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CHAPTER 1: PROJECT OVERVIEW

Eutrophication in Chesapeake Bay

Eutrophication is a major concern for coastal systems and has been attributed to 

nutrient pollution. Excess nutrients, primarily nitrogen (N) and phosphorus (P), stimulate 

large algal blooms during spring and summer leading to a plethora of problems such as 

anoxia, reduced water clarity, and die off of marine organisms (e.g. Kemp et al. 2005; 

Diaz and Rosenberg 2008). Eutrophication has been particularly troublesome in 

Chesapeake Bay, the largest estuary in the United States (Kemp et al. 2005). A new 

regulation, the Chesapeake Bay Total Maximum Daily Loads (TMDL), is an attempt to 

coordinate all of the states included in the Bay's watershed to decrease the amount of 

nutrients that enters the Bay (CB TMDL 2010). Nutrients enter the Bay from both non­

point and point sources. Non-point sources, such as land run-off and atmospheric 

deposition, are notoriously difficult to regulate. In contrast, point sources that originate 

from specific locations, such as wastewater treatment plant (WWTPs) or discharge from 

an industrial plant can be more easily quantified and controlled.

Effluent Nitrogen

Wastewater treatment plants contribute an estimated 20% of the total nutrient load 

to Chesapeake Bay (Chesapeake Bay Foundation) and, with the new regulation imposed 

by the Chesapeake Bay TMDL, WWTPs will be required to reduce their N load down to 

approximately 3 mg N L' 1 to 8  mg N L' 1 (Chesapeake Bay Program 2006). Effluent from 

WWTPs includes both inorganic N, composed of nitrate (NO3 '), nitrite (NCh’X and 

ammonium (NH^), and organic N. Wastewater treatment plants are well equipped to



remove dissolved inorganic nitrogen (DIN) using biological nutrient removal (BNR), 

which can remove up to 95% of DIN. The BNR system is made up of a series of 

biochemical reactions with microbial communities and conditions that result in a change 

in the oxidation state of the N, eventually leading to its removal in the form of N2 gas.

The first step in this process is nitrification, wherein N H / is oxidized to NO2’ and then 

NO3 ', under aerobic conditions. During the second step, denitrifying bacteria reduce NO3 ' 

to N2 O or N2 gas under anoxic conditions (Metcalf and Eddy 2003). Dissolved organic N 

(DON) is less efficiently removed with this system, resulting in approximately 80% of 

total effluent N being made up of DON (Pehlivanoglu and Sedlak 2004, 2006). This large 

percentage of effluent DON, termed effluent organic nitrogen (EON), has created a great 

challenge to WWTPs when it comes to its removal. Dissolved organic N was once 

considered mostly refractory (i.e. cannot be used by microorganisms) and with this view 

it would be cost effective for WWTPs to exclude EON from the N release limit, under the 

assumption that the DON would not lead to eutrophication if released into the 

environment. A number of recent studies, however, have provided evidence that a 

substantial fraction of EON can be used by microorganisms and would contribute to 

eutrophication (Urgun-Demirtas et al. 2008; Sattayatewa et al. 2009; Bronk et al. 2010; 

Filippino et al. 2011). As a result, the study of EON has become important so that the 

data are available to inform the development of EON removal technologies in the future.

Bioavailability o f  Dissolved Organic Nitrogen

Within the past twenty years our knowledge of the bioavailability of DON has 

increased dramatically (reviewed in Bronk 2002; Aluwihare and Meador 2008). Riverine 

DON was once thought to be refractory due to its conservative mixing behavior in
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estuarine systems (Thurman 1985). Regions that were thought to be N limited frequently 

had high DON concentrations, resulting in the view that DON was refractory. One issue 

in studying DON is that measured bulk changes in the pool is often impossible because 

the concentration of DON is so high and the labile fractions, such as urea or amino acids, 

are small fractions of the total. As a result it has been difficult to measure changes in 

DON concentration in a variety of systems (Bronk et al. 2007). More recently, however, 

bioassays in some systems have shown that 2 to 70 % of DON originating from natural 

and anthropogenic sources can be taken up in short-term (days) bioassays (Seitzinger and 

Sanders 1997; Seitzinger et a l 2002; Stepanauskas et al. 2002). This work has shown 

that the bioavailability of DON can be significantly influenced by its origin. For example, 

DON derived from urban and agriculture watersheds, has demonstrated to be more 

bioavailable than DON derived from wetland watersheds (Seitzinger et al. 2002). In 

another study, Wiegner et al. (2006) concluded that the bioavailability of DON is 

dependent on both the microbial community present and the chemical composition of 

DON. Another factor that affects the bioavailability of DON is the presence of other N 

sources, such as DIN (Perakis and Hedin 2002).

Determining the bioavailability of DON is challenging because so little is known 

about the chemical composition of the DON pool (Bronk 2002). Our biggest barrier in 

knowing more about the DON pool is attributed to analytical constraints. For example, 

relatively few compounds in the DON pool have been identified. Those that have been 

identified and routinely measured, such as urea, combined and free dissolved amino 

acids, humic and fulvic substances and nucleic acids, frequently make up a relatively 

small fraction of the total DON pool (Bronk 2002).
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Chemical Composition o f  Effluent Organic Nitrogen

Analogous to the analytical constraints surrounding the DON pool, the majority of 

the chemical composition of EON is also unknown. Compounds that can be measured 

such as amino acids and a few consumer products have been identified but are small 

fractions of the total; approximately 15% of EON is amino acids with only 1% 

identifiable as consumer products like caffeine and drugs (Pehlivanoglu and Sedlack 

2004, 2006). Since little is known about the chemical composition of the EON pool most 

studies of EON bioavailability look at changes in bulk DON concentrations in bioassay 

experiments.

Bioavailability o f  Effluent Organic Nitrogen

Similar to DON, results from bioassay experiments showed a range in EON 

bioavailability. The bioavailability of EON in tributaries of the lower Chesapeake Bay 

ranged from 31-96% (Filippino et al. 2011). Filippino et al. (2011) demonstrated that 

EON was used as a source of N that helped fuel the growth of microbial communities. 

Although the concentration of DIN was below detection limits after the second day of the 

experiment yet, there was still growth up to the seventh day, likely a function of DON 

utilization. The reason for observing a large range in bioavailability may be attributed to 

different microbial communities found at different salinities along the Elizabeth River 

(Filippino et al. 2011). In another bioassay experiment, effluent was added to four natural 

water samples collected along the salinity gradient of the James River, Virginia. In this 

study a narrower range in EON percent bioavailability, from 2- 23%, was observed 

(Bronk et al. 2010). Effluent from two WWTPs was used and uptake of both effluents 

was greater in incubations using waters from low salinity waters (0 - 1 0 ) than from higher
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salinities (22-30). These results suggest that the microbial community determines how 

much EON is consumed.

Uptake o f Dissolved Organic Nitrogen by Microorganisms

Microorganisms are capable of taking up DON of different sizes. Low molecular 

weight (LMW) DON such as amino acids and urea can be taken up through active 

transport or facilitated diffusion (Mulholland and Lomas 2008). High molecular weight 

(HMW) compounds such as proteins, polypeptides and humic acids can be broken down 

using extracellular enzymes (Bronk et al. 2007). Many species of bacteria and 

phytoplankton have been shown to produce a variety of extracellular enzymes (Berges 

and Mulholland 2008). For example, amino acid oxidases can cleave off amines from 

organic molecules releasing peroxide, NFL^ and a-keto acid or aldehydes during the 

process (Palenik and Morel 1990). Subsequently, microorganism can take up the free 

amino acids and NH^. Other types of extracellular enzymes can hydrolyze peptide bonds 

of proteins. For example, leucine amino-peptidase breaks the terminal N of non-polar 

amino acids, such as leucine (Landry et al. 2009). In order for these types of biological 

processes to occur it is important that the enzyme have access to the active site of the 

molecule.

Some organic molecules, however, appear to be resistant to microbial decay and 

are referred to as refractory. Defining a compound as labile or refractory is difficult 

because it depends on the time scale and microbial community under consideration. A 

compound may not be taken up by one microbial community but rapidly taken up by 

cells in an adjacent community. One reason that a compound may appear refractory is 

because the reactive sites, if present, are not physically accessible to microorganisms.
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Another hypothesis is that after an organic molecule has been partially degraded by 

microorganisms the molecule is chemically transformed, making it unrecognizable to 

enzymes (Ogawa et al. 2001). Barber (1968) suggested that perhaps some organic 

molecules have been completely stripped of their functional groups and can no longer be 

further broken down for energy requirement. Other factors that control reactivity include 

association to other organic compound or the mineral phase. For example, Ransom et al. 

(1998) observed that aggregates of living and nonliving organic matter act as glue that 

adheres to the sediments surfaces. The placement of the organic matter coagulate on the 

sediment might then be physically protected from enzyme attack (e.g. Ransom et al.

1998; Mayer 1999). Even if organic compounds can no longer be degraded biotically, 

abiotic processes may enhance their lability.

Photochemistry o f  Dissolved Organic Matter

One abiotic condition, exposure to sunlight, has been shown to significantly 

impact organic matter transformation, influencing the biogeochemical processes in 

surface water. Chromophores and phenolic compounds are highly reactive in the light 

causing them to transform and break down, leading to the degradation of dissolved 

organic matter (DOM) (Mopper and Kieber 2002). It has also been shown that the rate at 

which DOM compounds break down in sunlight occurs relatively quickly (1-2 days) 

(Buffam and McGlathery 2003; Bushaw-Newton and Moran 1999). A significant amount 

of research has looked at the phototransformation of DON, where concentrations of 

NH4+, dissolved primary amines (DPA) and NO2’ typically increase when exposed to 

sunlight (Koopmans and Bronk 2002; Wang et al. 2000; Grzybowski and Tranvik 2008). 

Not only has sunlight exposure been shown to increase the bioavailability of DON by
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producing DIN, it has also been shown to make DON more bioreactive. Tranvik et al. 

(2000) demonstrated that when DON was exposed to sunlight, DON uptake by bacteria 

increased.

Salinity Effects on Dissolved Organic Nitrogen

Another abiotic condition is a change in salinity, which can alter interactions 

between molecules and cause conformational changes within molecules (Bushaw et al. 

1996). One study that exposed humic substances to higher salinities resulted in an 

increase in NH4+ concentrations (See 2003). Humic substances are highly saturated with 

carboxylic acid and phenolic acid functional groups. When deprotonated, humic 

substances become weak bases that have a coloumbic attraction to cations such as NH4+ 

or positively charged amino acids. At higher salinities dissolved cations (i.e. calcium, 

sodium, magnesium) may have a higher affinity for the weak bases, causing the NH4+ or 

positively charged amino acids to dissociate from the humics. Ammonium can also 

absorb to the negatively charged binding sites of humic compounds at low salinities 

(Tipping 2002, Wang et al. 2001).

