Reports 2006 # Sea Turtle Science: A Research-Based Middle and High School Classroom Resource Susanna Musick Virginia Institute of Marine Science Lisa Lawrence Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Science and Mathematics Education Commons #### **Recommended Citation** Musick, S., & Lawrence, L. (2006) Sea Turtle Science: A Research-Based Middle and High School Classroom Resource. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/ reports/2068 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. # A Research-Based Middle and High School Classroom Resource www.marine-ed.org/bridge/survivor.pdf Created by: Susanna Musick & Lisa Lawrence Virginia Institute of Marine Science Gloucester Point, VA 23062 ## Sea Turtle Quick Facts #### **BIOLOGY** - In the Atlantic, sea turtles are found from Massachusetts to Florida and throughout the Gulf of Mexico. Leatherbacks extend north to Iceland. - Sea turtles are found in the tropics to subtropics year-round and higher latitudes in summer. - Sea turtles feed in shallow waters (except leatherbacks). - Sea turtles migrate from foraging grounds to mating grounds. Most nest in tropics (except loggerheads which nest in temperate areas) - Females come onshore only to nest; aside from occasional basking, males spend entire life in water. - Females will nest multiple times in a season, but generally nest only every other year. #### LIFE CYCLE - A clutch of 50-170 ping pong ball-like eggs incubate for 6-13 weeks. - Hatchlings emerge from nest and head towards brightest horizon. - A "swimming frenzy" occurs as they hit water and head towards open ocean. - In the "Lost Years" loggerheads are believed to spend early juvenile years feeding in the Sargasso Sea. - Older juveniles join adults in coastal feeding or mating grounds, except leatherbacks which remain pelagic. - Females return to their natal regions to breed - Reproductive maturity for some species occurs after 10-30 or more years, life span may be more than 50 years. #### REFERENCES Lutz, P.L. & J.A. Musick, (eds.). 1997. The Biology of Sea Turtles. CRC Press, Boca Raton, FL. 432 pp. # Atlantic Sea Turtle Species ## Leatherback (Dermochelys coriacea) Size: 1.8 m (6 ft), 727 kg (1 ton) Diet: jellyfish Status: endangered ## Green (Chelonia mydas) Size: 1 m (3.3 ft), 150 kg (68 lb) Diet: Juveniles—molluscs, crustaceans, jellyfish Adults—seagrasses, macroalgae Status: endangered (FL)/ threatened ## Loggerhead (Caretta caretta) Size: 0.92 m (3 ft), 115 kg (52 lb) Diet: benthic crustaceans & molluscs Status: threatened ## Hawksbill (*Eretmochelys imbricata*) Size: 0.66-0.86 m (2.2-2.8 ft) 82 kg (37 lb) Diet: sponges & benthic invertebrates Status: endangered #### Kemp's Ridley (Lepidochelys kempil) Size: 0.58-0.80 m (1.9-2.6 ft) 40-50 kg (18-23 lb) Diet: crabs, shrimp, molluscs Status: endangered #### **REFERENCES** Wynne, K. & M. Schwartz. 1999. Guide to Marine Mammals & Turtles of the U.S. Atlantic & Gulf of Mexico. Rhode Island Sea Grant, Narragansett, Rl. 114 pp. # NATIONAL SCIENCE EDUCATION STANDARDS CORRELATIONS ## Science as Inquiry Ability to do scientific inquiry (K-12) Understanding of scientific inquiry (K-12) #### Life Science Life cycles of organisms (K-4) Organisms and environments (K-4) Populations and ecosystems (5-8) Reproduction and heredity (5-8) Regulation and behavior (5-8) The behavior of organisms (9-12) The interdependence of organisms (9-12) #### Science in Personal and Social Perspectives Characteristics and changes in populations (K-4) Populations, resources, and environments (5-8) Natural resources (9-12) Natural and human-induced hazards (9-12) # Sea Turtle Nesting Behavior by Kate Mansfield, VIMS All sea turtles share a similar behavior pattern when nesting. Most turtles found nesting on the east coast of the United States have distinct "trademarks" or characteristics which can be used to identify what species of turtle nested. Typically this can be accomplished through the examination of the tracks or the nest site. Becoming familiar with the nesting process and the "trademarks" of each turtle enables beach monitors to more accurately identify what species of turtle was present, and whether the turtle laid eggs or not. The following is a step by step behavioral process that nesting sea turtles typically follow. #### THE