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1 Aim

2 Topographic complexity is widely accepted as a key driver of biodiversity, but at the patch-

3 scale, complexity-biodiversity relationships may vary spatially and temporally according to 

4 the environmental stressors complexity mitigates, and the species richness and identity of 

5 potential colonists. Using a manipulative experiment, we assessed spatial variation in patch-

6 scale effects of complexity on intertidal biodiversity.

7 Location

8 27 sites within 14 estuaries/bays distributed globally

9 Time period

10 2015-2017

11 Major taxa studied

12 Functional groups of algae, sessile and mobile invertebrates

13 Methods

14 Concrete tiles of differing complexity (flat; 2.5 cm or 5 cm complex) were affixed at low-

15 high intertidal elevation on coastal defence structures, and the richness and abundance of the 

16 colonising taxa were quantified after 12 months. 

17 Results

18 The patch-scale effects of complexity varied spatially and among functional groups. 

19 Complexity had neutral to positive effects on total, invertebrate and algal taxa richness, and 

20 invertebrate abundances. However, effects on the abundance of algae ranged from positive to 

21 negative, depending on location and functional group. The tidal elevation at which tiles were 

22 placed accounted for some variation. The total and invertebrate richness were greater at low 

23 or mid than at high intertidal elevations. Latitude was also an important source of spatial 

24 variation, with the effects of complexity on total richness and mobile mollusc abundance 
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25 greatest at lower latitudes, whilst the cover of sessile invertebrates and sessile molluscs 

26 responded most strongly to complexity at higher latitudes.

27 Conclusions

28 After 12 months, patch-scale relationships between biodiversity and habitat complexity were 

29 not universally positive. Instead, the relationship varied among functional groups and 

30 according to local abiotic and biotic conditions. This result challenges the assumption that 

31 effects of complexity on biodiversity are universally positive. The variable effect of 

32 complexity has ramifications for community and applied ecology, including eco-engineering 

33 and restoration that seek to bolster biodiversity through the addition of complexity.

34

35 Introduction:

36 Habitat complexity the physical structure of environments, is a key driver of variability in the 

37 distribution of biodiversity (Huston, 1979; Kovalenko, Thomaz, & Warfe, 2012). In general, 

38 more complex habitats, with a greater density of spatial elements, support greater species 

39 richness and abundance, across a range of functional groups, than less complex habitats 

40 (McCoy & Bell, 1991; Stein, Gerstner, & Kreft, 2014). Habitat complexity may be derived 

41 from both topographic (e.g. undulations, depressions, and protrusions) or biogenic (e.g., trees, 

42 grasses, seaweeds, ants, corals and bivalves) structures. Complex habitats can influence the 

43 colonisation and subsequent survival of species by determining the area available for 

44 organisms to occupy (Connor & McCoy, 1979), which in turn can influence biotic 

45 interactions (Hixon & Beets, 1993; Holt, 1987). Complex habitats can also have area-

46 independent effects on niche diversity (Johnson, Frost, Mosley, Roberts, & Hawkins, 2003), 

47 and consequently the availability of refuges from environmental stressors and predators 

48 (Strain, Cumbo, Morris, Steinberg, & Bishop, 2020). At land- and sea-scape scales 

49 complexity enhances biodiversity by increasing habitat heterogeneity and niche space 
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50 (Kovalenko, Thomaz, & Warfe, 2012). However, at smaller scales, biodiversity and habitat 

51 complexity relationships may vary depending on the type of complexity provided and how it 

52 interacts with the environmental and biological setting (Loke & Todd, 2016).

53

54 The environmental variation among sites at local and biogeographic scales may influence 

55 patch-scale habitat complexity (hereafter complexity) - biodiversity relationships by 

56 determining resource availability, environmental conditions, as well as the species pool on 

57 which complexity can act (Johnson et al., 2003); Bracewell et al., 2018). The stress gradient 

58 hypothesis (Bertness & Callaway, 1994) proposes that positive interactions among species 

59 (e.g. between habitat-forming and dependent taxa) will be most prevalent in environmentally 

60 stressful environments, where local habitat amelioration is critical to organismal survival 

61 (Bracewell, Clark, & Johnston, 2018; McAfee, Cole, & Bishop, 2016). Hence, microhabitats 

62 that ameliorate extreme temperatures and/or desiccation stressors could increase in 

63 importance with increasing tidal elevation (Bateman & Bishop, 2016) and decreasing latitude 

64 (Bracewell et al., 2018). Conversely, the patch-scale effects of complexity may be consistent 

65 across latitude if the local species are adapted to their local conditions or could have a greater 

66 influence in locations where there is a greater difference between the air and sea 

67 temperatures.

68  

69 Additionally, complexity may be expected to have greatest patch-scale effects on biodiversity 

70 in environments where there is a diverse species pool on which it can act, whereby, the 

71 effects of complexity may vary across latitudinal gradients in species richness (Bracewell et 

72 al., 2018). At local scales, anthropogenic stressors such as contaminants may over-ride the 

73 effects of complexity where they create conditions that are inhibitory to the survival of most 
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74 species (Mayer-Pinto, Matias, & Coleman, 2016). How species abundance and, hence, 

75 richness responds to complexity may also vary according to the dominant functional groups 

76 present at a given location (Strain, Olabarria, et al., 2018). Functional groups, defined here as 

77 groups of organisms displaying distinct life-forms, that differ in their niche requirements, 

78 tolerance to environmental stressors, and susceptibility to predation (Micheli & Halpern, 

79 2005). While, overall, increasing complexity is expected to enhance microhabitat diversity 

80 and niche space, the availability of some microhabitat types will decline and others will 

81 increase with different types of complexity (Kelaher, 2003). 

82

83 The taxa whose niche requirements are favoured by increasing complexity will benefit at the 

84 expense of other taxa whose niches match microhabitats that decline in abundance or area 

85 (Malumbres-Olarte, Vink, Ross, Cruickshank, & Paterson, 2013). For example, on intertidal 

86 rocky shores, algae can be among the dominant space occupants of well-lit yet wet 

87 microhabitats (e.g. rockpools), that prevent desiccation, and allow adequate light for 

88 photosynthesis (Wilson, James, Newman, & Myers, 1992). In contrast, mobile invertebrates, 

89 particularly sessile invertebrates benefit from microhabitats (e.g. crevices) that provide 

90 protection from predators, but are also sufficiently shaded that their algal competitors cannot 

91 survive (Glasby, 1999; Miller & Etter, 2008). Stress-sensitive taxa may benefit more than 

92 stress-tolerant taxa from microhabitats that ameliorate environmental stressors (Darling et al., 

93 2017). Similarly, taxa that are more susceptible to predation (i.e. lack morphological or 

94 behavioural defences) or have body sizes that most closely match the size of the 

95 microhabitats may benefit most from complexity-mediated predator amelioration (Strain, 

96 Morris, et al., 2018). Experimental research on the effects of increasing complexity on 

97 different functional groups (i.e. algae, sessile invertebrates, and mobile invertebrates) is 

98 lacking (but see Strain et al. 2020).
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99 Few studies have examined the effects of complexity at large spatial scales, across functional 

100 groups and the influence of varying environmental contexts, to test the generality of patch-

101 scale complexity-biodiversity relationships. Understanding how complexity underpins 

102 richness and abundance of different taxa and functional groups across a range of 

103 environmental conditions is of particular importance, given accelerating habitat loss and 

104 homogenisation (Kovalenko et al., 2012). In urban marine environments, natural habitats are 

105 being replaced by artificial structures (e.g. seawalls, groynes, breakwaters and wharves) with 

106 reduced complexity (Airoldi, Connell, & Beck, 2009; Bulleri & Chapman, 2010). Such 

107 habitat homogenisation often occurs simultaneously with other anthropogenically-derived 

108 environmental changes, such as pollution and/or species invasions (McKinney, 2008). The 

109 smooth, relatively homogenous, surfaces of artificial structures typically support fewer native 

110 species and individuals (Chapman, 2003), but more non-native species (Airoldi & Bulleri, 

111 2011) compared to the more complex natural habitats they replace.

112  

113 There has been increasing interest in how complexity might be incorporated into the design 

114 of marine urban structures so as to enhance their ecological value (O’Shaughnessy et al., 

115 2020). The addition of complexity to topographically homogenous marine urban structures 

116 has been proposed as a mechanism by which the overall richness and abundances of key 

117 functional groups might be enhanced (Strain et al. 2018). However, the manner in which 

118 complexity acts will be context dependent and researchers have recommended that latitudinal 

119 and biogeographic considerations are taken into account prior to design or construction 

120 (Mayer-Pinto, Dafforn, & Johnston, 2019).

121
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122 Using standardised experiments on a global scale, we investigated how manipulating one 

123 form of complexity (crevices/ridges) on tiles affected the richness and abundance of 

124 colonising taxa at fourteen urban estuaries or bays spread across nine biogeographic realms. 

125 We predicted that patch-scale complexity would have a positive influence on the taxa 

126 richness and abundances of all sessile and mobile invertebrates functional groups but not 

127 algae, which have higher light requirements, because of greater shading in the crevices 

128 (Strain et al., 2020). Furthermore, we expected that the positive effects of increased 

129 complexity on richness and abundances of sessile and mobile invertebrates would increase 

130 with tidal elevation and with decreasing latitude, as desiccation stress and extreme high 

131 temperatures increase, respectively. Finally, we hypothesised that complexity would have a 

132 reduced effect on the richness and abundances of sessile and mobile invertebrates in highly 

133 polluted environments such as those located near marinas or ports, where the effects of 

134 pollution can over-ride the effects of complexity (Mayer-Pinto et al. 2018). 

135

136 Materials and methods

137 Study sites 

138 Experimental manipulations were conducted at 27 sites, distributed across 14 locations 

139 globally (Fig. 1). There were two sites at each location, except for Herzliya Marina, Israel, 

140 which hosted a single site. The locations were all in estuaries or bays situated along urbanised 

141 coastlines, and were partners in the World Harbour Project (www.worldharbourproject.com). 

142 Each had a semi-diurnal tidal regime and well mixed marine waters. Within locations, each 

143 site comprised a vertical seawall or breakwater that extended from the shallow subtidal or the 

144 low intertidal to the high intertidal zone. Sites at least 0.1 km apart, were of variable 

145 proximity to port facilities or marinas, and varied in tidal height, tidal range, temperature 
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146 (average, minimum and maximum) and concentration of heavy metals (see Supplementary 

147 S1). 

148

149 Fig 1: Map showing the experimental locations. Locations are ordered by biogeographic 

150 realm.  

151

152 Experimental design

153 At each site, 0.25×0.25 m concrete tiles were affixed to the coastal defence structures (i.e. 

154 seawalls, or breakwaters). The tiles allowed manipulation of intertidal habitat complexity by 

155 provisioning crevices and ridges as well as associated increase in surface area. The tiles, 

156 designed and manufactured by Reef Design Lab (Melbourne, Australia), were flat (surface 

157 area = 0.0625 m2), had 0.025 m high ridges separated by 0.015 to 0.05 m wide crevices 

158 (hereafter ‘2.5 cm complex’; surface area = 0.090 m2) or had 0.05 m high ridges, each 

159 separated by 0.015 to 0.05 m wide crevices (hereafter ‘5 cm complex’; surface area = 0.136 

160 m2; Fig. 2). At each site, five tiles of each design were either directly attached to the 

161 structures, in the centre of 0.3×0.3 m patches cleared of pre-existing flora and fauna, or 

162 attached to wood backing boards that were suspended off the top of the structures using rope 

163 or nails. Tiles were attached to the structures, backing boards or steel frames using bolts that 

164 were placed through a drilled hole in two to four corners of the tiles. At each site, the tiles 

165 were deployed in a single horizontal row, from a low to high intertidal elevation, depending 

166 on the location. Tiles were deployed in random order with respect to the experimental 

167 treatments, with the complex tiles positioned so that the crevices and ridges were orientated 

168 vertically. In temperate locations, the tiles were deployed between early spring to late autumn 

169 during the period of greatest species recruitment and growth (Table S1). 

170
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171

172 Fig 2: The three experimental treatments: a) flat, b) 2.5 cm complex, c) 5 cm complex. 

173

174 Colonising taxa 

175 After 12 months, all tiles were removed from the field, individually bagged and frozen until 

176 analysis. On each tile, we recorded the identity and percentage cover (pooling across primary 

177 and secondary growth) of all sessile algae and invertebrate taxa and removed all mobile 

178 invertebrates (> 500 µm), using tweezers and by carefully rinsing the tile area with seawater 

179 over a 500 µm sieve from the whole tile or two subsamples, depending on location 

180 (Supplementary S1). At locations where subsampling was conducted, these were from one 

181 pre-determined crevice (0.016 m2) and one ridge (0.013 m2) of each complex tile, that were 

182 not adjacent to each other, but were pooled for the purposes of the analyses. On flat tiles, two 

183 areas of similar size were subsampled and pooled. A pilot study conducted using Sydney data 

184 revealed similar treatment effects on the richness and abundance of colonising taxa, 

185 irrespective of whether a subsample or the full tile was sampled (Supplementary S2). All taxa 

186 were identified to species or morphospecies using dissecting microscopes and then classified 

187 into three coarser-level functional groups (hereafter ‘functional groups’) including algae, 

188 sessile invertebrates and mobile invertebrates as well as nineteen finer-level functional 

189 groups (Supplementary S2) based on the CATAMI classification guide (Althaus et al., 2015); 

190 hereafter ‘CATAMI groups.  

191

192 Environmental parameters

193 To test hypotheses about potential sources of variability in complexity effects, we estimated 

194 the tidal elevation, temperature, and proximity to boating facilities of tiles at each study site. 
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195 For tidal elevation we recorded the inundation period (proportion of time underwater) of the 

196 tiles using a pressure logger. At each site, one pressure logger was attached to the top of a flat 

197 tile and programmed to record water depth every 20 min for a period of one-month. 