Thesis Objectives

The goal of this study was to quantify the role of abiotic conditions in breaking- 

down EON. The first objective of this study was to quantify the amount of LMW-N 

(NO2 ", NO3", NH4+ and DP A) that is released when EON is exposed to sunlight, increased 

salinity, changes in temperature and a combination of the three. Experiments were 

conducted using three effluents that were exposed to different methods of disinfection: no 

disinfection, UV disinfection and chlorine disinfection. Results for the different
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disinfected effluents were compared to determine whether disinfection influences how 

much EON decays after exposing it to abiotic conditions. The second objective was to 

determine rates of LMW-N production and EON decay rates when exposed to sunlight, 

and to determine how changes in salinity affect rates of production or decay of various N 

compounds. Two experiments were run to investigate these two separate objectives. 

Experiment 1 quantified the amount of LMW-N released when exposed to abiotic 

conditions. Experiment 2, which differed from Experiment 1 by incorporating more time 

points, was used to determine LMW-N production and EON decay rates when exposed to 

abiotic conditions.
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CHAPTER 2: ABIOTIC RELEASE OF LOW MOLECULAR WEIGHT 

NITROGEN FROM EFFLUENT ORGANIC NITROGEN

ABSTRACT

To help restore water quality in Chesapeake Bay, the Chesapeake Bay Total 

Maximum Daily Load (TMDL) is designed to ensure that each state in the Bay’s 

watershed only releases a certain amount of nutrients. Specific improvements address 

nutrient reduction in wastewater treatment plants (WWTPs) (CB TMDL 2010).Currently 

there are techniques to remove dissolved inorganic nitrogen (DIN) from effluent within a 

WWTP. Similar techniques do not yet exist for the dissolved organic nitrogen (DON) 

fraction, termed effluent organic nitrogen (EON). Within the past few years studies have 

tried to determine whether EON was refractory and thus would not contribute to 

eutrophication if released into the environment. In cases where EON is refractory, it 

could be excluded from N release limits applied to WWTPs. Most of the studies that have 

investigated the reactivity of EON have focused on the bioavailability of EON by 

performing bioassay experiments, and have concluded that some fraction of EON is 

bioavailable. Another important factor to consider is abiotic processes that may change 

and transform EON making it more bioavailable. The goal of the first part of this study 

was to quantify how EON was changed following exposure to sunlight, increases in 

salinity, temperature changes and a combination of all three. Three different effluent 

types (no disinfection, UV disinfected and chlorine disinfected effluent) were used to 

determine if any significant differences were observed in the amount of EON decay after 

exposing it to different abiotic conditions. Results indicated that -1.8 ± 0.2 pmol N L '1 

(8%) of the EON transformed into low molecular weight N (LMW-N) compounds after
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exposing the effluent to 9 hours of sunlight and increasing the salinity from 0 to 33. Both 

UV and chlorine disinfection were shown to break down a portion (-9%) of EON during 

the disinfection process, thus there was less EON decay after abiotic exposure compared 

with the un-disinfected effluent. The second part of this study examined EON decay and 

low molecular weight N (LMW-N) production rates when EON was exposed to sunlight 

and a combination of sunlight and high salinity. Results suggest that the photoreactivity 

of EON was as high as observed for humic compounds, known to be highly reactive in 

the light. Salinity stimulated photobleaching of chromophoric dissolved organic matter 

(CDOM) and decay of EON. The overall results from this study indicate that abiotic 

factors, such as sunlight exposure and increases in salinity, cause a small percentage of 

EON to break down and transform into labile forms of N.
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INTRODUCTION

Chesapeake Bay has experienced eutrophication problems for nearly half a 

century (Kemp et al. 2005). Eutrophication is defined as excess nutrients, particularly 

nitrogen (N) and phosphorus (P), entering a body of water that stimulates algal growth. 

High rates of primary production can reduce water quality and have negative impacts on 

commercial and recreational fish species (Diaz and Rosenberg 2008; Kemp et al. 2005). 

Despite 25 years of nutrient reduction efforts from government and private sectors there 

have been insufficient improvements to the Bay. A new stringent regulation established 

by the Environmental Protection Agency (EPA), the Chesapeake Bay Total Maximum 

Daily Load (TMDL), requires a 25% reduction in N and a 24% reduction in P. It is 

designed to ensure nutrient control measures are sufficient to fully restore the Bay by 

2025 (CB TMDL 2010). These nutrient limits include both point and non point sources.

In this study the point source of interest, wastewater treatment plants (WWTPs), 

contributes an approximate 20% to the nutrients to Chesapeake Bay (Chesapeake Bay 

Foundation). For most WWTPs a N load reduction down to approximately 3 to 8  mg N L' 

1 is necessary to meet the new requirements (Chesapeake Bay Program 2006). The 

majority of WWTPs are well-equipped to remove dissolved inorganic N (DIN) through a 

biological nutrient removal (BNR) system. The BNR system efficiently removes most of 

the DIN, which is made up of nitrate (NO3 '), nitrite (NO2"), and ammonium (NH^), 

through a series of biochemical reactions that transform the DIN, eventually leading to its 

removal in the form of N2 gas (Metcalf and Eddy 2003). In contrast, dissolved organic N 

(DON) is less efficiently removed than DIN.
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Dissolved organic N in effluent, termed effluent organic nitrogen (EON), can 

represent a large fraction of N released from WWTPs, even as high as 98% (Bronk et al. 

2010). Removing EON efficiently is currently not feasible and would require WWTPs to 

develop new and costly technology. This may not be necessary, however, if EON is not 

bioavailable. Compounds that are refractory (i.e. cannot be used by organisms) may not 

contribute to eutrophication. If EON is comprised of refractory components these should 

not count towards the effluent N release limit, which would save WWTPs a significant 

amount of money. Multiple studies have previously determined that 23 to 96% of EON 

can be taken up by microorganisms on times scales of days, therefore, not all EON is 

refractory (Urgun-Demirtas et al. 2008; Sattayatewa et al. 2009; Bronk et al. 2010; 

Filippino et al. 2011).

Similar to DON in natural waters, the chemical composition of EON remains 

relatively unknown. Prior research has characterized a portion of the EON pool and 

determined that a small fraction (-15%) is made up of amino acids; another one percent 

comes from consumer products, such as ethylenediaminetetraacetic acid (EDTA), 

caffeine, and pharmaceuticals (Pehlivanoglu and Sedlak 2004, 2006). Additional data 

also suggest that EON is made up of humic substances and partially polymerized 

biological fragments (Pehlivanoglu and Sedlak 2004, 2006). Since such a large portion of 

the chemical composition of EON is unknown, it is challenging to predict its 

bioavailability.

Another complicating factor in determining the bioavailability of EON is that 

refractory compounds may change abiotically once they are released into the 

environment and become increasingly labile as they travel along the estuarine gradient.
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Organic compounds can be altered abiotically by both photochemistry and salinity. 

Photochemical processes stimulate organic matter transformation and can influence 

biogeochemical processes in surface waters. Phototransformation appears to be a major 

process in the degradation of dissolved organic matter (DOM) in surface waters, resulting 

in the loss of chromophores and phenolic compounds (Mopper and Kieber 2002). 

Phototransformation of DOM has also been shown to increase its bioavailability, 

increasing the rates of biomineralization as much as seven-fold (Obemosterer and Benner 

2004). Many studies in natural waters have observed increases in concentrations of NH4+, 

N 0 2‘ and dissolved primary amines (DPA) when DON was exposed to UV radiation 

(Bushaw et al. 1996; Wang et al. 2000; Bronk 2002).

Rates of photochemical breakdown of organic matter, particularly terrestrial 

derived humic and fulvic substances, have been studied in detail (Buffam and 

McGlathery 2003; Bushaw et al. 1996; Bushaw-Newton and Moran 1999). These 

compounds appear to degrade quickly (1-2 days) with sunlight exposure. Bushaw et al. 

(1996) calculated that terrestrially derived organic matter can contribute an additional 

20% of NH4+ to coastal ecosystems through photochemical processes. However, while 

several previous studies have focused on photochemical transformation of natural organic 

matter, the photochemical decay rate of organic matter derived from effluent has, to our 

knowledge, never been examined in detail.

Changes in salinity along the estuarine gradient are another abiotic factor that can 

influence the bioavailability of EON. Exposing organic matter to changes in salinity 

causes conformational changes within molecules, subsequently altering the interactions 

within and between molecules (Baalousha et al. 2006). See (2003) demonstrated that
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NH4+ was released from humic substances when exposed to higher salinities. This may 

occur because, at lower salinities, there are columbic attractions between positively 

charged NH4+ or amino groups and negatively charged functional groups (Tipping 2002). 

At higher salinities it is thought that dissolved cations (i.e. calcium, sodium, magnesium) 

have a higher affinity for the weak bases (i.e. unprotonated carboxylic and phenolic 

functional groups), causing NTL^ and positively charged amino acids to dissociate and be 

released into the water column (Tipping 2002; Wang et al. 2001). It has long been known 

that rates of reactions generally increase with increasing temperature (Engel and Reid 

2006), which could also affect how organic matter changes abiotically. Higher 

temperature increases the energy of the particles in the solution and subsequently 

increasing the collision of particles, thus the likelihood of a reaction to occur rises (Engle 

and Reid 2006).

One variable that can change EON and how it behaves when changing abiotic 

conditions in the environment is the disinfection method used in a WWTP. Disinfection 

is the final process used in WWTPs prior to releasing water to the environment and is 

used to kill bacteria and viruses associated with disease (US EPA F-99-064). The two 

main disinfection techniques used at WWTPs are chlorine disinfection and UV exposure. 

Most facilities use the chlorine disinfection method where chlorine gas, sodium or 

calcium hypochlorite is added to the effluent for 30 minutes, followed by the removal of 

the chlorine residuals with sodium sulfite. During this process, chlorine reacts and 

oxidizes and destroys cellular material (US EPA F-99-062). UV disinfection exposes the 

effluent to UV radiation from a mercury arc lamp with wavelengths that range from 250- 

270 nm, thereby penetrating and destroying the genetic material (DNA and RNA) of
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microorganisms. UV disinfection is less common than chlorine disinfection as mercury 

arc lamps require a substantial amount of energy and are thus only used in smaller 

treatment plants (US EPA F-99-064). In addition to the ability to destroy pathogens 

within effluent, UV and chlorine disinfection may also be a useful method for breaking 

down EON. A few studies have demonstrated that some disinfection processes, such as 

ozone and UV radiation, can remove high molecular weight compounds (Beschkov et al. 

