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Chaotic escape from an open vase-shaped cavity. I. Numerical and experimental results

Jaison Novick,1,* Matthew L. Keeler,2 Joshua Giefer,2 and John B. Delos1

1Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
2Department of Physics, University of Minnesota, Morris, Morris, MN 56267, USA

(Received 6 November 2010; published 18 January 2012)

We present part I in a two-part study of an open chaotic cavity shaped as a vase. The vase possesses an unstable
periodic orbit in its neck. Trajectories passing through this orbit escape without return. For our analysis, we
consider a family of trajectories launched from a point on the vase boundary. We imagine a vertical array of
detectors past the unstable periodic orbit and, for each escaping trajectory, record the propagation time and the
vertical detector position. We find that the escape time exhibits a complicated recursive structure. This recursive
structure is explored in part I of our study. We present an approximation to the Helmholtz equation for waves
escaping the vase. By choosing a set of detector points, we interpolate trajectories connecting the source to the
different detector points. We use these interpolated classical trajectories to construct the solution to the wave
equation at a detector point. Finally, we construct a plot of the detector position versus the escape time and
compare this graph to the results of an experiment using classical ultrasound waves. We find that generally the
classical trajectories organize the escaping ultrasound waves.

DOI: 10.1103/PhysRevE.85.016205 PACS number(s): 05.45.Pq, 05.45.Mt, 42.15.Dp, 42.65.Wi

I. INTRODUCTION

Chaotic transport occurs in chemical reactions, as a tem-
porarily formed complex breaks up into products (or returns to
reactants) [1–6], in scattering from three circular discs [7,8], in
the emission of light from microbeads [9–19] or the emission
of microwaves from cavities, [19–25] in the ionization of
excited hydrogen atoms by microwave radiation [26], in the
escape of atoms from traps [27], in the ionization of atoms
in static electric and magnetic fields [28–33], in the mixing
of fluids or granular materials [34–41], in the diffusion of
electrons through arrays of quantum dots [42–46] or through
other periodic potentials [47–51], in ocean currents [52–58],
and in transport of satellites (or asteroids or meteors) through
the solar system [59–61].

The defining characteristic of chaotic transport is sensitive
dependence on initial conditions. This sensitive dependence
manifests itself in graphs of the time to escape vs ini-
tial conditions: such graphs display fractal structure within
structure at all levels of resolutions (many of the colorful
representations of fractals are made from calculations of
escape times in chaotic two-dimensional maps) [62–64]. In
earlier work [25,27,31,33,65,67] a geometrical and topological
framework was developed for describing the structure of
escape-time graphs in systems with two degrees of freedom
(2-dof = four dimensional phase space). This approach, called
homotopic lobe dynamics, examines the number of bounces
from the walls of the vase that a path will have before
escaping (or more generally, the number of intersections with
a surface of section before escape); it shows that a graph
of bounces before escape vs initial direction of motion must
show fractal structure, and it predicts a minimal topologically
required subset of this fractal. Since the first presentation of
this theory [65,66], two improvements to the theory have been
developed [25,67], each predicting a larger subset of the fractal.

*Corresponding author: jaisonnovick@gmail.com

Here, we study escape of light or sound or microwaves
from a two-dimensional vase-shaped cavity. A point source
on the boundary sends out rays; these rays undergo specular
reflection from the sides of the vase, and eventually most
of them escape. This does not sound like a problem that
would require 21st century mathematics for its solution. In
fact, however, 21st century mathematics are not yet adequate
for a complete description of this system. The vase is one
of the simplest systems in which the dynamics shows all the
complexity of 2-dof chaotic transport and on which clean and
precise measurements can be made.

We began the study of this system in Ref. [68], and many
of the concepts and methods we use here are similar to those
described therein. New in this paper are the following aspects:
(1) we now study a vase with a wider neck; this allows us
to go deeper into the fractal structure for a given number of
reflections from the boundary of the vase. (2) In Ref. [68],
we reported the total flux of particles out of the mouth of
the vase. Here, we report the flux density into individual
detectors across the mouth of the vase. (3) We have constructed
an experimental realization of this vase using ultrasound,
and we have verified the early part of the structure that is
predicted theoretically. (4) In Ref. [68] and in the ultrasound
observations, we examine a point source of short pulses and
compute or measure the time required for the pulse to arrive at
a detector. In microwave experiments [20–22], it may be easier
to use a source of steady waves having controlled frequency.
Here, we compute the waves arriving at a detector from such
a source. The Fourier transform from frequency to time gives
results which are consistent with pulsed measurements. (5)
In the accompanying paper [69], we apply one of the recent
improvements of homotopic lobe dynamics, using it to predict
a minimal part of the fractal structure that appears in the
escape-time plot for this vase.

II. THE VASE, THE SURFACE OF SECTION,
AND THE HOMOCLINIC TANGLE

In this section (and in the supplementary material [70]), we
define the shape of the vase, and we display some escape-time
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FIG. 1. (Color online) The vase for A = 0.75 and w = 0.75.
The stable and unstable periodic orbits (SPO and UPO) are plotted in
thick lines (black online). A stable orbit surrounding the SPO is shown
(blue online; dark grey print). Another trajectory (red online; medium
grey print) starts near the UPO and rapidly falls away from the UPO.
This path is representative of a continuous family of trajectories that
makes up the stable manifold of the unstable fixed point in the surface
of section (see Fig. 4). Figure 1 and most of our simulations use
arbitrary length units, which we will abbreviate as alu. We choose
corresponding arbitrary time units (abbreviated as atu) such that the
speed along the paths in Fig. 1 is 1 alu (atu−1).

graphs. Then we show how to obtain a discrete map between
successive reflections from the continuous paths in the vase.
Finally, we define and display a homoclinic tangle, which
governs the structure of the escape-time graphs.

