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ABSTRACT PAGE 

Several computational applications in stochastic operations research are presented, 
where, for each application, a computational engine is used to achieve results that are 
otherwise overly tedious by hand calculations, or in some cases mathematically in­
tractable. Algorithms and code are developed and implemented with specific emphasis 
placed on achieving exact results and substantiated via Monte Carlo simulation. The 
code for each application is provided in the software language utilized and algorithms 
are available for coding in another environment. The topics include univariate and bi­
variate nonparametric random variate generation using a piecewise-linear cumulative 
distribution, deriving exact statistical process control chart constants for non-normal 
sampling, testing probability distribution conformance to Benford's law, and transient 
analysis of MIMI s queueing systems. The non parametric random variate generation 
chapters provide the modeler with a method of generating univariate and bivariate 
samples when only observed data is available. The method is completely nonpara­
metric and is capable of mimicking multimodal joint distributions. The algorithm 
is "black-box," where no decisions are required from the modeler in generating vari­
ates for simulation. The statistical process control chart constant chapter develops 
constants for select non-normal distributions, and provides tabulated results for re­
searchers who have identified a given process as non-normal. The constants derived 
are bias correction factors for the sample range and sample standard deviation. The 
Benford conformance testing chapter offers the Kolmogorov-Smirnov test as an alter­
native to the standard chi-square goodness-of-fit test when testing whether leading 
digits of a data set are distributed according to Benford's law. The alternative test 
has the advantage of being an exact test for all sample sizes, removing the usual sam­
ple size restriction involved with the chi-square goodness-of-fit test. The transient 
queueing analysis chapter develops and automates the construction of the sojourn 
time distribution for the nth customer in an MIMI s queue with k customers initially 
present at time 0 (k ~ 0) without the usual limit on traffic intensity, p < 1, providing 
an avenue to conduct transient analysis on various measures of performance for a 
given initial number of customers in the system. It also develops and automates the 
construction of the sojourn time joint probability distribution function for pairs of 
customers, allowing the calculation of the exact covariance between customer sojourn 
times. 
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Chapter 1 

Introduction 

1.1 Stochastic Operations Research 

Operations research, as defined by Winston (2004), is "simply a scientific approach 

to decision making that seeks to best design and operate a system, usually under con­

ditions requiring the allocation of scarce resources." Stochastic operations research 

is a subset of operations research in which the. system of interest operates in the 

presence of some type of randomness. This science is almost always interdisciplinary 

in that several tools may be used simultaneously to achieve a desired result. Oper­

ations researchers use tools such as mathematical modeling, statistics, optimization, 

probability theory, queueing theory, and simulation. Using such a tool-kit to solve a 

problem often requires significant computing power, off-the-shelf or custom software, 

software-specific knowledge, and system-specific experience. The use of stochastic 

operations research is growing more common in business and industry, especially in 

the areas of revenue management and evaluating best practices. 

The availability of off-the-shelf software provides increasing opportunities to apply 

known theory to real problems, and the availability of cheap computing has revolu­

tionized applications in operations research. Current challenges involve researchers' 

abilities to not only tailor computer languages and software to address specific prob-

1 



Chapter 1. Introduction 

lems, but also to interpret output and state meaningful conclusions. The intent of 

this dissertation is to present several computational applications in stochastic oper­

ations research. The applications presented use a variety of computational engines 

to achieve exact results to known and new problems, generate random variates for 

simulation, test data for conformance to a known probability distribution, and verify 

results via simulation. Some of these exact results are novel in theory and appli­

cation, others support previously known, but only simulated results, extending the 

current literature. In each case, the code used for a specific problem is available in 

the appendices. Where appropriate, segments of code are provided in the main text 

for illustration. Additionally, to substantiate exact results, Monte Carlo and discrete­

event simulation code is also provided where necessary. Of particular interest are the 

exact symbolic results provided throughout the document, which highlight the ability 

of computer algebra systems to efficiently compute in symbolic form. The software 

utilized in the dissertation does not suggest a preference; there are many alternatives 

that could be used as appropriate substitutes. 

1.2 Software 

The thread linking the applications that appear in this document is a computational 

engine. Each chapter uses at least one software program; a few chapters use several. 

The only computer algebra system used is Maple. The reason I chose to use Maple 

involves the use of A Probability Programming Language (APPL) written by Glen 

et al. (2001). APPL is a compilation of Maple statements packaged conveniently to 

manipulate random variables with arbitrary distributions. APPL, and subsequently 

Maple, are used in Chapters 4, 5, and 6. 

S-Plus and R are statistical and graphical software platforms. Although they 

have extensive capability in statistical analysis and computing, they are not capable 

of manipulating symbols, thus they are not considered computer algebra systems. S-

2 



Chapter 1. Introduction 

Plus and R are primarily used in this research for complicated algorithm processing, 

discrete-event simulation, Monte Carlo simulation, and graphics. Their use appears 

in Chapters 2, 3, 4, 5, and 6. When possible, algorithms written in S-Plus and R 

manipulate matrices and vectors, significantly enhancing algorithm speed. It should 

be noted however, that the main purpose of this work is not a computer science­

focused work on computational complexity, therefore the author has occasionally 

chosen clarity over speed in designing algorithms. 

Less prevalent, Microsoft Excel, MATLAB, and C also appear in the dissertation. 

Excel and MATLAB both possess solvers that are used in Chapter 2 as computa­

tional engines to solve a nonlinear optimization problem. C is used in Chapters 5 

and 6, primarily for its speed as a compiled language. There are certainly many 

other software packages that could accomplish the same tasks of those listed above. 

However, regardless of the package used, my focus is on implementing some type 

of computational device for an application that is otherwise overly tedious or even 

intractable. 

1.3 Literature Review 

Except for Chapters 2 and 3, which are linked, each chapter of this dissertation 

differs substantially in content. Reviewing the literature in a single location of the 

dissertation would break a logical flow in the document. Therefore, the first section 

of each chapter provides an appropriate literature review for the selected chapter 

topic. The review for each chapter relied on recommendations from scholars in the 

appropriate fields, and articles in the fields. Each chapter has been submitted for 

journal publication. 

3 



Chapter 1. Introduction 

1.4 Outline of the Dissertation 

This section provides a short outline of the topics that follow in each chapter, and 

why the use of a computational engine is included. The problem is introduced and a 

brief overview of the chapter follows. The topics are merely introduced; for a detailed 

treatment please refer to the associated chapter. 

Chapter 2 addresses univariate nonparametric variate generation. The standard 

approach to solving the interpolation problem for a trace-driven simulation involving 

a continuous random variable is to construct a piecewise-linear cumulative distribu­

tion function (CDF) that fills in the gaps between the data values. This approach 

overcomes the interpolation problem associated with simply resampling the data. 

Some probabilistic properties of the piecewise-linear estimator are derived, and two 

extensions to the standard approach (matching moments and weighted values) are 

presented, along with associated random variate generation algorithms. The algo­

rithm is a nonparametric blackbox variate generator requiring only observed data 

from the modeler. The algorithm is implemented in S-Plus/R, where the setup por­

tion matches the first two moments of the estimator to the first two moments of the 

data, then the execution portion generates a single variate from the piecewise-linear 

CDF created from the adjusted observed data. 

Chapter 3 contains an extension of the univariate case of nonparametric random 

variate generation using a piecewise-linear cumulative distribution function to the 

bivariate case. The method is also a blackbox variate generation technique requiring 

only data pairs from the modeler. The technique avoids the time consuming and often 

arbitrary process of density estimation along with the potential error associated with 

estimation. It effectively captures marginal distributions with multiple modes. The 

algorithm implemented in S-Plus/R uses the convex hull of the observed data as a 

preliminary support, then generates the first element of the two-dimensional random 

vector via inversion of the marginal piecewise-linear CDF, and the second element 

from a conditional weighted piecewise-linear CDF created from selected values of the 

4 



Chapter 1. Introduction 

second variable. This procedure is especially tedious to implement by hand since 

a new conditional weighted piecewise-linear CDF is created for each bivariate pair 

generated. This proposed method is compared to the leading nonparametric method, 

kernel density estimation, and examples are provided with detailed results on the 

performance of each method. 

In Chapter 4, expressions for statistical process control chart constants are de­

veloped and computed for non-normal sampling. Statistical process control chart 

constants are bias correction factors used to establish three-sigma limits that are 

used to identify assignable variation in a system. These constants allow engineers 

who monitor processes via periodic sampling to identify system-specific occurrences 

outside what would be considered normal operating bounds. Problems are potentially 

identified in near real-time as opposed to, for example, producing an entire lot of a 

component that is outside of specifications. These constants have only been tabulated 

for normal sampling (i.e., the measure of interest is normally distributed). The chap­

ter uses APPL and Maple to obtain exact process control chart constants for both 

the normal distribution and select non-normal distributions. For populations clearly 

exhibiting non-normal distribution behavior, non-normal control chart constants are 

more appropriate. 

Chapter 5 develops the use of the Kolmogorov-Smirnov (KS) test as an alternative 

to the chi-square goodness-of-fit test for assessing whether data conforms to Benford's 

law. Both approaches are compared for select distributions and results concerning 

the power of each test are provided as a means for selection. Benford's law states 

that in data sets satisfying certain conditions the leading digit X is distributed as 

fx(x) = P(X = x) = log10(1 + 1/x), X= 1, 2, ... , 9. 

Therefore, the digit 1 appears most often and each subsequent digit appears less 

frequently with the digit 9 appearing the least often. A Monte Carlo simulation is 

implemented in S-Plus/R to compare the tests. Applications of Benford's law are 

5 



Chapter 1. Introduction 

becoming more popular to identify financial fraud in business and voting fraud. 

Chapter 6 contains derivations of the exact distribution of the nth customer so­

journ time in an MIMI s queue with k customers initially present. Algorithms for 

computing the covariance between sojourn times for an M I M II queue with k cus­

tomers initially present are also developed. Computer code is provided in the Maple 

environment for practical application of transient queue analysis for many system 

measures of performance without regard to traffic intensity (i.e., the system may 

be unstable with traffic intensity greater than one). The traffic intensity is defined 

as the customer arrival rate divided by the service rate. In steady-state queueing 

analysis the traffic intensity is restriced to a value less than one. However, many 

queueing systems of interest never achieve steady-state. The computational demand 

in this chapter is extensive. Without the use of APPL and Maple, results for systems 

larger than three customers are unrealistic. However, using the computational engine 

provides exact numeric and symbolic results. 

The dissertation concludes with Chapter 7, where the results are briefly reviewed 

and areas of future work are discussed. 

6 



Chapter 2 

Univariate Nonparametric Random 

Variate Generation 

2.1 Introduction 

Simulation practitioners often advocate a "trace-driven" approach to input modeling, 

in which data values are sampled with equal probability. In the univariate case, this 

approach is equivalent to generating variates from the empirical cumulative distribu­

tion function (CDF) 

F(x) = N(x) 
n 

-00 <X< 00, 

where n is the sample size, N(x) is the number of data values less than or equal to 

x, and x 1, x2 , ..• , Xn denote the data values. We limit the discussion here to the case 

of raw data, rather than grouped data. 

The advantages to the trace-driven approach are that (a) it avoids any error that 

might be introduced by fitting the data with an approximate parametric model, and 

(b) the sampling technique is identical to bootstrapping (Efron and Tibshirani, 1993) 

and, hence, has well-established statistical properties. 

7 



Chapter 2. Univariate Nonparametric Random Variate Generation 

The disadvantages to the trace-driven approach are that (a) no random variate 

can be generated between the data values, known as the interpolation problem, and 

(b) no random variate can be generated that is smaller than the smallest data value 

or larger than the largest data value, known as the extrapolation problem. 