1997; Wenzel et a l 1999).

Due to the limited ability to characterize the chemical nature of the EON pool, it 

has been challenging to determine its bioavailability. To date, only a handful of studies 

have conducted incubation experiments to try to answer this question (e.g. Urgun- 

Demirtas et al. 2008; Sattayatewa et al. 2009; Filippino et al. 2011). Typically these 

incubation experiments are set up by adding innocula (algae and bacteria) to bottles of 

effluent and then measuring a suite of nutrient species to determine what species have 

been utilized. The bioavailability of EON, however, cannot be determined solely by 

incubation experiments and measurement of EON uptake; abiotic factors that may affect 

EON in the environment must also be considered (Bronk et al. 2010). Exposing DON to 

changes in abiotic conditions has not only shown to increase concentrations of low 

molecular weight N (i.e. Bushaw et al. 1996), but it has also shown to increase the 

amount of DON that can be taken up by microorganisms (i.e. Tranvik et al. 2006). 

Therefore, the bioavailability of EON may be significantly underestimated. In addition, 

EON derived from effluent that has undergone different disinfection processes may 

behave differently under abiotic conditions, which could provide guidance about the 

capability of different disinfection methods to breakdown EON. This study evaluates how
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certain abiotic factors influence the production of labile N compounds and gives insight 

about how EON may be broken down in WWTPs.

OBJECTIVES

The primary objective of this study was to determine the extent to which exposure 

to selected abiotic variables affects EON once it is released from a WWTP. Two separate 

experiments were run in order to address this objective.

The aim of Experiment 1 was to quantify how UV exposure (sunlight), increasing 

salinity and different incubation temperatures alter EON through the release of low 

molecular weight N (LMW-N), defined as N H /, NO3", NO2’, and dissolved primary 

amines (DPA), by measuring concentrations over time. The objectives of Experiment 1 

were fourfold: 1) to determine the effect of sunlight on concentrations of LMW-N, 2) to 

determine the effect of increasing salinity on concentrations of LMW-N, 3) to determine 

whether sunlight and salinity have a synergistic affect on concentrations of LMW-N 

when combined, and 4) to determine whether the concentration changes listed above are 

affected by temperature. In addition, changes in concentrations of LMW-N were 

determined with effluent that had not been disinfected, effluent that had been disinfected 

by UV exposure and effluent that had been disinfected with chlorine to examine the 

effects of disinfection on N release from EON when exposed to variable abiotic 

conditions. We hypothesized that there would be significant abiotic release of LMW-N 

compounds from EON, which could contribute to eutrophication. We further predicted 

that pre-disinfected effluent would release more LMW-N compared to disinfected 

effluent under a range of abiotic conditions.

20



The aim of Experiment 2 was to determine the photochemical rate of release of 

LMW-N from EON at different salinities. The objectives of this experiment were 

threefold: 1) to determine the photo-production rates of LMW-N from EON, 2) to 

determine if changes in effluent concentration affect photo-production rates, and 3) to 

examine whether increases in salinity affect photo-production rates. We hypothesized 

that EON would have lower rates of photolysis than organic matter derived from 

terrestrial material (compared to literature values), that effluent concentration would not 

affect rates, and that changes in salinity would change photo-production rates.

METHODS

Experiment 1: Changes in the Concentration of LMW Nitrogen when EON was Exposed 

to Sunlight. Increasing Salinity, and Changes in Temperature

A five way nested factorial design was used to test the effect of selected variables 

on LMW-N concentrations. The variables examined were: 1) effluent disinfection type 

(pre and post UV disinfection and chlorine disinfection), 2) salinity (0, 17 and 33), 3) 

sunlight versus dark, 4) time duration (0, 4.5 and 9 hours), and 5) temperature (ambient at 

~30°C and cooled at ~18°C) (Table 1).

Effluent was collected in mid-August 2010, from a small biological nutrient

removal plant in Maryland, USA. The plant was chosen for its efficient removal of DIN,

thus producing effluent that is largely comprised of DON. The facility releases

approximately 18 million gallons of effluent per day into a small tributary of the Patuxent

River (EPA CWNS 2008). Since the facility uses UV exposure as a means of

disinfection, effluent samples were collected both pre and post UV disinfection and were

treated as described below in the laboratory at the Virginia Institute of Marine Science
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(VIMS). After collection, effluent samples were immediately transported to VIMS in 

coolers where they were filtered through a Whatman GF/F filter (0.7 pm) followed by a 

pre-rinsed (200 ml Bamstead water) Supor filter (0.2 pm) to remove microorganisms and 

particulates. Samples were then stored in a refrigerator (5°C) until used for the 

experiment.

Effluent Disinfection

For preparation of the three effluent types, the portion of the effluent collected 

pre-UV disinfection was split into two parts - one was untouched (not disinfected) and 

the other was disinfected with chlorine. Ten liters of the pre-UV disinfected effluent was 

treated with 1.05 mL of Chlorox bleach and mixed. After 10 minutes chlorine residuals, 

measured with a pool test kit, were approximately 2 ppm. After an additional 30 minutes 

0.06194 g of sodium sulfite was added to the effluent to remove total chlorine residuals. 

Chlorine residuals were measured again and were 0 ppm (Charles Bott provided the 

chlorination method, personal communication). The sample of effluent that had passed 

through the UV disinfection stage at the WWTP received no further treatment.

Experiment 1 was conducted over three days - one day (8/29, 8/31 and 9/1) for 

each effluent type (not disinfected, chlorine disinfected, UV disinfected). All three days 

were sunny and cloudless and experiments started ~ 0900 and ended ~1800. There were 

three different solutions (A, B and C) made for each effluent type to reflect the three 

salinities tested (0, 17, 33), described below.

22



Salinity Assay

To imitate salinity changes along the estuarine gradient, salinity treatments 

included 0, 17 and 33. Solution A, with salinity 0 had no salt additions. Solution B, with 

salinity 17, contained 138.87 g of sodium chloride (NaCl), 30.80 g magnesium sulfate 

(MgSC>4) and 0.72 g sodium bicarbonate (NaHCOs), all precombusted. Solution C, with 

salinity 33, contained 277.73 g NaCl, 61.60 g MgSC>4 and 1.45 g NaHC0 3  of 

precombusted salts. Salinity was measured using a refractometer.

Photochemical Assay

Aliquots (-160 mL) of each solution (A, B or C) were transferred into 12 quartz 

tubes and 12 high-density polyethylene (HDPE) bottles wrapped in aluminum foil to 

represent the light and dark treatments, respectively; each solution was run in triplicate 

for each time point. An aliquot (-160 mL) of water from each solution was then frozen 

for later analysis of nutrient concentrations for time 0. The light samples were placed in a 

water bath with flowing water under approximately 2 inches of water. The dark samples 

were placed underneath the light samples in the flow through water bath. Concentration 

changes in the light treatments were calculated by taking the average differences in 

concentration for all three replicates over the duration of the experiment (i.e. 9 hours) for 

the samples at light/salinity 0 .

Temperature Baths

Two water baths were set up to control for temperature. One contained York 

River water on a flow-through system, with temperature ranging from 28-33°C. The 

second water bath was connected to a chiller (Fisher Scientific) set at 10°C, temperature
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ranging from 16-20°C with fresh water. Due to the high ambient air temperature (~35°C), 

ice was occasionally added to the cold water bath in order to maintain a constant water 

temperature. The light and dark bottles for each salinity treatment were equally divided 

between the first and second water bath.

Analytical Methods

Nutrient analyses were determined as follows. Total dissolved N (TDN) samples 

were oxidized in triplicate using the persulfate oxidation method (Valderrama 1981). 

Subsequently NO3 ' concentrations were measured on a Lachat QuickChem 8500 

autoanalyzer. Concentrations of NH4+ were analyzed using the manual phenol 

hypochlorite method (Grasshoff et al. 1999) with NH4+ concentrations corrected for 

salinity. Concentrations of NCVand NO2 ' were also measured on the Lachat QuickChem 

8500 autoanalyzer (Parsons et al. 1984). Concentrations of DON were calculated by 

taking the difference between TDN and DIN (i.e. NO3*, NO2’, NH4+) (Bronk et al. 2000); 

propagation of error was used to estimate the standard deviation. Concentrations of DPA 

were measured using the fluorometric o-phthaldialdehyde (OPA) method (Parsons et al. 

1984). The absorbance of chromophoric dissolved organic matter (CDOM) was 

determined by measuring the adsorption coefficient at 300 nm on a Shimadzu UV-1601 

spectrophotometer, using the following equation:

ax= 2.303 * Ax//

where ax is the absorption coefficient, Ax is the wavelength, and I (m) is the path length of 

the quartz tube (Castillo et al. 1999; Kitidis et al. 2006). Solar radiation measurements 

were obtained from a buoy on the York River adjacent to VIMS, as part of the Virginia 

Estuary and Coastal Observing System (http://chsd.vims.edu/realtime/YRK005.67P).
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Statistical Analysis

Data were analyzed using Statistical Analysis Software ® (SAS 9.2) and R 

statistical program (R Development Core Team, 2010). Five variables were tested to 

determine which combination of variables significantly affected the concentration of 

nutrients. The five variables tested were: effluent type (e), salinity (s), sunlight vs. dark 

(/), temperature ip) and time exposure (t). Fixed effect models were used to fit the data, 

shown below,

Yeslpt Pi "t" Y/'t" 8p  + (yQ it + &eslpt

where Yesipt is the response variable being measured (the concentration of the nutrient 

species), ae is the effluent type (post-disinfection, UV and chlorine disinfection), ps is the 

salinity term (0, 17, 33), yi is the light vs. dark variable, 6P is the temperature variable 

(18° or 30°C) and (yQit is the light and time interaction.

Samples that had the same salinity and effluent type were prepared from one 

batch of water and, as a result, the samples taken at different time intervals were not 

independent from one another. The model, therefore, incorporates the relatedness of the 

sample with multiple observations through time with a repeated measures model, where 

the underlying variance and covariance structure is noted. The underlying covariance 

structure used in this model was unstructured, meaning that each sample had its own 

variance and each pair of samples had its own covariance. In contrast, for a structured 

covariance model, such as Gaussian or compound symmetry, the variance and covariance 

structure for each sample is related by some mathematical pattern (e.g. exponentially) 

(Littell et al. 2006).
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In addition, the variance (i.e. measure of spread between numbers) of the data was 

examined to determine homogeneity. Levene’s Test was used to examine the variance 

within each set of treatments (Littell et al. 2006). Results indicate that the variance for 

samples within each effluent type was not equal, thus this was incorporated into the 

model by grouping by effluent. Grouping by effluent allowed effluent types to have 

different residual variance, where the error term is normally distributed with its own

9 •variance and covariance structure: £esipt ~iid N(0,a esipt) (Littell et al. 2006).