A. The shape of the vase

We consider a chaotic, open vase-shaped cavity. The vase
walls are given by Eq. (1):

y(x) = ±√
x

(
w

2
+ A(x − 1)2

)
= ±f (x). (1)

The parameter w controls the neck’s width, and A controls
how much the vase lips flare outward. We chose A = 0.75 and w
= 0.75 as these result in an early onset of chaos. The vase con-
structed from these parameters and several regular trajectories
found in the vase are shown in Fig. 1. In Fig. 1, we have labeled
the axes in units of alu, which stands for arbitrary length units.
Equation (1) is not defined with respect to any system of units,
such as SI units. For comparison to an experiment, the inputs
and outputs in Eq. (1) have to be rescaled.

Trajectories are straight lines between specular reflections
from the boundary walls. In Fig. 1, the thick vertical line
segments (black online) in the vase’s bowl and neck represent
stable and unstable periodic orbits (SPO and UPO, respec-
tively). The SPO is surrounded by a region of trapped orbits,
one of which is shown in Fig. 1 (blue online). The trajectory
(red online) starting near and falling away from the UPO shows
how trajectories are repelled away from the UPO. The UPO is
most important to our analysis, as all trajectories intersecting
the UPO escape without return due to the outward flaring of
the vase’s lips and the lack of reflectors other than the two
boundary walls.

FIG. 2. (Color online) The top figure shows the continuous escape
time (tc) versus the initial momentum (p0) for a burst launched from
the boundary point r0 = (0.3, 0.4067) to a vertical line detector
placed at x = 1.5. The second row features a magnification of the
region bounded by vertical (red online) lines near the right-hand side
of the top figure. The third and fourth rows are magnifications of the
regions bounded by the vertical (red online) lines in the second and
third rows, respectively.

Numerical computation of trajectories is described in the
supplementary material [70]. For our simulations, we launch a
burst of trajectories from a point source on the upper boundary
at r0 = (0.3, 0.4067). To the right of the UPO, at x = 1.5
alu, we imagine a vertical line detector spanning the space
between the boundary walls. All trajectories that pass through
the UPO are absorbed at the vertical line detector. We record
the propagation time between launch and absorption and plot
this escape time versus the initial velocity component parallel
to the tangent to the vase at the source point (called the initial
momentum p0 in Fig. 2). The escape times of the chaotic
trajectories are organized into infinite sequences of U-shaped
regions called icicles. Each icicle represents the escape times
for a family of chaotic trajectories. Sequences of icicles can
be found at all levels of resolution [65,66,68].

B. Surface of section

The structure underlying the escape time plots in Fig. 2
is revealed in a discrete representation. At each reflection
from the boundary, a surface of section is defined in the
standard way, using the arclength along the boundary and
the momentum parallel to the boundary’s tangent line at the
reflection point. More specifically, at any reflection point r =
(x, y), the coordinate is defined as the signed arclength along
the boundary between the origin and the reflection point:

q(x) =
∫ y(x)

0
dy

√
1 +

(
dx

dy

)2

, x < xcutoff, (2)

q(x) =
∫ y(xcutoff )

0
dy

√
1 +

(
dx

dy

)2

+
∫ x

xcutoff

dx

√
1 +

(
dy

dx

)2

,

x > xcutoff . (3)

To define the momentum p, we construct the unit tangent
vector T(r0) and calculate the component of the incoming and
outgoing velocity parallel to this vector:

p = vincoming · T (r0) = voutgoing · T (r0). (4)
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FIG. 3. (Color online) Continuous escape time (left vertical axis
and plotted in blue online, dark grey print) and bounces to escape the
vase (BV , right vertical axis and plotted in red online, medium grey
print) versus the initial momentum for a single icicle. Discontinuities
in slope of the escape time curve occur at the points at which the
number of bounces changes by one. This icicle corresponds to escape
segment E1 in Fig. 5.

At each reflection, we record the vector (q, p). Finally, if
q < 0 (i.e. if the particle bounces off the lower boundary of
the vase), we replace (q, p) with (−q, −p). This is equivalent
to propagating the trajectory within a vase in which the lower
boundary is replaced by a horizontal mirror at y = 0. The vase
dynamics induces a discrete mapping M (q, p) = (q′, p′) in the
new coordinates.

The mapping is not necessarily continuous in the concave
part of the boundary (near the neck of the vase). Discontinuities
arise when trajectories graze this part of the boundary (a
grazing trajectory has

voutgoing · T (rgraze) = ± 1, (5)

i.e. the velocity is parallel or antiparallel to the tangent to the
boundary at the grazing point). However, we have chosen the
shape of the vase such that any such discontinuities can only
occur at the last reflection before escape. These discontinuities
appear in the escape-time graph as discontinuities in the slope
of the escape time, but the escape time itself is continuous at
these points. There is also a second way that discontinuities in
slope arise—when a trajectory encounters the point at which
the vertical detector intersects either boundary wall (Fig. 3).
In both of these cases, the number of reflections to escape
changes by one (discontinuities in the escape time itself also
arise, where it goes to infinity or where the trajectory does not
escape.).

