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Abstract

Asian mothers, as an aggregate, may be at increased risk for adverse perinatal outcomes, but
heterogeneity between disaggregated Asian American subgroups is an understudied topic. The
first objective of this study is to examine differences in perinatal outcomes between
disaggregated Asian American subgroups and differences compared to Non-Hispanic Whites
(NHWs). The second goal is to develop models to predict gestational diabetes, one perinatal
outcome, in Asian Indian mothers to see how precision medicine may be able to advance
pregnancy care. Using the National Vital Statistics System Natality Dataset (n=10,823,868), odds
ratios (OR) were calculated with 95% confidence intervals (CI) for four perinatal outcomes
(gestational diabetes, gestational hypertension, low birthweight, preterm birth) in six Asian
subgroups (Indian, Chinese, Filipino, Japanese, Korean, Vietnamese) compared to NHWs and by
nativity. The models adjusted for mother’s age, educational attainment, pre-pregnancy
hypertension, pre-pregnancy diabetes, and pre-pregnancy BMI. Additionally, three types of
models were built to predict gestational diabetes in Asian American mothers (logistic regression,

random forest, and gradient boosted). The calculated odds ratios showed that Asian Americans



generally had an increased risk for gestational diabetes and low birth weight, and a decreased
risk for gestational hypertension and preterm birth; however, results varied between
disaggregated subgroups. Additionally, foreign born Asians generally had an increased risk of
gestational diabetes compared to US born Asians, and a decreased risk for the other three
perinatal outcomes, but variation between subgroups persisted. In addition, accuracy and recall
scores varied substantially between models. Additionally, undersampling techniques also
impacted the success of the various models. Ultimately, the results show that Asian Americans
face different risks in perinatal outcomes compared to NHWs, there is heterogeneity in results
between disaggregated Asian subgroups, and machine learning can be used to make personalized

risk predictions.

Introduction

Maternal outcomes in the United States (US) are ranked among the lowest of all developed
countries. In particular, for every 100,000 live births in the US, there are 24 that result in
maternal death, and this number has been rising since 2015. This number places the US in a
position where the maternal mortality rate is over three times the rate in most other high-income

countries (Hoyert, 2022).

Importantly, this risk of adverse maternal outcomes vastly differs according to social factors and
race. Factors such as unmarried status, US born status, lower education, and rural residence are
associated with a 50-114% higher risk of maternal mortality. Non-Hispanic Black women are at a
2.4 times higher risk of maternal mortality than White women (Singh, 2021). Additionally,

Asian/Pacific Islander women are at a particularly high risk for gestational diabetes compared to



other racial groups and are more likely to have macrosomic infants. Asian women also face an
increased risk of severe perineal laceration and postpartum hemorrhage (Bryant et al., 2010).
Race and societal inequalities seem to translate to maternal health disparities in the US.
However, the way these disparities impact disaggregated Asian American populations in

particular is an understudied but equally important topic to consider.

Asian Americans make up about 5% of the US population and are one of the fastest growing
immigrant groups. As of 2022, there are currently about 20 million Asian Americans residing in
the US, a number predicted to rise to 35.8 million by 2060 (Budiman & Ruiz, n.d.). However,
Asian Americans make up a disproportionately small fraction of overall study participants, and
are not as well studied in medical research such as maternal health research as other racial groups
are (Y. Liu et al., 2019). Further, research has shown the need to not solely increase Asian
American study participants, but also to study them disaggregated at the subgroup level (Yom &
Lor, 2022). As will be further shown in this study, when Asian Americans are treated as an
aggregated, monolithic group, the study results can hide further disparities within the

heterogenous Asian American community.

Further, as Asians are an immigrant group, some of the disaggregated Asian mothers in the US
are actually foreign born. Moreover, it has been found that nativity status also plays a role in
health and maternal outcomes. Research shows that preterm birth, hypertensive disorders, low
birth weight, and NICU admission are more likely to occur for U.S.-born women than their
foreign-born counterparts (Adegoke, 2021). Another study that looked into how maternal

nativity impacts birth outcomes in Asian immigrants found that mothers from different Asian



subgroups experienced heterogeneity in risk when disaggregated further by nativity. For
example, U.S.-born Chinese mothers and Japanese mothers had increased preterm births
compared to foreign born counterparts (Qin & Gould, 2010). Understanding how nativity
impacts Asian mothers has the potential to uncover further information about healthcare for this

demographic group.

The goal of this study is twofold: 1) to understand the individual risk that Asian American
mothers face for four main perinatal outcomes by subgroup and nativity status, and 2) to build
models to see if accurate prediction of perinatal outcomes is possible for this demographic.
Perinatal outcomes are defined as maternal and neonatal outcomes in the weeks leading up to
and after birth. The four outcomes included in this analysis are gestational diabetes, gestational
hypertension, low birthweight, and preterm birth. While the prevalence of these perinatal
outcomes in America has been fairly well studied, it is not known how they impact Asian
Americans, especially by disaggregated subgroups and nativity; thus it is imperative that focus is
directed towards them. Additionally, as precision medicine becomes increasingly utilized to
improve patient care, predictive models may be used to help personalize care based on individual
risk (Hulsen et al., 2019). Conventional epidemiological modeling relies on odds ratios that are
derived from frequentist statistics, and a newer methodology involves predictive machine
learning models to help understand relationships in the data. This study employs both of these
techniques. The analysis worked to determine how perinatal outcomes vary in disaggregated
Asian American subgroups compared to the reference group of NHWs, the effects of nativity on
these outcomes, and how these outcomes can be modeled and predicted for the Asian American

demographic.