The best fitting model (i.e. the model that incorporated only those variables that 

significantly changed the concentration of a specific nutrient) was determined by 

calculating Akaike’s Information Criterion (AIC) in SAS. Akaike’s Information Criterion 

allows one to determine the best fitting model because the equation is a balance between 

model fit and complexity. The AIC was corrected for small sample size (AICc). The full 

equation is as follows:

AICc= -2 ln(L) +2p + ((2p (p+1)/ (n-p-1)) 

where L is the estimated maximum likelihood value, p is the number of variables in the 

model, and n is the overall samples size (Burnham and Anderson 2002). The maximum 

AAICc was calculated to determine which model was the strongest fit:

A AICc= AICc- minimum(AICc)

The model with the smallest AAICc was the stronger fit. In addition to calculating AIC, 

^-values for each variable were calculated to determine the weight and importance it had 

in the model.

Secondary analyses were performed in R to investigate significant difference 

within sets of vectors. To determine the significant difference of concentration changes
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for different salinity intervals, a 2-way ANOVA was performed. Changes in nutrient 

concentrations as a function of effluent type and salinity intervals (e.g. 0-17 or 17-33) 

were tested. Some of the vectors had heterogeneous variance, thus the data were 

transformed using Box-Cox transformation, using the following equation:

T(Y) = ( Y^ - i y x

where Y is the response variable that needs to be transformed and X is the transformation 

parameter. Lambda (X) is determined from the maximum log-likelihood of the data 

(Crawley 2007). To investigate significant concentration differences before and after 

disinfection type, paired t-tests were performed.

Experiment 2: Release Rates of LMW-N after EON was Exposed to Sunlight and 

Increasing Salinity

A four way nested factorial design was used to test the effect of selected variables 

on nutrient concentrations and to determine rates of reactions. The variables examined 

were: 1) effluent concentration (40% and 90%), 2) salinity (0 and 30), 3) sunlight versus 

dark, and 4) time duration (0, 0.5, 1, 2, 4.5 and 9 hours) (Table 2). Experiment 2 differed 

from Experiment 1 in that there were a larger number of time points taken at smaller 

intervals, which allows more robust rates to be determined.

The effluent used in Experiment 2 came from the same WWTP as the effluent 

used in Experiment 1; it was collected after UV disinfection in July 2010. Samples were 

shipped to VIMS in coolers overnight and filtered through a Whatman GF/F filter (0.7 

pm) followed by a pre-rinsed (200 ml Bamstead water) Supor filter (0.2 pm). The filtrate 

was then stored in a refrigerator (5° C) until use. Just prior to the start of the experiment,
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four solutions were prepared with varying combinations of effluent concentrations and 

salinities.

Effluent Concentration

To examine how the concentration of effluent affects photochemical rates, two 

different solutions were created - one with 40% effluent and 60% Bamstead water and 

the other with 90% effluent and 10% Bamstead water.

Salinity Assay

To imitate the range of salinities frequently observed in an estuary, pre-combusted 

salts (following the recipe described for Experiment 1) were added to one set of each 

solution to increase the salinity to 30. The original 40% and 90% effluent solutions 

described above had a salinity of 0. The salinity of both solutions was measured using a 

refractometer.

Photochemical Assay

Each solution (0 salinity-40% effluent, 0 salinity-90% effluent, 30 salinity-40% 

effluent, 30 salinity-90% effluent) was distributed equally among 15 quartz tubes (for the 

light treatment) and 15 high-density polyethylene (HDPE) bottles; the latter were covered 

in aluminum foil (for the dark treatment). Light and dark treatments for each solution 

were run in triplicate for each time point, as described previously. Bottles were placed in 

a flow-through water bath with York River water (~30°C) under approximately four 

inches of water. The experiment started at 0900 and ended at 1800. Concentration 

changes due to increasing salinity were calculated by taking the average differences 

between samples at dark/salinity 0  and dark/salinity 33 at time 0 .
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Analytical Methods

Nutrients were measured in the same manner described for Experiment 1. In 

addition, pH was measured in one of each set of triplicates at each time point, using 

Orion pH/ISE meter model 710A.

Statistical Analysis

The rate of decay or production of N species were modeled and analyzed in R (R 

Development Core Team, 2010). Each variable of interest specifying: nutrient, effluent 

concentration, light and salinity, were plotted against time. That data were fit to two 

models, a linear model (y= mx + b) and an exponential model (y = b * emx), where b is 

the intercept and m is the slope of production or decay. Akaike’s Information Criterion 

was calculated for both models to determine which equation best describes the data. The 

rates were modeled using the non-linear least square function in R (Crawley 2007).
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RESULTS AND DISCUSSION

This study tested the affects of six different variables (sunlight, salinity, combined 

sunlight and salinity, effluent concentration, temperature, and disinfection method) on the 

abiotic release of LMW-N. Sections i, ii and iii focus on photochemical/sunlight, salinity 

and combined photochemical and salinity conditions, respectively. The first half of these 

sections discusses concentration changes calculated from Experiment 1; the second half 

discusses photochemical rates determined in Experiment 2. In Experiment 2 we further 

examined how effluent concentrations affect photochemical rates (section iv). Additional 

concentration data are presented from Experiment 1 on the effect of temperature on 

abiotic release of LMW-N (section v), changes in effluents due to disinfection (section

vi), and the affect of disinfection on the changes in abiotic conditions studied (section

vii). In the final section (section viii) we discuss likely ways these abiotic conditions 

could impact EON in the environment.

i -Photochemical Effects

Changes in Nitrogen Concentrations due to Photochemistry

Significant (p< 0.05) changes in the concentration of NO2’, NH4+, DP A, and DON 

were observed for the light treatments in Experiment 1 (Tables 3 and 4). There was a 

significant increase in NO2’ concentration in our study, approximately 0.04 pM (Table 4). 

Another study has also seen an increase o f NO2 ' when exposed to light (Keiber et al.

1999) and attributed this release to a dependence on the concentration of humic 

substances. When the concentration of humics is greater than NO2 ’ there is a release of 

NO2’; when there is high NO2" and low humic concentrations, NO2’ is lost (Keiber et al.

30



1999). In this study, the initial NO2’ concentrations were low, and although humics were 

not measured here, some effluents have been shown to contain humic substances (Amy et 

al 1987; Manka et al. 1982; Pehlivanoglu and Sedlak 2006). Approximately 0.40 pmol 

L*1 NKU+ was released from EON when samples were exposed to sunlight for 9 hours 

(Table 4). These results are similar to other studies that documented an increase in N H ^ 

(e.g. Bushaw et al. 1996; Bronk et a l 2010; Koopmans and Bronk 2002; Wang et a l

2000). When organic N is exposed to light, photo-production of NFL**, known as 

photoammonification, may occur through the photolysis of the amide or peptide linkages 

followed by the hydrolysis of the amide to NTL^ (Figure 1; Wang et a l 2000). Wang et 

al (2000) also observed an increase in DPA; however, in our study DPA decreased by 

approximately 0.12 pmol N L '1. A decrease in DPA could still be supported by the 

photoammonification mechanism if the decrease in DPA in our study was due to the 

second step of the reaction (hydrolysis of the amide to NH4+) occurring faster than the 

first step, where DPA is released from DON.

Significant decreases in DON concentration, of about 0.6 pmol N L '1, were 

observed for samples exposed to light for 9 hours (Table 4). A study that looked at 

functionality of EON saw that amide was the dominant N functional group (Dignac et al

2000). Amides, as discussed above, are key functional groups involved in 

photoammonification (Wang et al 2000) and, therefore, it was surprising to see such 

small (0-8%) changes in DON concentration (Table 4). One explanation is that the 9 hour 

duration of the experiment was not long enough to cleave all amide functional groups. 

However, other photochemical experiments that ran longer than 10 hours have observed a 

decrease in NH4+ (Kieber et a l 1997; Kitidis et a l 2008; Koopmans and Bronk 2002). It
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has been suggested that unsaturated fatty acids photo-oxidize to produce aliphatic 

aldehydes, which then react with ammonia (NH3) to form amides; these fatty acids may 

condense together to produce humic substances (Kieber et al. 1997). Alternatively, NH3 

may be incorporated into DOM, possibly through oxidative processes or via a mechanism 

where NH3 reacts with keto and quinone groups found on humic acids (Thom and Mikita 

1992; Jorgensen et al. 1999). It is difficult to predict the exact mechanism because the 

reaction is dependent on a number of variables, including the chemical makeup of the 

effluent and environmental conditions. Yet, there is strong evidence that the increases in 

DIN concentrations are being cleaved off of DON through mass balance calculations 

(Appendix 1).

The absorbance of CDOM is a good proxy to determine the amount of organic 

matter that is reactive with light. In these experiments, CDOM absorbance was higher for 

dark treatments than for light treatments (Figure 2). Chromophoric dissolved organic 

matter absorbance, however, was not correlated with the concentration of DON in the 

light, as was expected (open symbols, Figure 2). When the absorbance of CDOM was 

plotted against the amount of time with sunlight exposure, there was an inverse 

relationship (graph not shown); there was a higher CDOM absorbance at time 0 

compared with 9 hours, indicating photobleaching of organic matter after 9 hours. When 

DON concentration was plotted against the length of time that samples were exposed to 

sunlight, DON concentrations decreased with time but the change was not significant (p > 

0.05). As noted in Figure 2 (data for all effluent types) the range of DON concentrations 

for both the light and the dark were similar, but there were significant differences in 

CDOM absorption between the light and dark samples. This suggests that DON does not
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make up a large portion of the organic matter that is reactive with light, which may be the 

reason for observing small changes of EON transforming to DIN.