C. The homoclinic tangle and epistrophes

The organization of the chaotic dynamics is revealed by the
discrete mapping M (q, p), shown in Fig. 4. In this mapping,
the SPO is transformed into a stable fixed point. Surrounding
this point is a continent of stability, which is a set of trapped,
quasiperiodic orbits centered near the point (q = 0.62, p = 0).
A quasiperiodic orbit in the vase transforms into an oval-like
curve in which points discretely move in a clockwise sense.
A burst of trajectories launched in all directions from the
boundary point r0 corresponds to the vertical line segment
L0 = {q0 = 0.5607, −1 < p0 < 1}. L0 intersects the stable
region resulting in trajectories that never escape. The presence

FIG. 4. (Color online) Homoclinic tangle that controls chaotic
transport in the vase. The oriented curves attached to the point qx are
the stable (S) and unstable (U) manifolds, respectively. Points on S
(red online, medium grey print) asymptotically approach qx under the
map, while points on U (blue online, dark grey print) asymptotically
approach qx under the inverse map. Several escape and capture lobes
are labeled. The eye-shaped region bounded by the segments of S

and U connecting the points qx to P0 is called the complex. The
oval-shaped curves (black online) centered about (q = 0.62, p = 0)
are trapped orbits surrounding the stable fixed point that form a
continent of stability. The points surrounding the continent of stability
(cyan online, light grey print) lie within a chaotic sea. The vertical
line segment (green online) represents a burst of trajectories launched
from the boundary point r0 = (0.3, 0.4067). Escape lobe Ei is the
entire region bounded by S and U between P i and Qi , while capture
lobe Ci is the entire region bounded by S and U between Qi−1 and
P i . See also the figures in Refs. [65] and [66].

of these stable orbits leads to breaks in the escape-time
graph.

The UPO is transformed into an unstable fixed point, which
we call qx (see Fig. 4). Attached to this point are two special
curves called the stable and unstable manifolds, S and U,
respectively. These are invariant curves under the action of the
map M . Under the action of M , points on the stable manifold
(red online) asymptotically approach qx , while points on the
unstable manifold (blue online) moving under the inverse map
asymptotically approach qx . This induces a natural orientation
to the stable and unstable manifolds, toward qx on the
stable manifold, and away from qx on the unstable manifold.
Neither the stable nor the unstable manifold can intersect
itself.

The union of intersecting stable and unstable manifolds
is called a homoclinic tangle [71]. We use the notation of
our previous references to describe various segments of the
manifolds and associated regions of the plane. We call the eye-
shaped region bounded by the segments of S and U connecting
the points P0 and qx the complex (some call this region the
resonance zone). The region bounded by the segments of S and
U connecting P0 to Q0 is called escape lobe 0 and is denoted
by E0. The nth image of E0 is En = M n(E0) where n is any
integer; it is bounded by the segments of S and U connecting
Pn = M n(P0) and Qn = M n( Q0). The points Pn and Qn are
intersections of S and U, which are called homoclinic points.
Similarly, we define capture lobe 0, denoted by C0, which is
bounded by the segments of S and U connecting Q−1 with
P0. The nth image of C0 is Cn = M n(C0), and it is bounded
by the segments of S and U connecting Qn−1 with Pn.

016205-3
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The four lobes E−1 and C1, which lie inside the complex,
and E0 and C0, which lie outside the complex, form what is
called a turnstile, and control how points enter and exit the
complex. Since E0 = M (E−1), points that land in E−1 exit
the complex on the next iterate of the map. Similarly, since
C1 = M (C0), points enter the complex by landing in C0

and then in C1 (the complex captures the points). From there,
they map forward to C2 and C3, which lie entirely inside the
complex, and then to C4. A portion of this region intersects
E0, so points that fall into this region have entered and escaped
the complex in four iterates. The minimum number of iterates
that points remain in the complex (three in this case) is called
the minimum delay time.

The vertical line segment in Fig. 4 (green online) repre-
sents a burst of trajectories (with initial momenta uniformly
distributed) launched from the point r0 = (0.3, 0.4067) on the
upper boundary wall. If we record the time for the chaotic
trajectories to escape the vase and arrive at the detector, we
obtain the escape-time graph shown in Fig. 5(a). The vertical
line of initial conditions in Fig. 4 intersects the complex, and
if we record the number of iterates for the same trajectories to
exit the complex, we obtain Fig. 5(b). We see that each icicle
is rectified into a line segment, called an escape segment,
that represents a set of trajectories that escape after the same
number of bounces.

Let us focus on the segment labeled E1. Trajectories in this
segment exit the complex after four bounces. However, the
trajectories must propagate further to escape the vase. Figure 3
shows the time and the number of bounces required for each
trajectory in E1 to escape the vase. A subset of this set of
trajectories arrives at the detector after only four bounces, but
others arrive after 4 + k bounces where k is any positive integer.
If we compute the time spectrum of escaping trajectories, each
escape segment, i.e. each icicle, produces a pulse of escaping
trajectories. The whole burst of trajectories escapes the vase
in an infinite sequence of pulses with each pulse representing
a single icicle/escape segment.

Sequences of icicles are rectified into sequences of escape
segments called epistrophes. The word epistrophe is a term

FIG. 5. (Color online) Continuous and discrete escape times for
a burst of trajectories launched from (0.3, 0.4067). (a) Continuous
escape time: the time required for trajectories to escape from the vase
and arrive at a detector placed at x = 1.5. (b) Number of bounces
required to exit the complex and land in escape lobe E0. Sequences
of escape segments, called epistrophes, have been labeled. (Note:
epistrophe E with escape segments Ej must not be confused with
escape lobes Ej ).

from rhetoric meaning “a repeated ending following a variable
beginning.” Asymptotically, the tails of all epistrophes de-
crease at the same rate [65]. The set of escape segments can be
partially predicted using the previously mentioned methods
called homotopic lobe dynamics [25,66,67]. One of these
methods will be applied in the accompanying paper [69] to
generate a minimal topologically required subset of the fractal
set of escape segments.