A standard technique for overcoming the interpolation problem is to replace the 

empirical CDF with a CDF which is piecewise linear between the data values (Banks, 

Carson, Nelson, and Nicol, 2001, pages 296-300; Law, 2007, pages 309-310 and page 

458; Leemis and Park, 2006, pages 409-411). Since then- 1 gaps between the data 

values should assume equal weighting, the piecewise-linear CDF has the form 

0 X< X(l) 

F(x) = 
i- 1 X- X(i) 
----+------~~~----
n- 1 (n- 1)(x(i+l) - X(i)) 

X(i) :'S X < X(i+l); i = 1, 2, ... , n- 1 

1 

where X(l), x(2), ... , X(n) are the order statistics, i.e., the data values sorted into as­

cending order. This CDF passes through the points 

which we refer to as "knot points." 

Example 1. Consider the univariate data set of n = 6 observations: 

1 2 5 7 8 9. 

We assume that these data values are drawn from a continuous population. 

The empirical CDF and piecewise-linear CDF are shown in Figure 2.1. 

The piecewise-linear CDF strikes the risers of the empirical CDF; the first 

intersection occurs 1/5 of the way up the riser at x = 2 and the second 

intersection occurs 2/5 of the way up the riser at x = 5. This pattern 
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continues until the piecewise-linear CDF strikes the top of the last riser 

at x = 9. 

F(x) 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
X 

0 2 4 6 8 10 

Figure 2.1: Empirical and piecewise-linear CDFs. 

The probability density function (PDF) associated with the piecewise-linear CDF is 

constant between the data values: 

- 1 
f (X) = -:-( n--------:1 )--:-(X-(,-. +-1) ---X-( i-:-)) X(i)::::; X< X(i+l);i = 1,2, ... ,n- 1. 
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The mean of this distribution is 

E[X] 1x(n) xf(x) dx 
X(!) 

n-1 1X(i+l) X 

8 x<;J (n- 1)(x(i+1)- X(i)) dx 

n-1 2 2 
= "'"""' x(i+1) - x(i) 

{;;;; 2(n- 1)(x(i+l)- X(i)) 

n-1 I: X(i) + X(i+1) 

i=
1 

2(n- 1) 

X(l) + 2x(2) + 2x(3) + · · · + 2X(n-1) + X(n) 

2(n- 1) 

This weighted average of the data values places less weight on the extreme values, and 

equals x, the sample mean of the data values, in only rare cases (e.g., a symmetric 

data set). The value of E[X] approaches the sample mean x = ~ 2:~ 1 xi in the limit 

as n ---+ oo. (The match between the coefficients in the expression for E[X] and the 

coefficients in the trapezoidal rule is discussed in Appendix A.) Likewise, the second 

moment is 

1x(n) x2 J(x) dx 
X(!) 

n-1 1X(i+l) X2 

8 x<;J (n- 1)(x(i+1)- X(i)) dx 

n-1 3 3 
"'"""' x(i+1) - x(i) 

{;;;; 3(n- 1)(x(i+l)- X(i)) 

n-1 2 + + 2 L x(i) X(i)X(i+l) x(i+ 1) 

i=
1 

3(n- 1) · 

The variance of the distribution can be computed as a2 = E[X2
] - E[XJ2. For the 

data set from Example 1, the mean and variance of the piecewise-linear estimate are 

E [X]= 16/3 and Var [X]= 71/9. 
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Random variates can be generated efficiently by inverting the piecewise-linear 

CDF. Given x(1), x(2), ... , X(n) and a random number generator, an 0(1) variate gen­

eration algorithm is: 

generate U rv U(O, 1) 
i +--- f(n- 1)Ul 
return (x(i) + ((n- 1) U- (i- 1)) (x(i+I)- X(il)) 

The index i, which assumes one of the integers 1, 2, ... , n- 1 with equal likelihood, 

determines which linear segment to invert. Although this 0(1) algorithm is synchro­

nized, monotone, and fast, there are three potential weaknesses that are described in 

the paragraphs below. 

One potential weakness that arises with the piecewise-linear CDF F(x) occurs 

when there are tied values in the data set. These tied values result in a discontinuity 

in F(x). More specifically, when there are d tied values at X(i), there will be a discon­

tinuity of height d/(n -1) at X(i)· The associated random variable is mixed (i.e., part 

discrete and part continuous), and the random variate generation algorithm will gen­

erate X(i) with probability d/(n -1). If the modeler requires an absolutely continuous 

distribution, then it might be reasonable to use the midpoint of the discontinuity at 

F(x(i)) as the knot point for the modified CDF. The variate generation algorithm 

would need to be modified appropriately. 

A second serious weakness of the piecewise-linear approach is that data values 

that are close together (a common occurrence) lead to high peaks in the estimated 

density and an associated clustering of random variates near these particular data 

values. Two ways to overcome this weakness are to (a) use kernel density estimation, 

and (b) use the piecewise-linear approach on order statistics selected by discarding 

those with, for example, even indices. The pros and cons on these two alternative 

methods are addressed later in the chapter. 

A third weakness is the extrapolation problem. Due to the finite end points of the 

piecewise-linear CDF, generating a variate below the first order statistic, X(I), and 
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above the last order statistic of the sample, X(n), is impossible. Bratley, Fox, and 

Schrage (1987) offer Marsaglia's tail algorithm as an elegant way to generate from 

the tail of a distribution. This approach proves useful in extending possible variate 

generation beyond just the sample range of a data set. 

In this chapter we present two alternatives that overcome these weaknesses. The 

alternatives to the piecewise-linear CDF are nonparametric, thus avoiding potential 

error associated with a parametric model. They also allow some extrapolation below 

the minimum and maximum data values by stretching and translating observed data 

values such that the estimator's mean and variance match the sample mean and 

variance. Chapter 2.2 develops these variants in detail and Chapter 2.3 compares 

resulting estimators with estimates based on kernel density estimation. 

2.2 Moment Matching and Weighted Observations 

We consider two variations on the piecewise-linear CDF as a probabilistic model for 

a data set drawn from a continuous population. The first variation adjusts the knot 

points in the piecewise-linear CDF so that its first and second moments match those 

from the data set. The second variation makes adjustments to the piecewise-linear 

CDF by allowing different weights for each of the data values. 

2.2.1 Matching Moments 

Occasions might arise when a modeler would like to (a) maintain the piecewise-linear 

nature of the CDF, (b) maintain the heights of the knot points at 0, n~I, n.:_I, ... , 1 

(which implies fast variate generation), and (c) match the mean and variance of the 

piecewise-linear CDF to the sample mean and sample variance of the observations. 

This can only be achieved by adjusting the horizontal values of the knot points. We 

begin the development of this process with a simple example. 

Example 2. Consider a data set consisting of just n = 2 observations: 0 
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and 1. This data set has sample mean x = ~ and unbiased sample variance 

s2 = ~- The piecewise-linear CDF for this data set is that associated with 

the U(O, 1) distribution, which has mean J.L = ~ and variance CJ
2 = 1

1
2 • 

The reduction in the variance associated with the piecewise-linear CDF 

is significant in this case because of the small sample size. One way to 

match variances is to shift the smaller data value to the left and shift the 

larger data value to the right by an equal amount 6 for the piecewise-linear 

CDF. The appropriate shift 6 satisfies 

( (1 + 6) - (0- 6)) 
2 

1 
12 2 

There are two roots to this quadratic equation. The positive root increases 

the larger data value and decreases the smaller data value. The negative 

root decreases the larger data value and increases the smaller data value by 

a large enough value so that their roles are reversed. For a symmetric data 

set like this one, either root will produce the same knot points. Since most 

data sets are not symmetric, we always choose the positive root, which is 

6 = ( J6- 1)/2 ~ 0.7247 in this case. Thus a piecewise-linear CDF with 

knot points 

( -0.7247, 0), (1.7247, 1) 

has a variance which matches the variance of the original data values. 

(The means also happen to match in this case although this will not be 

true in general.) 

The expansion of the support of the piecewise-linear cumulative distribution func­

tion beyond the outermost data values, as illustrated in the previous example, may 

not be appropriate for all modeling situations. If the data values collected are ser­

vice times in a queuing model, for instance, spreading the observations might result 

in a support that includes negative service times. For the occasions when matching 
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means and variances is appropriate, we derive the values of the knot points below. 

This derivation will maintain the ratios of the gaps between the data values so that 

their spreading is accomplished in the same way a bellows is spread on an accordion. 

We stretch the data to match variances first, then shift the data to match the means. 

Let X(I), X(2), ... , X(n) be the ordered raw data values as before and let 

9i = X(i+l) - X(i) 

for i = 1, 2, ... , n- 1 be the ith gap between the observations. Let 

I_ 9i _ 9i 
9·----

t n-1 X(n) - X(l) L9j 
j=l 

fori= 1, 2, ... , n- 1 be the normalized gap values. If X(l) is shifted to x(I) = X(l)- 8 

and X(n) is shifted to x(n) = X(n) + 8, the width of the support of the adjusted 

piecewise-linear CDF is 

W = X(n) - X(l) + 28. 

To maintain the ratios of the normalized gap values, the adjusted data values are 

i-1 

x(i) = X( I) - 8 + w L 9; 
j=l 

fori= 1, 2, ... , n. The root finding problem now reduces to finding the value 8 such 

that the unbiased sample variance of the original data values x1 , x2 , ... , Xn matches 

the variance of the piecewise-linear CDF associated with the adjusted data values. 

Once the variances have been matched, the means are easily matched by shifting 

each adjusted data value 

" I [x(i) + 2x(2) + ... + 2x(n-I) + x(n) - x-] 
x(i) = x(i)- 2(n- 1) 
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fori= 1, 2, ... , n. So finally, the knot points of the piecewise-linear CDF that matches 

first and second moments with the data are 

(x(l)' o), (x(2l, -
1
-), (x('3l, -

2
-), ... , (x(n)' 1). n-1 n-1 

Random variate generation via inversion is performed by the algorithm given in the 

introduction using the x(i)" Since the differences between the heights of adjacent knot 

points is constant, variate generation is fast. The stretching and shifting partially 

solves the extrapolation problem by allowing random variates to be generated outside 

of the range of the data values. Additionally, in the limit as n ~ oo, the sample 

variance s 2 approaches the population variance rY
2

• Therefore, with increasing n, the 

value of o is decreasing and as n ~ oo, o ~ 0. Additionally, o must exist since it is 

well known that the variance of the piecewise-linear estimator is always less than the 

variance of the sample data, and therefore, by construction, there exists o > 0 such 

that the adjusted data points equate the variance of the piecewise linear estimator 

and the sample variance of the data. 

Example 3. Consider again the n = 6 data values 

1 2 5 7 8 9. 

Find the piecewise-linear CDF knot values with matching means and vari­

ances. In order to match both the mean and variance, we first match the 

variances by stretching the data, then apply a shift that matches the 

means. For the ordered data values 

X(l) = 1, X(2) = 2, X(3) = 5, X(4) = 7, X(5) = 8, X(6) = 9 

with gaps 

91 = 1,g2 = 3,g3 = 2,g4 = 1,g5 = 1 
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and associated normalized gaps 

the adjusted data values are 

1-8 
1 38 

= 1 - 8 + (8 + 28) 8 = 2 - 4 
4 

= 1- 8 + (8 + 28)8 = 5 

6 8 
1 - 8 + ( 8 + 28) 8 = 7 + 2 

7 38 
1 - 8 + (8 + 28) 8 = 8 + 4 
1-8 + (8 + 28) = 9 + 80 

The sample mean of the data is 

1 + 2 + 5 + 7 + 8 + 9 16 
i:=-------

6 3 

and the unbiased sample variance of the data is 

When the adjusted data values are used as arguments in the formula for 

the variance of the piecewise-linear CDF, the value of 8 must satisfy the 

quadratic equation 

[
(1- 8) 2 + (1- 8)(2- 38/4) + 2(2- 38/4)2 + 0 0 0 + (8 + 38/4)(9 + 8) + (9 + 8) 2

] 

(3)(5) 

- [(1-8)+2(2-38/4)+ 000 +2(8+38/4)+(9+8)]
2 = 32 

(2)(5) 3 
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which reduces to 
518 2598 25982 32 
75 + 75 + 600 = 3. 

This quadratic equation has positive root 

J = -4 + ;5°9 v'259 ~ 0.9710. 