Methods

The methodology for this project follows two main themes: Generalized Linear Modeling
(GLM) using R to calculate odds ratios (OR), and modeling using Machine Learning methods
with Python to make predictions. For both components, I examined the National Vital Statistics
System Natality (NVSS) data from the years 2015-2019
(https://www.cdc.gov/nchs/nvss/births.htm). The inclusion criteria consisted of all births from
Non-Hispanic White mothers and all births from Asian mothers. This consisted of 10,823,868

data points to analyze.
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The four outcomes included in our study are gestational diabetes, gestational hypertension, low
birthweight, and preterm birth. Gestational diabetes is defined as elevated blood sugar or
hyperglycemia during pregnancy. According to the American College of Obstetricians and
Gynecologists (ACOG), this is measured by a 2 step procedure: A Glucose Challenge Test
(GCT) with 50g glucose non-fasting, and if the value > 7.8mmol/l, it is followed by 3-hour Oral
Glucose Tolerance Test (OGTT) to confirm (Rani & Begum, 2016). These results are recorded
on the birth record. Gestational hypertension is high blood pressure during pregnancy, which
most guidelines define as blood pressure >140/90 mm Hg and is recorded on the birth record
(Garovic, 2021). Low birthweight was defined as the infant having a weight below 2500 grams
at birth, and preterm birth was defined as birth before 37 weeks of gestation (Hughes et al., 2017,

Suman & Luther, 2023).

Odds Ratios

Before explaining how odds ratios were calculated, here is a brief overview of how to interpret
odds ratios. Odds ratios of less than 1 indicate a decreased probability or risk compared to the
reference group. Odds ratios of greater than 1 indicate an increased risk compared to the
reference group. Odds ratios that are close to 1 indicate an equal risk to the reference group. To
provide some additional context, an odds ratio of 3 indicates a probability 3 times greater than
what it is being compared to. For example, there is an odds ratio of 3 when looking at the
probability of rolling an even number on a standard six-sided die (2 ,4, 6) compared to the

reference group of rolling a 2.



ORs for Perinatal Outcomes by Race

In order to determine whether odds ratios differed between Asian American subgroups based on
race and nativity, I created four generalized linear models in R, one for each of the four perinatal
outcomes. Race served as the predictor variable and the other variables included in the model
(mother’s age, mother’s education, prepregnancy hypertension, prepregnancy diabetes, and

prepregnancy bmi) were included as potential confounders. I then calculated the odds ratio for

each racial subgroup by exponentiating the model coefficient for that group (i.e. ecoefﬁCient).

ORs for Perinatal Outcomes by Race and Nativity

In order to explore ORs for perinatal outcomes by race and nativity, I created a dataframe for
each racial group by using pandas and then four generalized linear models (one with each
perinatal outcome) in R for each race category. I then calculated ORs as explained above for each
nativity value, which represents the odds ratio for the foreign born racial group versus the
corresponding US born racial group. The fully adjusted model for gestational diabetes and
gestational hypertension accounts for mother’s age, educational attainment, pre-pregnancy
hypertension, pre-pregnancy diabetes, and pre-pregnancy BMI. The fully adjusted model for low
birthweight and preterm birth additionally accounts for gestational diabetes, gestational

hypertension, and hypertension eclampsia.

Machine Learning

This component of my honors thesis is conducted as a pilot study to show how perinatal
outcomes can be predicted in Asian American subgroups. For this reason, only one outcome and

one subpopulation was chosen as an example of the kind of work that can be done. Specifically,



of all the perinatal outcomes and Asian subgroups, I chose to model gestational diabetes in the
Asian Indian population because as is shown later in the results, this is the highest odds ratio that
was calculated. This shows that there is a particularly high risk for this demographic to develop

this condition.

Additionally, the code developed to preprocess and create the machine learning models was
initially based on a smaller subset of data (n=3,663) that was about 1/100th the size of the total
data (n=368,638). I verified that this subset was representative of the larger population by
comparing the overall characteristics of the datasets, and these tables are shown in Appendix

A.1, A2, and A.3.

Preprocessing

Before the modeling component of the thesis could begin, further preprocessing was required.
All data pre-processing steps were carried out in Python using the pandas and numpy libraries.
More specifically, there were certain variables in the original dataset that were repetitive or
completely unnecessary when it came to modeling. I dropped those columns that were deemed
unhelpful to the model. I also had to do additional recoding. Some missing values were encoded
as 99s or other numerical values, so I analyzed each column name and process of encoding in
order to change the relevant values to nan. Next, I dropped any rows where the target variable
(gestational diabetes) was missing. I also dropped rows with greater than 5 missing values
because after further examination, I saw that when there were at least that many values missing

in a row, almost every value tended to be missing.
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The next step required before modeling was imputation. I employed k-nearest neighbors (KNN)
imputation to fill in missing values. Next, [ one-hot encoded the categorical variables and
ensured that each categorical variable had n-1 columns where n is the number of categories. One
hot encoding is a process that encodes categorical variables into columns of Os and 1s in
preparation for modeling (Hancock & Khoshgoftaar, 2020). Additionally, I condensed certain
variables such as mother’s education into fewer categories because some of the original

categories only occurred at a very low frequency.

