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Abstract

Parameter Estimation for Patient Enrollment in Clinical Trials
By Junyan Liu

In this paper, we study the Poisson-gamma model for recruitment time in clinical trials.
We proved several properties of this model that match our intuitions from a reliability
perspective, did simulations on this model, and used different optimization methods
to estimate the parameters. Although the behaviors of the optimization methods
were unfavorable and unstable, we identified certain conditions and provided potential
explanations for this phenomenon and further insights into the Poisson-gamma model.



Parameter Estimation for Patient Enrollment in Clinical Trials

By

Junyan Liu

Advisor: Anh Ninh

A thesis submitted to the Faculty of the
Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Department of Mathematics

2023



Acknowledgments

I would like to express my deepest gratitude to my thesis advisor, Professor Anh Ninh,

for his invaluable guidance, unwavering support, and insightful feedback throughout

the research process. His expertise and encouragement have been instrumental in

shaping this work.

I am also thankful to the members of my thesis committee, Professor Larry

Leemis, Professor Gexin Yu, and Professor Daniel Vasiliu, for their time and valuable

suggestions, which greatly enhanced the quality of this thesis.

I extend my heartfelt appreciation to my family and friends, especially my mother,

Chen Xingping; my grandmother, Zeng Xiaoqiong, for their endless love, encourage-

ment, and understanding. Their patience and belief in my abilities sustained me

through the challenging phases of this research journey.

I also acknowledge the support provided by the College of William and Mary for its

resources that made it possible for me to dedicate my time and effort to this project.

Finally, this thesis was only possible with the collective support, encouragement,

and understanding of all these individuals and intuitions. Thank you for participating

in this significant milestone in my academic journey.

Junyan Liu

College of William and Mary

November 19, 2023



Contents

1 Introduction 1

2 Recruitment Modeling 3

2.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Mathematical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Estimation Problems 12

3.1 Simulated Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Numerical Studies 19

4.1 Performance of Optimization Algorithms . . . . . . . . . . . . . . . . 19

4.2 Robustness of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusion and Future Research 26

A Appendix 28

Bibliography 29

i



List of Figures

2.1 The survivor function of the recruitment time in a multi-site trial with

α = 100, β = 50, n = 100, N = 5 (black) and α = 8, β = 4, n =

100, N = 5 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 On the left is the survivor function of the recruitment time in a multi-

site trial with α = 100, β = 50, n = 130, N = 6 (black) and α = 80, β =

40, n = 100, N = 5 (red). On the right is the survivor function of

the recruitment time in a multi-site trial with α = 100, β = 50, n =

130, N = 6 (black) and α = 8, β = 4, n = 100, N = 5 (red). . . . . . . 10

3.1 The PearsonVI distribution of T and the histogram of the simulated

recruitment time with α = 10, β = 10, n = 200, N = 4. . . . . . . . . . 13

3.2 Simulations with α = 4, β = 20, N = 20, T = 30. Fit into a gamma

distribution and obtain α̂ = 3.883 and β̂ = 17.360 . . . . . . . . . . . 14

3.3 Simulations with α = 4, β = 20, N = 20, T = 30 and using optimization

to obtain fitted parameters with α̂ = 9.647 and β̂ = 43.122 . . . . . . 17

4.1 Simulations with α = 6, β = 6, N = 50, n = 200, starting with initial

parameters α = β = 2 on the top and α = β = 10 on the bottom. The

numbers behind each name of optimization are α̂ and β̂. . . . . . . . 20

4.2 Contour map of the objective function with α and β from 1 to 10

(simulations with α = 6, β = 6, N = 50, n = 200). . . . . . . . . . . 22

ii



iii

4.3 Distributions of α̂ and β̂ with simulations from α = 6, β = 6, n = 200,

N = 50, 20, 5 on the first, second and third row respectively. . . . . . 24

4.4 Histogram of α̂/β̂ with simulations from α = 6, β = 6, N = 50, n = 200). 25



Chapter 1

Introduction

Clinical trials are essential research studies to evaluate the safety, efficacy, and effec-

tiveness of new medical treatments, interventions, drugs, or devices in humans. A

typical clinical trial usually takes certain phases with different scientific purposes, and

this paper is trying to model patient recruitment time.

