9 sec, to  $f_I = 32.0$  for T = 1 sec, with a median value of  $f_I = 1.87$  for T = 5 sec. Plotting  $f_I \Theta_{Ucrit}$  on the y-axis in Fig. 12a rather  $\Theta_{Ucrit}$  causes the data from Williams (2001) to align better with the other data collected under unidirectional flow.

A power-law fit for all observations most relevant to object mobility (D > 1 cm) was made to determine the coefficients for the relationship  $f_I \Theta_{Ucrit} = a_1 (D/k)^{b_1}$ , as suggested by the asymptotic



Figure 12. Threshold for the initiation of motion of underwater objects, (a) accounting for and (b) neglecting time-varying pressure gradients. Gravel in streams (•) or flumes (•); rough cylinders and/or rough bed (\*); smooth cylinders on smooth bed ( $\Delta$ ) with waves ( $\Box$ ). The dashed blue line in (a) shows the theoretical relationship for derived for spheres (Eq. (11)). The black solid line is the best-fit power law  $f_I \Theta_{Ucrit} = a_1 (D/k)^{b1}$  for all objects with D > 1 cm ( $a_1 = 1.75$ ,  $b_1 = -0.72$ ). The thin red line in (a) (almost indistinguishable from the black solid line) is the slightly different best-fit relationship published by Rennie et al. (2017) ( $a_1 = 1.64$ ,  $b_1 = -0.71$ ).

theoretical relationship for spheres derived in Section 3.2. Using all the data in Fig. 12a with D > 1 cm, the best-fit power-law coefficients at 95% confidence were determined to be  $a_1 = 1.746 \pm 0.158$  and  $b_1 = -0.718 \pm 0.027$ , with a log-space coefficient of determination of  $R^2 = 0.89$ . This equation,  $f_I \Theta_{Ucrit} = 1.75(D/k)^{-0.72}$ , shown as the solid black line, has a power-law dependence close to that of Eq. (11), as derived from theory for spheres. The above best-fit power law relationship provides a method to estimate the threshold of mobility for use in the UnMES. Note that these values of  $a_1$  and  $b_1$  are slightly different from the best-fit values of  $a_1 = 1.64$  and  $b_1 = -0.71$  reported by Rennie et al. (2017). This is because Rennie et al. (2017) adjusted some of their far-field velocity observations by adding an expected local increase in velocity at the site of cylinder to account for the fraction of the vertical water column blocked by the seabed cylinder. For consistency with critical velocity observations reported by others, such a velocity adjustment was not applied here. Due to the relatively large scatter in the data, however, the best-fit values for  $a_1 = 1.64$  and  $b_1 =$  presented here and those in Rennie et al. (2017) are not significantly different statistically. The thin red line on Fig. 12a displays the best-fit line published by Rennie et al. (2017), which is almost indistinguishable from the black solid line.

## 6 Conclusions and Implications for Future Research

A compilation and analysis of 761 observations of equilibrium self-burial depth associated with scour on sandy beds is presented. Observed object burial-to-diameter ratios (B/D) vary by a factor of 100, D by a factor of 50, length-to-diameter ratios (L/D) by a factor of 30, object densities ( $\rho_0$ ) by a factor of 9, and median sand size ( $d_{50}$ ) by a factor of 5. Object shapes include cylinders, tapered cylinders, spheres and conical frustums. Nonetheless, simple parameterized models for B/D are identified via an informal, step-wise least-squares regression approach that account for 85% of observed variance.

The main factor which increases scour-induced B/D under steady currents  $(U_c)$  in the absence of waves is found to be an increasing Shields parameter,  $\theta = \tau_b/[(\rho_s - \rho)gd_{50}]$ , with distinctly different power law relations applicable to B/D as a function of  $\theta$  for clear-water and live-bed scour. Greater B/D is observed as a function of  $\theta$  for small cylinders (D < 3 cm), while smaller B/D is observed for spheres. After accounting for the effects of  $\theta$ , normalized B/D for larger cylinders is observed in increase with greater  $\rho_0$ .

The main factor which increases scour-induced B/D under wave-dominated conditions is an increasing Keulegan-Carpenter number,  $KC = U_m T/D$ , with distinct power-law relations for conical frustums versus other object shapes, such that conical frustums bury less. After accounting for effects of KC, normalized B/D is shown to decrease as the strength of the component of  $U_c$  parallel to wave orbital velocity increases and as the angle between orbital velocity amplitude,  $U_w$ , and a cylinder's long axis decreases. Normalized B/D under waves is also shown to generally increase as a function of  $\theta$ , with larger B/D at a given q for tapered cylinders relative to cylinders, and smaller B/D at a given  $\theta$  for spheres relative to cylinders. Observations of B/D in the field suggest that the highest 1/3 of  $U_w$  may better represent scour in random waves, and they highlight the likely importance of burial by bed fluidization associated with sheet flow at high  $\theta$ .

A total of 406 data points for initiation of motion were compiled for objects with 0.5 < D < 45 cm on beds composed of objects or roughness elements smaller than *D*. The observations included 182 measurements for gravel clasts, 28 for glass spheres, and 196 for cylinders of various densities. 132 of the gravel measurements were from natural streams; all other measurements were from lab experiments. 68 of the cylinder measurements were collected under waves; all other measurements were under unidirectional flow. Density of the objects varied by a factor of 6.6 and the ratio of the object size to the effective roughness of the bed (*D/k*) ranged by a factor of 1000.

The force balance for onset of motion is parameterized by the mobility criteria,  $f_I \Theta_{Ucrit}$  where  $\Theta_{Ucrit}$  is the critical object mobility parameter, and  $f_I$  accounts for the possible effect of a timevarying horizontal pressure gradient. The threshold mobility parameter for an object on a rigid seabed is observed to systematically decrease D/k increases. Theory combined with observations suggested a power law relationship of the form  $f_I \Theta_{Ucrit} = a_1(D/k)^{b1}$ . Using all complied data with D > 1 cm, the best-fit power-law coefficients at 95% confidence were determined to be  $a_1 = 1.75 \pm 0.16$  and  $b_1 = -0.72 \pm 0.03$  with  $R^2 = 0.89$ . It should be noted however, that a range of coefficients is compatible with the relationships previously published in sediment entrainment literature due to the large scatter of the data available. The effect of inertia, as parameterized by  $f_{I_0}$  is found to be occasionally significant, but only in the presence of rapidly varying horizontal pressure gradients (e.g., under short period waves) in combination with large D/k or small  $\rho_0$ .

Although the collaborative results between VIMS and JHU/APL described in this report has been highly effective with regards to advancing the practical prediction of near-field processes affecting UXO, less progress has been made to date with regards to predicting UXO re-exposure and migration in response to far field processes. As stated in the 2014 SERDP Program Review for Burial and Mobility Modeling of Munitions in the Underwater Environment (SERDP, 2014), "[To date there has been] little work performed to understand long-term migration patterns. Of particular interest may be the relationship between long-term migration patterns for UXO and far field effects... Far field phenomenology affects excavation, migration and burial independent of the UXO (e.g., sand ripple or large bedform migration)." Thus a follow-on collaborative project to further support UnMES is now underway by Friedrichs to investigate and parameterize transformation of the seabed at scales larger than UXO, including the effects of bedform migration and bed liquefaction. The title of this follow-on project is MR-2467, "Parameterized Process Models for Underwater Munitions Expert System".

#### 7 Literature Cited

- Bower, G.R., Richardson, M.D., Briggs, K.B., Elmore, P.A., Braithwaite, E.F., Bradley, J., Griffin, S., Wever, T.F. & Lühder, R. 2007. Measured and predicted burial of cylinders during the Indian Rocks Beach experiment. IEEE Journal of Oceanic Engineering 32(1): 91-102.
- Bradley, J., Griffin, S., Thiele, M., Richardson, M.D. & Thorne, P.D. 2007. An acousticinstrumented mine for studying subsequent burial. IEEE Journal of Oceanic Engineering 32(1): 91-102.
- Brandt, A. & Rennie, S.E. 2013. Initial laboratory tests examining mobility of UXO due to bottom currents. KTF-13-072, Technical Memorandum. The Johns Hopkins University Applied Physical Laboratory.
- Carling, P.A. 1983. Threshold of coarse sediment transport in broad and narrow natural streams. Earth Surface Processes and Landforms, 8(1): 1-18.
- Carstens, M.R. & Martin, C.S. 1963. Settlement of cylindrical mines into the seabed under gravity waves. Final Report, US Navy Mine Defense Laboratory, Project No. A-628.
- Cataño-Lopera, Y.A. 2005. Burial of short cylinders induced by local sour and bedform migration under waves plus currents. PhD Thesis, College of Engineering, University of Illinois at Urbana-Champaign.
- Cataño-Lopera, Y.A., Demir, S.T. & García, M.H. 2007. Self-burial of short cylinders under oscillatory flows and combined waves plus currents. IEEE Journal of Oceanic Engineering 32(1): 191-203.
- Cataño-Lopera, Y.A. & García, M.H. 2006. Burial of short cylinders induced by scour under combined waves and currents. ASCE Journal of Waterway Port Coastal and Ocean Engineering 132(6): 439-449.
- Cataño-Lopera, Y.A. & García, M.H. 2007. Geometry of scour hole around, and the influence of the angle of attack on the burial of finite cylinders under combined flows. Ocean Engineering 34(5): 856-869.
- Cataño-Lopera, Y.A., Landry, B.J. & García, M.H. 2011. Scour and burial mechanics of conical frustums on a sandy bed under combined flow conditions. Ocean Engineering 38(10): 1256-1268.
- Davis, J.E., Fenical, S.W., Zhang, J. & Edge, B. 1999. Terminal velocity of cylinders rolling in uniform flows. Journal of Hydraulic Engineering, 125(9): 943-952.
- Davis, J.E., Edge, B.L. & Chen, H.C. 2007. Investigation of unrestrained cylinders rolling in steady uniform flows. Ocean Engineering, 34(10): 1431-1448.
- Day, T.J. 1980. A study of the transport of graded sediments. Report IT 190, Hydraulic Research Station, Wallingford, UK.
- Dean, R.G. & Dalrymple, R.A. 1991. Water wave mechanics for engineers and scientists. Singapore: World Scientific.
- Demir, S.T. & García, M.H. 2007. Experimental studies on burial of finite-length cylinders under oscillatory flow. ASCE Journal of Waterway Port Coastal and Ocean Engineering 133(2): 117-124.
- Dhamotharan, S., Wood, A., Parker, G. & Stefan, H. 1980. Bedload transport in a model gravel stream. Project Report 190. St. Anthony Falls Hydraulic Laboratory, University of Minnesota.

- Dibajnia, M. & Watanabe, A. 1992. Sheet flow under nonlinear waves and currents. Coastal Engineering Proceedings 23: 2015–2028.
- Friedrichs, C.T. 2007. Reformulation of mine scour equations using observations from MBP field sites. Final Report. US Office of Naval Research Coastal Geosciences Program, Grant N00014-05-1-0112.
- Friedrichs, C.T., Rennie, S.E. & Brandt, A. 2016. Self-burial of objects on sandy beds by scour: A synthesis of observations. In: Harris, J.M., Whitehouse, R.J.S. & Moxon, S. (eds.), Scour and erosion. CRC Press, 179-189.
- García, M.H. 2008. Sediment transport and morphodynamics. In: García, M.H. (ed.), Sedimentation engineering: processes, measurements, modeling and practice. American Society of Civil Engineers, 21-163.
- Goff, J.A., Mayer, L.A., Traykovski, P., Buynevich, I., Wilkens, R., Raymond, R., Glang, G., Evans, R.L., Olson, H. & Jenkins, C. 2005. Detailed investigation of sorted bedforms, or 'rippled scour depressions', within the Martha's Vineyard Coastal Observatory, Massachusetts. Continental Shelf Research, 25(4): 461-484.
- Hammond, F.D.C., Heathershaw, A.D. & Langhorne, D.N. 1984. A comparison between Shields' threshold criterion and the movement of loosely packed gravel in a tidal channel. Sedimentology, 31(1): 51-62.
- James, C.S. 1993. Entrainment of spheres: an experimental study of relative size and clustering effects. In: Marzo, M. & Puigdefábragas, C. (eds.), Alluvial sedimentation. Blackwell, 3-10.
- Jenkins, S.A., Inman, D.L., Richardson, M.D., Wever, T.F. & Wasyl, J. 2007. Scour and burial mechanics of objects in the nearshore. IEEE Journal of Oceanic Engineering 32(1): 78-90.
- Kirchner, J.W., Dietrich, W.E., Iseya, F. & Ikeda, H. 1990. The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology 37(4): 647-672.
- Komar, P.D. 1996. Entrainment of sediments from deposits of mixed grain sizes and densities. In: Carling, P.A. & Dawson, M.R. (eds.), Advances in fluvial dynamics and stratigraphy, John Wiley & Sons, 127-181.
- Komar, P.D. & Li, Z. 1988. Applications of grain-pivoting and sliding analyses to selective entrapment of gravel and to flow-competence evaluations. Sedimentology 35(4): 681-695.
- Kuhnle, R.A. 1993. Incipient motion of sand-gravel sediment mixtures. Journal of Hydraulic Engineering, 119(12): 1400-1415.
- Li, Z. & Komar, P.D. 1986. Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology 33(3): 413–423.
- Mao, L., & Surian, N. 2010. Observations on sediment mobility in a large gravel-bed river. Geomorphology, 114(3): 326-337.
- Mayer, L.A., Raymond, R., Glang, G., Richardson, M.D., Traykovski, P. & Trembanis, A.C. 2007. High-resolution mapping of mines and ripples at the Martha's Vineyard Coastal Observatory. IEEE Journal of Oceanic Engineering 32(1): 133-149.
- Miller, R.L. & Byrne, R.J. 1966. The angle of repose for a single grain on a fixed rough bed. Sedimentology, 6(4): 303–314
- Milhous, R.T. 1973. Sediment transport in a gravel-bottomed stream. PhD Thesis. Oregon State University, Corvalis.

- Misri, R.L., Garde, R.J. & Ranga Raju, K.G. 1984. Bed load transport of coarse nonuniform sediment. Journal of Hydraulic Engineering, 110(3): 312-328.
- Myrhaug, D. & Slaattelid, O.H. 1990. A rational approach to wave-current friction coefficients for rough, smooth, and transitional turbulent flow. Coastal Engineering 14(3): 265–293.
- Myrhaug, D. & Ong, M.C. 2009. Burial and scour of short cylinders under combined random waves and currents including effects of second order wave asymmetry. Coastal Engineering 56(1): 73-81.
- McNinch, J.E., Wells, J.T. & Trembanis, A.C. 2006. Predicting the fate of artefacts in energetic, shallow marine environments: an approach to site management. International Journal of Nautical Archaeology 35(2): 290-309.
- Nielsen, P. 1992. Coastal bottom boundary layers and sediment transport. World Scientific.
- Pang, C. & Liu, L. 2014. Variability of sand mobility surrounding cylinder object freely resting on the seabed under the action of typhoon. International Journal of Geosciences 5(7): 690-699.
- Pedocchi, F. & Garcia, M.H. 2009. Friction coefficient for oscillatory flow: the rough-smooth turbulent transition. Journal of Hydraulic Engineering and Research, 47(4): 438-444.
- Patel, P.L. & Ranga Raju, K.G. 1999. Critical tractive stress of nonuniform sediments. Journal of Hydraulic Research, 37(1): 39-58.
- Rennie, S.E., Brandt, A. & Friedrichs, C.T. 2017. Initiation of motion and scour burial of objects underwater. Ocean Engineering 131: 282-294.
- Schlichting, H. & Gersten, K. 2000. Boundary layer theory 8th edition. Springer.
- SERDP 2010. Munitions in the underwater environment: state of the science and knowledge gaps. Strategic Environmental Research and Development Program White Paper. US Department of Defense.
- SERDP 2011. Improvements in the detection, classification, and remediation of military munitions underwater. Munitions Response Area FY 2013 Statement of Need. Strategic Environmental Research and Development Program. US Department of Defense.
- SERDP 2014. Program review for burial and mobility modeling of munitions in the underwater environment. Strategic Environmental Research and Development Program White Paper. US Department of Defense.
- Soulsby, R. 1997. Dynamics of marine sands. HRWallingford/Thomas Telford.
- Stansby, P.K. & Starr, P. 1992. On a horizontal cylinder resting on a sand bed under waves and currents. International Journal of Offshore and Polar Engineering 2(4): 262-266.
- Starr, P. 1989. Mobile bed interaction with a cylinder under currents and waves. PhD Thesis, University of Manchester.
- Sumer, B.M. 2014. Liquefaction around marine structures. World Scientific.
- Sumer, B.M. & Fredsøe, J. 1990. Scour below pipelines in waves. ASCE Journal of Waterway Port Coastal and Ocean Engineering 116(3): 307-323.
- Sumer, B.M. & Fredsøe, J. 1994. Self-burial of pipelines at span shoulders. International Journal of Offshore and Polar Engineering 4(1): 189-194.
- Sumer, B.M. & Fredsøe, J. 2002. The mechanics of scour in the marine environment. World Scientific.
- Sumer, B.M. & Fredsøe, J. 2006. Hydrodynamics around cylindrical structures. World Scientific.
- Sumer, B.M., Truelsen, C., Sichmann, T. & Fredsøe, J. 2001. Onset of scour below pipelines and self-burial. Coastal Engineering 42(4): 313-335.

- Traykovski, P., Richardson, M.D., Mayer, L.A. & Irish, J.D. 2007. Mine burial experiments at the Martha's Vineyard Coastal Observatory. IEEE Journal of Oceanic Engineering 32(1): 150-166.
- Trembanis, A.C., Friedrichs, C.T., Richardson, M.D., Traykoviski, P., Howd, P.A., Elmore, P.A.
  & Wever, T.F. 2007. Predicting seabed burial of cylinders by wave-induced scour: application to the sandy inner shelf off Florida and Massachusetts. IEEE Journal of Oceanic Engineering 32(1): 167-183.
- Truelsen, C., Sumer, B.M. & Fredsøe, J. 2005. Scour around spherical bodies and self-burial. ASCE Journal of Waterway Port Coastal and Ocean Engineering 131(1): 1-13.
- Voropayev, S.I., McEachern, G.B., Boyer, D.L. & Fernando, H.J.S. 1999. Dynamics of sand ripples and burial/scouring of cobbles in oscillatory flow. Applied Ocean Research 21(5): 249-261.
- Voropayev, S.I., Testik, F.Y., Fernando, H.J.S. & Boyer, D.L. 2003. Burial and scour around short cylinder under progressive shoaling waves. Ocean Engineering 30: 1647-1667.
- Whitehouse, R. 1998. Scour at marine structures. London: Thomas Telford.
- Wiberg, P.L. & Smith, J.D. 1987. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water resources research, 23(8): 1471-1480.
- Wilcock, P.R. 1987. Bed-load transport of mixed size sediment. PhD Thesis, Massachusetts Institute of Technology.
- Wilcock, P.R. & Southard, J.B. 1988. Experimental study of incipient motion in mixed-size sediment. Water Resources Research, 24(7): 1137-1151.
- Williams, L.W. 2001. Movement of submerged unexploded ordnance due to ocean waves. PhD Thesis, Texas A&M University.
- Wolfson, M.L. 2005. Multibeam observations of mine scour and burial near Clearwater, Florida, including a test of the VIMS 2D mine burial model. MS Thesis, College of Marine Science, University of South Florida.
- Wolfson, M.L., Naar, D.F., Howd, P.A., Locker, S.D., Donahue, B.D., Friedrichs, C.T., Trembanis, A.C., Richardson, M.D. & Wever, T.F. 2007. Multibeam observations of mine burial near Clearwater, Florida, including comparisons to predictions of waveinduced burial. IEEE Journal of Oceanic Engineering 32(1): 103-118.

Yalin, M.S. 1992. River mechanics, New York: Pergamon.
## Appendices

## Appendix A. Data Compilation for Equilibrium Self-Burial of Objects by Scour

**Table A1.** Individual observations of self-burial of objects by scour, including object and environmental properties: *No.* = reference number (see text Tables 1 and 2), *Obs.* = observation number, *D* = object diameter (vertical dimension in cm), *L* = object length (maximum horizontal dimension in cm),  $\rho_0/\rho$  = object density in (kg/m<sup>3</sup>) / (1000 kg/m<sup>3</sup>), *d*<sub>50</sub> = median sand size in mm, *U<sub>w</sub>* = far-field near-bed wave orbital velocity amplitude in m/s, *T* = wave period in sec,  $\alpha$  = final angle in deg of object's long-axis relative to *U<sub>w</sub>* (or *U<sub>c</sub>* if *U<sub>w</sub>* = 0), *U<sub>c</sub>(z<sub>obs</sub>)* = far-field current velocity in m/s at height *z<sub>obs</sub>*, *z<sub>obs</sub>* = observation height (m) above bed for *U<sub>w</sub>* and/or *U<sub>c</sub>* (important only for *U<sub>c</sub>*), *B/D* = burial depth/object diameter, *KC* = Keulegan-Carpenter number (see main text Eq. (2)), and  $\theta$  = Shields number (see text Eq. (1)). Additional notes regarding sources of individual parameters in Table A1 and their calculation are provided in Table A2.

