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Early milk feeding influences taste acceptance and liking during
infancy1–5

Julie A Mennella, Catherine A Forestell, Lindsay K Morgan, and Gary K Beauchamp

ABSTRACT
Background: We identified a model system that exploits the in-
herent taste variation in early feedings to investigate food prefer-
ence development.
Objective: The objective was to determine whether exposure to
differing concentrations of taste compounds in milk and formulas
modifies acceptance of exemplars of the 5 basic taste qualities in
a familiar food matrix. Specifically, we examined the effects of
consuming hydrolyzed casein formulas (HCFs), which have pro-
nounced bitter, sour, and savory tastes compared with breast milk
(BM) and bovine milk–based formulas (MFs), in which these taste
qualities are weaker.
Design: Subgroups of BM-, MF- and HCF-fed infants, some of
whom were fed table foods, were studied on 6 occasions to measure
acceptance of sweet, salty, bitter, savory, sour, and plain cereals.
Results: In infants not yet eating table foods, the HCF group ate
significantly more savory-, bitter-, and sour-tasting and plain cereals
than did the BM or MF groups. HCF infants displayed fewer facial
expressions of distaste while eating the bitter and savory cereals,
and they and BM infants were more likely to smile while they were
eating the savory cereal. In formula-fed infants eating table foods,
preferences for the basic tastes reflected the types of foods they
were being fed. In general, those infants who ate more food dis-
played fewer faces of distaste.
Conclusions: The type of formula fed to infants has an effect on
their response to taste compounds in cereal before solid food in-
troduction. This model system of research investigation sheds light
on sources of individual differences in taste and perhaps cultural
food preferences. Am J Clin Nutr 2009;90(suppl):780S–8S.

INTRODUCTION

Many cultures place great importance on establishing patterns
of food habits early in life (1, 2). The types of foods and flavors
mothers eat during pregnancy and lactation and then feed to their
children during the transition from an all-milk diet to one con-
taining foods of the table are part of the traditions of many
cultures (2). Experimental research conducted during the past few
decades has revealed that first experiences with food flavors occur
long before the first “taste” of solid foods because flavor volatiles
and taste compounds from the maternal diet are transmitted to
and flavor amniotic fluid and human milk (3). Thus, culturally
determined flavor preferences, one of the most enduring char-
acteristics of an ethnic group (1), can be understood in the context
of early flavor exposure and thus may provide the foundation for
cultural differences in cuisine.

Psychophysical studies of human milk revealed that breastfed
infants consume a milk that has a predominant taste quality of
sweetness, contains volatile food odors, and varies from mother
to mother (4–6). In marked contrast, formula-fed infants are
usually exposed to constant flavors, because most mothers who
use formulas often feed their infants a single type of formula (7,
8). The flavors of the various types and brands of formulas differ
from each other substantially, however, and these flavors too are
detected by infants (9–11). Formula flavors, which are due to
composition and processing, can range from low levels of sweet
and sour tastes in milk-based formulas to savory, sour, and bitter
tastes and unpleasant odor volatiles (to adults and older children)
in protein hydrolysate formulas (11, 12). The strong flavor of
hydrolysate formulas is due, in part, to their high amino acid
content (13, 14). These formulas contain protein nutrients in
a “predigested” form as amino acids and small peptides (12, 15,
16), and likemilk-based formulas, are fortified with certain amino
acids to provide a balanced amino acid profile that complies with
the standards for nutrient content of infant formulas (16).

From the perspective of taste, infants who consume different
types of milk during early life are exposed to pronounced dif-
ferences in levels and patterns of taste experience, because each
contains variable amounts of compounds that have specific taste
qualities. Perhaps the most striking from a sensory perspective is
the difference in the taste-active amino acid, glutamate, which
occurs naturally in many foods, such as meats, cheeses, broths,
and tomatoes (17), and imparts a savory taste (umami). Gluta-
mate is the most abundant free amino acid in human milk; it is
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40-fold higher in milk relative to plasma (18) and accounts for
.50% of the total free amino acid content (19). Although glu-
tamate concentrations in human milk (20, 21) are several times
greater than those in cow milk (21) and bovine milk–based
formulas, concentrations in hydrolysate formulas are .300 times
greater (12, 22, 23).

The pronounced differences in nutrient content and flavor
profiles of early milk feedings provide an ideal model system to
test the hypothesis that infants exposed to higher levels of certain
taste compounds exhibit elevated taste preferences for them (24–
26). After the transition to milk feedings at birth, the next largest
change in the human diet occurs at weaning, when an infant
moves from a mainly milk-based diet to a mixed diet containing
the foods of the table. This dietary change is accompanied by
major changes in the content and context of flavor experiences,
leading to the hypothesis that major changes in preferences would
coincide with this major shift in feeding regimen. For example,
elevations in preferences for aqueous salt solutions coincide with
weaning and the initiation of a mixed, table food diet (LJ Stein,
BJ Cowart, and GK Beauchamp, unpublished observations,
2009). Consequently, the present study assessed infants’ pref-
erences for the basic tastes before and after the introduction of
a mixed diet.