198 Measurements were made using either a Sensus Ultra (Reefnet Pty Ltd; +/- 0.03 m accuracy), 

199 a Hobo Onset (Onsetcomp; +/- 0.02 m accuracy) or EasyTREK SP-300 (NIVELCO; +/- 

200 0.05% of the measured range accuracy). Based on these measurements, the tidal elevation 

201 was categorised as either high (inundated for <33% of the tidal cycle), mid (inundated for 

202 >34 to 65% of the tidal cycle) or low (inundated for >66% of the tidal cycle; Supplementary 

203 S1).  

204

205 Throughout the 12-month experiment, we took measurements of temperature at 21 sites 

206 (Supplementary S1). At each site, we deployed three DS1921G Themochron iButton data 

207 loggers (Thermodata Pty. Ltd. Warrnambool, Australia) haphazardly on flat tiles. The 

208 iButtons were waterproofed with Plastidip rubber coating (Plasti Dip International, Blaine, 

209 Minnesota, USA). The iButtons were programmed to record temperatures at 20 min intervals, 

210 across a one-month period, with 0.5ºC accuracy. The iButtons were attached to the tiles using 

211 cable ties so that they could easily be removed, downloaded, and replaced each month. Mean 

212 (both aerial and in water), maximum (aerial) and minimum (aerial) temperature were 

213 negatively correlated with absolute latitude at the 21 sites (Supplementary S4). Hence, to 

214 avoid issues with collinearity between these two predictor variables, subsequent analyses 

215 were run only on latitude of study sites. 

216

217 At the end of the experiment, we measured the distance from the centre of each site to the 

218 nearest boating facility (port or marina) using satellite images in Google Earth. For 17 sites, 
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219 we also obtained information on the concentration of copper from sediment sampling 

220 (Supplementary S1). Increasing distance of study sites to the nearest boating facility was 

221 negatively correlated (but not significantly) with the amount of copper (historically used as 

222 an antifouling agent; Dafforn et al. 2011) in sediment at the 17 sites for which both sets of 

223 data were available (Supplementary S4). Hence, distance to the nearest boating facility, 

224 which could be measured for all 27 sites, was used as a proxy for contamination.

225

226 Analyses

227

228 We used multivariate generalised linear modelling to test the effects of complexity (fixed, 3 

229 levels: flat, 2.5 cm or 5 cm), location (fixed, 14 levels) and site nested within location (fixed 

230 1-2 levels) on the abundances of each of the 19 CATAMI groups. These data were modelled 

231 using a negative binomial distribution due to overdispersion from the Poisson distribution. 

232 Where multivariate analyses indicated a significant main effect of treatment, or an interaction 

233 of treatment with location or site(location) univariate post hoc test statistics and p-values 

234 were calculated for each group separately adjusting for multiple comparisons. For those 

235 groups found to have significant effects of treatment (either occurring independently of or 

236 interacting with spatial factors), pairwise differences between treatment levels, were assessed 

237 using univariate linear models (LMs). Where both the treatment × location and treatment × 

238 site (location) were significant, only the treatment × location interaction was interpreted as its 

239 significance demonstrates effects of location that are apparent over smaller site-scale 

240 variability. Similarly, we used LMs or generalised linear models (GLMs) with the factors 

241 complexity, location and site nested within location to compare the richness and abundances 

242 (cover or counts) of total taxa, algae, sessile invertebrates and mobile invertebrates across 

243 treatments, at 12 months. 
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244

245 To test hypotheses about whether the effects of complexity on the richness and abundances of 

246 the key functional groups on the tiles, varied by tidal elevations, latitude and distance from 

247 the nearest marina or port, we used analyses on the standard mean difference (SMD) between 

248 the 5 cm and flat tile. The Hedge’s G SMD was calculated at the scale of site, using the 

249 average and standard deviation of the five tiles sampled within each site, for each treatment. 

250 We chose the SMD effect size rather than the log response ratio because these data contained 

251 many zeros (i.e. no species observed and/or no variance observed between replicates within 

252 the same treatment) (Borenstein, Hedges, Higgins, & Rothstein, 2010). We tested the effects 

253 of tidal zone, latitude and distance to the nearest marina or port using the Hedges random 

254 effects estimator (Hedges, 1981) with the package metafor (Viechtbauer, 2010). For the 

255 analyses testing the effects of tidal zone, we adjusted for the effects of location, by adding 

256 location as a moderator in a multilevel random effects model.   

257

258 All statistical analyses were undertaken in R 3.5.0 (R Core Team, 2016). For all models we 

259 offset the sample area (m2), to separate the effects of complexity from surface area. 

260 Generalised linear models were undertaken in the package MASS and figures were produced 

261 using the package ggplot 2 (Wickham, 2016). The multivariate analyses were undertaken 

262 with the packages mvabund and boral (Hui, 2016). All models were checked for over-

263 dispersion and spatial and temporal autocorrelation with plots, and the residuals were visually 

264 inspected for heteroscedasticity. Where appropriate, post hoc comparisons were undertaken 

265 using the package emmeans (Lenth, Singmann, & Love, 2018) to identify sources of 

266 treatment effects.

267

268 Results
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269 Effect of complexity on richness

270

271 The effect of complexity on total taxa richness and the richness of each of the three coarse-

272 level functional groups (algae, sessile invertebrates, and mobile invertebrates) varied among 

273 locations (Fig. 3, Table 1, Supplementary S5). Where significant effects were seen, the 2.5 

274 cm and/or the 5 cm complex tiles (i.e. with cervices/ridges) supported greater taxa richness 

275 than the flat tiles (Table 1). Total taxa richness was greater on the 5 cm complex tiles than the 

276 flat tiles (by 0.8 – 2.7 times) at 10 of the 14 locations and on the 2.5 cm complex relative to 

277 the flat tiles at eight locations, with no effect of complexity on total richness at four locations 

278 (Fig. 3, Table 1, Supplementary S5). Algal richness was greater on 5 cm complex tiles (by 

279 1.1-2.4 times) than on the 2.5 cm complex tiles or the flat tiles at two locations, but displayed 

280 no significant effect of complexity at the other 12 locations (Table 1, Supplementary S5). 

281 Sessile invertebrates were more speciose on the 5 cm complex tiles than on flat tiles at nine 

282 locations (by 1.0-1.8 times), and more speciose on the 2.5 cm complex than flat tiles at seven 

283 locations, but did not differ among treatments at the other five locations (Table 1, 

284 Supplementary S5). There were more mobile species on the 5 cm complex tiles compared 

285 with the flat tiles at eight locations (1.0-2.4 times), and on the 2.5 cm complex tiles relative to 

286 flat tiles at five locations, with no significant differences for the other nine locations (Table 1, 

287 Supplementary S5).  

288

289

290 Fig 3:  Effect of complexity (flat and 2.5 cm or 5 cm complex tiles) on the mean (+/-SE) total 

291 taxa richness at each of fourteen locations by realm (n = 1 or 2 sites per location). Significant 

292 differences (at α = 0.05) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are 

293 indicated by ‘>’ or ‘<’, with ‘ns’ or ‘=’ denoting treatments that did not significantly differ.
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294 Table 1: Overview of the posthoc tests for significant complexity by location interactions in 

295 the total richness and the richness and abundance of functional groups. Significant 

296 differences (at α = 0.05) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are 

297 indicated by ‘>’ or ‘<’, with ‘ns’ or ‘=’ denoting treatments that did not significantly differ. 

298 Locations are ordered by realm. Details of these analyses are given in Appendices S4.

Response Richness Abundances (percentage cover or counts)

Functional 
group

Algae Sessile 
invertebrate

Mobile 
invertebrate

Algae Sessile 
invertebrates

Mobile 
invertebrates

1. Sydney F=2.5<5 F=2.5<5 F<2.5=5 ns F=2.5<5 F=2.5<5

2. Auckland ns F<2.5<5 F<2.5=5 ns F<2.5=5 F<2.5=5

3. Hobart ns F=2.5<5 F=2.5<5 ns F<2.5=5 F=2.5<5

4. East 
London

ns ns F=2.5<5 ns ns F=2.5<5

5. Penang ns F<2.5=5 Ns ns ns Ns

6. Hong 
Kong

ns F<2.5=5 F<2.5=5 ns F<2.5=5 F<2.5=5

7. Keelung ns ns F<2.5=5 ns Ns F=2.5<5

8. Herzliya ns F<2.5=5 Ns ns F<2.5=5 F<2.5=5

9. Ravenna ns F<2.5=5 Ns ns Ns ns

10. Plymouth ns ns Ns ns F<2.5=5 ns

11. 
Chesapeake 
Bay

ns F<2.5=5 F=2.5<5 F<2.5=5 F<2.5=5 F<2.5=5

12. San 
Francisco

ns ns Ns ns Ns ns

13. Arraial 
do Cabo

F=2.5<5 F<2.5=5 Ns ns Ns F=2.5<5

14. 
Coquimbo

ns ns F<2.5=5 F<2.5=5 F<2.5=5 F<2.5=5

299

300

301

302

303

304
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305

306 Effect of complexity on abundances

307

308 The effects of complexity varied among functional groups (algae, sessile and mobile 

309 invertebrates) and the 19 CATAMI groups, and within these groupings, according to location 

310 and/or site (Table 1, Table 2, Supplementary S5-S6). The abundances (i.e. percentage cover 

311 or counts) of algae, sessile and mobile invertebrates (Table 1, Supplementary S5) as well as 

312 that of encrusting macroalgae, bryozoans, sessile and mobile crustaceans, sessile and mobile 

313 molluscs and sessile worms each displayed significant positive effects of the 2.5 cm and/or 

314 the 5 cm complex tiles relative to the flat tiles, at one or more locations, with non-significant 

315 effects at the remaining (Table 2, Supplementary S5). 

316 The abundances of mobile crustaceans and mobile molluscs showed significant positive 

317 effects of either the 2.5 cm and/or 5 cm tiles compared with the flat tiles, at some sites, but 

318 these differences were not consistent between sites within locations (Tables 2, Supplementary 

319 S6). The effects of complexity were, among locations, spatially variable in both occurrence 

320 and direction for filamentous/filiform macroalgae cover and mobile worm abundances and 

321 between sites for foliose macroalgae cover (Table 2, Supplementary S6). Although present on 

322 tiles, globose saccate macroalgae, articulated calcareous macroalgae, ascidians, cnidarians, 

323 sponges, hexapods, arthropods and echinoderms displayed patterns in abundance that did not 

324 respond to complexity, at any of the sites or locations (Table 2, Supplementary S6). 

325

326
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327 Table 2: Overview of the posthoc tests for significant complexity by location or complexity by site(location) interactions in the abundance of 

328 CATAMI groups. Significant differences (at α = 0.05) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are denoted with ‘>’ or ‘<’,  

329 with ‘ns’ or ‘=’ denoting treatments that did not differ. Locations are ordered by realm. Details of these analyses are given in supplementary S5.

Response Abundances (percentage cover or counts)
Functional 
group

Filamentous 
filiform algae 
(%)

Foliose 
algae (%)

Encrusting 
algae (%)

Bryozoans 
(%)

Sessile 
crustaceans 
(%)

Sessile 
molluscs 
(%)

Sessile 
worms 
(%)

Mobile 
crustacea 
(counts)

Mobile 
molluscs 
(counts)

Mobile 
worms 
(counts)

1. Sydney F=2.5<5 Site 1 
F<2.5<5
Site 2 ns

F=2.5<5 F=2.5<5 F=5<2.5 F<2.5<5 F=2.5<5 Site 1 
F=2.5<5
Site 2 
F<2.5<5

F<2.5<5 F=2.5<5

2. Auckland ns Site 1 
F>2.5>5
Site 2 ns

ns ns F<2.5<5 ns F=2.5<5 Site 1 
F<2.5<5
Site 2 
F<2.5<5

F<2.5<5 F=2.5<5

3. Hobart ns Site 1 
F=5<2.5

ns ns F<2.5<5 F<2.5<5 ns Site 1 
F=5<2.5
Site 2
ns

F<2.5<5 F>2.5<5

4. East 
London

ns Site 1 
F>2.5>5
Site 2 
F=2.5<5

F=2.5<5 ns ns ns ns ns F<2.5<5 ns

5. Penang ns ns ns ns ns ns ns ns ns ns
6. Hong Kong ns ns ns ns F<2.5<5 F=5<2.5 ns Site 1 

F<2.5<5
Site 2 
F<2.5<5

F<2.5<5 ns

7. Keelung F>2.5>5 ns ns ns ns ns F=2.5<5 Site 1 ns
Site 2 
F<2.5<5

F<2.5<5 ns

8. Herzliya ns ns ns F<2.5<5 F=2.5<5 ns F=2.5<5 ns ns ns
9. Ravenna ns ns ns ns F=5<2.5 F<2.5<5 ns ns ns ns
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10. Plymouth ns Site 1 
F=5<2.5
Site 2 ns

ns F=5<2.5 F<2.5<5 F=2.5<5 ns ns ns ns

11. 
Chesapeake 
Bay

ns ns ns ns ns F<2.5<5 ns Site 1 
F<2.5<5
Site 2 
F=2.5<5

ns F<2.5<5

12. San 
Francisco

ns ns ns ns F<2.5<5 ns ns Site 1 
F>2.5>5
Site 2 ns

F>2.5>5 ns

13. Arraial 
do Cabo

ns ns F<2.5<5 ns F<2.5<5 ns F<2.5<5 ns F<2.5<5 ns

14. 
Coquimbo

F>2.5>5 Site 1 
F>2.5>5
Site 2 ns

ns ns F<2.5<5 ns ns ns F<2.5<5 ns
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331

332 Correlates of spatial variation in effects of complexity

333

334 The standard mean difference (SMD) of total, sessile invertebrate and mobile invertebrate 

335 richness, the percentage cover of filamentous/filiform macroalgae, encrusting algae, sessile 

336 bivalves, sessile crustaceans, sessile worms and the abundances of mobile worms on the 5 cm 

337 compared to the flat tiles varied significantly among tidal zones (Fig. 4, Supplementary S7). 