| No. | Obs. | D    | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | Uw    | T    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 1   | 1    | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.970 | 63.7 | 0.512 |
| 1   | 2    | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.975 | 63.7 | 0.512 |
| 1   | 3    | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.954 | 63.7 | 0.512 |
| 1   | 4    | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.197 | 63.7 | 0.512 |
| 1   | 5    | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.955 | 31.4 | 0.512 |
| 1   | 6    | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.120 | 31.4 | 0.512 |
| 1   | 7    | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.940 | 31.4 | 0.512 |
| 1   | 8    | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.000 | 31.4 | 0.512 |
| 1   | 9    | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.007 | 31.4 | 0.512 |
| 1   | 10   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 0  | 0.000          | 0.152 | 0.520 | 31.4 | 0.512 |
| 1   | 11   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 83 | 0.000          | 0.152 | 0.962 | 31.4 | 0.512 |
| 1   | 12   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 23 | 0.000          | 0.152 | 0.917 | 31.4 | 0.512 |
| 1   | 13   | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 40 | 0.000          | 0.152 | 0.931 | 63.7 | 0.512 |
| 1   | 14   | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 14 | 0.000          | 0.152 | 0.837 | 63.7 | 0.512 |
| 1   | 15   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.000 | 76.0 | 0.053 |
| 1   | 16   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.894 | 76.0 | 0.053 |
| 1   | 17   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.953 | 76.0 | 0.053 |
| 1   | 18   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.449 | 76.0 | 0.053 |
| 1   | 19   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.590 | 76.0 | 0.053 |
| 1   | 20   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.201 | 76.0 | 0.053 |
| 1   | 21   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.405 | 76.0 | 0.053 |
| 1   | 22   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.016 | 76.0 | 0.053 |
| 1   | 23   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.752 | 76.0 | 0.053 |
| 1   | 24   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.385 | 76.0 | 0.053 |
| 1   | 25   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.768 | 76.0 | 0.053 |
| 1   | 26   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.913 | 76.0 | 0.053 |
| 1   | 27   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 1.000 | 76.0 | 0.053 |
| 1   | 28   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.072 | 31.4 | 0.512 |
|     |      |      |      |             |                        |       |      |    |                |       |       |      |       |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D    | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 1   | 29   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.079 | 31.4 | 0.512 |
| 1   | 30   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.963 | 31.4 | 0.512 |
| 1   | 31   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.993 | 31.4 | 0.512 |
| 1   | 32   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.023 | 31.4 | 0.512 |
| 1   | 33   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.951 | 31.4 | 0.512 |
| 1   | 34   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.984 | 31.4 | 0.512 |
| 1   | 35   | 4.32 | 17.3 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 0.977 | 63.7 | 0.512 |
| 1   | 36   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.417 | 76.0 | 0.053 |
| 1   | 37   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.429 | 76.0 | 0.053 |
| 1   | 38   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.776 | 76.0 | 0.053 |
| 1   | 39   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.839 | 76.0 | 0.053 |
| 1   | 40   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.748 | 76.0 | 0.053 |
| 1   | 41   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.961 | 76.0 | 0.053 |
| 1   | 42   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.543 | 76.0 | 0.053 |
| 1   | 43   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.787 | 76.0 | 0.053 |
| 1   | 44   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.292 | 76.0 | 0.053 |
| 1   | 45   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.532 | 76.0 | 0.053 |
| 1   | 46   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.788 | 76.0 | 0.053 |
| 1   | 47   | 1.27 | 5.1  | 2.70        | 0.585                  | 0.268 | 3.60 | 90 | 0.000          | 0.152 | 0.732 | 76.0 | 0.053 |
| 1   | 48   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.103 | 31.4 | 0.512 |
| 1   | 49   | 8.76 | 35.1 | 2.70        | 0.297                  | 0.764 | 3.60 | 90 | 0.000          | 0.152 | 1.107 | 31.4 | 0.512 |
| 2   | 50   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.112 | 1.69 | 90 | 0.000          | 0.092 | 0.200 | 7.5  | 0.031 |
| 2   | 51   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.115 | 1.77 | 90 | 0.000          | 0.092 | 0.040 | 8.0  | 0.031 |
| 2   | 52   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.108 | 2.12 | 90 | 0.000          | 0.092 | 0.200 | 9.0  | 0.027 |
| 2   | 53   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.125 | 1.84 | 90 | 0.000          | 0.092 | 0.120 | 9.1  | 0.035 |
| 2   | 54   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.153 | 1.66 | 90 | 0.000          | 0.092 | 0.310 | 10.0 | 0.050 |
| 2   | 55   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.145 | 1.93 | 90 | 0.000          | 0.092 | 0.200 | 11.0 | 0.044 |
| 2   | 56   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.167 | 1.67 | 90 | 0.000          | 0.092 | 0.080 | 11.0 | 0.057 |
| 2   | 57   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.175 | 1.67 | 90 | 0.000          | 0.092 | 0.280 | 11.5 | 0.061 |
| 2   | 58   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.152 | 2.02 | 90 | 0.000          | 0.092 | 0.120 | 12.1 | 0.046 |
| 2   | 59   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.190 | 1.67 | 90 | 0.000          | 0.092 | 0.080 | 12.5 | 0.070 |
| 2   | 60   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.165 | 2.01 | 90 | 0.000          | 0.092 | 0.120 | 13.1 | 0.053 |
| 2   | 61   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.147 | 2.60 | 90 | 0.000          | 0.092 | 0.200 | 15.1 | 0.041 |
| 2   | 62   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.168 | 2.42 | 90 | 0.000          | 0.092 | 0.160 | 16.0 | 0.051 |
| 2   | 63   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.157 | 2.59 | 90 | 0.000          | 0.092 | 0.350 | 16.0 | 0.045 |
| 2   | 64   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.204 | 1.99 | 90 | 0.000          | 0.092 | 0.120 | 16.0 | 0.074 |
| 2   | 65   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.213 | 1.96 | 90 | 0.000          | 0.092 | 0.310 | 16.4 | 0.080 |
| 2   | 66   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.232 | 1.87 | 90 | 0.000          | 0.092 | 0.330 | 17.1 | 0.093 |
| 2   | 67   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.224 | 1.95 | 90 | 0.000          | 0.092 | 0.330 | 17.2 | 0.087 |
| 2   | 68   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.277 | 1.61 | 90 | 0.000          | 0.092 | 0.430 | 17.6 | 0.131 |
| 2   | 69   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.188 | 2.57 | 90 | 0.000          | 0.092 | 0.280 | 19.0 | 0.060 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D    | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 2   | 70   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.277 | 1.93 | 90 | 0.000          | 0.092 | 0.550 | 21.1 | 0.124 |
| 2   | 71   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.290 | 1.89 | 90 | 0.000          | 0.092 | 0.430 | 21.6 | 0.135 |
| 2   | 72   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.253 | 2.42 | 90 | 0.000          | 0.092 | 0.550 | 24.1 | 0.100 |
| 2   | 73   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.247 | 2.52 | 90 | 0.000          | 0.092 | 0.430 | 24.5 | 0.094 |
| 2   | 74   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.165          | 0.092 | 0.060 | Inf  | 0.017 |
| 2   | 75   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.197          | 0.092 | 0.079 | Inf  | 0.023 |
| 2   | 76   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.206          | 0.092 | 0.118 | Inf  | 0.025 |
| 2   | 77   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.193          | 0.092 | 0.161 | Inf  | 0.022 |
| 2   | 78   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.215          | 0.092 | 0.358 | Inf  | 0.028 |
| 2   | 79   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.231          | 0.092 | 0.398 | Inf  | 0.032 |
| 2   | 80   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.238          | 0.092 | 0.399 | Inf  | 0.033 |
| 2   | 81   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.256          | 0.092 | 0.557 | Inf  | 0.038 |
| 2   | 82   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.265          | 0.092 | 0.558 | Inf  | 0.041 |
| 2   | 83   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.304          | 0.092 | 0.685 | Inf  | 0.054 |
| 2   | 84   | 2.54 | 50.8 | 1.80        | 0.220                  | 0.000 | Inf  | 90 | 0.354          | 0.092 | 0.726 | Inf  | 0.073 |
| 2   | 85   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.231          | 0.092 | 0.159 | Inf  | 0.032 |
| 2   | 86   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.248          | 0.092 | 0.315 | Inf  | 0.036 |
| 2   | 87   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.242          | 0.092 | 0.392 | Inf  | 0.034 |
| 2   | 88   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.263          | 0.092 | 0.640 | Inf  | 0.040 |
| 2   | 89   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.271          | 0.092 | 0.640 | Inf  | 0.043 |
| 2   | 90   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.275          | 0.092 | 0.722 | Inf  | 0.044 |
| 2   | 91   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.338          | 0.092 | 0.722 | Inf  | 0.066 |
| 2   | 92   | 1.27 | 25.4 | 2.40        | 0.220                  | 0.000 | Inf  | 90 | 0.315          | 0.092 | 0.809 | Inf  | 0.058 |
| 2   | 93   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.209          | 0.092 | 0.127 | Inf  | 0.026 |
| 2   | 94   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.227          | 0.092 | 0.315 | Inf  | 0.031 |
| 2   | 95   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.255          | 0.092 | 0.377 | Inf  | 0.038 |
| 2   | 96   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.246          | 0.092 | 0.403 | Inf  | 0.036 |
| 2   | 97   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.259          | 0.092 | 0.438 | Inf  | 0.039 |
| 2   | 98   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.275          | 0.092 | 0.518 | Inf  | 0.044 |
| 2   | 99   | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.373          | 0.092 | 0.539 | Inf  | 0.080 |
| 2   | 100  | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.275          | 0.092 | 0.558 | Inf  | 0.044 |
| 2   | 101  | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.291          | 0.092 | 0.561 | Inf  | 0.049 |
| 2   | 102  | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.322          | 0.092 | 0.561 | Inf  | 0.060 |
| 2   | 103  | 2.54 | 50.8 | 8.70        | 0.220                  | 0.000 | Inf  | 90 | 0.317          | 0.092 | 0.600 | Inf  | 0.058 |
| 2   | 104  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.223          | 0.092 | 0.159 | Inf  | 0.029 |
| 2   | 105  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.231          | 0.092 | 0.479 | Inf  | 0.032 |
| 2   | 106  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.239          | 0.092 | 0.561 | Inf  | 0.034 |
| 2   | 107  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.255          | 0.092 | 0.571 | Inf  | 0.038 |
| 2   | 108  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.267          | 0.092 | 0.640 | Inf  | 0.042 |
| 2   | 109  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.274          | 0.092 | 0.682 | Inf  | 0.044 |
| 2   | 110  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf  | 90 | 0.285          | 0.092 | 0.721 | Inf  | 0.047 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D    | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | T   | α  | $U_c(z_{obs})$ | ) Zobs | B/D   | KC  | θ     |
|-----|------|------|------|-------------|------------------------|-------|-----|----|----------------|--------|-------|-----|-------|
| 2   | 111  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf | 90 | 0.331          | 0.092  | 0.800 | Inf | 0.063 |
| 2   | 112  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf | 90 | 0.326          | 0.092  | 0.801 | Inf | 0.062 |
| 2   | 113  | 1.27 | 25.4 | 10.60       | 0.220                  | 0.000 | Inf | 90 | 0.350          | 0.092  | 0.802 | Inf | 0.071 |
| 2   | 114  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.127          | 0.092  | 0.037 | Inf | 0.010 |
| 2   | 115  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.197          | 0.092  | 0.039 | Inf | 0.023 |
| 2   | 116  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.161          | 0.092  | 0.059 | Inf | 0.016 |
| 2   | 117  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.184          | 0.092  | 0.075 | Inf | 0.021 |
| 2   | 118  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.193          | 0.092  | 0.077 | Inf | 0.022 |
| 2   | 119  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.201          | 0.092  | 0.120 | Inf | 0.024 |
| 2   | 120  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.193          | 0.092  | 0.160 | Inf | 0.022 |
| 2   | 121  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.205          | 0.092  | 0.198 | Inf | 0.025 |
| 2   | 122  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.209          | 0.092  | 0.282 | Inf | 0.026 |
| 2   | 123  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.209          | 0.092  | 0.346 | Inf | 0.026 |
| 2   | 124  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.193          | 0.092  | 0.348 | Inf | 0.022 |
| 2   | 125  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.201          | 0.092  | 0.348 | Inf | 0.024 |
| 2   | 126  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.224          | 0.092  | 0.385 | Inf | 0.030 |
| 2   | 127  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.231          | 0.092  | 0.386 | Inf | 0.032 |
| 2   | 128  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.213          | 0.092  | 0.388 | Inf | 0.027 |
| 2   | 129  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.245          | 0.092  | 0.390 | Inf | 0.035 |
| 2   | 130  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.238          | 0.092  | 0.464 | Inf | 0.033 |
| 2   | 131  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.254          | 0.092  | 0.466 | Inf | 0.038 |
| 2   | 132  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.245          | 0.092  | 0.507 | Inf | 0.035 |
| 2   | 133  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.224          | 0.092  | 0.546 | Inf | 0.030 |
| 2   | 134  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.227          | 0.092  | 0.546 | Inf | 0.031 |
| 2   | 135  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.227          | 0.092  | 0.586 | Inf | 0.031 |
| 2   | 136  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.248          | 0.092  | 0.546 | Inf | 0.036 |
| 2   | 137  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.267          | 0.092  | 0.546 | Inf | 0.042 |
| 2   | 138  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.241          | 0.092  | 0.547 | Inf | 0.034 |
| 2   | 139  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.257          | 0.092  | 0.586 | Inf | 0.039 |
| 2   | 140  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.264          | 0.092  | 0.588 | Inf | 0.041 |
| 2   | 141  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.279          | 0.092  | 0.626 | Inf | 0.045 |
| 2   | 142  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.270          | 0.092  | 0.628 | Inf | 0.043 |
| 2   | 143  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.293          | 0.092  | 0.628 | Inf | 0.050 |
| 2   | 144  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.273          | 0.092  | 0.629 | Inf | 0.044 |
| 2   | 145  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.290          | 0.092  | 0.629 | Inf | 0.049 |
| 2   | 146  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.360          | 0.092  | 0.632 | Inf | 0.075 |
| 2   | 147  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.257          | 0.092  | 0.649 | Inf | 0.039 |
| 2   | 148  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.293          | 0.092  | 0.666 | Inf | 0.050 |
| 2   | 149  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.279          | 0.092  | 0.667 | Inf | 0.045 |
| 2   | 150  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.336          | 0.092  | 0.673 | Inf | 0.065 |
| 2   | 151  | 2.54 | 45.0 | 2.40        | 0.220                  | 0.000 | Inf | 90 | 0.311          | 0.092  | 0.699 | Inf | 0.056 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | $d_{50}$ | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|----------|-------|------|----|----------------|-------|-------|------|-------|
| 2   | 152  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.284          | 0.092 | 0.702 | Inf  | 0.047 |
| 2   | 153  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.254          | 0.092 | 0.707 | Inf  | 0.038 |
| 2   | 154  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.341          | 0.092 | 0.708 | Inf  | 0.067 |
| 2   | 155  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.295          | 0.092 | 0.711 | Inf  | 0.051 |
| 2   | 156  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.336          | 0.092 | 0.731 | Inf  | 0.065 |
| 2   | 157  | 2.54  | 45.0  | 2.40        | 0.220    | 0.000 | Inf  | 90 | 0.314          | 0.092 | 0.746 | Inf  | 0.057 |
| 3   | 158  | 11.00 | 198.0 | 1.25        | 0.200    | 0.000 | Inf  | 90 | 0.300          | 0.055 | 0.495 | Inf  | 0.063 |
| 3   | 159  | 11.00 | 198.0 | 2.00        | 0.200    | 0.000 | Inf  | 90 | 0.491          | 0.055 | 0.576 | Inf  | 0.169 |
| 3   | 160  | 11.00 | 198.0 | 2.75        | 0.200    | 0.000 | Inf  | 90 | 0.513          | 0.055 | 0.740 | Inf  | 0.185 |
| 3   | 161  | 11.00 | 198.0 | 2.75        | 0.200    | 0.000 | Inf  | 90 | 0.491          | 0.055 | 0.691 | Inf  | 0.169 |
| 3   | 162  | 11.00 | 198.0 | 3.00        | 0.200    | 0.000 | Inf  | 90 | 0.499          | 0.055 | 0.679 | Inf  | 0.175 |
| 3   | 163  | 11.00 | 198.0 | 3.00        | 0.200    | 0.000 | Inf  | 90 | 0.506          | 0.055 | 0.709 | Inf  | 0.180 |
| 3   | 164  | 11.00 | 198.0 | 3.25        | 0.200    | 0.000 | Inf  | 90 | 0.492          | 0.055 | 0.670 | Inf  | 0.170 |
| 3   | 165  | 11.00 | 198.0 | 4.00        | 0.200    | 0.000 | Inf  | 90 | 0.544          | 0.055 | 0.750 | Inf  | 0.208 |
| 3   | 166  | 11.00 | 198.0 | 5.00        | 0.200    | 0.000 | Inf  | 90 | 0.529          | 0.055 | 0.703 | Inf  | 0.197 |
| 3   | 167  | 11.00 | 198.0 | 6.00        | 0.200    | 0.000 | Inf  | 90 | 0.480          | 0.055 | 0.705 | Inf  | 0.161 |
| 4   | 168  | 10.00 | 198.0 | 3.00        | 0.180    | 0.000 | Inf  | 90 | 0.450          | 0.100 | 0.685 | Inf  | 0.135 |
| 4   | 169  | 10.00 | 59.4  | 3.00        | 0.180    | 0.196 | 1.50 | 90 | 0.000          | 0.100 | 0.240 | 2.9  | 0.089 |
| 4   | 170  | 10.00 | 59.4  | 3.00        | 0.180    | 0.253 | 1.50 | 90 | 0.000          | 0.050 | 0.285 | 3.8  | 0.134 |
| 4   | 171  | 5.00  | 59.4  | 3.00        | 0.180    | 0.130 | 2.00 | 90 | 0.000          | 0.050 | 0.193 | 5.2  | 0.043 |
| 4   | 172  | 5.00  | 59.4  | 3.00        | 0.180    | 0.182 | 2.00 | 90 | 0.000          | 0.050 | 0.295 | 7.3  | 0.072 |
| 4   | 173  | 5.00  | 59.4  | 3.00        | 0.180    | 0.206 | 2.00 | 90 | 0.000          | 0.050 | 0.245 | 8.2  | 0.088 |
| 4   | 174  | 5.00  | 59.4  | 3.00        | 0.180    | 0.231 | 2.00 | 90 | 0.000          | 0.050 | 0.215 | 9.2  | 0.106 |
| 4   | 175  | 5.00  | 59.4  | 3.00        | 0.180    | 0.280 | 2.00 | 90 | 0.000          | 0.050 | 0.395 | 11.2 | 0.145 |
| 4   | 176  | 5.00  | 59.4  | 3.00        | 0.180    | 0.265 | 2.50 | 90 | 0.000          | 0.050 | 0.315 | 13.3 | 0.124 |
| 4   | 177  | 5.00  | 59.4  | 1.25        | 0.180    | 0.313 | 2.50 | 90 | 0.000          | 0.050 | 0.395 | 15.7 | 0.163 |
| 4   | 178  | 5.00  | 59.4  | 2.00        | 0.180    | 0.313 | 2.50 | 90 | 0.000          | 0.050 | 0.395 | 15.7 | 0.163 |
| 4   | 179  | 5.00  | 59.4  | 3.00        | 0.180    | 0.313 | 2.50 | 90 | 0.000          | 0.050 | 0.395 | 15.7 | 0.163 |
| 4   | 180  | 5.00  | 59.4  | 4.00        | 0.180    | 0.313 | 2.50 | 90 | 0.000          | 0.050 | 0.395 | 15.7 | 0.163 |
| 4   | 181  | 5.00  | 59.4  | 6.00        | 0.180    | 0.313 | 2.50 | 90 | 0.000          | 0.050 | 0.395 | 15.7 | 0.163 |
| 4   | 182  | 5.00  | 59.4  | 3.00        | 0.180    | 0.271 | 3.00 | 90 | 0.000          | 0.050 | 0.395 | 16.3 | 0.122 |
| 4   | 183  | 5.00  | 59.4  | 3.00        | 0.180    | 0.305 | 3.00 | 90 | 0.000          | 0.050 | 0.475 | 18.3 | 0.149 |
| 4   | 184  | 5.00  | 59.4  | 3.00        | 0.180    | 0.372 | 3.00 | 90 | 0.000          | 0.050 | 0.490 | 22.3 | 0.208 |
| 4   | 185  | 5.00  | 59.4  | 3.00        | 0.180    | 0.413 | 3.00 | 90 | 0.000          | 0.050 | 0.485 | 24.8 | 0.249 |
| 4   | 186  | 5.00  | 59.4  | 3.00        | 0.180    | 0.423 | 3.00 | 90 | 0.000          | 0.050 | 0.485 | 25.4 | 0.259 |
| 4   | 187  | 5.00  | 59.4  | 3.00        | 0.180    | 0.471 | 3.00 | 90 | 0.000          | 0.050 | 0.600 | 28.3 | 0.313 |
| 4   | 188  | 5.00  | 59.4  | 3.00        | 0.180    | 0.500 | 3.00 | 90 | 0.000          | 0.050 | 0.620 | 30.0 | 0.347 |
| 4   | 189  | 5.00  | 59.4  | 3.00        | 0.180    | 0.481 | 3.50 | 90 | 0.000          | 0.050 | 0.570 | 33.7 | 0.311 |
| 4   | 190  | 2.00  | 59.4  | 3.00        | 0.180    | 0.222 | 3.00 | 90 | 0.000          | 0.050 | 0.430 | 33.3 | 0.088 |
| 4   | 191  | 2.00  | 59.4  | 3.00        | 0.180    | 0.300 | 3.00 | 90 | 0.000          | 0.050 | 0.670 | 45.0 | 0.144 |
| 4   | 192  | 2.00  | 59.4  | 3.00        | 0.180    | 0.401 | 3.00 | 90 | 0.000          | 0.050 | 0.720 | 60.2 | 0.236 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 4   | 193  | 2.00  | 59.4 | 3.00        | 0.180                  | 0.502 | 3.00 | 90 | 0.000          | 0.050 | 0.820 | 75.3 | 0.350 |
| 5   | 194  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.199 | 1.90 | 90 | 0.000          | 0.206 | 0.100 | 2.5  | 0.066 |
| 5   | 195  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.209 | 1.70 | 90 | 0.000          | 0.206 | 0.120 | 2.3  | 0.074 |
| 5   | 196  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.147 | 3.40 | 90 | 0.000          | 0.206 | 0.070 | 3.3  | 0.034 |
| 5   | 197  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.172 | 2.90 | 90 | 0.000          | 0.206 | 0.090 | 3.3  | 0.045 |
| 5   | 198  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.187 | 2.60 | 90 | 0.000          | 0.206 | 0.100 | 3.2  | 0.054 |
| 5   | 199  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.210 | 2.30 | 90 | 0.000          | 0.206 | 0.110 | 3.2  | 0.068 |
| 5   | 200  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.224 | 2.00 | 90 | 0.000          | 0.206 | 0.190 | 3.0  | 0.079 |
| 5   | 201  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.240 | 1.90 | 90 | 0.000          | 0.206 | 0.180 | 3.0  | 0.090 |
| 5   | 202  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.244 | 1.70 | 90 | 0.000          | 0.206 | 0.200 | 2.7  | 0.096 |
| 5   | 203  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.145 | 4.10 | 90 | 0.000          | 0.206 | 0.120 | 3.9  | 0.031 |
| 5   | 204  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.175 | 3.40 | 90 | 0.000          | 0.206 | 0.130 | 3.9  | 0.044 |
| 5   | 205  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.205 | 2.90 | 90 | 0.000          | 0.206 | 0.150 | 3.9  | 0.060 |
| 5   | 206  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.232 | 2.60 | 90 | 0.000          | 0.206 | 0.150 | 4.0  | 0.077 |
| 5   | 207  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.256 | 2.30 | 90 | 0.000          | 0.206 | 0.220 | 3.9  | 0.094 |
| 5   | 208  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.278 | 2.00 | 90 | 0.000          | 0.206 | 0.240 | 3.7  | 0.113 |
| 5   | 209  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.294 | 1.90 | 90 | 0.000          | 0.206 | 0.230 | 3.7  | 0.127 |
| 5   | 210  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.312 | 1.70 | 90 | 0.000          | 0.206 | 0.250 | 3.5  | 0.146 |
| 5   | 211  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.167 | 4.10 | 90 | 0.000          | 0.206 | 0.110 | 4.5  | 0.039 |
| 5   | 212  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.210 | 3.40 | 90 | 0.000          | 0.206 | 0.110 | 4.7  | 0.060 |
| 5   | 213  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.243 | 2.90 | 90 | 0.000          | 0.206 | 0.190 | 4.6  | 0.080 |
| 5   | 214  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.268 | 2.60 | 90 | 0.000          | 0.206 | 0.190 | 4.6  | 0.098 |
| 5   | 215  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.310 | 2.30 | 90 | 0.000          | 0.206 | 0.180 | 4.7  | 0.131 |
| 5   | 216  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.337 | 2.00 | 90 | 0.000          | 0.206 | 0.270 | 4.4  | 0.158 |
| 5   | 217  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.355 | 1.90 | 90 | 0.000          | 0.206 | 0.260 | 4.4  | 0.176 |
| 5   | 218  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.378 | 1.70 | 90 | 0.000          | 0.206 | 0.310 | 4.2  | 0.203 |
| 5   | 219  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.207 | 4.10 | 90 | 0.000          | 0.206 | 0.200 | 5.6  | 0.055 |
| 5   | 220  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.251 | 3.40 | 90 | 0.000          | 0.206 | 0.160 | 5.6  | 0.081 |
| 5   | 221  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.293 | 2.90 | 90 | 0.000          | 0.206 | 0.220 | 5.6  | 0.110 |
| 5   | 222  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.344 | 2.60 | 90 | 0.000          | 0.206 | 0.280 | 5.9  | 0.151 |
| 5   | 223  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.379 | 2.30 | 90 | 0.000          | 0.206 | 0.280 | 5.7  | 0.186 |
| 5   | 224  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.414 | 2.00 | 90 | 0.000          | 0.206 | 0.320 | 5.5  | 0.226 |
| 5   | 225  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.454 | 1.90 | 90 | 0.000          | 0.206 | 0.340 | 5.7  | 0.271 |
| 5   | 226  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.237 | 4.10 | 90 | 0.000          | 0.206 | 0.210 | 6.4  | 0.069 |
| 5   | 227  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.288 | 3.40 | 90 | 0.000          | 0.206 | 0.200 | 6.4  | 0.102 |
| 5   | 228  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.338 | 2.90 | 90 | 0.000          | 0.206 | 0.270 | 6.5  | 0.142 |
| 5   | 229  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.388 | 2.60 | 90 | 0.000          | 0.206 | 0.280 | 6.6  | 0.186 |
| 5   | 230  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.431 | 2.30 | 90 | 0.000          | 0.206 | 0.280 | 6.5  | 0.233 |
| 5   | 231  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.457 | 2.00 | 90 | 0.000          | 0.206 | 0.330 | 6.0  | 0.270 |
| 5   | 232  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.263 | 4.10 | 90 | 0.000          | 0.206 | 0.280 | 7.1  | 0.083 |
| 5   | 233  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.321 | 3.40 | 90 | 0.000          | 0.206 | 0.270 | 7.2  | 0.123 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | $d_{50}$ | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|----------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 234  | 15.20 | 30.5  | 2.30        | 0.250    | 0.443 | 2.90 | 90 | 0.000          | 0.206 | 0.300 | 8.5  | 0.228 |
| 5   | 235  | 15.20 | 30.5  | 2.30        | 0.250    | 0.430 | 2.60 | 90 | 0.000          | 0.206 | 0.340 | 7.4  | 0.223 |
| 5   | 236  | 15.20 | 30.5  | 2.30        | 0.250    | 0.475 | 2.30 | 90 | 0.000          | 0.206 | 0.410 | 7.2  | 0.277 |
| 5   | 237  | 15.20 | 30.5  | 2.30        | 0.250    | 0.293 | 4.10 | 90 | 0.000          | 0.206 | 0.250 | 7.9  | 0.100 |
| 5   | 238  | 15.20 | 30.5  | 2.30        | 0.250    | 0.345 | 3.40 | 90 | 0.000          | 0.206 | 0.300 | 7.7  | 0.140 |
| 5   | 239  | 15.20 | 30.5  | 2.30        | 0.250    | 0.399 | 2.90 | 90 | 0.000          | 0.206 | 0.310 | 7.6  | 0.189 |
| 5   | 240  | 15.20 | 30.5  | 2.30        | 0.250    | 0.447 | 2.60 | 90 | 0.000          | 0.206 | 0.310 | 7.7  | 0.239 |
| 5   | 241  | 15.20 | 30.5  | 2.30        | 0.250    | 0.332 | 4.10 | 90 | 0.000          | 0.206 | 0.320 | 9.0  | 0.124 |
| 5   | 242  | 15.20 | 30.5  | 2.30        | 0.250    | 0.386 | 3.40 | 90 | 0.000          | 0.206 | 0.370 | 8.6  | 0.170 |
| 5   | 243  | 15.20 | 30.5  | 2.30        | 0.250    | 0.260 | 5.10 | 90 | 0.000          | 0.206 | 0.310 | 8.7  | 0.076 |
| 5   | 244  | 15.20 | 30.5  | 2.30        | 0.250    | 0.408 | 4.10 | 90 | 0.000          | 0.206 | 0.350 | 11.0 | 0.178 |
| 5   | 245  | 15.20 | 30.5  | 2.30        | 0.250    | 0.337 | 2.00 | 90 | 0.000          | 0.206 | 0.320 | 4.4  | 0.158 |
| 5   | 246  | 15.20 | 30.5  | 2.30        | 0.250    | 0.260 | 1.60 | 90 | 0.000          | 0.206 | 0.260 | 2.7  | 0.109 |
| 5   | 247  | 15.20 | 30.5  | 2.30        | 0.250    | 0.384 | 6.00 | 90 | 0.000          | 0.206 | 0.310 | 15.2 | 0.144 |
| 5   | 248  | 15.20 | 30.5  | 2.30        | 0.250    | 0.256 | 2.30 | 90 | 0.000          | 0.206 | 0.280 | 3.9  | 0.094 |
| 5   | 249  | 15.20 | 30.5  | 2.30        | 0.250    | 0.355 | 2.30 | 90 | 0.000          | 0.206 | 0.280 | 5.4  | 0.165 |
| 5   | 250  | 15.20 | 30.5  | 2.30        | 0.250    | 0.342 | 4.10 | 90 | 0.000          | 0.206 | 0.380 | 9.2  | 0.131 |
| 5   | 251  | 15.20 | 30.5  | 2.30        | 0.250    | 0.408 | 4.10 | 90 | 0.000          | 0.206 | 0.420 | 11.0 | 0.178 |
| 5   | 252  | 15.20 | 30.5  | 2.30        | 0.250    | 0.397 | 6.90 | 90 | 0.000          | 0.206 | 0.420 | 18.0 | 0.147 |
| 5   | 253  | 15.20 | 30.5  | 2.30        | 0.250    | 0.397 | 6.90 | 90 | 0.000          | 0.206 | 0.480 | 18.0 | 0.147 |
| 5   | 254  | 15.20 | 30.5  | 2.30        | 0.250    | 0.443 | 2.90 | 90 | 0.000          | 0.206 | 0.470 | 8.5  | 0.228 |
| 5   | 255  | 15.20 | 30.5  | 2.30        | 0.250    | 0.384 | 6.00 | 90 | 0.000          | 0.206 | 0.360 | 15.2 | 0.144 |
| 5   | 256  | 15.20 | 30.5  | 2.30        | 0.250    | 0.392 | 2.90 | 90 | 0.000          | 0.206 | 0.430 | 7.5  | 0.184 |
| 5   | 257  | 15.20 | 30.5  | 2.30        | 0.250    | 0.414 | 2.00 | 90 | 0.000          | 0.206 | 0.340 | 5.5  | 0.226 |
| 5   | 258  | 15.20 | 30.5  | 2.30        | 0.250    | 0.522 | 2.40 | 90 | 0.000          | 0.206 | 0.430 | 8.2  | 0.323 |
| 5   | 259  | 15.20 | 30.5  | 2.30        | 0.250    | 0.522 | 2.40 | 90 | 0.000          | 0.206 | 0.420 | 8.2  | 0.323 |
| 5   | 260  | 10.20 | 20.3  | 2.30        | 0.250    | 0.472 | 6.90 | 90 | 0.000          | 0.206 | 0.510 | 31.9 | 0.200 |
| 5   | 261  | 10.20 | 20.3  | 2.30        | 0.250    | 0.522 | 2.40 | 90 | 0.000          | 0.206 | 0.450 | 12.3 | 0.323 |
| 5   | 262  | 10.20 | 20.3  | 2.30        | 0.250    | 0.435 | 2.90 | 90 | 0.000          | 0.206 | 0.410 | 12.4 | 0.221 |
| 5   | 263  | 10.20 | 20.3  | 2.30        | 0.250    | 0.500 | 4.10 | 90 | 0.000          | 0.206 | 0.480 | 20.1 | 0.256 |
| 5   | 264  | 10.20 | 20.3  | 2.30        | 0.250    | 0.207 | 4.10 | 90 | 0.000          | 0.206 | 0.240 | 8.3  | 0.055 |
| 5   | 265  | 12.50 | 25.3  | 2.30        | 0.250    | 0.472 | 6.90 | 90 | 0.000          | 0.206 | 0.410 | 26.1 | 0.200 |
| 5   | 266  | 25.40 | 102.0 | 2.00        | 0.250    | 0.250 | 5.10 | 90 | 0.000          | 0.206 | 0.180 | 5.0  | 0.071 |
| 5   | 267  | 25.40 | 102.0 | 2.00        | 0.250    | 0.488 | 6.90 | 90 | 0.000          | 0.206 | 0.440 | 13.3 | 0.213 |
| 5   | 268  | 20.30 | 81.0  | 2.00        | 0.250    | 0.250 | 5.10 | 90 | 0.000          | 0.206 | 0.230 | 6.3  | 0.071 |
| 5   | 269  | 5.10  | 20.3  | 7.80        | 0.250    | 0.320 | 3.40 | 90 | 0.000          | 0.206 | 0.420 | 21.3 | 0.123 |
| 5   | 270  | 5.10  | 20.3  | 7.80        | 0.250    | 0.500 | 4.10 | 90 | 0.000          | 0.206 | 0.730 | 40.2 | 0.256 |
| 5   | 271  | 5.10  | 20.3  | 7.80        | 0.250    | 0.384 | 3.40 | 90 | 0.000          | 0.206 | 0.570 | 25.6 | 0.169 |
| 5   | 272  | 8.60  | 35.1  | 2.70        | 0.250    | 0.472 | 6.90 | 90 | 0.000          | 0.206 | 0.480 | 37.9 | 0.200 |
| 5   | 273  | 8.60  | 26.2  | 2.70        | 0.250    | 0.250 | 5.10 | 90 | 0.000          | 0.206 | 0.300 | 14.8 | 0.071 |
| 5   | 274  | 8.60  | 26.3  | 2.70        | 0.250    | 0.472 | 6.90 | 90 | 0.000          | 0.206 | 0.510 | 37.9 | 0.200 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | T    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 275  | 8.60  | 26.2  | 2.70        | 0.250                  | 0.207 | 4.10 | 90 | 0.000          | 0.206 | 0.260 | 9.9  | 0.055 |
| 5   | 276  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.207 | 1.80 | 90 | 0.072          | 0.206 | 0.100 | 3.3  | 0.116 |
| 5   | 277  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.195 | 2.40 | 90 | 0.072          | 0.206 | 0.150 | 4.2  | 0.098 |
| 5   | 278  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.232 | 1.90 | 90 | 0.072          | 0.206 | 0.140 | 3.8  | 0.132 |
| 5   | 279  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.286 | 1.90 | 90 | 0.072          | 0.206 | 0.190 | 4.4  | 0.176 |
| 5   | 280  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.386 | 1.60 | 90 | 0.072          | 0.206 | 0.250 | 4.8  | 0.288 |
| 5   | 281  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.422 | 1.90 | 90 | 0.072          | 0.206 | 0.230 | 6.1  | 0.312 |
| 5   | 282  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.387 | 2.70 | 90 | 0.072          | 0.206 | 0.260 | 8.1  | 0.246 |
| 5   | 283  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.407 | 2.70 | 90 | 0.072          | 0.206 | 0.290 | 8.5  | 0.265 |
| 5   | 284  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.394 | 3.20 | 90 | 0.072          | 0.206 | 0.300 | 9.8  | 0.240 |
| 5   | 285  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.213 | 1.70 | 90 | 0.117          | 0.206 | 0.110 | 3.7  | 0.157 |
| 5   | 286  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.237 | 1.90 | 90 | 0.117          | 0.206 | 0.220 | 4.4  | 0.172 |
| 5   | 287  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.291 | 1.90 | 90 | 0.117          | 0.206 | 0.280 | 5.1  | 0.221 |
| 5   | 288  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.391 | 1.60 | 90 | 0.117          | 0.206 | 0.260 | 5.3  | 0.345 |
| 5   | 289  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 90 | 0.117          | 0.206 | 0.190 | 7.5  | 0.211 |
| 5   | 290  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.427 | 1.90 | 90 | 0.117          | 0.206 | 0.260 | 6.8  | 0.369 |
| 5   | 291  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.401 | 2.30 | 90 | 0.117          | 0.206 | 0.280 | 7.8  | 0.319 |
| 5   | 292  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.413 | 2.70 | 90 | 0.117          | 0.206 | 0.300 | 9.4  | 0.317 |
| 5   | 293  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.400 | 3.10 | 90 | 0.117          | 0.206 | 0.280 | 10.5 | 0.291 |
| 5   | 294  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.218 | 1.70 | 90 | 0.173          | 0.206 | 0.170 | 4.3  | 0.210 |
| 5   | 295  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.206 | 2.30 | 90 | 0.173          | 0.206 | 0.190 | 5.7  | 0.181 |
| 5   | 296  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.243 | 1.40 | 90 | 0.173          | 0.206 | 0.250 | 3.8  | 0.250 |
| 5   | 297  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.407 | 2.30 | 90 | 0.173          | 0.206 | 0.380 | 8.7  | 0.389 |
| 5   | 298  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.418 | 2.60 | 90 | 0.173          | 0.206 | 0.370 | 10.0 | 0.388 |
| 5   | 299  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.421 | 5.80 | 90 | 0.173          | 0.206 | 0.400 | 22.5 | 0.312 |
| 5   | 300  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.511 | 2.20 | 90 | 0.173          | 0.206 | 0.330 | 9.8  | 0.531 |
| 5   | 301  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 90 | 0.173          | 0.206 | 0.300 | 23.6 | 0.343 |
| 5   | 302  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 90 | 0.173          | 0.206 | 0.470 | 23.6 | 0.343 |
| 5   | 303  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 90 | 0.173          | 0.206 | 0.400 | 23.6 | 0.343 |
| 5   | 304  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.190 | 2.00 | 90 | 0.173          | 0.206 | 0.120 | 4.7  | 0.175 |
| 5   | 305  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 90 | 0.173          | 0.206 | 0.180 | 6.0  | 0.202 |
| 5   | 306  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.316 | 3.70 | 90 | 0.173          | 0.206 | 0.260 | 11.8 | 0.248 |
| 5   | 307  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.449 | 2.70 | 90 | 0.173          | 0.206 | 0.390 | 11.0 | 0.421 |
| 5   | 308  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.449 | 2.70 | 90 | 0.173          | 0.206 | 0.330 | 11.0 | 0.421 |
| 5   | 309  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 90 | 0.173          | 0.206 | 0.230 | 8.4  | 0.262 |
| 5   | 310  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 90 | 0.173          | 0.206 | 0.170 | 4.8  | 0.377 |
| 5   | 311  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 90 | 0.173          | 0.206 | 0.210 | 4.8  | 0.377 |
| 5   | 312  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.235 | 3.60 | 90 | 0.173          | 0.206 | 0.220 | 5.8  | 0.188 |
| 5   | 313  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.275 | 4.40 | 90 | 0.173          | 0.206 | 0.250 | 7.8  | 0.209 |
| 5   | 314  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.257 | 5.10 | 90 | 0.173          | 0.206 | 0.270 | 8.7  | 0.187 |
| 5   | 315  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.211 | 2.00 | 90 | 0.173          | 0.206 | 0.150 | 3.1  | 0.202 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | $d_{50}$ | $U_w$ | Т    | α  | $U_c(z_{obs})$ | ) Zobs | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|----------|-------|------|----|----------------|--------|-------|------|-------|
| 5   | 316  | 20.30 | 81.0  | 2.00        | 0.250    | 0.239 | 3.60 | 90 | 0.173          | 0.206  | 0.190 | 7.3  | 0.188 |
| 5   | 317  | 20.30 | 81.0  | 2.00        | 0.250    | 0.279 | 4.40 | 90 | 0.173          | 0.206  | 0.150 | 9.8  | 0.209 |
| 5   | 318  | 20.30 | 81.0  | 2.00        | 0.250    | 0.261 | 5.10 | 90 | 0.173          | 0.206  | 0.290 | 10.9 | 0.187 |
| 5   | 319  | 20.30 | 81.0  | 2.00        | 0.250    | 0.215 | 2.00 | 90 | 0.173          | 0.206  | 0.120 | 3.8  | 0.202 |
| 5   | 320  | 8.50  | 26.2  | 2.70        | 0.250    | 0.256 | 3.60 | 90 | 0.173          | 0.206  | 0.260 | 17.5 | 0.189 |
| 5   | 321  | 8.50  | 26.2  | 2.70        | 0.250    | 0.296 | 4.40 | 90 | 0.173          | 0.206  | 0.330 | 23.4 | 0.210 |
| 5   | 322  | 8.60  | 26.3  | 2.70        | 0.250    | 0.489 | 5.80 | 90 | 0.173          | 0.206  | 0.470 | 43.6 | 0.370 |
| 5   | 323  | 8.50  | 26.2  | 2.70        | 0.250    | 0.278 | 5.10 | 90 | 0.173          | 0.206  | 0.330 | 26.1 | 0.188 |
| 5   | 324  | 8.50  | 26.2  | 2.70        | 0.250    | 0.232 | 2.00 | 90 | 0.173          | 0.206  | 0.290 | 9.2  | 0.203 |
| 5   | 325  | 10.20 | 20.3  | 2.30        | 0.250    | 0.533 | 3.60 | 90 | 0.173          | 0.206  | 0.400 | 24.5 | 0.479 |
| 5   | 326  | 10.20 | 20.3  | 2.30        | 0.250    | 0.533 | 3.60 | 90 | 0.173          | 0.206  | 0.410 | 24.5 | 0.479 |
| 5   | 327  | 10.20 | 20.3  | 2.30        | 0.250    | 0.531 | 2.30 | 90 | 0.173          | 0.206  | 0.490 | 15.6 | 0.542 |
| 5   | 328  | 12.50 | 25.4  | 2.30        | 0.250    | 0.508 | 5.80 | 90 | 0.173          | 0.206  | 0.380 | 31.2 | 0.397 |
| 5   | 329  | 7.60  | 20.3  | 7.80        | 0.250    | 0.491 | 5.80 | 90 | 0.173          | 0.206  | 0.570 | 49.3 | 0.369 |
| 5   | 330  | 15.20 | 30.5  | 2.30        | 0.250    | 0.355 | 2.30 | 90 | 0.000          | 0.206  | 0.280 | 5.4  | 0.165 |
| 5   | 331  | 15.20 | 30.5  | 2.30        | 0.250    | 0.180 | 2.00 | 90 | 0.000          | 0.206  | 0.030 | 2.4  | 0.055 |
| 5   | 332  | 15.20 | 30.5  | 2.30        | 0.250    | 0.256 | 2.30 | 90 | 0.000          | 0.206  | 0.280 | 3.9  | 0.094 |
| 5   | 333  | 15.20 | 30.5  | 2.30        | 0.250    | 0.342 | 4.10 | 90 | 0.000          | 0.206  | 0.380 | 9.2  | 0.131 |
| 5   | 334  | 15.20 | 30.5  | 2.30        | 0.250    | 0.408 | 4.10 | 90 | 0.000          | 0.206  | 0.420 | 11.0 | 0.178 |
| 5   | 335  | 15.20 | 30.5  | 2.30        | 0.250    | 0.397 | 6.90 | 90 | 0.000          | 0.206  | 0.420 | 18.0 | 0.147 |
| 5   | 336  | 15.20 | 30.5  | 2.30        | 0.250    | 0.443 | 2.90 | 90 | 0.000          | 0.206  | 0.470 | 8.5  | 0.228 |
| 5   | 337  | 15.20 | 30.5  | 2.30        | 0.250    | 0.384 | 6.00 | 90 | 0.000          | 0.206  | 0.360 | 15.2 | 0.144 |
| 5   | 338  | 15.20 | 30.5  | 2.30        | 0.250    | 0.392 | 2.90 | 90 | 0.000          | 0.206  | 0.430 | 7.5  | 0.184 |
| 5   | 339  | 15.20 | 30.5  | 2.30        | 0.250    | 0.414 | 2.00 | 90 | 0.000          | 0.206  | 0.340 | 5.5  | 0.226 |
| 5   | 340  | 15.20 | 30.5  | 2.30        | 0.250    | 0.522 | 2.40 | 90 | 0.000          | 0.206  | 0.430 | 8.2  | 0.323 |
| 5   | 341  | 10.20 | 20.3  | 2.30        | 0.250    | 0.472 | 6.90 | 90 | 0.000          | 0.206  | 0.390 | 31.9 | 0.200 |
| 5   | 342  | 15.20 | 30.5  | 2.30        | 0.250    | 0.304 | 1.80 | 90 | 0.000          | 0.206  | 0.360 | 3.6  | 0.137 |
| 5   | 343  | 15.20 | 30.5  | 2.30        | 0.250    | 0.218 | 4.40 | 90 | 0.000          | 0.206  | 0.200 | 6.3  | 0.059 |
| 5   | 344  | 15.20 | 30.5  | 2.30        | 0.250    | 0.403 | 6.40 | 90 | 0.000          | 0.206  | 0.330 | 17.0 | 0.154 |
| 5   | 345  | 15.20 | 30.5  | 2.30        | 0.250    | 0.326 | 3.90 | 90 | 0.000          | 0.206  | 0.360 | 8.4  | 0.122 |
| 5   | 346  | 15.20 | 30.5  | 2.30        | 0.250    | 0.233 | 1.50 | 90 | 0.000          | 0.206  | 0.180 | 2.3  | 0.092 |
| 5   | 347  | 15.20 | 30.5  | 2.30        | 0.250    | 0.290 | 2.70 | 90 | 0.000          | 0.206  | 0.320 | 5.2  | 0.111 |
| 5   | 348  | 15.20 | 30.5  | 2.30        | 0.250    | 0.370 | 5.70 | 90 | 0.000          | 0.206  | 0.020 | 13.9 | 0.137 |
| 5   | 349  | 15.20 | 30.5  | 2.30        | 0.250    | 0.195 | 3.90 | 90 | 0.000          | 0.206  | 0.210 | 5.0  | 0.051 |
| 5   | 350  | 15.20 | 30.5  | 2.30        | 0.250    | 0.296 | 3.90 | 90 | 0.000          | 0.206  | 0.270 | 7.6  | 0.103 |
| 5   | 351  | 20.30 | 81.0  | 2.00        | 0.250    | 0.244 | 4.80 | 90 | 0.000          | 0.206  | 0.230 | 5.8  | 0.070 |
| 5   | 352  | 25.40 | 102.0 | 2.00        | 0.250    | 0.244 | 4.80 | 90 | 0.000          | 0.206  | 0.190 | 4.6  | 0.070 |
| 5   | 353  | 8.60  | 26.3  | 2.70        | 0.250    | 0.244 | 4.80 | 90 | 0.000          | 0.206  | 0.300 | 13.6 | 0.070 |
| 5   | 354  | 10.20 | 20.3  | 2.30        | 0.250    | 0.500 | 4.10 | 89 | 0.000          | 0.206  | 0.480 | 20.1 | 0.256 |
| 5   | 355  | 8.60  | 35.1  | 2.70        | 0.250    | 0.472 | 6.90 | 88 | 0.000          | 0.206  | 0.480 | 37.9 | 0.200 |
| 5   | 356  | 10.20 | 20.3  | 2.30        | 0.250    | 0.472 | 6.90 | 88 | 0.000          | 0.206  | 0.510 | 31.9 | 0.200 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 357  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.472 | 6.90 | 87 | 0.000          | 0.206 | 0.300 | 31.9 | 0.200 |
| 5   | 358  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.522 | 2.40 | 87 | 0.000          | 0.206 | 0.450 | 12.3 | 0.323 |
| 5   | 359  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.472 | 6.90 | 86 | 0.000          | 0.206 | 0.410 | 26.1 | 0.200 |
| 5   | 360  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.397 | 6.90 | 85 | 0.000          | 0.206 | 0.480 | 18.0 | 0.147 |
| 5   | 361  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.435 | 2.90 | 85 | 0.000          | 0.206 | 0.410 | 12.4 | 0.221 |
| 5   | 362  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.500 | 4.10 | 84 | 0.000          | 0.206 | 0.370 | 20.1 | 0.256 |
| 5   | 363  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.522 | 2.40 | 81 | 0.000          | 0.206 | 0.420 | 8.2  | 0.323 |
| 5   | 364  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.488 | 6.90 | 80 | 0.000          | 0.206 | 0.440 | 13.3 | 0.213 |
| 5   | 365  | 8.60  | 35.1  | 2.70        | 0.250                  | 0.522 | 2.40 | 77 | 0.000          | 0.206 | 0.600 | 14.6 | 0.323 |
| 5   | 366  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.392 | 2.90 | 76 | 0.000          | 0.206 | 0.290 | 7.5  | 0.184 |
| 5   | 367  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.554 | 2.60 | 76 | 0.000          | 0.206 | 0.650 | 14.1 | 0.351 |
| 5   | 368  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.397 | 6.90 | 75 | 0.000          | 0.206 | 0.310 | 18.0 | 0.147 |
| 5   | 369  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.488 | 6.90 | 75 | 0.000          | 0.206 | 0.420 | 16.6 | 0.213 |
| 5   | 370  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.488 | 6.90 | 75 | 0.000          | 0.206 | 0.370 | 33.0 | 0.213 |
| 5   | 371  | 12.50 | 25.4  | 2.30        | 0.250                  | 0.488 | 6.90 | 75 | 0.000          | 0.206 | 0.440 | 26.9 | 0.213 |
| 5   | 372  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.408 | 4.10 | 74 | 0.000          | 0.206 | 0.390 | 11.0 | 0.178 |
| 5   | 373  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.384 | 6.00 | 74 | 0.000          | 0.206 | 0.350 | 15.2 | 0.144 |
| 5   | 374  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.414 | 2.00 | 74 | 0.000          | 0.206 | 0.410 | 5.5  | 0.226 |
| 5   | 375  | 12.50 | 25.4  | 2.30        | 0.250                  | 0.554 | 2.60 | 74 | 0.000          | 0.206 | 0.400 | 11.5 | 0.351 |
| 5   | 376  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.392 | 2.90 | 73 | 0.000          | 0.206 | 0.440 | 7.5  | 0.184 |
| 5   | 377  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.443 | 2.90 | 72 | 0.000          | 0.206 | 0.330 | 8.5  | 0.228 |
| 5   | 378  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.522 | 2.40 | 72 | 0.000          | 0.206 | 0.360 | 8.2  | 0.323 |
| 5   | 379  | 8.60  | 35.1  | 2.70        | 0.250                  | 0.435 | 2.90 | 72 | 0.000          | 0.206 | 0.390 | 14.7 | 0.221 |
| 5   | 380  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.500 | 4.10 | 72 | 0.000          | 0.206 | 0.550 | 20.1 | 0.256 |
