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ABSTRACT

Power Profiling Smart Home Devices

Kailai Cui

In recent years, the growing market for smart home devices has raised concerns

about user privacy and security. Previous works have utilized power auditing

measures to infer activity of IoT devices to mitigate security and privacy threats.

In this thesis, we explore the potential of extracting information from the

power consumption traces of smart home devices. We present a framework that

collects smart home devices’ power traces with current sensors and preprocesses

them for effective inference. We collect an extensive dataset of duration > 2h

from 6 devices including smart speakers, smart camera and smart display. We

perform different classification tasks including device identification and action

classification and present accuracy and confusion matrices for each tasks. Our

analysis reveals that from devices’ running power traces, we can accurately iden-

tify the type of smart device being used with 93% accuracy and subsequently

infer user behavior with on average 92% accuracy.
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Chapter 1

Introduction

The market for smart home devices is rapidly growing, and as a result, there

is an increasing interest in understanding the behavior and power consumption

patterns of these devices. Previous works [3, 4] have demonstrated the capabilities

of power auditors in identifying Internet of Things (IoT) device actions, and with

the possibility of embedding these power auditors into smart plugs [5, 6], large-

scale power auditing in smart home settings could soon become a reality.

Given this context, this thesis aims to explore the research problem: What

information can we gain from the power traces of smart home devices?

To address this problem, we set out to profile the power consumption traces of

smart home devices and answer the following three research questions:

1. How can we model the power consumption data collected from smart home

devices?

2. What information can we infer from the data and why is it important?

3. How well can the model make these inferences?

To answer the first research question, we designed a power auditing framework

that uses a current sensor to record and calculate the power consumption of smart

home devices. We analyze power patterns and also employ data processing, data

segmentation, and feature extraction to prepare the data for machine learning

(ML)-based classification.

To answer the second research question, we observe patterns in the power

consumption patterns corresponding to different device functionalities and states.
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We use an ML model to infer the device type and activity based on the power

consumption data. We argue the importance of these inferences from two per-

spectives: better understanding of smart home device mechanisms and the asso-

ciated privacy risks, which includes inferring usage patterns and enabling better

recommendation targeting for IoT manufacturer for example.

To answer the third research question, we evaluate the model’s performance on

the dataset using accuracy and confusion matrices across multiple classification

tasks. We also include system performance metrics to estimate the system’s

scalability, demonstrating the practicality of our approach in a real-world setting.

The rest of the thesis is organized as follows: Chapter 2 provides a background

and motivation for the research. Chapter 3 gives an overview of the power pro-

filing system. Chapter 4 writes about the experimental setup and data collection

procedures. Chapter 5 explains how we process the data and explore the patterns

in the power traces. Chapter 6 explains the ML model and shows the evaluation

on the dataset. Chapter 7 summarizes the related works in relevant research di-

rections. Chapter 8 summarizes the contributions and outlines some limitations

and directions for future work.



Chapter 2

Background

In this chapter, we provide an overview of the context and motivation for our

research on power profiling smart home devices. We discuss the characteristics

of smart home devices with respect to their power consumption patterns, review

previous works on power auditing, and explore potential deployment scenarios

and their implications.

2.1 Smart Home Devices

Smart home devices, such as smart speakers and security cameras have become

increasingly popular due to their convenience and capabilities.

Smart speakers like Amazon Echo, Google Home, and Apple HomePod offer

a wide range of functionalities, from answering queries to controlling other smart

devices. When a user calls a voice assistant using its wake word, the recorded

voice command is sent to a cloud server for processing, and the device reacts

based on the server’s response [7]. Power consumption patterns during these

interactions might correspond to network access, sound playback, or increased

processing requirements [8].

The Amazon Echo Show is a smart display that combines the voice assistant

capabilities of Amazon’s Echo series with a touchscreen display [2]. In addition to

the funtionalities of smart speakers, Echo Show can perform various tasks, such

as streaming video content, displaying weather, news, and calendar information.