338 Significant differences in the SMDs were found in the mid and low tidal zone for each of 

339 total and sessile and mobile invertebrate richness and in the high, mid and low tidal zone for 

340 the abundances of mobile molluscs (Fig. 4, Supplementary S7). In contrast, the difference in 

341 the SMD was only significant in the high tidal zone for the percentage cover of encrusting 

342 algae and in the mid and high tidal zones for the percentage cover of sessile worms and the 

343 abundances of mobile crustaceans. The percentage cover of sessile bivalves and sessile 

344 crustaceans and the abundances of mobile worms displayed differences in the SMDs that 

345 were only significant in the mid-tidal zone and in the low tidal zone for the percentage cover 

346 of filamentous algae (Fig. 4, Supplementary S7).   

347

348 The SMD in the richness of sessile invertebrate species between the 5 cm complex and flat 

349 tiles increased with distance from the nearest marina or port. However, the SMD for other 

350 groups was unaffected by this variable (Supplementary S7). The SMD of total taxa richness 

351 significantly decreased with latitude (Fig. 5), as did abundance of molluscs, while conversely, 

352 SMD of percentage cover of sessile bivalves increased with latitude (Supplementary S7). All 

353 other groups were unaffected by latitude (Supplementary S7).

354

355
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356 Fig. 4: Effects of tidal zones on the standard mean difference SMD (+/-CI) in a) richness of 

357 total taxa, algae, sessile invertebrates and mobile invertebrates and b) abundances (percentage 

358 cover or abundance) of key CATAMI groups between 5 cm complex and flat tiles (high n = 5 

359 sites, mid n = 18 sites, and low n = 4 sites). Effects are significant if the confidence intervals 

360 do not overlap zero (dashed line). Significant differences (at α = 0.05) between high (H), and 

361 mid (M) or low (L) tidal zones are indicated by ‘>’ or ‘<’.

362

363

364

365 Fig. 5: Effects of absolute latitude on the standard mean differences SMD in total taxa 

366 between 5 cm complex and flat tiles (n = 27 sites), where the size of the circle varies 

367 according to the variance.

368

369

370 Discussion

371

372 The incorporation of complexity into artificial structures is increasingly being advocated as a 

373 mechanism to maintain or enhance native biodiversity, but most studies to date have 

374 examined effects of complexity on marine built structures over a relatively narrow range of 

375 environmental conditions (reviewed by Strain et al. 2018). Our study, spanning 27 sites from 

376 14 locations across the globe, provided the first experimental test of how effects of patch-

377 scale complexity on artificial structures vary across very large spatial scales. After 12 

378 months, complexity had positive effects on the richness and abundance of the colonising taxa 

379 at most (10 out of 14) of the locations tested. Nevertheless, the effects of complexity on the 

380 colonisation of individual functional groups, varied spatially according to tidal elevation and 
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381 latitude. These results challenge the paradigm that environmental that complexity has 

382 universally positive effects on biodiversity (Huston, 1979) and instead support the growing 

383 assertion (Beck, 1998) that at the patch-scale effects of complexity on biodiversity can vary 

384 in magnitude and direction according to local abiotic and biotic stressors, niche requirements 

385 of the dominant taxa and the scale of complexity provided.

386

387 The study, which manipulated a single type of habitat complexity (crevices/ridges), was not 

388 designed to disentangle complexity effects arising from enhancement of surface area and 

389 microhabitat diversity. The complex tiles not only had greater surface area but, in providing 

390 crevices and ridges, provided greater microhabitat diversity than the flat tiles that had only a 

391 single microhabitat type. These crevices and ridges have previously been demonstrated to 

392 differ in light, humidity, temperature, and predator access (Strain et al. 2018; 2020), 

393 supporting distinct communities of algae and invertebrates (Strain et al. 2020). The spatially 

394 variable effects of crevices and ridges on biodiversity suggest that differences between 

395 complex and flat treatments did not simply reflect the greater surface area of the former, but 

396 also modification of environmental conditions and biological interactions by the 

397 microhabitats. Further, whereas differences were consistently found between complex and 

398 flat tiles, differences between the two complex treatments, with 5 cm or 2.5 cm deep cervices, 

399 were often absent, suggesting a greater role of microhabitat identity and diversity than surface 

400 area in driving the patterns.

401

402 Whereas effects of the complex tiles on the richness and abundance of invertebrate groups 

403 were, where present, positive, effects of the complex tiles on the richness and abundance of 

404 algae were highly variable, not only in occurrence, but also direction. The sessile invertebrate 
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405 groups that responded most positively to the cervices and ridges provided by this study were 

406 taxa that are limited to shaded and moist low intertidal and subtidal shore (such as bryozoans) 

407 (Miller & Etter, 2008), and taxa commonly targeted by benthic predators (e.g. molluscs, 

408 crustaceans, worms) (Janssen, Sabelis, Magalhães, Montserrat, & Van der Hammen, 2007; 

409 Strain, Morris, et al., 2018). In contrast, the mobile invertebrates that responded positively 

410 were taxa that could rapidly colonise by migration from nearby habitats (e.g. mobile molluscs 

411 and crustaceans), (Martins, Thompson, Neto, Hawkins, & Jenkins, 2010). These taxa were 

412 predominantly found in the protective crevices of the complex tiles, suggesting that the 

413 provision of refugia could have played an important role (Strain et al., 2020). Filamentous 

414 and foliose macroalgae were negatively affected by complexity at some sites, despite the 

415 overall greater surface area of complex tiles. This may be because light in the crevices was 

416 insufficient to meet the needs of these taxa that have high light requirements (Markager & 

417 Sand-Jensen, 1992), or alternatively because of enhanced top-down control by the abundant 

418 grazer communities in the crevices. Encrusting algae, which have low light requirements 

419 (Markager & Sand-Jensen, 1992) and a tough thallus that deters grazers (Bertness, Yund, & 

420 Brown, 1983) were the only algal group to consistently respond positively to complexity. 

421

422 Thermal and desiccation stress have long been implicated in setting the upper distributional 

423 limits of organisms intertidally (Harley, 2003; Wolcott, 1973) while classically, the lower 

424 distributional limits are thought to be set by biological interactions such as competition and 

425 predation (Connell, 1961). Consistent with this thinking and previous within-site comparisons 

426 of complexity-biodiversity relationships among elevations (Cordell et al. 2017), we found the 

427 effects of added complexity on taxa richness and abundance of colonising organisms differed 

428 among tidal elevations, as well as among functional groups. Total taxa richness and the 

429 richness of sessile and mobile invertebrates responded most strongly to complexity in the low 
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430 intertidal zone, but the richness and abundances of algae, and abundances of sessile 

431 invertebrates responded more strongly in the mid and high intertidal zones. In the low 

432 intertidal, the crevices on complex tiles may provide refuge to invertebrate taxa from large-

433 bodied marine predators, such as fish, which can exert considerable top-down control on the 

434 communities of coastal structures (Connell & Anderson, 1999) and/or from wave exposure 

435 that can challenge the attachment strength of organisms and interfere with feeding behaviour 

436 (Bulleri & Chapman, 2010; Moschella et al., 2005). In the high and mid intertidal, on 

437 artificial coastal defences as on natural rocky shores, cool and shaded crevices could 

438 influence the richness and abundances of algae and the abundances of invertebrates by 

439 providing refuge from extreme temperatures and desiccation at low tide (Chapman & 

440 Blockley, 2009; Strain et al., 2020). 

441

442 Additionally, we found evidence for latitudinal variation in the effects of complexity on total 

443 taxa richness and the abundance of some invertebrate groups. Complexity had the greatest 

444 effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, 

445 where average temperatures, primary productivity as well as taxa richness and abundance are 

446 generally highest (Hillebrand, 2004). However, the cover of sessile molluscs displayed the 

447 reverse pattern of greater effects of complexity at higher latitudes, where average 

448 temperatures and the percentage cover of sessile invertebrates were lower. These results are 

449 consistent with other studies that have demonstrated positive effects of complexity on the 

450 richness or diversity of invertebrates at tropical latitudes in intertidal systems (Freestone & 

451 Osman, 2007; Menge & Lubchenco, 1981). Latitudinal variation in the effects of complexity 

452 likely reflects spatial variation in the local species pool, functional group identity and species 

453 recruitment, predation, and growth rates. 

454
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455 Despite our hypothesis that pollutants would override the effects of complexity, proximity of 

456 sites to marinas and port facilities, which are commonly highly contaminated (Adamo et al., 

457 2005; Rivero, Dafforn, Coleman, & Johnston, 2013), explained little of the variation in 

458 effects of complexity for most groups of algae and invertebrates. There was, however, a 

459 positive effect of the distance to the nearest port or marina on the relationship between 

460 complexity and richness of sessile invertebrates. Although our study did not document spatial 

461 variation in the size of the species pool of available colonists, the positive relationship 

462 between distance from boating facilities and effects of complexity on sessile invertebrates is 

463 consistent with the contaminants associated with boating facilities adversely impacting the 

464 native species pool on which complexity can act. Heavy metals, such as copper, either 

465 historically or presently used in antifouling paints, can negatively impact native biodiversity 

466 (Dafforn, Lewis, & Johnston, 2011; Kinsella & Crowe, 2016). Previous studies have 

467 demonstrated these contaminants can also enhance the richness and abundances of invasive 

468 species (Marraffini, Ashton, Brown, Chang, & Ruiz, 2017; Piola, Dafforn, & Johnston, 

469 2009); thus complexity could facilitate the increase of the non-endemic species pool. Studies 

470 directly manipulating contamination inside and outside harbours would be required to 

471 establish the importance of this factor as a moderator of complexity effects.

472

473 Our results support previous suggestions that the addition of complexity to the homogenous, 

474 flat surfaces of coastal defence structures has the potential to improve ecological outcomes 

475 (O’Shaughnessy et al., 2020). As compared to the natural habitats they replace, 

476 topographically simple artificial structures commonly support reduced native biodiversity 

477 (Airoldi, Turon, Perkol‐Finkel, & Rius, 2015). Eco-engineering complexity and missing 

478 microhabitats on these artificial structures to enhance the biodiversity and ecosystem 

479 functioning of their communities, is increasingly common. However, scientific studies 
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480 providing the evidence base for this rapidly-growing field are often poorly replicated and 

481 carried out over small spatial and temporal scales (Chapman, Underwood, & Browne, 2018; 

482 Firth et al., 2020). Global integration of small-scale ecological experiments such as those 

483 conducted here can be useful in identifying appropriate eco-engineering approaches before 

484 they are scaled up. Our study provides the most geographically comprehensive test of the 

485 effects of complexity on the biodiversity of coastal defence structures across the globe. We 

486 clearly demonstrate that complexity can affect the richness and abundances of colonising 

487 taxa, and despite large biogeographic variation in the identity of taxa present, these effects are 

488 largely of a consistent and positive direction for particular functional groups, across the 

489 globe. 

490

491 Despite the generally positive effects of complexity, we found that the magnitude of these 

492 varied spatially from negligible to strongly positive (or in the case of some algae, negative). 

493 This is an important result as it suggests that economically costly eco-engineering 

494 interventions may have negligible benefit at some locations and may even negatively 

495 influence some functional groups if applied blindly. Effective eco-engineering requires 

496 understanding of the key environmental stressors that may be mitigated and the functional 

497 traits of taxa that are being targeted for enhancement (see also Morris et al. 2018). By 

498 designing microhabitats with the niches of target functional groups in mind, the benefits of 

499 complexity additions to structures may be maximised. Critically, the finding that the effect of 

500 complexity varied among locations, tidal zones and with latitude, highlights the importance 

501 of understanding how the effects of complexity are shaped by the local abiotic and biotic 

502 environments before implementing eco-engineering solutions – one size will not necessarily 

503 fit all. Manipulative experiments are now needed to confirm how specific environmental and 

504 biological factors mediate complexity-biodiversity relationships, within urbanised marine 
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505 settings and whether the effects of complexity identified over a 12-month period here persist 

506 over longer time scales. Moreover, to fully assess the biodiversity benefits of eco-engineering 

507 interventions that add complexity, we would also need to compare the complex tiles to the 

508 surface of the coastal defence structure and adjacent natural rocky shores. 

509

510 Eco-engineering, like ecological restoration (Ewel, 1987) provides the ultimate test of 

511 ecological theory (Mitsch 1996), by reassembling ecosystems from first principles. A 

512 cornerstone of community ecology has been the positive relationship between complexity and 

513 diversity (Dean & Connell, 1987; Kovalenko et al., 2012). Our global study challenges this 

514 paradigm in demonstrating that at patch-scales complexity effects can range from positive to 

515 neutral to negative, depending upon location and functional group. General guidelines to 

516 enhance biodiversity in coastal constructions will benefit from a grounding in ecological 

517 theory that can help developers predict the influence of local environmental and biotic 

518 contexts (Mayer-Pinto et al 2019). 

519
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Fig 1: Map showing the experimental locations. Locations are ordered by biogeographic realm.  
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Fig 2: The three experimental treatments: a) flat, b) 2.5 cm complex, c) 5 cm complex. 
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Fig 3:  Effect of complexity (flat and 2 cm or 5 cm complex tiles) on the mean (+/-SE) total taxa richness at each of fourteen locations by realm 

(n = 1 or 2 sites per location). Significant differences (at α = 0.05) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are indicated by 

‘>’ or ‘<’, with ‘ns’ or ‘=’ denoting treatments that did not significantly differ.
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Fig. 4: Effects of tidal zones on the standard mean difference SMD (+/-CI) in a) richness of total taxa, algae, sessiles invertebrates and mobile 

invertebrates and b) abundances (percentage cover or abudances) of key CATAMI groups between 5 cm complex and flat tiles (high n = 5 sites, 

mid n = 18 sites, and low n = 4 sites). Effects are significant if the confidence intervals do not overlap zero (dashed line). Significant differences 

(at α = 0.05) between high (H), and mid (M) or low (L) tidal zones are indicated by ‘>’ or ‘<’.
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Appendices 

Supplementary S1: Information on the experiment design, sampling and environmental parameters for each location and site.