| 5   | 381  | 12.50 | 25.4  | 2.30        | 0.250                  | 0.267 | 5.10 | 72 | 0.000          | 0.206 | 0.340 | 10.9 | 0.080 |
| 5   | 382  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.342 | 4.10 | 71 | 0.000          | 0.206 | 0.380 | 9.2  | 0.131 |
| 5   | 383  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.384 | 6.00 | 71 | 0.000          | 0.206 | 0.330 | 15.2 | 0.144 |
| 5   | 384  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.522 | 2.40 | 71 | 0.000          | 0.206 | 0.550 | 10.0 | 0.323 |
| 5   | 385  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.522 | 2.40 | 70 | 0.000          | 0.206 | 0.430 | 12.3 | 0.323 |
| 5   | 386  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.342 | 4.10 | 70 | 0.000          | 0.206 | 0.370 | 9.2  | 0.131 |
| 5   | 387  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.443 | 2.90 | 70 | 0.000          | 0.206 | 0.420 | 8.5  | 0.228 |
| 5   | 388  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.472 | 6.90 | 70 | 0.000          | 0.206 | 0.510 | 37.9 | 0.200 |
| 5   | 389  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.435 | 2.90 | 70 | 0.000          | 0.206 | 0.340 | 12.4 | 0.221 |
| 5   | 390  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.355 | 2.30 | 70 | 0.000          | 0.206 | 0.270 | 5.4  | 0.165 |
| 5   | 391  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.435 | 2.90 | 69 | 0.000          | 0.206 | 0.440 | 14.7 | 0.221 |
| 5   | 392  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.256 | 2.30 | 68 | 0.000          | 0.206 | 0.250 | 3.9  | 0.094 |
| 5   | 393  | 8.60  | 35.1  | 2.70        | 0.250                  | 0.260 | 5.10 | 68 | 0.000          | 0.206 | 0.410 | 15.4 | 0.076 |
| 5   | 394  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.260 | 5.10 | 68 | 0.000          | 0.206 | 0.390 | 13.0 | 0.076 |
| 5   | 395  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.260 | 5.10 | 67 | 0.000          | 0.206 | 0.150 | 15.4 | 0.076 |
| 5   | 396  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.355 | 2.30 | 66 | 0.000          | 0.206 | 0.390 | 5.4  | 0.165 |
| 5   | 397  | 5.10  | 20.3  | 7.80        | 0.250                  | 0.522 | 2.40 | 66 | 0.000          | 0.206 | 0.620 | 24.6 | 0.323 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 398  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.522 | 2.40 | 66 | 0.000          | 0.206 | 0.470 | 12.3 | 0.323 |
| 5   | 399  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.408 | 4.10 | 65 | 0.000          | 0.206 | 0.380 | 11.0 | 0.178 |
| 5   | 400  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.414 | 2.00 | 65 | 0.000          | 0.206 | 0.250 | 5.5  | 0.226 |
| 5   | 401  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.260 | 5.10 | 65 | 0.000          | 0.206 | 0.330 | 13.0 | 0.076 |
| 5   | 402  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.260 | 5.10 | 65 | 0.000          | 0.206 | 0.300 | 10.6 | 0.076 |
| 5   | 403  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.435 | 2.90 | 65 | 0.000          | 0.206 | 0.280 | 10.1 | 0.221 |
| 5   | 404  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.522 | 2.40 | 65 | 0.000          | 0.206 | 0.680 | 14.6 | 0.323 |
| 5   | 405  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.355 | 2.30 | 64 | 0.000          | 0.206 | 0.360 | 5.4  | 0.165 |
| 5   | 406  | 5.10  | 20.3  | 7.80        | 0.250                  | 0.435 | 2.90 | 64 | 0.000          | 0.206 | 0.370 | 24.7 | 0.221 |
| 5   | 407  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.522 | 2.40 | 63 | 0.000          | 0.206 | 0.380 | 8.2  | 0.323 |
| 5   | 408  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.267 | 5.10 | 63 | 0.000          | 0.206 | 0.260 | 13.4 | 0.080 |
| 5   | 409  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.256 | 2.30 | 62 | 0.000          | 0.206 | 0.300 | 3.9  | 0.094 |
| 5   | 410  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.408 | 4.10 | 62 | 0.000          | 0.206 | 0.350 | 11.0 | 0.178 |
| 5   | 411  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.188 | 2.00 | 60 | 0.000          | 0.206 | 0.120 | 2.5  | 0.059 |
| 5   | 412  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.500 | 4.10 | 60 | 0.000          | 0.206 | 0.400 | 16.4 | 0.256 |
| 5   | 413  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.435 | 2.90 | 58 | 0.000          | 0.206 | 0.390 | 12.4 | 0.221 |
| 5   | 414  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.554 | 2.60 | 56 | 0.000          | 0.206 | 0.390 | 7.1  | 0.351 |
| 5   | 415  | 8.60  | 35.1  | 2.70        | 0.250                  | 0.500 | 4.10 | 55 | 0.000          | 0.206 | 0.770 | 23.8 | 0.256 |
| 5   | 416  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.522 | 2.40 | 54 | 0.000          | 0.206 | 0.540 | 16.5 | 0.323 |
| 5   | 417  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.267 | 5.10 | 54 | 0.000          | 0.206 | 0.270 | 6.7  | 0.080 |
| 5   | 418  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.554 | 2.60 | 54 | 0.000          | 0.206 | 0.250 | 5.7  | 0.351 |
| 5   | 419  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.392 | 2.90 | 52 | 0.000          | 0.206 | 0.280 | 7.5  | 0.184 |
| 5   | 420  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.267 | 5.10 | 51 | 0.000          | 0.206 | 0.220 | 5.4  | 0.080 |
| 5   | 421  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.397 | 6.90 | 50 | 0.000          | 0.206 | 0.480 | 18.0 | 0.147 |
| 5   | 422  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.384 | 6.00 | 50 | 0.000          | 0.206 | 0.270 | 15.2 | 0.144 |
| 5   | 423  | 5.10  | 20.3  | 7.80        | 0.250                  | 0.260 | 5.10 | 50 | 0.000          | 0.206 | 0.420 | 26.0 | 0.076 |
| 5   | 424  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.500 | 4.10 | 49 | 0.000          | 0.206 | 0.460 | 23.8 | 0.256 |
| 5   | 425  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.414 | 2.00 | 47 | 0.000          | 0.206 | 0.160 | 5.5  | 0.226 |
| 5   | 426  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.188 | 2.00 | 45 | 0.000          | 0.206 | 0.110 | 2.5  | 0.059 |
| 5   | 427  | 5.10  | 20.3  | 7.80        | 0.250                  | 0.472 | 6.90 | 45 | 0.000          | 0.206 | 0.440 | 63.9 | 0.200 |
| 5   | 428  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.435 | 2.90 | 45 | 0.000          | 0.206 | 0.480 | 16.6 | 0.221 |
| 5   | 429  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.443 | 2.90 | 44 | 0.000          | 0.206 | 0.130 | 8.5  | 0.228 |
| 5   | 430  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.260 | 5.10 | 42 | 0.000          | 0.206 | 0.070 | 13.0 | 0.076 |
| 5   | 431  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.500 | 4.10 | 38 | 0.000          | 0.206 | 0.620 | 27.0 | 0.256 |
| 5   | 432  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.472 | 6.90 | 38 | 0.000          | 0.206 | 0.370 | 42.9 | 0.200 |
| 5   | 433  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.342 | 4.10 | 37 | 0.000          | 0.206 | 0.210 | 9.2  | 0.131 |
| 5   | 434  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.260 | 5.10 | 31 | 0.000          | 0.206 | 0.390 | 17.5 | 0.076 |
| 5   | 435  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.188 | 2.00 | 30 | 0.000          | 0.206 | 0.060 | 2.5  | 0.059 |
| 5   | 436  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.414 | 2.00 | 23 | 0.000          | 0.206 | 0.230 | 5.5  | 0.226 |
| 5   | 437  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.355 | 2.30 | 0  | 0.000          | 0.206 | 0.030 | 5.4  | 0.165 |
| 5   | 438  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.188 | 2.00 | 0  | 0.000          | 0.206 | 0.130 | 2.5  | 0.059 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 439  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.342 | 4.10 | 0  | 0.000          | 0.206 | 0.050 | 9.2  | 0.131 |
| 5   | 440  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.408 | 4.10 | 0  | 0.000          | 0.206 | 0.050 | 11.0 | 0.178 |
| 5   | 441  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.397 | 6.90 | 0  | 0.000          | 0.206 | 0.030 | 18.0 | 0.147 |
| 5   | 442  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.443 | 2.90 | 0  | 0.000          | 0.206 | 0.040 | 8.5  | 0.228 |
| 5   | 443  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.384 | 6.00 | 0  | 0.000          | 0.206 | 0.050 | 15.2 | 0.144 |
| 5   | 444  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.392 | 2.90 | 0  | 0.000          | 0.206 | 0.060 | 7.5  | 0.184 |
| 5   | 445  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.522 | 2.40 | 0  | 0.000          | 0.206 | 0.090 | 8.2  | 0.323 |
| 5   | 446  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.533 | 3.60 | 93 | 0.173          | 0.206 | 0.410 | 24.5 | 0.479 |
| 5   | 447  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.511 | 2.20 | 90 | 0.173          | 0.206 | 0.330 | 9.8  | 0.531 |
| 5   | 448  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 90 | 0.173          | 0.206 | 0.300 | 23.6 | 0.343 |
| 5   | 449  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.190 | 2.00 | 90 | 0.173          | 0.206 | 0.120 | 4.7  | 0.175 |
| 5   | 450  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 90 | 0.173          | 0.206 | 0.180 | 6.0  | 0.202 |
| 5   | 451  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.316 | 3.70 | 90 | 0.173          | 0.206 | 0.260 | 11.8 | 0.248 |
| 5   | 452  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.449 | 2.70 | 90 | 0.173          | 0.206 | 0.390 | 11.0 | 0.421 |
| 5   | 453  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 90 | 0.173          | 0.206 | 0.230 | 8.4  | 0.262 |
| 5   | 454  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 90 | 0.173          | 0.206 | 0.170 | 4.8  | 0.377 |
| 5   | 455  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.362 | 1.80 | 90 | 0.173          | 0.206 | 0.400 | 6.3  | 0.362 |
| 5   | 456  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.362 | 5.90 | 90 | 0.173          | 0.206 | 0.420 | 20.6 | 0.257 |
| 5   | 457  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.393 | 3.90 | 90 | 0.173          | 0.206 | 0.400 | 14.4 | 0.319 |
| 5   | 458  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.234 | 3.80 | 90 | 0.173          | 0.206 | 0.210 | 7.6  | 0.181 |
| 5   | 459  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.230 | 3.80 | 90 | 0.173          | 0.206 | 0.240 | 6.1  | 0.181 |
| 5   | 460  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.251 | 3.80 | 90 | 0.173          | 0.206 | 0.300 | 18.0 | 0.182 |
| 5   | 461  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.183 | 2.20 | 90 | 0.173          | 0.206 | 0.150 | 3.1  | 0.172 |
| 5   | 462  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.187 | 2.20 | 90 | 0.173          | 0.206 | 0.210 | 3.9  | 0.172 |
| 5   | 463  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.533 | 3.60 | 88 | 0.173          | 0.206 | 0.400 | 24.5 | 0.479 |
| 5   | 464  | 12.50 | 25.4  | 2.30        | 0.250                  | 0.508 | 5.80 | 87 | 0.173          | 0.206 | 0.380 | 31.2 | 0.397 |
| 5   | 465  | 8.60  | 26.3  | 2.70        | 0.250                  | 0.489 | 5.80 | 86 | 0.173          | 0.206 | 0.470 | 43.6 | 0.370 |
| 5   | 466  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.485 | 5.80 | 86 | 0.173          | 0.206 | 0.340 | 36.7 | 0.369 |
| 5   | 467  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.449 | 2.70 | 86 | 0.173          | 0.206 | 0.330 | 11.0 | 0.421 |
| 5   | 468  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.485 | 5.80 | 85 | 0.173          | 0.206 | 0.370 | 36.7 | 0.369 |
| 5   | 469  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.512 | 5.80 | 85 | 0.173          | 0.206 | 0.330 | 38.2 | 0.397 |
| 5   | 470  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 84 | 0.173          | 0.206 | 0.400 | 23.6 | 0.343 |
| 5   | 471  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 81 | 0.173          | 0.206 | 0.470 | 23.6 | 0.343 |
| 5   | 472  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.531 | 2.30 | 81 | 0.173          | 0.206 | 0.490 | 15.6 | 0.542 |
| 5   | 473  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 80 | 0.173          | 0.206 | 0.210 | 4.8  | 0.377 |
| 5   | 474  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.316 | 3.70 | 78 | 0.173          | 0.206 | 0.280 | 11.8 | 0.248 |
| 5   | 475  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 77 | 0.173          | 0.206 | 0.280 | 8.4  | 0.262 |
| 5   | 476  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.444 | 2.60 | 76 | 0.173          | 0.206 | 0.420 | 15.4 | 0.410 |
| 5   | 477  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 76 | 0.173          | 0.206 | 0.180 | 6.0  | 0.202 |
| 5   | 478  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 76 | 0.173          | 0.206 | 0.290 | 8.4  | 0.262 |
| 5   | 479  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 75 | 0.173          | 0.206 | 0.380 | 23.6 | 0.343 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 480  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.190 | 2.00 | 75 | 0.173          | 0.206 | 0.060 | 4.7  | 0.175 |
| 5   | 481  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.316 | 3.70 | 75 | 0.173          | 0.206 | 0.290 | 11.8 | 0.248 |
| 5   | 482  | 8.60  | 35.1 | 2.70        | 0.250                  | 0.489 | 5.80 | 73 | 0.173          | 0.206 | 0.450 | 43.6 | 0.370 |
| 5   | 483  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.449 | 2.70 | 73 | 0.173          | 0.206 | 0.300 | 11.0 | 0.421 |
| 5   | 484  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.316 | 3.70 | 72 | 0.173          | 0.206 | 0.260 | 11.8 | 0.248 |
| 5   | 485  | 20.30 | 81.0 | 2.00        | 0.250                  | 0.499 | 5.80 | 72 | 0.173          | 0.206 | 0.400 | 19.2 | 0.397 |
| 5   | 486  | 5.10  | 20.3 | 7.80        | 0.250                  | 0.546 | 3.60 | 71 | 0.173          | 0.206 | 0.460 | 49.0 | 0.479 |
| 5   | 487  | 8.60  | 35.1 | 2.70        | 0.250                  | 0.448 | 2.60 | 71 | 0.173          | 0.206 | 0.580 | 18.3 | 0.411 |
| 5   | 488  | 12.50 | 25.4 | 2.30        | 0.250                  | 0.527 | 2.30 | 71 | 0.173          | 0.206 | 0.430 | 12.7 | 0.542 |
| 5   | 489  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.511 | 2.20 | 70 | 0.173          | 0.206 | 0.360 | 9.8  | 0.531 |
| 5   | 490  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.276 | 4.40 | 70 | 0.173          | 0.206 | 0.340 | 18.8 | 0.197 |
| 5   | 491  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.276 | 4.40 | 70 | 0.173          | 0.206 | 0.360 | 18.8 | 0.197 |
| 5   | 492  | 5.10  | 20.3 | 7.80        | 0.250                  | 0.498 | 5.80 | 69 | 0.173          | 0.206 | 0.450 | 73.4 | 0.369 |
| 5   | 493  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.276 | 4.40 | 69 | 0.173          | 0.206 | 0.270 | 18.8 | 0.197 |
| 5   | 494  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.230 | 2.30 | 69 | 0.173          | 0.206 | 0.280 | 6.0  | 0.202 |
| 5   | 495  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.449 | 2.70 | 69 | 0.173          | 0.206 | 0.420 | 11.0 | 0.421 |
| 5   | 496  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.350 | 2.40 | 69 | 0.173          | 0.206 | 0.260 | 8.2  | 0.318 |
| 5   | 497  | 8.60  | 26.3 | 2.70        | 0.250                  | 0.448 | 2.60 | 68 | 0.173          | 0.206 | 0.520 | 18.3 | 0.411 |
| 5   | 498  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.444 | 2.60 | 68 | 0.173          | 0.206 | 0.330 | 15.4 | 0.410 |
| 5   | 499  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.449 | 2.70 | 68 | 0.173          | 0.206 | 0.340 | 11.0 | 0.421 |
| 5   | 500  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.533 | 3.60 | 67 | 0.173          | 0.206 | 0.420 | 24.5 | 0.479 |
| 5   | 501  | 7.60  | 20.3 | 7.80        | 0.250                  | 0.450 | 2.60 | 67 | 0.173          | 0.206 | 0.440 | 20.7 | 0.411 |
| 5   | 502  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.306 | 2.70 | 67 | 0.173          | 0.206 | 0.280 | 8.4  | 0.262 |
| 5   | 503  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.511 | 2.20 | 66 | 0.173          | 0.206 | 0.380 | 9.8  | 0.531 |
| 5   | 504  | 10.20 | 20.3 | 2.30        | 0.250                  | 0.274 | 4.40 | 66 | 0.173          | 0.206 | 0.360 | 18.7 | 0.195 |
| 5   | 505  | 8.60  | 35.1 | 2.70        | 0.250                  | 0.280 | 4.40 | 65 | 0.173          | 0.206 | 0.190 | 22.4 | 0.197 |
| 5   | 506  | 12.50 | 25.3 | 2.30        | 0.250                  | 0.272 | 4.40 | 65 | 0.173          | 0.206 | 0.340 | 15.3 | 0.196 |
| 5   | 507  | 5.10  | 20.3 | 7.80        | 0.250                  | 0.457 | 2.60 | 65 | 0.173          | 0.206 | 0.450 | 30.8 | 0.411 |
| 5   | 508  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.190 | 2.00 | 64 | 0.173          | 0.206 | 0.100 | 4.7  | 0.175 |
| 5   | 509  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.306 | 2.70 | 63 | 0.173          | 0.206 | 0.310 | 8.4  | 0.262 |
| 5   | 510  | 12.50 | 25.3 | 2.30        | 0.250                  | 0.481 | 5.80 | 62 | 0.173          | 0.206 | 0.470 | 29.9 | 0.369 |
| 5   | 511  | 12.50 | 25.4 | 2.30        | 0.250                  | 0.270 | 4.40 | 62 | 0.173          | 0.206 | 0.190 | 15.3 | 0.195 |
| 5   | 512  | 8.60  | 26.3 | 2.70        | 0.250                  | 0.537 | 3.60 | 61 | 0.173          | 0.206 | 0.450 | 29.1 | 0.480 |
| 5   | 513  | 5.10  | 20.3 | 7.80        | 0.250                  | 0.289 | 4.40 | 61 | 0.173          | 0.206 | 0.340 | 37.7 | 0.197 |
| 5   | 514  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.511 | 2.20 | 60 | 0.173          | 0.206 | 0.300 | 9.8  | 0.531 |
| 5   | 515  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.316 | 3.70 | 60 | 0.173          | 0.206 | 0.310 | 11.8 | 0.248 |
| 5   | 516  | 12.50 | 25.3 | 2.30        | 0.250                  | 0.529 | 3.60 | 58 | 0.173          | 0.206 | 0.370 | 20.0 | 0.478 |
| 5   | 517  | 8.60  | 26.3 | 2.70        | 0.250                  | 0.280 | 4.40 | 58 | 0.173          | 0.206 | 0.360 | 22.4 | 0.197 |
| 5   | 518  | 7.60  | 20.3 | 7.80        | 0.250                  | 0.491 | 5.80 | 57 | 0.173          | 0.206 | 0.570 | 49.3 | 0.369 |
| 5   | 519  | 8.60  | 35.1 | 2.70        | 0.250                  | 0.537 | 3.60 | 56 | 0.173          | 0.206 | 0.470 | 29.1 | 0.480 |
| 5   | 520  | 15.20 | 30.5 | 2.30        | 0.250                  | 0.452 | 5.80 | 56 | 0.173          | 0.206 | 0.390 | 23.6 | 0.343 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 5   | 521  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.495 | 5.80 | 56 | 0.173          | 0.206 | 0.420 | 15.3 | 0.397 |
| 5   | 522  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.282 | 4.40 | 55 | 0.173          | 0.206 | 0.420 | 25.3 | 0.197 |
| 5   | 523  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.444 | 2.60 | 55 | 0.173          | 0.206 | 0.480 | 15.4 | 0.410 |
| 5   | 524  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 55 | 0.173          | 0.206 | 0.180 | 6.0  | 0.202 |
| 5   | 525  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.518 | 2.30 | 54 | 0.173          | 0.206 | 0.240 | 7.8  | 0.541 |
| 5   | 526  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.514 | 2.30 | 54 | 0.173          | 0.206 | 0.280 | 6.3  | 0.542 |
| 5   | 527  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.190 | 2.00 | 52 | 0.173          | 0.206 | 0.160 | 4.7  | 0.175 |
| 5   | 528  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 52 | 0.173          | 0.206 | 0.230 | 4.8  | 0.377 |
| 5   | 529  | 20.30 | 81.0  | 2.00        | 0.250                  | 0.261 | 4.40 | 52 | 0.173          | 0.206 | 0.190 | 9.4  | 0.195 |
| 5   | 530  | 10.20 | 20.3  | 2.30        | 0.250                  | 0.485 | 5.80 | 50 | 0.173          | 0.206 | 0.460 | 36.7 | 0.369 |
| 5   | 531  | 12.50 | 25.3  | 2.30        | 0.250                  | 0.440 | 2.60 | 48 | 0.173          | 0.206 | 0.280 | 12.6 | 0.410 |
| 5   | 532  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 48 | 0.173          | 0.206 | 0.210 | 6.0  | 0.202 |
| 5   | 533  | 25.40 | 102.0 | 2.00        | 0.250                  | 0.257 | 4.40 | 48 | 0.173          | 0.206 | 0.140 | 7.5  | 0.195 |
| 5   | 534  | 7.60  | 20.3  | 7.80        | 0.250                  | 0.539 | 3.60 | 47 | 0.173          | 0.206 | 0.500 | 32.9 | 0.480 |
| 5   | 535  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 39 | 0.173          | 0.206 | 0.170 | 4.8  | 0.377 |
| 5   | 536  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.190 | 2.00 | 28 | 0.173          | 0.206 | 0.040 | 4.7  | 0.175 |
| 5   | 537  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.511 | 2.20 | 0  | 0.173          | 0.206 | 0.040 | 9.8  | 0.531 |
| 5   | 538  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.452 | 5.80 | 0  | 0.173          | 0.206 | 0.050 | 23.6 | 0.343 |
| 5   | 539  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.190 | 2.00 | 0  | 0.173          | 0.206 | 0.030 | 4.7  | 0.175 |
| 5   | 540  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.230 | 2.30 | 0  | 0.173          | 0.206 | 0.040 | 6.0  | 0.202 |
| 5   | 541  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.316 | 3.70 | 0  | 0.173          | 0.206 | 0.040 | 11.8 | 0.248 |
| 5   | 542  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.449 | 2.70 | 0  | 0.173          | 0.206 | 0.040 | 11.0 | 0.421 |
| 5   | 543  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.306 | 2.70 | 0  | 0.173          | 0.206 | 0.050 | 8.4  | 0.262 |
| 5   | 544  | 15.20 | 30.5  | 2.30        | 0.250                  | 0.350 | 1.40 | 0  | 0.173          | 0.206 | 0.090 | 4.8  | 0.377 |
| 6   | 545  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.200 | 6.00 | 90 | 0.000          | 0.043 | 0.150 | 14.0 | 0.047 |
| 6   | 546  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.300 | 6.00 | 90 | 0.000          | 0.043 | 0.260 | 20.9 | 0.093 |
| 6   | 547  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.400 | 6.00 | 90 | 0.000          | 0.043 | 0.410 | 27.9 | 0.155 |
| 6   | 548  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.500 | 6.00 | 90 | 0.000          | 0.043 | 0.650 | 34.9 | 0.230 |
| 6   | 549  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.600 | 6.00 | 90 | 0.000          | 0.043 | 0.780 | 41.9 | 0.320 |
| 6   | 550  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.700 | 6.00 | 90 | 0.000          | 0.043 | 1.000 | 48.8 | 0.424 |
| 6   | 551  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.800 | 6.00 | 90 | 0.000          | 0.043 | 1.000 | 55.8 | 0.541 |
| 6   | 552  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.400 | 9.00 | 90 | 0.000          | 0.043 | 0.450 | 41.9 | 0.139 |
| 6   | 553  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.250 | 4.00 | 90 | 0.000          | 0.043 | 0.270 | 11.6 | 0.077 |
| 6   | 554  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.600 | 6.00 | 90 | 0.000          | 0.043 | 0.730 | 41.9 | 0.320 |
| 6   | 555  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.350 | 9.00 | 90 | 0.000          | 0.043 | 0.330 | 36.6 | 0.110 |
| 6   | 556  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.500 | 9.00 | 90 | 0.000          | 0.043 | 0.500 | 52.3 | 0.207 |
| 6   | 557  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.600 | 6.00 | 90 | 0.000          | 0.043 | 0.730 | 41.9 | 0.320 |
| 6   | 558  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.400 | 4.00 | 90 | 0.000          | 0.043 | 0.530 | 18.6 | 0.173 |
| 6   | 559  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.500 | 4.00 | 90 | 0.000          | 0.043 | 0.700 | 23.3 | 0.258 |
| 6   | 560  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.400 | 4.00 | 90 | 0.000          | 0.038 | 0.510 | 21.3 | 0.173 |
| 6   | 561  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.250 | 5.00 | 90 | 0.000          | 0.038 | 0.220 | 16.7 | 0.072 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No.  | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | ) Zobs | B/D   | KC   | θ     |
|------|------|-------|-------|-------------|------------------------|-------|------|----|----------------|--------|-------|------|-------|
| 6    | 562  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.400 | 12.0 | 90 | 0.000          | 0.038  | 0.460 | 64.0 | 0.129 |
| 6    | 563  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.650 | 8.00 | 90 | 0.000          | 0.038  | 0.820 | 69.3 | 0.344 |
| 6    | 564  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.300 | 4.00 | 90 | 0.000          | 0.038  | 0.380 | 16.0 | 0.105 |
| 6    | 565  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.400 | 7.00 | 90 | 0.000          | 0.038  | 0.390 | 37.3 | 0.148 |
| 6    | 566  | 7.50  | 20.3  | 7.80        | 0.250                  | 0.600 | 5.00 | 90 | 0.000          | 0.038  | 0.860 | 40.0 | 0.337 |
| 6    | 567  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.300 | 6.00 | 90 | 0.000          | 0.050  | 0.290 | 18.0 | 0.093 |
| 6    | 568  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.600 | 6.00 | 90 | 0.000          | 0.050  | 0.790 | 36.0 | 0.320 |
| 6    | 569  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.250 | 5.00 | 90 | 0.000          | 0.050  | 0.240 | 12.5 | 0.072 |
| 6    | 570  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.400 | 12.0 | 90 | 0.000          | 0.050  | 0.440 | 48.0 | 0.129 |
| 6    | 571  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.650 | 8.00 | 90 | 0.000          | 0.050  | 0.820 | 52.0 | 0.344 |
| 6    | 572  | 12.50 | 25.0  | 2.30        | 0.250                  | 0.200 | 3.00 | 90 | 0.000          | 0.063  | 0.190 | 4.8  | 0.057 |
| 6    | 573  | 12.50 | 25.0  | 2.30        | 0.250                  | 0.350 | 6.00 | 90 | 0.000          | 0.063  | 0.320 | 16.8 | 0.122 |
| 6    | 574  | 12.50 | 25.0  | 2.30        | 0.250                  | 0.600 | 10.0 | 90 | 0.000          | 0.063  | 0.820 | 48.0 | 0.281 |
| 7    | 575  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.250 | 6.00 | 90 | 0.190          | 0.050  | 0.280 | 31.6 | 0.193 |
| 7    | 576  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.250 | 6.00 | 90 | 0.190          | 0.050  | 0.290 | 27.4 | 0.195 |
| 7    | 577  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.450 | 6.00 | 90 | 0.190          | 0.050  | 0.580 | 45.5 | 0.373 |
| 7    | 578  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.450 | 6.00 | 90 | 0.190          | 0.050  | 0.560 | 39.4 | 0.377 |
| 7    | 579  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.500 | 5.00 | 90 | 0.250          | 0.050  | 0.720 | 44.6 | 0.525 |
| 7    | 580  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.500 | 5.00 | 90 | 0.250          | 0.050  | 0.730 | 38.6 | 0.530 |
| 7    | 581  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.000 | Inf  | 90 | 0.340          | 0.050  | 0.400 | Inf  | 0.070 |
| 7    | 582  | 10.00 | 20.0  | 2.30        | 0.250                  | 0.000 | Inf  | 90 | 0.340          | 0.050  | 0.410 | Inf  | 0.070 |
| 7    | 583  | 8.60  | 34.4  | 2.70        | 0.250                  | 0.000 | Inf  | 90 | 0.450          | 0.050  | 0.520 | Inf  | 0.123 |
| 8-14 | 584  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.505 | 7.00 | 90 | 0.180          | 4.000  | 0.269 | 7.8  | 0.317 |
| 8-14 | 585  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.505 | 7.00 | 90 | 0.180          | 4.000  | 0.414 | 7.8  | 0.317 |
| 8-14 | 586  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.549 | 6.10 | 90 | 0.291          | 4.000  | 0.269 | 7.8  | 0.413 |
| 8-14 | 587  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.549 | 6.10 | 90 | 0.291          | 4.000  | 0.368 | 7.8  | 0.413 |
| 8-14 | 588  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.668 | 6.90 | 90 | 0.299          | 4.000  | 0.544 | 10.5 | 0.547 |
| 8-14 | 589  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.668 | 6.90 | 90 | 0.299          | 4.000  | 0.335 | 10.5 | 0.547 |
| 8-14 | 590  | 47.00 | 150.0 | 2.37        | 0.171                  | 1.186 | 9.10 | 90 | 0.229          | 4.000  | 1.000 | 23.3 | 1.329 |
| 8-14 | 591  | 47.00 | 150.0 | 2.37        | 0.171                  | 1.186 | 9.10 | 90 | 0.229          | 4.000  | 0.975 | 23.3 | 1.329 |
| 8-14 | 592  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.571 | 6.90 | 90 | 0.200          | 4.000  | 0.597 | 8.7  | 0.395 |
| 8-14 | 593  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.571 | 6.90 | 90 | 0.200          | 4.000  | 0.444 | 8.7  | 0.395 |
| 8-14 | 594  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.728 | 9.60 | 90 | 0.268          | 4.000  | 0.677 | 15.5 | 0.569 |
| 8-14 | 595  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.728 | 9.60 | 90 | 0.268          | 4.000  | 0.642 | 15.5 | 0.569 |
| 8-14 | 596  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.740 | 7.00 | 90 | 0.281          | 4.000  | 0.873 | 11.6 | 0.636 |
| 8-14 | 597  | 47.00 | 150.0 | 2.37        | 0.171                  | 0.740 | 7.00 | 90 | 0.281          | 4.000  | 0.842 | 11.6 | 0.636 |
| 8-14 | 598  | 53.30 | 203.0 | 1.98        | 0.135                  | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.679 | 7.6  | 0.414 |
| 8-14 | 599  | 53.30 | 203.0 | 1.98        | 0.135                  | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.534 | 7.6  | 0.414 |
| 8-14 | 600  | 53.30 | 203.0 | 1.98        | 0.135                  | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.590 | 7.6  | 0.414 |
| 8-14 | 601  | 53.30 | 203.0 | 1.98        | 0.135                  | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.399 | 7.6  | 0.414 |
| 8-14 | 602  | 53.30 | 203.0 | 1.98        | 0.135                  | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.679 | 7.6  | 0.414 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No.  | Obs. | D     | L     | $ ho_o/ ho$ | $d_{50}$ | $U_w$ | Т    | α  | $U_c(z_{obs})$ | ) Zobs | B/D   | KC   | θ     |
|------|------|-------|-------|-------------|----------|-------|------|----|----------------|--------|-------|------|-------|
| 8-14 | 603  | 53.30 | 203.0 | 1.98        | 0.135    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.434 | 7.6  | 0.414 |
| 8-14 | 604  | 53.30 | 203.0 | 1.98        | 0.135    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.623 | 7.6  | 0.414 |
| 8-14 | 605  | 53.30 | 203.0 | 1.98        | 0.135    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.472 | 7.6  | 0.414 |
| 8-14 | 606  | 47.00 | 150.0 | 2.37        | 0.135    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.340 | 8.6  | 0.413 |
| 8-14 | 607  | 47.00 | 150.0 | 2.37        | 0.135    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.723 | 8.6  | 0.413 |
| 8-14 | 608  | 47.00 | 150.0 | 2.37        | 0.559    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.106 | 8.6  | 0.158 |
| 8-14 | 609  | 47.00 | 150.0 | 2.37        | 0.559    | 0.534 | 7.30 | 90 | 0.164          | 1.100  | 0.388 | 8.6  | 0.158 |
| 8-14 | 610  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.759 | 8.9  | 0.610 |
| 8-14 | 611  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.822 | 8.9  | 0.610 |
| 8-14 | 612  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.707 | 8.9  | 0.610 |
| 8-14 | 613  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.716 | 8.9  | 0.610 |
| 8-14 | 614  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.962 | 8.9  | 0.610 |
| 8-14 | 615  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.925 | 8.9  | 0.610 |
| 8-14 | 616  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.830 | 8.9  | 0.610 |
| 8-14 | 617  | 53.30 | 203.0 | 1.98        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.830 | 8.9  | 0.610 |
| 8-14 | 618  | 47.00 | 150.0 | 2.37        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.787 | 10.1 | 0.608 |
| 8-14 | 619  | 47.00 | 150.0 | 2.37        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.617 | 10.1 | 0.608 |
| 8-14 | 620  | 47.00 | 150.0 | 2.37        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.532 | 10.1 | 0.608 |
| 8-14 | 621  | 47.00 | 150.0 | 2.37        | 0.135    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.787 | 10.1 | 0.608 |
| 8-14 | 622  | 47.00 | 150.0 | 2.37        | 0.559    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.021 | 10.1 | 0.234 |
| 8-14 | 623  | 47.00 | 150.0 | 2.37        | 0.559    | 0.650 | 6.90 | 90 | 0.239          | 1.100  | 0.426 | 10.1 | 0.234 |
| 8-14 | 624  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.713 | 11.9 | 0.625 |
| 8-14 | 625  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.703 | 11.9 | 0.625 |
| 8-14 | 626  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.720 | 11.9 | 0.625 |
| 8-14 | 627  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.585 | 11.9 | 0.625 |
| 8-14 | 628  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.981 | 11.9 | 0.625 |
| 8-14 | 629  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.962 | 11.9 | 0.625 |
| 8-14 | 630  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.962 | 11.9 | 0.625 |
| 8-14 | 631  | 53.30 | 203.0 | 1.98        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.755 | 11.9 | 0.625 |
| 8-14 | 632  | 47.00 | 150.0 | 2.37        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.979 | 13.5 | 0.625 |
| 8-14 | 633  | 47.00 | 150.0 | 2.37        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.745 | 13.5 | 0.625 |
| 8-14 | 634  | 47.00 | 150.0 | 2.37        | 0.135    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.872 | 13.5 | 0.625 |
| 8-14 | 635  | 47.00 | 150.0 | 2.37        | 0.559    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.128 | 13.5 | 0.237 |
| 8-14 | 636  | 47.00 | 150.0 | 2.37        | 0.559    | 0.714 | 8.80 | 90 | 0.101          | 1.100  | 0.404 | 13.5 | 0.237 |
| 8-14 | 637  | 53.30 | 203.0 | 1.98        | 0.650    | 0.807 | 7.00 | 90 | 0.252          | 4.000  | 0.438 | 10.9 | 0.295 |
| 8-14 | 638  | 53.30 | 203.0 | 1.98        | 0.650    | 0.807 | 7.00 | 90 | 0.252          | 4.000  | 0.409 | 10.9 | 0.295 |
| 8-14 | 639  | 53.30 | 203.0 | 1.98        | 0.171    | 0.807 | 7.00 | 90 | 0.252          | 4.000  | 0.760 | 11.0 | 0.724 |
| 8-14 | 640  | 53.30 | 203.0 | 1.98        | 0.171    | 0.807 | 7.00 | 90 | 0.252          | 4.000  | 0.910 | 11.0 | 0.724 |
| 8-14 | 641  | 53.30 | 203.0 | 1.98        | 0.171    | 0.807 | 7.90 | 90 | 0.252          | 4.000  | 1.170 | 12.4 | 0.704 |
| 8-14 | 642  | 53.30 | 203.0 | 1.98        | 0.650    | 1.087 | 7.90 | 90 | 0.384          | 4.000  | 0.551 | 16.8 | 0.487 |
| 8-14 | 643  | 53.30 | 203.0 | 1.98        | 0.650    | 1.087 | 7.90 | 90 | 0.384          | 4.000  | 0.360 | 16.8 | 0.487 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No.  | Obs. | D     | L     | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|------|------|-------|-------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 8-14 | 644  | 53.30 | 203.0 | 1.98        | 0.171                  | 1.087 | 7.90 | 90 | 0.384          | 4.000 | 0.879 | 16.8 | 1.237 |
| 8-14 | 645  | 53.30 | 203.0 | 1.98        | 0.171                  | 1.087 | 7.90 | 90 | 0.384          | 4.000 | 1.003 | 16.8 | 1.237 |
| 8-14 | 646  | 53.30 | 203.0 | 1.98        | 0.650                  | 1.279 | 8.50 | 90 | 0.398          | 4.000 | 0.551 | 21.1 | 0.624 |
| 8-14 | 647  | 53.30 | 203.0 | 1.98        | 0.650                  | 1.279 | 8.50 | 90 | 0.398          | 4.000 | 0.436 | 21.1 | 0.624 |
| 8-14 | 648  | 53.30 | 203.0 | 1.98        | 0.171                  | 1.279 | 8.50 | 90 | 0.398          | 4.000 | 0.928 | 21.1 | 1.613 |
| 8-14 | 649  | 53.30 | 203.0 | 1.98        | 0.171                  | 1.279 | 8.50 | 90 | 0.398          | 4.000 | 1.015 | 21.1 | 1.613 |
| 8-14 | 650  | 53.30 | 203.0 | 1.98        | 0.171                  | 1.279 | 8.50 | 90 | 0.398          | 4.000 | 1.094 | 21.1 | 1.613 |
| 15   | 651  | 2.54  | 9.9   | 2.72        | 0.420                  | 0.000 | Inf  | 90 | 0.200          | 0.220 | 0.020 | Inf  | 0.012 |
| 15   | 652  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.200          | 0.220 | 0.020 | Inf  | 0.012 |
| 15   | 653  | 2.50  | 10.0  | 7.90        | 0.420                  | 0.000 | Inf  | 90 | 0.200          | 0.220 | 0.020 | Inf  | 0.012 |
| 15   | 654  | 2.54  | 9.9   | 2.72        | 0.420                  | 0.000 | Inf  | 90 | 0.308          | 0.220 | 0.490 | Inf  | 0.028 |
| 15   | 655  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.309          | 0.220 | 0.160 | Inf  | 0.028 |
| 15   | 656  | 2.50  | 10.0  | 7.90        | 0.420                  | 0.000 | Inf  | 90 | 0.306          | 0.220 | 0.550 | Inf  | 0.027 |
| 15   | 657  | 10.30 | 31.9  | 4.52        | 0.420                  | 0.000 | Inf  | 90 | 0.303          | 0.220 | 0.150 | Inf  | 0.027 |
| 15   | 658  | 2.54  | 9.9   | 2.72        | 0.420                  | 0.000 | Inf  | 90 | 0.405          | 0.220 | 0.840 | Inf  | 0.048 |
| 15   | 659  | 10.50 | 32.0  | 1.21        | 0.420                  | 0.000 | Inf  | 90 | 0.401          | 0.220 | 0.390 | Inf  | 0.047 |
| 15   | 660  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.408          | 0.220 | 0.420 | Inf  | 0.049 |
| 15   | 661  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.406          | 0.220 | 0.420 | Inf  | 0.049 |
| 15   | 662  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.407          | 0.220 | 0.480 | Inf  | 0.049 |
| 15   | 663  | 2.50  | 10.0  | 7.90        | 0.420                  | 0.000 | Inf  | 90 | 0.399          | 0.220 | 1.550 | Inf  | 0.047 |
| 15   | 664  | 10.30 | 31.9  | 4.52        | 0.420                  | 0.000 | Inf  | 90 | 0.410          | 0.220 | 0.560 | Inf  | 0.050 |
| 15   | 665  | 2.54  | 9.9   | 2.72        | 0.420                  | 0.000 | Inf  | 90 | 0.595          | 0.220 | 2.270 | Inf  | 0.107 |
| 15   | 666  | 10.50 | 32.0  | 2.42        | 0.420                  | 0.000 | Inf  | 90 | 0.570          | 0.220 | 0.480 | Inf  | 0.098 |
| 15   | 667  | 10.30 | 31.9  | 4.52        | 0.420                  | 0.000 | Inf  | 90 | 0.588          | 0.220 | 0.630 | Inf  | 0.104 |
| 16   | 668  | 6.20  | 6.2   | 2.00        | 0.180                  | 0.000 | Inf  | 90 | 0.398          | 0.031 | 0.570 | Inf  | 0.140 |
| 16   | 669  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.000 | Inf  | 90 | 0.398          | 0.031 | 0.570 | Inf  | 0.138 |
| 16   | 670  | 6.20  | 6.2   | 4.00        | 0.180                  | 0.000 | Inf  | 90 | 0.398          | 0.031 | 0.570 | Inf  | 0.136 |
| 16   | 671  | 7.30  | 7.3   | 3.60        | 0.180                  | 0.000 | Inf  | 90 | 0.398          | 0.037 | 0.500 | Inf  | 0.132 |
| 16   | 672  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.120 | 1.10 | 90 | 0.000          | 0.031 | 0.020 | 2.1  | 0.047 |
| 16   | 673  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.150 | 1.10 | 90 | 0.000          | 0.031 | 0.050 | 2.7  | 0.065 |
| 16   | 674  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.150 | 1.25 | 90 | 0.000          | 0.031 | 0.125 | 3.0  | 0.062 |
| 16   | 675  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.220 | 1.50 | 90 | 0.000          | 0.031 | 0.200 | 5.3  | 0.107 |
| 16   | 676  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.150 | 2.50 | 90 | 0.000          | 0.031 | 0.190 | 6.1  | 0.050 |
| 16   | 677  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.215 | 2.50 | 90 | 0.000          | 0.031 | 0.310 | 8.7  | 0.088 |
| 16   | 678  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.270 | 2.70 | 90 | 0.000          | 0.031 | 0.320 | 11.8 | 0.125 |
| 16   | 679  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.260 | 3.50 | 90 | 0.000          | 0.031 | 0.330 | 14.7 | 0.109 |
| 16   | 680  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.275 | 3.50 | 90 | 0.000          | 0.031 | 0.340 | 15.5 | 0.120 |
| 16   | 681  | 6.20  | 6.2   | 3.00        | 0.180                  | 0.315 | 3.70 | 90 | 0.000          | 0.031 | 0.360 | 18.8 | 0.148 |
| 16   | 682  | 3.00  | 3.0   | 3.00        | 0.180                  | 0.215 | 2.50 | 90 | 0.000          | 0.015 | 0.300 | 17.9 | 0.088 |
| 16   | 683  | 3.00  | 3.0   | 3.00        | 0.180                  | 0.270 | 2.70 | 90 | 0.000          | 0.015 | 0.317 | 24.3 | 0.125 |
| 16   | 684  | 3.00  | 3.0   | 3.00        | 0.180                  | 0.320 | 3.00 | 90 | 0.000          | 0.015 | 0.510 | 32.0 | 0.161 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs.       | D     | L            | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т            | α  | $U_c(z_{obs})$ | ) Zobs | B/D   | KC   | θ     |
|-----|------------|-------|--------------|-------------|------------------------|-------|--------------|----|----------------|--------|-------|------|-------|
| 16  | 685        | 3.00  | 3.0          | 3.00        | 0.180                  | 0.300 | 3.50         | 90 | 0.000          | 0.015  | 0.400 | 35.0 | 0.138 |
| 16  | 686        | 3.00  | 3.0          | 3.00        | 0.180                  | 0.315 | 3.70         | 90 | 0.000          | 0.015  | 0.504 | 38.9 | 0.148 |
| 16  | 687        | 3.00  | 3.0          | 3.00        | 0.180                  | 0.340 | 3.50         | 90 | 0.000          | 0.015  | 0.550 | 39.7 | 0.171 |
| 16  | 688        | 6.20  | 6.2          | 3.00        | 0.180                  | 0.000 | 480          | 90 | 0.370          | 0.031  | 0.435 | Inf  | 0.119 |
| 16  | 689        | 7.30  | 7.3          | 3.60        | 0.180                  | 0.190 | 2.20         | 90 | 0.000          | 0.037  | 0.150 | 5.7  | 0.075 |
| 16  | 690        | 7.30  | 7.3          | 3.60        | 0.180                  | 0.370 | 3.00         | 90 | 0.000          | 0.037  | 0.325 | 15.2 | 0.206 |
| 16  | 691        | 7.30  | 7.3          | 3.60        | 0.180                  | 0.420 | 3.50         | 90 | 0.000          | 0.037  | 0.382 | 20.1 | 0.246 |
| 16  | 692        | 7.30  | 7.3          | 3.60        | 0.180                  | 0.000 | 480          | 90 | 0.370          | 0.037  | 0.400 | Inf  | 0.114 |
| 17  | 693        | 25.00 | 50.0         | 2.00        | 0.250                  | 0.550 | 2.52         | 90 | 0.000          | 0.050  | 0.020 | 5.5  | 0.350 |
| 17  | 694        | 25.00 | 50.0         | 2.00        | 0.250                  | 0.259 | 3.72         | 90 | 0.000          | 0.050  | 0.020 | 3.9  | 0.083 |
| 17  | 695        | 25.00 | 50.0         | 2.00        | 0.250                  | 0.377 | 1.97         | 90 | 0.000          | 0.050  | 0.020 | 3.0  | 0.193 |
| 17  | 696        | 25.00 | 50.0         | 2.00        | 0.250                  | 0.494 | 2.18         | 90 | 0.000          | 0.050  | 0.020 | 4.3  | 0.302 |
| 17  | 697        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.204 | 2.16         | 90 | 0.000          | 0.050  | 0.020 | 2.9  | 0.066 |
| 17  | 698        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.257 | 2.48         | 90 | 0.000          | 0.050  | 0.020 | 4.3  | 0.093 |
| 17  | 699        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.322 | 1.97         | 90 | 0.000          | 0.050  | 0.020 | 4.2  | 0.147 |
| 17  | 700        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.647 | 3.72         | 90 | 0.000          | 0.050  | 0.080 | 16.1 | 0.419 |
| 17  | 701        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.550 | 2.52         | 90 | 0.000          | 0.050  | 0.070 | 9.2  | 0.350 |
| 17  | 702        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.462 | 2.73         | 90 | 0.000          | 0.050  | 0.020 | 8.4  | 0.250 |
| 17  | 703        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.259 | 3.72         | 90 | 0.000          | 0.050  | 0.030 | 6.4  | 0.083 |
| 17  | 704        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.377 | 1.97         | 90 | 0.000          | 0.050  | 0.050 | 5.0  | 0.193 |
| 17  | 705        | 15.00 | 30.0         | 2.00        | 0.250                  | 0.494 | 2.18         | 90 | 0.000          | 0.050  | 0.020 | 7.2  | 0.302 |
| 17  | 706        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.204 | 2.16         | 90 | 0.000          | 0.050  | 0.040 | 4.4  | 0.066 |
| 17  | 707        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.257 | 2.48         | 90 | 0.000          | 0.050  | 0.030 | 6.4  | 0.093 |
| 17  | 708        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.322 | 1.97         | 90 | 0.000          | 0.050  | 0.040 | 6.3  | 0.147 |
| 17  | 709        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.647 | 3.72         | 90 | 0.000          | 0.050  | 0.110 | 24.1 | 0.419 |
| 17  | 710        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.462 | 2.73         | 90 | 0.000          | 0.050  | 0.030 | 12.6 | 0.250 |
| 17  | 711        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.259 | 3.72         | 90 | 0.000          | 0.050  | 0.030 | 9.6  | 0.083 |
| 17  | 712        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.377 | 1.97         | 90 | 0.000          | 0.050  | 0.080 | 7.4  | 0.193 |
| 17  | 713        | 10.00 | 20.0         | 2.00        | 0.250                  | 0.494 | 2.18         | 90 | 0.000          | 0.050  | 0.030 | 10.8 | 0.302 |
| 17  | 714        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.204 | 2.16         | 90 | 0.000          | 0.050  | 0.040 | 5.9  | 0.066 |
| 17  | 715        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.647 | 3.72         | 90 | 0.000          | 0.050  | 0.140 | 32.1 | 0.419 |
| 17  | 716        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.550 | 2.52         | 90 | 0.000          | 0.050  | 0.080 | 18.5 | 0.350 |
| 17  | 717        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.462 | 2.73         | 90 | 0.000          | 0.050  | 0.090 | 16.8 | 0.250 |
| 17  | 718        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.259 | 3.72         | 90 | 0.000          | 0.050  | 0.050 | 12.9 | 0.083 |
| 17  | 719        | 7.50  | 15.0         | 2.00        | 0.250                  | 0.377 | 1.9/         | 90 | 0.000          | 0.050  | 0.050 | 9.9  | 0.193 |
| 17  | /20        | /.50  | 15.0         | 2.00        | 0.250                  | 0.494 | 2.18         | 90 | 0.000          | 0.050  | 0.060 | 14.4 | 0.302 |
| 17  | 721        | 25.00 | 50.0         | 2.00        | 0.250                  | 0.504 | 5.90         | 90 | 0.153          | 0.050  | 0.040 | 10.7 | 0.461 |
| 1/  | 722        | 25.00 | 50.0<br>20.0 | 2.00        | 0.250                  | 0.331 | 5.65<br>2.16 | 90 | 0.153          | 0.050  | 0.040 | 10.1 | 0.44/ |
| 1/  | 123        | 15.00 | 30.0<br>20.0 | 2.00        | 0.250                  | 0.293 | 2.10         | 90 | 0.153          | 0.050  | 0.020 | 0./  | 0.273 |
| 1/  | 724<br>725 | 15.00 | 30.0<br>20.0 | 2.00        | 0.250                  | 0.349 | 2.52         | 90 | 0.153          | 0.050  | 0.020 | ð.ð  | 0.319 |
| 1 / | 123        | 13.00 | 30.0         | 2.00        | 0.230                  | 0.340 | 1.32         | 90 | 0.155          | 0.050  | 0.020 | 3.2  | 0.362 |