From time to time, when it comes to clinical trials, researchers and practitioners

want to be as efficient as possible because it can not only save time but also relieve

patients’ pain and even save lives for any second saved, like releasing an effective vaccine

during a pandemic. Swift recruitment leads to faster completion of trials, making

new treatments available sooner to patients in need. From a scientific perspective,

a precise estimation of recruitment time will make the process smoother, saving

plenty of resources (especially time). Usually, the recruitment time problem seems

unpredictable, so people have to wait for the recruitment to complete and plan the

following phases of clinical after completion. Still, with a proper model to estimate

recruitment time, we can significantly enhance our efficiency and allocate resources to

other procedures.

Recruitment time is one of the crucial factors in clinical trials, so we need to

consider enough factors for a more complete and precise prediction. In previous

1
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studies, people have come up with different models for clinical trials. For instance,

people first proposed the unconditional model[5], which estimates the time by dividing

the acquired sample size by the number of recruited patients across all centers in one

month. Then, it was improved to a conditional model, which allows the expected

recruitment in any given month to vary, depending on other conditions in the trial

like the number of recruitment centers[3]. However, these models are deterministic,

so the patients arrive at the centers at certain rates but not randomly. Thus, for

example, in [11], the author proposed a model where patients arrive randomly in

different centers in Poisson processes with a fixed and identical recruitment rate. We

use the revised version of this model, which assumes that the rates follow a gamma

distribution because there are various uncertainties in different recruitment centers,

so keeping the rate identical will not be useful given these large discrepancies across

centers. Moreover, the gamma distribution can be improved using Bayesian analysis,

so new evidence of data can help us improve our gamma model to have a better fit.

In this paper, we examined the Poisson-Gamma model proposed in the paper [2]

in theoretical analysis, did simulations on the model, and showed several numerical

results that are related and useful. Meanwhile, when trying to estimate and predict

future results, we will reveal the instability in practice, identify the problems that

occurred in the optimization process of this model, and point out potential ways to

solve them.



Chapter 2

Recruitment Modeling

2.1 Notation and Definitions

We consider a Poisson-gamma recruitment model, where a clinical trial recruits patients

at N clinical centers with independent Poisson processes, and the mean rates of these

Poisson processes across different centers are from a gamma distribution. Denote by

λi the recruitment rate at center i, and the recruitment is stopped when the total

number of recruited patients reaches n, the desired number of recruited patients. In

our model, all centers start recruitment simultaneously, so t is the time after the

centers start recruiting.

Definition 1 (Poisson process). According to [7], the Poisson process is a stochastic

process with N(t), the counts of recruitment, with parameter λ > 0, that have the

following properties :

• N(0) = 0.

• The process has independent increments.

• The number of events that occur in a fixed interval of time t follows a Poisson

distribution with mean λt.

3
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• λ > 0 is the called the mean rate of a Poisson process.

Definition 2 (Poisson distribution). The Poisson distribution is a probability distri-

bution that represents the number of events that occur within a fixed interval of time,

with the probability mass function of the Poisson distribution given by the formula:

P (X = x) =
e−λλx

x!
,

where:

• P (X = x) is the probability of observing x events in the interval.

• λ is the average number of events that occur in the given interval, which is the

mean.

• x is the actual number of events (0, 1, 2, . . .).

Definition 3 (Gamma distribution). The gamma distribution is a continuous proba-

bility distribution with the probability density function given by:

f(x;α, β) =
βαxα−1e−βx

Γ(α)
,

with x > 0, shape parameter α > 0, and rate parameter β > 0. Γ(α) is the gamma

function, defined as
∫∞
0
tα−1e−tdt.

Intuitively, researchers want to compare recruitment time between different trials

to see which is better. Hence, stochastic dominance is introduced for deciding the

preference.