Location Season: 
month, and 
year of 
deployment

Sampling Latitude Average (Min -
Max) 
Temperature 
(○C)

Tidal 
zone

Maximum 
tidal range 
(m)

Distance 
(km) to 
nearest 
port or 
marina

Reference Source of heavy metals 
information

Sydney 
Harbour, 
Sydney 
Australia

Spring: 
November 
2015

Sub sampling 
predefined area on 
complex and flat 
tiles

-33.85 Site 1: 19.66 
(13.83 - 46.5)
Site 2: 20.19 
(13.66 - 43.16)

Mid 2.02 Site 1: 0.27
Site 2: 0.49

(Banks et al., 
2016)

(Ling et al., 2018)

Waitemata 
Harbour, 
Auckland, 
New Zealand

Summer: 
January 2016

Full tiles -36.84 NA Low 3.53 Site 1: 0.5
Site 2: 0.28

(Aguirre et al., 
2016)

(Council, 2012)

Keelung, 
Taiwan

Summer: April 
2016

Full tiles 25.07 Site 1: 27.41 
(19.83 - 49.77)
Site 2: 27.47 
(18.66 - 48.16)

Mid 1.5 Site 1: 1.5
Site 2: 0.05

NA NA

Chesapeake 
Bay, USA

Summer: June 
2016

Full tiles 37.37 Site 1: 18.91 (-
9.00 - 42.00)
Site 2: 18.91 (-
8.50 – 45.00)

Mid 1.32 Site 1: 1.15
Site 2: 5.25

(O’Neil et al., 
2020)

http://www.nerrsdata.org/

San Francisco 
Bay,
USA

Summer; July 
2016

Full tiles 37.81 Site 1: 15.70 
(6.47 - 41.13)
Site 2: 16.61 
(10.55 – 23.83)

Low 3.01 Site 1: 0.34
Site 2: 3.00

NA NA

Plymouth 
Estuary, UK

Summer; 
August 2016

Full tiles 50.37 Site 1: 16.56 
(4.08 - 36.90)
Site 2: 16.62 
(3.51 – 35.60)

High 5.57 Site 1: 0
Site 2: 0.1

(Knights et al., 
2016)

Environmental agency

Herzliya 
Marina, Israel

Summer; 
August 2016

Full tile – mobile 
invertebrates
Sub sampling 
predefined areas 
on complex and 

32.83 Site 1: 22.1 
(7.50 - 35.50)

High 0.46 Site 1: 0 NA Perkol-Finkel et al. 
unpublished data
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flat tiles – sessile 
invertebrates

Ravenna Port, 
Italy

Summer; 
September 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

44.49 NA Mid 0.89 Site 1: 0.5 
Site 2: 0.5

(Airoldi, Ponti, 
& Abbiati, 
2016)

NA

Penang 
Harbour, 
Malaysia

Dry, 
September 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

5.74 Site 1: 28.60 
(17.64 - 48.75)
Site 2: 30.17 
(21.75 – 47.62)

Mid 2.35 Site 1: 0.05
Site 2: 0

NA Chee et al. unpublished 
data

Arraial do 
Cabo Port, 
Brazil

Spring; 
September 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

-22.97 Site 1: 23.48 
(16.00 – 46.00)
Site 2: 27.41 
(19.83 – 49.77)

Mid 1.26 Site 1: 0.1
Site 2: 0

(Soares-
Gomes et al., 
2016)

NA

Coquimbo, 
Chile

Spring; 
November 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

-29.79 Site 1: 16.22 
(10.07 – 28.04)
Site 2: 16.59 
(8.59 – 35.44)

High 1.78 Site 1: 0.15
Site 2: 0

NA Aguilera et al. 
unpublished data

East London 
Port, South 
Africa

Spring; 
November 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

-33.03 Site 1: 18.59 
(9.72 – 37.61)
Site 2: 17.40 
(6.20 – 37.74)

Mid 2.03 Site 1: 0.61
Site 2: 0.65

NA

Derwent 
Estuary, 
Hobart, 
Australia

Spring; 
November 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

-50.00 Site 1: 17.53 
(9.32 – 30.50)
Site 2: 17.53 
(10.32 – 30.50)

Mid 1.44 Site 1: 0.72
Site 2: 0.27

(Macleod & 
Coughanowr, 
2019)

(Ling et al., 2018)

Hong Kong 
Bay, China

Spring; 
November 
2016

Sub sampling 
predefined areas 
on complex and 
flat tiles

22.89 NA Mid 2.54 Site 1: 1.9
Site 2: 5.5

(Lai et al., 
2016)

(Birch et al., 2020)
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Supplementary S2: Results of the pilot study testing the effects of topographic complexity and site nested within location on the sub-sample 
and full samples from Sydney. 

Table S2a: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), and sites nested within location (2 levels) on 
the richness (total, algae, sessile invertebrates and mobile invertebrates) of the sub-samples or the full tile samples, sampled destructively at 12 
months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.
Total taxa richness
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 9.5625 9.9514 0.002 Site 1 Flat vs. 5 cm -0.429 -1.767 >0.05
Site (Location) 1 5.9187 4.0327 0.015 Site 2 Flat vs. 5 cm -0.537 -2.629 0.0086
Complexity x Site (Location) 1 0.1153 3.9173 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 5.0906 10.2925 0.024 Site 1 Flat vs. 5 cm -0.463 -1.494 >0.05
Site (Location) 1 5.9823 4.3101 0.015 Site 2 Flat vs. 5 cm -0.405 -2.662 0.047
Complexity x Site (Location) 1 0.0210 4.2891  >0.05
Algae richness
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 0.86639 6.0051 >0.05 NA
Site (Location) 1 2.83976 3.1654 >0.05
Complexity x Site (Location) 1 0.83192 2.3335 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 0.78644 6.0051 >0.05 NA
Site (Location) 1 2.83976 3.1654 >0.05
Complexity x Site (Location) 1 0.83192 2.3335 >0.05
Sessile invertebrate richness
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
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Complexity 1 0.80781 5.0519 >0.05
Site (Location) 1 2.52672 2.5251 >0.05
Complexity x Site (Location) 1 0.06153 2.4636 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 0.80781 5.0519 >0.05
Site (Location) 1 2.52672 2.5251 >0.05
Complexity x Site (Location) 1 0.06153 2.4636 >0.05
Mobile invertebrate richness
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 8.3126 5.0043 0.004 Flat vs. 5 cm -0.525 -2.718 0.007
Site (Location) 1 1.4474 3.5568 >0.05
Complexity x Site (Location) 1 1.2405 2.3163 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 2.78205 4.3121 0.046 Flat vs. 5 cm -1.444 -2.619 0.011
Site (Location) 1 0.86182 3.4503 >0.05
Complexity x Site (Location) 1 0.54766 2.9027 >0.05

Table S2b: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), and sites nested within location (2 levels) on 
the abundances (cover of algae and sessile invertebrates and counts of mobile invertebrates) of the sub-samples or the full tile samples, sampled 
destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are 
shown.
log(Algae percentage cover)
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 1.5644 7.5826 0.014 Site 1 Flat vs. 5 cm -1.702 4.086 <.0001 
Site (Location) 1 2.6197 4.9628 0.002 Site 2 Flat vs. 5 cm 0.258 0.619 >0.05
Complexity x Site (Location) 1 2.8803 2.0825 0.001
b) Sub sample
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Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 2.5313 5.5123 0.001 Site 1 Flat vs. 5 cm -1.702 -4.131 <.0001 
Site (Location) 1 1.6341 3.8782 0.011 Site 2 Flat vs. 5 cm -0.135 -0.328 >0.05
Complexity x Site (Location) 1 1.8412 2.0370 0.007
Sessile invertebrate cover
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 62.832 49.880 <0.001 Flat vs. 5 cm -4.58 -5.799 <0.001
Site (Location) 1 28.135 21.745 <0.001
Complexity x Site (Location) 1 6.799 14.945 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 59.708 58.793 <0.001 Flat vs. 5 cm -4.46 -5.391 <0.001
Site (Location) 1 33.043 25.750 <0.001
Complexity x Site (Location) 1 9.312 16.438 >0.05
log(Mobile invertebrate abundances)
a) Full sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 5.0962 1.6960 <0.001 Flat vs. 5 cm 
Site (Location) 1 0.4286 1.2673 >0.05
Complexity x Site (Location) 1 0.1874 1.0800 >0.05
b) Sub sample
Factor df Deviance Residual Deviance P-value Post-hoc tests Estimate Z-value P-value
Complexity 1 2.33701 0.8732 <0.001 Flat vs. 5 cm 0.883 4.683 <0.001
Site (Location) 1 0.00214 0.8711 >0.05
Complexity x Site (Location) 1 0.01873 0.8523 >0.05
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1 Supplementary S3: List of the functional groups, nineteen CATAMI groups and species/taxa on the experiment treatments, after 12 months. 
2 Species/morphospecies are classified as non-indigenous based on the published literature. Where species/morphospecies were observed at 
3 multiple locations, the location at which it is non-indigenous is indicated.  
4
5

Functional 
group

CATAMI 
classification Taxon Location Non-indigenous

Algal mat 
morphospecies 1 Chesapeake  

Algal mat 
morphospecies 2-4 Penang  Algal mats

Algal mat 
morphospecies 5-6 San Francisco  

Macroalgae 
articulated 
calcareous

Corallina officinalis Auckland, Sydney  

Lithothamnium sp. Coquimbo  
Encrusting coralline 
algae unknown Arraial do Cabo  

Hildenbrandia spp. Coquimbo, East London, San 
Francisco  

Ralfsia verrucosa Sydney  
Ralfsia sp. Coquimbo  
Encrusting 
macroalgae 
morphospecies 1 
(black)

Keelung  

Algae

Macroalgae 
encrusting 

Encrusting 
macroalgae Sydney  
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morphospecies 1 
(green)
Ectocarpaceae 
unknown Coquimbo  

Turf macroalgae 
morphospecies 1 Ravenna  

Turf macroalgae 
morphospecies 2-4 
(brown)

San Francisco, Sydney  

Turf macroalgae 
morphospecies 5-6 
(green)

Sydney, Keelung  

Macroalgae 
filamentous/filiform

Turf macroalgae 
morphospecies 7-8 
(red)

San Francisco, Sydney  

Macroalgae 
globose/saccate Colpomenia sp. Auckland  

Mastocarpus 
morphospecies 1-2 San Francisco  

Gelidium sp. East London  
Gracilaria sp. Chesapeake  
Pterocladiella 
capillacea Auckland  

Fucus spp. Plymouth, San Francisco  
Phyllospora comosa Hobart  
Mazzaella sp. 1 San Francisco  
Mazzaella sp. 2 San Francisco  
Pachymenia lusoria Auckland  

Macroalgae foliose

Porphyra sp. Hobart  
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Pyropia sp. San Francisco  
Ulva lactuca Auckland  

Ulva spp. (8 
morphospecies)

Chesapeake, Coquimbo, East 
London, Hobart, San Francisco, 
Sydney, Keelung

 

Sheet-like macroalgae 
morphospecies 1 
(brown)

Sydney  

Sheet-like macroalgae 
morphospecies 2 (red) Sydney  

Macroalgae unknown 
morphospecies 1 
(brown)

Auckland  

Macroalgae unknown 
morphospecies 2 
(green)

Auckland  

Macroalgae unknown 
morphospecies 3-6 Hobart  

Corella eumyota Auckland  

Pyura sp. Hobart  
Stalked ascidian 
morphospecies 1 Hobart  

Botrylloides niger Arraial do Cabo (Granthom-Costa, 
Ferreira, & Dias, 2016)

Botryllus tabori Arraial do Cabo  

Sessile 
invertebrates Ascidians 

Ascidian 
morphospecies 1 Auckland  
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Membraniporidae sp. San Francisco (Bishop & Hutchings, 
2011)

Schizoporella errata Arraial do Cabo (Almeida, Souza, 
Gordon, & Vieira, 2015)

Schizoporella sp. Herzliya www.marinespecies.org
Watersipora cucullata Herzliya www.marinespecies.org
Watersipora 
subtorquata Hobart (Bishop & Hutchings, 

2011)

Watersipora spp. Auckland, Sydney (Bishop & Hutchings, 
2011)

Encrusting bryozoa 
morphospecies 1 Arraial do Cabo  

Encrusting bryozoa 
morphospecies 2 Chesapeake  

Encrusting bryozoa 
morphospecies 3 Herzliya  

Encrusting bryozoa 
morphospecies 4-6 Hobart  

Encrusting bryozoa 
morphospecies 7 Plymouth  

www.marinespecies.org  
HerzilyaBugula neritina Herzilya, Penang (Tilbrook & Gordon, 
2016) Penang

Bryozoans 

Bryozoan unknown Auckland  
Hydroid 
morphospecies (rope) Chesapeake  

Cnidarians 
Anemone unknown Auckland  
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Amphibalanus 
amphitrite

Herzliya, Hong Kong, Penang, 
Sydney

(Rainbow, 2000) Hong 
Kong 

Amphibalanus 
variegatus Sydney  

Amphibalanus spp. East London, Keelung  
Austrobalanus 
imperator Sydney  

Austrominius 
modestus Auckland, Plymouth, Sydney

(Bracewell, Spencer, 
Marrs, Iles, & Robinson, 
2012) Plymouth 

Balanus sp. Chesapeake  
Balanidae unknown Coquimbo  
Chamaesipho 
tasmanica Hobart  