 Table A1. Individual observations of self-burial of objects by scour (cont.)

| No. | Obs. | D     | L    | $ ho_o/ ho$ | <i>d</i> <sub>50</sub> | $U_w$ | Т    | α  | $U_c(z_{obs})$ | Zobs  | B/D   | KC   | θ     |
|-----|------|-------|------|-------------|------------------------|-------|------|----|----------------|-------|-------|------|-------|
| 17  | 726  | 15.00 | 30.0 | 2.00        | 0.250                  | 0.561 | 3.90 | 90 | 0.153          | 0.050 | 0.050 | 19.1 | 0.520 |
| 17  | 727  | 15.00 | 30.0 | 2.00        | 0.250                  | 0.298 | 3.90 | 90 | 0.153          | 0.050 | 0.030 | 12.3 | 0.234 |
| 17  | 728  | 15.00 | 30.0 | 2.00        | 0.250                  | 0.504 | 3.90 | 90 | 0.153          | 0.050 | 0.080 | 17.6 | 0.449 |
| 17  | 729  | 15.00 | 30.0 | 2.00        | 0.250                  | 0.462 | 5.65 | 90 | 0.153          | 0.050 | 0.080 | 24.0 | 0.362 |
| 17  | 730  | 15.00 | 30.0 | 2.00        | 0.250                  | 0.531 | 5.65 | 90 | 0.153          | 0.050 | 0.080 | 26.5 | 0.436 |
| 17  | 731  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.293 | 2.16 | 90 | 0.153          | 0.050 | 0.030 | 9.9  | 0.266 |
| 17  | 732  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.349 | 2.52 | 90 | 0.153          | 0.050 | 0.030 | 13.0 | 0.311 |
| 17  | 733  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.313 | 2.82 | 90 | 0.153          | 0.050 | 0.030 | 13.5 | 0.264 |
| 17  | 734  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.551 | 5.46 | 90 | 0.153          | 0.050 | 0.080 | 39.2 | 0.454 |
| 17  | 735  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.340 | 1.52 | 90 | 0.153          | 0.050 | 0.030 | 7.7  | 0.353 |
| 17  | 736  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.561 | 3.90 | 90 | 0.153          | 0.050 | 0.070 | 28.4 | 0.510 |
| 17  | 737  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.298 | 3.90 | 90 | 0.153          | 0.050 | 0.040 | 18.1 | 0.227 |
| 17  | 738  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.504 | 3.90 | 90 | 0.153          | 0.050 | 0.110 | 26.1 | 0.440 |
| 17  | 739  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.462 | 5.65 | 90 | 0.153          | 0.050 | 0.100 | 35.5 | 0.354 |
| 17  | 740  | 10.00 | 20.0 | 2.00        | 0.250                  | 0.531 | 5.65 | 90 | 0.153          | 0.050 | 0.130 | 39.4 | 0.427 |
| 17  | 741  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.293 | 2.16 | 90 | 0.153          | 0.050 | 0.050 | 13.1 | 0.260 |
| 17  | 742  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.349 | 2.52 | 90 | 0.153          | 0.050 | 0.050 | 17.1 | 0.305 |
| 17  | 743  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.313 | 2.82 | 90 | 0.153          | 0.050 | 0.040 | 17.8 | 0.259 |
| 17  | 744  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.304 | 4.82 | 90 | 0.153          | 0.050 | 0.040 | 29.9 | 0.215 |
| 17  | 745  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.551 | 5.46 | 90 | 0.153          | 0.050 | 0.130 | 51.8 | 0.448 |
| 17  | 746  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.340 | 1.52 | 90 | 0.153          | 0.050 | 0.040 | 10.2 | 0.346 |
| 17  | 747  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.561 | 3.90 | 90 | 0.153          | 0.050 | 0.100 | 37.5 | 0.504 |
| 17  | 748  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.298 | 3.90 | 90 | 0.153          | 0.050 | 0.050 | 23.9 | 0.222 |
| 17  | 749  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.462 | 5.65 | 90 | 0.153          | 0.050 | 0.120 | 46.9 | 0.348 |
| 17  | 750  | 7.50  | 15.0 | 2.00        | 0.250                  | 0.531 | 5.65 | 90 | 0.153          | 0.050 | 0.150 | 52.1 | 0.421 |
| 18  | 751  | 5.00  | 22.0 | 2.72        | 0.200                  | 0.287 | 2.00 | 90 | 0.000          | 0.200 | 0.620 | 11.5 | 0.139 |
| 18  | 752  | 5.00  | 22.0 | 2.72        | 0.130                  | 0.321 | 2.00 | 90 | 0.000          | 0.200 | 0.720 | 12.8 | 0.234 |
| 18  | 753  | 5.00  | 22.0 | 2.72        | 0.150                  | 0.328 | 2.00 | 90 | 0.000          | 0.200 | 0.800 | 13.1 | 0.216 |
| 18  | 754  | 5.00  | 22.0 | 2.72        | 0.171                  | 0.349 | 2.00 | 90 | 0.000          | 0.200 | 1.000 | 14.0 | 0.217 |
| 18  | 755  | 5.00  | 22.0 | 2.72        | 0.205                  | 0.387 | 2.00 | 90 | 0.000          | 0.200 | 1.060 | 15.5 | 0.228 |
| 18  | 756  | 5.00  | 22.0 | 2.72        | 0.115                  | 0.248 | 1.50 | 90 | 0.000          | 0.200 | 0.580 | 7.4  | 0.187 |
| 19  | 757  | 7.90  | 31.8 | 2.43        | 0.420                  | 0.000 | Inf  | 90 | 0.299          | 0.220 | 0.120 | Inf  | 0.026 |
| 19  | 758  | 7.94  | 31.8 | 2.43        | 0.420                  | 0.000 | Inf  | 90 | 0.351          | 0.220 | 0.320 | Inf  | 0.036 |
| 19  | 759  | 7.94  | 31.8 | 2.43        | 0.420                  | 0.000 | Inf  | 90 | 0.414          | 0.220 | 0.720 | Inf  | 0.051 |
| 19  | 760  | 7.94  | 31.8 | 2.43        | 0.420                  | 0.000 | Inf  | 90 | 0.482          | 0.220 | 0.510 | Inf  | 0.069 |
| 19  | 761  | 7.94  | 31.8 | 2.43        | 0.420                  | 0.000 | Inf  | 90 | 0.583          | 0.220 | 1.170 | Inf  | 0.102 |