Definition 4 (First-order stochastic dominance). The random variable A has (first-

order) stochastic dominance over random variable B if, for any x as an outcome,

A gives at least as high a probability of getting an outcome at least x as B does.
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In notation, P [A ≥ x] ≥ P [B ≥ x] for all x, and we denote A having stochastic

dominance over B as A ⪰FSD B. [10]

Between two recruitment T1 and T2, if T1 has stochastic dominance over T2, T2

is preferred because it has a lower probability of having a more prolonged or equal

recruitment time than t for any t > 0. To determine stochastic dominance, we can

use the survival function.

Definition 5 (Survival function). For a random variable T on time t, the survival

function S(t) is defined [7] as:

S(t) = P (T ≥ t), t > 0

In other words, the survival function S(t) gives the probability that the random

variable T takes a value greater than or equal to t.

Between two trials respectively with recruitment time T1 and T2 with S1(t) and

S2(t) as their survival functions, we have the following[1]:

S1(t) ≥ S2(t) =⇒ T1 ⪰FSD T2

Returning to our problem, we may denote λi as the mean rate of center i in its

Poisson process generated from a Gamma(α, β) distribution with shape parameter α

and rate parameter β. In other words, independent Poisson processes are happening in

different centers with the number of recruited patients Ni(t) in the center i following

the probability mass function:

P (Ni(t) = k) =
(λit)

ke−λit

k!
, k = 0, 1, 2...

Thus, to predict the total recruitment time to reach n patients from N centers

whose means of Poisson processes are from Gamma(α, β), we want to study the
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distribution of T , the aggregate recruitment time, when N(t) =
∑N

i=1Ni(t) = n.

According to theoretical results from [2], the recruitment time T that these centers

recruit an aggregated number of n patients follows a Pearson Type VI distribution,

whose probability density function is given by:

f(t;α, β, n,N) =
1

B(n, αN)

tn−1βαN

(t+ β)n+αN
,

where t > 0, B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx is the beta function, n is the number of

patients of recruitment, and N is the number of sites.

2.2 Mathematical Properties

Intuitively, for recruitment time T (n,N, α, β), the mean is decreasing in α and in-

creasing in β, as a lower α or higher β results in smaller means in the original gamma

distribution, so λi generated from it will be lower, so it requires more time for the

centers to recruit enough people. Moreover, the recruitment time with a lower α (or

higher β) has stochastic dominance over the recruitment time with a higher α (or a

lower β), given n and N fixed. On the other hand, with fixed α and β, the recruitment

time with a lower N (or higher n) has stochastic dominance over the recruitment time

with a higher N (or a lower n), and this is intuitive because more patients and fewer

sites require more time for the completion of recruiting patients.

Now we study certain behaviors of tuning parameters on the distribution to match

the intuition with proof of stochastic properties, with all parameters being positive

integers.

Proposition 1. Assume that there are two clinical trials A and B, where trial A has

N1 centers and trial B has N2 centers (N1 < N2), and the other parameters are the

same. The recruitment time of trial A has stochastic dominance over trial B. Denote
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the survival functions of trial A and B by SA(t) and SB(t) respectively.

Proof. We use the survivor function of the trials:

S(t) =
βαN

B(n, αN)

∫ ∞

t

xn−1

(x+ β)n+αN
dx = I β

t+β
(αN, n)

where incomplete beta function is defined by Bt(a, b) =

∫ t

0

xa−1(1 − x)b−1dx and

It(a, b) = Bt(a, b)/B(a, b). It is also well-known that [9]:

I β
t+β

(αN, n) = I β
t+β

(αN + 1, n) +
( β
t+β

)αN( t
t+β

)n

αN · B (αN, n)

For any fixed t > 0, all other parameters are positive integers, so we have:

I β
t+β

(αN, n) ≥ I β
t+β

(αN + 1, n)

Thus, since all other parameters are positive integers, we use induction on N , so we

have, for t > 0:

SA(t) = I β
t+β

(αN1, n) ≥ I β
t+β

(αN2, n) = SB(t)

Therefore, the recruitment time of trial A with N1 centers has stochastic dominance

over that of trial B with N2 centers.