The present study was designed to compare responses to basic
taste compounds in a familiar infant food in 3 groups of infants:
those fed breast milk (BM), those fed bovine milk–based for-
mulas (MF), and those fed hydrolyzed casein formula (HCF). We
tested the hypothesis that these differences in early milk con-
sumption result in different responses to the basic tastes as
a consequence of differential taste familiarity. Furthermore, to
test the hypothesis that consuming a diet containing weaning
foods modifies infant taste preferences, we also recruited sub-
groups of infants who were still consuming human BM or for-
mulas and who were either not yet being fed table foods (NT)
or were being fed table foods (T).

SUBJECTS AND METHODS

Subjects

Mothers whose infants were between the ages of 4 and 9 mo
were recruited from advertisements in local newspapers and from
Women, Infant and Children Programs in Philadelphia between
2004 and 2007. All infants were born full term, were healthy at
the time of testing as reported by their mothers, and had been
eating baby cereal from a spoon for �2 weeks (see reference 27
for methods). From a pool of 97 mother-infant dyads (44%
black, 30% white, and 26% mixed race/other), groups were
formed on the basis of the milk-consuming history of the infants
[group fed BM, group fed MF, and group fed HCF] and whether
or not children were fed table foods (NT and T; see Table 1).
Thirteen additional infants were tested but were excluded from
these analyses because they ate the maximum amount of food on
the majority of test days (n = 6), were sick (n = 3), or their
mothers withdrew from the study (n = 4). Although we recruited
an excess of breastfed infants, we were unable to get a sufficient
number who were eating both cereal and table foods for statis-
tical analyses. All procedures were approved by the Office of
Regulatory Affairs at the University of Pennsylvania, and writ-
ten informed consent was obtained from each mother.

Food stimuli

The type (rice, oatmeal, or barley) and brand (Gerber, Fremont,
MI; Beechnut, Canajoharie, NY; or Earth’s Best, Boulder, CO) of
cereal used during testing were those the infants were being fed at
home and thus were familiar with. The cereals were prepared by
mixing 40 g of cereal with 160mL of distilled water (plain cereal)
or a similar volume of the following solutions: 0.56 mol D-lac-
tose/L (sweet cereal), 0.1 mol sodium chloride/L (salty cereal),
0.24 mol urea/L (bitter cereal), 0.006 mol citric acid/L (sour
cereal), and 0.02 mol monosodium glutamate/L (savory cereal).
The concentrations were selected on the basis of previous
studies of infant reactivity to the basic tastes [eg, urea (28), salt
(29), and glutamate (29)]. We aimed for a weak intensity of
flavors to best represent the flavor of human milk (4).

Before infant testing, a trained sensory panel of 9 adults (7
women and 2 men), who were between the ages of 25 and 31 y
[mean (6SEM) age: 28.8 (0.7) y], evaluated the 6 cereal mix-
tures using the general Labeled Magnitude Scale (30), which is
a psychophysical tool that allows subjects to rate perceived in-
tensity along a vertical axis labeled according to the following
adjectives: no sensation = 0, barely detectable = 1, weak = 6,
moderate = 16, strong = 33, very strong = 50, and strongest
imaginable = 95. The adjectives are spaced semilogarithmically,
on the basis of experimentally determined intervals, to yield data
that parallel magnitude estimation (30, 31). Panelists were of-
fered each cereal individually and asked to rate its sweetness,
saltiness, bitterness, sourness, savoriness, and overall intensity
and rinse their mouths �3 times between each tasting. After
completing the ratings, they were again offered each cereal
sample and asked to indicate whether the predominant taste
quality was sweet, salty, bitter, sour, or savory.

Procedures

The methodologies used were developed and validated at the
Monell Chemical Senses Center and designed to control for
a number of factors to allow for the evaluation of infants’ hedonic
responses independently of the caregiver and experimenter (27).
To this end, we first accustomed infants to various aspects of the
study procedures before testing. Mothers were sent bibs, spoons,
and masks to use while feeding their infants at home for the 3
d before the first testing session. They were asked to refrain from
introducing additional foods or beverages to their infants before
and during the experimental period. To encourage compliance,
mothers kept a daily record of what they fed their infants.

Testing occurred at approximately the same time of day and 30
to 60 min before the infants’ next scheduled feeding so that intake
and facial reactivity were not affected by hunger or satiation but
rather reflected hedonic responses to the food. During the test
sessions, the mothers wore a mask and refrained from talking to
eliminate any influence of their facial or verbal responses on the
infants’ behaviors (32, 33). Testing occurred in a well-ventilated
closed room specifically designed for sensory testing and under
naturalistic conditions in which infants determined the pacing
and duration of the feeding. The experimenter was out of view
of the mother-infant dyad, and infants were videotaped as their
mothers fed them at their customary pace. Analyses of the
videotapes revealed that the infants were not distracted by their
mothers wearing a mask because they had become familiar with
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the mask before the actual testing. The feeding ended when
a child rejected the cereal �3 consecutive times or ate the
maximum amount (’200 g). All food that spilled onto the tray
or bib was placed in the bowl before weighing. The amount of
food consumed was measured by weighing each bowl imme-
diately before and after each feeding on a Mettler balance
(Mettler Instrument Corp, Hightstown, NJ) accurate to 1.0 g.
Immediately after each session, mothers rated their infants’
enjoyment of the food on a 9-point scale (9 = extreme liking).