III. ESCAPE TIME VERSUS DETECTOR POSITION

Here, we examine one of the quantities that can be most
directly measured: the escape time versus the detector position.
We first give a ray calculation, then use that ray calculation
to compute a semiclassical wave function and its Fourier
transform, and finally we show the results of an experiment
using ultrasound.

A. Ray calculation

We launch a family of trajectories from the vase boundary
point r0, and we stop them at the vertical line segment at
x = 1.5 alu. For each escaping trajectory, we record the
vertical detector position and the escape time [Fig. 6(a)]. We
see that the signal consists of a complicated set of sawtooth
oscillations. Each type of trajectory is plotted in a graph below
the signal (plotted in the same colors online). The earliest
trajectories to escape are the direct trajectories [Fig. 6(b), blue
online]. This family is bounded by two grazing trajectories,
which are also shown. As we rotate the initial velocity vector
clockwise past the trajectory that grazes the lower lip, we
encounter what we call the oscillatory rays [Fig. 6(c), black
online]. These trajectories bounce through the vase’s neck any
number of times and then escape. Since these are encountered
by rotating the direct trajectories continuously through a
grazing trajectory, the sawtooth produced by the oscillatory
trajectories is connected to the curve produced by the direct
trajectories.

Next, we encounter the whispering gallery (WG) trajecto-
ries [Fig. 6(d), green online]. These trajectories hug the convex
segments of the boundary walls. Clockwise WG trajectories

FIG. 6. (Color online) Detector position versus the escape time
for a burst of trajectories launched from the boundary point (0.3,
0.4067). [In the online version, the colors correspond to the trajec-
tories in (b)−(e).] (b) Rays that escape the vase without reflecting
off either boundary (blue online). (c) Oscillatory rays (black online).
(d) Whispering gallery (WG) trajectories (green online). (e) Chaotic
trajectories (red online).
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TABLE I. Initial conditions for the different types of trajectories contributing to the signal in Fig. 6. The first column contains the trajectory
type. The second column contains initial conditions in the form of a polar angle measured with respect to a space-fixed Cartesian coordinate
system with origin at the burst point. The third column gives the corresponding initial momentum. The first five rows contain the different
types of trajectories and their ranges of initial conditions. The sixth and seventh rows contain initial conditions for the two grazing trajectories
starting at (0.3, 0.4067). The last two rows give the initial conditions for the intersection of L0 and the complex’s boundaries.

Trajectory Initial polar angle (rad) Initial momenta

Clockwise WG −0.0918 < θ0 < 0.1023 0.9812 < p0 < 1
Direct rays −0.734 < θ0 < −0.0918 0.6702 < p0 < 0.9812
Oscillatory −1.1417 < θ0 < −0.734 0.321 < p0 < 0.6702
Chaotic −1.7952 < θ0 < −1.1417 −0.321 < p0 < 0.321
Counterclockwise WG −3.0393 < θ0 < −1.7952 −1 < p0 < −0.321
Graze with upper wall −0.0918 0.9812
Graze with lower wall −0.734 0.6702
Stable boundary of complex −1.1417 0.321
Unstable boundary of complex −1.7952 −0.321

hug the upper boundary wall and escape early. These produce
a narrow set of sawtooth oscillations that are connected to the
curve produced by the direct trajectories [inset in Fig. 6(a)]. In
fact, the clockwise WG trajectories and direct trajectories are
separated by a trajectory that grazes the upper boundary. The
counterclockwise WG trajectories start at the upper boundary,
circulate counterclockwise, hug the lower boundary, and then
escape. Their contribution to the signal starts around 2.2
arbitrary time units (atu).

Finally, we have the chaotic trajectories in Fig. 6(e) (red
online). The earliest chaotic trajectories arrive at around
2.2 atu. At about 4.7 atu, we see two closely spaced oscillations
starting. By 7 atu, many chaotic trajectories are arriving at the
line detector resulting in a complicated signal. We conclude
this section with Table I, which gives the initial conditions for
the different types of trajectories we have just discussed.

B. Semiclassical wave approximation

Let us now construct a semiclassical approximation to the
wave function along a line of detectors to the right of the
UPO, at x = 1.5 alu. This semiclassical wave function is an
approximation to a complex solution to the two-dimensional
Helmholtz equation,(

∂2

∂x2
+ ∂2

∂y2
+ k2

)
ψk = 0, (6)

subject to the following boundary condition near the source
(r ∼ r0):

ψk(r) ∼ eik|r−r0|
√

k|r − r0|
. (7)

Such a wave represents the Green’s function for the
Schrödinger wave equation. Its real or imaginary parts may
represent sound waves or microwaves in the vase. To compute
this wave function, we must identify trajectories going from a
point source to a point detector by numerical interpolation of
computed trajectories.

1. Interpolating classical trajectories

We computed a family of over 4 million trajectories to
interpolate trajectories connecting source and detector points.

For this set of escaping trajectories, we show a plot of final
position along the detector vs initial momentum (Fig. 7).
Figure 7 shows that yf (p0) possesses a complicated set of
oscillations. We see that globally, this curve is disconnected
for p0 near 0 and possesses many discontinuities in slope. The
disconnection arises because L0 possesses a set of trapped
orbits (compare to Figs. 2 and 4). We choose a detector point
yD and draw a horizontal line through yf (p0) and numerically
solve for those p0 that satisfy

yf (p0) − yD = 0. (8)

To simplify the problem of numerically computing the
zeros, we break up the curve at points of discontinuous slope.
Each smooth segment of the curve contributes 0, 1, or 2
interpolated trajectories at the detector point. We apply the
secant method to each smooth set to numerically compute the
zeros of Eq. (8).