Selecting the negative root still matches the variance to that of the piecewise­

linear CDF. However, selecting the negative root of the quadratic equa­

tion projects each of the original ordered data values about (x(l) +x(n)) /2, 

which is only harmless for a symmetric data set. Finally, to match means, 

16 88 - - -J259 ~ -0.1347 
3 259 
16 68 -- -J259 ~ 1.1080 
3 259 
16 8 - - -J259 ~ 4.8362 
3 259 
16 32 - + -J259 ~ 7.3217 
3 259 
16 52 - + -v'259 ~ 8.5645 
3 259 
16 72 - + -J259 ~ 9.8072 
3 259 

are the x-values associated with the knot points. 

An algorithm for adjusting the data values so that the first two moments of the 

piecewise-linear model match those of the raw data is (indentation denotes nesting): 

Input data values x 1 , x2, ... , Xn 

- 1 "'n 
X +--- ~ L..i=l Xi 

2 I "'n ( -)2 S +--- n-1 L..i=l Xi -X 

Sort the data values yielding X(l), X(2), ... , X(n) 

W +- X(n) - X(l) + 28 
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for i t- 1 to n - 1 

9i t- X(i+1) - X(i) 

9~ t- gi/(X(n)- X(1)) 

fori t- 1 ton 

' J: '"'i-1 ' 
x(i) t- X(1) - u + w L.Jj=1 gi 

Find the positive root 8 of the quadratic equation 

n-1 ( r )2 + r r + ( r )2 2::::: x(i) x(i)x(i+1) x(i+l) 

3(n- 1) 
i=1 

[ 

r '"'n-1 r r ]2 
x(1) + 2 0i=2 x(i) + x(n) = s2 

2(n- 1) 

fori t- 1 ton 

, t- , _ x(l) + 0i=2 x(i) + x(n) __ 

[ 

r 2 '"'n-1 r r l 
x(i) x(i) 2(n- 1) x 

This piecewise-linear model associated with data values x(l), x(2), ... , x(n) has a mean 

and variance that matches the mean and variance of the original data values. The only 

nontrivial step in this algorithm is solving the quadratic equation. This is easily done 

in a computer algebra system with its symbolic processing capabilities, but is more 

problematic for a standard algorithmic language. Appendix B contains an algorithm 

and associated 8-Plus/R code for computing 8 and x(1),x(2), .•. ,x(n)· 

2.2.2 Weighted Data Values 

One of the algorithms presented in Chapter 3 concerning the generation of bivariate 

observations, requires a variant of the univariate piecewise-linear CDF approach which 

allows for the data values to be weighted. Let X(1), X(2), ... , X(n) be the sorted obser­

vations and w(1), w(2), ... , w(n), where 2::~ 1 W(i) = 1, be the corresponding positive­

valued weights. Any estimate.d CDF should collapse to F(x) when W(i) = 1/n, 

i = 1, 2, ... , n. Although there is no claim made to the uniqueness of the estima­

tor presented here, one approach is to first draw the CDF associated with a discrete 
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random variable X with support values X(1), X(2), ... , X(n) and corresponding mass 

values w(1), w(2), ... , W(n)· Points on each of the risers can be connected to form a 

piecewise-linear estimated CDF. The only question that remains is what the heights 

of these points should be. One reasonable approach is to place the first knot point at 

(X(l), 0), the second knot point n~ 1 of the way up the second riser (which is associated 

with X(2)), the third knot point n~ 1 of the way up the third riser (which is associated 

with x(3)), and so on. Using this approach is equivalent to connecting the points 

) ( 
w(2) ) ( 2w(3) ) 

(x(1), 0 , X(2), W(1) + n _ 
1 

, X(3), W(1) + w(2) + n _ 
1 

, ... , (x(n), 1) 

to form the piecewise-linear CDF. Define 

(i- 1)w(i) 
Y(i) = W(l) + W(2) + ... + W(i-1) + -----'---'-­

n-1 
i=1,2, ... ,n, 

as the height of each knot point. The piecewise-linear CDF for the weighted data 

values is 

F*(x) = 

0 

(Y(i+1) - Y(i))(x- X(i)) y ( i) + ..:..:.....:_c__:....._....::.....:...:..:....:. __ .'-'-'.. 

X(i+1) - X(i) 

1 

X< X(1) 

X(i) :S X < X(i+1); i = 1, 2, ... , n- 1 

X 2: X(n)· 

This CDF reduces to F(x) in the equal-weighting case when W(i) = 1/n, for i = 

1, 2, ... , n. Using the associated probability density function, it can be shown that 

E[X] and E[X2
] are 

ZWi+1 - Z- Wi 1 n-1 ( . (. 1) ) 
E[X] = 2 8 Wi + n _ 

1 
(x(i+1) + X(i)) 

2 zwi+ 1 - z - wi 2 2 1 n-1 ( . (. 1) ) 
E[X ] = 3 8 Wi + n _ 

1 
(x(i+ 1) + X(i+ 1)X(i) + x(i)). 
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Using these results, we can calculate the variance of the weighted piecewise linear 

CDF via Var[X] = E[X2
] - [E[Xjf. 

To formulate an algorithm for variate generation, first sort the data, yielding the 

X(i) and W(i) values. Then, at the beginning of a simulation, calculate the Y(i) values. 

The O(n) algorithm for generating random variates given below also uses inversion. 

Generate U"' U(O, 1) 
i +-- 1 
while (U > Y(i+I)) 

i+--i+1 

return (x(i) + (U- Y(i)) (x(i+l) - X(i)) / (Y(i+l) - Y(i))) 

As expected, this algorithm collapses to the equally-weighted algorithm given in 

Chapter 2.1 because Y(i) = (i -1)/(n- 1), fori= 1, 2, ... , n in the equally-weighted 

case. This algorithm can easily be modified to a O(logn) algorithm by employing a 

binary search rather than the linear search presented here. 

Occasions might arise in which the weights need to be calculated from data. Con­

sider the previous example. The data values 1, 2, 5, 7, 8, and 9 were stretched and 

translated so that the sample mean and variance matched the mean and variance of 

the piecewise-linear estimate. This resulted in the lowest data value X(l) = 1 being 

shifted to x(1) = -0.1347. For certain types of data sets (e.g., service times), generat­

ing a negative service time might be unacceptable. So the only recourse for a modeler 

who wants to (a) keep the x-coordinates of the knot points at the data values and 

(b) match moments, is to adjust the weights w 1 , w2 , ... , Wn to values other than the 

usual equally-likely weights 1/n. As seen earlier, the effect of moving from a data 

set to the piecewise-linear estimator is to decrease the variance. Thus adjusting the 

weights will place increased weight on the extreme values (and therefore less weight 

on the middle values) so as to increase the variance. 

One problem that arises from this approach to matching moments is that there 

will typically not be a unique solution for the weights that will match moments. We 

therefore introduce the objective function 
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TI~=l Wi 

TI~=l 1/n 

from the empirical likelihood literature (Owen, 2001) to achieve a unique solution. 

Thus the optimization problem is nonlinear and is written with constraints as: 

maximize 

subject to """ tWi+l - Z- Wi _ 1 n-1 ( . (. 1) ) 

2ft Wi + n _ 1 (x(i+l) + X(i)) =X 

""" zwi+l - z - wi 2 2 1 n-1( . (. 1) ) 
3 {:t wi + n- 1 (x(i+l) + X(i+I)X(i) + x(i)) 

(
1 ~ ( iwi+l- (i -1)wi) )

2 

2 - 2 {:t Wi + n _ 
1 

(x(i+I) + X(i)) = s 

n 

i=l 

This method is advantageous for certain types of positive data that might be close 

to zero, ensuring that negative x values are not created by stretching the data (e.g., 

positive service times). By choosing this method the xi values are not affected. 

Example 4. Consider the univariate data set of n = 6 observations: 

1 2 5 7 8 9. 

Just as in Example 1, we assume that these data values are drawn from 

a continuous population. The sample mean and sample variance of the 

data are x = 16/3 and s2 = 32/3. Find the corresponding weights, wi, for 

i = 1, 2, ... , 6 that solve the above nonlinear program. 

This problem was solved in Microsoft Excel and Matlab, yielding the 

optimal weights 
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W 1 = 0.3721, W2 = 0.0519, w3 = 0.0391, 

W 4 = 0.0444, w5 = 0.0761, w6 = 0.4165. 

These weights maximize the objective function and match the sample 

mean and variance of the data to the mean and variance of the weighted 

piecewise-linear CDF. The small sample size results in heavy weights being 

placed on the extreme values in order to match the moments. 

Because this is a nonlinear optimization program, the solution achieved is quite sen­

sitive to the solver chosen and starting point provided. As expected, as the number 

of observations n increases, the optimization problem becomes more difficult to solve. 

The next example uses a data set from survival analysis. 

Example 5. Consider the univariate data set of n = 23 ball bearing 

failure times in millions of revolutions (Lieblein and Zelen, 1956): 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

We assume that these data values are drawn from a continuous population. 

Find the corresponding weights, wi fori= 1, 2, ... , 23 that solve the above 

nonlinear program. 

This problem was again solved in Microsoft Excel and Matlab, yielding 

the optimal weights 

WI = 0.0665, W2 = 0.0552, ... , W22 = 0.0471, W23 = 0.0850. 

Figure 2.2 shows the piecewise-linear CDF for this data and is overlaid 

with the optimal weighted piecewise-linear CDF matching the sample 

means and variances. 
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Figure 2.2: Piecewise-linear and optimal weighted piecewise-linear CDFs. 

2.3 Comparing Estimates 

Thus far, four estimates have been suggested for generating from a given continuous 

data set. They are (a) the piecewise-linear CDF, (b) the piecewise-linear CDF with a 

mean and variance matched to the data, (c) the weighted piecewise-linear CDF, and 

(d) the piecewise-linear CDF created by order statistics associated with discarding 

even indices. These methods all provide a means for variate generation via inversion, 

thus are fast, synchronized, and exact. Their main competitor in the literature is 

variate generation from an estimated density known as the kernel density. For a 

detailed discussion of this method, see Silverman (1986). To compare results for 

these estimates, a Monte Carlo simulation study was conducted in which estimates 

are created from six known candidate parametric distributions. These distributions 

23 



Chapter 2. Univariate Nonparametric Random Variate Generation 

were selected to adequately cover decreasing failure rate (DFR), increasing failure rate 

(IFR), increasing/decreasing failure rate (IFR/DFR), bathtub (BT), and upside-down 

bathtub (UBT) hazard functions. A sample was generated from each distribution, 

and the corresponding estimates were created. The metric developed for comparing 

the CDFs is 

where F (x(i)) is the CDF for the known population distribution at X(i), Fi (x(i)) is 

the corresponding jth CDF estimate at X(i) for one of the estimates listed below, 

n is the sample size, and b is the number of simulation replications. The average 

absolute errors for various sample sizes are given in Table 2.1, each forb= 1, 000,000 

replications. Common random numbers were used in the simulation to reduce the 

variability of the estimators. The results can be replicated using the set. seed ( 123) 

command. The smallest metric in each column is set in boldface type. The four 

estimators that are compared are: 

• piecewise-linear estimator F(x), 

• moment matching piecewise-linear estimator F* ( x), 

• selected order statistic estimator F 9 ( x), 

• kernel estimator Fk(x). 