All but 2 mothers completed a 95-item questionnaire that
measured their perceptions of their infants’ temperament (34).
All mothers were queried about which specially prepared infant
foods and table foods their infants had been exposed to as well as
the frequency of consumption of these foods. On the first day of
testing, each infant was measured and weighed; z scores for
weight, length, and weight-for-length were then calculated using
the World Health Organization Anthro software (version 2.02;
Geneva, Switzerland) (35).

Videotape analyses

In addition to calculating intake, videotapes were analyzed
to evaluate the length of the feeding and the types of facial
expressions made during feeding, the latter of which were
measures of hedonic responses or liking (5, 6, 36). Each vid-
eotape was subjected to frame-by-frame analysis using an IBM-
based event recorder program, The Observer (Noldus Inc,
Wageningen, Netherlands). A trained rater, who was certified in
Ekman and Friesen’s Facial Action Coding System (37) and who
was unaware of the infants’ group designation and experimental
treatment, scored the first 2 min of each test session. Not all
feeding sessions were scored for length of feeding for 2 infants
and for facial reactivity for 10 infants because of technical
difficulties or because the baby cried throughout that particular
testing session. The scoring focused on facial expressions of
liking (eg, smiling) and distaste, the latter of which included brow
movements (eg, brow lowering and inner brow raises), nose
wrinkling, upper lip raising, squinting, lip tightening, chin
raising, and gaping (6, 36, 38). Because of marked individual
differences in the display of the faces, statistical analyses focused
on the total number of facial expressions of distaste made per
spoonful offered as well as the incidence of specific facial
responses (eg, smiles, squints, and gapes) during feeding. More
detailed analysis of the facial reactivity data will be reported
elsewhere.

Data analyses

For each infant, we calculated the total intake (g), length (min),
and rate (g/min) of each feeding, number of facial expressions of
distaste made per spoonful offered, and mother’s perception of
the infant’s enjoyment of the cereals during each test session. The
first set of analyses focused on differences between the groups of
NT infants. To this end, separate analyses of variance (ANOVAs)
were conducted for each measurement with milk- and formula-
fed groups (BM, MF, and HCF) as the between-subjects factor.
Planned comparisons were conducted using Bonferroni-corrected t
tests to evaluate whether the HCF group differed from the MF or
BM groups. Statistical tests also focused on relative responses
that were compared within the groups. We ranked each of the

6 cereals on the basis of how much each subject ate (1 = greatest
consumption) to eliminate absolute differences that may be due
to other factors. From these data, we compared the percentage of
infants within each group who ranked each of the cereals as first
to third most preferred on the basis of intake using a chi-square
analyses. A composite ranking score was computed on the basis
of the relative intake of sour, savory, and bitter cereals, which
was then compared between groups using a one-factor ANOVA.
In addition, we computed the percentage of children who gaped,
squinted, or smiled during feeding, and separate chi-square
analyses were conducted to calculate if the likelihood of ex-
pressing these behaviors differed between groups. Correlational
analyses were conducted to determine whether the types of fa-
cial responses made during the initial minutes of the feeding
were related to how much the infants ate of the different tasting
cereals.

The second set of analyses focused on whether acceptance of
the basic tastes interacted with the type of milk experienced when
infants were eating table food. Because we were unable to get
a sufficient number of breastfed infants who were still eating
cereal once they started experiencing table foods, this approach
evaluated responses in formula-fed infants only. Separate
ANOVAs were conducted with the MF and HCF groups and the
NT and T groups as the between-subjects factors and age as the
covariate (see Subject Characteristics). Significant interactions
were probed by simple main effects analyses.

The third set of analyses was conducted by using data obtained
from the T infants to determine whether the types of foods ex-
perienced by infants correlated with their acceptance of the
different tasting cereals. Separate ANOVAs were conducted
whether or not the infant had been exposed to a particular table
food as the between-subjects factor and age as the covariate. All
summary statistics are expressed as mean 6 SEM.