Proposition 2. Assume that there are two clinical trials A and B, where trial A has

the shape parameter value α1 and trial B has the shape parameter α2 (α1 < α2), and

the other parameters are the same. The recruitment time of trial A has stochastic

dominance over that of trial B.

Proof. From the proof of Proposition 1, we have:

I β
t+β

(αN, n) ≥ I β
t+β

(αN + 1, n)
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We use induction on α instead of N , and then we have

SA(t) = I β
t+β

(α1N, n) ≥ I β
t+β

(α2N, n) = SB(t)

Therefore, the recruitment time of trial A with α1 stochastic dominance over trial B

with α2.

Proposition 3. Assume that there are two clinical trials A and B, where trial A

needs to recruit n1 patients and trial B need to recruit n2 centers (n1 > n2), and

the other parameters are the same. The recruitment time of trial A has stochastic

dominance over trial B.

Proof. Like Proposition 1 and 2, we obtain the survivor function [9]:

S(t) =
βαN

B(n, αN)

∫ ∞

t

xn−1

(x+ β)n+αN
dx = I β

t+β
(αN, n)

It is also well-known that [9]:

I β
t+β

(αN, n) = I β
t+β

(αN, n+ 1)−
( β
t+β

)αN( t
t+β

)n

n · B (αN, n)

For any fixed t > 0, all other parameters are positive integers, so we have:

I β
t+β

(αN, n+ 1) ≥ I β
t+β

(αN, n)

Thus, since all other parameters are positive integers, we use induction on N , so we

have:

I β
t+β

(αN, n1) ≥ I β
t+β

(αN, n2)

Therefore, the recruitment time of trial A recruiting n1 patients has stochastic domi-

nance over that of trial B recruiting n2 patients.

Proposition 4. Assume that there are two clinical trials A and B, where trial A has
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the rate parameter β1 and trial B has the rate parameter β2 (β1 < β2), and the other

parameters are the same. The recruitment time of trial A has stochastic dominance

over trial B.

Proof. We obtain the survivor function:

S(t) = I β
t+β

(αN, n)

It is well-known that [9] for any fixed t > 0:

I β
t+β

(αN, n) = B β
t+β

(αN, n) /B (αN, n)

B β
t+β

(αN, n) =

∫ β
t+β

0

tαN−1(1− t)n−1 dt

Since α, β, N and n are positive integers, we have for any fixed 0 < t < 1, tαN−1(1−

t)n−1 ≥ 0. Since β1 < β2, we also have β1

t+β1
< β2

t+β2
. Hence, we have the following:

B β1
t+β1

(αN, n) =

∫ β1
t+β1

0

tαN−1(1− t)n−1 dt ≤
∫ β2

t+β2

0

tαN−1(1− t)n−1 dt = B β2
t+β2

(αN, n)

SA(t) = I β1
t+β1

(αN, n) ≤ I β2
t+β2

(αN, n) = SB(t)

Therefore, the recruitment time of trial A with β2 has stochastic dominance over that

of trial B with β1.

Now we also consider the special cases of fixed α/β, since it means fixing the mean

rate of Poisson processes. With fixed n and N , the mean time of recruitment is almost

equal because the mean is µ = E[T ] = βn/(αN − 1) [9]. Moreover, when having

larger values of α and β with their ratio unchanged, the variance of the rates, α/β2, is

lower, and as the probability density function is bell-shaped, we can observe stochastic
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Figure 2.1: The survivor function of the recruitment time in a multi-site trial with
α = 100, β = 50, n = 100, N = 5 (black) and α = 8, β = 4, n = 100, N = 5 (red).

Figure 2.2: On the left is the survivor function of the recruitment time in a multi-site
trial with α = 100, β = 50, n = 130, N = 6 (black) and α = 80, β = 40, n = 100, N = 5
(red). On the right is the survivor function of the recruitment time in a multi-site trial
with α = 100, β = 50, n = 130, N = 6 (black) and α = 8, β = 4, n = 100, N = 5 (red).

dominance of recruitment time with larger α and β over smaller α and β in t smaller

than the mean and vice versa in t greater than the mean, like in Figure 2.1.