The selected order statistic estimator breaks up the clumping that occurs with random 

sampling by deleting every order statistic with an even index and using the piecewise­

linear estimator on the remaining order statistics. This is why the sample sizes are 

chosen to be odd. The weighted piecewise-linear CDF method is not included in the 

study due to the CPU time required to solve multiple replications of the optimization 

problem. Two kernel functions were selected for the study: (a) the standard normal 

and (b) U( -1, 1). The bandwidth parameter used for each kernel density estimate is 
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the optimal bandwidth parameter (Silverman, 1986) described by 

b = a(k)l.364 min(s, R/1.34)n- 115 

where a(k) = 0.776 for the Gaussian kernel, a(k) = 1.351 for the uniform kernel, 

s is the sample standard deviation, and R is the sample range. The results for the 

uniform kernel density were not included because the estimates had gaps in their 

support. As expected, the kernel density estimate dominates for distributions with a 

pronounced mode. However, the arctangent, exponential, and bi-modal exponential 

power distributions are more accurately estimated by a piecewise-linear CDF. The 

matching moments estimator F(x) for the exponential distribution deserves further 

explanation. When stretching values to match variances, negative values are possible, 

causing the excess error in the metric. We decided to leave this result as is in Table 2.1 

with explanation for emphasis. In conclusion, though we boldface only one error value 

for each row of the table (except where ties occur), in many cases the average error 

differences between methods appear negligible. 
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n=9 class F(x) F*(x) F9(x) Fk(x) 
Uniform(O, 1) IFR 0.112 0.105 0.110 0.091 

Weibull(l, 1/2) DFR 0.238 0.229 0.250 0.213 
Exponential(!) IFR/DFR 0.112 0.118 0.110 0.110 
Weibull(l, 2) IFR 0.112 0.099 0.110 0.092 

Exponential Power(l, 1/2) BT 0.158 0.169 0.143 0.170 
Arctan(l, 1) UBT 0.190 0.164 0.201 0.161 

n = 21 class F(x) F*(x) F9(x) Fk(x) 
Uniform(O, 1) IFR 0.070 0.068 0.069 0.061 

Weibull(l, 1/2) DFR 0.219 0.216 0.222 0.208 
Exponential(!) IFR/DFR 0.070 0.094 0.069 0.088 

Weibull(l, 2) IFR 0.070 0.066 0.069 0.062 
Exponential Power(l, 1/2) BT 0.141 0.150 0.134 0.151 

Arctan(l, 1) UBT 0.164 0.150 0.168 0.151 

n = 45 class F(x) F*(x) F9(x) Fk(x) 
Uniform(O, 1) IFR 0.047 0.046 0.047 0.043 

Weibull(l, 1/2) DFR 0.211 0.210 0.212 0.206 
Exponential ( 1) IFR/DFR 0.047 0.082 0.047 0.073 

Weibull(l, 2) IFR 0.047 0.046 0.047 0.043 
Exponential Power(l, 1/2) BT 0.136 0.142 0.133 0.141 

Arctan(l, 1) UBT 0.152 0.135 0.154 0.146 

n = 71 class F(x) F*(x) F9(x) Fk(x) 
Uniform(O, 1) IFR 0.037 0.037 0.037 0.035 

Weibull(l, 1/2) DFR 0.208 0.208 0.209 0.205 
Exponential(!) IFR/DFR 0.037 0.076 0.037 0.067 
Weibull(l, 2) IFR 0.037 0.037 0.037 0.035 

Exponential Power(l, 1/2) BT 0.134 0.140 0.132 0.138 
Arctan(l, 1) UBT 0.148 0.125 0.149 0.144 

n = 101 class F(x) F*(x) F9(x) Fk(x) 
Uniform(O, 1) IFR 0.031 0.031 0.031 0.030 

Weibull(l, 1/2) DFR 0.207 0.207 0.208 0.205 
Exponential(!) IFR/DFR 0.031 0.072 0.031 0.062 
Weibull(l, 2) IFR 0.031 0.031 0.031 0.030 

Exponential Power(l, 1/2) BT 0.134 0.138 0.132 0.137 
Arctan(l, 1) UBT 0.146 0.118 0.146 0.143 

Table 2.1: Average absolute error. 
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2.4 Conclusions 

The standard solution to the interpolation problem for Monte Carlo or discrete-event 

simulation uses a piecewise-linear CDF as a model. The variate generation algorithm 

is fast and trivial to implement. We have suggested two modifications to the original 

model: (a) stretching and shifting the original data values so that the mean and 

variance of the piecewise-linear CDF model matches the mean and variance of the 

sample values, and (b) a modification to the model and variate generation algorithm 

to account for weighted observations. Both of these modifications could prove to be 

useful in further work associated with the generation of bivariate samples. 

We conclude with a summary of piecewise-linear and kernel density estimation 

pros and cons. 

Piecewise-linear advantages: 

• No decisions from the modeler; completely nonparametric 

• Easily extended to match sample mean and variance 

• Easily smoothed to minimize the effect of clustering of data values 

• Extends to bivariate data without the assumptions and requirements demanded 

if using kernel density estimation 

Kernel density estimation drawbacks: 

• Arbitrary decisions left to the modeler 

kernel density functional form 

variance of kernel densities (smoothing parameter) 

• Normal kernel density function implies an infinite left hand tail (obviously bad 

for certain data, i.e. service times) 
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• Inferior uniform density may 

- leave undesired gaps 

- extend to negative values 

Piecewise-linear grouping drawbacks 

• Grouping involves arbitrary decisions/parameters from the modeler 

• Too much grouping may mask the shape of the distribution 

While we recognize the approach presented in this chapter is "not ideal" in density 

estimation, our goal is not density estimation. The goal is nonparametric variate 

generation, thus density estimation can be considered as an unnecessary step. The 

method proposed is a turnkey operation, requiring only the observed data from the 

modeler. Additionally, the extension to the bivariate case is extremely desirable. 
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Chapter 3 

Bivariate Nonparametric Random 

Variate Generation 

3.1 Introduction 

Parametric univariate random variate generation is a well-established methodology 

providing the modeler dozens of distribution choices having a variety of statistical 

properties (Banks, et al., 2001, Law, 2007, Leemis and Park, 2006). For paramet­

ric bivariate distributions, however, the number of distribution choices is much more 

limited. Additionally, the ability to generate observations from some bivariate distri­

butions relies on the acceptance-rejection method, casting out the preferred inversion 

method. Recent literature in copula-based approaches indicates improvement in this 

area. Copula-based approaches have often been applied to finance and are becom­

ing more prevalent in other areas such as actuarial science and hydrology. We did 

not consider these approaches as candidates for comparison because recent litera­

ture suggests that the method of model selection is not universally accepted (Genest 

and Remillard, 2006). Additionally, this approach is a two-stage estimation process 

(1. marginals, 2. copula function). There is promising recent work in nonparametric 

copula-based approaches, overcoming the two-stage estimation issue. However, we do 
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not compare the proposed algorithm to this work. 

Kernel density estimation (KDE) is another popular method for density estima­

tion. Hormann and Leydold (2000) present algorithms that generate variates directly 

from a sample via KDE for both the univariate and bivariate cases. In their approach, 

resampling occurs from a multivariate normal distribution with a covariance matrix 

that matches that of the observed data. In the univariate case, Bratley, Fox, and 

Schrage (1987) and Law (2007) describe variate generation methods using the linear 

interpolation of the empirical distribution function. Generating variates from KDE 

offers the advantages (Devroye and Gyorfi, 1985, Devroye, 1986, Silverman, 1986) of 

simplicity and well-established theory of density estimation. However, KDE suffers 

from the arbitrary (but necessary) step of fine tuning a smoothing parameter as well 

as choosing the appropriate kernel function. Hormann and Leydold (2000) also note 

that generating variates from KDE results in the "variance of the empirical distribu­

tion always being larger than the variance of the observed sample," and furthermore, 

since generating from KDE is not an inversion method, correlation induction for vari­

ance reduction is lost. Silverman (1986) presents an algorithm that corrects the KDE 

variance difference by forcing it to equal the sample variance. 

Since the focus of this chapter is modeling bivariate dependencies in input data for 

simulation, we now review the literature in this area. In the parametric case, Devroye 

(1986) and Johnson (1987) devise strategies for generating from several multivariate 

distributions including the multi-normal and the multi-variate Johnson family. Wag­

ner and Wilson (1995) develop techniques for the bivariate Bezier distribution. Taylor 

and Thompson (1986) formulate a semi-nonparametric method that comprises sam­

ples from a combination of a nearest neighbor technique and KDE. Matching moments 

occurs in some methods as an appropriate means for density estimation. Because the 

majority of these published methods assume a known population distribution, they 

are coupled with potentially unrealistic distribution properties such as the support, 

moments, etc. Additionally, many of these methods rely on the acceptance-rejection 
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technique for variate generation, and thus are not synchronized. This loss in syn­

chronization sacrifices the ability to implement variance reduction through the use 

of common random numbers, and carries the added expense of wasted U(O, I)'s. For 

all the literature reviewed, the two-dimensional random vectors can handle a single 

mode, and very few are capable of representing two-mode marginal distributions. We 

were unable to find a flexible family capable of greater than two modes, therefore 

generating variates according to some parametric family may not be possible for data 

with more than two modes. 

In this chapter we intend to show that the proposed bivariate nonparametric 

random variate generation algorithm has three specific advantages over its primary 

competitor, KDE. The advantages are (1) no reliance on the selected kernel density 

function, (2) no reliance on the selected smoothing parameter, and (3) cannot produce 

unrealistic variates (i.e. negative values from a service time distribution). 

The chapter is organized as follows. Section 3.2 first introduces a piecewise-linear 

CDF and explains how to sample from this CDF. It follows with a discussion of how 

to manipulate this estimator so that the first two moments of the estimator match 

the corresponding moments of the observed data. The section concludes with the 

proposed bivariate random variate generation algorithm, an applied example, and an 

interesting variant of the algorithm for selected data sets. Section 3.3 compares the 

proposed algorithm to KDE for bivariate data with unknown underlying bivariate 

densities, along with data generated from known bivariate densities. Where possi­

ble, the comparisons include visual representations, marginal means and variances, 

covariances, and squared error between the known and estimated CDFs. The last 

section summarizes the results. 
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3.2 Generating Variates From Bivariate Data 

One obvious and simple technique for generating variates from a data set 

is to sample from the empirical CDF 

' 1 
F(x, y) = -I(x, y), 

n 

where I(x, y) is a function that counts the number of (xi, Yi) pairs in the data set 

satisfying Xi ::; x and Yi ::; y (i.e., F(x, y) is the fraction of the data pairs falling 

to the southwest of (x, y)). An algorithm for generating from the empirical CDF is 

equivalent to sampling with replacement from the data pairs (xi, Yi): 

1. generate U"' U(O, 1) 

2. I+-- fnUl 

This random variate generation technique is fast and conceptually straightforward. 

The drawback with this method is that the random variates are limited to the data 

pairs-which is particularly problematic for a small sample size. 

3.2.1 The Piecewise-Linear CDF 

In the univariate case, the interpolation problem is easily solved by using a piecewise­

linear approximation to the empirical CDF. The n - 1 gaps between the data values 

result in n- 1 piecewise-linear segments for the estimated CDF. If extrapolation in 

one or both tails is an issue, then the modeler can use Marsaglia's tail algorithm 

(Bratley, Fox, and Schrage, 1987) or kernel density estimation (Silverman, 1986). 
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In the bivariate case, the delineation of the support is less clear than in the 

univariate case. Using the rectangular support 

for example, is likely to include regions of support that a modeler would want to 

exclude. In the method developed here, we use the convex hull of the data values 

as a preliminary support. (This support can be modified using techniques described 

subsequently.) We define the convex hull traditionally as the minimum convex set 

containing the data set of interest in the two-dimensional plane. The variate genera­

tion algorithm (Law, 2007, page 467) relies on conditioning: 

1. generate U1 rv U(O, 1) 

2. Xo ~ Fx 1 (UI) 

3. generate U2 "' U(O, 1) 

4. Yo~ FYI~o=x(U2) 

5. return (Xo, Yo) 

We justify the algorithm with the following derivation. Consider the case where 

the joint CDF, Fx,Y(x,y), is known and the joint density fx,y(x,y) exists. The 

goal is to simulate the two-dimensional random vector (X, Y). Define the following 

variables. 

1. Let U, V be independent U(O, 1) random variables. 

3. Let Y' = Fy-1~=Xo (V), where Xo = Fx 1(U) =X'. (Primes are used to distin­

guish the simulated random variables from the original random variables X, Y.) 
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Now use the change-of-variable formula (Hogg et al., 2005) to compute the joint 

density of (X', Y'). Recall the change-of-variable formula: if (U, V) = S(X', Y'), then 

fx',Y' = Uu,v o S) ·I det(DS)I. 