RESULTS

Subject characteristics

HCF infants were fed a milk- or soy-based formula during their
first months (1.26 0.2 mo) of life and then, usually according to
their pediatrician’s recommendation, switched to hydrolysate
formulas (eg, Nutramigen; Mead Johnson, Evansville, IN, or
Alimentum; Ross Products Company, Abbot Park, IL). The vast
majority (91.7%) of the HCF infants began being fed hydro-
lysates during the first 3 mo of life. The BM infants had little or
no experience with formulas and neither they nor the MF infants
had ever tasted hydrolysate formulas. Breastfed infants were
perceived by their mothers as being more rhythmic [ie, more
regular in bodily functioning; F(2,83) = 4.55, P , 0.02], adapt-
able [F(2,83) = 7.68, P , 0.001], and approachable [F(2,83) =
7.99, P , 0.001] and less distracted [F(2,83) = 10.62, P , 0.001]
than those infants fed formula (data not shown). As shown in
Table 1, in the NT infant group, BM infants were older than MF
infants and were introduced to cereal later than were HCF in-
fants. In the formula-fed infant groups, T infants were older and
weight-for-age z scores were larger than for NT infants. Because
of these differences, all subsequent analyses covaried age.

The majority of infants were fed cereals prepared with
ingredients other than water. In line with recommendations from
baby food manufacturers, many lactating mothers prepared their
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infants’ cereal with BM, and nonlactating mothers prepared the
cereals with the type of formula their infants were fed. Sugars,
syrups, and fruit juices were added to the cereal of the vast
majority of T infants and to the cereal of approximately one-third
of the NT infants. Preliminary analyses were conducted to de-
termine whether experience with these sweet tastes in cereals
affected the NT infants’ cereal acceptance. These analyses in-
dicated that infants consumed similar amounts of plain or
sweetened cereals during testing, regardless of how their cereal
was prepared at home (all P values . 0.22). Once table foods
were introduced to the infants’ diet, there were large individual
differences in the types of foods experienced (eg, meats, dairy
products, pizza, macaroni, cheeses, puddings, desserts, vegeta-
bles, and fruit).

Sensory panel evaluation of cereals

As shown in Figure 1, cereals to which lactose, salt, urea,
citric acid, and glutamate had been added tasted more sweet
[F(5,40) = 17.93, P , 0.001], salty [F(5,40) = 19.86, P , 0.001],
bitter [F(5,40) = 6.93, P , 0.001], sour [F(5,40) = 8.49, P ,
0.001], and savory [F(5,40) = 5.46, P = 0.002], respectively. The
taste qualities of all but the plain cereals were correctly identi-
fied by the majority of the panelists. Approximately half (44%)
of the panelists incorrectly identified the plain cereal, the ma-
jority of whom thought it tasted bitter, sour, or savory. The in-
tensity ratings of the characteristic taste qualities [mean (6SEM):
6.7 (1.2)] and the overall intensity [mean (6SEM): 1.6 (0.3)]
were in the moderate or weak range, respectively.

Taste acceptance in infants with no experience with
table foods

As shown in Table 2, the HCF-NT group ate significantly
more of the savory-flavored cereal than did both the BM-NT and
MF-NT groups and ate all but the plain cereal at a faster pace

than the BM-NT group. The HCF-NT infants also ate more of the
sour- and bitter-flavored cereals and the cereal to which distilled
water had been added. Separate repeated-measures ANOVAs on
HCF-NT group data revealed that they ate significantly more
savory cereal than the bitter and sour cereals [F(5,45) = 2.65, P ,
0.04]. Mothers were aware of their infants’ acceptance because it
was indicated by their significantly higher scores of liking for the
savory and plain cereals in the HCF-NT group.

In addition to eating more, HCF-NT infants squinted less while
they were fed the bitter [0.4 6 0.1 compared with 0.9 6 0.1/
spoonful; F(2,57) = 3.48, P , 0.04] and savory [0.4 6 0.1
compared with 0.7 6 0.1/spoonful; F(2,60) = 4.08, P , 0.03]
cereals and tended to make fewer facial expressions of distaste
overall while they were fed the bitter- and savory-flavored ce-
reals when compared with the BM-NT infants. Although 38% of
the BM-NT infants and 25% of the MF-NT infants gaped while
eating the bitter-flavored cereal, none of the HCF-NT infants
made this facial expression of distaste [chi-square(2) = 6.74, P ,
0.04]. Although there were no differences in the intake of the
different cereals between the BM-NT and MF-NT infants, the
BM-NT and HCF-NT infants were more likely to smile while
eating the savory cereal than were the MF-NT infants [chi-
square(2) = 6.39, P , 0.05]. In the BM-NT infants, the more
savory cereal eaten, the fewer faces of distaste made while they
were fed [r(33) = 20.36, P , 0.04]. Significantly more of the
HCF-NT infants (85%) ranked, on the basis of intake, the savory-
flavored cereal as first to third most preferred when compared
with the BM-NT infants [49%; chi-square(1) = 4.43, P , 0.04]
or the MF-NT infants [44%; chi-square(1) = 5.08, P , 0.03;
Figure 2]. Analyses of the total ranking score on the basis of the
intake of the savory, sour, and bitter cereals revealed that these
cereals were preferred more by the HCF-NT infants (9.7 6 0.5)
than by both the MF-NT (11.8 6 0.6) and BM-NT (12.0 6 0.2)
infants [F(2,62) = 6.29, P = 0.003]. The MF-NT and BM-NT
infants also preferred the sweet cereal but the salty and sour

