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Abstract
In many microeconometric studies distance from a relevant point of interest (such 
as a hospital) is often used as a predictor in a regression framework. Confidential-
ity rules, often, require to geo-mask spatial micro-data, reducing the quality of such 
relevant information and distorting inference on models’ parameters. This paper 
extends previous literature, extending the classical results on the measurement error 
in a linear regression model to the case of hospital choice, showing that in a discrete 
choice model the higher is the distortion produced by the geo-masking, the higher 
will be the downward bias in absolute value toward zero of the coefficient associ-
ated to the distance in the models. Monte Carlo simulations allow us to provide evi-
dence of theoretical hypothesis. Results can be used by the data producers to choose 
the optimal value of the parameters of geo-masking preserving confidentiality, not 
destroying the statistical information.

JEL Classification C01 · C13 · C31

1 Introduction

In recent years we have observed an increasing interest in the use of individual data 
in regional economic studies. However, microeconometric studies typically suf-
fer from several types of inaccuracies that are not present when dealing with the 
classical regional econometrics models which make use of aggregated data within 
regional partitions. Among the many forms of inaccuracy, missing data, locational 
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errors, sampling without a formal sample design, measurement errors and misalign-
ment are the most common sources of errors that can affect the results and bias the 
conclusions in many different ways. A recent strand of the literature, in particular, 
concentrated on the distorting effects produced by locational errors on econometric 
modeling.

Arbia et  al. (2015) analyzed intentional and unintentional measurement errors 
associated with the geo-masking of spatial micro–data. In some empirical circum-
stances, the exact geographical position of the individuals can be uncertain due to 
lack of information. This happens, for instance, when we have a list of firms in a 
small area (like e.g., a census tract), but we don’t know their exact address within 
the area. A typical case is when we use GPS position of individuals derived from 
cell phone information where the position is known depending on the corresponding 
accuracy of the phone GPS. In this case, it is common to assign the individual to the 
centroid of each area, but this procedure obviously generates a locational error. Arbia 
et al. (2015) referred to this situation as to unintentional locational error. Deardon 
et al. (2012) found that when modeling the spread of disease at the individual level 
unintentional locational error can be accounted for through a random effects model. 
However, the biasing effect on the basic reproductive number is not easily alleviated. 
In other empirical cases, the individual’s position is perfectly known, but they are 
geo-masked a priori before being made it publicly available to the analysts, in order 
to preserve confidentiality. In this second case we say that an intentional positional 
error was introduced. In their paper, Arbia et al. (2015) examined the instability of 
the results induced by locational errors in spatial regression models that include a 
distance as a predictor. Colenutt (1968) demonstrated how error can accumulate so 
that accurate prediction becomes challenging.

In regional economics it is a common practice to use spatial econometrics models 
which include distances as regressors. In healthcare the adoption of econometrics 
techniques in the study of the patients choices produced a large number of papers 
in which the distance between patients and hospitals is one of the most impor-
tant predictors. Perucca et  al. (2019) used spatial error models to examine spatial 
inequalities in access to care using distance as a key measure of patient mobility. 
Both unintentional locational errors (that is inaccuracy in the data collection due to 
approximate address or lack of sufficient information when individuals are located at 
the centroid of a small area) and intentional locational errors (a-posteriori geo-mask-
ing of the exact GPS coordinates to preserve confidentiality), are potential sources 
of errors that may undermine the results and mislead the substantive conclusions.

While in Arbia et al. (2015) the authors examined the effects of intentional loca-
tional errors induced by geo-masking in the case of continuous linear regression 
models when distance is used as a regressor, in this paper we aim to extend these 
results to the case of nonlinear models. We aim to shed light on the distortion effects 
due to locational error to make researchers aware of the possible limitations of their 
inferential conclusions. In contrast with the case of a continuous linear regression 
model, in the case of a nonlinear model, the ML estimators do not have closed form 
solutions and they are usually derived by numerical maximization. As a conse-
quence, in this paper no formal result can be obtained and we have to resort to a 
Monte Carlo (MC) approach.
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The rest of the paper is structured as follows. In Sect. 2 we summarize the main 
results of Arbia et al. (2015) and we present a motivating case study based on (Berta 
et al. 2016). Section 3 describes the effects of the Maximum Likelihood (ML) esti-
mators on bias and efficiency, whereas Sect.  4 present the results of several MC 
experiments on spatial models affected by intentional locational errors. Finally, 
Sect. 5 concludes the paper.