Moreover, although α/β is fixed, the stochastic order with different values of n

and N can still be changed with enough differences between different values of α and
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β. In Figure 2.2, although the black one has stochastic dominance over the red on

the left, as α and β values become smaller, the dominance is overturned at a certain

point as the variance decreases.



Chapter 3

Estimation Problems

In reality, we are never given the original gamma distribution from which the recruit-

ment rates are generated, so it is hard to use the distribution we obtained in the

last chapter. Instead, we can only obtain data with previous trials and recruitment

time, so we want to predict the recruitment time with the given information using

estimation methods.

3.1 Simulated Study

Specifically, we observe previous data of time T for recruiting n patients in N operating

centers, and we want to obtain a reasonable estimate of rates to have more precise

predictions. To achieve this goal, our estimation focuses on the parameters of the

gamma distribution of the mean rates in independent Poisson processes, because a

good prediction of it can make our prediction of mean recruitment rates in each center

more precise, and they are essential to the recruitment time in each center.

First of all, we generate data from simulations. Since the rates are from a gamma

distribution, we generateN samples from the gamma distribution with shape parameter

α and rate parameter β, and we have now obtained the recruitment rates for the N

centers. Now that each center has a Poisson process of patient arrivals, the most

12



13

Figure 3.1: The PearsonVI distribution of T and the histogram of the simulated
recruitment time with α = 10, β = 10, n = 200, N = 4.

crucial step is to find the exact time that these centers recruit n patients. However,

suppose we only approach the recruitment time by trying to determine the n-th patient

in its center. In that case, it will be difficult to track which center provides the last

arrival because people arrive randomly and at different rates across centers, so it is

uncertain how many patients will be recruited in each center. Therefore, instead of

determining the center of n-th patient, we simply let each center recruit n patients,

guaranteeing that these centers recruit n patients in total. Using the fact that the

time between counts of a Poisson process follows an exponential distribution[7], we

can easily track the exact time of every recruited patient in each center. As a result,

we can count the first n patients across centers and obtain the recruitment time of

the last person, giving the exact recruitment time of n patients. In this way, we have

created one simulated result of T (α, β, n,N).

To see the recruitment time follows the PearsonVI distribution[2], we plot the

histogram of simulated results with the PearsonVI distribution with the cumulative

density function of the corresponding distribution with the parameters that the results

are generated from, which are displayed in Figure 3.1.
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Figure 3.2: Simulations with α = 4, β = 20, N = 20, T = 30. Fit into a gamma
distribution and obtain α̂ = 3.883 and β̂ = 17.360

3.2 Estimation methods

It is more conventional to obtain the number of people recruited in a given period

instead of the specific time of recruiting n patients since the centers count their

recruitment daily. Thus, we revised our code, which tracks the number of people

recruited in a given interval, like 30 days.

Now, we use two approaches for the estimation. In the first one, we treat all the

data generated as the mean rates. To be more specific, for each recruitment time

of simulation, we divide it by the length of time interval (like 30 days), so now we

have the mean recruitment rate. We use them as the rates from the original gamma

distribution to estimate the original distribution of rates, so we fit them directly into

a gamma distribution to find the estimated parameters α̂ and β̂ (See Figure 3.2).

Alternatively, according to the theoretical results [12], we can estimate the problem
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using maximum likelihood estimation to find the best parameters.