2. Computing the semiclassical wave function

The semiclassical wave function is given by

ψ(r) =
N∑

j=1

Aj (r)
eikr0

√
r0

exp

[
iSj (r)

h̄
− iμjπ

2

]
. (9)

This form of the wave function can be found in Ref. [72],
where it was used in the construction of a model of electronic
transport through a semiconductor microjunction. The sum

FIG. 7. (Color online) Detector position versus initial momentum
for the source at r0.

016205-5



NOVICK, KEELER, GIEFER, AND DELOS PHYSICAL REVIEW E 85, 016205 (2012)

runs over the interpolated trajectories connecting the source
and detector points. Here, Aj (r) is the amplitude of the
wave function. This function is a ratio of the determinants
of Jacobians in the representation [x(t, θj ), y(t, θj )] where x
and y are the positions as a function of time and initial launch
angle of the jth trajectory, that starts on a small circle of radius
r0 around the initial point. Here, Aj (r) can be rewritten in
terms of J

˜
(t,θj ) = ∂(x,y)

∂(t,θj ) [72–74],

|Aj (r)|2 = ρ(r) = ρ0(r0,θj )
det[J

˜
(0,θj )]

det[J
˜

(t,θj )]
. (10)

The initial Jacobian can be evaluated analytically:

∂x

∂t
= cos(θj ),

∂x

∂θj

= −t sin(θj ),

∂y

∂t
= sin(θj ),

∂y

∂θj

= −t cos(θj ), det[J
˜

(0,θj )] = t.

(11)

Using the fact that the speed is set to 1, the determinant
evaluates to the radius of the initial circle, r0.

For the denominator in Eq. (10), we can use a change of
representation to write out a simple analytical expression:

det[J
˜

(t,θj )]=
(

∂x

∂t

)
θ

(
∂y

∂θ

)
t

−
(

∂x

∂θ

)
t

(
∂y

∂t

)
θ

=vx

(
∂y

∂θ

)
x

.

(12)

Then the amplitude for the jth term in the wave function
evaluated at the detector point rD is

Aj (rD) =
√

r0√∣∣∣vx

(
∂y

∂θ

)
x

∣∣∣ . (13)

In practice, the denominator is computed using two trajec-
tories: the interpolated trajectory from source to detector and
a closely spaced neighbor. The factor

√
r0 in the numerator

cancels the corresponding factor in the denominator of Eq. (9),
so the result is independent of r0.

The function Sj (r) is the classical action [72–74], and is
given by

Sj (r) =
∫

p(q)dq = h̄kL′
j . (14)

L′
j is the length of the path from the initial small circle of

radius r0 around the source point to the detector. It can be
combined with the factor eikr0 in Eq. (9) to give kLj , where
Lj is the full length from source to detector.

Finally, μj is the Maslov index of the jth trajectory. This
index records phase shifts due to focal points and reflections
[72–74]. For each hard-wall collision, the Maslov index
is increased by two. For each focal point the interpolated
trajectory encounters, the Maslov index is increased by one.
To find focal points, we numerically evaluated det[J

˜
(t,θj )]

along an interpolated trajectory. We approximated the partial
derivatives in Eq. (13) with finite differences (�x, �y, �θ )
using a trajectory slightly perturbed from the interpolated one.
At a focal point, det[J

˜
(t,θj )] changes sign by continuously

passing through zero. Thus the Maslov index is equal to twice
the number of bounces plus the number of continuous sign
changes in det[J

˜
(t,θj )] between bounces.

Now let us substitute our results into Eq. (9):

ψ(rD) =
N∑

j=1

ei[kLj (rD )−π/2]√|(vx)j (∂y/∂θ)xD
| . (15)

The wave function is evaluated at the detector point rD =
(xD , yD) over an interval of wave numbers k. The Fourier
variable conjugate to the wave number is a path length.
Therefore, we compute the Fourier transform of Eq. (15):

ψ̃(L; rD) = 1√
2π

∫ ∞

−∞
dke−ikL

N∑
j=1

ei[kLj (rD )−(1/2)μj π ]√|(vx)j (∂y/∂θ)xD
| .

(16)

The sum over interpolated trajectories is finite and thus
can be removed from the integrand. The denominator and the
Maslov phase shift both come out of the integrand as each is
independent of k. Immediately, we see that the integral is the
Dirac delta function. Therefore, the Fourier transform of the
semiclassical wave function is

ψ̃(L; rD) = 1√
2π

N∑
j=1

e−i(1/2)μj π√|(vx)j (∂y/∂θ )xD
|δ(L − Lj ). (17)

Our final result is a collection of peaks centered near
the lengths of the classical trajectories with the amplitudes
depending on the classical amplitude Aj (r) and the phase shifts
due to reflections and focal points.

For each detector point, we computed an approximation
to Eq. (17) by computing the fast Fourier transform (FFT) of
Eq. (15). We chose a range and stepsize in k consistent with
what can be done in microwave experiments [19–22,75]. We
assume that the maximum frequency of waves fed into the vase
is 20 GHz, which corresponds to a wave number of kmax =
400π/3(m−1). The frequency increment is 0.001 GHz, which
corresponds to a stepsize of 2π10−2/3(m−1). We assume the
vase to be 1 m wide from the base to the detectors which results
in the conversion 1 m = 1.5 alu. We consider 21 detectors
equally spaced over the range −0.5 to 0.5 alu. For a wave
function to be constructed from an interpolated trajectory, that
trajectory must land within a distance of 1 × 10−8 alu of the
detector point. We note that these parameters are also easily
adapted to an equivalent ultrasound cavity experiment, which
is discussed in a later section.