**Table A2.** Notes regarding sources of individual parameters in Table A1. See Table A1 and report text for additional definitions of variables.

| No.  | Obs.    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 1-49    | Source: Carstens & Martin (1963). $T$ (p.vi); $z_{obs}$ is assumed to equal $1/2 h$ , where $h$ (p.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |         | is the height of the U-tube (note, $z_{obs}$ is not needed for analysis of wave-only cases like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |         | No.1); $D/L$ , $d_{50}$ , $\rho_o$ (p.9); $B/D$ = final value of "Y/D South" from complete tests (p.13-48),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |         | except for Obs.23; D (p.13-48); $U_w$ in Table A1 is based on reported Froude numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |         | (p.49), such that $F = U_w / [(s-1) g d_{50}]^{1/2}$ with $s = 2.6$ ; $\alpha$ (p.67).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 23      | B/D = "Y/D South" at cycle 210 because a stable burial depth was established by cycle 210 and then maintained for next 120 wave cycles (p.36).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2    | 54-157  | Sources: Starr (1989) [S89]; Stansby & Starr (1992) [SS92]. zobs is assumed to equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |         | 0.368 <i>h</i> , where <i>h</i> (S89 p.41, SS92 p.262) is the total water depth, and 0.368 <i>h</i> is the height <i>z</i> above the bed where $U_c(z)$ from a log-profile is the same as depth-averaged $U_c$ . $d_{50}$ (S89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |         | p.26, SS92 p.263); <i>L</i> (S89 p.29-30, SS92 p.263).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 50-73   | Waves only. D (SS92 p.264); B/D, KC, Shields parameter ( $\psi$ ) as reported by authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |         | (S89 Fig.5.5 p.117, SS92 Fig.9 p.265). For waves, $\psi$ was calculated by SS92 (p.263)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |         | using $\tau_b/\rho = U_w(v 2\pi/T)^{1/2}$ , where $v = 10^{-6}$ m <sup>2</sup> /s is kinematic viscosity. It follows then that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |         | $U_w$ can be recovered from $U_w^3 = D \left[ \psi(s-1) g d_{50} \right]^2 KC/(\nu 2\pi)$ . <i>T</i> is then calculated from <i>KC</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 74-113  | Currents only. <i>B/D</i> (S89 Fig.4.3 p.85, SS92 Fig.2 p.264); <i>D</i> , $\rho_o$ (S89 p.86, SS92 p.264);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |         | $U_c(z_{obs})$ in Table A1 is derived from the reported Shields parameter values (S89 Fig.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |         | p.85, SS92 Fig.2 p.264). SS92 states (p.263) that "In a current the bed shear stress is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |         | determined from the standard Nikuradse friction factor curves and the mean current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |         | magnitude." A best-fit friction factor was derived for use here by comparing the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |         | distribution of observed $U_c(z_{obs})$ (S89 Fig.4.6. p.90, SS92 Fig.4 p.264) to the reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 114 157 | Shields parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 114-15/ | Currents only. $D$ , $\rho_0$ , $B/D$ , and reported Shields parameter ( $\psi$ ) are given by S89 (Fig.4.4 p.88). Observed $U_c$ cases were not available, so $U_c$ in Table A1 is estimated as $U(z_c) = 2.5 \pm 1.25 \pm$ |
| 2    | 150 167 | $U_c(z_{obs}) = 2.5 \ u* \log(z_{obs}/z_0)$ , where $z_0 = 2.5 u_{50}/30$ , and $u* = [\psi(s-1)g(z_{50})]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3    | 138-107 | Source. Summer at al. (2001) $h = L(n, 215); d = D = U = U = T = a. (n, 210); D/D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4    | 108-193 | (Fig.15 p.331) (but there is no burial data available for Test S13).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5    | 194-544 | Source: Cataño-Lopera (2005) [CL05]. $d_{50}$ (p.10); $h$ (p.11); $z_{obs} = 0.368 h$ is assumed for the mean current (called U by CL05), since their U is defined as depth-averaged (p.14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |         | L, D, T, B/D, $\alpha$ , $U_c(z_{obs}) = U$ (p.196-210). $U_w$ in Table A1 is calculated as follows: CL05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |         | reports their $U_m = U_w + U_c(z = D/2)$ (p.25). If one assumes that their $U_{wc}$ (p.56, 196-210)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |         | equals their $U_m$ , it then follows that $U_w$ can be derived from their $U_{wc}$ (p.196-210) as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |         | $U_w = U_{wc} - U_c(z = D/2)$ , where a log-profile with $z_0 = 2.5d_{50}/30$ is used to adjust their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |         | $U = U_c(z_{obs})$ down to $U_c(z = D/2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6    | 545-574 | Source: Demir & García (2007). $h, d_{50}$ (p.118); $U_w, T, D, \rho_o, L/D, B/D, z_{obs}$ (p.119),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |         | although $z_{obs}$ is not used for analysis of wave-only cases such as No.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7    | 575-583 | Source: Cataño-Lopera et al. (2007). $h$ (p.192); $U_w$ , $U_c$ , $T$ , $D$ , $\rho_o$ , $L/D$ , $B/D$ , $z_{obs}$ , $d_{50}$ (p.193).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8-14 | 584-650 | Sources for wave and current observations: P. Howd pers. comm. [HPC]; P. Traykovski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |         | pers. comm. [TPC]. This group includes all the field observations in Table A1. $U_w$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |         | Obs. 584-650 is calculated as $U_w = 2\sigma_U$ where $\sigma_U$ is the standard deviation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |         | instantaneous velocity time-series observed over the course of a ~10 minute "burst". (For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 Table A2. Notes regarding sources of individual parameters in Table A1 (cont.)