Photochemical Rates

Significant {p < 0.05) rates and constants were calculated for a few of the 

treatments in Experiment 2 (Table 5). The photochemical trends in Experiment 2, were 

opposite from those observed in Experiment 1 (Table 4). For example, NH4+ exhibited a 

decline in concentration and DPA and DON were photo-produced with light exposure in 

Experiment 2 (Table 5). This could indicate that the conditions for these sets of samples 

varied (e.g. chemical makeup of the effluent, pH) resulting in different reactions and 

products. More information on photochemical production was obtained from the samples 

exposed to light/salinity 30 from Experiment 2, which is explained in the following 

sections.

ii -Salinity Effects

Changes in Nitrogen Concentrations due to Increasing Salinity

Increasing salinity (from 0 to 33) significantly increased the concentrations of all 

LMW-N (e.g. NH4+, NO2", NO3", DPA) compounds measured for Experiment 1 (Tables 3 

and 4). Note that changes reported for NH4+ were only for pre and post UV disinfection; 

chlorine disinfected effluent had a decrease in NH4+ concentrations when exposed to 

higher salinities and are thus not included. These results are similar to other studies that 

have documented an increase in NH4+ when DON is exposed to higher salinity (Bronk et 

al. 2010; See 2003). Percent change of EON into NH4+ in the Bronk et al. (2010) study 

was much higher, 10-47%, than in this study where only a 0-4% conversion was
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observed. In the See (2003) study, significant changes in N H / were observed when 

humics isolated from different estuaries on the east coast of the U.S. were exposed to 

salinity of 35, increasing NH4+ concentrations by approximately 15%. Other studies have 

examined the effect of N H / binding to sediments in freshwater and its removal when 

exposed to higher salinities (Boatman and Murray 1982; Gardner et al. 1991; Weston et 

al. 2010). It is thought that carboxylic acid and phenolic functional groups found attached 

to humic acids and the surface of sediments can become weak bases, which can then 

coloumbically bind to cations such as NH4+ or positively charged amino acids at low 

salinities (Tipping 2002; Wang et al. 2001). At higher salinities, dissolved salt cations 

(i.e. calcium, sodium, magnesium) have a higher affinity for the weak bases, causing the 

NH4+ or positively charged amino acids to dissociate from humics or sediments (Tipping 

2002).

Although no studies have looked at changes in concentration of NCV and NO2’ 

when organic matter is exposed to higher salinities, the same principles likely apply to 

these compounds. These ions also form columbic attractions with positively charged 

functional groups. At higher salinities chlorine or sulfate may replace the inorganic N 

releasing NO2 ' and NO3 ' into the water column.

When examining mass balance calculations for these sets of samples there 

appears to be an increase in N concentration after the additions of salts. The positive 

change in DIN is greater than the negative change in DON, which could indicate that the 

addition of salts also added DIN into the solution. However, even after this addition of 

DIN is subtracted, the decrease in DON matches up well with the increases in DIN due to 

the effects of increasing salinity (Appendix 2).
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Nitrate, NH4+, and DPA experienced significantly different concentration changes 

between the two salinity intervals tested (e.g. 0-17 and 17- 33 salinity) (Figure 3). The 

changes, however, were not consistent for the different effluent types. For example, NO3’ 

and NH4+ showed a significantly (p<0.05) larger concentration change between 0  and 17 

salinity compared to the amount released between 17 and 33 salinity. This trend was 

observed for all three effluent types with the exception of chlorinated effluent, which 

showed a small decrease in NH4+ (only 2-3% change) (Figure 3). Following chlorine 

disinfection, NH4+ is thought to bind to chlorine forming chloramines (U.S. EPA 1999), 

which may explain the distinct trends observed for the chlorinated effluent. Dissolved 

primary amines showed a significantly (p<0.05) larger concentration change between 17 

and 33 salinity. Again, the chlorinated effluent is an exception to this trend, where DPA 

was released to a greater extent between 0-17 salinity. Based on the results, it is clear that 

chlorinated effluent has different ionic interactions compared with the other two 

effluents. Since NH4+ and DPA (both positively charged groups) are released more 

abundantly at different salinities this could signify that DPA has a higher affinity for 

negatively charged particles, which require higher salinities to dissociate. These results 

suggest that different nutrients species may be released at different points along the 

salinity gradient.

Salinity Rates

Similar to what we observed in Experiment 1, all nutrients exhibited significant 

changes in concentration at higher salinities in Experiment 2. However, most of the 

regressions between time and concentration for samples in the dark/salinity 30 treatment 

were not significant (data not shown). This was expected, however, because salinity
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reactions are not thought to be time dependent. When a sample is exposed to higher 

salinities, the dissociation between a pair of ions is replaced by a salt ion that has a higher 

affinity (Tipping 2002); this reaction likely occurs instantaneously. The one treatment 

that did show a significant (p < 0.05) relationship was DON in the 40% effluent samples; 

this treatment had a first-order rate constant of -0.027 ± 0.005 h ' 1 and an average change 

of about 23%.

As a possible explanation, the observed changes in DON over time when samples 

were exposed to salinity 30 could be due to conformational changes in molecular 

structure. Even though columbic associations and dissociations occur right away with 

salinity changes, salinity also has the ability to change the structure of organic molecules 

by causing repulsive or attractive forces within the organic molecules (i.e. folding and 

unfolding) or among various organic molecules (Baalousha et al. 2006). The unfolding or 

folding to obtain molecular stability may require time. Once that conformation change is 

made, it exposes more of the organic molecule, allowing it to release more N containing 

ions associated with it, thus the decrease in DON. If significant decreases in DON were 

observed, significant increases in DIN may also be expected. This was not the case here, 

however, likely because decreases in DON resulted in an even N conversion to DIN 

species causing concentration changes in NH4+, NO2 ’, and N 0 3 * to be small and 

unnoticeable.
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iii -Combined Photochemistry and Increasing Salinity

Changes in Nutrient Concentrations for Combined Photochemistry and Increasing 

Salinity

Nutrient concentration changes for combined affects were calculated by 

subtracting the concentrations of samples at 9 hours in the light/salinity 33 treatment 

from the concentration from samples at 0  hours in the dark/salinity 0  treatment in 

Experiment 1 (Table 4). There was a wide range in percent concentration changes for 

combined effects, which is primarily attributed to the different effluent types. Combined 

affects had a larger percent change than sunlight and increases in salt conditions alone, 

which increased the concentrations of LMW- N by approximately 1.8 ± 0.2 pmol N L '1, 

while DON concentrations decreased by approximately 1.6 ± 0.3 pmol N L' 1 (Table 4). 

This suggests that the DON may be lost by conversion to DIN when it is released into the 

environment; if this EON is refractory, abiotic conditions on EON will release labile 

forms of N into the water column. When taking a closer look at mass balances for these 

sets of samples, an increase in N is observed after the additions of salts, as explained in 

the salinity results section, but only for the UV and chlorinated effluents. Even after 

subtracting the increase in DIN due to the addition of salts, there is still an increase in 

DIN of 1. 6  ± 0.7 pmol N L"1, suggesting that photochemical exposure and increase in 

salinity causes some DON to break down into DIN (Appendix 3).

Changes in DPA concentration were very small for samples with combined 

affects. We hypothesize that the DPA lost during light effects was balanced out with the 

release of DPA from the salt effects (Table 4), therefore little overall change in nutrient 

concentration was observed.
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The amount of DON transformed photochemically between different salinity 

intervals was significantly different for pre and post UV disinfected effluent only, which 

was also similar to changes observed for CDOM absorbance (Figure 4). The decrease in 

DON concentration in samples between light/salinity 17 and light/salinity 33 was 

significantly higher (1.46 to 2.63 pmol N L"1; p< 0.05), than the decrease between 0 and 

17 salinity (0.07 to 0.36 pmol N L '1). The amount of photobleaching, or the decrease in 

CDOM absorbance, also decreased the most between light/salinity 17 and light/salinity 

33, indicating that at higher salinities there is more photobleaching of EON. These results 

are consistent with other studies that also noted that photobleaching of CDOM increased 

with salinity (Osbum and Morris 2003; Osbum et al. 2009). Our results contrast with 

Minor et al. (2006) who found that at higher salinities there was less photobleached 

organic matter. The Minor et al. (2006) study, however, used DOM collected from a 

DOM-rich freshwater system, and so it was very different from the type of DOM used in 

this study. Both studies attributed the differences to conformational changes of the 

organic molecules caused by higher salinities. Minor et al. (2006) explained that the 

conformational changes of DOM at higher salinities made the compounds more resistant 

to photochemical decay, whereas, Osbum et al. (2009) argued that the conformational 

changes of DOM at higher salinities made the compounds more ‘photo-labile’. These 

conflicting results are likely due to differences in the chemical composition of organic 

matter, causing them to react differently in the presence of salinity and photochemical 

exposure.

Similar to the DIN and DPA released in the dark at different salinity intervals 

(Figure 3), there were differences in DON concentration and CDOM absorbance for the
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chlorinated effluent. The percent changes of DON concentration and CDOM absorbance 

for the chlorinated effluent from 0 to 17 and 17 to 33 were not significantly different, i.e. 

photobleaching was not affected by salinity changes for the chlorinated effluent.

Combined Photochemical and Salinity Rates

Significant regressions were observed for the majority of the nutrient species for 

samples that were exposed to 9 hours of light/salinity 30 in Experiment 2. These changes 

were similar to those observed in Experiment 1 except for DPA, which exhibited photo­

production (Table 6 ). Ammonium concentrations increased by 12%, which was lower 

than the percent changes in Experiment 1, 14-93% (Table 4). Dissolved organic nitrogen 

concentrations decreased with combined effects by 8 -2 0 %, which was slightly higher 

than in Experiment 1, 1-13% (Table 4). Dissolved primary amine concentrations 

increased by 54-173% in Experiment 2, but decreased in Experiment 1 by 14-40% (Table 

4). There was a zero-order production of NH4+ and DPA, while DON and CDOM 

exhibited first-order decay. As noted from the salinity rates, most nutrient concentrations 

increased with higher salinity instantaneously. Salinity also has the ability to cause 

conformational changes to molecules, which may cause slight changes in concentration 

over time, as mentioned previously. The rates and rate constants calculated for this 

section are mostly attributed to photolysis or photo production but may be slightly 

affected by salinity, with the exception of DON, which was mostly affected by salinity 

and will be discussed later.

The order and rate that effluent organic matter, measured here as CDOM 

absorbance and DON concentration, decays when exposed to UV radiation, and the 

production of LMW-N resulting from photolysis (Table 6 ) is comparable to photolysis of
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humic and fulvic acids derived from coastal waters and estuaries (Buffam and 

McGlathery 2003; Bushaw et al. 1996; Bushaw-Newton and Moran 1999; Shank et al. 

2010). For example, CDOM had first-order decay as noted by other studies (Wang et al. 