In this case, fu,v is the constant function 1 on the unit square, so the term in paren­

theses is just 1. Solving for U and V in terms of X' and Y' above, we find that S is 

given by: 

Then D S is the 2 x 2 matrix 

[ 
fx*(x') 0 ] 

fx,Y(x', y')/ fx(x') ' 

where * denotes some irrelevant entry for the determinant. The lower-right entry 

follows by differentiating the formula 

Jy' f (x' t)dt 
F '( ') - -oo X,Y ' 

YIX=x Y - fx(x') 

with respect to y'. Computing I det(DS)I gives fx,Y(x', y'), so that (X', Y') does 

indeed have the same joint density as (X, Y). 

The challenge associated with the development here is to find a reasonable non­

parametric approximation to Fy-1~=x(-). To illustrate the justification in using Fy-1~=x' 
consider the scatterplot shown in Figure 3.1 with x = 8. The data indicate a wide 

range of potential values to generate for the second element of the random pair, y. 

Depending on the unknown bivariate population distribution this might be accept­

able. However, given the observed data, it appears the associated y value should not 

potentially occupy this entire range, and might more appropriately be represented by 

the limits naturally occurring at the lower and upper intersections with the convex 
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hull. 

y 
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Figure 3.1: Intersection of a randomly generated x = 8 and the convex hull. 

3.2.2 A Nonparametric Bivariate Generation Algorithm 

By combining strategies used in the univariate case, an algorithm is devised to gener­

ate bivariate random variates from observed data pairs using a nonparametric heuris­

tic approach. This algorithm requires a random sample of bivariate data drawn from 

an unknown continuous population distribution. A good algorithm produces variate 

pairs that adequately mimic the distribution associated with the observed data. If ap­

propriate, the marginal data are moment matched at the beginning of the algorithm. 

The moment-adjusted vectors are created by first stretching the marginal data so that 

the variance of the piecewise linear CDF estimator matches that of the sample data 

variance, and then shifting the resulting marginal data values to match the marginal 

means. This process is only suitable in cases where the adjusted marginal values do 

not result in unrealistic data points, e.g., when service times are close to zero and 
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adjusting them could produce impossible negative service times. The advantage of 

adjusting the data (when possible) is that the first two moments are conserved by the 

estimator, whereas, when the data is not adjusted, it is well known that the piecewise­

linear CDF estimator's variance is less than the sample data variance. Matching the 

variances is important in computing the denominator in the correlation expression 

Corr(X Y) = Cov(X, Y) 
' JV(X)V(Y) 

Using the expressions derived Chapter 2, reprinted here, the ordered moment adjusted 

vector values x(i) are calculated as 

i-1 

XU)= X(l)- 8 + W l:g_i, 
j=l 

where 8 is the appropriate stretching parameter, w is the width of the support of 

the adjusted piecewise-linear CDF, and gj is a normalized gap value between sorted 

elements of the x vector. This calculation accomplishes matching the variance of the 

piecewise-linear CDF estimator to the sample data variance. We then match means 

by shifting each data value by 

" - ' - [x(i) + 2x(2) + ... + 2x(n-l) + x(n) - -] 
x(i) - x(i) ( ) x . 2n-l 

The S-plus/R code for this moment matching process (designated as the mm(x) pro­

cedure) is provided in Appendix B. A more detailed explanation on matching the 

estimator's moments to the data is given in Chapter 2. 

The algorithm is separated into a setup portion, and a generation portion. The 

terms xi and Yi represent the observed data pairs, x~ and y~ are the moment adjusted 

data pairs, and lastly, (x", y") is the generated variate pair produced by the algorithm. 

The corresponding vectors are set in boldface. 
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Setup 

1. x' +- mm(x), y' +- mm(y) 

2. hull+- convex hull(x', y') 

Generation 

1. generate U ,..._, U(O, 1) 

2. x" +- Fx1 (U) 

3. Ylo +- minimum{hull(x")} (the height of lower intersection of the line x = x" 
and the convex hull) 

4. Yhi +- maximum {hull ( x")} (the height of upper intersection of the line x = x" 
and the convex hull) 

5. A +- { iiYlo < y~ < Yhi}, i = 1, 2, ... , n (the index set of interior points) 

1 
6. wk +- (( )/ )2 fork E A where sis the sample standard deviation of 

1 + Xk- x" s 
x A, the set of interior points 

7. FYIX=x +-weighted piecewise-linear CDF conditioned on x = x" (see Chapter 2 
for details on creating the weighted piecewise-linear CDF) 

8. generate U ,..._, U(O, 1) 

9. y" +- FYI~=x(U) 

In step 6 of the generation portion of the algorithm, we include s to normalize the 

weight calculation. Data pairs with xi values closer to the line x = x" receive higher 

weight. Dividing the absolute difference xi - x" by s scales the factors in terms of 

standard deviation units. 

This algorithm is nonconventional in the sense that it translates the data pairs 

directly into a variate generation algorithm, bypassing the usual density estimation 

step. There is, of course, an underlying joint probability density function associated 

with the algorithm. This joint probability density function is too tedious to calculate 

in general. 

37 



Chapter 3. Bivariate Nonparametric Random Variate Generation 

3.2.3 Applied Examples 

Example 1. Consider the bivariate data set of size n = 14 random 

observations drawn from a continuous population: ( 4.1, 1.5), (6.2, 3.4), 

(8.3, 5.1), (7.8, 6.4), (5.2, 7.8), (2.0, 4.5), (1.9, 1.3), (2.7, 2.1), (3.5, 3.9), 

(4.0, 4.3), (3.6, 2.2), (4.4, 5.2), (5.0, 3.1), (5.3, 5.3). 

Setup 

1. Compute moment-matched x and y vectors, denoted as x' and y' for 

the data. Using the S-Plus/R mm(x) function, the adjusted vectors, 

to two decimal places, are: x' = (4.08, 6.48, 8.89, 8.32, 5.34, 1.67, 

1.56, 2.47, 3.39, 3.96, 3.50, 4.42, 5.11, 5.45) and y' = (1.15, 3.35, 

5.32, 6.82, 8.44, 4.63, 0.92, 1.85, 3.93, 4.39, 1.96, 5.44, 3.01, 5.55). 

2. Find the convex hull of x' and y'. 

y' 
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Figure 3.2: Plot of x' vs. y' and the convex hull. 

Generation The S-Plus/R code provided in Appendix C combines the 
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univariate strategies for generating from bivariate data. Figure 3.2 presents 

the adjusted bivariate data and associated convex hull. Using the piecewise­

linear CDF created from the moment matched x' vector, the variate x" 

is generated at x" = 8. The vertical dashed line at x" = 8 intersects 

the convex hull in exactly two places, denoted as Ylo and Yhi in the algo­

rithm. The horizontal lines at these intersections establish the lower and 

upper limits capturing the interior original y data values used to create 

the weighted conditional piecewise-linear CDF for Y. The IAI = 5 interior 

values are the solid circles in Figure 3.2. These corresponding y values 

are appropriately weighted by wk based on their respective horizontal dis­

tance from the vertical dashed line associated with x". Using the weighted 

marginal piecewise-linear CDF created by the weighted interior y value, 

y" is generated. Using this methodology, Figure 3.3 displays 50 variates 

from the original n = 14 data values where both the mean and variance 

for the piecewise-linear CDF's of x and y match that of the data. 

The previous example illustrates the workings of the algorithm and associated results. 

Figure 3.3 shows (and the algorithm requires) that generated variates must lie within 

the convex hull created by the original data (if the data is adjusted to match moments, 

we can generate slightly outside the original convex hull since matching moments 

requires stretching each endpoint by a positive distance 8, and the interior points 

by a corresponding proportional distance). Additionally, if the user desires bivariate 

data for a certain region not encompassed by the observed data, it is only necessary 

to adjust the convex hull as desired. This feature allows significant advantages for 

studying specific aspects of a data set. For example, the user could easily develop cases 

for data analysis that include regions of interest while also including observed data. 

The next example illustrates the algorithm's ability to replicate multi-modal data in 

terms of means, variances, and correlation. Hormann and Leydold (2000) highlight 

KDE's inability to accurately estimate multi-modal data, which makes meaningful 
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Figure 3.3: Plot of the marginal adjusted data, convex hull, and 50 random variates 
from x andy. 

variate generation impossible for such distributions. 

Example 2. The Old Faithful geyser in Yellowstone Park is a commonly 

analyzed phenomenon. The data set (Weisberg, 1980) consists of n = 

299 data pairs, the waiting time between eruptions (x;) and the eruption 

duration (yi), and is displayed in Figure 3.4, along with the convex hull. 

Though not easily visually distinguishable from the scatterplot, the data is 

tri-modal. Using a standard bivariate distribution to model this data set, 

such as the bivariate normal distribution, would not provide an adequate 

fit. For this data, it is appropriate to match the first two moments as 

doing so does not significantly change waiting nor duration times due to 

the large sample size. Additionally, matching the moments does not create 

any negative times. 

Figure 3.5 shows the adjusted data and associated convex hull side-by-side 

40 



Chapter 3. Bivariate Nonparametric Random Variate Generation 
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Figure 3.4: Plot of n = 299 waiting vs. duration times (minutes) for the Old Faithful 
Geyser. 

with the variates generated by our algorithm. The first numerical column 

of Table 3.1 provides the sample statistics associated with the data, and 

the second column shows that the first and second moments, and the 

covariance are adequately conserved in the generated variates. The third 

column provides p-values for the hypothesis tests with t-tests used for the 

means and F-tests for the variances. 

It is apparent that the algorithm will occasionally generate variates in 

n = 299 n = 299 
observed data generated data p-value 

avg waiting 72.31 73.24 0.407 
avg duration 3.46 3.39 0.465 
var waiting 192.94 183.18 0.654 

var duration 1.32 1.42 0.529 
covariance -10.28 -9.07 

Table 3.1: Sample statistics for observed and generated data. 
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Figure 3.5: Sample adjusted observed data (left) and generated random variates 
(right) for waiting vs. duration times (minutes) for n = 299. 
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Figure 3.6: Plot of n1 = 105 and n2 = 194 waiting vs. duration times (minutes). 

"white-space" (areas of the convex hull not represented by observed sam­

ple data values) of the convex hull as is expected. If this is problematic, 
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we could fine-tune the appearance of the hull to avoid the possibility of 

these variates without significantly altering the algorithm. Alternatively, 

we could create two convex hulls as shown in Figure 3.6, with n1 = 105 

data values in the lower hull and n2 = 194 data values in the upper hull. 

The algorithm is modified so that a bivariate pair is generated from the 

lower hull with probability 105/299 and the upper hull with probability 

194/299. The algorithm's run time change for this adjustment is negligi­

ble. 

3.3 Kernel Density Estimate Comparison 

3.3.1 Generating Variates Via Kernel Density Estimation 

Perhaps the most widely accepted method of univariate density estimation is kernel 

density estimation (KDE). The kernel density approximation of the underlying true 

distribution is defined as 

ix(x) = ~ tK (X- Xi) 
nb b 

i=l 

where K is the kernel function, n is the sample size, and b is the bandwidth (smooth­

ing) parameter. While several kernel functions exist in the literature the most com­

monly used kernel function is the Gaussian kernel, 

K( ) 
1 _!x2 x = --e 2 ..;x:rr oo<x<oo 

with mean zero and unit variance. These estimators provide a smooth density esti­

mate with proven theoretical properties, making their choice of estimation a sound 

one. This estimator does not come without drawbacks. Using this estimator requires 

calculation of the bandwidth parameter b. Though many accepted versions of calcu-
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lating b exist in the literature, choosing a method is not necessarily easy. For large 

values of b, oversmoothing occurs and important details about the underlying density 

may be lost. Additionally, if the parameter is too small, the resulting estimate is 

said to be undersmoothed and subtleties showing up in the density estimate caused 

by the sample data may lead to incorrect conclusions on the underlying distribution. 