 No.
 Obs.
 Notes

| INO. | ODS.    | INOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 584-597 | natural irregular waves, $2\sigma_U$ corresponds roughly to the highest 1/3 of waves. For<br>irregular waves, the highest 1/3 of waves is assumed to represent the characteristic orbital<br>velocity causing scour.) $U_c$ is the magnitude of the mean velocity over each of the same<br>bursts. $U_c$ and wave statistics were provided for Obs. 584-597,637-650 by TPC and for<br>Obs. 598-636 by HPC. Following the approach of Friedrichs (2007), the most energetic<br>burst preceding each observation of $B/D$ is chosen to represent $U_w$ and $U_c$ . It is assumed<br>that each high-energy wave event (each typically a day to several days in duration) lasted<br>long enough for self-burial to reach its equilibrium value. The field data associated with<br>sources 8-14 are presented in Table A1 in order of their occurrence in time, from July<br>2001 to November 2003. Thus the additional sources described<br>Additional sources: Traykovski et al. (2007) [T07]; Trembanis et al. (2007) [TR07]; Goff<br>et al. (2005) [G05]. <i>h</i> (T07 p.151); <i>L</i> , <i>D</i> , $\rho_o$ (T07 p.152); $z_{obs}$ (TPC); $d_{50}$ is the geometric<br>mean of sand size from bed sampling stations 19.5, 20.1, 20.2, 20.3, 21.12, and 22 in G05<br>(p.468). Percentage burial by area, PBA (T07 p.160; TR07 p.173-174) was estimated<br>either from the blockage of the cylinder's optical sensors (Obs. 584 to 596, even Obs.<br>numbers) or from the changing acoustic shadow length as measured by side-scan sonar<br>(Obs. 585 to 597, odd). PBA was converted to $B/D$ here according to $B/D = 0.5 \{1 - \sin[\pi(0.5 - \text{PBA}/100)]\}$ (TR07 p.169). Optical and acoustic measures of PBA were noisy<br>at the times of the most energetic $U_w$ , so equilibrium $B/D$ corresponding to each $U_w$ was<br>taken as the median value of recorded $B/D$ for a lower wave period following the wave<br>event as indicated below (dd/mm/yy - dd/mm/yy), each following the time of maximum<br>$U_c$ (dd/mm/w) |
|      | 504 505 | $U_w$ (dd/mm/yy).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 584-585 | $U_w = 0//12/01; B/D = 08/12/01 - 14/12/01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 588 580 | $U_w 21/12/01, B/D 21/12/01 - 25/12/01$<br>$U_v 20/12/01, B/D 01/01/02 - 06/01/02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 500 501 | $U_w 29/12/01, B/D 01/01/02 - 00/01/02$<br>$U_v 07/01/02; B/D 17/01/02 - 20/01/02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 502 502 | $U_W = 0/(01/02), B/D = 1/(01/02 - 20/01/02)$<br>$U_V = 10/(04/02), B/D = 11/(01/02 - 25/(04/02))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 592-595 | $U_w = 10/04/02, B/D = 11/04/02 - 23/04/02$<br>$U_v = 20/04/02, B/D = 08/05/02 = 14/05/02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 596-595 | $U_w = 25/04/02$ , $B/D = 08/05/02 = 14/05/02$<br>U = 14/05/02: $B/D = 14/05/02 = 29/05/02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 598-636 | $C_W$ 14/05/02, <i>B/D</i> 14/05/02 - 29/05/02<br>Additional sources: Bowers et al. (2007) [B07]: Wolfson (2005) [W05] <i>h</i> (W05 n vii): <i>D</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 570 050 | <i>L</i> , $\rho_o$ (B07 p.92); $d_{50}$ (B07 p.93); $z_{obs}$ (HPC). <i>B/D</i> is determined for four cylinders based<br>on settling derived from pressure sensors on cylinders (B07 p.97; TR07 p.172) for Obs.<br>598-601,610-613,624-627, averaged over periods after maximum $U_w$ . <i>B/D</i> is determined<br>by multibeam surveying of highest point on up to 10 cylinders relative to surrounding<br>seabed on dates after maximum $U_w$ (W05 p.31,46,65,78,91,103,115,128,138,148) for<br>Obs. 602-609,614-623,628-636. Dates indicated below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 598-601 | $U_w \ 17/01/03; \ B/D \ 17/01/03 - 23/01/03)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 602-609 | $U_w 17/01/03; B/D 20/01/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 610-613 | $U_w \ 23/01/03; \ B/D \ 24/01/03 - 22/02/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 614-623 | $U_w 23/01/03; B/D 06/02/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 624-627 | $U_w = 23/02/03; B/D = 23/02/03 - 15/03/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 628-636 | $U_w 23/02/03; B/D 13/03/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 637-650 | Additional sources: Bradley et al. (2007) [BR07]; Mayer et al. (2007) [M07]. $D$ , $L$ , $\rho_o$ (BR07 p.65); $h$ (BR07 p.68); $z_{obs}$ (TPC); $d_{50}$ for coarse sand cases is the geometric mean from bed sampling stations 19.1, 19.2, 19.3, 19.41, 19.42, 21.11, 21.2, and 21.3 in G05 (p.468); $d_{50}$ for fine sand cases is from G05 as described for Obs. 584-597. $B/D$ is from (i) acoustic shadow (T07 p.164; TR07 p.177-179) for Obs. 637,642,646 as described above for Obs. 585-597; (ii) pressure sensors (BR07 p.70; TR07 p.177-179) for Obs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 Table A2. Notes regarding sources of individual parameters in Table A1 (cont.)

| No. | Obs.    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |         | 638-640,643-645,647-649 as described above for Obs. 598-601; (iii) multibeam surveying (M07 p.145) for Obs.641,650 as described above for Obs. 602-609. Dates indicated below                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 637-640 | U = 05/10/03: $B/D = 05/10/03 = 15/10/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 641     | $U_{w} = 05/10/03; B/D = 06/10/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 642-645 | $U_{\rm w} = \frac{15}{10} \frac{15}{103} \cdot \frac{B}{D} = \frac{15}{1003} - \frac{28}{1103}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 646-649 | $U_{\rm w} = 29/11/03$ · $B/D = 29/11/03 - 05/12/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 650     | $U_{\rm w} = 29/11/03; B/D = 04/12/03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15  | 651-667 | Source: Rennie et al. (2017) [R17]. $h$ , $z_{obs}$ , $D$ , $L$ , $\rho_o$ (p.285); $d_{50}$ (p.286); $U_c$ , $B/D$ (p.289).<br>Note: Obs. 651,652,653, which were reported as $B/D = 0$ by R17 were recorded as $B/D = 0.02$ here (equal to the lowest value reported by any other study) in order to allow analysis of $log(B/D)$ .                                                                                                                                                                                                                                                                                     |
| 16  | 668-692 | Source: Truelsen et al. (2005). $d_{50}$ , $h$ , $D$ , $L$ , $U_c$ , $U_w$ , $\rho_o$ (p.5); $B/D$ (p.10); $z_{obs}$ (p.6, reported as "undisturbed flow velocity at center of sphere") Note: In Friedrichs et al. (2016), $d_{50}$ for this case was incorrectly reported as $d_{50} = 0.19$ mm rather than $d_{50} = 0.18$ mm. The corrected values increase $\theta$ for No.16 (as provided in Table A1) by 4% relative to the values of $\theta$ in Friedrichs et al. (2016).                                                                                                                                         |
| 17  | 693-750 | Source: Cataño-Lopera et al. (2011). $\rho_o$ (p.1257); $d_{50}$ (p.1260) D, L, $U_c$ , $U_w$ , T, B/D (p.1261); h (p.1262); $z_{obs}$ (p.1263).                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18  | 751-756 | Source: Pang & Liu (2014) [PL14]. Tests 3 to 8. $d_{50}$ , h, D, L, T, B (p.695). Orbital velocity reported by PL14 appears much too low for observed burial. Thus $U_w$ in Friedrichs et al. (2016) and in Table A1 is instead estimated from linear wave theory applied to the mean measured wave height (provided on p.695). Via personal communication, the lead author confirmed that "amplitude (cm)" in the paper refers to wave height and that the tapered cylinders were made of aluminum. It is possible the surprisingly high estimates of partial burial reported here are contaminated by ripple migration. |
| 19  | 757-761 | Source: Rennie et al. (2017). h, z <sub>obs</sub> , D, L, ρ <sub>o</sub> (p.285); d <sub>50</sub> (p.286); U <sub>c</sub> , B/D (p.289).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Appendix B. Data Compilation for Initiation of Motion of Objects

**Table B1.** Observations of initiation of motion of gravel clasts and spheres in steady flow: *No.* = reference number (see text Table 4), *Obs.* = observation number, *D* = diameter in cm of gravel clast or sphere beginning to move,  $d_{bed}$  = median diameter in cm of gravel or spheres forming the bed, *k* = effective roughness in cm of the far-field bed surface,  $\theta_{crit}$  = Shields parameter characterizing the stress acting on the far-field bed at the time of initiation of motion of the object,  $\rho_o/\rho$  = object density in (kg/m<sup>3</sup>) / (1000 kg/m<sup>3</sup>),  $U_{crit}$  = far field current or wave orbital velocity in m/s at the height of the top of the object at initiation of object motion, and  $\Theta_{Ucrit}$  = mobility parameter observed at  $U_{crit}$  (see text Eq (9)). Additional notes regarding sources of individual parameters in Table B1 and their calculation are provided in Table B4.

| No. | Obs. | D    | dbed | k    | D/k  | $\theta_{crit}$ | $\rho_o/\rho$ | U <sub>crit</sub> | $\boldsymbol{\Theta}_{Ucrit}$ |
|-----|------|------|------|------|------|-----------------|---------------|-------------------|-------------------------------|
| 1   | 1    | 0.70 | 0.75 | 1.07 | 0.42 | 0.0404          | 2.70          | 0.510             | 1.00                          |
| 1   | 1    | 0.79 | 0.75 | 1.8/ | 0.42 | 0.0484          | 2.70          | 0.510             | 1.98                          |
| 1   | 2    | 0.92 | 0.75 | 1.87 | 0.49 | 0.0505          | 2.70          | 0.595             | 2.31                          |
| l   | 3    | 0.98 | 0.75 | 1.87 | 0.52 | 0.0423          | 2.70          | 0.575             | 2.02                          |
| 1   | 4    | 0.98 | 0.75 | 1.87 | 0.52 | 0.0399          | 2.70          | 0.559             | 1.91                          |
| 1   | 5    | 0.98 | 0.75 | 1.87 | 0.52 | 0.0354          | 2.70          | 0.526             | 1.69                          |
| 1   | 6    | 1.01 | 0.75 | 1.87 | 0.54 | 0.0329          | 2.70          | 0.520             | 1.61                          |
| 1   | 7    | 1.10 | 0.75 | 1.87 | 0.59 | 0.0430          | 2.70          | 0.639             | 2.23                          |
| 1   | 8    | 1.47 | 0.75 | 1.87 | 0.79 | 0.0326          | 2.70          | 0.707             | 2.04                          |
| 1   | 9    | 1.46 | 0.75 | 1.87 | 0.78 | 0.0284          | 2.70          | 0.656             | 1.77                          |
| 1   | 10   | 1.49 | 0.75 | 1.87 | 0.80 | 0.0262          | 2.70          | 0.641             | 1.65                          |
| 1   | 11   | 1.50 | 0.75 | 1.87 | 0.80 | 0.0302          | 2.70          | 0.692             | 1.91                          |
| 1   | 12   | 1.63 | 0.75 | 1.87 | 0.87 | 0.0289          | 2.70          | 0.723             | 1.92                          |
| 1   | 13   | 1.72 | 0.75 | 1.87 | 0.92 | 0.0251          | 2.70          | 0.703             | 1.72                          |
| 1   | 14   | 1.85 | 0.75 | 1.87 | 0.99 | 0.0267          | 2.70          | 0.769             | 1.91                          |
| 1   | 15   | 1.95 | 0.75 | 1.87 | 1.04 | 0.0215          | 2.70          | 0.719             | 1.59                          |
| 1   | 16   | 2.01 | 0.75 | 1.87 | 1.07 | 0.0194          | 2.70          | 0.699             | 1.46                          |
| 1   | 17   | 2.05 | 0.75 | 1.87 | 1.10 | 0.0227          | 2.70          | 0.768             | 1.73                          |
| 1   | 18   | 2.20 | 0.75 | 1.87 | 1.18 | 0.0219          | 2.70          | 0.797             | 1.73                          |
| 1   | 19   | 2.36 | 0.75 | 1.87 | 1.26 | 0.0209          | 2.70          | 0.822             | 1.72                          |
| 1   | 20   | 2.61 | 0.75 | 1.87 | 1.40 | 0.0194          | 2.70          | 0.855             | 1.68                          |
| 1   | 21   | 2.82 | 0.75 | 1.87 | 1.51 | 0.0187          | 2.70          | 0.891             | 1.69                          |
| 1   | 22   | 3.20 | 0.75 | 1.87 | 1.71 | 0.0174          | 2.70          | 0.945             | 1.67                          |
| 1   | 23   | 3.54 | 0.75 | 1.87 | 1.89 | 0.0145          | 2.70          | 0.930             | 1.46                          |
| 2   | 24   | 2.14 | 2.00 | 5.00 | 0.43 | 0.0421          | 2.70          | 0.788             | 1.74                          |
| 2   | 25   | 2.54 | 2.00 | 5.00 | 0.51 | 0.0328          | 2.70          | 0.806             | 1.54                          |
| 2   | 26   | 2.89 | 2.00 | 5.00 | 0.58 | 0.0351          | 2.70          | 0.932             | 1.80                          |
| 2   | 27   | 3.14 | 2.00 | 5.00 | 0.63 | 0.0355          | 2.70          | 1.003             | 1.92                          |
| 2   | 28   | 3.24 | 2.00 | 5.00 | 0.65 | 0.0286          | 2.70          | 0.925             | 1.58                          |
| 2   | 29   | 3.34 | 2.00 | 5.00 | 0.67 | 0.0240          | 2.70          | 0.869             | 1.36                          |
| 2   | 30   | 3.46 | 2.00 | 5.00 | 0.69 | 0.0274          | 2.70          | 0.955             | 1.58                          |
| 2   | 31   | 3.46 | 2.00 | 5.00 | 0.69 | 0.0304          | 2.70          | 1.006             | 1.76                          |

|     |      |       |                         |      |      | U                            |             |                   | ,                             |
|-----|------|-------|-------------------------|------|------|------------------------------|-------------|-------------------|-------------------------------|
| No. | Obs. | D     | <i>d</i> <sub>bed</sub> | k    | D/k  | $\boldsymbol{\theta}_{crit}$ | $ ho_o/ ho$ | U <sub>crit</sub> | $\boldsymbol{\Theta}_{Ucrit}$ |
| 2   | 32   | 3.57  | 2.00                    | 5.00 | 0.71 | 0.0366                       | 2.70        | 1.135             | 2.16                          |
| 2   | 33   | 3.79  | 2.00                    | 5.00 | 0.76 | 0.0782                       | 2.70        | 1.739             | 4.79                          |
| 2   | 34   | 3.77  | 2.00                    | 5.00 | 0.75 | 0.0263                       | 2.70        | 1.004             | 1.60                          |
| 2   | 35   | 3.80  | 2.00                    | 5.00 | 0.76 | 0.0304                       | 2.70        | 1.087             | 1.86                          |
| 2   | 36   | 3.94  | 2.00                    | 5.00 | 0.79 | 0.0339                       | 2.70        | 1.181             | 2.13                          |
| 2   | 37   | 4.04  | 2.00                    | 5.00 | 0.81 | 0.0240                       | 2.70        | 1.014             | 1.53                          |
| 2   | 38   | 4.03  | 2.00                    | 5.00 | 0.81 | 0.0224                       | 2.70        | 0.978             | 1.42                          |
| 2   | 39   | 4.18  | 2.00                    | 5.00 | 0.84 | 0.0201                       | 2.70        | 0.955             | 1.31                          |
| 2   | 40   | 4.73  | 2.00                    | 5.00 | 0.95 | 0.0217                       | 2.70        | 1.094             | 1.52                          |
| 2   | 41   | 4.79  | 2.00                    | 5.00 | 0.96 | 0.0282                       | 2.70        | 1.261             | 1.99                          |
| 2   | 42   | 5.08  | 2.00                    | 5.00 | 1.02 | 0.0281                       | 2.70        | 1.318             | 2.05                          |
| 2   | 43   | 5.12  | 2.00                    | 5.00 | 1.02 | 0.0201                       | 2.70        | 1.121             | 1.47                          |
| 2   | 44   | 5.44  | 2.00                    | 5.00 | 1.09 | 0.0204                       | 2.70        | 1.185             | 1.55                          |
| 2   | 45   | 5.54  | 2.00                    | 5.00 | 1.11 | 0.0211                       | 2.70        | 1.222             | 1.62                          |
| 2   | 46   | 5.73  | 2.00                    | 5.00 | 1.15 | 0.0202                       | 2.70        | 1.227             | 1.58                          |
| 2   | 47   | 6.11  | 2.00                    | 5.00 | 1.22 | 0.0199                       | 2.70        | 1.280             | 1.61                          |
| 2   | 48   | 6.10  | 2.00                    | 5.00 | 1.22 | 0.0155                       | 2.70        | 1.129             | 1.25                          |
| 2   | 49   | 6.68  | 2.00                    | 5.00 | 1.34 | 0.0190                       | 2.70        | 1.339             | 1.61                          |
| 2   | 50   | 6.80  | 2.00                    | 5.00 | 1.36 | 0.0202                       | 2.70        | 1.400             | 1.73                          |
| 2   | 51   | 7.85  | 2.00                    | 5.00 | 1.57 | 0.0282                       | 2.70        | 1.845             | 2.60                          |
| 2   | 52   | 8.26  | 2.00                    | 5.00 | 1.65 | 0.0181                       | 2.70        | 1.535             | 1.71                          |
| 2   | 53   | 8.63  | 2.00                    | 5.00 | 1.73 | 0.0096                       | 2.70        | 1.156             | 0.93                          |
| 2   | 54   | 9.01  | 2.00                    | 5.00 | 1.80 | 0.0203                       | 2.70        | 1.735             | 2.00                          |
| 2   | 55   | 9.17  | 2.00                    | 5.00 | 1.83 | 0.0183                       | 2.70        | 1.670             | 1.82                          |
| 2   | 56   | 10.01 | 2.00                    | 5.00 | 2.00 | 0.0189                       | 2.70        | 1.810             | 1.96                          |
| 2   | 57   | 10.00 | 2.00                    | 5.00 | 2.00 | 0.0142                       | 2.70        | 1.568             | 1.47                          |
| 2   | 58   | 10.68 | 2.00                    | 5.00 | 2.14 | 0.0119                       | 2.70        | 1.507             | 1.28                          |
| 2   | 59   | 11.44 | 2.00                    | 5.00 | 2.29 | 0.0114                       | 2.70        | 1.552             | 1.26                          |
| 2   | 60   | 12.09 | 2.00                    | 5.00 | 2.42 | 0.0188                       | 2.70        | 2.074             | 2.13                          |
| 2   | 61   | 15.43 | 2.00                    | 5.00 | 3.09 | 0.0110                       | 2.70        | 1.893             | 1.39                          |
| 2   | 62   | 15.52 | 2.00                    | 5.00 | 3.10 | 0.0139                       | 2.70        | 2.137             | 1.76                          |
| 2   | 63   | 15.80 | 2.00                    | 5.00 | 3.16 | 0.0122                       | 2.70        | 2.027             | 1.56                          |
| 2   | 64   | 16.19 | 2.00                    | 5.00 | 3.24 | 0.0194                       | 2.70        | 2.601             | 2.51                          |
| 2   | 65   | 16.53 | 2.00                    | 5.00 | 3.31 | 0.0087                       | 2.70        | 1.768             | 1.13                          |
| 2   | 66   | 16.66 | 2.00                    | 5.00 | 3.33 | 0.0094                       | 2.70        | 1.848             | 1.23                          |
| 2   | 67   | 17.82 | 2.00                    | 5.00 | 3.56 | 0.0124                       | 2.70        | 2.227             | 1.67                          |
| 2   | 68   | 18.37 | 2.00                    | 5.00 | 3.67 | 0.0120                       | 2.70        | 2.239             | 1.64                          |
| 2   | 69   | 20.15 | 2.00                    | 5.00 | 4.03 | 0.0138                       | 2.70        | 2.563             | 1.95                          |
| 2   | 70   | 32.88 | 2.00                    | 5.00 | 6.58 | 0.0071                       | 2.70        | 2.583             | 1.22                          |
| 2   | 71   | 37.45 | 2.00                    | 5.00 | 7.49 | 0.0065                       | 2.70        | 2.702             | 1.17                          |
| 2   | 72   | 43.09 | 2.00                    | 5.00 | 8.62 | 0.0056                       | 2.70        | 2.759             | 1.06                          |

**Table B1.** Observations of initiation of motion of gravel clasts and spheres (cont.)

|     |      |      |      |      |      | $\mathcal{O}$   |             |                   | ,                             |
|-----|------|------|------|------|------|-----------------|-------------|-------------------|-------------------------------|
| No. | Obs. | D    | dbed | k    | D/k  | $\theta_{crit}$ | $ ho_o/ ho$ | U <sub>crit</sub> | $\boldsymbol{\Theta}_{Ucrit}$ |
| 3   | 73   | 2.41 | 2.00 | 5.00 | 0.48 | 0.0256          | 2.70        | 0.683             | 1.16                          |
| 3   | 74   | 2.51 | 2.00 | 5.00 | 0.50 | 0.0441          | 2.70        | 0.925             | 2.05                          |
| 3   | 75   | 2.59 | 2.00 | 5.00 | 0.52 | 0.0299          | 2.70        | 0.783             | 1.42                          |
| 3   | 76   | 2.68 | 2.00 | 5.00 | 0.54 | 0.0287          | 2.70        | 0.791             | 1.40                          |
| 3   | 77   | 2.88 | 2.00 | 5.00 | 0.58 | 0.0276          | 2.70        | 0.824             | 1.41                          |
| 3   | 78   | 3.11 | 2.00 | 5.00 | 0.62 | 0.0372          | 2.70        | 1.021             | 2.01                          |
| 3   | 79   | 3.15 | 2.00 | 5.00 | 0.63 | 0.0249          | 2.70        | 0.843             | 1.35                          |
| 3   | 80   | 3.24 | 2.00 | 5.00 | 0.65 | 0.0328          | 2.70        | 0.991             | 1.82                          |
| 3   | 81   | 3.34 | 2.00 | 5.00 | 0.67 | 0.0318          | 2.70        | 1.001             | 1.80                          |
| 3   | 82   | 3.30 | 2.00 | 5.00 | 0.66 | 0.0228          | 2.70        | 0.838             | 1.28                          |
| 3   | 83   | 3.42 | 2.00 | 5.00 | 0.68 | 0.0169          | 2.70        | 0.743             | 0.97                          |
| 3   | 84   | 3.46 | 2.00 | 5.00 | 0.69 | 0.0222          | 2.70        | 0.861             | 1.28                          |
| 3   | 85   | 3.48 | 2.00 | 5.00 | 0.70 | 0.0233          | 2.70        | 0.886             | 1.35                          |
| 3   | 86   | 3.49 | 2.00 | 5.00 | 0.70 | 0.0245          | 2.70        | 0.910             | 1.42                          |
| 3   | 87   | 3.55 | 2.00 | 5.00 | 0.71 | 0.0333          | 2.70        | 1.075             | 1.95                          |
| 3   | 88   | 3.67 | 2.00 | 5.00 | 0.73 | 0.0313          | 2.70        | 1.071             | 1.88                          |
| 3   | 89   | 4.16 | 2.00 | 5.00 | 0.83 | 0.0316          | 2.70        | 1.191             | 2.05                          |
| 3   | 90   | 4.36 | 2.00 | 5.00 | 0.87 | 0.0267          | 2.70        | 1.138             | 1.78                          |
| 3   | 91   | 4.33 | 2.00 | 5.00 | 0.87 | 0.0172          | 2.70        | 0.909             | 1.14                          |
| 3   | 92   | 4.53 | 2.00 | 5.00 | 0.91 | 0.0188          | 2.70        | 0.984             | 1.28                          |
| 3   | 93   | 5.23 | 2.00 | 5.00 | 1.05 | 0.0327          | 2.70        | 1.454             | 2.42                          |
| 3   | 94   | 5.79 | 2.00 | 5.00 | 1.16 | 0.0290          | 2.70        | 1.483             | 2.28                          |
| 3   | 95   | 5.94 | 2.00 | 5.00 | 1.19 | 0.0280          | 2.70        | 1.486             | 2.23                          |
| 3   | 96   | 6.43 | 2.00 | 5.00 | 1.29 | 0.0274          | 2.70        | 1.563             | 2.28                          |
| 3   | 97   | 6.55 | 2.00 | 5.00 | 1.31 | 0.0262          | 2.70        | 1.549             | 2.20                          |
| 3   | 98   | 6.65 | 2.00 | 5.00 | 1.33 | 0.0253          | 2.70        | 1.540             | 2.14                          |
| 3   | 99   | 6.86 | 2.00 | 5.00 | 1.37 | 0.0264          | 2.70        | 1.611             | 2.27                          |
| 3   | 100  | 7.23 | 2.00 | 5.00 | 1.45 | 0.0246          | 2.70        | 1.620             | 2.17                          |
| 3   | 101  | 7.38 | 2.00 | 5.00 | 1.48 | 0.0195          | 2.70        | 1.464             | 1.74                          |
| 3   | 102  | 7.69 | 2.00 | 5.00 | 1.54 | 0.0248          | 2.70        | 1.704             | 2.26                          |
| 3   | 103  | 7.41 | 2.00 | 5.00 | 1.48 | 0.0166          | 2.70        | 1.355             | 1.49                          |
| 3   | 104  | 8.37 | 2.00 | 5.00 | 1.67 | 0.0247          | 2.70        | 1.812             | 2.35                          |
| 3   | 105  | 8.43 | 2.00 | 5.00 | 1.69 | 0.0215          | 2.70        | 1.699             | 2.05                          |
| 3   | 106  | 8.81 | 2.00 | 5.00 | 1.76 | 0.0246          | 2.70        | 1.879             | 2.40                          |
| 3   | 107  | 9.16 | 2.00 | 5.00 | 1.83 | 0.0258          | 2.70        | 1.980             | 2.57                          |
| 3   | 108  | 8.81 | 2.00 | 5.00 | 1.76 | 0.0219          | 2.70        | 1.772             | 2.14                          |
| 3   | 109  | 8.78 | 2.00 | 5.00 | 1.76 | 0.0209          | 2.70        | 1.728             | 2.04                          |
| 3   | 110  | 9.29 | 2.00 | 5.00 | 1.86 | 0.0225          | 2.70        | 1.870             | 2.26                          |
| 3   | 111  | 9.25 | 2.00 | 5.00 | 1.85 | 0.0213          | 2.70        | 1.812             | 2.13                          |
| 3   | 112  | 9.70 | 2.00 | 5.00 | 1.94 | 0.0205          | 2.70        | 1.843             | 2.10                          |
| 3   | 113  | 9.78 | 2.00 | 5.00 | 1.96 | 0.0225          | 2.70        | 1.942             | 2.31                          |