This leads to distinct power pattern, which is dependent on the display content.

Smart cameras offer a range of advanced features and functionalities, such

as real-time video streaming, motion detection, two-way audio communication,
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night vision capabilities, and integration with other smart home devices [1]. Power

consumption patterns might correspond to recording, motion detection, etc.

2.2 Power Auditing

Previous works have explored power auditing as a method for anomaly detection

to mitigate botnet and information leakage attacks [4, 3, 9]. By monitoring the

power consumption of devices, researchers have been able to identify abnormal

patterns indicative of malicious activities or unauthorized accesses [10]. However,

this thesis focuses on profiling the power consumption patterns of smart home

devices under normal usage to better understand their characteristics and develop

methods for device identification and behavior analysis. We use a current sensor

connected in series with the devices’ power supply to record the current passing

through, and thus model the devices’ power traces.

2.3 Deployment Scenarios

Assuming that smart plugs become ubiquitous in the future, then by integrating

our power profiling framework into these smart plugs (as in [5, 6]), we can analyze

the power consumption patterns of various devices.

The power auditing of smart home devices, while offering valuable insights

into device usage patterns and energy consumption, raises privacy concerns due

to the potential for sensitive information to be inferred from power traces.

One privacy risk is the possibility of tracking users’ daily routines and habits.

Researchers conduct user studies to obtain such information legally [11]. However,

by analyzing power consumption patterns, companies like Amazon might infer

when a user is at home, when they leave for work, or when they go to bed. This

information could be used for targeted advertising, or in more nefarious scenarios,

be sold to third parties without user consent.

Another concern is the potential for eavesdropping on user interactions with

their smart devices [12]. For instance, if a voice assistant’s power trace reveals an
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increase in energy consumption during a specific time frame, it could indicate that

the user was engaging with the device, possibly revealing sensitive information or

personal preferences.

Additionally, power traces may reveal the type and number of devices in

a household, which could be used to build detailed profiles of users and their

lifestyles. Users are unaware of privacy risks from inferring based on side-channel

information [13]. This information could be exploited by companies to push tar-

geted marketing content or shared with other entities, such as insurance providers,

who could use the data to adjust premiums based on perceived risk.

2.4 Goal of Analysis

Understanding the how privacy can be breached is essential in mitigating such

risks. Utilizing power traces to gain sensitive information relies on the ability to

analyze and interpret patterns in the data. In the analyses, we aim to achieve

the following objectives.

Detecting user’s calls: As the device’s power consumption increases when

processing voice commands, analyzing these patterns can reveal instances of user

interaction. We aim to profile the power pattern of different voice-assistant-built-

in devices responding to user call.

Device identification: By analyzing the power consumption patterns of var-

ious smart home devices, it is possible to build a profile of each device’s unique

power usage characteristics. ML models can then be trained to classify devices

based on these patterns. We aim to identify a device based on its power con-

sumption data.

Device action classification: Different actions performed by a device, such

as audio playback or user interaction, often result in distinct power consumption

patterns. By training machine learning models to recognize these patterns, it

becomes possible to classify device actions based on power traces. We aim to

classify the device activity once the device is known.



Chapter 3

Power Profiling System Design

In this chapter, we give a brief overview of the power profiling framework. As

shown in Figure 3.1, The system collects power consumption data of smart home

devices and run preprocessing steps that prepare the data for effective inference.

Then, we aim to infer the smart home device type and behavior based on the

data.

Data Collection: To collect power consumption data, we use a sensor that

measures the current passing through the circuit connected to the smart home

device. The sensor collects current data over a specified period, capturing the

device’s current patterns.

Data Preprocessing: The collected current data is processed to calculate

the power consumption using the root mean square (RMS) method. Further

preprocessing tasks, such as applying a smoothing filter, are performed to enhance

the quality of the data by reducing noise and fluctuations.

Data Segmentation: We employ a sliding window approach to segment the

preprocessed data, transforming the univariate time series into dataset instances.