Modeling

All of the machine learning based modeling was performed using Python's scikit-learn module.
The three types of models used were logistic regression, random forest, and gradient-boosted
classification. All models were evaluated using precision, recall, and accuracy, with a particular
emphasis on recall as a metric for success. Due to an imbalance in the dataset, i.e., there were far
more data points from people without gestational diabetes than with, I tested three
undersampling strategies: random undersampling of the data prior to splitting into test and train
sets, random undersampling of just the training data after splitting, and undersampling the
training data using NearMiss-1 as implemented in the Python imbalance package (J. Zhang &
Mani, 2003). Pre-split undersampling was to 504 observations per class for the small dataset, and
51224 for the large dataset. Based on the 30% test-train split used for model training and
validation, post-split undersampling was to 228 observations per class for the small data set, and

24086 for the large dataset.

I then performed logistic regression using Python's scikit-learn module. Logistic regression is a

special case of a linear regression model where the target variable is categorical rather than
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numerical (Geron, 2019). Cross-validation with 10 folds was used to optimize the value of the
hyperparameter c. I also tested both L1 and L2 regularization, which required the use of the saga
solver. The default value of c=1 was optimal according to the metrics I evaluated, and ultimately,

L1 regularization was used to evaluate feature importance.

Next, using scikit-learn, I created random forest models. Random forest classification works by
fitting the data to numerous decision trees and then applying soft voting to average class
probabilities to make a final prediction. I also explored feature importance with this classifier.
The feature importances were evaluated by looking at the mean decreases in gini impurity. This
metric counts the number of times a particular feature is used to split a node, while considering
the total number of samples it splits (Feature Importances with a Forest of Trees, n.d.). The

features with the greatest gini impurity values are considered the most important.

Finally, I also employed a gradient boosted classifier in scikit-learn in order to see how its
predictions performed compared to the other model types. The gradient boosted classifier is an
ensemble learning method where multiple weaker models are combined to create a stronger final
model that learns and improves with each iteration (Natekin & Knoll, 2013). Additionally, the
default value of the learning_rate parameter (0.1) was determined to be optimal according to the

metrics [ evaluated (Sklearn. Ensemble. RandomForestClassifier, n.d.).
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Results/Discussion

Odds Ratios

Data Characteristics

Birth data from a total of 11,006,202 mothers (10,134,723 Non-Hispanic White & 871,479 Asian
American) in the US between 2015-2019 were included in this study. As shown in Table 1, some
demographic characteristics did vary slightly between each racial group. For example, the
average age of the NHW group was younger than that of the Asian subgroups. The NHW
average age was 29.3, but of the Asian subgroups, foreign born Indians had the lowest average
age of 31.1, which is slightly greater than for NHWs. However, overall, each racial group had a
relatively similar demographic makeup. Table 2 displays additional information about the births
in the dataset and specifically focuses on perinatal and neonatal outcomes. These first two tables

show an overview of the data by race that is used in the remainder of the analysis.

Non Hispanic
White Indian Chinese Filipino | Japanese Korean | Vietnamese

Variables | (n=10134723) | (n=370791) | (n=293324) | (n=151366) | (n=32221) | (n=72711) | (n=102432)

Maternal age

) 29.3 31.23 32.4 32.12 34.41 33.61 31.92
Maternal
height (in) 64.95 63.39 63.85 62.25 62.96 63.81 62.21

Pre-pregnancy 175.07 159.86 148.82 152.13 14491 147.59 138.33
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body weight

(Ib)

Pre-pregnancy 73932 4079 1539 1807 173 537 917
diabetes N (%) (0.73%) (1.10%) (0.52%) (1.19%) (0.54%) (0.74%) (0.90%)
Pre-pregnancy

Hypertension 179207 3194 1429 3454 285 755 631
N (%) (1.77%) (0.86%) (0.49%) (2.28%) (0.88%) (1.04%) (0.62%)
Maternal

Education, N

(%)

8th grade or 132494 4666 5017 361 37 120 2395
less (1.31%) (1.26%) (1.71%) (0.00%) (0.11%) (0.17%) (2.34%)
9th through

12th grade with 594047 10053 10839 3353 414 358 6551
no diploma (5.86%) 2.71%) (3.70%) (2.22%) (1.28%) (0.49%) (6.40%)
High school

graduate or

GED 2124020 27092 27709 16591 2444 3207 22484
completed (20.96%) (7.31%) (9.45%)| (10.96%) (7.59%) (4.41%) (21.95%)
Some college

credit, but not a 1996927 18294 22857 29103 3042 6602 15948
degree (19.70%) (4.93%) (7.79%)| (19.23%) (9.44%) (9.08%) (15.57%)
Associate

degree (AA, 963032 12353 16116 16437 3746 4150 8825
AS) (9.50%) (3.33%) (5.49%)| (10.86%)| (11.63%) (5.71%) (8.62%)
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Bachelor's
degree (BA, 2619298 131066 96473 64360 14775 32667 27485
AB, BS) (25.84%)| (35.35%) (32.89%)| (42.52%)| (45.86%)| (44.93%) (26.83%)
Master's degree
(MA, MS,
MEng, MEd, 1213930 124626 70968 10927 4883 14979 7768
MSW, MBA) (11.98%)| (33.61%) (24.19%) (7.22%)| (15.15%)| (20.60%) (7.58%)
Doctorate
(PhD, EdD) or
Professional
Degree (MD,
DDS, DVM, 340129 31608 31453 4781 1921 8654 7003
LLB, JD) (3.36%) (8.52%) (10.72%) (3.16%) (5.96%)| (11.90%) (6.84%)
Foreign born, 697345 331387 252212 108551 23159 53647 80141
N (%) (6.88%) (89.4%) (86.0%) (71.7%) (71.9%) (73.8%) (78.2%)
Perinatal visits 7.15 7.11 6.99 6.95 7.09 7.12 6.85
Table 1: Maternal Characteristics By Race
Non Hispanic
White Indian Chinese Filipino Japanese Korean | Vietnamese
Variables (n=10134723) | (n=370791) | (n=293324) |(n=151366)| (n=32221) | (0=72711) | (n=102432)
Gestational
weight gain
(Ib) 31.27 27.44 29.06 28.44 25.56 29 28.39
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Gestational