2  Effects of geo‑masking in the regression analysis of healthcare 
competition

The theoretical motivation of this paper refers to Arbia et  al. (2015), where the 
authors study the negative effects of the geo-masking, examining the measurement 
error introduced by geo-masking the individuals’ true location, when distances are 
used as predictors in a linear regression. A very popular geo-masking mechanism is 
the uniform geo-masking (explained, e.g.,, in Burgert et al. 2013), in which the true 
coordinates are transformed by displacing the individuals’ position along a random 
angle (say �∗ ) and a random distance (say � ) both following a uniform probability 
law. The mechanism can be formally expressed through the following hypotheses:

�
�
 � ∼ U(0, �∗ ) and � ∼ U(0◦, 360◦) , with �∗ the maximum distance error;

�
�
 � and � are independent.

Fig. 1  Random point displacement, Urban Malawi DHS Clusters
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An example of uniformly geo-masked locations is illustrated in Fig.  1. Repre-
sented as points in Fig.  1 are groupings of urban households that participated in 
the 2014 Malawi Malaria Indicator Survey (NMCP and ICF International 2014). 
The buffer represents the maximum amount of random displacement introduced by 
the Demographic Health Survey (DHS) to ensure that respondent confidentiality is 
maintained. The true location of the respondent households are located within this 
2km buffer.

An alternative geo-masking mechanism is the Gaussian geo-masking where 
points are randomly reallocated in the neighborhood of the true location, following 
a Gaussian bivariate density function with the mean vector coinciding with the true 
point and a given variance which can be expressed again as a function of the (practi-
cal, 99%) maximum displacement distance �∗.

Let us now consider a simple linear regression model using a distance as a predictor:

with dih the distance between point i and point h.
Considering a healthcare framework, patients living in a point are moved (geo-

masking their true coordinates) within a circle with a maximum radius of, say, �∗ 
and randomly re-assigned in an erroneous position. In this way, since the coordinates 
associated to the geo-masked point are considered when calculating the distance of 
the patient from an hospital, we introduce a measurement error in the independent 
variable. Arbia et al. (2015) extended the classical error measurement theory (e.g., 
Verbeek 2008) to this specific case by showing that the greater the maximum dis-
placement distance ( �∗ ), the larger will be both the loss in efficiency and the bias of 
OLS estimator of the � parameter, producing a reduction toward zero of its absolute 
value (known in the literature as the attenuation effect).

The loss in efficiency and the attenuation effect observed in the presence of geo-
masking, are very important under a practical point of view. Figure  2 reports the 
theoretical behavior of the attenuation effect for Gaussian and uniform geo-masking 
of points as a function of the maximum displacement distance �∗ (Arbia et al. 2015). 
The inspection of the graph clearly shows that the attenuation increases dramatically 
already at small levels of �∗ , and the Gaussian geo-masking produces more severe 
consequences on the estimation of � than the uniform geo-masking.

A typical framework, where a measure of distance is used, is the study of compe-
tition in the healthcare sector. Hospital competition is one of the most widely stud-
ied topics in health economics and health econometrics. This research area follows 
the approach suggested by Kessler and McClellan (2000). In this seminal paper, the 
authors analyze the relationship between hospital quality and competition, modeling 
the patients’ choices in order to build a competition index (Herfindahl-Hirschman 
index). This measure of hospital competition based on the predicted patients’ 
choices is included as a predictor in a further model, where the hospital quality is the 
dependent variable. Following this approach, i.e.,, Berta et al. (2016) assumed that 
the discrete choice of the single patient i of choosing hospital h (say, yih ) is related to 
the expected utility of the patient y∗

ih
 , with yih = 1 if y∗

ih
> 0 , and 0 otherwise.