2000; Miller and Zepp 1995). The rate constants are comparable to a study that looked at 

photobleaching of CDOM (a3os) derived from mangrove leaf litter with a half-life ranging 

from 29-50 hours (Shank et al. 2010). In our study, we determined a zero-order photo 

production of DPA with rates ranging from 0.024-0.032 pmol N L' 1 h’1, which are similar 

to photo production rates of DPA from humics isolated from a river estuary in Georgia, 

USA (Bushaw-Newton and Moran 1999). There was a zero-order photo production of 

NH4 + ranging from 0.025 - 0.063 pmol N L' 1 h ' 1 in this study, similar to rates determined 

by experiments that isolated humics and fulvic acids from river water (Buffam and 

McGlathery 2003; Bushaw et al. 1996; Bushaw-Newton and Moran 1999). The similarity 

in rates and rate constants between our study and those cited above may indicate that 

effluent has similar photo-reactivity to samples comprised of a large percentage of humic 

acids. Humic acids are comprised largely of aromatic compounds that are known to be 

reactive with light (Nelson and Siegel 2002). The goal of many of these studies was to 

investigate the amount of DIN produced from photochemical breakdown of terrestrially 

derived DON, specifically humics. One study found that up to 20% of DON was 

photochemically transformed to DIN (Bushaw et al. 1996). The photochemical percent 

transformation of EON to DIN calculated in this study lies within 8-20% (Table 6 ).

iv - Effluent Concentration Effects on Rates

The different sets of samples (40% and 90% effluent) in Experiment 2 had 

significantly different rates and rate constants for N H /, DON and CDOM (Table 6 ). Half
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of the nutrient species had a greater rate or rate constants in the 40% effluent, with the 

exception of NH4+ and CDOM. These rates/ rate constants are in good agreement with 

the percent change of each nutrient species; samples that had higher rate constants had a 

larger percent change (Table 6 ). Based on the proposed mechanism by Wang et al. (2000) 

(Figure 1), one would expect that NH4+ production and DON photolysis would have 

opposing rates, however, this was only seen for the 40% effluent samples. Ammonium 

photo production was 2.5 times faster than DON decay in 90% effluent. This 

disagreement was also noted by Buffam and McGlathery (2003), who examined 

dissolved N transformation in UV light and noted that NH4+ photo production was better 

predicted by CDOM absorbance than by DON concentration. In our study NH4+ 

production was also better correlated with CDOM absorbance than for DON 

concentration (Figure 5). A few suggestions as to why there are different patterns 

between effluent concentrations are discussed below.

Concentration can also be thought of as how close molecules are to one another. 

The amount of sunlight hitting the 40% and 90% effluent samples was the same, but light 

photons had a higher chance of hitting an EON molecule in the 90% sample because 

there were more EON molecules in the same amount of space. Thus samples with higher 

concentrations should have a larger rate constant, however, this was not observed for 

DON and DPA. According to the proposed mechanism (Figure 1), DPA and NH4+ should 

have opposite percent changes since DPA is being consumed as NH4+ is being produced. 

During photoammonification DPA is produced in the first step and used as a reactant in 

the second step, therefore the rate of DPA is an average of both of these processes; a 

positive rate constant means that the first step occurs more rapidly than the second step.
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Both the 40% and 90% effluent samples exhibited a net production of DPA, but there was 

less production, or more consumption of DPA in the 90% samples. It is likely that in the 

90% samples, DPA was being used as a reactant more quickly due to higher effluent 

concentration, resulting in a higher production of NH4+ and a smaller percent change in 

DPA. This explanation does not clarify the deviation observed for DON. It is possible 

that other reactions were occurring simultaneously, such as the formation of DON. For 

example, previous studies have noted the formation of humic acids through 

photooxidation of triglycerides, fatty acids and ammonia (NH3) (Kieber et al. 1997). 

Although this mechanism uses NH3 (conjugate base of NH4+) to form humics, it probably 

does not explain the increase in DON. It is possible that other forms of DIN, i.e. NO2 ' and 

NO3 ', were being incorporated into DON in Experiment 2.

The pH for the different set of samples between 90% and 40% effluent was 

significantly different (p=0.04), although the difference was small. The average pH of 

samples at 90% and 40% effluent were 7.91 ± 0.06 and 8.01 ± 0.07, respectively. The 

study by Wang et a l (2000) noted that the second step of photoammonification (primary 

amines-^ NH4+) is affected by pH changes; at lower pH this reaction occurs much faster. 

This could explain the faster rate of NH4+ release for the 90% effluent samples.

Another explanation for the observed differences in DON and NH4+ between 

effluent concentrations could be that other forms of DIN (e.g. NO2 ’, NO3 ') were cleaved 

off more abundantly in the 40% effluent. Even though we did not see a significant 

relationship for NO3" in the combined effects treatment (Table 6 ), it exhibited significant 

changes in concentration in the light/salinity 30 treatments, and NO2 " concentrations 

significantly changed at higher salinity (data not shown). The effluent molecules from the
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samples made with 40% effluent may have experienced different salinity affects than 

molecules in the 90% effluent, which can be thought of in terms of effluent: salt ratios. 

The 40% samples had a lower effluent: salt ratio (i.e. more salt molecules per effluent 

molecule) than the 90% samples, meaning that these samples exhibited stronger salinity 

affects. These stronger salinity affects for the 40% effluent samples were observed for 

samples in the dark/salinity 30 treatment, which showed a significantly larger percent 

change (data not shown). In the dark/salinity 30 samples DON photolysis rates were - 

0.027 ± 0.005 pmol N L' 1 h’ 1 and were similar to samples exposed to light/salinity 30 -

0.022 ± 0.004 pmol N L' 1 h’1, which suggests that the decay rate of DON was mostly 

attributed to the salt affects rather than the sunlight affects. In summary, the amount of 

EON that is abiotically transformed to LMW-N in Experiment 2 is 3.3 ± 0.2 and 3.4 ± 0.4 

pmol N L*1 for 40% and 90% effluent concentration, respectively.

v -Temperature Effects

For the temperature variable, significant changes were only observed for NO 3 ' in 

Experiment 1. In pre and post UV disinfected effluent there was a 3% increase in 

concentration in the colder water bath at 18°C compared to the 30°C water bath, with an 

average change of 0.417 ± 0.376 pmol N L' 1 (data not shown). For chlorine disinfection, 

there was a 0.3% decrease in concentration in the 30°C water bath, with an average 

change of 0.051 ± 0.009 pmol N L '1. These changes are likely not significant from an 

environmental perspective, because of the small amount of NC^’ that is released at the 

different temperatures. It should be noted that the temperature difference between water 

baths was about 12°C; perhaps this difference in temperatures was not high enough to see 

notable concentration changes.
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vi - Changes in Nitrogen Concentrations due to Disinfection Method

Significant differences were seen between initial concentration of various 

nitrogen species for pre and post disinfected effluents in Experiment 1 (Figure 6 ). The 

disinfection process significantly (p<0.05) changed the concentration of NO3", NFL**, 

DPA and DON in effluent. For most of the LMW-N, there was an increase in 

concentration after both of the two disinfection methods (UV and chlorine). This was 

expected, since these disinfection methods break apart large structural units into smaller 

molecules. UV disinfection can also cause photoammoniflcation, cleaving off primary 

amines and NH4+ releasing them into the water column. Similar to the light treatment in 

Experiment 1, concentrations of NH4+ and NO2’ nearly doubled, 0.066 and 1.370 pmol N 

L '1, respectively, after UV disinfection. Dissolved primary amine concentrations 

decreased, by about 0.03 pmol N L '1, and DON concentrations also decreased by about 2 

pmol N L"1, after UV disinfection. The decrease in DPA and DON, as explained before, 

was likely due to cleavage of NH4+ and NO2’.

After chlorine disinfection there was a -0.05 pmol L' 1 decrease in NO2 ' (Figure 

6 ). This was expected because chlorine is a strong oxidizing agent, oxidizing NO2 ' to 

NO3 '. Significant increases in NO3 ', however, were not seen due to the small changes in 

N 0 2\  Chlorine also reacts with NH4+ and primary amines to form chloramines. The 

concentrations of NH4+ did not decrease after chlorination as expected, but decreases in 

DPA were observed. Perhaps the amount of NH4+ released from DON, after chlorination, 

was much greater than the amount of chlorine available to react with the free NH4+. 

Decreases in CDOM (a3oo) and DON concentrations were much larger in effluent treated 

with chlorine disinfection than that treated with UV disinfection. This could mean that
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organic matter in effluent is more sensitive to the oxidation reaction provided from 

chlorination than it is to electromagnetic radiation from UV disinfection

vii -  Comparisons among the three Effluent Types after Exposure to Changes in Abiotic 

Conditions

Changes in LMW-N after exposure to changes abiotic conditions (exposure to 

sunlight and increasing salinity) for the different effluent types were compared in 

Experiment 1. The concentration differences between samples at 9 hours light/salinity 33 

and samples at 0 hour dark/salinity 0 for each effluent type were calculated (Figure 7). 

These data suggests that the two disinfection methods resulted in EON that is less prone 

to abiotic LMW-N release and both methods appear to influence EON similarly. 

Dissolved organic nitrogen concentrations decreased by approximately -2.7 pmol N L' 

1(10%), while UV and chlorine disinfected effluent decrease by about 0.7 pmol N L' 1 

(3%) and -1.3 pmol N L"1 (5%), respectively after abiotic effects (Figure 7). Pre­

disinfected effluent also had greater changes in NH4+ than disinfected effluent. This trend 

is to be expected since it was previously noted that disinfection methods can significantly 

change the concentrations of LMW-N and DON (Figure 6 ). Therefore, there was less 

change in NH4+ and DON for disinfected effluent because the disinfection process had 

already broken down a portion of the EON. These findings suggest that disinfection 

methods could be used to break down EON prior to it being released into the 

environment. Unfortunately, having the disinfection method as the last process in 

WWTPs will cause all the LMW-N compounds released during disinfection to go directly 

into the environment. To alleviate this problem WWTPs could place the disinfection 

process before the biological nutrient removal (BNR) system, or could run the disinfected
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effluent through the BNR process again to remove more DIN. The results of this study 

suggest WWTPs might benefit from longer disinfection periods to allow EON to break 

down even further.

viii - Environmental Impacts on EON Exposed to Abiotic Conditions

From this study (data from Experiment 1), we calculated that about 8 % of the 

EON was transformed into LMW-N after it was exposed to variable abiotic conditions. 

This percent change is comparable to other studies that looked at photolysis of DON 

derived from coastal waters (i.e. Buffam and McGlathery 2003; Bushaw-Newton and 

Moran 1999). This percent transformation was for EON exposed to 9 hours of summer 

sunlight and salinity changes from 0 to 33. Other forms of labile DON that could not be 

measured were likely produced during these abiotic processes, thus the 8 % 

transformation is an underestimation of how much EON was converted to labile N 

(assuming all EON maybe refractory).