3. Results

We present two two-dimensional surface plots showing the
path length spectrum, which we define as |ψ̃(L,xD = 1.5,yD)|
multiplied by an exponential factor,

ϕfft(L,xD = 1.5,yD) = e0.25L|ψ̃(L,xD = 1.5,yD)|. (18)

We found that the exponential factor in Eq. (18) amplifies
and, hence, reveals the small peaks associated with longer
trajectories without causing them to blow up too rapidly. The
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FIG. 8. (Color online) φfft, the amplified magnitude of the Fourier
transform of the semiclassical wave function plotted for path lengths
in the range 0 to 7.5 alu.

peaks centered at path lengths between 0 and 7.5 alu are shown
in Fig. 8. The regions in which the surface appears to be
discontinuous are due to cutoff of large values of φfft.

The most prominent aspect of this figure is the set of
sawtooth oscillations similar to the oscillations seen in Fig. 6,
indicating that (as expected) they will be visible in the Fourier
transform of a steady-state experiment. The peaks between 1
and 1.5 alu are organized into a curve similar to the curve in
Fig. 6 resulting from the direct rays. Between 2 and 2.25 alu,
we see an accumulation of peaks where the counterclockwise
whispering gallery trajectories accumulate. (However, our
semiclassical calculation may not give an accurate description
of the whispering gallery structure because we have included
a finite number of trajectories and ignored diffraction.)

After the direct and whispering gallery trajectories have
escaped, the intermediate to long path lengths result from the
oscillatory and the chaotic trajectories. Figure 9 shows the path
length spectrum for path lengths in the interval 7.5 to 15 alu.

4. Semiclassical calculation: Point detector at y = 0

Figures 8 and 9 give a global picture of the transmission
probabilities for a vertical detector line past the vase’s neck.
We will now examine the signal at a single detector point x =
1.5, y = 0 alu, or for our simulation of a microwave experiment,
x = 1 m. In Fig. 10, the first 16 peaks are shown together with
the corresponding trajectories.

The first peak is obviously due to the direct trajectory. The
second peak results from the first oscillatory trajectory. After
this comes a cluster of eight peaks coherently interfering.
Trajectory 3 may be regarded as the first in a sequence of

FIG. 9. (Color online) Same as Fig. 8 for path lengths in the range
from 7.5 to 15 alu.

FIG. 10. (Color online) First 16 trajectories arriving at yD = 0
and their corresponding peaks in the transmission spectrum.

counterclockwise whispering gallery trajectories (only coun-
terclockwise whispering gallery trajectories are present at this
detector point as the clockwise whispering gallery trajectories
are focused into a narrow band at larger y). Trajectories 4
and 6 are also both whispering gallery trajectories that escape
after two reflections, 7 and 8 after three reflections, and 9 and
10 after four reflections. Thus we see that whispering gallery
trajectories from one source to one detector point exist in pairs
having an equal number of reflections.

Trajectories 5, 12, 14, and 16 are oscillatory trajectories.
Trajectories 11, 13, and 15 are the first chaotic trajectories
to escape. They are members of the escape segment A1 (see
Fig. 5). Figure 11 shows the same path length spectrum over
a wider range together with the first six trajectories arriving at
the point detector from segment A1.

Figure 12 shows the path length spectrum for path lengths
4.5 to 9 alu. Here, chaotic trajectories dominate the spectrum.
Peaks associated with escape segments in the B, E, F, and G
epistrophes (Fig. 5) are plainly visible (F and G peaks overlap
because they have almost the same length).

IV. AN ULTRASOUND EXPERIMENT

A two-dimensional vase of the specified shape was con-
structed using two flat parallel aluminum plates separated by
about 4.25 mm with the curved boundary formed from poly-
tetrafluoroethelyene (PTFE) [76]. An ultrasound transducer
was used as the point source, and a microphone was used
as the point detector. Both devices are 40 kHz continuous-
wave transducers damped with a coating of wax. With these

FIG. 11. (Color online) First six trajectories arriving at yD = 0
from escape segment A1 and their corresponding peaks in the
transmission spectrum.
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FIG. 12. (Color online) Path length spectrum for path lengths in
the interval from 4.5 to 9 alu. The peaks corresponding to several
escape segments are given the same labels as in Fig. 5. For each
labeled escape segment, one interpolated trajectory is also presented.

modifications, we produced sound pulses about 0.2 ms in
duration with a 43 kHz carrier wave. The position of the
microphone was fixed, short pulses were emitted from the
transducer, and the signal at the microphone was recorded as
a function of time. Then the microphone was moved and the
experiment repeated so that the escaping signal was recorded
as a function of time and detector position. We will compare the
escaping signal to a similar graph constructed by calculation
of escaping trajectories.

To compare the simulation to the experimental results, we
will rescale the latter into our arbitrary units. The PTFE vase is
87 cm along the horizontal direction. Setting 87 cm = 1.5 alu
results in the conversion 0.0172 alu (cm−1). To rescale the time
units, we need the speed of sound in the air-space in the vase.
We used the value 344.55 m(s−1), which gives the conversion
1.6833 ms = 1 atu. For comparisons with our calculations, we
scaled the experimentally measured signal and added a delay
of 0.075 atu to the arrival times to account for delays in signal
detection.