CRAWL Generally, female sea turtles swim in towards shore during the late afternoon or early evening just prior to sunset. At some point after nightfall, the nesting turtles emerge from the ocean and crawl up the beach to find a suitable nesting site. It is possible to identify the species of the turtle that emerged by the tracks left in the sand. Key crawl characteristics include: - Alternating or simultaneous right and left flipper marks - Presence or absence of tail marks down the center of the tracks - Relative width of tracks indicating the size of the turtle Loggerhead sea turtle tracks are smaller on average than green and leatherback turtle tracks. They exhibit alternating right and left flipper tracks and no tail marks. Both green turtles and leatherbacks exhibit simultaneous right and left flipper marks and the presence of tail marks down the center of the tracks (LeBuff, 1990). Leatherback tracks are the widest of all species' tracks. Tracks indicate the direction in which the turtle was traveling. Examining where the turtle pushed the sand back in an effort to move herself forward aids in determining the turtle's direction of travel. Determining direction helps identify where she may have nested. With old tracks, direction may be difficult to determine. #### THE BODY PIT Once the female has chosen a nesting site, she prepares the area by clearing the sand and brushing it away with all four flippers. In some cases, she excavates a large pit with her flippers. Loggerhead turtles make relatively shallow body pits, commonly in the form of two long, narrow hills of sand on either side of the turtle's tracks moving towards her nest site. Green turtles, however, have a characteristically large and deep body pit. Greens may leave a body pit that is one to two meters in diameter and up to .5 to 1.0 meters deep. Hawksbill sea turtles create little to no body pit and usually nest in the brush landward of the open beach. Both loggerhead and green turtles tend to nest on the open beach. #### THE EGG CHAMBER Upon completing the body pit, turtles excavate an egg cavity with their rear flippers. Using these flippers as shovels, the turtles scoop out sand from the egg chamber, alternating flippers as they dig. Sand that is scooped out of the cavity is spread to the side of the hole. The depth of the egg chamber is determined by the length of the rear flippers (van Meter, 1983). If a turtle is missing a large portion of one or both of her rear flippers, her egg chamber may be relatively shallow. The shape of most egg chambers beneath the sand resembles an inverted light bulb. #### LAYING THE EGGS When the egg chamber is completed, the turtle starts depositing her eggs. Once a turtle begins to lay her eggs, she becomes almost oblivious to any disturbance around her. Most loggerhead turtles spread their rear flippers beside their nest during deposition. The turtles position their cloaca over the hole and begin dropping eggs, two and three at a time, into the chamber. Once egg laying commences, the turtles often slightly curl their rear flippers as eggs are deposited. This action is an indicator that the turtle has begun to lay her eggs and can be approached by researchers without disturbing her. Unlike the loggerhead, leatherbacks and green turtles generally extend their rear flippers directly behind them during egg deposition (Ibid.). Some green turtles cover the exposed egg chamber with one of their rear flippers. With shallow egg chambers, some eggs may spill out on either side of the chamber. These eggs may be crushed by the turtle as she begins to fill in her egg chamber after she deposits the clutch. #### **COVERING THE EGGS** Once the turtle deposits all of her eggs, she covers the egg-filled chamber with sand, shoveling it in and packing it down with her rear flippers. Some species slap down or knead the sand, using the weight of their bodies to pack down the area. #### **NEST OBLITERATION** When the turtle finishes covering and packing the sand down on top of her eggs, she swipes sand with her front flippers, flinging it back over the nest site. A turtle ONLY does this if she lays her eggs (Florida Department of Natural Protection, 1994). The resulting nest site has a characteristic mound of sand over part of the turtle's tracks and