Each instance represents the power measurement of the device within a 2-second

Figure 3.1: System Overview

Power 
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ACPower ~ e 
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Data Processing 

Data Segmentation Training 

Feature Extraction 
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window, providing a granular view of the energy consumption patterns.

Feature Extraction: Relevant features are extracted from the segmented

data to effectively classify devices and infer their behaviors based on power con-

sumption data. The feature extraction process aims to capture the unique char-

acteristics of each device’s power consumption, which serve as input for the sub-

sequent classification model. Various statistical and spectral features, such as

mean, standard deviation, and spectral entropy, are extracted to represent the

energy consumption patterns.

Model Development and Validation: We formulate a time series clas-

sification problem to distinguish between different devices and recognize their

operational patterns based on the extracted features. To this end, we employ a

machine learning model based on random forest, which is well-suited for handling

high-dimensional and noisy data [14].

The model’s performance is evaluated using 5-fold cross-validation, to ensure

its robustness and generalization capabilities, demonstrating its effectiveness in

accurately identifying device types and characterizing their behaviors.



Chapter 4

Data Collection

In this chapter, we discuss the experimental setup and the devices under test.

4.1 Experimental Setup

The experimental setup consists of an ACS712 current sensor [15] that measures

the current passing through the circuit connected to the smart home devices,

an Arduino Uno [16] microcontroller board that reads and processes the current

reading, and an M2 Macbook Pro for recording and processing the data. The

ACS712 sensor is connected in series with the device’s power supply and measures

the current at 55 Hz (Figure 4.1). As the connected devices perform various ac-

tions, the power consumption data is collected by ACS712, processed by Arduino

Uno, and output to the laptop computer.

In the experiment, we simultaneously start logging data with Arduino script

and recording from a camera, then perform various actions on the devices. The

recording allows us to find the exact time that the device responds to voice

commands, which is useful for data labeling and cleaning.

4.2 Smart Speakers

In the experiment, we collect power consumption data of several popular smart

speakers. As listed in Figure 4.2, they are (from left to right) Apple HomePod,

Google Home, Amazon Echo and Amazon Echo Dot. The experiments involve

performing various actions on the devices as listed in Table 4.1. For the “user

conversation” action, we asked some common daily-life questions [17]. The power
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Figure 4.1: Experiment Setup Devices

Action Description
Idle When the device does not perform any task and is standing by for user call
Audio Playback When the device is playing music or other audio content
Wake Word When the device responds to user saying wake word (”Hey Siri”)
User Interaction When the device interacts with the user (such as asking about weather)

Table 4.1: List of Actions Performed by Smart Speakers

consumption data is recorded during these actions to analyze the devices’ power

patterns and understand how different functionalities affect the pattern.

Figure 4.2: Smart Voice Assistants in the Experiment

4.3 Other Devices

In addition to smart speakers, we also collect data from other smart home devices

including Amazon Echo Show and Google Nest Security Cam. These devices offer
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Action Description
Recording Capturing and storing video footage of the monitored area
Motion Detection Detecting movement within the field of view and initiating recording or alerts
Voice Broadcasting Enabling remote voice communication through the camera

Table 4.2: List of Actions Performed by Smart Cameras [1]

Action Description
Idle Display Standing by and displaying weather, news, calendar, etc.
Video playback When the device is playing video

Table 4.3: List of Actions Performed by Echo Show (Besides smart speaker func-
tions) [2]

different functionalities, allowing us to explore a broader range of power consump-

tion patterns in smart home devices. Similar to the voice assistant experiments,

we perform various actions (listed in Table 4.2 and 4.3) on these devices and

record their power consumption data to analyze the patterns during operation.