diabetes

mellitus, N 73932 4079 1539 1807 173 537 917
(%) (0.73%) (1.10%) (0.52%) (1.19%) (0.54%)| (0.74%) (0.90%)
Gestational

hypertension, 707415 14879 7088 10530 1034 2669 3046
N (%) (6.98%) (4.01%) (2.42%) (6.96%) (B21%)| (3.67%) (2.97%)
Eclampsia, N 24971 511 274 976 177 130 101
(%) (0.25%) (0.14%) (0.09%) (0.64%) (0.55%) (0.18%) (0.10%)
Gestational

age at delivery

(week) 38.57 38.47 38.66 38.18 38.59 38.68 38.4
Preterm birth

(<37 weeks), 919944 33262 19655 17654 2570 5411 8945
N (%) (9.08%) (8.97%) (6.70%)| (11.66%) (7.98%)| (7.44%) (8.73%)
Birth Weight:

Very low

(<1,500 g), N 108797 5074 2018 2354 267 591 1001
(%) (1.07%) (1.37%) (0.69%) (1.56%) (0.83%)| (0.81%) (0.98%)
Birth Weight:

Low (<2,500 598409 33782 15607 12830 2453 3973 7170
2), N (%) (5.90%) (9.11%) (5.32%) (8.48%) (7.61%)| (5.46%) (7.00%)
Birth Weight:

Normal/High

(>=2500 g), N 9420383 331706 275560 136126 29489 68098 94224
(%) (92.95%)| (89.46%)| (93.94%)| (89.93%) (91.52%)| (93.66%) (91.99%)
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Delivery:
Spontaneous, 6646690 201941 189439 90329 22254 46483 64809
N(%) (65.58%)| (54.46%)| (64.58%)| (59.68%) (69.07%)| (63.93%) (63.27%)
Delivery:
Forceps, 61500 3219 1872 1033 359 586 637
N(%) (0.61%) (0.87%) (0.64%) (0.68%) (1.11%)|  (0.81%) (0.62%)
Delivery:
Vacuum, 268817 18540 14538 5664 1258 3333 4828
N(%) (2.65%) (5.00%) (4.96%) (3.74%) (3.90%)| (4.58%) 4.71%)
Delivery:
Cesarean, 3116880 144941 86835 53800 8274 21946 32045
N(%) (30.75%)|  (39.09%)| (29.60%)| (35.54%) (25.68%)| (30.18%) (31.28%)

Table 2: Perinatal and Neonatal Outcomes By Race

Odds Ratios by Disaggregated Asian Subgroup

The results indicate that for gestational diabetes, Asian Americans tend to have an increased risk

compared to NHWs overall. All disaggregated groups had a higher risk than NHWs, but the

degree to which the risk increased differed between groups. Japanese Americans for example,

had an odds ratio close to 1 (OR: 1.06, 95% CI 1.02-1.11), but on the other hand, Asian Indians

had an almost 3-fold increase in risk (OR: 2.75, 95% CI 2.72-2.77). Overall, this increased risk

for gestational diabetes among Asian mothers is consistent with previous studies (L. Chen,

2019).
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For gestational hypertension, Asian Americans tended to have decreased odds. With the
exception of Filipino Americans (OR: 1.0, 95% CI 0.98-1.02), all other disaggregated Asian
American groups had an odds ratio that dipped below 1 and confidence intervals that did not
include 1. The most significant of these findings was for Chinese Americans who were '3 as
likely to be diagnosed with gestational hypertension compared to NHWs (OR: 0.33, 95% CI
0.33-0.34). This is consistent with findings from a study examining disparities in maternal
hypertension in the United States, which concluded that most Asian groups (including Chinese,
Japanese, Vietnamese, Koreans, and Asian Indians) had a lower prevalence of maternal
hypertension than NHWs (Singh, 2018). Another similar study corroborated these findings with
results that show that Asian Americans are in general more likely to remain normotensive during

pregnancy (Ghosh et al., 2014).

Additionally, with the exception of Chinese Americans (OR: 0.91, 95% CI 0.90-0.93) and
Korean Americans (OR: 0.96, 95% CI 0.93-0.99), Asians tended to have an increased odds of
low birthweight. Asian Indians are at the highest risk (OR: 1.75, 95% CI 1.73-1.76). The overall
trend for aggregate Asians is consistent with the literature as shown by Zang’s study, which
explored perinatal outcomes in Ontario, Canada; the results showed increased risk for low
birthweight (Zeng et al., 2021). Additionally, the highest risk within the Asian Indian subgroup
aligns with the results of another research study that found lower birth weight in South Asian

babies that were born in the United Kingdom (Margetts et al., 2002).