The utility model was specified as follows:

(1)yih = � + �d2
ih
+ �ih
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where dih is the distance between patient i and hospital h expressed in minutes of 
travelling, GPih is the percentage of patients living in the same zip code as patient 
i and sharing the GP with patient i and admitted to the hospital h, while xih is a 
set of patient-level characteristics. The variable Networkih is a continuous variable 
representing the share of people living in the same municipality as patient i and 
admitted in the same hospital h in the 12 months before the admission of patient i. 
Considering that the travel distance is strictly correlated with the hospital choice, 
the coefficients related to the distance was expected to be negative. The model was 
estimated using an administrative dataset related to 8627 patients admitted in the 20 

(2)y∗
ih
= �dih + �hNetworkih + �hGPih + �hxih

Fig. 2  Attenuation effect in the presence of geo-masking as a function of the maximum displacement dis-
tance �∗ . Gaussian geo-masking (red line). Uniform geo-masking (green line). Source Arbia et al. (2015)
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cardiac surgery wards located in Lombardy (Italy) in 2014, obtaining a total num-
ber of 172,540 observations. In Berta et al. (2016), as in the majority of the papers 
adopting this empirical strategy, the patient location was not perfectly known, and it 
was approximated by the centroid of the municipality of the patient.

3  The theoretical efficiency loss of ML estimates of the parameters 
of a logit model

If we employ a ML strategy in the estimation process, the maximization has to be 
performed numerically due to the high degree of non linearity of the log-likeli-
hood. As a consequence there is no closed form solution and so there is no pos-
sibility to derive a formal relationship of the attenuation effect as it is done in the 
classical error measurement theory for linear regression models. For this reason 
we will try to shed light on this aspect through a series of Monte Carlo experi-
ments whose results will be reported in the next section. Before doing that, how-
ever, in this section we will examine some interesting formal results to quantify 
the loss efficiency associated to the geo-masking process

Let us consider the log-likelihood associated with the logit model in the case 
of perfect knowledge of the spatial coordinates. This can be expressed as:

where F is a cumulative probability distribution function to be specified (Greene 
2016).

Now assume that the distance appearing in Eq. 3 is affected by a measurement 
error which in turn is due to a locational error introduced intentionally by geo-
masking to preserve the respondent confidentiality. Let us further consider the 
associated, error-affected, likelihood that can be expressed as:

where, as before, d̄i,j represents the error–affected distance.
Let us now assume, in particular, that the cumulative probability distribu-

tion is specified as a standardized logistic distribution, say Λ , characterized by 0 
expected value and variance �2∕3 . In this case, using Eq. 3, the associated score 
functions can be written as (Greene 2016):

with Λi = Λ(di,j, �) , and the second order derivative as:

(3)�(�) = ln[L(�)] =

n∑

i=1

{
yilnF(dij�) + (1 − yi)ln[1 − F(dij�)]

}

(4)�̄(𝛽) = ln[L̄(𝛽)] =

n∑

i=1

{
yilnF(d̄ij𝛽) + (1 − yi)ln[1 − F(d̄ij𝛽)]

}

(5)
�

��
�(�) =

n∑

i=1

(yi − Λi)dij = 0
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with similar expressions for the first and the second likelihood derivatives, easy to 
obtain in the case of geo-masked coordinates. Using Eq. 6, we can obtain the ele-
ments of the Fisher Information Matrix related to the simulated true data as well as 
those related to the data after geo-masking. Indeed, from Eq. 6 we have:

and similarly, for the likelihood under the geo-masked coordinates:

Equations 7 and 8 show that the variance of the estimators depends essentially on 
the distance d. If this distance is inflated by geo-masking the precision of the estimators 
will be reduced.

To show more explicitly this Efficiency Loss (EL), making use of Eqs. 7 and 8, 
we can calculate the loss in the efficiency of the ML estimator as the ratio as the 
variance of the MLE with the geo-masked coordinates, say ̂̄𝛽  , and the variance of 
the MLE with the true coordinates, say 𝛽  :

Now let us concentrate our attention on the denominator of this expression, where 
we have:

since the elements of Λi = Λ(di,j, �) are by definition non-stochastic in our case. Fur-
thermore, Arbia et al. (2015) show that, under the hypothesis of uniform geo-mask-
ing expressed in Sect. 2, we have:

(see also Arbia (2016)). Expression 10, therefore, can be re-written as:

(6)
�2

�2�2
�(�) =

n∑

i=1

Λi(1 − Λi)d
2

ij
= 0

(7)Var(𝛽) = −E

[
𝜕2

𝜕2𝛽2
�(𝛽)

]
= −E

[
n∑

i=1

Λi(1 − Λi)d
2

ij

]

(8)Var( ̂̄𝛽) = −E

[
𝜕2

𝜕2𝛽2
�(𝛽)

]
= −E

[
n∑

i=1

Λi(1 − Λi)d̄
2

ij

]