Definition 6 (Maximum likelihood estimation). Maximum likelihood estimation

(MLE) estimates the parameters of an assumed probability distribution, given some

observed data.[10] This is achieved by maximizing a likelihood function so that the

observed data is most probable under the assumed statistical model. The likelihood

function is given by:

L(θ|x) =
n∏

i=1

f(xi|θ),

where θ ∈ Θ, the set of parameters, x = {x1, x2 . . . xn} is the set of observed data

values, and f(xi|θ) is the probability density function of observed data value for xi in

x, given its parameter value θ. The maximum likelihood estimator (MLE) for the set

of parameters Θ is obtained by maximizing the likelihood function:

Θ̂MLE = argmax
Θ

L(Θ|x)

In our model, according to [8], we may derive the maximum likelihood function for

our recruitment time. Consider λc, the mean rate of recruitment for center c drawn

from a Gamma(α, β) function. In a given time interval t, like 30 days, we assume that

there is a recruitment of ns
c people for each center c on time s, so the total recruitment

and center c is nc =
∑t

s=1 n
s
c and the total recruitment n =

∑N
c=1 nc. Hence, we have

for center c, from time 1 to t, the probability density function of ns
c is a Poisson

variable for time s in 1 : t, so we write the probability density function of data values

of the number of recruitment ns
c as

λ
ns
c

c

ns
c!
exp(−λc)

However, λc is not the coefficient we want to estimate, and it follows the gamma(α, β)

distribution, so we use the continuous mixture model in [7] to integrate.
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Definition 7 (Continuous mixtures). Assume that the random mixing parameter has

a continuous distribution, then:

fT (t) =

∫ ∞

−∞
fT |Θ=θ(t|Θ = θ)fΘ(θ)dθ,

where:

• θ is the random parameter.

• fΘ(θ) is the distribution of the random parameter.

• fT |Θ=θ(t|Θ = θ) is the conditional distribution of time given the value of θ.

In our case, we have the distribution of the random parameter λc > 0:

fΛ(λc) =
βα

Γ(α)
λα−1
c exp(−βλc)

We also have the conditional distribution of time given the value of λc:

fT |Λ=λc(t|Λ = λc) =
t∏

s=1

λ
ns
c

c

ns
c!
exp(−λc)

The likelihood function for center c is given by:

L
(
α, β;n1:t

c

)
=

∫ ∞

0

βα

Γ(α)
λα−1
c exp(−βλc)

t∏
s=1

λ
ns
c

c

ns
c!
exp(−λc)dλc

∝ βα

Γ(α)

∫ ∞

0

λα+nc−1
c exp [−λc (β + t)] dλc =

Γ (α + nc)

Γ(α)

βα

(β + t)α+nc

Hence, according to Definition 6, up to a constant, take the logarithm of the product

of the likelihood functions among all centers, we obtain the log-likelihood function of
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Figure 3.3: Simulations with α = 4, β = 20, N = 20, T = 30 and using optimization
to obtain fitted parameters with α̂ = 9.647 and β̂ = 43.122

the collective data across all centers:

ℓ(α, β) = Nα log β − (Nα + n) log (β + t)−N log Γ(α) +
N∑
c=1

log Γ (α + nc) .

Thus, by maximizing this likelihood function, we can find the maximum likelihood

estimator for the parameters α and β. To realize this goal, we implement this function

as the objective function in an optimization solver Optimr to obtain the maximum

likelihood estimator for parameters α and β from the same data that we fitted directly

into a gamma distribution in Figure 3.2. The fitted gamma distribution of rates is in

Figure 3.3.

3.3 Optimization Problem

In the last section, we discussed the log-likelihood function to be maximized. We

now convert the maximization to an optimization problem of minimization. Since

minimizing the negation is the same as maximizing the original log-likelihood function,
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by using the negation of this function as the objective function, we can use the solver

to find α̂ and β̂ that minimize the objective function and hence become the maximum

likelihood estimator.



Chapter 4

Numerical Studies

In this chapter, we will implement the optimization problem in the last chapter and

compare the performance of different algorithms on the estimation of recruitment

time.

4.1 Performance of Optimization Algorithms

To find the optimal solution for the optimization problem, we use different optimization

algorithms in Optimr and compare their performance in estimating the recruitment

time T (n,N, α, β). Since we can obtain the number of patients n and the number of

centers N , α and β are the only parameters we are missing.