For preterm birth, we found that the Asian American subgroups tended to have odds ratios

around 1, which indicate a comparable risk compared to NHWs. Additionally, for preterm birth
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there were differences by disaggregated Asian group, and Chinese mothers had the lowest risk
(OR: 0.75, 95% CI 0.74-0.77), while Filipinos had the highest (OR: 1.29, 95% CI 1.27-1.31).
These results reinforce the need to disaggregate Asian American research into subgroups. As can
be seen from the table above, the odds ratios for aggregate Asians do not show the full picture of

the risks for Asian subgroups compared to the NHW reference group. The aggregate Asian OR

for preterm birth was close to 1, indicating that the risk didn’t differ much from that of NHWs.

However, when looking at the ORs for some of the other Asian subgroups, the results are quite

heterogeneous and show ORs from 0.75 to 1.29 as described above.

Gestational Gestational
Diabetes Hypertension Low Birth Weight Preterm Birth
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
Non-Hispanic White
(n=10134723) Ref. Ref. Ref. Ref.
Indian
(n=370791) 2.75(2.72,2.77) 0.56 (0.55, 0.57) 1.75 (1.73, 1.76) 1.06 (1.05, 1.08)
Chinese
(n=293324) 1.86 (1.84, 1.89) 0.33(0.33,0.34) 0.91 (0.90, 0.93) 0.75(0.74, 0.77)
Filipino
(n=151366) 2.09 (2.06, 2.12) 1.00 (0.98, 1.02) 1.49 (1.46, 1.51) 1.29 (1.27, 1.31)
Japanese
(n=32221) 1.06 (1.02, 1.11) 0.43 (0.41, 0.46) 1.24 (1.20, 1.29) 0.85(0.82, 0.89)
Korean
(n=72711) 1.42 (1.39, 1.46) 0.51(0.50, 0.54) 0.96 (0.93,0.99) 0.83 (0.81, 0.85)
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Vietnamese

(n=102432) 2.15(2.11, 2.20) 0.41 (0.40, 0.43) 1.15(1.13, 1.18) 0.95(0.93, 0.97)
Aggregate Asians

(n=1022845) 2.05 (2.02,2.07) 0.56 (0.55, 0.57) 1.26 (1.24, 1.28) 0.96 (0.95, 0.97)

Table 3. Fully Adjusted Odds of Perinatal Outcomes by Race

Odds Ratios by Disaggregated Asian Subgroup and Nativity

This section of the study examines the odds ratios of the four main perinatal outcomes for each
racial category by nativity. Compared to their US born counterparts, foreign born Asian
Americans did have slightly different risks. For gestational diabetes, with the exception of
Japanese Americans (OR: 0.58, 95% CI 0.53-0.63) and Korean Americans (OR: 1.00, 95% CI
0.94-1.06), foreign born Asians tended to have an increased risk. The highest risk group was

foreign born Indians (OR: 1.72, 95% CI 1.66-1.78).

For gestational hypertension, all foreign born disaggregated Asian subgroups experienced a
decreased risk. The lowest risk group was foreign born Japanese Americans (OR: 0.40, 95% CI
0.35-0.46). For low birth weight and preterm birth, foreign born Asian Americans tended to
have a slightly lower risk. With the exception of Korean Americans (OR: 0.93, 95% CI
0.86-1.00), foreign born Asians had a decreased risk of low birthweight with the smallest risk
belonging to Chinese Americans (OR: 0.73, 95% CI 0.71-0.77). Additionally, all foreign born
disaggregated Asian subgroups had a decreased risk of preterm birth with the smallest risk

belonging to foreign born Japanese Americans (OR: 0.64, 95% CI 0.59-0.70).
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In general, the literature shows mixed results on how nativity impacts the perinatal health of
mothers. The results of the study presented here show that with the exception of gestational
diabetes, for each perinatal outcome, US Born Asians tended to experience a higher risk. This is
consistent with the results of a study that examined acculturation and its impact on gestational
diabetes. The results showed that in general, Asians do have an increased risk for this perinatal
outcome but that higher acculturation may be a protective factor in this demographic group, and
individuals who are born in the US tend to be more acculturated than their foreign-born
counterparts (L. Chen, 2019). That study also discussed how other parts of the literature suggest
the opposite impact of acculturation; some studies show that acculturation has led to decreased
health and increased diabetes rates in Hispanic Americans (O’Brien et al., 2014) and Chinese
individuals in Australia (Jin et al., 2017). It is possible that increased acculturation in the US
culture may lead to a worsening diet and health that may be a factor in the increased risk for US

born Asians shown in table 4.

Foreign Born Indian

(n=331387)

Foreign Born Chinese

(n=252212)

Foreign Born Filipino

(n=108551)

Gestational

Diabetes

OR (95% CI)

1.72 (1.66, 1.78)

1.13 (1.09, 1.17)

1.25 (1.20, 1.29)

Gestational

Hypertension

OR (95% CI)

0.80 (0.76, 0.84)

0.44 (0.42, 0.46)

0.89 (0.85, 0.93)

Low Birth Weight

OR (95% CI)

0.88 (0.85,0.91)

0.73 (0.71, 0.77)

0.92 (0.88, 0.95)

Preterm Birth

OR (95% CI)

0.90 (0.87, 0.93)

0.75 (0.72, 0.78)

0.96 (0.92, 0.99)



Foreign Born Japanese

(n=23159)
Foreign Boren Korean
(n=53647)
Foreign Born Vietnamese
(n=80141)

Foreign Born
Aggregate Asians

(n=849097)

0.58(0.53, 0.63)

1.00 (0.94, 1.06)

1.34 (127, 1.41)