Physical, chemical, and biological processes need to be considered when 

determining if a combination of abiotic conditions have an impact on water quality of the 

receiving waters, since these factors affect the transport and transformation of nutrients 

(Boynton and Kemp 2000; Lung 1995; Liu and Dagg 2003; Marti et al. 2004; 

Vandenberg et al. 2005). Another important factor to consider is the volume of effluent 

discharge and the total volume of the receiving waters (Swayne et al. 1980), which will 

affect the dilution of the effluent, and, as mentioned in the previous section, affect the 

photolysis rate of EON. A study that looked at effluent nutrient retention efficiency 

(defined as uptake over distance) for different streams in Catalonia, Spain, found that, 

generally pristine systems have shorter uptake lengths than those systems that are more

46



eutrophied (Marti et al. 2004). They also noted that nutrient loading was magnified for 

low stream discharge. In a low stream flow system EON will primarily reside at the head 

of the river where photochemical affects will predominantly contribute to DIN release. 

However, photochemical affects on EON will depend on the turbidity of the system since 

turbidity can significantly reduce the amount of light penetration in the water column 

and, therefore the amount available to react with EON. Conversely, if the system already 

has high nutrient concentrations with high river flow, the effluent will travel to the mouth 

of the river where EON will experience both photochemical (again depending on 

turbidity) and salinity release. Thus, abiotic conditions would only impact the mouth of 

the river.

Determining the effects of abiotic release of EON in the environment will be 

dependent on multiple parameters of a specific system, which may or may not 

significantly affect the water quality. Alone, abiotic conditions on EON will probably not 

have adverse affects on the water quality of the receiving waters, but the accumulation of 

nutrients from multiple point and non-point sources may add up and magnify the 

eutrophication problems along different sections of the system.
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FIGURES

Figure 1. Proposed mechanism for the production of ammonium and primary amines 

during photolysis (Wang et al. 2000).

Figure 2. Chromophoric dissolved organic matter (CDOM) absorbance (300 nm) vs. 

dissolved organic nitrogen (DON) concentration -  Experiment 1. Data points in graph are 

from pre-disinfected effluent at salinity 0. The filled symbols represent samples from the 

dark treatment, while the open symbols represent those from the light treatment.

Figure 3. Changes in nitrogen concentration between different salinity intervals -  

Experiment 1. Concentration changes of (A) nitrate (NO3 '), (B) ammonium (NH4+), and 

(C) dissolved primary amines (DPA) between different salinity intervals in the dark. Bars 

represent average concentrations changes given in pmol N L’ 1 ± standard error for each 

effluent type: Eb (pre disinfection), Euv (post UV disinfection) Eci (chlorine disinfection).

Figure 4. Changes in DON concentration and absorbance changes due to light exposure 

and increases in salinity -  Experiment 1. Changes in (A) dissolved organic nitrogen 

(DON) concentrations and (B) chromophoric dissolved organic matter (CDOM) 

absorbance (300nm) between different salinity intervals in 9 hours of light. Bars 

represent average concentrations in pmol N L"1 or absorbance (CDOM 3300) changes ± 

standard error for each effluent type: Eb (pre disinfection), Euv (post UV disinfection) Eci 

(chlorine disinfection).

Figure 5. Chromophoric dissolved organic matter (CDOM) absorbance and dissolved 

organic nitrogen (DON) vs. ammonium -  Experiment 2. Ammonium concentration
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(pmol N L '1) plotted versus A) CDOM absorbance (300 nm) and B) DON concentration 

(pmol N L '1). Data are from samples at 90% effluent with salinity 30.The filled symbols 

represent samples in the dark treatment; the open symbols are those from the light 

treatment.

Figure 6 . Average initial concentrations of nitrogen species in each effluent - Experiment

1. Average initial concentrations (pmol N L' 1 ± standard error) of (A) nitrite (NO2 '), (B) 

nitrate (NO3 '), (C) ammonium (NH4+), (D) dissolved primary amines (DPA), and (E) 

dissolved organic nitrogen (DON), and (F) chromophoric dissolved organic matter 

(CDOM) absorbance (300nm) for the three effluent types: Eb (pre disinfection), Euv 

(post UV disinfection), and Eci (chlorine disinfection). * denotes significant (p<0.05) 

concentration differences between pre and post disinfection.

Figure 7. Average changes in nutrient concentrations due to light exposure and increases 

in salinity -  Experiment 1. Average increase (left side of figure) concentration changes 

(pmol N L' 1 ± standard error) of nitrite (NO2"), nitrate (NO3 '), ammonium (NFLi+), 

dissolved primary amines (DPA) and decrease (right side of figure) concentration 

changes of dissolved organic nitrogen (DON) for samples that were exposed to 9 hours of 

light/ 30 salinity for each of the three effluent types: Eb (pre disinfection), Euv (post UV 

disinfection), and Eci (chlorine disinfection).
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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TABLES

Table 1. Experimental design - Experiment 1. A five way nested factorial design was 

used to test the effect of five variables on the change in nutrient concentrations: three 

effluents (Eb (pre disinfection), Euv (post UV disinfection) Eci (chlorine disinfection)), 

salinity (0, 17 and 33), sunlight (light) versus no sunlight exposure (dark), time duration 

(0, 4.5 and 9 hours) and temperature (18 and 30°C). Every possible combination of 

variables was created in triplicate.

Eb Euv Eci Eb Euv Eci Eb Euv Eci Eb Euv Ec

(A) 
Sal 0

(B) 
Sal 17

(C) 
Sal 33

(A) 
Sal 0

(B) 
Sal 17

(C) 
Sal 33

(A) 
Sal 0

(B) 
Sal 17

(C) 
Sal 33

(A) 
Sal 0

(B) 
Sal 17

(C) 
Sal 33

Light Dark Light Dark

Time 0 Time 0 Time 0 Time 0

Time 4.5 hr Time 4.5 hr Time 4.5 hr Time 4.5 hr

Time 9 hr Time 9 hr Time 9 hr Time 9 hr

Temperature -18 °C Temperature -30 °C

57



Table 2. Experimental design - Experiment 2. A four way nested factorial design was 

used to test four different variables on the change in nutrient concentrations: effluent 

concentration (40% and 90%), salinity (0 and 30), sunlight (light) versus no sunlight 

(dark) and time duration (0, 0.5, 1, 2, 4.5 and 9 hours). Every possible combination of 

variables was created in triplicate.

40% Effluent 90% Effluent
Salinity 0 Salinity 30 Salinity 0 Salinity 30 Salinity 0 Salinity 30 Salinity 0 Salinity 30

Light Dark Light Dark
Time 0 Time 0 Time 0 Time 0

Time 0.5 hr Time 0.5 hr Time 0.5 hr Time 0.5 hr
Time 1 hr Time 1 hr Time 1 hr Time 1 hr
Time 2 hr Time 2 hr Time 2 hr Time 2 hr

Time 4.5 hr Time 4.5 hr Time 4.5 hr Time 4.5 hr
Time 9 hr Time 9 hr Time 9 hr Time 9 hr
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Table 3. Summary of Model Selection - Experiment 1. Various model equations for 

each response variable: nitrite (N02’), nitrate (NO3"), ammonium (NH4+), dissolved 

primary amines (DPA), and dissolved organic nitrogen (DON), and chromophoric 

dissolved organic matter (CDOM) absorbance (300 nm), with the corresponding 

Akaike’s Information Criterion (AICc) values. The first line in each section is the 

equation with the variables that best explains the change of that nutrient species

Nutrient
Species Model A IC c

= Light + Salinity + Effluent + Light * Time -1986.7

n o 2-
= Light + Salinity + Effluent + Temperature + Light * Time -1973.9

= Light + Effluent + Salinity -1847.7

= Salinity + Light * Time -1459.3

=  Salinity +  Effluent + Temperature -198.4

M V
-  Salinity + Effluent + Temp + Light * Time -183.7

= Salinity + Temperature + Light * Time 529.3

= Effluent + Temp + Light * Time 565.0

=  Light +  Salinity +  Effluent +  Light *  Time -378.7

n h 4+
= Salinity + Effluent + Temperature + Light * Time -3 6 6 .5

= Light + Effluent + Temperature + Light * Time - 346.2

= Salinity + Effluent -3.4

= Light + Salinity + Effluent + Light * Time -725.9

DPA
= Light + Salinity + Effluent + Temperature + Light * Time -718.2

= Light + Effluent + Temperature + Light * Time -584.4

= Light + Salinity +Light * Time -519.7

= Light + Salinity + Effluent + Light * Time 574.8

DON
= Temperature +Effluent + Salinity 643.3

= Temperature + Effluent + Light * Time 684.1

= Light * Time + Salinity + Temperature 907.3

= Light + Salinity + Effluent + Light * Time 1788.7

=Light + Effluent + Light * Time 2044.6
CDOM

= Light + Salinity + Effluent + Temperature 2184.7

= Temperature +Effluent + Salinity 2337.2
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Table 4. Changes in concentration due to light, salinity, and combined light and 

salinity - Experiment 1. Significant changes (p< 0.05) in concentrations of nitrite 

(NO2"), nitrate (NO3’), ammonium (NH4+), dissolved primary amines (DPA) and 

dissolved organic nitrogen (DON) observed when effluent was exposed to light (UV in 

sunlight), increased salinity and light and salinity combined. NS denotes not 

significant. Values are in pmol N L' 1 ± standard deviation, and the range of percent 

change from the starting concentration is reported in parenthesis, f denotes that averages 

were only taken from samples for pre and post UV disinfected effluent; chlorinated

effluent was not included.

Nutrient
Species

Light Salinity Light and Salinity 
combined

0.036 ±0.028 0.032 ± 0.004 0.059 ± 0.026
n o 2-

(42-345%) (22-167%) (19-662%)

1.005 ±0.283 1.178 ±0.323
NOf NS

(4-9%) (4-9%)
0.366 ±0.177 0.159 ±0.073 0.692 ±0.261

n h 4+
(1-61%) (10-13%)t (14-93%)

-0.108 ±0.071 0.161 ±0.0315 -0.004 ± 0.067
DPA

(22-34%) (20-57%) (14-40%)
-0.6 ± 0.8 -0.4 ±0.3 -1.6 ± 1.0

DON
(0-8%) (0- 4%) (1-13%)
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Table 5. Photochemical rates -  Experiment 2. Rate and rate constants with standard 

errors, half life and percent change for ammonium (NH4+), dissolved primary amines 

(DPA), dissolved organic nitrogen (DON), and chromophoric dissolved organic matter 

(CDOM) absorbance (300nm) for samples exposed in the light for 9 hours at 0 salinity. 

Half lives are only presented for nutrients that showed decay.

Nutrient
Species

%
Effluent Rate or Rate Constant Half Life 

(hours) %  Change

40% NS — —

n h 4+
90% -0.033 ±0.007 pmol N L h — -8%

40% NS — —

DPA
90% 0.033 ± 0.005 nmol N L 'V — 121%

40% 0.011 ± 0.003 h' 1 58 ±12 11%
DON

90% NS — —

40% -0.017 ±0.003 h‘‘ 41 ±5 -15 %
CDOM

90% -0.020  ± 0.002  h' 1 35 ± 4 -17%
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Table 6. Combined light and salinity effects on rates -  Experiment 2. Rate and rate 

constants, with standard errors, half life and percent change for ammonium (NH4+), 

dissolved primary amines (DPA), dissolved organic nitrogen (DON), and chromophoric 

dissolved organic matter (CDOM) absorbance (300nm) for samples exposed for 9 hours 

at light/30 salinity. Half lives are only shown for nutrients that exhibited decay.