(a) Amazon Echo Show 5 (b) Nest Cam 2nd Gen

Figure 4.3: Other Devices in the Experiment

4.4 Collected Dataset

For the four smart speakers Amazon Echo Dot, Amazon Echo, Google Home,

and Apple HomePod, we collect power consumption patterns corresponding to

four different actions: Idle, Audio Playback, Wake Word Detection, and User

Conversation. This results in a dataset with 16 distinct classes of instances, each

representing a unique combination of device and action. The power traces from

Echo Show include an action class of video playback. The power traces from

Google Nest Security Cam have three classes of actions.
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Device Collected power traces
Echo idle, audio playback, wake word, interaction
Echo Dot same as above
Google Home same as above
Apple HomePod same as above
Echo Show home screen, video playback, audio playback, interaction
Nest Cam recording, motion detection,voice broadcasting

Table 4.4: List of Devices and Their Actions Whose Power Traces Are Collected

For all the power traces we collected, we check with the recorded video as

the ground truth to mark the timestamps when each action actually started and

ended. Then we manually cut out the interval when the device is not performing

the labeled action. For all the actions mentioned above, each has duration that

adds up to about 5 minutes.



Chapter 5

Data Processing and Analysis

In this chapter, we first describe the calculation of power from the current data,

followed by the application of a smoothing filter. Next, we discuss the observed

patterns in the sample traces and the segmentation of the data using a sliding

window approach.

5.1 RMS and Smoothing

To calculate the power consumption from the collected current data, we use the

root mean square (RMS) method, which provides a measure of the average power

consumed by the devices [18]. The power is calculated using the following formula:

P = V × IRMS (5.1)

where P is the power, V is the constant voltage supply, and IRMS is the root

mean square of the AC current value.

To further enhance the quality of the data and reduce noise, we apply an

alpha filter, which is a moving average filter, to smooth the power data [19]. The

alpha filter is defined as:

y(t) = α · y(t− 1) + (1 − α) · x(t) (5.2)

where y(t) is the smoothed power value at time t, x(t) is the raw power value at

time t, and α is a parameter between 0 and 1 controlling the degree of smooth-

ing. This filter helps eliminate high-frequency fluctuations, providing a clearer

representation of the underlying power patterns. Figure 5.1 shows the effect of
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(a) Raw Data (b) Alpha Filter (α = 0.2) (c) Root Mean Square

Figure 5.1: Power Consumption Data from Pre-processing Steps

alpha filter and RMS.

5.2 Sample Trace Analysis

Upon analyzing some sample traces, we observe distinct patterns in the power

consumption data corresponding to different device functionalities and states.

These patterns serve as the basis for our feature extraction and classification

model, enabling the identification of device types and behaviors. We first visualize

the traces of some devices and discuss their the patterns and features.

5.2.1 Wake Word Pattern

Wake word detection is the process of identifying a specific keyword or phrase,

such as “Alexa” for Amazon Echo devices, “Hey Google” for Google Home de-

vices, or “Hey Siri” for Apple HomePod devices. When the voice assistant detects

its wake word, it starts listening and processing voice commands from the user

[7].

In our sample traces, we observe distinct power consumption patterns across

different devices when the wake word is detected (Figure 5.3). This pattern

typically consists of an initial spike in current consumption, followed by a period of

sustained elevated consumption as the device processes the command. The spike

in consumption can be attributed to the activation of the device’s microphone

and the increased processing required to analyze the user’s voice command. The

sustained elevated consumption results from the device’s continuous listening and

processing of the command until it completes the requested action or reverts to

standby mode.
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(a) Amazon Echo (b) Amazon Echo Dot (c) Google Home (d) Apple HomePod

Figure 5.2: Power Consumption Data of Wake Word Detection

5.2.2 Audio Playback

Smart speakers are capable of playing news, music, podcasts, and other audio

content. As shown in Figure 5.3a, the power consumption pattern during audio

playback features periodic fluctuations corresponding to the audio content being

played. From more traces we observe that these fluctuations are directly related

to the speaker’s output volume and the complexity of the audio signal.

5.2.3 User Conversation

When a user engages in a conversation with the smart speaker, the power con-

sumption patterns can vary depending on the duration and nature of the in-

teraction. During a conversation, the smart speaker continuously listens for user

commands while providing responses or performing requested actions. The power

consumption pattern in Figure 5.3b exhibits a mix of listening, processing, and

audio playback events, with spikes corresponding to the device’s microphone ac-

tivation and response generation.