1.62 (1.61, 1.63)

0.40 (0.35, 0.46)

0.87 (0.79, 0.95)

0.48 (0.45, 0.53)

0.54 (0.54, 0.55)

0.81(0.74, 0.88)

0.93 (0.86, 1.00)

0.85(0.81, 0.90)

0.97 (0.96, 0.98)

Table 4. Fully Adjusted Odds of Perinatal Outcomes by Race and Nativity

Machine Learning

Evaluating Model Success
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0.64 (0.59, 0.70)

0.95(0.88,1.01)

0.81 (0.77, 0.85)

0.82 (0.82, 0.83)

The odds ratio results from the previous section demonstrated how various factors influence the

heterogeneity of risk that diverse groups of mothers face during pregnancy. I next sought to

determine how personalized risk may be predicted using machine learning models. Additionally,

this process served as a methodological exploration to determine if machine learning methods

could be applied to this dataset and produce meaningful predictive power that could be useful

clinically.

Each model was evaluated using accuracy, precision, and recall. Accuracy is calculated by taking

the ratio of the number of correctly classified data points to the total number of data points. By
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the nature of their calculations, precision and recall always have a tradeoff; precision tells you
what proportion of samples classified as positive were done correctly, while recall shows what
proportion of positive samples were classified as such in the model (Hicks et al., 2022).
Generally, as recall increases, there are more false positives, which decreases precision. In the
results below, I have included both accuracy and recall, and chosen to exclude precision. This is
because in medical applications of artificial intelligence, recall is considered to be the most
important metric (Hicks et al., 2022). In the case of the gestational diabetes models that were
built, models with higher recall are able to classify a greater number of patients with gestational
diabetes properly. This metric has increased significance because in the clinical setting,
physicians are most interested in being able to determine which patients are most likely to
develop gestational diabetes so that additional care can be taken to prevent or mitigate any
subsequent risks. In general, the additional monitoring of a patient’s health would not be

detrimental to anyone in the false positive category.

Additionally, the results for the smaller dataset were also calculated as it was initially used to
evaluate and tune the models. After the models were finished, they were tested on the large
dataset. Notably, the results stayed pretty consistent between the small and large dataset; for this

reason, the large dataset results are primarily highlighted for each model below.

Results Without Undersampling

Initially, when the models were built without undersampling, accuracy values tended to be quite
high, but recall values were very low. With such imbalanced data that had far more patients
without gestational diabetes than those that did, the model was able to achieve a high accuracy

by classifying almost all of the data points as 0, i.e. no gestational diabetes. However, this in



practice is a fairly useless model because the recall is so low; low recall in the clinical setting
means that physicians are not able to predict which patients are at higher risk for gestational

diabetes and therefore need additional screening and prevention assistance.

The table shown below demonstrates the high accuracy but low recall of the models before
undersampling. Notably, the models all had an accuracy of about 0.86, which is among the
highest seen in any of the results of this study. However, the highest recall score observed was
0.04 by the random forest classifier, which is very low. This means that only 4% of individuals
with gestational diabetes were detected by the model. The random forest model was not very
successful at predicting the outcome on the test data, but still slightly more successful than the
others. It is possible that this was the case because tree-based algorithms tend to perform
particularly well with imbalanced data (Feki, 2022; C. Chen, 2004). Notably the model

performed perfectly on the training data, i.e. an accuracy and recall of 100%, indicating

overfitting.
Model Type Accuracy Recall
Logistic Regression (L1) 0.86 0.01
Logistic Regression (L2) 0.86 0.01
Random Forests 0.86 0.04
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Gradient Boosted 0.86 0.02

Table 5: Accuracy and Recall Values Without Undersampling

Results With Undersampling After Train Test Split

Once the imbalance in the dataset became clear, results were evaluated after performing
undersampling to rebalance the data. The tables below show the accuracy and recall values of the
models before and after undersampling of two kinds: random undersampling and NearMiss

undersampling.

Compared to no undersampling, the models with undersampling had reduced accuracy, but both
of the undersampling methods drastically increased the recall success of the models. In terms of
accuracy, the random undersampling technique outperformed NearMiss, but the opposite was
true for recall. Since recall is most important in this study, the NearMiss undersampling
technique seems to have outperformed random undersampling. The NearMiss results had recall
values at or above 0.7. These results may be related to the way the NearMiss algorithm works.
NearMiss does not use random undersampling, and instead, it uses an approach similar to
k-Nearest Neighbors. NearMiss-1 preferentially selects the N (default N =3) points from the
majority class that are closest to the points from the minority class for undersampling
(Under-Sampling, n.d.; J. Zhang & Mani, 2003). Since it is a generally more sophisticated

algorithm, it makes sense that it outperformed random undersampling in terms of recall.
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Model Type Accuracy Recall
Logistic Regression (L1) 0.49 0.55
Logistic Regression (L2) 0.49 0.55
Random Forests 0.52 0.49
Gradient Boosted 0.50 0.53

Table 6: Accuracy and Recall Values With Random Undersampling

Model Type Accuracy Recall
Logistic Regression (L1) 0.47 0.70
Logistic Regression (L2) 0.47 0.70
Random Forests 0.35 0.79
Gradient Boosted 0.38 0.78

Table 7: Accuracy and Recall Values With NearMiss Undersampling

Results With Pre-Split Undersampling

After employing the train test split method after undersampling the data, accuracies and recall

scores were the highest overall across models. In terms of accuracy, the gradient boosted model
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scored highest with an accuracy of 0.67. On the other hand, both the logistic regression models

scored lowest with an accuracy of 0.64.