Firstly, we generate simulated data and compare the estimated parameters from

all algorithms by plotting their recruitment time distribution. The fitted parameters

are usually very different from the original ones during experiments. Figure 4.1 shows

that some algorithms, including nonlinear minimization (NLM), nonlinear conjugate

gradient minimization (RCGMIN), variable metric nonlinear function minimization

(RVMMIN), nonlinear minimization using boundary constraints (NLMINB), find a

local minimum and stop, generally stopping within a small range of values from the

initial parameters. For instance, NLM stops not only at α̂ = 2.42 and β̂ = 2.187 with

19
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Figure 4.1: Simulations with α = 6, β = 6, N = 50, n = 200, starting with initial
parameters α = β = 2 on the top and α = β = 10 on the bottom. The numbers
behind each name of optimization are α̂ and β̂.

initial α = β = 2 but also at α̂ = 9.525 and β = 10.437 with initial α = β = 10, which

are far from the actual values.

On the other hand, we look at the algorithms that have comparably better perfor-

mances: the Nelder–Mead method, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm, a variant of BFGS (L-BFGS-B), conjugate gradients (CG), and Hooke and

Jeeves Pattern Search (HJN). From Figure 4.1, We compare them with the previous

ones, finding these methods earn more favorable results closer to the true values of

parameters. To further examine the underlying factors of the differences between those
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methods with better estimations and those with unfavorable ones, we take the nonlin-

ear minimization (NLM) from the former and the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) from the latter, and we compare them by looking closely into their algorithms.

We introduce the following definitions to help us understand how they work:

Definition 8 (Hessian matrix). The Hessian matrix of a scalar-valued function f of

n variables x = (x1, x2, . . . , xn) is a square matrix of second partial derivatives of f .

It is denoted by H or ∇2f , and its elements are given by:

H(x) =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


Definition 9 (Gradient). The gradient of a scalar-valued function f of n variables

x = (x1, x2, . . . , xn) is a vector of its first partial derivatives. It is denoted by ∇f or

∂f
∂x
, and its components are given by:

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
Now we compute the gradient and Hessian matrix of the original function in our

case:

∇ℓ(α, β) =
(
∂ℓ

∂α
,
∂ℓ

∂β

)

=

(
N log(β/(β + t))−Nψ(α) +

N∑
c=1

ψ(α + nc), Nα/β − (Nα + n)/(β + t)

)

H(α, β) =

 ∂2ℓ
∂α2

∂2ℓ
∂α∂β

∂2ℓ
∂β∂α

∂2ℓ
∂β2
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Figure 4.2: Contour map of the objective function with α and β from 1 to 10
(simulations with α = 6, β = 6, N = 50, n = 200).

=

−∑N
c=1 1/nc Nt/β(β + t)

Nt/β(β + t) −Nα/β2 + (Nα + n)/(β + t)2


Where ψ is the digamma function where ψ(x) = Γ′(x)/Γ(x) with the gamma function

Γ(x) =
∫∞
0
tx−1e−tdt.

A potential explanation for the unsatisfactory performance of the nonlinear min-

imization(NLM) is extremely sensitive to the shape of the objective function, so it

converges very fast. But in this problem, the values of the function are very close

to the minimum in a large area of estimated parameters from the contour map in

Figure 4.2. In other words, the nonlinear minimization finds a value quickly because

it is already very close to the minimal value of the function, so it stops within a close

range of initial parameters.
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4.2 Robustness of Algorithms

The previous section suggests the favorable methods are the Nelder–Mead method,

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a variant of BFGS (L-

BFGS-B), conjugate gradients (CG), and Hooke and Jeeves Pattern Search (HJN).

Next, we will study their robustness compared with those that are not favorable, given

changes in some parameters to the optimization.

Starting points. Firstly, we changed the starting parameters to observe their

behaviors (see Figure 4.1). We changed the starting point from α = β = 2 to

α = β = 10, and the α̂ and β̂. As mentioned before, the unfavorable methods earned

a result within a close range of initial parameters. On the other hand, the favorable

methods earned a less divergent result from the true values. For instance, BFGS

earned α̂ = 3.906 and β̂ = 3.993 starting with α = β = 2 and α̂ = 6.596 and β̂ = 7.187

starting with α = β = 10, and they are much closer to the true values of α = β = 6

than the results in the unfavorable methods. Therefore, the unfavorable methods are

more sensitive to starting points than others, so the starting point has less impact on

the favorable methods so that they can give a better estimation.