Nutrient
Species

%
Effluent Rate or Rate Constant Half Life 

(hours)
o//o

Change

40% 0.026 ±0.003 |im olN L 'V — 12%
n h 4+

90% 0.063 ± 0.005 (imol N L‘V — 12%

40% 0.032 ± 0.004 nmol N L‘V — 174%
DPA

90% 0.024 ±0.002 nm olN L /V — 54%

40% -0.024 ± 0.004 h'1 31 ± 4 20%
DON

90% -0.009 ± 0.002 h'1 78 ± 11 8%

40% -0.015 ±0.002 h'1 49 ±7 42%
CDOM

90% -0.019 ±0.002 h'1 37 ±3 17%
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CHAPTER 3: PROJECT SUMMARY

In order to improve the water quality of Chesapeake Bay, the Chesapeake Bay 

Total Maximum Daily Load (TMDL) has required a more stringent nutrient reduction 

that enters the Bay. Specific improvements address nutrient reduction in wastewater 

treatment plants (WWTPs) (CB TMDL2010). For WWTPs to reduce their N load it will 

require a large sum of tax dollars to renovate and modify these facilities. Since it was 

once believed that dissolved organic nitrogen (DON) was refractory, WWTPs thought it 

would be worthwhile to investigate if DON from effluent (i.e. effluent organic nitrogen 

(EON)) could be considered refractory and, thus, excluded from the N release budget. A 

number of studies have shown that up to 96% of EON can be taken up by 

microorganisms over the course of days in bioassay experiments (Urgun-Dimirtas et al. 

2008; Sattayatewa et al. 2009; Bronk et al. 2010; Filippino et al. 2011). This study 

sought to expand on this earlier research by quantifying abiotic factors in more detail. 

This study addressed the question of how abiotic factors, particularly sunlight exposure, 

changes in salinity, and changes in temperature, affected the release of labile low 

molecular weight (LMW-N) from EON and determining the decay and production of 

various N species. Since there was already evidence that EON would have to be included 

in WWTP’s new N release limit, the study also attempted to investigate ways in which 

WWTPs might be able to break down EON through abiotic methods.

In this study, photochemical and salinity changes were shown to significantly 

decrease EON concentrations (by approximately 5 to 10%) and increase concentrations 

of dissolved inorganic nitrogen (DIN), while concentrations of dissolved primary amines 

(DPA) increased with higher salinity (Chapter 2, Table 4). Changes in temperature were
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not shown to significantly affect the change in concentration of most low molecular 

weight N (LMW-N) compounds, with the exception of nitrate (NO3"). In this study, 

approximately 8% of EON was transformed into LMW-N compounds through abiotic 

effects (in 9 hour sunlight exposure and changes in salinity from 0 to 33). Results from 

Experiment 2 indicate that higher concentrations of effluent exhibited faster photo 

production of ammonium (NEL^) and photobleaching of chromophoric dissolved organic 

matter (CDOM) (Chapter 2, Table 6). This trend was not true for DPA and DON, which 

had greater photolysis rates at lower effluent concentrations (40%) and can likely be 

attributed to the increased affect on salinity. A lower effluent: salt ratio could explain 

why DON had higher percent change and photolysis rates in the 40% effluent samples, 

since high salinity was also shown to cause more photobleaching of CDOM and decay of 

DON in Experiment 1 (Chapter 2, Figure 5).

Exposing EON to sunlight and increased salinity resulted in photolysis rates 

similar to those observed for terrestrially derived humic acids (i.e. Bushaw-Newton et al. 

1999). These results suggest that EON has similar photo- reactivity to organic material 

known to be highly reactive in light. Yet, even with these high photo production rates, 

only a small percentage of EON was converted to LMW-N. This was surprising since it 

has been previously noted that EON is predominantly made up of amide functional 

groups (Dignac et al. 2000), which are believed to be a key player in 

photoammonification (Wang et al. 2000). A possible explanation for this small 

conversion of LMW-N could be attributed to the short duration of the experiment. In the 

environment EON will have longer exposure to light, however, turbidity of the receiving 

waters may reduce the amount of light that penetrates the water and available to react
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with EON. Results from this study suggest that even if EON was refractory, EON would 

break down into known labile forms of N after abiotic exposure. Even though the release 

of LMW-N from EON through abiotic processes in the environment may not appear 

significant in a large estuary such as Chesapeake Bay, large accumulation of nutrients 

from multiple point and non-point sources could add up to a significant reduction in 

water quality and should be taken into consideration.

Disinfection methods were shown to increase the amount of LMW-N compounds 

and decrease EON concentration. Dissolved organic N concentrations decreased after UV 

and chlorine disinfected effluent by approximately 1.8 ± 0.2 pmol N L' 1 (6%) and 2.8 ± 

0.1 pmol N L' 1 (10%), respectively (Chapter 2, Figure 6). It was also shown that 

disinfected effluents had a smaller concentration changes in DON (~3-5% concentration 

of DON change) after abiotic effects, than the effluent prior to disinfection, which 

changed by 10% (Chapter 2, Figure 7). These results suggest that disinfection methods 

have the ability to break down EON, which could be an effective way for WWTPs to 

reduce their EON concentrations. Although chlorination appears to be the better method 

for both disinfection and reduction of EON concentrations, chlorine has been shown to 

cause problems in the environment. Dissolved organic matter can react with chlorine to 

form disinfection by-products such as trihalomethanes, hatoacetic acids and halogenated 

organic compounds, which can be mutagenic (Wang et al. 2007; Fukui et al. 1990; US 

EPA F-99-062). In order to break down more EON, secondary effluent would need to be 

chlorinated for a longer period of time, which could potentially increase the mutagenicity 

of the solution. Therefore it would be advisable to use UV disinfection over chlorination.
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Based on the growing body of results, including this study, WWTPs should not be 

able to exclude the organic N fraction of effluent from their new N release limit. As a 

result, WWTPs will need to develop new treatment technologies that can breakdown and 

remove the organic, as well as the inorganic fraction of effluent N. Disinfection methods 

already used by the facility may also help reduce the EON pool, by breaking it down into 

LMW-N compounds, which can then be removed through the BNR system. More 

research needs to be done in order to investigate the cost efficiency of breaking down 

EON through disinfection compared, or in addition, to other methods such as 

ammonification (Leslie Grady et al. 1999). The biggest problems WWTPs have when it 

comes to DON reduction, is that a large portion of EON comes from soluble microbial 

products within the BNR system (Sattayatewa et al 2009). Thus moving the disinfection 

method in front of the BNR system may not drastically reduce the concentration of EON. 

Wastewater treatment plants will need to further investigate sources of EON and 

determining if disinfection methods, UV, oxidation or ozone, may be efficient methods 

for removing EON.
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Appendix 4.

Model information for photochemical rates - Experiment 2. For each nitrogen species 

specifying effluent concentration (denoted in parenthesis) data were fit to two equations, 

an exponential equation (b* e (m*time)) and a linear equation (m*time + b), to determine 

whether the reaction proceeded as zero (exponential) or first (linear) order. R2 values are 

given for the linear models only. Estimates for b (the intercept) and m (the slope or rate) 

are given for each model, along with Akaike’s Information Criterion (AIC).

N Species Model R2 b estimate m
estimate AIC

NH4+ (90%) = b* e (m*tlmê — 4.62 -0.007 -32.27

= m*time + b 0.61 4.62 -0.033 -32.39

DP A (90%) — b* e (m*time) — 0.23 0.088 -36.68

= m*time + b 0.67 0.22 0.033 -37.76

DON (40%) = b* e (m*time) — 14.53 0.012 37.15

= m*time + b 0.51 14.53 0.190 37.52

CDOM (40%) = b* e (m*time) — 52.00 -0.017 72.06

= m*time + b 0.73 51.89 -0.822 73.06

CDOM (90%) = b* e (m*tlme) — 117.91 -0.020 97.30

= m*time + b 0.81 117.61 -2.149 98.93
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Appendix 5.

Model information for combined light and salinity effects on rates - Experiment 2. For 

each nitrogen species specifying effluent concentration (denoted in parenthesis) data were 

fit to two equations, an exponential equation (b* e (m*time)) and a linear equation (m*time 

+ b) to determine whether the reaction proceeded as zero (exponential) or first (linear) 

order. R2 values are given for the linear models only. Estimates for b (the intercept) and 

m (the slope or rate) are given for each model, along with Akaike’s Information Criterion 

(AIC).

N-Species Model R2 b estimate m estimate AIC

NH4+ (40%) = b* e (m*tlmê — 2.38 0.010 -51.88

= m*time + b 0.78 2.38 0.026 -51.96

NH4+ (90%) = b* e (m*timê — 5.22 0.011 -42.07

= m*time + b 0.91 5.21 0.063 -43.01

DP A (40%) = b* e (m*timê — 0.18 0.111 -45.55

= m*time + b 0.75 0.17 0.032 -42.26

DPA (90%) = b* e (m*time) — 0.49 0.041 -69.06

= m*time + b 0.88 0.49 0.025 -70.95

DON (40%) = b* e (m*time) — 14.34 -0.024 32.89

= m*time + b 0.74 14.28 -0.299 34.37

DON (90%) = b* e (m*tlme) — 37.64 -0.009 42.59

= m*time + b 0.69 37.61 -0.324 43.01

CDOM
(40%)

= b* e (m*time) — 54.03 -0.015 66.25

= m*time + b 0.71 53.94 -0.723 67.04

CDOM
(90%)

= b* e (m*time) -- 121.30 -0.019 83.93

= m*time + b 0.90 121.07 -2.095 85.84

79



VITA

Carolina P. Funkey

Carolina was bom in Tacoma Park, Maryland on April 18, 1985. She was raised 
overseas and graduate from George Mason High School in 2003. She attended college at 
the University of Mary Washington and obtained a B.S. in Chemistry in 2007. After 
graduation she worked at the Bermuda Institute of Ocean Sciences working in the 
Environmental Quality Department. In the Fall of 2008 she entered the masters program 
at the Virginia Institute of Marine Science and was advised by Dr. Deborah Bronk.

80


	Abiotic Release of Low Molecular Weight Nitrogen from Effluent Organic Nitrogen
	Recommended Citation

	tmp.1539724688.pdf.f8J4O