(a) Audio Playback (b) User Conversation

Figure 5.3: Power Consumption Patterns of Amazon Echo
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5.2.6 Smart Display patterns

We observe the power traces for Echo Show and observe the following patterns.

Non-zero idle power consumption: Unlike smart speakers, the Echo Show’s

power consumption never drops to zero due to its display, which is always on,

even when the device is idle. This results in a baseline power consumption level

that is consistently above zero.

Higher power level fluctuations: The Echo Show’s power consumption pat-

terns generally exhibit higher levels of fluctuation compared to smart speakers

(Figure 5.5). This is perhaps due to the fact that the display consumes more

power than the speaker component alone.

(a) Audio Playback (b) User Conversation

Figure 5.5: Power Consumption Patterns of Amazon Echo Show
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To segment the data for further analysis, we employ a sliding window approach.

The choice of window duration and overlap ratio is crucial for accurately cap-

turing the power consumption patterns. Based on our observation that most

spike patterns occur within a 2-second duration, we select a window duration of

2 seconds and an overlap ratio of 0.5. This configuration ensures that the slid-

ing window effectively captures the rapid changes in power consumption while
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data into dataset instances, with each instance representing the power measure-

ment of a device within a 2-second window. This segmented data serves as the

input for the subsequent feature extraction and classification steps.

5.4 Feature Extraction

To effectively classify the power consumption patterns of smart home devices,

we extract relevant features from the segmented power traces. We treat each

segment as a univariate time series, consisting of sequential single data points

collected at constant time intervals.

We use the Tsfresh [20] library to extract 777 features from each segment,

including statistical features (e.g., mean, standard deviation, variance), linear

trend, coefficients of Fast Fourier Transform (FFT), and Continuous Wavelet

Transform (CWT).

In the training phase, Tsfresh automatically selects the most relevant features

using statistical hypothesis tests, evaluating their importance in relation to the

target variable. This process ensures that only the most informative features

are retained for model training, reducing the risk of overfitting and improving

the model’s generalization performance [21]. In the testing phase, features are

extracted from the new, unlabeled data, and the trained model is used to make

predictions about the device type and action.

Some of the important features extracted by Tsfresh and their definitions are

presented in the Table 5.1.

By leveraging the capabilities of the Tsfresh library, we were able to extract

and select a set of informative features that enable our machine learning model

to effectively classify the smart home devices based on their power consumption

patterns.
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Feature Definition
Mean The arithmetic mean of the values in the time series.
Variance Measures how far the values spread out from mean.
Linear trend The slope of a straight line that best fits the time series data.
FFT coefficients Represents the time series in the frequency domain

CWT
Decomposes the signal into different frequency components
and produces a series of coefficients that describe the
components’ amplitude and location.

Maximum The maximum value in the time series.
Minimum The minimum value in the time series.

Table 5.1: Important Features Extracted Using Tsfresh
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ML Model and Evaluation

In this chapter, we discuss the choice of ML model, the model workflow and the

evaluation on our dataset.

6.1 Random Forest Model

We use a Random Forest model for the classification tasks. As the dataset in-

stances are segments of time-series with a large number of extracted features (777

in this case), Random Forest is capable of managing this complexity and avoid-

ing overfitting. Each tree in the ensemble considers a random subset of features,

which helps in capturing various aspects of the data without being overwhelmed

by the high dimensionality [14].

Some previous works [9, 3, 4, 22] use deep learning techniques for identifying

power traces. Our chosen machine learning model, Random Forest, is capable

of delivering satisfactory results even with the limited data available (about 250

instances per device-action class), while deep learning models typically require a

large amount of training data and more computational resources to achieve good

performance. In a following section, we compare our performance with a deep

learning based model [4].