(9)EL =
Var(𝛽)

Var( ̂̄𝛽)
=

−E
�∑n

i=1
Λi(1 − Λi)d

2

ij

�

−E
�∑n

i=1
Λi(1 − Λi)d̄

2

ij

�

(10)Var( ̂̄𝛽) = E

[
n∑

i=1

Λi(1 − Λi)d̄
2

ij

]
=

n∑

i=1

Λi(1 − Λi)E(d̄
2

ij
)

(11)E(d̄2
ij
) = d2

ij
+

𝜃∗

3

(12)Var( ̂̄𝛽) = E

[
n∑

i=1

Λi(1 − Λi)
(
d2
ij
+

𝜃∗

3

)]
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As a consequence, using Eq.  9, the efficiency loss due to geo-masking can be 
expressed as:

Because the true distances dij are deterministic, Eq. 13 clearly shows that the effi-
ciency loss of the ML estimates of the parameter � is an inverse function of the 
maximum displacement distance �∗.

4  Monte Carlo evaluation of locational errors in discrete choice 
models

4.1  A first simulation experiment: the effect of “unintentional” locational error 
when allocating the individuals in the centroids of the areas

In a first MC experiment, we aimed to quantify the existence of distortion effects 
in discrete model estimation, specifically in the case of unintentional locational 
error induced by uncertainty on individual’s location. In this MC study, we 
considered the data used by Berta et  al. (2016) for their healthcare competition 
study and we assumed that the individuals’ location observed by the authors was 
the true patient location known without error. We then estimate a logit model, 
randomly relocating 1000 times the 8627 patients of the original dataset using 
a uniform geo-masking (see Sect. 2) with a maximum distance �∗ which equals 
the radius of a circle with the equivalent surface area of each municipality. This 
radius represents the (approximate) maximum location error committed when an 
individual is allocated to the centroid. When a point is randomly relocated out-
side the study area the point it is randomly relocated a second time. The 1000 
simulated relocations of the patients thus define 1000 new matrices of distances 
between the patients and the hospitals. Using these modified distances, we esti-
mate 1000 discrete choice models, where the dependent variable is the patients’ 
choice and the covariate is the distance. In this way, we obtained 1000 replica-
tions of the estimates of the parameter � concerning the effect of the distance on 
the patients’ choice.

The results are reported in Figs. 3 and 4. Figure 3 reports the kernel density 
for the MC distribution of the estimates of the parameter � after geo-masking. 
The distribution assumes a symmetric shape. In Fig. 4 the kernel density of the 
parameters � is compared with the � parameter estimated with the not-distorted 
data (the straight red line). In addition, the two dashed red lines represent the 
confidence interval for the original � parameter. Comparing the value obtained by 
the MC experiment we observed that only in the 10% of the provided simulations 
do not statistically differ from the original � , whereas in the 90% the absolute 
value is lower and approaching 0.

(13)EL =
Var(𝛽)

Var( ̂̄𝛽)
=

E
�∑n

i=1
Λi(1 − Λi)

�
d2
ij

��

E
�∑n

i=1
Λi(1 − Λi)

�
d2
ij
+

𝜃∗

3

�� .
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Fig. 3  MC distribution of the models’ coefficients � after geo-masking
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Fig. 4  MC distribution of the models’ coefficients � after geo-masking compared with the � based on the 
“true” location



 G. Arbia et al.

1 3

This first simulation experiment clearly shows that a locational error originated 
by randomly allocating the patients within the specific municipality of reference, 
affects significantly the estimates of the parameters of a logit model. Indeed, 
our results reinforce those included in Berta et  al. (2016). In light of the effect 
reported here it is reasonable to believe that their results underestimate the spatial 
effect of distance in an hospital choice model.