Chthamalus 
antennatus Hobart, Sydney  

Chthamalus stellatus Ravenna  
Chthamalidae 
unknown Coquimbo  

Hexaminius sp. Sydney  
Striatobalanus tenuis Penang  
Tetraclita japonica Hong Kong  
Tetraclita stalactifera Arraial do Cabo  
Tetraclita sp. East London  
Tetraclita squamosa Penang  
Barnacle unknown 
recruits spp. Arraial do Cabo, Hong Kong  

Barnacle unknown 1 Auckland  

Crustaceans sessile

Barnacle unknown 2 San Francisco  
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Capitulum mitella Hong Kong  
Barbatia virescens Hong Kong
Brachidontes 
mutabilis Hong Kong  

Plymouth www.marinespecies.org/

Hobart, Sydney (Bishop and Hutchings 
2011)Crassostrea gigas

Penang  
Crassostrea virginica Chesapeake  

Isognomon bicolor Arraial do Cabo (López, Lavrado, & 
Coutinho, 2014)

Magallana angulata Penang  
Magallana ariakensis Penang  
Magallana bilineata Penang  
Mytilus 
galloprovincialis Ravenna  

Mytilus sp. Hobart  
Perna canaliculus Auckland  
Perna viridis Penang  
Perumytilus 
purpuratus Coquimbo  

Pinctada imbricata 
radiata Herzliya  

Ostrea edulis Herzliya  
Ostreidae oyster 
recruit Ravenna  

Saccostrea cuccullata Hong Kong, Penang, Keelung  

Molluscs sessile

Saccostrea glomerata Sydney  
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Geukensia demissa Chesapeake  
Ischadium recurvum Chesapeake  
Mussel unknown sp. 
2 Keelung  

Oyster unknown sp. Auckland  
Oyster recruit 
unknown sp. Arraial do Cabo  

Chondrilla 
australiensis Penang  

Crambe crambe Herzliya  
Sponge crust 
morphospecies 1 
(gray)

Auckland  Sponge

Sponge crust 
morphospecies 2 
(orange)

Sydney  

Galeolaria caespitosa Hobart  
Serpulidae spp. Arraial do Cabo, Herzliya  
Spirobranchus 
cariniferus Auckland  

Spirorbinae spp. Herzliya, Sydney, Keelung  
Tubeworm 
morphospecies 1 Auckland  

Tubeworm 
morphospecies 2 
(sand)

Auckland  

Worms sessile

Tubeworm 
morphospecies 3 
(keel)

Penang  
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Parasabella 
microphthalma Chesapeake  

Achelia assimilis Auckland  

Chelicerates Sydney  
Spider unknown Auckland  

Arthropods 

Uniramia unknown Sydney  
Petrolisthes japonica Keelung  

Petrolisthes elongatus Auckland, Hobart (Steger & Gardner, 2007) 
Hobart

Acanthocyclus gayi Coquimbo  
Armases cinereum Chesapeake  
Callinectes sapidus Chesapeake  
Cyclograpsus 
granulosus Hobart  

Cyclograpsus 
punctatus East London  

Eriphia ferox Keelung  
Eurypanopeus 
depressus Chesapeake  

Grapsidae unknown Herzliya  

Halicarcinus quoyi Hobart
(Sliwa, Migus, 
McEnnulty, & Hayes, 
2009)

Halicarcinus sp. Auckland  
Hemigrapsus sp. Keelung  
Heteropanope glabra Hong Kong  

Mobile 
invertebrates

Crustaceans mobile

Nanosesarma 
minutum Hong Kong  
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Nasutoplax rostrate Hobart  
Paragrapsus sp. Sydney  
Parasesarma pictum Hong Kong  
Pilumnus sp. Sydney  
Pinnotheres hickmani Hobart  
Pinnotheres ostreum Chesapeake  
Pinnotheres sp. Hong Kong
Sesarma sp. Sydney  
Crab morphospecies 
1-2 Auckland  

Alpheus sp. Hong Kong  
Americamysis 
bigelowi Chesapeake  

Palaemonetes pugio Chesapeake  
Processidae unknown Herzliya  
Amphitoe sp. Sydney  
Ampithoe valida Chesapeake  
Amphipod 
morphospecies 1 Coquimbo  

Amphipod 
morphospecies 2-3 Keelung  

Amphipod 
morphospecies 4 Hong Kong

Apocorophium 
lacustra Chesapeake  

Bellorchestia sp. 1 Auckland  
Bellorchestia sp. 2 Auckland  
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Cirolana harfordi Sydney
(Bugnot, Coleman, 
Figueira, & Marzinelli, 
2014)

Corophiidae unknown Herzliya  
Corophium spp. Sydney, San Francisco  
Cymodocella 
pustulata East London  

Elasmopus levis Chesapeake  
Eusiridae unknown Hobart  
Gammarus 
mucronatus Chesapeake  

Gammaridae 
unknown Herzliya  

Haylidae unknown Hobart  
Isocladus armatus Auckland  
Isopod morphospecies 
1-4 Auckland  

Isopod morphospecies 
5 Sydney  

Isopod morphospecies 
6 Keelung  

Jassa marmorata Hobart  
Leucothoe spinicarpa East London  
Ligia (Megaligia) 
exotica

Chesapeake, Hong Kong, 
Keelung  

Ligia sp. Herzliya  
Melita nitida Chesapeake  
Paracorophium sp. Hobart  
Parhyale sp. Hong Kong  
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Sphaeroma 
quadridentatum Chesapeake  

Sphaeromatidae 
unknown Hobart, San Francisco Bay  

Ophiomyxa brevirima Auckland  
Parvulastra exigua East London, Sydney  Echinoderm
Patiriella regularis Auckland  
Chironomid Hobart  
Chironomid larvae Chesapeake  
Insect unknown Sydney  

Hexapods 

Collembola unknown Sydney  
Eualetes tulipa Arraial do Cabo  
Brachidontes 
semistriatus East London  

Geukensia demissa Chesapeake  
Ischadium recurvum Chesapeake  
Lasaea adansoni East London  
Lasaea australis Sydney  
Mytilus 
galloprovincialis East London  

Mytilus sp. San Francisco  
Perna perna East London  
Tapes spp. Sydney  
Mussel unknown Keelung  
Acanthopleura 
echinata Coquimbo  

Molluscs mobile

Acanthopleura 
gaimardi Sydney  
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Acanthochitona 
garnoti East London  

Acanthochitona 
zelandica Auckland  

Chiton glaucus Auckland  
Liolophura japonica Hong Kong  
Sypharochiton 
pelliserpentis Auckland, Hobart, Sydney  

Ascorhis tasmanica Hobart  
Austrocochlea 
porcata Sydney  

Austrolittorina 
araucana Coquimbo  

Austrolittorina 
unifasciata Hobart  

Austrolittorina sp. Auckland  
Bedeva paivae Sydney  
Bembicium auratum Sydney  
Bembicium nanum Sydney  
Bittiolum alternatum Chesapeake  
Cellana grata Hong Kong, Keelung  
Cellana toreuma Hong Kong, Keelung  
Cellana tramoserica Sydney  
Cellana spp. Auckland, Penang  
Columbellidae 
unknown Sydney  

Cryptassiminea 
buccinoide Sydney  

Cymbula oculus East London  
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Dicathais orbita Auckland  
Diloma 
concameratum Sydney  

Diloma subrostratum Auckland  
Echinolittorina 
radiata Hong Kong  

Echinolittorina vidua Hong Kong  
Fissurella spp. Arraial do Cabo, Coquimbo  
Haustrum scobina Auckland  
Helcion concolor East London  
Littoraria articulata Hong Kong  
Littoraria irrorata Chesapeake  
Littoraria luteola Sydney  
Littorina littorea Plymouth  
Littorina obtusata Plymouth  
Littorina saxatilis Plymouth  
Lottia luchuana Hong Kong, Keelung  
Lottia sp. Arraial do Cabo  
Lunella smaragda Auckland  
Mitrella spp. Coquimbo  
Nipponacmea 
concinna Hong Kong  

Notoacmea flammea Hobart, Sydney  
Notoacmea petterdi Sydney  
Onchidella nigricans Auckland  
Oxystele sinensis East London  
Oxystele tabularis East London  
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Oxystele tigrina East London  
Patella caerulea Ravenna  
Patella depressa Plymouth  
Patella vulgata Plymouth  
Patelloida latistrigata Sydney  
Patelloida mimuli Sydney  
Patelloida 
ryukyuensis Hong Kong  

Patelloida saccharina Hong Kong, Sydney  
Reishia clavigera Hong Kong  
Scurria araucana Coquimbo  
Scurria ceciliana Coquimbo  
Scurria variabilis Coquimbo  
Scurria spp. Coquimbo  
Scutellastra 
argenvillei East London  

Scutellastra 
granularis East London  

Scutellastra 
laticostata Hobart  

Scutellastra 
longicosta East London  

Sigapatella 
novaezelandiae Auckland  

Siphonaria australis Auckland  
Siphonaria capensis East London  
Siphonaria concinna East London  
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Siphonaria 
denticulata Sydney  

Siphonaria 
diemenensis Hobart  

Siphonaria funiculata Hobart  
Siphonaria japonica Hong Kong, Keelung  
Siphonaria laciniosa Hong Kong, Keelung  
Siphonaria serrata East London  
Siphonaria spp. Coquimbo, Sydney  
Siphonaria sp. 
unknown juvenile Hong Kong  

Snail unknown Auckland  
Snail, screwshell 
unknown Sydney  

Steromphala 
umbilicalis Plymouth  

Tenguella marginalba Sydney  
Coronadena mutabilis Chesapeake  
Platyhelminthes 
unknown Hobart  

Stylochus ellipticus Chesapeake  
Nemertean spp. 
Unknown Chesapeake  

Nemertean unknown Hobart  
Alitta succinea Chesapeake  
Capitellidae unknown Chesapeake  
Eulalia microphylla Auckland  

Worms mobile

Hesionidae unknown Herzliya  
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Hypereteone 
heteropoda Chesapeake  

Loimia medusa Chesapeake  
Neanthes vaalii Hobart  

Nereididae spp. East London, Herzliya, Hong 
Kong, Sydney  

Phyllodocidae sp. 1 Auckland  
Polydora websteri Chesapeake  
Polynoidae unknown Sydney  
Phyllodocidae 
unknown Sydney  

Spionidae unknown Sydney  
Syllidae unknown Sydney  
Polychaete 
morphospecies 1 Auckland  

Polychaete 
morphospecies 2 Coquimbo  

Polychaete 
morphospecies 3-7 Keelung  

Sipuncula spp. East London, Penang, Sydney  
6
7
8
9

10

11

12

13
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14

15

16

17

18 Supplementary S4: The relationships between the environmental parameters and sites. 

19
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20 Fig S4a: The relationship between a) mean temperature and absolute latitude (significant) and b) amount of copper in sediment (mg/kg) and 
21 distance to nearest marina by sites (non-significant). The measurements of temperature were taken at twenty-one sites, within eleven locations 
22 throughout the experiment and the measurements of heavy metals were taken at eighteen sites, within nine locations, across the globe. 
23
24
25
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26 Table S4b: Results of linear models testing the relationship between a) average temperature and absolute latitude and b) amount of copper in 
27 sediment and distance to the nearest boating facility
28
29

30  
31
32     

Factor Estimate Standard error T-value P-value
Average temperature -2.112  0.322  -6.568  <0.001  
Average maximum temperature -0.9032 0.2510 -3.598 0.00192
Average minimum temperature -0.8729 0.2824 -3.091 0.00602
Distance to boating facility -0.038 0.020 -1.894 >0.05
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33

34 Supplementary S5: Effects of adding topographic complexity on the total taxa richness 
35 and the richness and abundances of algae, sessile invertebrates and mobile 
36 invertebrates
37
38 Total taxa richness was greater on the 5 cm complex tiles than the flat tiles at eleven locations 

39  (Arraial do Cabo, Auckland, Chesapeake Bay, Coquimbo, East London, Herzliya, Hobart, 

40 Hong Kong, Keelung, Penang, and Sydney); and on the 2.5 cm complex relative to the flat 

41 tiles at eight locations (Arraial do Cabo, Auckland, Chesapeake Bay, Coquimbo, Herzliya, 

42 Hong Kong, Keelung and Penang). Algal richness was greater on 5 cm complex tiles than on 

43 the 2.5 cm complex tiles or the flat tiles at two of the fourteen locations (Arraial do Cabo and 

44 Sydney), whereas the 2.5 cm complex tiles and the flat tiles did not significantly differ . At 

45 the other twelve locations, there were no significant differences in algal richness among 

46 treatments. Sessile invertebrates were more speciose on the 2.5 cm and 5 cm complex tiles 

47 than on flat tiles at seven locations (Arraial do Cabo, Auckland, Chesapeake Bay, Herzliya, 

48 Hong Kong, Penang and Ravenna), more speciose on the 5 cm complex than the 2.5 cm and 

49 flat tiles at two locations (Hobart and Sydney), but did not differ among treatments at the 

50 other five locations. There were more mobile species on the 2.5 and 5 cm complex tile 

51 compared with the flat tiles at six locations (Auckland, Coquimbo, Hong Kong, Hobart, 

52 Keelung, Sydney) and on the 5 cm complex tiles relative to the 2.5 cm and flat tiles at two 

53 locations (Chesapeake Bay and East London), with no significant differences for the other six 

54 locations.  
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Table S5a: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), locations (14 levels) and sites nested within 
location (1-2 levels) on the richness (total, algae, sessile invertebrates and mobile invertebrates) sampled destructively at 12 months. The surface 
area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.