nest site, as well as a small escarpment made from where the turtle used her front flippers to scrape away at the sand, flinging it back over her nest. Leather- back and green turtles both leave characteristically large and widely flung mounds of sand. When covering is complete, the turtle crawls back to the ocean, leaving tracks as she exits the beach. #### FALSE CRAWLS VS. NESTS Occasionally, a nesting turtle may emerge from the ocean but not lay eggs on the beach. This event, characterized by an abandoned nesting attempt or simply a U-shaped crawl from the ocean up the beach, then back to the water, is called a False Crawl, Emerge No Lay, or Abandoned Nesting Attempt. A turtle may false crawl for a number of reasons, some of which include: - She is disturbed by lights, noise or other unusual activities - She encounters and obstacle while crawling up the beach - She encounters roots, debris or rocks while digging her egg chamber - The sand does not have the right consistency or moisture - Her egg chamber collapses - Other reasons not known A turtle may false crawl at any point in her nesting sequence up to the point where her eggs are laid. A turtle may even complete her egg chamber and for some reason not deposit her eggs. The key factor that indicates whether a turtle has laid her eggs or not is the presence or absence of a mound of sand and the escarpment created when the turtle flung the sand back over her nest site. A turtle will not obliterate her nest site if she has not deposited eggs. #### HATCHLING BEHAVIOR Depending upon the species and the temperature of incubation, the time between egg deposition and hatchling emergence ranges anywhere from 45 to 75 days (LeBuff, 1990). Within the first 12 hours after deposition, the vitelline membrane (the cell wall of the egg that plays an important role in gas exchange through the egg wall) attaches to the interior of the egg shell (lbid.). If the egg's orientation changes after the attachment forms, the membrane detaches from the egg wall and development ceases (lbid.). Great care is usually taken by researchers if eggs must be moved for any rea- son more than six to twelve hours after a turtle has nested. #### **NEST EMERGENCE** After incubating beneath the surface of the sand for approximately two months, the young turtles begin to hatch out of their shells. Hatchlings may remain within the egg chamber several days after hatching. Hatchlings found in the process of crawling out of their shell are called pipped. The movement of fully hatched and pipping turtles while in the egg chamber serves to loosen the sand, allowing it to trickle down to the bottom of the nest. This process acts as a sort of elevator: the greater the movement caused by hatchlings, the greater the amount of sand filtering down to the bottom of the nest, thereby elevating the turtles closer to the surface. Emergence occurs primarily at night. The temperature of the surface sand and sun/ambient temperature during incubation are key factors that determine when hatchlings emerge from their nest. Once the surface layers of the beach cool after sunset or after a rain storm, the turtles 'erupt' en mass and proceed to crawl down the beach to the water (lbid.). Hatchlings orient themselves to light reflected off the water and beach, away from the darker vegetated areas typically found landward along the beach (Ehrenfield, 1968). Over a hundred hatchlings may emerge from a nest at one time. #### **FRENZY** From the time of nest emergence up to 24 to 72 hours after entering the ocean, hatchlings remain in a state often referred to as a "frenzy." During this period, hatchlings swim constantly. This may serve to get the hatchlings away from shore and coastal predators, out to deeper waters (van Meter, 1993). Very little is known about sea turtles from the point that hatchlings enter the ocean until at least 20 years later when the females become sexually mature and come ashore again to nest. This lack of information makes sea turtle management and conservation difficult. #### LITERATURE CITED Florida Department of Natural Protection 1994. Nesting Beach Monitoring Techniques. TOPIC: Crawl Identification. Monitoring protocol literature from FL DEP. Tequesta, FL. Lebuff, C. R. 1990. The Loggerhead Sea Turtle in the Eastern Gulf of