We compare the ray calculation to the recorded escaping
ultrasound signal in the range from 1 to 9 atu in Fig. 13.
Figure 13(a) shows the rescaled ultrasound signal, while
Fig. 13(b) shows the simulation. The earliest signal detected
(for y ∼ 0.45 alu and t ∼ 1.3 atu) corresponds to the direct
and clockwise WG trajectories. This signal shows substantial
diffraction into the classically forbidden or shadow region at
larger y. Similarly, for t ∼ 2.3 atu and y ∼−0.35 to 0.5 alu, there
is very high intensity, corresponding to the counterclockwise
WG trajectories.

This experiment does not resolve the complex structure
starting near t ∼ 6.25 atu, y ∼ 0 alu (compare to Figs. 11
and 12), but many of the sawtooth oscillations associated
with oscillating and chaotic trajectories are visible. We note
that starting as early as 5 atu, attenuation and absorption in
the vase walls has reduced the signal intensity. A time gain
of t3 was added to reveal the later time structure. Overall,
there is respectable agreement between the experiment and
the simulation.

FIG. 13. (Color online) A comparison of the ultrasound experi-
ment to the ray calculation. (a) The rescaled ultrasound signal between
1 and 9 atu with a t3 time gain added. (b) The ray calculation.

V. SUMMARY

As stated in the introduction and in Ref. [68], the vase
provides a simple model for studying chaotic transport. The
vase possesses an unstable periodic orbit within the neck, all
trajectories that pass through this orbit escape without return,
and a graph of the time for trajectories to escape the vase
displays a sensitive dependence on the initial conditions with
an infinite number of icicles having structure within structure at
all levels of resolution. By counting the number of bounces for
trajectories to reach a certain region in the surface of section,
the icicles in the escape-time graph are rectified into escape
segments or sets of trajectories that escape after the same
number of bounces.

Measurements on such a system could be carried out in
either the time domain or the frequency domain. For the
frequency domain, we carried out a calculation of the Green’s
function for the Schroedinger equation. Its Fourier transform
gives results similar to those of computations in the time
domain for pulsed sources.

A graph of the detector position versus the escape time
shows a complicated set of sawtooth oscillations related to
oscillating and chaotic trajectories. A macroscopic vase was
constructed, and an ultrasound measurement was carried out,
and respectable agreement was found between computations
and measurements. The early part of the fractal structure
is plainly visible in these experiments. Higher-resolution
measurements, for example, using light or microwaves, should
reveal deeper parts of the fractal.

In the accompanying paper, we will apply one of the
recently developed improvements to homotopic lobe dynamics
to analyze the fractal structure of the escape-time graph for this
system.
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[4] C. Jaffé, D. Farrelly, and T. Uzer, Phys. Rev. Lett. 84, 610 (2000).
[5] T. Uzer, C. Jaffe, J. Palacian, P. Yanguas, and S. Wiggins,

Nonlinearity 15, 957 (2002).

016205-8

http://dx.doi.org/10.1063/1.1676561
http://dx.doi.org/10.1063/1.470534
http://dx.doi.org/10.1103/PhysRevA.60.3833
http://dx.doi.org/10.1103/PhysRevLett.84.610
http://dx.doi.org/10.1088/0951-7715/15/4/301


CHAOTIC ESCAPE FROM AN . . . . I. NUMERICAL AND . . . PHYSICAL REVIEW E 85, 016205 (2012)

[6] S. Müller, S. Heusler, P. Braun, and F. Haake, New J. Phys. 9,
12 (2007).

[7] P. Gaspard and J. R. Dorfman, Phys. Rev. E 52, 3525 (1995).
[8] P. Gaspard and R. Klages, Chaos 8, 409 (1998).
[9] H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang,

in Progress in Asymmetric Resonant Cavities: Using Shape as
a Design Parameter in Dielectric Microcavity Lasers in Optical
Microcavities, edited by K. Vahala (World Scientific, 2004),
p. 415.

[10] J. U. Nockel and A. D. Stone, Nature 385, 45 (1997).
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[61] C. Jaffé and T. Uzer, Ann. N.Y. Acad. Sci. 1017, 39 (2004).
[62] B. B. Mandelbrot, The Fractal Geometry of Nature (W. H.

Freeman Company, New York, 1982).
[63] L. Keen, R. L. Devaney, and K. T. Alligood, Chaos and Fractals:

The Mathematics Behind the Computer Graphics (American
Mathematical Society, Providence, R. I., 1989).

[64] M. F. Barnsley, Fractals Everywhere (Academic Press, Boston,
1993).

[65] K. Mitchell, J. Handley, B. Tighe, J. Delos, and S. Knudson,
Chaos 13, 880 (2003).

[66] K. Mitchell, J. Handley, J. Delos, and S. Knudson, Chaos 13,
892 (2003).

[67] K. A. Mitchell and J. B. Delos, Physica D 221, 170 (2006).
[68] P. Hansen, K. A. Mitchell, and J. B. Delos, Phys. Rev. E 73,

66226 (2006).
[69] J. A. Novick and J. B. Delos, Phys. Rev. E 85, 016206 (2012).