TABLE 1

Subject characteristics1

NT T P value

BM

(n = 37)

MF

(n = 16)

HCF

(n = 13)

MF

(n = 12)

HCF

(n = 11)

One-factor analyses

for NT groups2
Two-factor analyses for

MF and HCF groups3

Infant characteristics

Age (mo) 5.9 6 0.14 5.2 6 0.15 5.5 6 0.3 7.2 6 0.3 7.1 6 0.3 0.01 0.0016

Girls (%) 54.1 50 30.8 41.7 45.5 NS NS

Weight-for-age z scores 0.5 6 0.2 20.04 6 0.2 0.3 6 0.3 0.5 6 0.3 0.8 6 0.3 NS 0.046

Age at cereal introduction (mo) 4.6 6 0.1 3.4 6 0.25 3.5 6 0.45 2.7 6 0.4 4.0 6 0.4 0.001 NS

Cereal preparation methods7

Added BM (%) 75.7 05 05 0 0 0.001 NA

Added formula (%) 8.1 93.85 1005 100 81.8 0.001 NS

Added sugar/syrup/honey/fruit (%) 35.1 56.3 30.8 75.0 90.9 NS 0.016

1 BM, breast milk group; MF, milk-based formula group; HCF, hydrolyzed casein formula group; NT, no table food group; T, table food group; NA, not

applicable.
2 P values obtained after either Pearson chi-square or one-factor ANOVAwith milk experience group (BM, MF, or HCF) as the between-subjects factor

for NT infants. If significant, post hoc tests were conducted to calculate differences between groups.
3 P values obtained after 2-factor ANOVAwith milk experience group (MF or HF) and table food group (NT or TF) as the between-subjects factors for

formula-fed infants.
4 Mean 6 SEM (all such values).
5 Significantly different from BM-NT, P , 0.05 (Fisher’s least significant difference test with Bonferroni correction).
6 Significant main effect of T group.
7 Columns do not total 100% because some mothers may add more than one ingredient.
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cereals were also highly ranked for the MF-NT infants and the
savory for the BM-NT infants.

Taste acceptance comparisons between formula-fed infants
with and without table food experience

As a group, formula-fed T infants ate significantly less of the
cereals [52.46 9.3 g compared with 81.16 8.5 g; F(1,42) = 5.22,
P=0.027) and spent a shorter amount of time feeding [8.26 1.1min
compared with 12.3 6 1.0 min; F(1,40) = 8.04, P = 0.007) when
compared with formula-fed NT infants. As shown in Table 2, the
greater consumption (and in some cases faster rate of eating) in
HCF-NT infants relative to MF-NT infants was not apparent in
those eating table foods [HCF-T compared with MF-T; F(1,20) =
0.02, P = 0.89]. As a group, formula-fed T infants were perceived
by their mothers as enjoying the cereals, in particular the savory
and plain, less than those who were not eating table foods. How-

ever, HCF-T infants were perceived as liking the savory cereal
more than were the MF-T infants (see Table 2).

There was a great deal of variability in the types of table foods
proffered, and experiences with some of these table foods were
related to the liking for particular tastes in cereal during testing.
For example, those infants who were eating cheese at home ate
more of the salty cereals (79.6 6 24.9, n = 9) than did those
infants who were not eating cheese at home [42.1 6 12.7, n =
14; F(1,20) = 4.43, P = 0.048]. Eating bitter green vegetables,
such as broccoli, was associated with greater acceptance of the
bitter-flavored cereal [94.0 6 19.9, n = 5 compared with 31.0 6
10.5, n = 18; F(1,20) = 7.56, P = 0.01] and eating pasta and other
foods that contained cheese or tomatoes, which are high in
glutamate, was associated with greater acceptance of the savory
cereal [62.1 6 14.6, n = 7 compared with 33.6 6 9.6, n = 16;
F(1,20) = 6.19, P = 0.02].

FIGURE 1. Mean (6SEM) sensory evaluation of the stimuli used during infant testing. A trained panel (n = 9) rated the sweetness, savoriness, saltiness,
sourness, and bitterness of the cereals to which lactose (A), citric acid (B), glutamate (C), urea (D), sodium chloride (E), or distilled water (F) had been added
by using the general Labeled Magnitude Scale (LMS), a psychophysical tool that allows subjects to rate the perceived intensity of sensations that are arranged
semilogarithmically and range from “no sensation” to “strongest imaginable.” The data yielded general LMS ratings in the weak range. For reference, values of
0 = no sensation, 1 = barely detectable, 6 = weak, and 16 = moderate. *P , 0.05 when compared with other taste qualities by using a one-factor analysis with
Fisher’s least significant difference test.
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Facial reactivity and intake