Total taxa richness
Factor df Deviance 

Residual
Deviance P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 115.650 1568.950 <0.001 Arraial do Cabo Flat vs. 2.5 
cm
Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 
cm

 -0.603
-0.607
-0.005

-1.394
-1.437
-0.031

0.035
0.032
>0.05

Location 13 1093.780       475.170 <0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-0.384
-7.993
-0.382  

-3.784
-7.993
-4.529

0.001
<0.001
<0.001

Site (Location) 1 9.100 466.070 <0.001 Chesapeake Bay Flat vs. 2.5 
cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5 cm vs. 5 
cm

-0.457
-0.546
-0.090

-3.694
-4.527
-0.853

0.001
<0.001
>0.05

Complexity x Location 26 80.230 385.840 <0.001 Coquimbo Flat vs. 2.5cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5cm vs. 5 cm

-0.602
-0.606
-0.004

-1.706
-1.747
-0.026

0.021
0.019
>0.05

Complexity x Site 
(Location)

2 4.800 381.040 <0.001 East London Flat vs. 2.5cm
East London Flat vs. 5 cm
East London 2.5cm vs. 5 cm

-0.185
-0.680
-0.496

-0.810
-3.315
-2.585

>0.05
0.003
0.027

Herzliya Flat vs. 2.5 cm, 
Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.612
-0.633
-0.021

-2.697
-2.842
-0.108

0.019
0.013
>0.05

Hobart Flat vs. 2.5 cm, 0.505 0.787 >0.05
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Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

-0.438
-0.943

-3.081
-5.605

0.006
<0.001

Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-0.622
-0.626
-0.003

-1.644
-1.650
-0.026

0.023
0.023
>0.05

Keelung Flat vs. 2.5 cm, 
Keelung Flat vs. 5 cm
Keelung 2.5cm vs. 5 cm

-0.511
-0.502
0.009

-2.491
-2.461
0.052

0.034
0.037
>0.05

Penang Flat vs. 2.5 cm, 
Penang Flat vs. 5 cm
Penang 2.5cm vs. 5 cm

-0.557
-0.589
-0.032

-2.213
-2.438
-0.146

>0.05
0.039
>0.05

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

-0.145
-0.577
-0.432

-1.003
-4.502
-3.530

>0.05
<0.001
0.001

Log(Algae richness)
Factor df Mean square F-value P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 28.759  7.369 <0.001 Arraial do Cabo Flat vs. 2.5 
cm
Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 
cm

-1.725
-4.443
-2.718

-1.900
-4.893
-3.076

>0.05
<0.001
0.007

Location 13 206.173 52.829 <0.001 Sydney Flat vs. 2.5 cm
Sydney Flat vs. 5 cm
Sydney 2.5 cm vs. 5 cm

0.769
-3.175
-3.943

0.869
-3.593
-4.463

>0.05
0.001
<0.001

Site (Location) 1 88.029 22.556 <0.001
Complexity x Location 26 8.346  2.139 0.001
Complexity x Site 
(Location)

2 9.921  2.542 >0.05

Residual 329 3.903
Sqrt(Sessile invertebrate richness)
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Factor df Mean square F-value P-
value

Post-hoc tests Estimate Z-
value

P-
value

Complexity 2 2.903 24.028 <0.001 Arraial do Cabo Flat vs. 2.5 
cm
Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 
cm

-1.218
-1.178
0.041

-1.366
-1.112
0.261

0.036
0.041
>0.05

Location 13 11.024 91.257 <0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-0.391
-1.027
-0.631

-2.513
-6.428
-3.982

0.033
<0.001
0.001

Site (Location) 1 1.207  9.988  0.002 Chesapeake Bay Flat vs. 2.5 
cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5 cm vs. 5 
cm

-0.616
-0.674
-0.058

-3.959
-4.333
-0.374

0.001
0.001
>0.05

Complexity x Location 26 0.404  3.346 <0.001 Herzliya Flat vs. 2.5 cm, 
Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.493
-0.522
-0.030

-2.193
-2.326
-0.133

0.044
0.034
>0.05

Complexity x Site 
(Location)

2 0.065  0.538  >0.05 Hobart Flat vs. 2.5 cm, 
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

0.318
-0.456
-0.774

2.042
-2.933
-4.975

>0.05
0.010
<0.001

Residual 329 0.121 Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-0.464
-0.465
-0.001

-1.051
-1.030
-0.007

0.005
0.046
>0.05

Penang Flat vs. 2.5 cm, 
Penang Flat vs. 5 cm
Penang 2.5cm vs. 5 cm

-1.360
-1.375
-0.015

-1.845
-2.004
-0.075

0.016
0.001
>0.05

Ravenna Flat vs. 2.5 cm, 
Ravenna Flat vs. 5 cm
Ravenna 2.5cm vs. 5 cm

-0.856
-0.490
0.366

-4.225
-2.436
1.822

0.001
0.041
>0.05

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm

0.031
-0.418

0.197
-2.686

>0.05
0.021
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Sydney 2.5cm vs. 5 cm -0.449 -2.883 0.012
Mobile invertebrate richness
Factor df Mean square F-value P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 150.123 50.5677 <0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-5.873
-10.677
-4.804

-8.133
-14.346
-6.455

<0.001
<0.001
<0.001

Location 13 146.015 49.1840 <0.001 Chesapeake Bay Flat vs. 2.5 
cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5 cm vs. 5 
cm

-0.873
-2.627
-1.754

-1.208
-3.638
-2.429

>0.05
0.001
0.042

Site (Location) 1 10.006  3.3706 >0.05 Coquimbo Flat vs. 2.5cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5cm vs. 5 cm

-1.578
-2.227
-0.654

-2.178
-3.084
-0.906

0.045
0.007
>0.05

Complexity x Location 26 19.559  6.5882 <0.001 East London Flat vs. 2.5 cm, 
East London Flat vs. 5 cm
East London 2.5cm vs. 5 cm

-0.573
-3.037
-2.454

-0.793
4.192
-3.399

>0.05
0.001
0.002

Complexity x Site 
(Location)

2 1.138  0.3832 >0.05 Hobart Flat vs. 2.5 cm, 
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

1.008
-2.184
-3.192

1.396
-3.024
-4.420

>0.05
0.008
<0.001

Residual 329 2.969 Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-1.273
-1.677
-0.404

-1.762
-2.253
-0.543

0.019
0.015
>0.05

Keelung Flat vs. 2.5 cm, 
Keelung Flat vs. 5 cm
Keelung 2.5cm vs. 5 cm

-3.148
-2.752
0.396

-4.110
-3.593
0.517

<0.001
0.001
>0.05

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

-1.792
-3.284
-1.492

-2.482
-4.548
-2.066

0.036
<0.001
>0.05
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Algal percentage cover was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at one location (Chesapeake Bay), with no effect of 

complexity at the other fourteen locations. Sessile invertebrate percentage cover was greater on the 2.5 cm and 5 cm complex tiles than the flat 

tiles at seven locations (Auckland, Coquimbo, Chesapeake Bay, Hobart, Herzliya, Hong Kong, and Plymouth) and on only the 5 cm complex 

tiles than the flat tiles at one location (Sydney), with no effects of complexity at the other six locations. Mobile invertebrate abundances were 

greater on the 2.5 cm and the 5 cm complex tiles than the flat tiles at six locations (Auckland, Chesapeake Bay, Coquimbo, East London, Hong 

Kong, Keelung and Sydney) and on the 5 cm complex tiles compared with the flat tiles at two locations (East London and Hobart).

Table S5b: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), locations (14 levels) and sites nested within 
location (1-2 levels) on the abundances (cover of algae, cover of sessile invertebrates and abundances of mobile invertebrates) sampled 
destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are 
shown.

Algae percentage cover
Factor df Deviance 

Residual
Deviance P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 29.7       28811.3 >0.05 Chesapeake Bay Flat vs. 2.5 
cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5 cm vs. 5 
cm

-0.726
-0.699
0.027

-3.859
-3.725
0.180

0.003
0.006
>0.05

Location 13 19915.6       8895.7 <0.001 Coquimbo Flat vs. 2.5cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5cm vs. 5 cm

-1.043
-0.985
0.059

-3.953
-3.719
0.307

0.002
0.006
>0.05

Site (Location) 1 60.3       8835.4 >0.05
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Complexity x Location 26 1049.1       7786.2 0.002
Complexity x Site 
(Location)

2 70.1 7716.2 >0.05

Sessile invertebrate percentage cover
Factor df Deviance 

Residual
Deviance P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 974.700 18339.700 <0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-1.722
-2.055
-0.326

-2.142
-2.600
0.176

0.042
0.026
>0.05

Location 13 13156.000 5183.700 <0.001 Herzliya Flat vs. 2.5 cm, 
Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.983
-1.524
0.533

-1.242
-2.025
-1.014

0.043
0.011
>0.05

Site (Location) 1 253.900 4929.900 <0.001 Hobart Flat vs. 2.5 cm, 
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

-0.696
-0.596
0.100

-3.335
-2.806
0.572

0.003
0.014
>0.05

Complexity x Location 26 1069.500 3860.400 <0.001 Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-1.461
-1.845
-0.384

-4.274
-5.537
-1.982

0.001
<0.001
>0.05

Complexity x Site 
(Location)

2 113.800 3746.600 0.005 Plymouth Flat vs. 2.5 cm, 
Plymouth Flat vs. 5 cm
Plymouth 2.5cm vs. 5 cm

-0.648
-0.503
0.145

-4.161
-3.170
1.099

0.001
0.005
>0.05

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

-0.137
-0.966
-0.830

-0.671
-5.507
-4.969

>0.05
<0.001
<0.001

Mobile invertebrate abundance
Factor df Deviance 

Residual
Deviance P-

value
Post-hoc tests Estimate Z-

value
P-
value

Complexity 2 1112.26 1418.120 <0.001 Arraial do Cabo Flat vs. 2.5 
cm
Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 
cm

-0.399
-1.632
-0.233

-1.185
-1.886
-0.723

>0.05
0.015
>0.05
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Location 13 893.910 524.220 <0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-1.959
-2.745
-0.791

-6.186
-8.473
-2.483

<0.001
<0.001
0.035

Site (Location) 1 13.370 510.850 <0.001 Coquimbo Flat vs. 2.5cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5cm vs. 5 cm

-1.395
-1.502
-0.108

-3.662
-3.964
-0.318

0.001
0.002
>0.05

Complexity x Location 26 97.330 413.520 <0.001 East London Flat vs. 2.5cm
East London Flat vs. 5 cm
East London 2.5cm vs. 5 cm

-0.781
-1.516
-0.735

-2.161
-4.295
-2.203

>0.05
0.001
>0.05

Complexity x Site 
(Location)

2 4.560 408.960 >0.05 Hobart Flat vs. 2.5 cm, 
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

1.609
-0.862
-2.470

4.847
-2.743
-7.491

<0.001
0.017
<0.001

Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-0.936
-1.402
-0.466

-2.622
-3.890
-1.368

0.023
0.001
>0.05

Keelung Flat vs. 2.5 cm, 
Keelung Flat vs. 5 cm
Keelung 2.5cm vs. 5 cm

-1.202
-1.446
-0.244

-3.273
-3.966
-0.712

0.003
0.001
>0.05

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

-0.654
-1.011
-0.358

-1.958
-3.053
-1.105

>0.05
0.007
>0.05
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Supplementary S6: Effects of adding topographic complexity (Flat, 2.5 cm or 5 cm) on the abundances of the nineteen CATAMI groups

Filamentous/filiform macroalgae percentage cover was less on the 5cm and 2.5 cm complex tiles than on the flat tiles at two locations 

(Coquimbo and Keelung), but greater on the 5 cm complex tiles than the flat tiles at one location (Sydney). Foliose macroalgae percentage cover 

was less on the 5 and 2.5 cm complex tiles than on the flat tiles at three sites (Auckland 1, Coquimbo 1, East London 1), but greater on the 2.5 

cm complex than flat tiles at three sites (Hobart 1, Plymouth 1 and Sydney 1) and on the 5 cm complex tiles compared with the flat tiles at one 

site (East London 2). Encrusting macroalgae displayed location-specific positive effects of habitat structure, displaying greater percentage cover 

on the 2.5 cm and 5 cm complex tiles than the flat tiles at one location (Arraial do Cabo) and on the 5 cm complex tiles relative to the flat tiles at 

an additional two locations (East London and Sydney).  

Bryozoans, sessile molluscs and sessile worms each displayed greater percentage cover on 5 cm complex, and in some instances, also 2.5 cm 

complex than flat tiles, at a subset of sites or locations. For bryozoans, such patterns were significant for three locations (Herzliya, Plymouth and 

Sydney), for sessile molluscs they were significant for seven locations (Auckland, Chesapeake Bay, Hobart, Hong Kong, Plymouth, Ravenna 

and Sydney) and for sessile worms, for five locations (Arraial do Cabo, Auckland, Herzliya, Keelung and Sydney). Additionally, sessile 

crustacean percentage cover was greater on the 5 cm and 2.5 cm complex tiles than the flat tiles at eight locations (Arraial do Cabo, Auckland, 

Coquimbo, Herzliya, Hobart, Hong Kong, Plymouth and Ravenna), while sessile crustacean cover was lower on the flat tiles than the 5 cm and 

2.5 cm complex tiles at two locations (San Francisco and Sydney).
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Mobile crustacean abundance was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at nine sites (Auckland 1, Auckland 2, 

Chesapeake Bay 1, Chesapeake Bay 2, Hong Kong 1, Hong Kong 2, Keelung 2, Sydney 1 and Sydney 2). At two sites (Chesapeake Bay 1 and 

Sydney 1) the mobile crustacean abundance was greater on the 5 cm tiles than the 2.5 cm and flat tiles. Finally, at two sites mobile crustacean 

abundance was lower either the 2.5 cm or 5 cm than the flat tiles (Hobart 1 and San Francisco 1, Supplementary S6). Mobile mollusc abundance 

was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at eight locations (Arraial do Cabo, Auckland, Coquimbo, East London, 

Hobart, Hong Kong, Keelung, and Sydney), but there were fewer mobile molluscs on the 2.5 cm and 5 cm than the flat tile stiles at one location 

(San Francisco). Mobile worms similarly displayed greater abundances on 5 cm complex than the flat tiles at four locations (Auckland, 

Chesapeake Bay and Sydney). 