In terms of recall, the gradient boosted model once again performed the best with a value of 0.69
for the large dataset. The logistic regression model performed the worst with a recall of 0.63.
Interestingly, in terms of both accuracy and recall, the gradient boosted model performed among

the worst in terms of the small dataset but the best with the large dataset.

Model Type Accuracy Recall
Logistic Regression (L1) 0.64 0.63
Logistic Regression (L2) 0.64 0.63
Random Forests 0.66 0.67
Gradient Boosted 0.67 0.69

Table 8: Accuracy and Recall Values With Pre-Split Undersampling

While these values tend to be higher than in the section prior when train test split preceded
undersampling, they may be biased due to data leakage (Yagis et al., 2021; Samala, 2020). A
comparison between the accuracy and recall scores in this section of the results as compared to
the one prior is a strong example of data leakage. Data leakage occurs when information is
available to the model during training from the test or validation data that it may not have when

actually put into practice (8. Common Pitfalls and Recommended Practices — Version 0.10.1,
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n.d.). Specifically in this case, if we undersample prior to splitting the data, the test data will be
balanced, which isn't representative of data that the model would encounter when actually used
for prediction. This leads to results that are deceptively good and show much higher accuracy

and recall than might occur when making predictions on new test cases (Santos et al., 2018).

Comparing Results By Undersampling Method

The figures below compare the accuracies and recall scores of the models employing the various
undersampling techniques described above. Overall, the original data with no undersampling
performed the best in terms of accuracy, but this is deceptive because the recall scores were very
low. Additionally, the pre-split undersampling seemed to perform well in terms of accuracy as
well, but due to data leakage, these results may be overly optimistic. When undersampling with
NearMiss, relatively high recall was able to be achieved, which is the most important in this

study.
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Evaluating Model Performance

Overall, it appears that the random forest and gradient boosted models outperformed the linear
regression models in terms of accuracy and recall. There are many reasons why this may have
been the case. First, logistic regression models use a linear equation with a logit link, i.e. a
formalized regression model, and this is not the case with the random forest or gradient boosted
classifier. Therefore, logistic regression makes more assumptions about the data. With real world
data, these assumptions may not apply, making the model less accurate at prediction

(Ranganathan et al., 2017).

Additionally, the gradient boosted and random forest classifier may have performed better
because of their abilities to handle the type of data provided for the model. In general, ensemble
models tend to be more effective at handling imbalanced data, especially when techniques such

as oversampling or undersampling are used (L. Liu et al., 2022).

Feature Importances

Using both the logistic regression model with L1 regularization and the random forest classifier,
I compared and contrasted feature importance values using the undersampled data. More
specifically, the L1 regularization of the logistic regression model allows for coefficients to be
set to zero. Those variables are eftectively removed from the model and therefore deemed less
important. The random forest classifier ranks feature importance by calculating a Gini impurity

value of which a larger number indicates a more important variable.
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With the random forest model, there were five variables that were deemed most important for
prediction: BMI, weight gain, prepregnancy weight, delivery weight, and mother’s age in
descending order of importance. Notably, the first four of these variables are related to weight
and body composition, which supports the idea that managing weight carefully during and even
before pregnancy may be important in reducing gestational diabetes. When comparing this to the
logistic regression with the L1 model, there were quite a few similarities. The most important
predictors for the L1 model were determined on the basis of the magnitude of the coefficients.
This metric does not always align perfectly, e.g. in cases of collinearity, but it can serve as a
proxy for feature importance. The predictors deemed most important were weeks of gestation,
cigarette use before pregnancy, weight gain, BMI, and prepregnancy weight in decreasing order
of importance. These last three align with the random forest results, but the first two provide
additional information about what may be important in these predictions. Additionally,
connecting back to the GLMs created earlier in this study, this shows the importance of
controlling for factors such as BMI/weight which are interrelated and may have some influence

on odds of developing gestational diabetes.

Overall, there was a trend in which variables were considered particularly important in prediction
for both of the models. Both models found metrics relating to weight and body composition to be
particularly important. This aligns well with the current literature, which shows that body weight
and larger composition is associated with increased risk of developing gestational diabetes
(Rahnemaei et al., 2022). Additionally, current literature also supports the idea that a feature such
as mother’s age, which was deemed important by the random forest model may also play a role

in gestational diabetes risk. In general, women of advanced maternal age (AMA) are considered



31

to be at increased risk for numerous pregnancy outcomes such as gestational diabetes,
miscarriage, chromosomal abnormalities, stillbirth, fetal growth restriction, preterm birth,
pre-eclampsia, and cesarean section (Frick, 2021). Finally, cigarette use before pregnancy has
also been considered to lead to increased risk of adverse outcomes whether before or during

pregnancy (Yang et al., 2022).

Table 9. Most Important Features

Random Forest Logistic Regression - L1

1. BMI 1. Weeks of Gestation

2. Weight gain 2. Cigarette Use Before Pregnancy
3. Prepregnancy Weight 3. Weight Gain

4. Delivery Weight 4. BMI

5. Mother’s Age 5. Prepregnancy Weight

Limitations and Future Directions

There are some limitations of this study that can potentially be addressed by future work. One of
the complications within our data from NVSS is that race isn’t always as easily categorized as
we assume for the purposes of this research. For example, we have not taken into account the
health outcomes of individuals who affiliate with multiple racial groups. Additionally, in this
study, we chose to ignore the fact that some mothers may have been duplicated in the data due to

multiple births within the time frame of data collection. Additionally, while this work focuses on
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disaggregating Asians by subgroup, we were only able to categorize into six Asian subgroups,
and this by no means truly captures the heterogeneity of Asia. Future studies could expand upon
this work by disaggregating Asian groups further and exploring additional perinatal and maternal

health outcomes.