We do not discount the importance of selecting an optimal bandwidth parameter, 

but will focus on the KDE method for comparison to the proposed algorithm. We 

reference Hormann and Leydold (2000) for use of kernels (and selection of a smooth­

ing parameter) in generating bivariate data from an observed sample. They provide 

an efficient algorithm for sampling from a multi-dimensional kernel density estimate. 

Using their algorithm with a normal kernel function, generating variates is very fast. 

The algorithm is divided into a setup and generation portion. 

Setup 

For a random sample X 1 , X 2 , ... , X n of d length vectors, compute: 

1. the mean vector x, 

2. the estimated covariance matrix E, 

3. the Cholesky factor l of E, 

4. the smoothing parameter b, 

5. the variance correction factor cb. 

Generation 

1. Generate a random integer I uniformly distributed on {1, 2, ... , n }. 

2. Generate a random vector W of d independent normal variates. 

3. Return Y=x+(Xr-x+l(bW))c11 • 

In this algorithm a full covariance matrix is specified from the observed data. 

Using the Old Faithful geyser data (Weisberg, 1980), the estimated covariance matrix, 

E, is 

E = [ 192.94 

-10.28 
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The joint density is estimated as a sum of n = 299 translated versions of the chosen 

kernel function (bivariate normal in this case) multiplied by ~b. Though there are 

many accepted versions of calculating b for the univariate case, the multidimensional 

case is more challenging. Silverman (1986) suggests a simple calculation forb as 

= ( 4 ) l/(d+4) 

b (d+2)n ' 

where d is the dimension of the data. Thus the bivariate case results in 

Additionally, a variance correction factor is included because the variance of the 

empirical distribution is always larger than the variance of the observed data (Sil­

verman, 1986). Hormann and Leydold (2000) define the variance correction as cb, 

where 

3.3.2 Comparisons for Unknown Joint Densities 

To compare the two variate generation methods, 100 replications were made, each of 

size n = 299 variates, using the geyser data introduced earlier. Prior to the study 

it was determined that a single replication is considered acceptable if it successfully 

captures the tri-modal KDE density appearing in Figure 3.7. 

This density was computed directly from then= 299 data pairs using S-Plus/R 

as described in Bowman and Azzalini (1997) for a normal kernel function and a nor­

mal optimal smoothing parameter. These estimated joint density plots are only used 

as a visual tool for comparing variate generation methods. The methods compared 

are (1) nonparametric algorithm for unadjusted waiting and duration times, (2) non­

parametric algorithm for adjusted waiting and duration times, and (3) Hormann and 
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Figure 3.7: Joint density estimate of Old Faithful geyser data. 

Leydold's variance-corrected KDE algorithm. For each method and replication a 

three-dimensional estimated joint density plot like the one shown in Figure 3. 7 was 

inspected for a tri-modal density. Methods one and two (those proposed in this chap­

ter) always captured the tri-modal appearance, while the KDE algorithm failed 35 

times out of 100. An example of a failure instance is depicted in Figure 3.8. 

Recognizing that the chosen smoothing parameter in the KDE algorithm is "over­

smoothing" due to the multi-modality of the distribution, the parameter value was 

reduced by half as suggested in Hormann and Leydold (2000) and the experiment was 

repeated. Doing so resulted in six failures out of 100 replications. This reduction in 

failures is evidence of the estimated density's sensitivity to the smoothing parameter 

selection. And, while the generated density estimate improved dramatically, it is still 

outperformed by the proposed completely nonparametric algorithm. 

The next example consists of warranty claim data provided by General Motors 

for model year 2000 cars sold in the month of December, 2000. The bivariate data 
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Figure 3.8: Example of a failure instance for the KDE joint density estimate. 

values are the mileage and the age of the vehicle at warranty claim. All vehicles share 

a three-year (1095 day), 36,000 mile warranty. This data set is unique because it is 

bounded below at zero and above at three years/36,000 miles. Given the lower and 

upper bounds on the data, it is inappropriate to stretch the data and match moments 

as on the geyser data. A scatterplot of the data is provided in Figure 3.9, and the 

corresponding three-dimensional density estimate in Figure 3.10. The figures depict 

a pronounced mode close to the origin and a less prevalent mode near the mileage 

axis upper bound. This is logical because a buyer might not recall when a three-year 

warranty will expire, but can easily notice the approaching 36,000 mile warranty limit. 

General Motors might be interested in the impact of adjusting warranty durations. 

Using the same type study as the geyser data, we test the proposed variate gen­

eration algorithm against both the variance-corrected KDE and reduced smoothing 

parameter variance-corrected KDE sampling techniques. Figure 3.11 depicts one 

resulting joint density comparison instance. Once again, it is apparent that variance-
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Figure 3.9: Scatterplot of miles vs. age (days) at warranty claim, n = 259. 

Figure 3.10: KDE joint density estimate of miles vs. age. 
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corrected KDE "oversmooths," while the reduced smoothing parameter KDE per­

forms better in estimating the observed warranty data as depicted in Figure 3.12. 

Figure 3.11: Variate generation for the proposed algorithm vs. variance-corrected 
KDE. 

0 0 

Figure 3.12: Variate generation for the proposed algorithm vs. reduced smoothing 
KDE. 

A scatterplot of the KDE variance-corrected results, shown in Figure 3.13, displays 

the tendency of KDE to generate more densely at the pronounced mode, further 

accentuating the possibility of variates outside of the support rectangle when the 

mode is close to zero, as is the case in this example. In addition, variates are also 

produced that lie outside the upper bounds for mileage and age. This behavior 
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is troublesome for KDE and not easily overcome without resorting to some type of 

acceptanc~rejection or thinning method. Both of these options ruin synchronization, 

which might be needed if a variance-reduction technique is employed. 
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Figure 3.13: Scatterplot of variates generated via KDE. 

The range of variates produced by the two approaches further accentuates their 

differences. Table 3.2 lists the minimums and maximums for each approach, along 

with the percentage of realizations falling outside the allowable warranty bounds. 

Given that all the generated variates for the proposed algorithm must (by construc­

tion) fall within the allotted bounds, impossible variates cannot occur. Consequently, 

using the KDE sampling method requires discarding impossible variates. Finally, 

visual comparisons of 100 joint densities for each approach resulted in the proposed 

algorithm dominating KDE in capturing the original data's depiction of customer 

warranty claims. 

Using the normal kernel poses difficulty in modeling bounded data in two dimen­

sions, as well as capturing multi-modal behavior. In months where sales numbers are 

higher, the upper limits of mileage and age are even more densely covered, further 
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min max min max percent percent 
miles miles age( days) age( days) <0 > 3/36K 

observed data 8 35993 0 1056 0.0 0.0 

proposed algorithm 14 35983 0 1047 0.0 0.0 
var. corr. KD E -11093 53178 -156 1104 18.5 7.0 
reduced sm. param. 
var. corr. KD E -2907 39984 -34 1179 8.5 6.2 

Table 3.2: Range and percentage of variates outside allowable bounds. 

exhibiting multi-modal behavior. 

In the proposed variate generation algorithm, the modeler has the choice between 

using the convex hull associated with the data pairs or using the rectangle with oppo­

site corners (0, 0) and (36000, 1095). Figure 3.9 shows that there will be a significant 

difference between these two choices. 

3.3.3 Comparisons for Known Joint Densities 

We will now compare KDE and the proposed algorithm for two known joint densities, 

the first of which has infinite support and the second with bounded support. 

The first example is an equiprobable mixture of three bivariate normal distribu­

tions, with parameters as indicated in Table 3.3. 

Bivariate normal 
parameters 

f.LX 2 4 8 
f.Ly 1 8 4 
ax 1 1 2 
ay 2 1 2 
p 1/5 -1/5 -1/3 

Table 3.3: Parameters for three equiprobable bivariate normals. 

Using this mixture as the underlying density, n = 150 variates were generated for 

use as the observed sample data. We then compare standard KDE with a Gaussian 

kernel (bandwidth parameter is 1/n116 ) and the proposed algorithm for 150 generated 
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variates. Figure 3.14 illustrates the observed data in the left-hand plot, the KDE 

generated estimate on the right and the proposed algorithm's estimate in the center. 

A visual inspection indicates oversmoothing in the KDE case, a situation that could 

be remedied through manipulation of the smoothing parameter. Further work with 

the smoothing parameter did refine the KDE estimate suitably, and as expected, 

given a mixture of bivariate normals, KDE does well with proper selection of the 

smoothing parameter. 

Figure 3.14: Observed data (left) and density estimate comparisons for KDE (right) 
and the proposed algorithm (center). 

As a second example, consider a uniform bivariate distribution with uniform sup­

port on the unit square. We will use this example to illustrate how our algorithm 

performs in the limit with regard to the marginals, which in this case are bounded by 
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(0, 1). The experiment consists first of generating k = 20, 50, 100 data pairs from the 

bivariate uniform. Using these k data pairs, we then exercise the proposed algorithm 

and KDE, generating a single m = 1 two-dimensional variate for each. We repeat this 

experiment 100, 000 times and check the resulting marginal densities which we would 

like to converge to the theoretical marginals, each U(O, 1). Figure 3.15 shows the 

resulting marginal densities for the proposed algorithm using k = 50 observed data 

pairs. The left-hand plot indicates that the density appears to converge to U(O, 1) 

as desired. However, the conditioned density clearly does not. This result occurs 

because of the algorithm's tendency to designate more mass where the generated x 

value intersects the convex hull of the observed data. So, even though we replicate 

the experiment many times, there is the tendency to not adequately cover the vertical 

axis toward the upper and lower limits. 
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Figure 3.15: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using the proposed algorithm. 

A suitable manipulation of the algorithm allows us to partially correct this short­

coming by spreading the error equally between x and y. Since the vertical axis suffers 

in marginal estimation, we can modify the algorithm by alternating the roles of x 

andy on each subsequent (x, y) pair generated. Figure 3.16 depicts the estimated 

marginal densities after manipulating the algorithm. 

In the General Motors example, the support is rectangular, and furthermore, 
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Figure 3.16: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using the alternating algorithm. 

known. In this case we could have artificially created the convex hull limits since the 

minimum and maximum for each marginal is known and fixed. For this example, we 

now fix the support as the unit rectangle, thus the convex hull is {0, 1) x {0, 1). We 

will run two cases for the fixed support, the proposed algorithm and the alternating 

algorithm. Given that the hull is fixed for both cases, the corresponding results do not 

differ significantly. Figure 3.17 shows the marginals for the first case, the proposed 

algorithm. 
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Figure 3.17: Estimated marginal densities for the unit square bivariate uniform dis­
tribution with fixed support (0, 1) x {0, 1). 
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Lastly, we perform the same experiment for KDE, again using a Gaussian kernel 

and the same smoothing parameter used earlier. Figure 3.18 shows that although 

KDE does well over most of the support, it also suffers at the lower and upper end of 

the support. Furthermore, the KDE method of course generates a substantial number 

of impossible variates. 
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Figure 3.18: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using KDE. 

Table 3.4 displays the squared error between the CDF and N = 100,000 generated 

data points, calculated as 

where F(xi) is the estimated marginal CDF value at xi and F(xi) is the theoretical 

CDF value at xi. As another measure, we could include a quantile comparison, 

however, other than the lower and upper quantile discrepancies for KDE, there does 

not seem to be much difference across the board. As expected, KDE performs well 

throughout, except for the impossible variates generated. We could also change the 

kernel to a distribution with fixed support, which would reduce the extremity to which 

KDE produces impossible variates. However, the inclusion of such a comparison does 
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not substantially change the overall results. 