Mexico. Caretta Research Inc., Sanibel, FL. Pp 185, 190. van Meter, V. B. 1983. Florida's Sea Turtles. Florida Power and Light Company. Miami, FL. P 25. #### **NOTES:** # Survivor! Loggerhead Hatching Activity Created by Susanna Musick, Jack Musick, and Lisa Lawrence, Edited by Vicki Clark and Lee Larkin #### BACKGROUND A variety of factors can affect the hatching success of sea turtles. Temperature, amount of moisture, sand grain type, and gas exchange all play a part in hatching success within the egg chamber. Outside the nest, predators can also influence the success of the nest and hatchlings. The average clutch count or number of eggs laid by loggerhead sea turtles is 112.4 eggs (Miller, 1997). Female turtles usually lay three to seven nests per season and nest every one to three years. Eggs that incubate for extended periods at temperatures lower than 23°C (73.4°F) or greater than 33°C (91.4°F) seldom hatch (Miller, 1997). The temperature profile will vary widely from beach to beach, depending on tides, weather, and nest location. Temperature also determines the sex of the hatchling. The pivotal temperature for loggerhead sea turtles is 28.74°C (83.7°F). Generally if the nest's temperature has been below 28.74°C, most of the hatchlings will be males. If the temperature has been above 28.74°C, the majority will be females (Ackerman, 1997). Eggs at the top of the nest have the highest risk of predation and overheating. Eggs at the center of the nest have less of a risk of predation or inundation, but less gas exchange. Eggs at the bottom of the nest are cooler, and at a higher risk for inundation, but at a lower risk for predation. Eggs will usually hatch after 6-13 weeks of incubation, depending on the temperature (Miller, 1997). Usually, incubation period decreases as incubation temperatures increase (Ackerman, 1997). On average, there is an 80% hatching success rate for loggerheads. However, from the time they leave the nest, hatchlings are exposed to many threats. They may get lost, or die from disease, exhaustion, and predators. It is estimated that only 1 or 2 out of 1000 turtles will survive to maturity (Frazer, 1986). This estimate does not include the negative impact of humans on the life cycle of turtles. Humans threaten sea turtles in various ways on land, and in the water. On land, human threats include egg harvesting, beach lighting and development, pollution, vehicles, sea walls, beach compaction, and sand quarrying. In the water, anthropogenic effects include turtle harvesting, bycatch, boat collisions, and habitat degradation (including pollution). These human threats lower survivorship estimates even further. Conservation of these threatened animals is important so that we may continue to study and appreciate them in the future. This activity is a modeling exercise that involves population estimates and natural (non-human) mortality factors. Actual survivorship numbers are highly variable and differ from one population to the next. The activity scenario takes place on one nesting beach. Ten nests with 100 eggs each are laid (1000 eggs total). In this activity, we will follow the outcome of one of these nests. Each egg in the nest will actually represent 10 eggs from the entire nesting beach. #### **OBJECTIVES** - Identify threats to sea turtle nests, hatchlings, and adults - Define factors limiting the development and survival of eggs, hatchlings, and adults - Discover characteristics of the nest environment - Investigate the life history stages and habitats of threatened and endangered species - Learn about conservation and protection of threatened and endangered marine species - Discuss percent mortality, survival of the fittest, and management concepts #### **MATERIALS** - 100 ping pong balls (www.ballsonline.com) - 10 gallon glass aquarium or clear plastic bin - sand (enough to fill the aquarium 3/4 full) - small trowel or hand shovel - printout of Kate Mansfield's excerpt on Sea Turtle Nesting Behavior #### **PROCEDURE** Total time, 65 minutes #### **PRFPARATION** 20 minutes - 1. Number eggs 1-100. - 2. Cover the bottom of the tank with sand. - 3. Place ping-pong balls (eggs) in a plastic bag and set in the aquarium against one of the long sides. Begin putting sand in the tank around the bag of eggs forming a