6.2 Classifying Power Traces: a Naive Approach

A naive approach of classifying smart home devices and their actions would be to

treat all device-action pairs as distinct classes and train a single model to identify

both the device and the action performed in a power trace.
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Task Accuracy
Device-Action pairs: 0.8132
Device (Running) 0.9296
Device (idle) 0.7939
Echo Actions 0.8897
EchoDot Actions 0.9377
Google Actions 0.843
HomePod Actions 0.9717
Nest Actions 0.9623
EchoShow actions 0.8956

Table 6.1: 5-fold Cross Validation Accuracy of All Classification Tasks

Figure 6.1: Confusion Matrix for Device-action Pair Classification
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However, this approach leads to poor accuracy of 81% (Table 6.1). As demon-

strated by the confusion matrix (Figure 6.1), idle power traces of several devices

are easily misclassified. This is reasonable since most devices exhibit similar or

zero power consumption when idle.

6.3 Device First, Then Action

Figure 6.2: Workflow of the Machine Learning Models

Instead, we propose a two-step classification process to first identify the de-

vice and then classify the action the device is performing. We train two device

classifiers: one for classifying power traces of running devices, and another for

classifying devices based on their idle power traces. Additionally, we train an

action classifier for each device. The workflow of this process is illustrated in

Figure 6.2.

Given a power trace, we use either the running device classifier or the idle de-

vice classifier to identify the device. Determining whether a device is in a running

or idle state is relatively straightforward. The rough power consumption data can

provide sufficient information to differentiate between these states, without the

need to examine the fine-grained collected power traces (which are collected at 55

Hz). Once the device is identified, we then use the corresponding action classifier

for that device to identify the action being performed. As shown in the next

sections, this two-step classification process provides a more accurate and robust

method for inferring both the device type and the action performed.
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Idle Device Classifier 
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6.4 Evaluation: Device Classification

We evaluate the performance of the two device classifiers and the action classifiers

for each device.

The model classifies running device traces with a 92.96% accuracy. The con-

fusion matrix for running device classification (Figure 6.3) reveals satisfactory

performance in most cases. Most instances are classified correctly; however, there

are notable misclassifications between Amazon Echo and Echo Dot. This may be

attributed to the similar software and possibly hardware of both devices, resulting

in similar power traces when running.

The model classifies running device traces with a 79.39% accuracy. The con-

fusion matrix for idle device classification (Figure 6.4) exhibits serious misclassi-

fications between Amazon Echo and Echo Dot. Additionally, the classifier often

identifies power traces of the Nest Cam as Amazon Echo. Upon inspecting the

dataset, we found that both classes display long durations of zero power con-

sumption, which might be the reason for these misclassifications.

Thus, in the actual deployment, we can set the system to make inferences

from device running power traces instead of the idle traces. Based on empirical

calculation, if we can classify the device at accuracy of 93%, and we can classify

the device action at accuracy 90%, then the estimated accuracy of correct device-

action pair identification is 0.93 ∗ 0.9 = 0.84, outperforming the naive classifier.

6.5 Action Classification Per Device

Referring to confusion matrices, we discuss the model’s performance on certain

devices where misclassifications occur.

Amazon Echo, Echo Dot, and Google Home: There are minor misclas-

sifications between the conversation and audio playback actions for these devices

(Figure 6.5a, 6.5b, 6.5c). This suggests that the power consumption patterns for

these two activities are quite similar, making it challenging to differentiate them

solely based on the power traces.
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Figure 6.3: Confusion Matrix for Running Device Classification

Figure 6.4: Confusion Matrix for Idle Device Classification
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(a) Amazon Echo (b) Amazon Echo Dot

(c) Google Home (d) Apple HomePod

(e) Nest Cam (f) Amazon Echo Show

Figure 6.5: Confusion Matrices for Action Classifications
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Model-Task Accuracy
Light Auditor 0.8344
Ours-Classifying device 0.9296

Table 6.2: Accuracy V.S. LightAuditor

Echo Show: The most notable misclassification for the Echo Show is when

the conversation action is misclassified as idle (Figure 6.5f). This can be at-

tributed to the fact that during the idle state, the smart display is continuously

on, displaying content such as weather updates and notifications. This results

in an overlapping power consumption pattern between the conversation and idle

states, making it harder for the classifier to distinguish between them.