There were significant inverse relations between how much
infants ate and the number of expressions of distaste displayed

during the initial minutes of feeding with each of the cereals

[sweet cereal: r(84) = 20.28, P = 0.009; salty cereal: r(79) =

20.28, P = 0.015; savory cereal: r(84) = 20.30, P = 0.006; sour

TABLE 2

Acceptance of the basic tastes in a cereal matrix on the basis of the type of milk or formula that infants are currently consuming and whether they are eating

table foods1

NT T

P value

BM

(n = 37)

MF

(n = 16)

HCF

(n = 13)

MF

(n = 12)

HCF

(n = 11)

One-factor

analyses for

NT groups2

Two-factor analyses

for MF and

HCF groups3

Lactose

Intake (g) 71.7 6 7.94 89.5 6 18.5 95.8 6 14.4 73.8 6 15.4 78.9 6 19.7 NS NS

Length of feeding (min) 13.2 6 1.1 12.9 6 1.9 12.6 6 1.5 12.0 6 2.2 11.8 6 1.5 NS NS

Rate of intake (g/min) 5.8 6 0.6 6.4 6 0.8 8.3 6 1.45 6.4 6 0.9 6.6 6 1.4 0.03 NS

Distaste expressions (no./spoonful offered) 2.2 6 0.3 2.0 6 0.3 2.2 6 0.5 2.1 6 0.3 1.6 6 0.2 NS NS

Mothers’ rating of liking6 6.4 6 0.3 7.3 6 0.5 6.6 6 0.7 6.4 6 0.6 7.1 6 0.8 NS NS

Glutamate

Intake (g) 49.6 6 6.9 63.7 6 14.2 114.4 6 15.65,7 59.0 6 17.6 41.0 6 9.98 0.0004 0.059

0.0410

Length of feeding (min) 9.6 6 0.9 11.4 6 1.8 16.6 6 1.85,11 9.0 6 1.9 7.0 6 1.1 0.006 0.059

0.0610

Rate of intake (g/min) 5.1 6 0.5 5.4 6 0.7 7.1 6 1.112 6.0 6 1.0 6.1 6 1.0 0.05 NS

Distaste expressions (no./spoonful offered) 2.4 6 0.2 1.8 6 0.3 1.6 6 0.2 2.0 6 0.3 2.1 6 0.3 NS 0.069

Mothers’ rating of liking5 6.1 6 0.4 5.6 6 0.7 7.6 6 0.45,7 4.8 6 0.8 5.4 6 0.6 0.05 0.0613

Salt

Intake (g) 67.6 6 9.8 80.2 6 16.0 76.4 6 17.1 65.4 6 17.4 64.0 6 15.6 NS NS

Length of feeding (min) 12.5 6 1.2 14.0 6 2.1 10.9 6 1.9 10.4 6 2.3 9.7 6 1.3 NS NS

Rate of intake (g/min) 5.2 6 0.6 5.4 6 0.7 8.8 6 2.312 6.0 6 0.7 7.4 6 1.8 0.02 NS

Distaste expressions (no./spoonful offered) 2.2 6 0.2 1.8 6 0.4 1.9 6 0.4 2.1 6 0.3 1.9 6 0.3 NS NS

Mothers’ rating of liking6 6.4 6 0.4 6.7 6 0.6 6.1 6 0.6 5.6 6 0.7 7.4 6 0.5 NS NS

Citric acid

Intake (g) 45.5 6 7.2 56.8 6 8.6 89.0 6 12.65 69.5 6 18.0 48.8 6 9.88 0.003 0.0510

Length of feeding (min) 9.1 6 0.8 10.7 6 1.4 12.5 6 1.4 9.1 6 2.0 8.3 6 1.1 NS NS

Rate of intake (g/min) 4.7 6 0.5 5.3 6 0.6 7.3 6 1.15 7.2 6 0.77 5.6 6 0.8 0.01 0.0510

Distaste expressions (no./spoonful offered) 2.4 6 0.4 2.0 6 0.3 2.0 6 0.5 2.0 6 0.3 1.9 6 0.2 NS NS

Mothers’ rating of liking6 5.1 6 0.4 5.8 6 0.6 6.0 6 0.6 6.2 6 0.7 5.3 6 0.8 NS NS

Urea

Intake (g) 36.7 6 6.2 44.0 6 9.0 78.6 6 14.65,11 54.0 6 17.6 47.5 6 16.6 0.02 NS

Length of feeding (min) 8.3 6 0.9 8.7 6 1.4 11.5 6 1.7 9.9 6 2.4 9.6 6 1.6 NS NS

Rate of intake (g/min) 4.2 6 0.4 5.1 6 0.7 6.8 6 0.85 5.0 6 0.7 5.0 6 1.1 0.009 NS

Distaste expressions (no./spoonful offered) 3.2 6 0.4 2.5 6 0.4 2.0 6 0.5 2.7 6 0.3 2.1 6 0.4 NS NS

Mothers’ rating of liking6 4.4 6 0.3 5.7 6 0.5 6.4 6 0.85 4.6 6 0.9 5.0 6 0.7 NS NS