flask-shaped chamber. Once most of the sand is in, remove the bag of eggs. Take the eggs out of the bag and place them in the hole or nest chamber. - 4. After all the eggs are inserted in the nest chamber cover the opening with the remaining sand. - 5. The nest chamber will be used to illustrate sex ratios in sea turtles. In general, northern areas with cooler beaches will produce more male turtles, and southern, warmer beaches will produce more female turtles. Virginia is the northern most nesting area for loggerheads. Sex ratios vary highly from beach to beach. For most nesting beaches in Florida, about 90% of the hatchlings will be females (Mrosovsky, 1984). In Georgia and South Carolina, most nests will have an approximate 50/50 ratio of males to females (Mrosovsky, 1984). In Virginia, about 90 % of the hatchlings will be males (Jones, 1998). Draw a line or tape an arrow onto one side of the tank indicating the pivotal temperature of 27.4°C. Designate the placement of the line based on your geographic location. If you are in a northern area near Virginia, place the line 1/4 down from the top of the nest. If you are near Georgia or South Carolina place the line halfway through the nest (see photo above). If you are near Florida or farther south, place the line 1/4 up the side from the bottom of the nest. During the activity, students will remove the eggs from the nest. Eggs removed above the line will be females and eggs removed below the line will be males. #### **CLASS ACTIVITY** 45 minutes Uncover the nest chamber by removing sand and ask students to take turns removing eggs from the chamber. If possible, each student should extract the same number of eggs from the nest. For example, if you have 25 students and you use 100 eggs, each student will have 4 eggs. Based on the position of the egg in the nest, each student records the sex of his or her eggs on the board. Was each hatchling a male or female? Discuss why there were more males or females in the nest based on its location (in a warm or cold beach). #### STAGE ONE: Hatching success (eggs hatch after 6-13 weeks of incubation) Using the tables for the life history stages (p.8), call out the numbers for the eggs that failed to survive and ask students to look up (p.8) the factors that contributed to their mortality. Discuss the factors that contributed to mortality. Record the percent survivorship and mortality on the board. #### STAGE TWO: Year one survivorship (journey from beach to the pelagic gyres) This stage includes the journey from the beach to the surf, and the surf zone to the pelagic gyres. The hatchlings spend little time traveling from the beach to the gyre, so much of the first year is spent in the pelagic zone where juveniles are often found in large mats of *Sargassum*. Announce the numbers for the eggs/turtles that survived the second stage. Ask the students to look up the factors (p.8,9) that contributed to their mortality. Discuss these factors and record the percent survivorship and mortality on the board. Why is mortality so high in this stage? Hint: What size are the turtles? ## STAGE THREE: Pelagic juveniles (duration ~ 8 years) Call out the numbers that survive this stage. Students continue to look up the factors that contribute to mortality and discuss them. Record the survivorship and mortality percentages on the board. #### STAGE FOUR: Benthic juveniles (duration ~ 10 years) Announce the surviving eggs/turtles. Only two students or eggs/turtles will remain. #### STAGE FIVE: Adults Since the remaining two ping-pong balls actually represent twenty eggs or turtles, the game will continue by having the final two students each pick a number from 1-10. If they choose 3 or 7 then they survive to maturity. These final eggs/turtles will actually be the turtles that survived from the 10 nests that were laid on the nesting beach (2 out of 1000 survivorship). How many times will one female turtle need to nest in order to have a stable population (i.e. replace herself and one male)? Wrap up the activity with a review of all the contributing factors that determine whether or not a sea turtle will survive to maturity. Ask students to think of human factors that could influence the survivorship of the turtles. How might these factors effect the outcome of the game? (Example: If one of the surviving turtles had been run over by a car in stage one, and the other drowned in a fishing net in stage four, no turtles would survive). Discuss why it is important to protect and conserve threatened and endangered marine species and how poaching, bycatch, pollution, and other human sources contribute to the decline of sea turtles. #### LIFE HISTORY TABLES #### STAGE ONE 80% overall survivorship, 20% overall mortality Hatchling mortality (incubation = \sim 60 days) | Egg# | Factor Contributing to Death | |------|--------------------------------------| | 4 | Inundation with water | | 8 | Inundation with water | | 13 | Inundation with water | | 16 | Not enough gas exchange | | 23 | Eaten by ants | | 33 | Eaten by ants | | 35 | Eaten by ants | | 42 | Trapped by plant roots | | 50 | Trapped by plant roots | | 51 | Erosion | | 55 | Erosion | | 56 | Erosion | | 57 | Eaten by a fox | | 58 | Eaten by a vulture | | 61 | Nest temperature too cold | | 64 | Bacteria | | 68 | Eaten by a raccoon | | 75 | Eaten by a raccoon | | 86 | Desiccation (too hot, egg dried out) | | 96 | Desiccation (too hot, egg dried out) | #### STAGE TWO Journey from nest to the shoreline, surf zone, and gyres/pelagic zone (duration = 1 year) 20% overall survivorship, 80% overall mortality Beach/shoreline | Egg# | Factor Contributing to Death | |------|------------------------------| | 5 | Eaten by a ghost crab | | 6 | Eaten by a raccoon | | 28 | Eaten by a vulture | | 34 | Eaten by a seagull | | 36 | Eaten by a ghost crab | (Stage Two continued on next page...) | Egg# | Factor Contributing to Death | |------|------------------------------| | 46 | Eaten by a tern | | 54 | Eaten by a raccoon | | 59 | Eaten by a ghost crab | | 88 | Eaten by a night heron | | 92 | Eaten by a fox | | 93 | Eaten by a wild hog | | 100 | Eaten by a fox | #### Surf Zone | Egg# | Factor Contributing to Death | |----------------------|--------------------------------------------------------------------------| | 1 | Eaten by a seagull | | 9 | Eaten by a spinner shark | | 14 | Eaten by a snapper | | 15 | Eaten by a jack | | 20 | Eaten by a blacktip shark | | 22 | Eaten by a sharpnose shark | | 24 | Eaten by a young sandbar shark | | 26 | Eaten by a pelican | | 32 | Exhaustion | | 37 | Eaten by a cormorant | | 40 | Eaten by a frigatebird | | 43 | Eaten by a speckled trout | | 52 | Eaten by a snook | | 53 | Eaten by a tarpon | | 66 | Eaten by a bullshark | | 71 | Eaten by a red drum | | 72 | Eaten by a bullshark | | 77 | Eaten by a Spanish mackerel | | 81 | Eaten by a tarpon | | 83 | Eaten by a snook | | 84 | Eaten by a snapper | | 85 | Eaten by a jack | | 87 | Eaten by a pelican | | 90 | Eaten by a seagull | | 95 | Eaten by a cormorant | | 84
85
87
90 | Eaten by a snapper Eaten by a jack Eaten by a pelican Eaten by a seagull | ## Pelagic gyre (juveniles <1 year old) | Egg# | Factor Contributing to Death | |------|------------------------------| | 7 | Eaten by a yellowfin tuna | | 1 1 | Eaten by a bluefin tuna | | 17 | Eaten by a dolphin fish | | 18 | Eaten by a dolphin fish | | 19 | Eaten by a mako shark | | 21 | Eaten by a sailfish | | 25 | Eaten by a silky shark | | 29 | Eaten by a shearwater | | 38 | Exhaustion | | 41 | Eaten by a shearwater | | 44 | Eaten by a white marlin | | 47 | Eaten by a dolphin fish | | 65 | Eaten by a dolphin fish | | 67 | Eaten by a skipjack tuna | | 73 | Eaten by a frigatebird | | 74 | Eaten by a yellowfin tuna | | 76 | Eaten by a frigatebird | | 78 | Eaten by a mako | | 79 | Eaten by a whitetip shark | | 82 | Eaten by a frigatebird | | 94 | Eaten by a frigatebird | | 97 | Eaten by a seagull | | 98 | Eaten by a barracuda | Eggs that survived Stage Two: 2,3,10,12,27,30,31,39,45,48,49,60,62, 63,69,70,80,89,91,99 (Stage Three continued on next page) #### STAGE THREE 5% overall survival, 15% mortality Pelagic zone (juveniles 1-8 years old) | | T | |------|------------------------------| | Egg# | Factor Contributing to Death | | 2 | Eaten by a bluefin tuna | | 3 | Eaten by a dolphin fish | | 10 | Eaten by a whitetip shark | | 12 | Eaten by a blue marlin | | 31 | Eaten by a blue shark | | 39 | Eaten by a dolphin fish | | 45 | Eaten by a blue shark | | 49 | Eaten by a blue shark | | 60 | Eaten by a dolphin fish | | 62 | Starved | | 63 | Eaten by a whitetip shark | | 69 | Eaten by a yellowfin tuna | | 70 | Eaten by a barracuda | | 80 | Eaten by a amberjack | | 89 | Eaten by a wahoo | Eggs that survived Stage Three: 27,30,48,91,99 #### STAGE FOUR Demersal juvenile to adult stage (10+ years) | Egg# | Factor Contributing to Death | |------|------------------------------| | 30 | Eaten by a tiger shark | | 48 | Disease | | 91 | Hypothermic stunning | Eggs that survive stage Four: 27, 99 #### STAGE FIVE 0.02% overall survivorship (2 out of 1000) Adult stage 3,7 survive (refer to *Stage Five* directions on page 8 for explanation) ## References Ackerman, R.A., 1997. The Nest Environment and the Embryonic Development of Sea Turtles, in *The Biology of Sea Turtles*, Lutz, P. and Musick, J., Eds., CRC Press, 88. Crouse, D.T., L.B. Crowder, and H. Caswell. 1987. A stage-based population model for loggerhead sea turtles and implications for conservation, *Ecology*, 68, 1412-1423. Frazer, N.B., 1986. Survival from egg to adulthood in a declining population of loggerhead turtles. *Caretta caretta. Herpetologica*, 42 (1), 47-55. Jones, W.M., 1998. Physical parameters affecting incubating temperatures in loggerhead sea turtles, *Caretta caretta*, in Virginia, M.sc. thesis, College of William and Mary, Williamsburg, VA, 91 pp. Miller, J.D. 1997. Reproduction in sea turtles, in *The Biology of Sea Turtles*, Lutz, P. and Musick, J., Eds., CRC Press, 65-68. Mrosovsky, N. 1994. Sex ratios of sea turtles, *Journal of Experimental Zoology*, 270, 17-27. National Marine Fisheries Service Southeast Fisheries Science Center. 2001. Stock assessments of loggerhead and leatherback sea turtles and an assessment of the impact of the pelagic longline fishery on the loggerhead and leatherback sea turtles of the Western North Atlantic. U.S. Department of Commerce NOAA Technical Memorandum NMFS-SEFSC-455, 343 pp. Wynne, K. & M. Schwartz. 1999. *Guide to Marine Mammals & Turtles of the U.S. Atlantic & Gulf of Mexico*. Rhode Island Sea Grant, Narragansett, Rl. 114 pp. #### SEA TURTLE WEB RESOURCES #### SEA TURTLE SCIENCE http://www.marine-ed.org/bridge/survivor.pdf Contacts: ayers@vims.edu & petrone@vims.edu #### **GENERAL BIOLOGY** EuroTurtle http://www.euroturtle.org/ All About Turtles http://octopus.gma.org/turtles/index.html Sea Turtles http://www.seaworld.org/animal-info/info-books/sea-turtle/index.htm Caribbean Conservation/Sea Turtle Survival League http://www.cccturtle.org Ocean Planet: Stranded Along the Coast http://www.smithsonianeducation.org/educators/lesson_plans/ocean/stranded/essay.html Sea Turtles Coloring Book http://www.yoto98.noaa.gov/books/seaturtles/ seatur1.htm #### **NESTING** Spotlight on a Scientist: Kate Mansfield, Sea Turtle Biologist http://www.marine-ed.org/bridge/ index mansfield.html See Turtles Nest! See Turtles Hatch! http://www.marine-ed.org/bridge/index archive0700.html Watamu Turtle Watch http://www.watamuturtles.com Folly Beach Turtle Watch Program http://www.follyturtles.com/tracks.html #### TRACKING Tracking Sea Turtles http://octopus.gma.org/space1/turtles.html Sea Turtle Survival League Educator's Guide http://www.cccturtle.org/eduform.htm Satellite Turtle Tracking http://www.seaturtle.org/tracking #### **CONSERVATION** Sea Turtle Protection and Conservation http://www.nmfs.noaa.gov/pr/species/turtles/ Biology and Conservation of Sea Turtles http://marinediscovery.arizona.edu/lessonsF00/ brittle_stars/2.html #### SPECIES SPECIFIC Teaching Guide-Saving the Sea Turtles http://teacher.scholastic.com/activities/explorer/oceanlife/main.asp? template=field_sites&article=turtles_field_1 Leatherback Turtle Hurdle Game http://teacher.scholastic.com/activities/explorer/ oceanlife/main.asp?template=show&article=turtle Green Sea Turtles http://earthtrust.org/wlcurric/turtles.html Leatherback Sea Turtle http://www.tpwd.state.tx.us/huntwild/wild/ species/lethback/ Kemp's Ridley Sea Turtle http://www.tpwd.state.tx.us/huntwild/wild/ species/ridley/ ## GLOSSARY **Desiccation -** the process of drying up **Escarpment** - a long cliff or steep slope separating two comparatively level or more gently sloping surfaces and resulting from erosion or faulting Gyre - a giant circular oceanic surface current **Hypothermic -** having a subnormal body temperature **Pelagic** - of, relating to, or living or occurring in the open sea