Since it is impossible to generate variates exactly from some data set without 

knowing the underlying distribution, questioning the quality of the variates generated 

from some known parametric distribution is justified. These hypothetical examples 

show that using the proposed algorithm exhibits quality at least as good as KDE. In 

terms of generation speed, KDE has the advantage over the proposed algorithm. In 

testing the vectorized version of the proposed algorithm's code versus KDE, excluding 

setup, we find that KDE runs about twice as fast, and given that the proposed 

algorithm's run time is a function of n, KDE's advantage is more pronounced for 

large sample sizes. 

n =20 X error Y error correlation 
Proposed Algorithm 3.7 X 10 5 3.3 X 10 3 0.007 

Alternating Algorithm 6.8 x w-4 6.7 X 10-4 0.008 
Fixed Support Algorithm 1.3 X 10-3 2.2 x w-3 0.022 

Alternating Fixed Support Algorithm 3.9 x w-4 4.1 x w-4 0.012 
KDE Algorithm 5.7 x w-4 5.3 x w-4 -0.002 

n =50 X error Y error correlation 
Proposed Algorithm 1.1 X 10 -5 3.8 X 10 3 0.001 

Alternating Algorithm 9.0 x w-4 8.5 X 10-4 -0.001 
Fixed Support Algorithm 2.8 x w-4 2.2 x w-3 0.015 

Alternating Fixed Support Algorithm 3.3 x w-4 3.0 x w-4 0.009 
KDE Algorithm 3.7 x w-4 3.6 x w-4 0.004 

n = 100 X error Y error correlation 
Proposed Algorithm 3.2 X 10 6 3.8 X 10 3 -.001 

Alternating Algorithm 8.9 x w-4 9.1 X 10-4 -9.2 X 10-5 

Fixed Support Algorithm 7.7 x w-5 2.6 x w-3 -6.6 X 10-4 

Alternating Fixed Support Algorithm 4.7 x w-4 4.8 x w-4 -7.1 x w-4 

KDE Algorithm 2.6 x w-4 2.5 x w-4 -0.006 

Table 3.4: Marginal CDF squared error for the estimates of the bivariate uniform 
distribution. · 

56 



Chapter 3. Bivariate Nonparametric Random Variate Generation 

3.4 Limitations 

There are a number of limitations associated with the proposed algorithm which we 

outline in this chapter. The three limitations discussed here are 

1. The lack of an expression for the nonparametric joint PDF, 

2. The algorithm's performance relative to KDE, 

3. The speed of the algorithm. 

Though the proposed nonparametric algorithm is "blackbox" in that no decisions 

are required by the modeler, there is an underlying joint PDF. The algorithm goes 

directly from data to random variates, bypassing the usual step of specifying the PDF 

because of its complicated nature for large values of n. For small n, however, the joint 

PDF is easily available, as illustrated in the example below. 

Example 3. Consider a data set that consists of just three (n = 3) 

noncollinear pairs. The convex hull is the triangle with the data pairs 

as vertices and no data values are internal to the convex hull. More 

specifically, consider the data pairs 

(1, 1), (2, 1), (3, 3). 

Exploiting the fact that the x-values are equally spaced, the variate gen­

eration algorithm reduces to 

generate X ,...., U(1, 3) 
if (X < 2) generate Y ,...., U(1, X) 
else generate Y ,...., U(2X - 3, X) 

The joint PDF of X and Y associated with this algorithm can be deter­

mined as the product of the marginal distribution for X 

fx(x) = 1/2 0<x<2 
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and the conditional distribution 

yielding 

1 

x-1 
1 

3-x 

2(x- 1) 

{ 

1 

!x,y(x, y) = 
1 

2(3-x) 

1 < y < x; 1 < x < 2 

2x - 3 < y < x; 2 ~ x < 3 

1 < y < x; 1 < x < 2 

2x - 3 < y < x; 2 ~ x < 3. 

Characteristics of this joint distribution are consistent with variates gen­

erated by the algorithm. The covariance of X and Y, for example, is 

1/3, and the sample covariance of variates generated by the algorithm 

converges to 1/3 as the number of data pairs generated tends to infinity. 

Second, the algorithm's performance is compared with that of KDE. There are 

few bivariate parametric distributions where variate generation is easy. We use the 

bivariate normal distribution to compare the impact of correlated random variables 

on the proposed algorithm and KDE. We expect KDE to perform extremely well since 

the underlying distribution is bivariate normal. The infinite tails associated with the 

bivariate normal distribution give an advantage to KDE, just as a bounded region, 

such as in the General Motors warranty data case, gives an advantage to the proposed 

algorithm. For the study, the underlying distribution is given by the parameters 

f.LX = 1, f.LY = 2, f7X = 4, Uy = 3, p = 0.01, 0.99, 

where p varies from extremely low to high correlation. In addition to these two 

extreme values of p, the same study considered intermediate values of p, however 

including them here is not informative. For each value of p, we chose n = 100 and 
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n = 200 as the observed sample sample sizes from the bivariate normal distribution. 

For each of the observed sample sizes, N = 10 and N = 40 variates were gener­

ated using KDE and the proposed algorithm (with and without moment matching). 

These variates were then used to calulate confidence intervals for the means, stan­

dard deviations, and correlation. The experiment for each ( n, N) pair combination 

was conducted 10,000 times and the count of confidence intervals containing each 

of the five parameters were tallied. Using the F distribution associated with the 

Clopper-Pearson confidence interval considered not significantly different from 9, 500 

and n = 0.01, the confidence interval counts are in the interval [9443, 9555]. Ta­

bles 3.5 and 3.6 contain the results of the simulation study, where boldface numbers 

are in [9443, 9555]. 

n N J-Lx f-LY ax ay p algorithm 
100 10 9413 9304 9496 8722 9513 moment matched algorithm 

9384 9285 9514 8468 9503 proposed algorithm 
9392 9403 9112 9097 9396 KDE 

100 40 9041 8652 9188 4921 9213 moment matched algorithm 
9038 8638 9089 3937 9204 proposed algorithm 
9113 9097 8068 8109 9079 KDE 

200 10 9438 9418 9528 8879 9554 moment matched algorithm 
9421 9390 9552 8752 9523 proposed algorithm 
9445 9447 9205 9230 9400 KDE 

200 40 9291 9111 9382 5331 9451 moment matched algorithm 
9251 9100 9391 4759 9390 proposed algorithm 
9298 9300 8650 8568 9313 KDE 

Table 3.5: Confidence interval count for bivariate normal parameters and p = 0.01. 

For low correlation, where we expected KDE to perform extremely well, the results 

do not indicate KDE dominating the proposed algorithm for producing variates that 

properly mimic the five distribution parameters. On the contrary, KDE performs 

rather poorly; in several instances it is outperformed by the proposed algorithm, re­

gardless of whether moments are matched. These results were a bit disappointing 

for KDE, given the underlying distribution is bivariate normal with almost zero cor-
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relation. One weakness of the proposed algorithm is apparent in the O'y column. 

This weakness can be partially overcome by implementing the alternating algorithm 

described in the previous chapter. 

n N /-LX f.LY O"x O'y p algorithm 
100 10 9407 9388 9483 9463 9399 moment matched algorithm 

9400 9394 9493 9468 9393 proposed algorithm 
9420 9401 8711 9386 861 KDE 

100 40 9063 9051 9161 9121 7801 moment matched algorithm 
9010 9001 9088 9033 7682 proposed algorithm 
9123 9034 7132 9106 0 KDE 

200 10 9458 9443 9549 9531 9344 moment matched algorithm 
9432 9431 9539 9521 9347 proposed algorithm 
9450 9466 8967 9478 1304 KDE 

200 40 9291 9255 9382 9334 7094 moment matched algorithm 
9224 9212 9336 9294 7082 proposed algorithm 
9319 9285 7756 9261 0 KDE 

Table 3.6: Confidence interval count for bivariate normal parameters and p = 0.99. 

There is no surprise that KDE had trouble inducing extremely high correlation, how­

ever, we did expect KDE to perform better in capturing the other distribution pa­

rameters. The proposed algorithm clearly outperformed KDE in inducing correlation. 

Using another distribution that is bounded below (e.g., the bivariate exponential) 

would be even more troublesome for KDE because it would produce negative vari­

ates. Choosing to reject the negative variates (which would be required in variate 

generation) induces bias. The same problem exists in KDE for the car mileage and 

time data presented earlier in which both X and Y were bounded above and below. 

The final limitation noted for the proposed algorithm is generation speed. While 

generating the first element of the random variate pair is fast, generating the second 

element requires creating the conditional piecewise-linear CDF, which is slow for 

large n. However, the algorithm benefits when high correlation exists in the observed 

variate pairs. High correlation results in a tight convex hull where once the first 

element of the random pair is generated, the conditional piecewise-linear CDF may 
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involve only a small number of data points, or in the most extreme case, may be 

uniformly distributed between the points where the x variate intersects the convex 

hull. 

3.5 Conclusions 

A nonparametric method of generating bivariate data was presented with examples in 

this chapter. The method is blackbox, synchronized, and effectively captures multi­

modal two-variable dependencies for most data sets. The method does not require 

any information about the underlying distribution of the empirical data, nor does it 

require joint density estimation as an intermediate step for variate generation. Thus, 

given an appropriate observed bivariate data set, a researcher is capable of generating 

variates without the risk of introducing error associated with generating from some 

incorrect parametric distribution. Given continuous bivariate data, this method is 

capable of producing variates efficiently, and, in the case of observed data falling into 

recognizable groups, the algorithm can be easily altered for suitable employment. 

In a comparison study, the method performs at least as well as an accepted KDE 

generation algorithm in terms of estimation quality for selected data sets. Three 

significant contributions of the proposed algorithm are (1) it is completely nonpara­

metric and requires no parameters from the modeler, (2) it is simple to implement, 

and (3) it is a one-to-one (synchronized) variate generation algorithm whose resulting 

random vectors are capable of representing multi-modal bivariate distributions and 

will not produce impossible variates for fixed supports. In summary, the algorithm's 

advantages over sampling from a KDE algorithm are 

• no reliance on selected kernel density function 

• no reliance on selected smoothing parameter 

• cannot produce unrealistic variates (e.g., negative times from a service time 
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distribution). 

Three decisions are required from the modeler that are dependent on the data 

set. First, the modeler must decide if the data should be stretched in order to match 

moments. Second, the modeler must decide whether to use the convex hull associated 

with the (stretched or raw) data, or use a rational convex hull as in the case of the 

warranty data. Finally, the modeler must decide whether a single convex hull, as in 

Figure 3.4, or multiple convex hulls, as in Figure 3.6, is appropriate. 
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Chapter 4 

Control Chart Constants for 

Non-Normal Sampling 

4.1 Introduction 

Control charts are widely used in industry to provide insight on process behavior and 

identify assignable causes associated with a shift in the mean value of the process. 

These charts were first proposed in a memo by Walter Shewhart in 1923 at Bell 

Telephone Laboratories. To create the control limits, estimates for the mean and 

standard error of the population are required, along with constants that serve as bias 

correction factors (Shewhart, 1980). The first control chart constants, then denoted 

by d2 and d3 (for the sample range), were proposed by Tippett (1925). McKay 

and Pearson (1933) obtained the exact distribution of the sample range for n = 3 

observations drawn from a normal distribution. Hartley and Pearson (1951) tabulated 

the fractiles of the mean of the sample range for n = 2 ton= 20 (Wheeler, 2000). 

The terms bias correction factor and control chart constant are used interchangeably. 

Bias correction factors for standard deviations followed a similar development. 

They too are based on an underlying normal distribution. For both sets of con­

stants, extensive work exists (Wheeler, 2000) showing the robustness of these con-
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stants for data from non-normal distributions. For the most part, similar constants 

for non-normal distributions do not appear in the literature for two reasons: (1) most 

applications involve sampling from normal populations, and (2) they are not easily 

computed. The purpose of this chapter is to offer an alternative method of computa­

tion using A Probability Programming Language (APPL), developed by Glen et al. 

(2001), to compute the exact values of these control chart constants. Additionally, 

APPL typically provides exact results rather than approximations. Although normal 

sampling can be assumed in the vast majority of statistical process control applica­

tions, occasions will arise where non-normal sampling is an appropriate assumption. 

The development here allows an engineer to easily obtain the appropriate control 

chart constants in these alternate settings. 