Table S6a: Results of multivariate and univariate mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm) location (14 
levels) and sites nested within location (1-2 levels) on the abundances of the nineteen CATAMI groups, sampled destructively at 12 months. The 
surface area of the tiles sampled (offset) was also included in the model. Detail of significant post-hoc tests are shown.
Fixed Residual 

df
df 
diff

Dev P-
value

Post-hoc tests

Multivariate
Intercept 373.000
Complexity 371.000 2 145.000 0.001
Location 358.000 13 3510.000 0.001
Site (Location) 333.000 25 868.000 0.001
Complexity x Location 307.000 26 478.000 0.001
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Complexity x Site (Location) 293.000 50 354.000 0.001
Univariate
Algal mats
Complexity 0.602 >0.05
Location 225.091 >0.05
Site (Location) 13.929 >0.05
Complexity x Location 2.455 >0.05
Complexity x Site (Location) 14.066 >0.05
Macroalgae articulated 
calcareous
Complexity 6.958 >0.05
Location 81.927 0.001
Site (Location) 31.469 0.001
Complexity x Location 0.001 >0.05
Complexity x Site (Location) 0.568 >0.05
Macroalgae 
filamentous/filiform

Coquimbo Flat vs. 2.5cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5cm vs. 5 cm

0.482
0.173
-0.309

5.530
2.191
-3.480

<0.001
0.048
0.002

Complexity 0.14 >0.05 Keelung Flat vs. 2.5cm
Keelung Flat vs. 5 cm
Keelung 2.5cm vs. 5 cm

0.673
0.745
0.837

9.047
9.927
0.680

<0.001
<0.001
>0.05

Location 372.211 0.001 Sydney Flat vs. 2.5cm
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

1.617
-2.564
-2.181

0.010
5.527
-0.011

>0.05
<0.001
>0.05

Site (Location) 38.877 0.001
Complexity x Location 37.63 0.011
Complexity x Site (Location) 34.375 0.034
Macroalgae globose saccate
Complexity 4.4 >0.05
Location 10.029 >0.05
Site (Location) 0.001 >0.05
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Complexity x Location 0.004 >0.05
Complexity x Site (Location) 0.001 >0.05

Macroalgae foliose Auckland site 1 Flat vs. 2.5 cm, 
Auckland site 1 Flat vs. 5 cm
Auckland site 1 2.5cm vs. 5 cm

1.521
2.488
0.967

1.607
4.014
1.560

0.025
0.002
>0.05

Complexity 0.37 >0.05 Coquimbo site 1 Flat vs. 2.5 cm, 
Coquimbo site 1 Flat vs. 5 cm
Coquimbo site 1 2.5cm vs. 5 cm

1.332
1.459
0.128

2.279
2.497
0.217

0.049
0.034
>0.05

Location 336.885 0.001 East London site 1 Flat vs. 2.5 
cm, 
East London site 1 Flat vs. 5 cm
East London site 1 2.5cm vs. 5 cm
East London site 2 Flat vs. 2.5 
cm, 
East London site 2 Flat vs. 5 cm
East London site 2 2.5cm vs. 5 cm

1.335
1.607
0.272
0.377
-1.903
-2.280

2.285
2.750
0.465
0.645
-3.256
-3.901

0.048
0.017
>0.05
>0.05
0.003
0.001

Site (Location) 104.858 0.001 Hobart site 1 Flat vs. 2.5 cm, 
Hobart site 1 Flat vs. 5 cm
Hobart site 1 2.5cm vs. 5 cm

-1.190
0.378
0.568

-1.325
0.647
0.971

0.001
>0.05
>0.05

Complexity x Location 27.377 0.080 Plymouth site 1 Flat vs. 2.5 cm, 
Plymouth site 1 Flat vs. 5 cm
Plymouth site 1 2.5cm vs. 5 cm

-1.491
-1.032
0.459

-2.552
-1.766
0.786

0.029
>0.05
>0.05

Complexity x Site (Location) 42.402 0.012 Sydney site 1 Flat vs. 2.5 cm, 
Sydney site 1 Flat vs. 5 cm
Sydney site 1 2.5cm vs. 5 cm

-1.673
-1.235
0.439

-2.862
-2.112
0.750

0.012
>0.05
>0.05

Macroalgae encrusting
Complexity 0.557 >0.05 Arraial do Cabo Flat vs. 2.5 cm, 

Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5cm vs. 5 cm

-0.756
-1.675
-0.920

-3.029
-6.713
-3.789

0.007
<0.001
0.008

Location 212.209 0.001 East London Flat vs. 2.5 cm, 
East London Flat vs. 5 cm

0.006
-0.703

0.247
-2.895

>0.05
0.011
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East London 2.5cm vs. 5 cm -0.763 -3.142 0.005
Site (Location) 64.698 0.001 Sydney Flat vs. 2.5 cm, 

Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

0.395
-0.625
-1.020

1.628
-2.574
-4.203

>0.05
0.027
0.001

Complexity x Location 33.57 0.039
Complexity x Site (Location) 24.096 >0.05
Ascidians
Complexity 5.859 >0.05
Location 24.142 0.003
Site (Location) 11.016 >0.05
Complexity x Location 1.006 >0.05
Complexity x Site (Location) 0.001 >0.05
Bryozoans
Complexity 6.948 >0.05 Herzliya Flat vs. 2.5 cm, 

Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.849
-0.978
-0.129

-4.583
-5.280
-0.697

<0.001
<0.001
>0.05

Location 61.313 0.001 Plymouth Flat vs. 2.5 cm, 
Plymouth Flat vs. 5 cm
Plymouth 2.5cm vs. 5 cm

-0.389
0.074
0.462

-2.965
0.561
3.527

0.009
>0.05
0.001

Site (Location) 12.594 >0.05 Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

0.008
-0.302
-0.309

0.060
-2.301
-2.362

>0.05
0.049
0.048

Complexity x Location 33.31 0.042
Complexity x Site (Location) 0.001 >0.05
Cnidarians
Complexity 2.912 >0.05
Location 15.64 >0.05
Site (Location) 0.001 >0.05
Complexity x Location 0.003 >0.05
Complexity x Site (Location) 2.716 >0.05
Sponges
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Complexity 6.795 >0.05
Location 32.15 0.001
Site (Location) 4.568 >0.05
Complexity x Location 9.376 >0.05
Complexity x Site (Location) 5.986 >0.05
Sessile crustaceans Arraial do Cabo Flat vs. 2.5 cm

Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 cm

-1.414
-1.295
0.119

-6.182
-5.628
0.880

<0.001
<0.001
>0.05

Complexity 6.447 >0.05 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-1.394
-1.385
0.009

-4.681
-4.667
0.048

<0.001
<0.001
>0.05

Location 423.608 0.001 Coquimbo Flat vs. 2.5 cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5 cm vs. 5 cm

-1.034
-0.962
0.073

-
12.915
-
11.965
1.258

<0.001
<0.001
>0.05

Site (Location) 137.372 0.001 Herzliya Flat vs. 2.5 cm, 
Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.710
-0.896
-0.186

-1.937
-2.530
-0.665

>0.05
0.031
>0.05

Complexity x Location 78.89 0.001 Hobart Flat vs. 2.5 cm, 
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

-0.749
-0.550
0.200

-
11.586
-8.237
3.663

<0.001
<0.001
0.007

Complexity x Site (Location) 73.151 0.001 Hong Kong Flat vs. 2.5 cm, 
Hong Kong Flat vs. 5 cm
Hong Kong 2.5cm vs. 5 cm

-1.646
-2.115
-0.470

-
13.422
-
17.759
-7.515

<0.001
<0.001
<0.001

Plymouth Flat vs. 2.5 cm, 
Plymouth Flat vs. 5 cm
Plymouth 2.5cm vs. 5 cm

-0.639
-0.455
0.185

-
13.497
-9.369
4.562

<0.001
<0.001
<0.001
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Ravenna Flat vs. 2.5 cm, 
Ravenna Flat vs. 5 cm
Ravenna 2.5cm vs. 5 cm

-1.251
0.107
1.359

-3.085
0.206
3.203

0.006
>0.05
0.004

San Francisco Flat vs. 2.5 cm, 
San Francisco Flat vs. 5 cm
San Francisco 2.5cm vs. 5 cm

0.708
0.251
-0.458

8.869
3.505
-5.274

<0.001
0.002
0.001

Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

0.432
0.152
-0.280

5.385
2.061
-3.390

<0.001
>0.05
0.002

Sessile molluscs Chesapeake Bay Flat vs. 2.5 cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5 cm vs. 5 cm

-0.704
-1.278
-0.574

-5.843
-
11.503
-6.736

<0.001
<0.001
<0.001

Complexity 22.979 0.001 Hobart Flat vs. 2.5 cm
Hobart Flat vs. 5 cm
Hobart 2.5 cm vs. 5 cm

2.450
-0.800
-3.249

3.324
-3.192
-4.510

0.003
0.004
<0.001

Location 295.64 0.001 Hong Kong Flat vs. 2.5 cm
Hong Kong Flat vs. 5 cm
Hong Kong 2.5 cm vs. 5 cm

-0.799
0.430
1.229

-3.943
1.621
5.279

0.002
>0.05
<0.001

Site (Location) 66.54 0.001 Plymouth Flat vs. 2.5 cm
Plymouth Flat vs. 5 cm
Plymouth 2.5 cm vs. 5 cm

17.820
-1.824
-
19.643

0.010
-4.165
-0.011

>0.05
0.001
>0.05

Complexity x Location 74.838 0.001 Ravenna Flat vs. 2.5 cm
Ravenna Flat vs. 5 cm
Ravenna 2.5 cm vs. 5 cm

-0.867
-1.252
-0.386

-2.510
-3.810
-1.604

0.033
0.004
>0.05

Complexity x Site (Location) 31.997 >0.05 Sydney Flat vs. 2.5 cm
Sydney Flat vs. 5 cm
Sydney 2.5 cm vs. 5 cm

-1.161
-2.245
-1.084

-9.724
-
20.482
-
16.128

<0.001
<0.001
<0.001

Sessile worms Arraial do Cabo Flat vs. 2.5 cm -2.644 -4.828 <0.001
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Arraial do Cabo Flat vs. 5 cm
Arraial do Cabo 2.5 cm vs. 5 cm

-2.548
0.096

-4.653
0.180

<0.001
>0.05

Complexity 11.016 >0.05 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5 cm vs. 5 cm

-0.896
-1.792
-0.897

-1.682
-3.272
-1.637

>0.05
0.003
>0.05

Location 217.597 0.001 Herzliya Flat vs. 2.5 cm, 
Herzliya Flat vs. 5 cm
Herzliya 2.5cm vs. 5 cm

-0.293
-2.927
-1.372

-0.389
-3.439
-1.822

>0.05
0.002
>0.05

Site (Location) 34.825 0.001 Keelung Flat vs. 2.5 cm, 
Keelung Flat vs. 5 cm
Keelung 2.5cm vs. 5 cm

-0.084
-1.695
-0.612

-0.132
-1.091
-0.960

>0.05
0.049
>0.05

Complexity x Location 19.225 0.049 Sydney Flat vs. 2.5 cm, 
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

-0.692
-3.184
-2.492

-1.150
-5.290
-4.140

>0.05
<0.001
0.001

Complexity x Site (Location) 1.077 >0.05
Mobile arthropods
Complexity 4.388 >0.05
Location 10.98 >0.05
Site (Location) 3.005 >0.05
Complexity x Location 0.004 >0.05
Complexity x Site (Location) 0.001 >0.05
Mobile crustaceans Auckland site 1 Flat vs. 2.5 cm, 

Auckland site 1 Flat vs. 5 cm
Auckland site 1 2.5cm vs. 5 cm
Auckland site 2 Flat vs. 2.5 cm, 
Auckland site 2 Flat vs. 5 cm
Auckland site 2 2.5cm vs. 5 cm

-0.846
-1.091
-0.246
-3.254
-4.018
-0.765

-6.883
-8.973
-2.652
-7.142
-8.909
-7.331

<0.001
<0.001
0.0218
<0.001
<0.001
<0.001

Complexity 3.460 >0.05 Chesapeake Bay site 1 Flat vs. 2.5 
cm
Chesapeake Bay site 1 Flat vs. 5 
cm

-0.828
-1.184
-0.355
-0.062
-0.428

-5.721
-8.611
-3.478
-0.727
-5.534

<0.001
<0.001
0.001
>0.05
<0.001
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Chesapeake Bay site 1 2.5 cm vs. 
5 cm
Chesapeake Bay site 2 Flat vs. 2.5 
cm
Chesapeake Bay site 2 Flat vs. 5 
cm
Chesapeake Bay site 2 2.5 cm vs. 
5 cm

-0.366 -4.871 <0.001

Location 335.469 0.001 Hong Kong site 1 Flat vs. 2.5 cm
Hong Kong site 1 Flat vs. 5 cm
Hong Kong site 1 2.5 cm vs. 5 cm
Hong Kong site 2 Flat vs. 2.5 cm
Hong Kong site 2 Flat vs. 5 cm
Hong Kong site 2 2.5 cm vs. 5 cm

-1.819
-2.047
-0.229
-1.477
-2.260
-0.783

-2.927
-3.350
-0.751
-2.671
-4.268
-2.673

0.010
0.002
>0.05
0.021
0.001
0.021

Site (Location) 53.262 0.001 Hobart site 1 Flat vs. 2.5 cm
Hobart site 1 Flat vs. 5 cm
Hobart site 1 2.5 cm vs. 5 cm

4.928
-0.206
-5.133

4.910
-1.791
-5.118

<0.001
>0.05
<0.001

Complexity x Location 30.203 >0.05 Keelung site 2 Flat vs. 2.5 cm
Keelung site 2 Flat vs. 5 cm
Keelung site 2 2.5 cm vs. 5 cm