Number of sites. Our numerical experiments suggest that the optimization

methods depend on the number of recruitment sites. Keeping the other parameters

fixed, we changed the centers from 50 to 20 to 5 and ran the simulation several times

for each case to see the changes in results. The distribution of α̂ and β̂ are plotted in

Figure 4.3. We observed that the distributions of α̂ and β̂ become more and more flat

when the number of centers decreases, with greater variance.

A potential explanation for this phenomenon can be derived from our estimation

methods of the Poisson-gamma model and the simulation process. In each center, we

generated a Poisson process. We used the number of recruited patients from one center

to estimate the mean recruitment rate in that center. Hence, the more centers we

have, the better we can estimate the values of α and β because we now have observed
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Figure 4.3: Distributions of α̂ and β̂ with simulations from α = 6, β = 6, n = 200, N
= 50, 20, 5 on the first, second and third row respectively.

more values from the gamma distribution of mean rates.

For a numerical and theoretical explanation for this phenomenon, we take the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as an example to illustrate

it. The accurateness of his method relies on the convexity of the problem, which is

satisfied when the Hessian matrix is positive definite [4].

Recall in our case, we are trying to minimize the negation of the function, so the

Hessian matrix of the optimization problem is the negation of the Hessian matrix of

the log-likelihood function, as follows:

H =

 ∑N
c=1 1/nc −Nt/β(β + t)

−Nt/β(β + t) Nα/β2 − (Nα + n)/(β + t)2
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Figure 4.4: Histogram of α̂/β̂ with simulations from α = 6, β = 6, N = 50, n = 200).

From [6], the positive definiteness is satisfied when the trace and determinant

of this matrix are positive. They both increase quadratically when we increase N ,

resulting in a greater possibility of making the matrix positive definite, guaranteeing

the convexity.

Notably, even though we increased the number of sites to 50, from the distributions

of α̂ and β̂ in Figure 4.3, there are still variations in the estimations. However, the

estimate of α
β
, the mean of the recruitment rates, is quite stable. In Figure 4.4, α̂/β̂

stays in a close range from 1 to 1.5, with the original α/β = 6/6 = 1.



Chapter 5

Conclusion and Future Research

In this thesis, we studied the properties of recruitment time distribution of the Poisson-

gamma model and implemented the model to our estimation. From numerical results,

the estimation of this model from simulated data is not stable using the optimization

packages in R, and a potential explanation for this problem is the small number of

centers. However, repetitions of simulations also show that the favorable optimization

methods are still unstable, so there may be some endogenous problems to be discovered

in this model. For example, we observe the fact that these estimated parameters of α

and β give a mean that is close to the original gamma distribution, and this leads to a

question of whether using the gamma function is necessary since more centers will lead

to the convergence of their mean rates to the mean of the gamma distribution by the

Central Limit Theorem. In contrast, a small number of centers may not require the

gamma distribution since a fixed mean may be already enough for a good estimation,

and fitting a small data of mean rates into a gamma distribution may even cause more

errors instead of using individual values directly.

Meanwhile, the Poisson-gamma model is helpful in many other applications, such

as ecology. In our case, the α and β values are usually small but may be significant in

these models. Therefore, when optimizing the maximum likelihood function, we may

26
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counter the problem that the gamma function will expand exceptionally quickly when

these parameters are large, causing trouble in the optimization process. Therefore,

there may be some more innovative ways to solve this problem using other methods.

Notably, there are more complicated models based on ours, like the ones with

time-varying rates (non-homogeneous Poisson process, which is also well-developed in

reliability) or those with different starting times and census times, which may give

more perspectives on the estimation. By having reasonable estimations of recruitment

rates across centers, people can predict enrollment in the future and help design

experiments more efficiently.



Appendix A

Appendix
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