4.2  A second simulation experiment: the effects of “intentional” locational error 
with different displacement distances

In the first simulation exercise the maximum displacement distance was considered 
fixed and (since we imposed the constraint that a patient should remain in the origi-
nal municipality) it depends only on the surface area of the municipality. The larger 
the municipality the larger the maximum locational error that can be introduced 
with the geo-masking mechanism. In this second simulation experiment, we aim at 
a more general result by removing the constraint related to the dimension of the 
municipality so as to be able to explore (similarly to the study in Arbia et al. (2015) 
for linear models) how the distortion in the estimation is related to the maximum 
radius of geo-masking. This second MC exercise, therefore, tends to reproduce the 
case of intentional locational error. In this second instance examined, for simplicity 
but without loss of generality, we considered the presence of only one hospital in the 
study area. We thus consider the same set of individuals located in Lombardy and 
reported in the study by Berta et al. (2016), and the associated Euclidean distances 
(say dih ) measured between each patient i and the hospital. In order to monitor the 
effects of geo-masking on the bias in the estimation of different displacement dis-
tances, we allowed the parameter �∗ to assume different values. In particular, we 
considered the following values: �∗ = 6.6(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) , 
the constant 6.6 representing the radius of the equivalent circle with a surface area 
equal to that of the entire Lombardy region (after coordinates standardization). For 
each value of �∗ , we repeat 1000 times a uniform geo-masking of the patients’ coor-
dinates. In this way, for each individual (and for each of the 10 maximum radius), we 
obtain 1000 new distances (say d̄ih ) and, for each of these geo-masked distances, we 
estimate the patients’ hospital choice. In particular, we assume that the observable 
choice of patient i of being admitted to the hospital h ( yih ) is related to the expected 
utility of i choosing h ( y∗

ih
 ), according to yih = 1 if y∗

ih
> 0 . As a consequence, our 

choice model is:

We still expect the coefficient � to be negative, but we also expect again that 
the geo-masking forces the coefficients toward 0 when the radius of displacement 
increases. Furthermore, similarly to the continuous linear model case, this distortion 
depends on the maximum displacement distance �∗ adopted. The main results of this 
second simulation are reported in Fig. 5 which is the counter-part of Fig. 2 for the 
case considered in our study.

(14)yih = 𝛼 + 𝛽d̄ih
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For increasing values of �∗ the coefficient related to the distance decreases mono-
tonically towards 0, thus showing a similar effect to the attenuation effects observed 
in linear models (Arbia et al. 2015). A sharp decrease is observed already for low 
levels of �∗ . For instance, when �∗ = 2 (corresponding to 30% of the maximum dis-
tortion distance) the estimated � is about 0.6 which is 40% of the original value. 
Furthermore, the 92% of the estimates provided in this simulation experiment dif-
fer from the original � . In terms of variability, the 42% of the coefficients are not 
significant.

4.3  Third simulation experiment: the effects of “intentional” locational error 
with 1000 simulated individuals

To obtain more general results then those described in Sect. 4.2, in the third MC 
experiment we still refer to the case of an intentionally induced locational error, 
but we now abandon the reference to real data and we simulate the behaviour of 
n = 1000 individuals randomly distributed in a unitary squared area centred on zero. 
Their distribution is reported in Fig. 6.

Using the Complete Spatial Randomness (CSR) model (Diggle 1983) the indi-
viduals’ coordinates are generated as two independent uniform distributions 
U(−0.5, 0.5) . For each individual located in (i,  j), we then calculate the Euclidean 
distance from the point (0, 0) assuming, without loss of generality, that the hospital 

0.0

0.5

1.0

1.5

0 2 4 6

Fig. 5  Attenuation effect for 8627 patients in Lombardy affected by uniform geo-masking for increasing 
displacement �∗
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is located in the centred of the study area. We then simulate a conditional binomial 
choice of the hypothetical hospital located at the origin (0, 0), obtaining a simulated 
logit model, as follows:

where logit(�ij|dij,�) is the logit of the probability associated to a random condi-
tional binomial distribution given the regression parameter vector � = (1, 2).

Starting from this set of data we fix again 10 maximum radius of distortions such 
that �∗ = 0.707(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) , the constant 

√
2∕2 = 0.707 

now representing half of the diagonal of the unitary square on which the data are 
laid.

For each of the 10 maximum �∗ we again replicate 1000 times for each individual 
a uniform geo-masking mechanism. In this way, for each individual and for each of 
the 10 levels of the maximum radius, we obtain 1000 new distances. Using the polar 
coordinates, the distorted distances from the origin ( ̄dij ) are calculated as follow:

where, as discussed in Sect. 2, � is the distance from the true point and � the angle of 
the segment joining the true point with the displaced one. For each replication, we 
then re-estimate the logit model in Eq. 15 using the distorted distances instead of the 
true ones:

(15)logit(�ij|dij,�) = 1 − 2 ∗ dij

(16)d̄ij =
√
(i − 𝜃 cos(𝛿))2 + (j − 𝜃 sin(𝛿))2

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0.
0

0.
2

0.
4

x

y

Fig. 6  1000 individuals randomly distributed (CSR) in a squared unitary study area centred in the origin
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We expect again to observe an attenuation effect reducing 𝛽  in absolute value 
towards 0 as the maximum radius of distortion increases. The mean of the estimates 
of 𝛽  for each �∗ can be plotted over the increasing values of �∗ , representing, once 
again, the attenuation effect on 𝛽  . Results are reported in Fig. 7.