Plain

Intake (g) 46.6 6 7.0 57.0 6 11.8 87.7 6 14.15 47.6 6 11.4 50.5 6 16.0 0.02 NS

Length of feeding (min) 9.1 6 0.8 10.4 6 1.6 12.9 6 1.15 9.9 6 2.5 9.0 6 1.7 NS NS

Rate of intake (g/min) 4.8 6 0.5 5.2 6 0.5 6.8 6 0.9 5.2 6 0.5 5.4 6 0.9 NS NS

Distaste expressions (no./spoonful offered) 2.4 6 0.3 2.1 6 0.3 2.1 6 0.4 1.8 6 0.3 1.6 6 0.3 NS NS

Mothers’ rating of liking6 5.1 6 0.4 6.2 6 0.4 7.8 6 0.35,7 5.3 6 0.7 5.0 6 0.8 0.002 0.029

1 BM, breast milk group; MF, milk-based formula group; HCF, hydrolyzed casein formula group; NT, no table food group; T, table food group.
2 P values obtained after one-factor ANOVA with milk/formula groups (BF, MF, or HCF) as the between-subjects factor for NT infants. If significant

(P , 0.05), planned comparisons between HCF-NT and MF-NT and between HCF-NT and BM-NT were performed by using Bonferroni-corrected t tests.
3 P values obtained after 2-factor ANOVAwith milk/formula groups (MF or HCF) and table food groups (TF or NT) as the between-subjects factors for

formula-fed infants only. If significant (P , 0.05), post hoc tests were conducted to calculate differences between groups.
4 Mean 6 SEM (all such values).
5 Significantly different from BM-NT, P , 0.05.
6 Values ranged from 1 to 9 (1 = did not like, 9 = liked very much).
7 Significantly different from MF-NT, P , 0.05.
8 Significantly different from HCF-NT, P , 0.05.
9 Main effect of table food groups.
10 Interaction effect of table food groups · milk/formula groups.
11 Indicates a trend when compared with MF-NT (P , 0.06).
12 Indicates a trend when compared with BM-NT (P , 0.06).
13 Main effect of milk/formula groups.
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cereal: r(83) = 20.22, P = 0.047; bitter cereal: r(82) = 20.26, P =
0.019; and plain cereal: r(84) = 20.39, P = 0.001]. The more
a child ate, the fewer facial expressions of distaste the child
displayed. A repeated-measures ANOVA was conducted by us-
ing intake data of the 6 cereals for all formula-fed infants with
taste as the within-subjects factor and subgroup as the grouping
factor. Taste was an important determinant of the facial re-
activity response made during feeding [F(5,350) = 4.33, P ,
0.0001]. In general, babies made more faces of distaste while
being fed the bitter cereal when compared with being fed the
other cereals (all P values , 0.02).

DISCUSSION

The NT infants exhibited preferences for the taste qualities
experienced in their formulas as we hypothesized. Infants fed
HCF ate more of the cereals that tasted savory, sour, and bitter
and at a faster rate than did MF and BM infants. That they liked
the savory and bitter tastes more is suggested by the display of
fewer facial expressions of distaste during feeding. In the HCF-
NT infants, the savory cereal was ranked, on the basis of intake, as
one of the more preferred tastes. They also ate more of the plain
cereal than did the BM-NT infants, which may be a reflection of
a greater appetite or liking for the weak bitter taste of distilled
water (39). Because the majority of infants, regardless of milk-
consumption history, had experience eating cereal prepared with
ingredients other than water (see reference 40), it seems unlikely
that the HCF-NT infants ate more of the plain cereal because it
was novel to them.

Compared with milk-based formulas, and presumably BM (4),
hydrolysate formulas have more pronounced savory, bitter, and
sour tastes and stronger odors (11). Thus, infants who regularly
are fed formulas that contain casein hydrolysate have more
experiences with these taste and flavor qualities. The current
results show that they also display their preferences for these
flavors in a food matrix (eg, cereal), which is salient to them.
However, in infants who have been introduced to the wide range

of tastes and flavors in solid foods, their preferences for the basic
tastes reflect the types of foods they are being fed. Those who
were eating foods that tasted savory, salty, or bitter ate more of
cereals containing those respective tastes.

The relation between feeding history and cereal intake during
the taste preference tests was not evident in formula-fed infants
who were tested after they had been fed table foods for several
weeks to months. Once table foods were introduced, the ac-
ceptance of the different flavored cereals was similar in the MF
and HCF groups. One explanation for the absence of a relation is
that enhanced preference induced by early experience during
formula feedings (due to flavor differences between MFs and
HCFs) disappears after the introduction to table foods. However,
this explanation is unlikely to be valid on the basis of our pre-
viously published observations. Children, ages 4 to 5 y, who were
fed hydrolysate formulas during their infancy exhibited more
positive responses to foods and beverages containing the sensory
attributes associated with them (eg, sour taste, hydrolysate aroma,
broccoli) several years after their last exposure to the formula (41,
42). Thus, an alternative and likely explanation for the absence of
the relation is that that the taste variation in the cereals was too
small to be attended to and to drive differential consumption for
infants used to eating highly flavored table foods. As shown in
Figure 1, the flavor intensity levels, as judged by adult observers,
were weak for all added tastes and thus were likely to be con-
siderably less intense than those flavor intensity levels with which
infants exposed to table foods were familiar.