Additionally, one complication in the study was the imbalance in the data. In future research, the
study could be designed in a way that there would be a more even number of patients who have
or don’t have each perinatal outcome. For example, this might be done using a matched
case-control study. Additionally, in order for models to be used in clinical settings, improved
accuracy and recall may be needed. Further studies that work to improve the model success
would be beneficial. Since some of the models perform stronger in some aspects than others, an

ensemble-style model could also be examined.

Conclusion

As medical data continues to be collected, the healthcare field is beginning to uncover the power
of personalized medicine. There is a growing need to understand how an individual’s risk of
developing adverse outcomes differs from another individual’s on the basis of various

demographic characteristics.

In this study, I sought to uncover how the odds of developing adverse perinatal outcomes differs
between disaggregated Asian American subgroups as well as on the basis of nativity. Results
showed that risk does indeed vary between disaggregated subgroups, reinforcing the

heterogeneity of Asian Americans and the need to study them further. The hope is that
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understanding relative odds of developing these conditions will help providers to better care for

their patients.

Additionally, this pilot study aimed to determine how machine learning models can be used to
provide precision medical care. One major issue in the models was imbalance of data, and in
these predictions, it is likely that the data will always be imbalanced, so more complex models or
deep learning may need to be explored further. Additionally, aside from predictive capability,

feature selection could provide useful insights for clinical evaluation.

Overall, this study sought to further understand the ways that data science methodologies can

transform maternal healthcare.
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Appendix

A.1: Small Versus Large Dataset Numerical Variables

Variable Name Variable

mager

previs_rec

wtgain

dplural

bmi

pwegt r

dwgt r

priorlive

priordead

oegest_comb

cig 0

cig 1

cig 2

cig 3

Mother's Age

Number of Prenatal Visits

Weight Gained During Pregnancy (Ibs)

Plurality

BMI

Pre-Pregnancy Weight

Delivery Weight

Number of Live Children from Previous Live

Births

Number of Dead Children from Previous Live

Births

Number of Weeks of Gestation

Prenatal Cigarettes

First Trimester Cigarette Use

Second Trimester Cigarette Use

Third Trimester Cigarette Use

Value for Small

Dataset

31.15 (4.17)

6.95 (1.71)

29.59 (16.95)

1.04 (0.19)

26.59 (12.80)

140.17 (26.65)

167.68 (26.92)

0.64 (0.77)

0.01 (0.01)

38.42 (2.05)

0.02 (0.48)

0.01 (0.27)

0.01 (0.18)

0.01 (0.21)

Value for Large

Dataset

31.23 (4.30)

6.98 (1.73)

29.65 (17.23)

1.03 (0.19)

26.56 (12.71)

139.83 (26.37)

167.19 (27.06)

0.66 (0.80)

0.01 (0.14)

38.47 (1.99)

0.02 (0.71)

0.01 (0.55)

0.01 (0.47)

0.01 (0.43)
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A.2: Small Versus Large Dataset Dichotomous Variables

Value for Small Value for Large

Variable Name  Variable Dataset Dataset
sex Sex of Infant (% Female) 0.49 0.48
rf_pdiab Pre-pregnancy Diabetes (% yes) 0.01 0.01
rf_gdiab Gestational Diabetes (% yes) 0.14 0.14
rf_ehype Hypertension Eclampsia (% yes) 0 0
rf_ppb Previous Preterm Birth (% yes) 0.02 0.02
mm_mtr Maternal Transfusion (% yes) 0 0
mm_plac Perineal Laceration (% yes) 0.02 0.02
mm_rupt Ruptured Uterus (% yes) 0 0
mm_uhyst Unplanned Hysterectomy (% yes) 0 0
rf_phype Pre-pregnancy Hypertension (% yes) 0.01 0.01
rf_ghype Gestational Hypertension (% yes) 0.04 0.04
mm_aicu Admit to Intensive Care (% yes) 0 0
mbstate rec Mother's Nativity (% Born In US) 0.1 0.1

A.3: Small Versus Large Dataset Categorical Variables



Variable Name

meduc

Ibo_rec

tpo_rec

me_rout

Variable

Mother's Education

8th grade or less

9th through 12th grade with no diploma

High school graduate or GED completed

Some college credit, but not a degree

Associate degree (AA, AS)

Bachelor's degree (BA, AB, BS)

Master's degree (MA, MS, MEng, MEd, MSW, MBA)

Doctorate (PhD, EdD) or Professional Degree (MD, DDS,

DVM, LLB, JD)

Live Birth Order

4+

Total Pregnancy Order

4+

Final Route/Delivery

Value for

Small Dataset

0.01

0.03

0.07

0.05

0.04

0.35

0.36

0.09

0.49

0.41

0.09

0.02

0.4

0.36

0.15

0.1

36

Value for Large

Dataset

0.01

0.03

0.08

0.05

0.36

0.35

0.09

0.48

0.41

0.08

0.03
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Spontaneous 0.54 0.55
Forceps 0.01 0.01
Vacuum 0.05 0.05
Cesarean 0.4 0.39
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