**Table B1.** Observations of initiation of motion of gravel clasts and spheres (cont.)

| Table B1. | Observations | of initiation | of motion | of gravel | clasts and spheres (cont.) |  |
|-----------|--------------|---------------|-----------|-----------|----------------------------|--|
|-----------|--------------|---------------|-----------|-----------|----------------------------|--|

|   |     | -    |       | -                       |      |      | $\mathcal{L}$                | F           |                   | /                             |
|---|-----|------|-------|-------------------------|------|------|------------------------------|-------------|-------------------|-------------------------------|
| _ | No. | Obs. | D     | <i>d</i> <sub>bed</sub> | k    | D/k  | $\boldsymbol{\theta}_{crit}$ | $ ho_o/ ho$ | U <sub>crit</sub> | $\boldsymbol{\Theta}_{Ucrit}$ |
|   | 3   | 114  | 10.24 | 2.00                    | 5.00 | 2.05 | 0.0200                       | 2.70        | 1.894             | 2.10                          |
|   | 3   | 115  | 10.36 | 2.00                    | 5.00 | 2.07 | 0.0127                       | 2.70        | 1.522             | 1.34                          |
|   | 3   | 116  | 11.49 | 2.00                    | 5.00 | 2.30 | 0.0186                       | 2.70        | 1.987             | 2.06                          |
|   | 4   | 117  | 1.56  | 1.36                    | 3.41 | 0.46 | 0.0742                       | 2.70        | 0.915             | 3.22                          |
|   | 4   | 118  | 1.87  | 1.36                    | 3.41 | 0.55 | 0.0427                       | 2.70        | 0.810             | 2.11                          |
|   | 4   | 119  | 1.99  | 1.36                    | 3.41 | 0.58 | 0.0370                       | 2.70        | 0.798             | 1.91                          |
|   | 4   | 120  | 2.02  | 1.36                    | 3.41 | 0.59 | 0.0365                       | 2.70        | 0.802             | 1.91                          |
|   | 4   | 121  | 2.48  | 1.36                    | 3.41 | 0.73 | 0.0484                       | 2.70        | 1.093             | 2.89                          |
|   | 4   | 122  | 3.07  | 1.36                    | 3.41 | 0.90 | 0.0488                       | 2.70        | 1.304             | 3.32                          |
|   | 4   | 123  | 3.15  | 1.36                    | 3.41 | 0.92 | 0.0250                       | 2.70        | 0.952             | 1.72                          |
|   | 4   | 124  | 3.26  | 1.36                    | 3.41 | 0.96 | 0.0600                       | 2.70        | 1.515             | 4.22                          |
|   | 4   | 125  | 3.68  | 1.36                    | 3.41 | 1.08 | 0.0457                       | 2.70        | 1.455             | 3.45                          |
|   | 4   | 126  | 3.83  | 1.36                    | 3.41 | 1.12 | 0.0433                       | 2.70        | 1.462             | 3.34                          |
|   | 4   | 127  | 3.94  | 1.36                    | 3.41 | 1.15 | 0.0108                       | 2.70        | 0.745             | 0.85                          |
|   | 4   | 128  | 4.33  | 1.36                    | 3.41 | 1.27 | 0.0224                       | 2.70        | 1.154             | 1.85                          |
|   | 4   | 129  | 4.62  | 1.36                    | 3.41 | 1.35 | 0.0156                       | 2.70        | 1.013             | 1.33                          |
|   | 4   | 130  | 4.96  | 1.36                    | 3.41 | 1.45 | 0.0167                       | 2.70        | 1.105             | 1.48                          |
|   | 4   | 131  | 5.31  | 1.36                    | 3.41 | 1.56 | 0.0121                       | 2.70        | 0.992             | 1.11                          |
|   | 4   | 132  | 6.39  | 1.36                    | 3.41 | 1.87 | 0.0153                       | 2.70        | 1.281             | 1.54                          |
|   | 5   | 133  | 0.97  | 0.05                    | 0.12 | 8.07 | 0.0072                       | 2.70        | 0.458             | 1.41                          |
|   | 5   | 134  | 0.68  | 0.05                    | 0.12 | 5.68 | 0.0078                       | 2.70        | 0.377             | 1.36                          |
|   | 5   | 135  | 0.95  | 0.06                    | 0.14 | 6.78 | 0.0051                       | 2.70        | 0.368             | 0.92                          |
|   | 5   | 136  | 0.68  | 0.06                    | 0.14 | 4.84 | 0.0088                       | 2.70        | 0.381             | 1.40                          |
|   | 5   | 137  | 0.96  | 0.10                    | 0.24 | 4.00 | 0.0103                       | 2.70        | 0.463             | 1.47                          |
|   | 5   | 138  | 0.68  | 0.10                    | 0.24 | 2.81 | 0.0148                       | 2.70        | 0.430             | 1.82                          |
|   | 6   | 139  | 0.55  | 0.34                    | 0.84 | 0.65 | 0.0360                       | 2.70        | 0.396             | 2.00                          |
|   | 6   | 140  | 0.71  | 0.34                    | 0.84 | 0.85 | 0.0290                       | 2.70        | 0.443             | 1.90                          |
|   | 6   | 141  | 0.89  | 0.34                    | 0.84 | 1.06 | 0.0230                       | 2.70        | 0.475             | 1.72                          |
|   | 6   | 142  | 1.12  | 0.34                    | 0.84 | 1.33 | 0.0180                       | 2.70        | 0.502             | 1.53                          |
|   | 6   | 143  | 1.41  | 0.34                    | 0.84 | 1.68 | 0.0150                       | 2.70        | 0.549             | 1.43                          |
|   | 6   | 144  | 0.55  | 0.37                    | 0.93 | 0.59 | 0.0380                       | 2.70        | 0.393             | 1.98                          |
|   | 6   | 145  | 0.71  | 0.37                    | 0.93 | 0.76 | 0.0310                       | 2.70        | 0.443             | 1.91                          |
|   | 6   | 146  | 0.89  | 0.37                    | 0.93 | 0.96 | 0.0260                       | 2.70        | 0.490             | 1.84                          |
|   | 6   | 147  | 1.12  | 0.37                    | 0.93 | 1.20 | 0.0210                       | 2.70        | 0.527             | 1.69                          |
|   | 6   | 148  | 1.41  | 0.37                    | 0.93 | 1.52 | 0.0170                       | 2.70        | 0.569             | 1.55                          |
|   | 6   | 149  | 0.55  | 0.26                    | 0.65 | 0.84 | 0.0240                       | 2.70        | 0.353             | 1.57                          |
|   | 6   | 150  | 0.71  | 0.26                    | 0.65 | 1.09 | 0.0190                       | 2.70        | 0.388             | 1.45                          |
|   | 6   | 151  | 0.89  | 0.26                    | 0.65 | 1.38 | 0.0160                       | 2.70        | 0.427             | 1.38                          |
|   | 6   | 152  | 0.55  | 0.26                    | 0.66 | 0.83 | 0.0240                       | 2.70        | 0.351             | 1.55                          |
|   | 6   | 153  | 0.71  | 0.26                    | 0.66 | 1.08 | 0.0190                       | 2.70        | 0.386             | 1.43                          |
|   | 6   | 154  | 0.89  | 0.26                    | 0.66 | 1.35 | 0.0160                       | 2.70        | 0.424             | 1.36                          |

 Table B1. Observations of initiation of motion of gravel clasts and spheres (cont.)

| -   |      |      |                         |      |      |                             |               | r                 | ,                             |
|-----|------|------|-------------------------|------|------|-----------------------------|---------------|-------------------|-------------------------------|
| No. | Obs. | D    | <i>d</i> <sub>bed</sub> | k    | D/k  | $\boldsymbol{	heta}_{crit}$ | $ ho_{o}/ ho$ | U <sub>crit</sub> | $\boldsymbol{\Theta}_{Ucrit}$ |
| 6   | 155  | 0.55 | 0.28                    | 0.70 | 0.78 | 0.0370                      | 2.70          | 0.427             | 2.31                          |
| 6   | 156  | 0.71 | 0.28                    | 0.70 | 1.01 | 0.0230                      | 2.70          | 0.417             | 1.68                          |
| 6   | 157  | 0.89 | 0.28                    | 0.70 | 1.28 | 0.0220                      | 2.70          | 0.490             | 1.82                          |
| 6   | 158  | 1.12 | 0.28                    | 0.70 | 1.60 | 0.0190                      | 2.70          | 0.542             | 1.77                          |
| 6   | 159  | 1.41 | 0.28                    | 0.70 | 2.02 | 0.0180                      | 2.70          | 0.630             | 1.88                          |
| 7   | 160  | 0.52 | 0.18                    | 0.46 | 1.13 | 0.0123                      | 2.70          | 0.270             | 0.96                          |
| 7   | 161  | 0.62 | 0.18                    | 0.46 | 1.34 | 0.0105                      | 2.70          | 0.286             | 0.90                          |
| 7   | 162  | 0.62 | 0.53                    | 1.32 | 0.47 | 0.0316                      | 2.70          | 0.348             | 1.40                          |
| 8   | 163  | 0.53 | 0.18                    | 0.45 | 1.18 | 0.0138                      | 2.70          | 0.292             | 1.09                          |
| 8   | 164  | 0.61 | 0.18                    | 0.45 | 1.34 | 0.0120                      | 2.70          | 0.302             | 1.02                          |
| 8   | 165  | 0.70 | 0.18                    | 0.45 | 1.54 | 0.0110                      | 2.70          | 0.322             | 1.00                          |
| 9   | 166  | 0.58 | 0.24                    | 0.59 | 0.99 | 0.0204                      | 2.70          | 0.353             | 1.47                          |
| 9   | 167  | 0.53 | 0.38                    | 0.95 | 0.56 | 0.0251                      | 2.70          | 0.308             | 1.26                          |
| 9   | 168  | 0.62 | 0.38                    | 0.95 | 0.65 | 0.0219                      | 2.70          | 0.329             | 1.22                          |
| 9   | 169  | 0.84 | 0.38                    | 0.95 | 0.89 | 0.0195                      | 2.70          | 0.401             | 1.31                          |
| 9   | 170  | 1.00 | 0.38                    | 0.95 | 1.05 | 0.0178                      | 2.70          | 0.440             | 1.32                          |
| 9   | 171  | 1.19 | 0.38                    | 0.95 | 1.25 | 0.0155                      | 2.70          | 0.471             | 1.27                          |
| 9   | 172  | 1.44 | 0.38                    | 0.95 | 1.52 | 0.0132                      | 2.70          | 0.505             | 1.19                          |
| 9   | 173  | 0.52 | 0.40                    | 1.00 | 0.52 | 0.0295                      | 2.70          | 0.320             | 1.40                          |
| 9   | 174  | 0.58 | 0.40                    | 1.00 | 0.58 | 0.0263                      | 2.70          | 0.335             | 1.35                          |
| 9   | 175  | 0.65 | 0.40                    | 1.00 | 0.65 | 0.0234                      | 2.70          | 0.350             | 1.30                          |
| 9   | 176  | 0.74 | 0.40                    | 1.00 | 0.74 | 0.0219                      | 2.70          | 0.376             | 1.32                          |
| 9   | 177  | 0.85 | 0.40                    | 1.00 | 0.85 | 0.0200                      | 2.70          | 0.403             | 1.31                          |
| 9   | 178  | 1.01 | 0.40                    | 1.00 | 1.01 | 0.0178                      | 2.70          | 0.437             | 1.29                          |
| 9   | 179  | 1.27 | 0.40                    | 1.00 | 1.27 | 0.0145                      | 2.70          | 0.473             | 1.20                          |
| 10  | 180  | 0.51 | 0.22                    | 0.54 | 0.94 | 0.0288                      | 2.70          | 0.385             | 2.01                          |
| 10  | 181  | 0.60 | 0.22                    | 0.54 | 1.12 | 0.0240                      | 2.70          | 0.405             | 1.85                          |
| 10  | 182  | 0.69 | 0.22                    | 0.54 | 1.29 | 0.0219                      | 2.70          | 0.432             | 1.82                          |
| 11  | 183  | 0.63 | 0.50                    | 0.38 | 1.66 | 0.00632                     | 2.29          | 0.221             | 0.613                         |
| 11  | 184  | 0.63 | 0.50                    | 0.38 | 1.66 | 0.00667                     | 2.29          | 0.227             | 0.646                         |
| 11  | 185  | 0.63 | 0.50                    | 0.38 | 1.66 | 0.00703                     | 2.29          | 0.233             | 0.681                         |
| 11  | 186  | 0.63 | 0.50                    | 0.38 | 1.66 | 0.00791                     | 2.29          | 0.247             | 0.764                         |
| 11  | 187  | 0.63 | 0.50                    | 0.38 | 1.66 | 0.00889                     | 2.29          | 0.262             | 0.857                         |
| 11  | 188  | 0.99 | 0.50                    | 0.38 | 2.59 | 0.00445                     | 2.56          | 0.283             | 0.530                         |
| 11  | 189  | 0.99 | 0.50                    | 0.38 | 2.59 | 0.00479                     | 2.56          | 0.293             | 0.570                         |
| 11  | 190  | 0.99 | 0.50                    | 0.38 | 2.59 | 0.00511                     | 2.56          | 0.303             | 0.608                         |
| 11  | 191  | 1.22 | 0.50                    | 0.38 | 3.21 | 0.00297                     | 2.48          | 0.263             | 0.390                         |
| 11  | 192  | 1.22 | 0.50                    | 0.38 | 3.21 | 0.00348                     | 2.48          | 0.284             | 0.456                         |
| 11  | 193  | 1.22 | 0.50                    | 0.38 | 3.21 | 0.00363                     | 2.48          | 0.290             | 0.475                         |
| 11  | 194  | 1.22 | 0.50                    | 0.38 | 3.21 | 0.00389                     | 2.48          | 0.300             | 0.509                         |
| 11  | 195  | 1.38 | 0.50                    | 0.38 | 3.63 | 0.00316                     | 2.45          | 0.292             | 0.436                         |

 Table B1. Observations of initiation of motion of gravel clasts and spheres (cont.)

|     |      |      |                         |      |      | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 1           |            | )                             |
|-----|------|------|-------------------------|------|------|------------------------------------------|-------------|------------|-------------------------------|
| No. | Obs. | D    | <i>d</i> <sub>bed</sub> | k    | D/k  | $\boldsymbol{\theta}_{crit}$             | $ ho_o/ ho$ | $U_{crit}$ | $\boldsymbol{\Theta}_{Ucrit}$ |
| 11  | 196  | 1.38 | 0.50                    | 0.38 | 3.63 | 0.00323                                  | 2.45        | 0.296      | 0.445                         |
| 11  | 197  | 1.38 | 0.50                    | 0.38 | 3.63 | 0.00330                                  | 2.45        | 0.299      | 0.455                         |
| 11  | 198  | 1.38 | 0.50                    | 0.38 | 3.63 | 0.00337                                  | 2.45        | 0.302      | 0.464                         |
| 11  | 199  | 1.38 | 0.50                    | 0.38 | 3.63 | 0.00344                                  | 2.45        | 0.305      | 0.474                         |
| 11  | 200  | 1.60 | 0.50                    | 0.38 | 4.21 | 0.00242                                  | 2.41        | 0.281      | 0.355                         |
| 11  | 201  | 1.60 | 0.50                    | 0.38 | 4.21 | 0.00258                                  | 2.41        | 0.290      | 0.378                         |
| 11  | 202  | 1.60 | 0.50                    | 0.38 | 4.21 | 0.00278                                  | 2.41        | 0.300      | 0.407                         |
| 11  | 203  | 2.00 | 0.50                    | 0.38 | 5.27 | 0.00168                                  | 2.41        | 0.274      | 0.270                         |
| 11  | 204  | 2.00 | 0.50                    | 0.38 | 5.27 | 0.00210                                  | 2.41        | 0.305      | 0.336                         |
| 11  | 205  | 2.00 | 0.50                    | 0.38 | 5.27 | 0.00227                                  | 2.41        | 0.317      | 0.363                         |
| 11  | 206  | 2.21 | 0.50                    | 0.38 | 5.80 | 0.00141                                  | 2.48        | 0.274      | 0.235                         |
| 11  | 207  | 2.21 | 0.50                    | 0.38 | 5.80 | 0.00158                                  | 2.48        | 0.290      | 0.263                         |
| 11  | 208  | 2.21 | 0.50                    | 0.38 | 5.80 | 0.00169                                  | 2.48        | 0.300      | 0.281                         |
| 11  | 209  | 2.21 | 0.50                    | 0.38 | 5.80 | 0.00180                                  | 2.48        | 0.309      | 0.299                         |
| 11  | 210  | 2.21 | 0.50                    | 0.38 | 5.80 | 0.00209                                  | 2.48        | 0.333      | 0.347                         |

**Table B2.** Laboratory observations from William (2001) of initiation of motion of cylinders on a smooth bed under waves: *No.* = reference number, *Obs.* = observation number; *D* = diameter of cylinder in cm, *k* = effective roughness in mm of the far-field bed surface,  $\rho_o/\rho$  = object density in (kg/m<sup>3</sup>) / (1000 kg/m<sup>3</sup>),  $U_{w\_crit}$  = far field near-bed wave orbital velocity at initiation of motion in m/s, *T* = wave period in sec,  $f_I \Theta_{Ucrit}$  = an inertial factor times the critical mobility parameter (see text Eqs. (9) and (12)), and *Runs* indicates the number of the runs from Williams (2001) immediately before and after initial motion that were averaged to determine  $U_{w\_crit}$ . Additional notes regarding sources of individual parameters in Table B2 and their calculation are provided in Table B4.

| No. | Obs. | D     | k     | D/k  | $ ho_o/ ho$ | $U_{w\_crit}$ | T   | $f_I \Theta_{Ucrit}$ | Runs     |
|-----|------|-------|-------|------|-------------|---------------|-----|----------------------|----------|
| 12  | 211  | 10.50 | 0.432 | 243  | 4.76        | 0.041         | 3.0 | 0.0093               | 390, 391 |
| 12  | 212  | 10.50 | 0.297 | 354  | 4.76        | 0.094         | 3.5 | 0.0185               | 394, 395 |
| 12  | 213  | 10.50 | 0.298 | 352  | 4.76        | 0.100         | 4.0 | 0.0172               | 397, 398 |
| 12  | 214  | 10.50 | 0.330 | 319  | 4.76        | 0.087         | 4.5 | 0.0132               | 400, 401 |
| 12  | 215  | 10.50 | 0.333 | 316  | 4.76        | 0.090         | 5.0 | 0.0124               | 402, 403 |
| 12  | 216  | 10.50 | 0.306 | 343  | 4.76        | 0.116         | 6.0 | 0.0136               | 410, 411 |
| 12  | 217  | 10.50 | 0.343 | 306  | 4.76        | 0.065         | 3.0 | 0.0149               | 1, 2     |
| 12  | 218  | 10.50 | 0.386 | 272  | 4.76        | 0.059         | 4.0 | 0.0102               | 6, 10    |
| 12  | 219  | 10.50 | 0.328 | 320  | 4.76        | 0.092         | 5.0 | 0.0128               | 12, 13   |
| 12  | 220  | 10.50 | 0.265 | 396  | 4.76        | 0.155         | 6.0 | 0.0186               | 21, 22   |
| 12  | 221  | 7.50  | 0.267 | 281  | 4.27        | 0.124         | 4.0 | 0.0251               | 371, 372 |
| 12  | 222  | 7.50  | 0.232 | 323  | 8.28        | 0.154         | 3.5 | 0.0161               | 349, 350 |
| 12  | 223  | 7.50  | 0.210 | 357  | 8.28        | 0.201         | 4.0 | 0.0192               | 352, 354 |
| 12  | 224  | 4.76  | 0.344 | 138  | 3.16        | 0.037         | 1.0 | 0.0444               | 128, 129 |
| 12  | 225  | 4.76  | 0.298 | 159  | 3.16        | 0.070         | 2.0 | 0.0421               | 130, 131 |
| 12  | 226  | 4.76  | 0.236 | 202  | 3.16        | 0.138         | 3.0 | 0.0577               | 137, 138 |
| 12  | 227  | 4.76  | 0.209 | 227  | 3.16        | 0.226         | 5.0 | 0.0739               | 144, 145 |
| 12  | 228  | 4.76  | 0.221 | 215  | 3.16        | 0.222         | 6.0 | 0.0658               | 148, 149 |
| 12  | 229  | 4.76  | 0.165 | 289  | 7.08        | 0.347         | 4.5 | 0.0535               | 267, 268 |
| 12  | 230  | 4.76  | 0.178 | 267  | 7.08        | 0.312         | 5.0 | 0.0432               | 269, 270 |
| 12  | 231  | 4.76  | 0.468 | 102  | 1.63        | 0.045         | 5.0 | 0.0375               | 202, 203 |
| 12  | 232  | 4.76  | 0.348 | 137  | 1.63        | 0.097         | 7.0 | 0.0650               | 212, 213 |
| 12  | 233  | 6.03  | 0.141 | 429  | 6.87        | 0.317         | 2.0 | 0.0751               | 295, 296 |
| 12  | 234  | 6.03  | 0.136 | 444  | 6.87        | 0.417         | 3.0 | 0.0787               | 300, 301 |
| 12  | 235  | 6.03  | 0.141 | 427  | 6.87        | 0.498         | 5.0 | 0.0835               | 308, 309 |
| 12  | 236  | 6.03  | 0.162 | 373  | 6.87        | 0.414         | 6.0 | 0.0580               | 312, 313 |
| 12  | 237  | 6.03  | 0.150 | 401  | 6.87        | 0.459         | 5.5 | 0.0709               | 318, 319 |
| 12  | 238  | 3.18  | 0.342 | 92.9 | 3.29        | 0.057         | 2.3 | 0.0283               | 423, 424 |
| 12  | 239  | 3.18  | 0.281 | 113  | 3.29        | 0.105         | 3.5 | 0.0369               | 425, 426 |
| 12  | 240  | 3.18  | 0.343 | 92.7 | 3.29        | 0.081         | 4.6 | 0.0217               | 430, 431 |
| 12  | 241  | 3.18  | 0.243 | 131  | 3.29        | 0.185         | 6.0 | 0.0590               | 435, 436 |
| 12  | 242  | 3.18  | 0.272 | 117  | 3.29        | 0.073         | 1.5 | 0.0553               | 440, 441 |
| 12  | 243  | 2.86  | 0.276 | 104  | 2.09        | 0.071         | 1.5 | 0.1136               | 444, 445 |

| No. | Obs. | D    | k     | D/k  | $ ho_{o}/ ho$ | $U_{w\_crit}$ | Т   | $f_I \boldsymbol{\Theta}_{Ucrit}$ | Runs     |
|-----|------|------|-------|------|---------------|---------------|-----|-----------------------------------|----------|
| 12  | 244  | 2.86 | 0.348 | 82.2 | 2.09          | 0.073         | 4.0 | 0.0467                            | 460, 461 |
| 12  | 245  | 2.86 | 0.328 | 87.1 | 2.09          | 0.092         | 5.0 | 0.0516                            | 469, 470 |
| 12  | 246  | 2.86 | 0.321 | 89.2 | 2.09          | 0.114         | 7.0 | 0.0575                            | 483, 484 |
| 12  | 247  | 2.86 | 0.357 | 80.0 | 2.09          | 0.098         | 8.0 | 0.0430                            | 490, 491 |
| 12  | 248  | 2.86 | 0.399 | 71.6 | 2.09          | 0.083         | 9.0 | 0.0316                            | 497, 498 |
| 12  | 249  | 3.81 | 0.296 | 129  | 6.09          | 0.072         | 2.0 | 0.0182                            | 506, 507 |
| 12  | 250  | 3.81 | 0.216 | 176  | 6.09          | 0.164         | 3.0 | 0.0310                            | 513, 514 |
| 12  | 251  | 3.81 | 0.218 | 175  | 6.09          | 0.186         | 4.0 | 0.0297                            | 521, 522 |
| 12  | 252  | 3.81 | 0.204 | 187  | 6.09          | 0.239         | 5.0 | 0.0385                            | 530, 531 |
| 12  | 253  | 3.81 | 0.275 | 138  | 6.09          | 0.143         | 6.0 | 0.0162                            | 534, 535 |
| 12  | 254  | 3.81 | 0.266 | 143  | 6.09          | 0.166         | 7.0 | 0.0187                            | 542, 543 |
| 12  | 255  | 3.81 | 0.219 | 174  | 6.09          | 0.278         | 9.0 | 0.0435                            | 558, 559 |
| 12  | 256  | 3.81 | 0.217 | 176  | 3.84          | 0.133         | 2.0 | 0.0625                            | 566, 567 |
| 12  | 257  | 3.81 | 0.268 | 142  | 3.84          | 0.107         | 3.0 | 0.0340                            | 570, 571 |
| 12  | 258  | 3.81 | 0.195 | 196  | 3.84          | 0.234         | 4.0 | 0.0738                            | 579, 580 |
| 12  | 259  | 3.81 | 0.288 | 132  | 3.84          | 0.120         | 5.0 | 0.0255                            | 586, 587 |
| 12  | 260  | 3.81 | 0.194 | 196  | 3.84          | 0.288         | 6.0 | 0.0895                            | 595, 596 |
| 12  | 261  | 3.81 | 0.260 | 146  | 3.84          | 0.173         | 7.0 | 0.0361                            | 601, 602 |
| 12  | 262  | 3.81 | 0.229 | 167  | 3.84          | 0.240         | 8.0 | 0.0607                            | 610, 611 |
| 12  | 263  | 3.81 | 0.267 | 143  | 3.84          | 0.187         | 9.0 | 0.0379                            | 614, 616 |
| 12  | 264  | 4.76 | 0.275 | 173  | 5.18          | 0.083         | 2.0 | 0.0257                            | 621, 622 |
| 12  | 265  | 4.76 | 0.264 | 181  | 5.18          | 0.111         | 3.0 | 0.0234                            | 626, 627 |
| 12  | 266  | 4.76 | 0.186 | 255  | 5.18          | 0.255         | 4.0 | 0.0514                            | 635, 537 |
| 12  | 267  | 4.76 | 0.273 | 174  | 5.18          | 0.133         | 5.0 | 0.0186                            | 667, 668 |
| 12  | 268  | 4.76 | 0.202 | 236  | 5.18          | 0.267         | 6.0 | 0.0455                            | 674, 676 |
| 12  | 269  | 4.76 | 0.216 | 220  | 5.18          | 0.251         | 7.0 | 0.0391                            | 681, 682 |
| 12  | 270  | 4.76 | 0.208 | 229  | 5.18          | 0.291         | 8.0 | 0.0486                            | 688, 690 |
| 12  | 271  | 4.76 | 0.216 | 220  | 5.18          | 0.284         | 9.0 | 0.0456                            | 694, 696 |
| 12  | 272  | 1.75 | 0.224 | 78.0 | 7.62          | 0.125         | 2.0 | 0.0277                            | 642, 643 |
| 12  | 273  | 1.75 | 0.226 | 77.4 | 7.62          | 0.150         | 3.0 | 0.0278                            | 645, 646 |
| 12  | 274  | 1.75 | 0.237 | 73.8 | 7.62          | 0.158         | 4.0 | 0.0267                            | 648, 649 |
| 12  | 275  | 1.75 | 0.281 | 62.3 | 7.62          | 0.126         | 5.0 | 0.0170                            | 651, 652 |
| 12  | 276  | 1.75 | 0.204 | 85.9 | 7.62          | 0.262         | 6.0 | 0.0626                            | 655, 656 |
| 12  | 277  | 1.75 | 0.294 | 59.5 | 7.62          | 0.136         | 7.0 | 0.0179                            | 657, 658 |
| 12  | 278  | 1.75 | 0.290 | 60.4 | 7.62          | 0.158         | 9.0 | 0.0231                            | 664, 665 |

Table B2. Laboratory observations of initiation of motion of cylinders under waves (cont.)