As expected, for increasing values of �∗ the coefficient � decreases towards 0 thus 
erroneously suggesting a not-significant relationship of the hospital choice based on 
the distance between the hospital and the place where the patient lives. Again, the 
decrease is very sharp. When only a small amount of distortion is imposed (e.g. 
�∗ = 0.07 = 10% of the maximum distortion) the value of � is almost unaffected, but 
as soon as it increases further, we observe a sharp decline. In this case, only the 22% 
of the estimates are different from the original � , and almost the 70% is statistically 
equal to 0.

5  Discussion and conclusion

In this paper, we have examined the effects of measurement error introduced in a 
logistic model by random geo-masking, when distances are used as predictors. We 
have exploited the data used in Berta et al. (2016) as case-study, where the authors 
studied the determinants of the patients’ choice for hospital admissions.

(17)logit(𝜋ij|d̄ij,�) = 1 + 2 ∗ d̄ij
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Fig. 7  Attenuation effect for 1000 simulated individuals in the presence of uniform geo-masking as a 
function of the maximum displacement distance �∗
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Extending the classical results on the measurement error in a linear regression 
model, our MC experiment on hospital choices showed that the higher the distor-
tion produced by the geo-masking, the higher is the downward bias in absolute value 
towards zero of the coefficient associated to the distance in a regression model. 
This effect is the discrete choice counter-part of the familiar attenuation effect well 
known in the literature on linear regression models (Greene 2016).

In particular, when a certain degree of locational error is produced by arbitrar-
ily allocating individuals in the centroid of a geographical partition (as it is cus-
tomary to do in many empirical studies), according to intuition, the larger is the 
surface area of the geographical partition the larger will be the downward bias. 
When data are intentionally displaced according to a random mechanism in order 
to protect confidentiality, we also observe a similar form of the attenuation effect.

There is a growing literature aimed to integrate information on the precision of 
geographic data to improve the accuracy of modeling efforts (Aerts et al. 2003). 
Several solutions to this problem from the efficient estimation of probability den-
sity (Lilburne and Tarantola 2009) to sensitivity models have been proposed (Lil-
burne and Tarantola 2009).

Two different approaches have recently been explored by the literature which seek 
to mitigate potential errors associated with the use of spatial data. First, a simulation 
and extrapolation method (Marty et al. 2019) has sought to overcome imprecision in 
spatial measurement - i.e.,, when the exact latitude and longitude coordinates of an 
intervention may not be known. It operates by intentionally introducing imprecision 
into known data, and then backward-extrapolating to estimate what true coefficients 
and standard errors would be under cases of no imprecision. While it represents 
an improvement relative to model averaging, relatively little research has explored 
the utility of SIMEX approaches using functional model forms other than ordinary 
regression. Building on this work, a second avenue of literature has begun to explore 
how to mitigate bias that may be caused due to spatial spillover between control and 
treatment units, as well as the arbitrary selection of a distance away from treatments 
that are considered “treated” (Runfola et al. 2020). This class of approach provides 
estimates of the distance-decay function of treatment effects, allowing policymakers 
to examine the geographic distance away from interventions that a treatment effect 
might be expected. While both of these approaches represent novel contributions, in 
both cases the authors note the nascent nature of the field and highlight the need for 
further research

In summary, the results obtained in this paper could be used by the data pro-
ducers to choose an optimal value of �∗ that preserves confidentiality while not 
destroying the statistical information.

The MC results show that this attenuation effect increases dramatically already 
at small levels of distortion �∗ . Furthermore we also proved formally that the 
MLE of the logistic regression parameters looses efficiency when estimates are 
based on individuals whose position is geo-masked.

The results could be used to communicate to the practitioners the result-
ing level of attenuation and of efficiency loss they should expect from a logistic 
regression analysis.
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