016205-9

http://dx.doi.org/10.1088/1367-2630/9/1/012
http://dx.doi.org/10.1088/1367-2630/9/1/012
http://dx.doi.org/10.1103/PhysRevE.52.3525
http://dx.doi.org/10.1063/1.166323
http://dx.doi.org/10.1038/385045a0
http://dx.doi.org/10.1103/PhysRevLett.75.2682
http://dx.doi.org/10.1364/JOSAB.17.001828
http://dx.doi.org/10.1364/JOSAB.17.001828
http://dx.doi.org/10.1103/PhysRevLett.83.4991
http://dx.doi.org/10.1016/S0378-4371(00)00419-2
http://dx.doi.org/10.1088/0031-8949/2001/T90/036
http://dx.doi.org/10.1016/S0079-6638(05)47002-X
http://dx.doi.org/10.1121/1.418956
http://dx.doi.org/10.1121/1.418956
http://dx.doi.org/10.1103/PhysRevLett.82.5233
http://dx.doi.org/10.1103/PhysRevLett.82.5233
http://dx.doi.org/10.1103/PhysRevE.61.3652
http://dx.doi.org/10.1103/PhysRevE.61.3652
http://dx.doi.org/10.1088/0031-8949/2001/T90/034
http://dx.doi.org/10.1088/0031-8949/2001/T90/034
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1023/A:1019714808787
http://dx.doi.org/10.1016/j.physd.2009.01.004
http://dx.doi.org/10.1103/PhysRevA.80.033416
http://dx.doi.org/10.1103/PhysRevA.80.033416
http://dx.doi.org/10.1103/PhysRevA.76.031403
http://dx.doi.org/10.1103/PhysRevA.76.031403
http://dx.doi.org/10.1103/PhysRevA.63.043409
http://dx.doi.org/10.1103/PhysRevA.63.043409
http://dx.doi.org/10.1103/PhysRevA.65.053408
http://dx.doi.org/10.1007/s00601-005-0142-y
http://dx.doi.org/10.1103/PhysRevLett.92.073001
http://dx.doi.org/10.1103/PhysRevA.70.043407
http://dx.doi.org/10.1016/j.physd.2007.01.007
http://dx.doi.org/10.1016/0960-0779(95)80050-Q
http://dx.doi.org/10.1016/0960-0779(95)80050-Q
http://dx.doi.org/10.1016/0167-2789(95)00293-6
http://dx.doi.org/10.1016/0167-2789(95)00293-6
http://dx.doi.org/10.1017/S002211200000118X
http://dx.doi.org/10.1017/S002211200000118X
http://dx.doi.org/10.1017/S002211200000118X
http://dx.doi.org/10.1103/PhysRevE.64.011302
http://dx.doi.org/10.1103/PhysRevE.64.011302
http://dx.doi.org/10.1017/S0022112001006917
http://dx.doi.org/10.1017/S0022112001006917
http://dx.doi.org/10.1098/rsta.2003.1356
http://dx.doi.org/10.1098/rsta.2003.1356
http://dx.doi.org/10.1017/S0022112094001539
http://dx.doi.org/10.1017/S0022112094001539
http://dx.doi.org/10.1016/S0960-0779(97)00019-2
http://dx.doi.org/10.1016/S0960-0779(97)00019-2
http://dx.doi.org/10.1103/PhysRevLett.86.2102
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1016/S0378-4371(03)00187-0
http://dx.doi.org/10.1103/PhysRevE.71.026228
http://dx.doi.org/10.1103/PhysRevE.71.026228
http://dx.doi.org/10.1103/PhysRevLett.84.258
http://dx.doi.org/10.1103/PhysRevLett.87.070601
http://dx.doi.org/10.1103/PhysRevLett.87.070601
http://dx.doi.org/10.1175/1520-0485(1997)027<1258:TTDCTA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2002)032<0080:CTOMAP>2.0.CO;2
http://dx.doi.org/10.1134/1.1842883
http://dx.doi.org/10.1134/1.1842883
http://arXiv.org/abs/arXiv:nlin/0507020
http://dx.doi.org/10.1016/j.cnsns.2006.01.008
http://dx.doi.org/10.1016/j.cnsns.2006.01.008
http://dx.doi.org/10.1063/1.2229263
http://dx.doi.org/10.1103/PhysRevLett.89.011101
http://dx.doi.org/10.1016/j.nuclphysa.2004.03.053
http://dx.doi.org/10.1196/annals.1311.003
http://dx.doi.org/10.1063/1.1598311
http://dx.doi.org/10.1063/1.1598312
http://dx.doi.org/10.1063/1.1598312
http://dx.doi.org/10.1016/j.physd.2006.07.027
http://dx.doi.org/10.1103/PhysRevE.73.066226
http://dx.doi.org/10.1103/PhysRevE.73.066226
http://dx.doi.org/10.1103/PhysRevE.85.016206


NOVICK, KEELER, GIEFER, AND DELOS PHYSICAL REVIEW E 85, 016205 (2012)

[70] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.85.016205 for numerically computing tra-
jectories in the vase.

[71] S. Wiggins, Introduction to Applied Nonlinear Dynamical
Systems and Chaos (Springer Verlag, New York, 2003).

[72] C. D. Schwieters, J. A. Alford, and J. B. Delos, Phys. Rev. B 54,
10652 (1996).

[73] V. Maslov and M. Fedoriuk, Semi-Classical Approximation in
Quantum Mechanics (Kluwer Academic Publishers, Dordrecht,
Holland, 1981).

[74] J. B. Delos, Adv. Chem. Phys. 65, 161 (1986).
[75] K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. 85, 2737

(2000).
[76] Commonly known by its trade name, Teflon.

016205-10

http://link.aps.org/supplemental/10.1103/PhysRevE.85.016205
http://link.aps.org/supplemental/10.1103/PhysRevE.85.016205
http://dx.doi.org/10.1103/PhysRevB.54.10652
http://dx.doi.org/10.1103/PhysRevB.54.10652
http://dx.doi.org/10.1002/9780470142899.ch4
http://dx.doi.org/10.1103/PhysRevLett.85.2737
http://dx.doi.org/10.1103/PhysRevLett.85.2737

	Chaotic Escape from an Open Vase-shaped Cavity. I. Numerical and Experimental Results
	Recommended Citation

	tmp.1657828148.pdf.LZUpf