**Table B3.** Laboratory observations of initiation of motion of cylinders placed on smooth and rough beds under currents in the absence of waves: *No.* = reference number, *Obs.* = observation number; *D* = diameter of cylinder in cm, k = effective roughness in mm of the far-field bed surface,  $\rho_o/\rho$  = object density in (kg/m<sup>3</sup>) / (1000 kg/m<sup>3</sup>),  $U_{crit}(z_{obs})$  = far field velocity in m/s at height  $z_{obs}$ ,  $z_{obs}$  = observation height in meters above bed, and  $\Theta_{Ucrit}$  = mobility parameter observed at  $U_{crit}$  (see text Eq (9)). Additional notes regarding sources of individual parameters in Table B3 and their calculation are provided in Table B4.

| No. | Obs. | D     | k     | D/k  | $\rho_o/\rho$ | Ucrit(Zobs) | Zobs | $\boldsymbol{\Theta}_{Ucrit}$ |
|-----|------|-------|-------|------|---------------|-------------|------|-------------------------------|
| 13  | 279  | 4.80  | 0.358 | 134  | 3.17          | 0.230       | 0.30 | 0.0347                        |
| 13  | 280  | 4 80  | 0.646 | 74 3 | 1.63          | 0.120       | 0.30 | 0.0317                        |
| 13  | 281  | 6.00  | 0.358 | 168  | 3.01          | 0.230       | 0.30 | 0.0316                        |
| 13  | 282  | 6.00  | 0.646 | 92.8 | 1 71          | 0.120       | 0.30 | 0.0238                        |
| 13  | 283  | 8.90  | 0.320 | 278  | 3.01          | 0.260       | 0.30 | 0.0299                        |
| 13  | 284  | 8 90  | 0.646 | 138  | 1.57          | 0.120       | 0.30 | 0.0220                        |
| 13  | 285  | 11.50 | 0.320 | 359  | 2.77          | 0.260       | 0.30 | 0.0278                        |
| 13  | 286  | 11.50 | 0.646 | 178  | 1.63          | 0.120       | 0.30 | 0.0164                        |
| 14  | 287  | 10.30 | 0.270 | 382  | 4.52          | 0.305       | 0.22 | 0.0223                        |
| 14  | 288  | 10.30 | 0.224 | 459  | 4.52          | 0.373       | 0.22 | 0.0335                        |
| 14  | 289  | 10.30 | 0.261 | 395  | 4.52          | 0.316       | 0.22 | 0.0240                        |
| 14  | 290  | 10.30 | 0.286 | 360  | 4.52          | 0.285       | 0.22 | 0.0195                        |
| 14  | 291  | 10.30 | 0.272 | 379  | 4.52          | 0.302       | 0.22 | 0.0220                        |
| 14  | 292  | 10.30 | 0.270 | 381  | 4.52          | 0.304       | 0.22 | 0.0223                        |
| 14  | 293  | 10.30 | 0.271 | 381  | 4.52          | 0.304       | 0.22 | 0.0222                        |
| 14  | 294  | 10.30 | 0.285 | 362  | 4.52          | 0.287       | 0.22 | 0.0198                        |
| 14  | 295  | 10.50 | 0.363 | 289  | 1.21          | 0.220       | 0.22 | 0.191                         |
| 14  | 296  | 10.50 | 0.329 | 319  | 1.21          | 0.245       | 0.22 | 0.237                         |
| 14  | 297  | 10.50 | 0.398 | 264  | 1.21          | 0.198       | 0.22 | 0.155                         |
| 14  | 298  | 10.50 | 0.400 | 263  | 1.21          | 0.197       | 0.22 | 0.154                         |
| 14  | 299  | 10.50 | 0.406 | 259  | 1.21          | 0.194       | 0.22 | 0.149                         |
| 14  | 300  | 2.54  | 0.327 | 77.6 | 2.69          | 0.246       | 0.22 | 0.0881                        |
| 14  | 301  | 2.54  | 0.313 | 81.3 | 2.69          | 0.259       | 0.22 | 0.0977                        |
| 14  | 302  | 2.54  | 0.400 | 63.5 | 2.69          | 0.197       | 0.22 | 0.0560                        |
| 14  | 303  | 2.54  | 0.440 | 57.7 | 2.69          | 0.178       | 0.22 | 0.0450                        |
| 14  | 304  | 2.54  | 0.305 | 83.3 | 2.69          | 0.266       | 0.22 | 0.1032                        |
| 14  | 305  | 2.54  | 0.209 | 122  | 7.90          | 0.404       | 0.22 | 0.0595                        |
| 14  | 306  | 2.54  | 0.223 | 114  | 7.90          | 0.376       | 0.22 | 0.0513                        |
| 14  | 307  | 2.54  | 0.247 | 103  | 7.90          | 0.336       | 0.22 | 0.0407                        |
| 14  | 308  | 2.54  | 0.279 | 91.0 | 7.90          | 0.293       | 0.22 | 0.0309                        |
| 14  | 309  | 2.54  | 0.313 | 81.2 | 7.90          | 0.259       | 0.22 | 0.0239                        |
| 14  | 310  | 2.54  | 0.223 | 114  | 7.90          | 0.376       | 0.22 | 0.0513                        |
| 14  | 311  | 10.50 | 0.332 | 317  | 2.42          | 0.243       | 0.22 | 0.0345                        |
| 14  | 312  | 10.50 | 0.336 | 313  | 2.42          | 0.239       | 0.22 | 0.0335                        |

| _ | No. | Obs. | D     | k     | D/k  | $ ho_o/ ho$ | $U_{crit}(z_{obs}$ | ) Zobs | $\boldsymbol{\Theta}_{Ucrit}$ |
|---|-----|------|-------|-------|------|-------------|--------------------|--------|-------------------------------|
|   | 14  | 313  | 10.50 | 0.381 | 275  | 2.42        | 0.208              | 0.22   | 0.0253                        |
|   | 14  | 314  | 10.50 | 0.361 | 291  | 2.42        | 0.221              | 0.22   | 0.0286                        |
|   | 14  | 315  | 10.50 | 0.312 | 337  | 2.42        | 0.260              | 0.22   | 0.0396                        |
|   | 14  | 316  | 2.54  | 1.93  | 13.2 | 2.69        | 0.470              | 0.22   | 0.288                         |
|   | 14  | 317  | 2.54  | 1.93  | 13.2 | 2.69        | 0.516              | 0.22   | 0.347                         |
|   | 14  | 318  | 2.54  | 1.93  | 13.2 | 2.69        | 0.425              | 0.22   | 0.236                         |
|   | 14  | 319  | 2.54  | 1.93  | 13.2 | 2.69        | 0.458              | 0.22   | 0.274                         |
|   | 14  | 320  | 2.54  | 1.93  | 13.2 | 7.90        | 0.801              | 0.22   | 0.204                         |
|   | 14  | 321  | 10.50 | 1.93  | 54.4 | 1.21        | 0.226              | 0.22   | 0.197                         |
|   | 14  | 322  | 10.50 | 1.93  | 54.4 | 1.21        | 0.229              | 0.22   | 0.202                         |
|   | 14  | 323  | 10.50 | 1.93  | 54.4 | 1.21        | 0.228              | 0.22   | 0.200                         |
|   | 14  | 324  | 10.50 | 1.93  | 54.4 | 1.21        | 0.234              | 0.22   | 0.212                         |
|   | 14  | 325  | 10.30 | 1.93  | 53.4 | 4.52        | 0.710              | 0.22   | 0.117                         |
|   | 14  | 326  | 10.30 | 1.93  | 53.4 | 4.52        | 0.711              | 0.22   | 0.117                         |
|   | 14  | 327  | 10.30 | 1.93  | 53.4 | 4.52        | 0.803              | 0.22   | 0.149                         |
|   | 14  | 328  | 10.30 | 1.93  | 53.4 | 4.52        | 0.767              | 0.22   | 0.136                         |
|   | 14  | 329  | 10.50 | 2.96  | 35.5 | 2.42        | 0.614              | 0.22   | 0.211                         |
|   | 14  | 330  | 10.50 | 2.96  | 35.5 | 2.42        | 0.569              | 0.22   | 0.181                         |
|   | 14  | 331  | 10.50 | 2.96  | 35.5 | 2.42        | 0.552              | 0.22   | 0.171                         |
|   | 14  | 332  | 10.50 | 2.96  | 35.5 | 2.42        | 0.565              | 0.22   | 0.179                         |
|   | 14  | 333  | 10.50 | 2.96  | 35.5 | 2.42        | 0.553              | 0.22   | 0.172                         |
|   | 14  | 334  | 10.50 | 2.96  | 35.5 | 1.21        | 0.229              | 0.22   | 0.200                         |
|   | 14  | 335  | 10.50 | 2.96  | 35.5 | 1.21        | 0.253              | 0.22   | 0.243                         |
|   | 14  | 336  | 10.50 | 2.96  | 35.5 | 1.21        | 0.260              | 0.22   | 0.256                         |
|   | 14  | 337  | 10.50 | 2.96  | 35.5 | 1.21        | 0.225              | 0.22   | 0.193                         |
|   | 14  | 338  | 2.54  | 2.96  | 8.6  | 2.69        | 0.571              | 0.22   | 0.406                         |
|   | 14  | 339  | 2.54  | 2.96  | 8.6  | 2.69        | 0.531              | 0.22   | 0.352                         |
|   | 14  | 340  | 2.54  | 2.96  | 8.6  | 2.69        | 0.497              | 0.22   | 0.307                         |
|   | 14  | 341  | 2.54  | 2.96  | 8.6  | 2.69        | 0.496              | 0.22   | 0.306                         |
|   | 14  | 342  | 10.62 | 3.56  | 29.8 | 1.21        | 0.241              | 0.22   | 0.218                         |
|   | 14  | 343  | 10.62 | 3.56  | 29.8 | 1.21        | 0.236              | 0.22   | 0.208                         |
|   | 14  | 344  | 10.62 | 3.56  | 29.8 | 1.21        | 0.220              | 0.22   | 0.181                         |
|   | 14  | 345  | 10.62 | 3.56  | 29.8 | 1.21        | 0.220              | 0.22   | 0.182                         |
|   | 14  | 346  | 10.62 | 3.56  | 29.8 | 1.21        | 0.215              | 0.22   | 0.174                         |
|   | 14  | 347  | 10.62 | 3.56  | 29.8 | 2.42        | 0.472              | 0.22   | 0.123                         |
|   | 14  | 348  | 10.62 | 3.56  | 29.8 | 2.42        | 0.490              | 0.22   | 0.133                         |
|   | 14  | 349  | 10.62 | 3.56  | 29.8 | 2.42        | 0.435              | 0.22   | 0.105                         |
|   | 14  | 350  | 10.62 | 3.56  | 29.8 | 2.42        | 0.444              | 0.22   | 0.109                         |
|   | 14  | 351  | 10.62 | 3.56  | 29.8 | 2.42        | 0.440              | 0.22   | 0.107                         |
|   | 14  | 352  | 10.42 | 3.56  | 29.3 | 4.52        | 0.760              | 0.22   | 0.131                         |
|   | 14  | 353  | 10.42 | 3.56  | 29.3 | 4.52        | 0.623              | 0.22   | 0.0877                        |

 Table B3. Laboratory observations of initiation of motion of cylinders on smooth and rough beds (cont.)

| _ | No. | Obs. | D     | k    | D/k  | $ ho_o/ ho$ | Ucrit(Zobs | ) Zobs | $\boldsymbol{\Theta}_{Ucrit}$ |
|---|-----|------|-------|------|------|-------------|------------|--------|-------------------------------|
|   | 14  | 354  | 2.66  | 3.56 | 7.47 | 2.69        | 0.578      | 0.22   | 0.396                         |
|   | 14  | 355  | 2.66  | 3.56 | 7.47 | 2.69        | 0.587      | 0.22   | 0.408                         |
|   | 14  | 356  | 2.66  | 3.56 | 7.47 | 2.69        | 0.390      | 0.22   | 0.181                         |
|   | 14  | 357  | 2.66  | 3.56 | 7.47 | 2.69        | 0.563      | 0.22   | 0.376                         |
|   | 14  | 358  | 2.66  | 3.56 | 7.47 | 2.69        | 0.567      | 0.22   | 0.382                         |
|   | 14  | 359  | 10.62 | 2.53 | 42.0 | 1.21        | 0.241      | 0.22   | 0.220                         |
|   | 14  | 360  | 10.62 | 2.53 | 42.0 | 1.21        | 0.204      | 0.22   | 0.158                         |
|   | 14  | 361  | 10.62 | 2.53 | 42.0 | 1.21        | 0.236      | 0.22   | 0.212                         |
|   | 14  | 362  | 10.62 | 2.53 | 42.0 | 1.21        | 0.212      | 0.22   | 0.171                         |
|   | 14  | 363  | 10.62 | 2.53 | 42.0 | 1.21        | 0.220      | 0.22   | 0.183                         |
|   | 14  | 364  | 10.62 | 2.53 | 42.0 | 2.42        | 0.496      | 0.22   | 0.137                         |
|   | 14  | 365  | 10.62 | 2.53 | 42.0 | 2.42        | 0.461      | 0.22   | 0.119                         |
|   | 14  | 366  | 10.62 | 2.53 | 42.0 | 2.42        | 0.516      | 0.22   | 0.149                         |
|   | 14  | 367  | 10.62 | 2.53 | 42.0 | 2.42        | 0.528      | 0.22   | 0.156                         |
|   | 14  | 368  | 10.62 | 2.53 | 42.0 | 2.42        | 0.555      | 0.22   | 0.172                         |
|   | 14  | 369  | 10.62 | 2.53 | 42.0 | 2.42        | 0.433      | 0.22   | 0.105                         |
|   | 14  | 370  | 2.66  | 2.53 | 10.5 | 2.69        | 0.394      | 0.22   | 0.191                         |
|   | 14  | 371  | 2.66  | 2.53 | 10.5 | 2.69        | 0.399      | 0.22   | 0.196                         |
|   | 14  | 372  | 2.66  | 2.53 | 10.5 | 2.69        | 0.411      | 0.22   | 0.208                         |
|   | 14  | 373  | 2.66  | 2.53 | 10.5 | 2.69        | 0.405      | 0.22   | 0.202                         |
|   | 14  | 374  | 2.66  | 2.53 | 10.5 | 2.69        | 0.419      | 0.22   | 0.216                         |
|   | 14  | 375  | 10.42 | 2.53 | 41.2 | 4.52        | 0.683      | 0.22   | 0.107                         |
|   | 14  | 376  | 10.42 | 2.53 | 41.2 | 4.52        | 0.763      | 0.22   | 0.133                         |
|   | 14  | 377  | 10.42 | 2.53 | 41.2 | 4.52        | 0.677      | 0.22   | 0.105                         |
|   | 14  | 378  | 10.42 | 2.53 | 41.2 | 4.52        | 0.903      | 0.22   | 0.186                         |
|   | 14  | 379  | 10.42 | 2.53 | 41.2 | 4.52        | 0.674      | 0.22   | 0.104                         |
|   | 14  | 380  | 10.42 | 2.53 | 41.2 | 4.52        | 0.702      | 0.22   | 0.113                         |
|   | 14  | 381  | 2.66  | 2.53 | 10.5 | 7.90        | 0.737      | 0.22   | 0.163                         |
|   | 14  | 382  | 10.42 | 1.50 | 69.5 | 4.52        | 0.525      | 0.22   | 0.0662                        |
|   | 14  | 383  | 10.42 | 1.50 | 69.5 | 4.52        | 0.488      | 0.22   | 0.0570                        |
|   | 14  | 384  | 10.42 | 1.50 | 69.5 | 4.52        | 0.479      | 0.22   | 0.0550                        |
|   | 14  | 385  | 10.42 | 1.50 | 69.5 | 4.52        | 0.482      | 0.22   | 0.0556                        |
|   | 14  | 386  | 10.42 | 1.50 | 69.5 | 4.52        | 0.648      | 0.22   | 0.101                         |
|   | 14  | 387  | 10.42 | 1.50 | 69.5 | 4.52        | 0.427      | 0.22   | 0.0437                        |
|   | 14  | 388  | 10.42 | 1.50 | 69.5 | 4.52        | 0.536      | 0.22   | 0.0690                        |
|   | 14  | 389  | 10.62 | 1.50 | 70.8 | 1.21        | 0.211      | 0.22   | 0.175                         |
|   | 14  | 390  | 10.62 | 1.50 | 70.8 | 1.21        | 0.203      | 0.22   | 0.160                         |
|   | 14  | 391  | 10.62 | 1.50 | 70.8 | 1.21        | 0.200      | 0.22   | 0.157                         |
|   | 14  | 392  | 10.62 | 1.50 | 70.8 | 1.21        | 0.196      | 0.22   | 0.150                         |
|   | 14  | 393  | 10.62 | 1.50 | 70.8 | 1.21        | 0.187      | 0.22   | 0.136                         |
|   | 14  | 394  | 2.66  | 1.50 | 17.7 | 2.69        | 0.464      | 0.22   | 0.312                         |

 Table B3. Laboratory observations of initiation of motion of cylinders on smooth and rough beds (cont.)

| _ | No. | Obs. | D     | k    | D/k  | $ ho_o/ ho$ | Ucrit(Zobs | ) Zobs | $\boldsymbol{\Theta}_{Ucrit}$ | _ |
|---|-----|------|-------|------|------|-------------|------------|--------|-------------------------------|---|
|   | 14  | 395  | 2.66  | 1.50 | 17.7 | 2.69        | 0.432      | 0.22   | 0.269                         |   |
|   | 14  | 396  | 2.66  | 1.50 | 17.7 | 2.69        | 0.465      | 0.22   | 0.313                         |   |
|   | 14  | 397  | 2.66  | 1.50 | 17.7 | 2.69        | 0.371      | 0.22   | 0.197                         |   |
|   | 14  | 398  | 2.66  | 1.50 | 17.7 | 2.69        | 0.414      | 0.22   | 0.246                         |   |
|   | 14  | 399  | 2.66  | 1.50 | 17.7 | 2.69        | 0.353      | 0.22   | 0.178                         |   |
|   | 14  | 400  | 2.66  | 1.50 | 17.7 | 2.69        | 0.322      | 0.22   | 0.148                         |   |
|   | 14  | 401  | 10.62 | 1.50 | 70.8 | 2.42        | 0.444      | 0.22   | 0.115                         |   |
|   | 14  | 402  | 10.62 | 1.50 | 70.8 | 2.42        | 0.405      | 0.22   | 0.0959                        |   |
|   | 14  | 403  | 10.62 | 1.50 | 70.8 | 2.42        | 0.422      | 0.22   | 0.104                         |   |
|   | 14  | 404  | 10.62 | 1.50 | 70.8 | 2.42        | 0.435      | 0.22   | 0.110                         |   |
|   | 14  | 405  | 10.62 | 1.50 | 70.8 | 2.42        | 0.497      | 0.22   | 0.145                         |   |
|   | 14  | 406  | 10.62 | 1.50 | 70.8 | 2.42        | 0.437      | 0.22   | 0.112                         |   |

 Table B3. Laboratory observations of initiation of motion of cylinders on smooth and rough beds (cont.)

| No.   | Obs.    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-10  | 1-182   | $k = 2.5 d_{bed} = 2.5 d_{50}$ of bed grain distribution following Garcia (2008); $\rho_o = 2700 \text{ kg/m}^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-11  | 1-210   | For gravel and spheres under steady currents, information regarding flow conditions at initiation of motion were presented in source articles in terms of $\theta_{crit}$ , i.e., the Shields parameter characterizing the stress acting on the far-field bed at the time of initiation of                                                                                                                                                                                                                                                                                                      |
|       |         | motion of the clast or sphere of interest. $U_{crit}$ at a height $z = D$ above the bed was then<br>estimated here based on a log-profile utilizing Eqns. (1), (13) and (14) in the report text<br>with $u_* = (\theta_{crit}/\rho)^{1/2}$ . Data included here are limited to $D > 0.5$ cm and $D/d_{hed} \ge 1$ .                                                                                                                                                                                                                                                                             |
| 1-4   | 1-132   | Field observations of natural gravel under steady flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1     | 1-23    | Source: Hammond et al. (1984) from Komar (1996) for $D$ , $d_{50}$ , $\theta_{crit}$ (Fig.4.16, p.150).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2     | 24-72   | Source: Carling (1983) from Komar (1996) for $D$ , $d_{50}$ , $\theta_{crit}$ (Fig.4.16, p.150).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3     | 73-116  | Source: Milhous (1973) from Komar (1996) for <i>D</i> , $d_{50}$ , $\theta_{crit}$ (Fig.4.16, p.150).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4     | 117-132 | Source: Mao & Surian (2010) [MS10]. $D/d_{50}$ , $\theta_{crit}$ (Fig.7, p.333). $d_{50}$ here estimated as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |         | the mean of the minimum and maximum $d_{50}$ of all transported grains as reported on p.333 of MS10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5-10  | 1-132   | Laboratory observations of natural gravel under steady flow; here limited to $D > 0.5$ cm and $D/d_{50} \ge 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5     | 133-138 | Source: Kuhnle (1993). <i>d</i> <sub>50</sub> , (Fig.5, p.1409); <i>D</i> / <i>d</i> <sub>50</sub> , <i>θ</i> <sub>crit</sub> (Fig.6, p.1410).                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6     | 139-159 | Source: Patel & Ranga Raju (1999). $d_{50}$ , (Table 1, p.41); D, $\theta_{crit}$ (Table 4, p.46).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7     | 160-162 | Source: Wilcock (1987) from Wilcock & Southard (1988) [WS88]. $d_{50}$ (Table 1, p.1138); <i>D</i> , $\theta_{crit}$ (Table 5, p.1144).                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8     | 163-165 | Source: Day (1980) from WS88. $d_{50}$ (Table 1, p.1138); $D$ , $\theta_{crit}$ (Table 5, p.1144).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9     | 166-179 | Source: Misri et al. (1984) from WS88. $d_{50}$ (Table 1, p.1138); $D$ , $\theta_{crit}$ (Table 5, p.1145).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10    | 180-182 | Source: Dhamotharan et al. (1980) from WS88. $d_{50}$ (Table 1, p.1138); $D$ , $\theta_{crit}$ (Table 5, p.1145).                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11    | 183-210 | Source: James (1993). $D$ , $\rho_0$ (Table 2, p.6); $D/d_{bed}$ , $\theta_{crit}$ (Fig.4, p.7). $k = 0.75 d_{bed}$ for bed of closely packed spheres, following Schlichting & Gersten (2000) [SG00] (Fig.17.10, case No.5, p.531). Note that in SG00 Fig.17.10, they define the Nikuradse roughness as $k_s = 25 z_0$ under fully rough turbulence, while we define the Nikuradse roughness to be $k = 30 z_0$ . So their finding of $k_s = (0.257/0.41) d_{bed}$ for closely packed spheres translates here to $k = (30/25) (0.257/0.41) d_{bed}$ .                                           |
| 12-14 | 211-315 | For these smooth beds cases, $k = 30z_0$ , where $z_0 = \nu/(9u_*)$ . For steady flow, $u_*$ is determined by fitting observed velocity at height $z_{obs}$ to $U(z_{obs}) = (1/\kappa) \log(z_{obs}/z_0)$ .<br>$U(z=D)$ is then extrapolated from $U(z_{obs})$ assuming a log profile. For waves, $u_* = (0.5 f_w)^{1/2} U_w$ , where the wave friction factor, $f_w$ is calculated iteratively following Pedocchi & Garcia (2009) (see text Eq. (18)). For waves it is assumed that $U(z=D) = U_w = U(z_{obs})$ .                                                                             |
| 12    | 211-278 | Source: Williams (2001). $D$ , $\rho_0$ , $U_{w\_crit}$ , $T$ (pp.90-97); $z_{obs} = 0.4$ to 1.0 cm above top of cylinder (p.36). Each $U_{w\_crit}$ is calculated as the average of + and – directed orbital velocity amplitude for two consecutive experimental runs with the lower $U_w$ producing no cylinder movement and the higher $U_w$ producing cylinder movement. Run sequences were included only for cases for which ( onshore velocity + offshore velocity )/2 for the cylinder movement case was greater than ( onshore velocity + offshore velocity )/2 for the no motion case. |
| 13    | 279-286 | Source: Davis et al. (1999, 2007) [D99, D07], $z_{obs} = 0.3 \text{ m}$ (D99 Fig.3, p.944); D. $\rho_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Table B4.** Notes regarding sources of individual parameters in Tables B1 to B3. See Table B1 to B3 and report text for additional definitions of variables.

13 279-286 Source: Davis et al. (1999, 2007) [D99, D07].  $z_{obs} = 0.3$  m (D99 Fig.3, p.944); D,  $\rho_0$  (D99 Fig 6, p.947; D07 p.1436); U for the lowest velocities with cylinder movement

**Table B4.** Notes regarding sources of individual parameters in Table B1 to B3 (cont.)

| No. | Obs.    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |         | (D99 Fig 6, p.947; D07 p.1436). $U_{crit}$ is taken to be the average of two consecutive experimental runs with the lower U producing no cylinder movement and the higher U producing cylinder movement. The U intervals tested for determining $U_{crit}$ for PVC cylinders were 4 cm/s apart (D99 p.946; D07 p.1436), whereas the U intervals tested for determining $U_{crit}$ for steel cylinders were 2 cm/s apart (D99 Fig 6, p.947; D07 p.1436). |
| 14  | 287-406 | Source: Brandt & Rennie (2013) [BR13], Rennie et al. (2017) [R17]. U <sub>crib</sub> D, ρ <sub>o</sub> (BR13                                                                                                                                                                                                                                                                                                                                            |
|     |         | Table 2, p.5); $z_{obs}$ (R17 p.285). Note that the $U_{crit}$ values in Table 2 of BR13 are averages of several runs for each case. The $U_{crit}$ values presented here in Table B3 are the original velocity data for the individual runs as compiled before averaging (provided by S. Rennie via pers. comm.).                                                                                                                                      |
| 14  | 316-381 | k for smooth cylinders on carpet (Obs. 316-342) was set equal to one half the measured heights of uncompressed carpet fibers because the carpet was observed to compress substantially under the test cylinders (R17 p.287). For sand-roughened cylinders on carpet, k was set to one half the fiber height plus the grain size of the sand glued onto the cylinders ( $d_{12} = 0.6$ mm) (R17 p.287).                                                  |
| 14  | 382-406 | For cylinders ( $a_{coat}$ = 0.0 min) (RT / p.287).<br>For cylinders roughened with a coating of sand of diameter $d_{coat}$ , but placed on a smooth bed, a contribution of $k = 2.5 d_{coat}$ was utilized in the ratio $D/k$ , but the far field k relevant to log-layer structure did not include $d_{coat}$ .                                                                                                                                      |
## Appendix C. List of Scientific/Technical Publications

1. Articles in peer-reviewed journals and book chapters:

Rennie, S.E., Brandt, A. & Friedrichs, C.T. 2017. Initiation of motion and scour burial of objects underwater. Ocean Engineering 131: 282-294.

Friedrichs, C.T., Rennie, S.E. & Brandt, A. 2016. Self-burial of objects on sandy beds by scour: A synthesis of observations. In: Harris, J.M., Whitehouse, R.J.S. & Moxon, S. (eds.), Scour and erosion. CRC Press, 179-189.

2. Professional presentations: (All downloadable at <a href="http://www.vims.edu/chsd/">http://www.vims.edu/chsd/</a>)

Friedrichs, C.T., Rennie, S.E. & Brandt, A. 2017. Simple parameterized models for predicting mobility, burial, and re-exposure of underwater munitions. SERDP and ESTCP Symposium, Washington, DC, 28-30 November.

Friedrichs, C.T., Rennie, S.E. & Brandt, A. 2016. Self-burial of objects on sandy beds by scour: A synthesis of observations. 8th International Conference on Scour and Erosion, Oxford, UK. 12-15 September.

Friedrichs, C.T. 2015. Simple parameterized models for predicting mobility, burial, and reexposure of underwater munitions. Workshop on Burial and Mobility Modeling of Munitions in the Underwater Environment, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 8 December.

Friedrichs, C.T. 2015. Factors affecting munitions mobility underwater. Strategic Environmental Research and Development Program/Environmental Security Technology Certification Program (SERDP/ESTCP) Webinar Series, 7 May.

Friedrichs, C.T. 2014. Simple parameterized models for predicting mobility, burial, and reexposure of underwater munitions. In-Progress Review Meeting for the Munitions Response Program Area, The Potomac Institute for Policy Studies, Alexandria, VA, 21 May.

Friedrichs, C.T. 2013. Simple parameterized models for predicting mobility, burial, and reexposure of underwater munitions. In-Progress Review Meeting for the Munitions Response Program Area, The Potomac Institute for Policy Studies, Alexandria, VA, 12 February.