Because human milk contains more free glutamate than do
milk-based formulas, we also hypothesized that BM infants
would show elevated umami preferences. Although the BM
infants did not consume more of the savory cereal, they exhibited
more positive (eg, smiling) facial responses to that taste than did
MF infants, an observation consistent with previous research
(43). One explanation for this dissociation is that consummatory
and hedonic responses are controlled by separate neural struc-
tures in the brain (see reference 44 for review). Another ex-
planation is that these measures differ in their sensitivity and,
consequently, measures of consumption were not sensitive
enough to detect the breastfed infants’ preference for the savory
cereal.

It is important to acknowledge that although glutamate is the
most abundant free amino acid in human milk (21, 45), there is
a great deal of individual variation, and concentrations inmilk (20,
21, 45) are just at or slightly below glutamate detection thresholds
(46).However, nucleotides,which are present in higher amounts in
human than in bovine milk (47), may act synergistically with
glutamate to enhance its savory flavor. What causes variation in
glutamate concentrations in human milk is unknown, although
there is some evidence, albeit weak, that the variation is not due to
the glutamate content of the maternal diet (48).

In the foregoing discussion, we assumed that differences in
responses to tastes are caused by infants’ differential feeding
histories. But because infants in the present study were not
randomly assigned to different feeding regimens, this conclusion
can only be tentative. In one area, comparison of breastfed with
formula-fed infants, we know that there may be many other
differences. That we could not identify sufficient numbers of
breastfed infants who were eating both table foods and infant
cereal highlights the fact that these infants differ in more ways
than the type of milk they consume. Not only are breastfed infants

FIGURE 2. The cumulative percentage of infants who were not yet eating
table foods (NT) but were consuming either breast milk (BM, top panel; n =
37), milk-based formula (MF, middle panel; n = 16), or hydrolyzed casein
formula (HCF, bottom panel; n = 13) whose intake of the savory cereal was
ranked first (most preferred), second, third, or higher. A higher percentage of
the HCF-NT infants (85%) ranked, on the basis of intake, the savory-flavored
cereal as first to third most preferred than did the BM-NT infants (49%; chi-
square(1) = 4.43, P, 0.04) or MF-NT infants (44%; chi-square(1) = 5.08, P,
0.03).
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perceived differently by their mothers (49), but they are typically
introduced to solid food at a later age (50, 51) than those who are
fed formula. Mothers who breastfeed also exert less control
during feeding than mothers who formula feed (52). Grouping
breastfed infants on the basis of flavor experiences early in life
also presents difficulties in interpretations, because there is
a great degree of individual variation in the taste quality (eg,
sweetness) of the breast milk (4) as well as flavor experiences due
to the transmission of volatiles from a mother’s diet to milk (3, 5,
6) and amniotic fluid (53). Consequently, even during very early
development, there is a great deal of individual variation in the
variety of taste and flavor compounds sampled by breastfed
infants before table foods are introduced to their diets.

Whether the glutamate content in human milk serves to en-
hance the flavors of the transmitted volatiles from a mother’s diet
as it does for other foods (54–56) is an important area of future
research. Also unknown is how early taste experiences during
milk feedings modify acceptance of table foods. For the volatile
flavor component of foods, we have shown that preferences for
flavors will be displayed in other food matrixes, especially when
the flavor resembles that experienced in mothers’ milk (3). For
infants fed hydrolysates, we would expect that the effect of their
early taste experiences with formula will be magnified when they
are offered table foods that taste savory, sour, or bitter and reflect
the flavor profile of their cultures’ cuisine. Examples of such
foods include vegetable soup with rice flour, meat, and Parmesan
cheese (high in umami flavor), which is fed to infants in parts of
Italy (57), and miso soup in Japan.

The sensory world of infants is ever changing and dynamic and
most evident as they begin the transition from an all-milk diet to
one containing solid foods. Although much of the taste research
on human infants has been devoted to the study of sweet and salty
perception, less attention has been paid to the other basic tastes of
sour, bitter, and umami. The present observations add to this body
of research and reveal that early experiences in milk and solid
foods affect infants’ taste acceptance patterns and that infants
communicate their acceptance by both intake and facial displays
(5, 6, 58). An appreciation of the role of early experiences and
complexity of early feeding and a greater understanding of the
different ways infants communicate their liking of tastes and
flavors will aid in the development of evidence-based strategies to
facilitate healthy eating by children. (Other articles in this
supplement to the Journal include references 59–87.)
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