For the other devices, the models identify the device actions with good accu-

racy.

6.6 Comparison with State-of-the-Art

We compare our proposed model with Light Auditor, a power-auditing-based

system that identifies actions of a smart bulb [4]. The Light Auditor also processes

time series data, but it converts data segments into 2D images using a Continuous

Wavelet Transform (CWT) and applies Convolutional Neural Networks (CNN)

to classify them into different behavior classes. However, this approach yielded a

lower accuracy of 0.83, compared to our model’s accuracy of 0.93.

There are a couple of possible reasons for the lower performance of the Light

Auditor approach in our case.

The dataset we collected might be too small to effectively train the deep

neural network used in the Light Auditor model. Deep learning models typically

require large amounts of data to optimize their parameters and generalize well

to new instances. Our dataset’s limited size could have negatively impacted the

model’s ability to learn the necessary representations for accurate cross-device

identification.

The Light Auditor model was originally designed to identify actions of a smart
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bulb, not to perform cross-device identification. This means that the model’s ar-

chitecture and features may be more suited to capturing the nuances of smart bulb

actions rather than differentiating between various smart devices. As a result, its

performance may be suboptimal when applied to our cross-device identification

task.

Given these limitations, our approach, which leverages feature extraction and

a Random Forest classifier, demonstrates superior performance in accurately iden-

tifying the devices and their activities.

In addition, our model is much lighter in terms of computational resources

since it does not require a GPU. Overall, our proposed model provides a viable

alternative to deep learning-based approaches for power auditing systems.

6.7 System Performance

Evaluating the performance of a machine learning model is not only about its

accuracy but also about its efficiency in terms of resource utilization, such as

time and computational power.

Our hardware, the ACS712 sensor, generates 55 current values per second.

These values are preprocessed through RMS and smoothing filters before being

segmented. These processes have negligible time costs and are not throughput

bottlenecks.

The time-consuming processes include feature extraction, model training, and

model running. In our evaluation, 4,400 instances take 59 seconds for feature ex-

traction and 9 seconds for model training. For 1,400 instances, it takes 2 seconds

to make inferences. The estimated feature extraction, training, and inference

time per instance are presented in Table 6.3.

Process Instances Time (s) Time per Instance (ms)
Feature Extraction 4,400 59 13.41
Model Training 4,400 9 2.05
Model Inference 1,400 2 1.43

Table 6.3: Evaluation of Feature Extraction, Model Training, and Inference Time
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Recall that each dataset instance is converted from time series by segmentation

using sliding window of size 2 seconds and overlapping ratio 0.5. This means

each sensor generates 1 instance per second. Then, our testbed environment (M2

MacBook Pro) allows real-time processing of power traces from 1000/13.41 = 75

sensors, which is well above the number of socket plugs per household.
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Related Works

In this work, we present the first systematic study on IoT device identification

using power consumption patterns, emphasizing the novelty of our approach. Fur-

thermore, we discuss the privacy risks associated with power traces, highlighting

the potential for sensitive information to be inferred from these data. With this

foundation established, we proceed to review other works in the domains of power

auditing, IoT privacy, and smart home usage.

7.1 Utilizing Power Side-Channel Information

A number of works aim to infer device activity based on power side-channel

information. Myridakis et al. [23] proposed a circuit design for monitoring IoT

devices against DOS attacks. Similarly, Li et al. [24], Majumder et al. [10],

Jung et al. [3] and [9] analyzed the power consumption pattern of IoT devices

to mitigate security threats. Similarly, they profile the devices’ power pattern

under normal usage and under attack and identify the attack pattern from power

traces. In [22], Cronin et al. infer the location on the smart phone touchscreen

where the user touched through charging power traces.