-1.582
-1.556
0.026

-4.085
-4.091
0.124

0.001
0.001
>0.05

Complexity x Site (Location) 43.316 0.012 San Francisco site 1 Flat vs. 2.5 
cm
San Francisco site 1 Flat vs. 5 cm
San Francisco site 1 2.5 cm vs. 5 
cm

0.585
1.573
0.989

5.064
9.644
5.684

<0.001
<0.001
>0.05

Sydney site 1 Flat vs. 2.5 cm
Sydney site 1 Flat vs. 5 cm
Sydney site 1 2.5 cm vs. 5 cm
Sydney site 2 Flat vs. 2.5 cm
Sydney site 2 Flat vs. 5 cm
Sydney site 2 2.5 cm vs. 5 cm

-0.685
-1.403
-0.718
-2.854
-2.124
0.731

-2.167
-4.875
-3.226
-3.926
-2.841
2.471

>0.05
<0.001
0.0036
0.001
0.0125
0.0359

Mobile hexapods
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Complexity 4.572 >0.05
Location 185.739 0.001
Site (Location) 8.262 >0.05
Complexity x Location 27.15 >0.05
Complexity x Site (Location) 10.646 >0.05
Mobile echinoderms
Complexity 9.872 >0.05
Location 49.061 0.001
Site (Location) 14.939 0.045
Complexity x Location 1.203 >0.05
Complexity x Site (Location) 0.485 >0.05
Mobile molluscs Arraial do Cabo Flat vs. 2.5 cm

Arraial do Cabo Flat vs. 5 cm 
Arraial do Cabo 2.5cm vs. 5 cm

-0.411
-0.629
-0.219

-3.501
-5.611
-2.315

0.002
<0.001
>0.05

Complexity 42.557 0.001 Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5cm vs. 5 cm

-2.405
-3.275
-0.870

-
23.513
-
32.762
-
24.904

<0.001
<0.001
<0.001

Location 372.919 0.001 Coquimbo Flat vs. 2.5 cm
Coquimbo Flat vs. 5 cm
Coquimbo 2.5 cm vs. 5 cm

-1.870
-1.901
-0.031

-6.752
-6.897
-0.223

<0.001
<0.001
>0.05

Site (Location) 167.937 0.001 East London Flat vs. 2.5 cm
East London Flat vs. 5 cm
East London 2.5 cm vs. 5 cm

-0.758
-1.691
-0.933

-3.498
-8.700
-6.559

0.002
<0.001
<0.001

Complexity x Location 62.217 0.001 Hobart Flat vs. 2.5 cm
Hobart Flat vs. 5 cm
Hobart 2.5 cm vs. 5 cm

-2.072
-2.088
-0.016

-4.367
-4.407
-0.073

<0.001
<0.001
>0.05

Complexity x Site (Location) 62.142 0.001 Hong Kong Flat vs. 2.5 cm
Hong Kong Flat vs. 5 cm
Hong Kong 2.5 cm vs. 5 cm

-0.919
-1.428
-0.509

-3.978
-6.518
-3.253

0.002
<0.001
0.004
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Keelung Flat vs. 2.5 cm
Keelung Flat vs. 5 cm
Keelung 2.5 cm vs. 5 cm

-1.378
-1.652
-0.274

-6.296
-7.761
-2.149

<0.001
<0.001
>0.05

San Francisco Flat vs. 2.5 cm
San Francisco Flat vs. 5 cm
San Francisco 2.5 cm vs. 5 cm

0.597
0.912
0.316

4.370
5.830
1.805

<0.001
<0.001
>0.05

Sydney Flat vs. 2.5 cm
Sydney Flat vs. 5 cm
Sydney 2.5 cm vs. 5 cm

-0.485
-0.894
-0.410

-3.101
-6.132
-3.303

0.006
<0.001
0.003

Mobile worms Auckland Flat vs. 2.5 cm
Auckland Flat vs. 5 cm
Auckland 2.5cm vs. 5 cm

-0.889
-2.399
-1.510

-1.840
-5.619
-1.510

>0.05
<0.001
<0.001

Complexity 4.329 >0.05 Chesapeake Bay Flat vs. 2.5 cm
Chesapeake Bay Flat vs. 5 cm
Chesapeake Bay 2.5cm vs. 5 cm

-0.748
-1.142
-0.394

-8.064
-
13.071
-5.904

<0.001
<0.001
<0.001

Location 247.461 0.001 Hobart Flat vs. 2.5 cm
Hobart Flat vs. 5 cm
Hobart 2.5cm vs. 5 cm

1.892
-0.647
-2.539

8.986
-6.875
-
12.465

<0.001
<0.001
<0.001

Site (Location) 100.516 0.001 Sydney Flat vs. 2.5 cm
Sydney Flat vs. 5 cm
Sydney 2.5cm vs. 5 cm

16.008
-2.623
-
18.631

0.009
-2.534
-0.010

>0.05
0.031
>0.05

Complexity x Location 42.496 0.005
Complexity x Site (Location) 8.138 >0.05
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Supplementary S7: Correlates of spatial variation in effects of topographic complexity

Table S7a: Effects of tidal zone (high, mid or low) on the SMD of taxa richness (total, sessile invertebrate and mobile invertebrate) and the 
abundances of CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if confidence intervals do not overlap 
zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * <0.05, **<0.01, ***<0.001. Details of significant 
post-hoc tests are shown.

Factor Estimate SE Z-
value

P-
value

Lower 
CI

Upper 
CI

Post-hoc 
tests

Estimate SE Z-
value

P-
value

Lower 
CI

Upper 
CI

Total richness
High 0.9226  0.5013  1.8405 >0.05 -0.0599  1.9052    Mid vs. 

Low
1.4521

1.0311 1.4083
>0.05 -0.5688 3.4729

Mid 1.4528 0.2693  5.3939 <0.001
0.9249 1.9807  

Low 2.9121  0.9256  3.1451 0.017 1.0979  4.7263
Algal richness
High 0.5699  0.5824   0.9784 >0.05 -0.5717 1.7114    NA
Mid 0.4412  0.2703    1.6319  

>0.05 -0.0887
0.9711  

Low -0.1523  0.7412  -
0.2055  

>0.05 -1.6050 1.3003

Sessile invertebrate richness
High 0.6952 0.4255  1.6337  

>0.05  
-0.1388  1.5292 Mid vs. 

Low
1.5013 0.7704 1.9488 0.0413 0.009 3.0112

Mid 0.9344  0.2181  4.2842  <0.001   0.5069 1.3619
Low 2.4343  0.7573  3.2144  0.0013    0.9599  3.9185
Mobile invertebrate richness 
High 0.5387  0.5166  

1.0428  
>0.05  -0.4737  1.5511 Mid vs. 

Low
2.1599 1.0393

2.0781 0.0377 0.1228
4.1970

Mid 1.3963  0.2716  
5.1414  

<0.001 0.8640  
1.9286
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Low 3.5630  
0.9623  3.7026  

0.0002   1.6769  5.4491

Filamentous algae cover
High 0.0509  0.4647 0.1095  >0.05 -0.8599 0.9617    NA
Mid -0.4937  0.3211  -

1.5378  
>0.05 -1.1230 0.1355  

Low -1.3929  0.5227  -
2.6648  

0.0077 -2.4173 -0.3684  

Foliose algae cover
High 0.5611 0.5140    

1.0917 
>0.05 -0.4462 1.5684    NA

Mid -0.2180  0.2120  -
1.0279  

>0.05 -0.6336 0.1976

Encrusting algae cover
High 1.2050  0.5840   2.0633  0.0391 0.0603 2.3496  NA
Mid -0.3078  0.5155  -

0.5972  
>0.05 -1.3181 0.7025    

Low 0.2582  0.9018   0.2864  >0.05 -1.5093 2.0258    
Sessile bryozoans cover
High 0.5317  0.3825  1.3899  >0.05 -0.2181  1.2815  NA
Mid 0.5862  0.3935  1.4898  >0.05 -0.1850  1.3574  
Sessile bivalves cover
High 0.6455  0.5450  1.1842  >0.05  -0.4228  1.7137     NA
Mid 0.8845  0.3289  2.6892  0.0072 0.2399  1.5291  
Low 0.4539  0.9639  0.4710  >0.05  -1.4352  2.3431
Sessile crustaceans cover
High 1.2446  0.7538  1.6512  >0.05 -0.2327  2.7220     NA
Mid 1.0458  0.4014  2.6056  0.0092 0.2591  1.8326  
Low 0.6784  1.3261  0.5116  >0.05 -1.9208  3.2775
Sessile worms cover
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High 1.3851  0.3618  3.8290  0.001 0.6761  2.0942  Mid vs. 
High

-0.4009 0.4684 -
0.8559

>0.05 -1.3189 0.5171

Mid 0.9843  0.2975  3.3084  0.009 0.4012  1.5674   
Low 0.4168  0.6660  0.6259  >0.05 -0.8884  1.7221
Mobile crustaceans abundance
High 0.9771  0.3880  2.5182  0.0118   0.2166  1.7376    Mid vs. 

High
0.1071 0.5265 0.2034 >0.05 -0.9249 1.1391

Mid 0.7937  0.2048  3.8757  <0.001 0.3923  1.1951  
Low 0.9008  0.4851   1.8571  >0.05 -0.0499  1.8515    
Mobile molluscs abundance
High 1.1896  0.5121  2.3232  0.0202  0.1860  2.1932    Mid vs. 

High
-0.0604 0.5708

-1.058
>0.05 -1.1792 1.0585

Mid 1.1292  0.2523  4.4754  <0.001 0.6347  1.6237  Mid vs. 
Low

1.0775 0.7709 1.3978 >0.05 -0.4334 2.5884

Low 2.2068  0.7298  3.0237  0.0025 0.7764  3.6372   High vs. 
Low

1.0135 0.9041 1.1210 >0.05 -0.7585 2.7855

Mobile worms abundance
High 0.6601  0.3776  1.7482  >0.05 -0.0800  1.4002    NA
Mid 1.0911  0.2726  4.0032  <.0001   0.5569  1.6253  
Low 1.1885  0.6860  1.7324  >0.05 -0.1561  2.5330    

Table S7b: Effects of distance from the nearest boating facility or marina (km) on the SMD of taxa richness (total, sessile invertebrate and 
mobile invertebrate) and the abundances of the CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if 
confidence intervals do not overlap zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * <0.05, **<0.01, 
***<0.001.

Factor Estimate SE Z-value P-value Lower CI Upper CI
Total richness
Distance 0.0177    0.163  0.1080  >0.05 -0.3029  0.3383
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Table S7c: Effects of absolute latitude on the SMD of taxa richness (total, algae, sessile invertebrate and mobile invertebrate) and the 
abundances of the CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if confidence intervals do not 
overlap zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * <0.05, **<0.01, ***<0.001.

Algal richness
Distance -0.1303     0.1249    -1.0431    >0.05 -0.3751  0.1145
Sessile invertebrate richness
Distance 0.2444  0.1221  2.0015  0.0453  0.0051  0.4838    
Mobile invertebrate richness 
Distance -0.0882   0.6634  -0.6281    >0.05  -1.7170    0.8836
Filamentous algae cover
Distance -0.4167  0.5215 0.1011  >0.05 -0.9694 1.0748    
Foliose algae cover
Distance -0.3182  0.1885     -1.6878  >0.05 -0.6877  0.0513   
Encrusting algae cover
Distance -0.7614  0.7544   -1.0092  >0.05 -2.2400  0.7173      
Sessile bryozoans cover
Distance 0.0390  0.1265  0.3083  >0.05 -0.2089  0.2869
Sessile bivalves cover
Distance 0.1886    0.1759  1.0723  >0.05  -0.1561  0.5334   
Sessile crustaceans cover
Distance 1.0636  -0.2457  -1.1955    >0.05 -0.6486    0.1571     
Sessile worms cover
Distance 0.0691    0.1212  0.5702  >0.05 -0.1685  0.3068   
Mobile crustaceans abundance
Distance 0.0416  0.1241  0.3348  >0.05 -0.2017  0.2849
Mobile molluscs abundance
Distance 0.0697  0.1649  0.4226  >0.05  -0.2535  0.3928
Mobile worms abundance
Distance 0.1488  0.1373  1.0844  >0.05 -0.1202  0.4179
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Factor Estimate SE Z-value P-value Lower CI Upper CI
Total richness
Absolute latitude -0.0139  0.0066  -2.1242  0.0336  -0.0268  -0.0011 
Algal richness
Absolute latitude -0.0079  0.0211  -0.3756  >0.05 -0.0492  0.0334    
Sessile invertebrate richness
Absolute latitude -0.0148  0.0336  0.5437  >0.05 -0.0476  0.0841
Mobile invertebrate richness 
Absolute latitude 0.0183  0.6634  -0.6281    >0.05  -1.7170    0.8836
Filamentous algae cover
Absolute latitude 0.0032    0.0350   0.0925  >0.05 -0.0653  0.0718
Foliose algae cover
Absolute latitude 0.0562    2.1948  0.0256   >0.005   -0.0060   0.1063   
Encrusting algae cover
Absolute latitude -0.0320  0.0223  -1.4341  >0.05 -0.0757  0.0117   
Sessile bryozoans cover
Absolute latitude 0.0257    0.0159   1.6207  >0.05 -0.0054  0.0568  
Sessile bivalves cover
Absolute latitude 0.0411  0.0225   1.8217  0.0485  0.0031  0.0852  
Sessile crustaceans cover
Absolute latitude -0.0448  0.0284  -1.5750  >0.05 -0.1005  0.0109
Sessile worms cover
Absolute latitude 0.0185  0.0171  1.0834  >0.05 -0.0149  0.0519
Mobile crustaceans abundance
Absolute latitude -0.0048  0.0188  -0.2556  >0.05 -0.0417  0.0321
Mobile molluscs abundance
Absolute latitude -0.0402  0.0215  -1.8664  0.0420  -0.0823  0.0020    
Mobile worms abundance
Absolute latitude -0.0272  0.0208  -1.3062  >0.05 -0.0680  0.0136  
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