7.2 IoT Privacy Leakage

A number of works explore and mitigate privacy risks of IoT devices from different

perspectives. Jung et al. [4] use power auditing information to mitigate infor-

mation leakage attacks. Yang et al. [25] analyze smartphone activities based on

USB power side channels. Sayakkara et al. [26] use electromagnetic side-channel



37

information to infer software behaviors of IoT devices. Zhang et al. [7] explore

two types of voice skill squatting attacks on Amazon Echo that potentially leak

users’ information.

7.3 Understanding Smart Home Uses

One potential use scenario of our work is to profile users’ usage patterns. A

number of works aim to profile users for various purposes. Khan et al. [27]

profile user pattern to better manage the energy use in a smart home setting.

Bentley et al. [11] conduct user studies to explore long-term habits of using

smart home devices. Wei et al. [28] use reinforcement learning models to profile

residents’ behavior in commercial buildings.

Other works have identified security and privacy issue in smart home systems.

Ling et al. [29] delve into the smart plug’s architecture and networking protocols.

Panwar et al. [12] outline typical threats to a smart home system.
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Concluding Remarks

8.1 Summary

In this thesis, we explore the power consumption patterns of smart home devices

and the information that can be gained from these patterns. Our contributions

can be summarized in three main aspects:

First, we have developed a framework that leverages current sensors to effec-

tively infer both the type and activity of smart home devices. This framework is

built upon a solid foundation of data collection, preprocessing, feature extraction,

and machine learning techniques, which allows us to analyze the power consump-

tion patterns of various smart home devices and infer crucial information from

them.

Second, we have collected an extensive power consumption dataset of more

than 2 hours in total, covering different smart devices performing different actions.

This dataset has provided us with valuable insights into the power consumption

patterns of smart home devices and enabled us to establish a strong connection

between these patterns and the devices’ types and activities.

Third, our analysis has demonstrated that, by utilizing the power consumption

data, we can effectively infer the type of smart device being used. Furthermore,

once the device type is known, we can also make inferences about the user’s

behavior, which has important implications for understanding smart home usage

patterns and potential privacy risks.
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8.2 Limitations

However, we acknowledge that there are certain limitations to our approach. One

limitation is that auditing the power consumption through circuit is not applicable

to devices that run on battery power. This constraint may limit the applicability

of our approach to certain smart home scenarios where battery-powered devices

are prevalent.

Another limitation is that our supervised learning model requires pre-training,

which means that unseen devices cannot be classified correctly unless they have

been trained first [30]. This applies to most ML-based anomaly detection systems.

This constraint may limit the scalability of our approach, especially when dealing

with a constantly evolving landscape of smart home devices.

Another notable limitation of our model is the lack of fine-grained information

to distinguish between states of devices that have very similar power patterns.

For example, Google Home’s conversation and audio playback activities show

several misclassifications. This indicates that our approach might not be sufficient

for accurately discerning between certain device states that exhibit close power

consumption patterns.

8.3 Future Works

To address the limitations in future work, first, researchers could explore al-

ternative methods for monitoring and analyzing power consumption in battery-

powered devices. One possible direction is to investigate the use of built-in battery

management systems or other onboard sensors that can provide insights into the

device’s power usage patterns, as researchers suggest in [31].

Another direction would be to explore the potential of combining power-

auditing with other side-channel information, such as electromagnetic and acous-

tic data, to improve the accuracy of inferring device activities. By leveraging

multiple side-channel sources such as network traffic [32, 33], it might be possible

to capture more subtle differences between device states, leading to a more robust
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and reliable classification performance.

To identify devices which exhibit only subtle differences in power traces, a

possible direction for future work could be to explore the use of deep learning

models, such as Long Short-Term Memory (LSTM) networks [34], which have

shown promise in handling time series data and capturing complex temporal

relationships. These models might be better equipped to identify and differentiate

between similar power patterns, leading to more accurate classifications of device

activities.
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