The aforementioned constants d2 and d3 relate to the distribution of the sample range, 

denoted by R. The correction factor d2 is a function of the mean of the sample range 

and the population standard deviation. Given a random sample X 1 , X 2 , ... , Xn from 

a population with cumulative distribution function F(x), probability density function 

J(x), finite unknown variance ui, and associated order statistics Xc1), Xc2), ... , X(n), 

the sample range, R, is 

R = Xcn)- X(l)· ( 4.1) 

The joint probability density function of the order statistics X(i) and Xcj) associ­

ated with a sample size n given by Hogg et al. (2005) is 

n! i-1 j-i-1 
fx<;J,x(j) (x(i)> X(j)) = (i _ 1)!(j _ i _ 1)!(n _ j)! [F(x(i))] [F(x(J))- F(x(iJ)] 

X [1- F(X(j))r-j f(x(i))f(x(j)) X(i) < X(j) 
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for integers 1 :S i < j :S n. For i = 1, j = n, this simplifies to 

X(l) < X(n)· 

(4.2) 

Burr (1967) uses a change of variable, X(n) = Xc1) + R (since, by definition R = 

X(n) - Xcl)) in (4.2) to find the joint density of X(l) and R and then integrates 

out Xcl) to find the probability density function of R. This, of course, works well for 

distributions with closed form cumulative distribution functions; however, cumulative 

distribution functions involving mathematically intractable integrals are problematic. 

Once the distribution of R is obtained, it is used it to correct bias by 

(4.3) 

Burr (1967) also suggests an easier approach to find E[R], which lends itself well 

to implementation in APPL. Using (4.1), for a sample of size n, the expected value 

of the sample range is 

(4.4) 

therefore, using ( 4.3) and ( 4.4), we can express d2 as 

This result can be implemented using the APPL RangeStat procedure for select 

distributions. This procedure returns the distribution of the sample range for a sample 

of size n. Equivalently, we can use the OrderStat procedure, and return d2 values 

exactly. For sampling from a normally distributed population we can always remove 

the mean by subtraction, resulting in a random variable with mean zero. For n = 3 

consider the APPL statements 

> n := 3: 
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>X := NormalRV(O, sigma): 

> (Mean(OrderStat(X, n, n)) - Mean(OrderStat(X, n, 1))) 

I sqrt(Variance(X)); 

which yield the exact value of d2 = 3/ .jir. Though this is convenient, APPL is only 

capable of returning the exact symbolic expression of d2 for n = 2 and n = 3. For 

n > 3, the problem is mathematically intractable and the integrals must be evaluated 

numerically. However, if population distribution parameter values are input for the 

code above, APPL is capable of solving for d2 when n 2: 3. Since ~ depends only 

on n (and is independent of f..l, a), assigning values to these distribution parameters 

does not affect ~. 

We proceed in a similar manner for d3 , which corrects for the standard deviation 

of the range. The relationship is 

d 
_ aR 

3--. 
ax 

Since APPL can compute the exact distribution of R, we can also obtain aR easily 

for select distributions. 

Example 1. Given that X 1, X 2 , and X 3 are iid exponential(>.) random 

variables, find the bias correction factors d2 and d3 for the sample range. 

The APPL statements 

> n - 3: 

> X - ExponentialRV(lambda): 

> R - Rang eSt at (X, n): 

> d2 - Mean(R) I sqrt(Variance(X)); 

> d3 - sqrt(Variance(R)) I sqrt(Variance(X)); 

yield 

and 
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Likewise, when n = 18, 

d = 42142223 ~ .440 
2 

12252240 
3 and 

d = v238357395880861 ~ 
1 260 3 12252240 . . 

Table 1 compares values for d2 and d3 , given the sample is drawn from exponential, 

normal, Rayleigh, and U(O, 1) distributions for sample sizes n = 2 ton= 20. These 

constants do not depend on the rate parameter >. (for the exponential and Rayleigh 

distributions) nor /.L or e7 (for the normal distribution). 

d2 d3 
n Expon Normal Rayleigh U(O, 1) Expon Normal Rayleigh U(O, 1) 
2 1.000 1.128 1.121 1.155 1.000 0.853 0.863 0.816 
3 1.500 1.693 1.681 1.732 1.118 0.888 0.897 0.775 
4 1.833 2.059 2.041 2.078 1.167 0.880 0.885 0.693 
5 2.083 2.326 2.300 2.309 1.193 0.864 0.866 0.617 
6 2.283 2.534 2.501 2.474 1.210 0.848 0.848 0.553 
7 2.450 2.704 2.663 2.598 1.221 0.833 0.830 0.500 
8 2.593 2.847 2.797 2.694 1.230 0.820 0.815 0.455 
9 2.718 2.970 2.912 2.771 1.235 0.808 0.802 0.418 
10 2.829 3.078 3.012 2.834 1.241 0.797 0.790 0.386 
11 2.929 3.173 3.100 2.887 1.245 0.787 0.779 0.358 
12 3.020 3.258 3.179 2.931 1.248 0.778 0.769 0.334 
13 3.103 3.336 3.250 2.969 1.251 0.770 0.759 0.313 
14 3.180 3.407 3.314 3.002 1.253 0.762 0.752 0.294 
15 3.252 3.472 3.373 3.031 1.255 0.755 0.745 0.278 
16 3.318 3.532 3.427 3.057 1.257 0.749 0.738 0.263 
17 3.381 3.588 3.477 3.079 1.259 0.743 0.731 0.250 
18 3.440 3.640 3.524 3.099 1.260 0.738 0.726 0.238 
19 3.495 3.689 3.568 3.118 1.261 0.733 0.720 0.227 
20 3.548 3.735 3.608 3.134 1.263 0.729 0.715 0.217 

Table 4.1: Comparison of d2 and d3 for exponential, normal, Rayleigh, and U(O, 1) 
sampling distributions. 

As shown in Table 1, APPL is able to calculate exact values of d2 and d3 for the 

exponential, Rayleigh, and standard uniform distributions. All other distributions 

required numerical integration to calculate d2 and d3 . So, in theory, we could estimate 

d2 and d3 for any arbitrary sampling distribution. While this might be novel, it is 
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not special to APPL because we are really using Maple's capability to estimate the 

result with numerical integration. If we do provide numeric values for parameters, we 

can take advantage of APPL to calculate the constants. In some cases, as illustrated 

in Example 2, APPL provides exact results. 

There may be applications (e.g., life testing associated with bulbs or fuses) where 

a non-normal distribution is appropriate, and this provides an easy way to calculate 

control chart constants. Additionally, Tadikamalla et al. (2008) substantiate non­

normal applications providing examples that calculate the upper and lower control 

limits for the logistic and Laplace distributions. Though they only consider symmet­

ric distributions, the same practice can be considered for nonsymmetric cases using 

APPL, with an added advantage of never referring to a chart calculated for specific 

values of n and kurtosis estimates. 

Example 2. Given that X 1 and X 2 are iid Weibull(2, 3) random vari­

ables, find the bias correction factor d2 for the sample range. The APPL 

statements 

> n 2: 

>X WeibullRV(2, 3): 

> d2 (Mean(OrderStat(X, n, n)) - Mean(OrderStat(X, n, 1))) 

I sqrt(Variance(X)): 

yield 

The APPL procedure OrderStat (X, n, r) computes the exact distribution of the 

rth order statistic drawn from a sample of size n drawn from a population described 

by the random variable X. 

In order to find d2 and d3 from first principles (as provided by Wheeler (2000)), 

given an underlying parametric distribution, we must assign values to the distribu­

tion parameters. Even with small sample sizes, the process control literature provides 
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well-established parameter estimation methods. However, given the normal distribu­

tion's wide acceptance in process control, current literature focuses on the normal 

distribution's mean J.L and standard deviation a, potentially suggesting an area of 

further work. Conceivably, if we knew enough about the observed process data to use 

a non-normal parametric model, we should also be confident in estimating the distri­

bution's parameters. Thus APPL provides an efficient foundation for calculating d2 

and d3 . 

Selecting a distribution to adequately model observed data has many troubling 

issues. If the researcher does not want to make assumptions accompanying a certain 

parametric distribution nor introduce potential error in selection, he or she can also 

create a distribution via bootstrapping with well-established statistical properties 

(Efron and Tibshirani, 1993). Once a probability distribution function is created 

using bootstrapping, APPL can compute the constants d2 and d3 as shown in Example 

3 using the BootstrapRV procedure. 

Example 3. Given the arbitrary probability distribution function fx (x) 

created by bootstrapping for the observed order statistics X(l) = 1, X( 2) = 

3, x(3) = 4, and X(4) = 7, compute the constants d2 and d3 for sample size 

n = 3. The APPL statements 

> data [1' 3' 4' 7] : 

> X ·= BootstrapRV(data): 

> R ·= RangeStat(X, 3): 

> d2 ·= Mean(R) I sqrt(Variance(X)); 

> d3 - sqrt(Variance(R)) I sqrt(Variance(X)); 

yield 

d2 = 19vl3/20 ~ 1.645 and d3 = h637 /60 ~ 0.856. 
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4.3 Constants c 4, c5 

Similar to d2 and d3 , the control chart constants c4 and c5 are also bias correction 

factors. However, as d2 and d3 corrected for the mean and standard deviation of the 

sample range R, c4 and c5 correct for the mean of the sample standard deviation, 

S, and its standard error. This is unusual because we usually discuss a sample's 

mean and standard deviation, but we are now focused on the sample's mean standard 

deviation and the variance of the standard deviation. We denote the mean of the 

standard deviation by f.Ls and its standard deviation by as. Thus the relationships 

are 

(4.5) 

and 

as= .jVar(S) = csax. (4.6) 

4.3.1 Normal Sampling 

The derivations of c4 and c5 are based on the fact that E [S2
] = al- and the well-known 

result 
(n- l)S2 

2 
rv Xn-l (4.7) 

for normal sampling (Hogg et al., 2005), where x;_ 1 denotes a chi square random 

variable with n - 1 degrees of freedom. The mean of the sample standard deviation 

is 
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Solving for c4 yields 

C40"X E [S] 

E [v'Si] 
,..------

e[ S'~=~·~] 
E [ o-x (n-1)S

2
] 

vn-=-r o-i 

= ~E[P.:]· 

E [Xn-1] 
C4 = ;-:::---:;- , 

vn-1 

where Xn- 1 denotes a chi random variable with n-1 degrees of freedom. The standard 

deviation of the sample standard deviation is 

Solving for c5 yields 

)Var[S] 

J E [S2] - [E [S]]2 

Jo-i- E[S] E[S] 

c5 = 

o-2 _ ~E [ C2x2 ]
2 

X n _ 1 y Xn-1 

1 
_ E [Xn-1] 2 

n-1 

E [Xn-1] 2 

1 - __:;.___:c.... 

n -1 

The result provided in ( 4. 7) yields a distinct advantage for finding c4 and c5 in the 

normal sampling case. We can use APPL to perform the calculations independently 

of the parameters u and J.t, producing the exact results for c4 and c5 which depend 

only on the sample size n. The procedure c4(n) is given below. A similar procedure, 
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c5 (n), was written for c5 . 

> c4 := proc(n) 

> local X, c4; 

> X := ChiRV(n - 1): 

> c4 := Mean(X) I sqrt(n - 1): 

> return(c4); 

> end proc; 

A call to c4 and c5 with the argument n = 4, for example, yields the exact values 

2V6 
c4 = r:;; ~ 0.921 

3y7f 
and 1g4 c5 = - 9 - - ~ 0.389. 

3 7f 

These symbolic expressions are somewhat novel in that these constants are typically 

tabulated in decimal form rather than exactly in symbolic form. Furthermore, to 

illustrate the value of the APPL application and Maple's symbolic computational 

ability, consider the unlikely large sample size n = 100. A call to c4 (1 00) produces 

c = 39614081257132168796771975168v'22 ~ 0.997. 
4 

105095150568296034723763017975vlrr 

The associated exact expression for c5 is much too large to fit here, but the numerical 

value is c5 ~ 0.071. The CPU time to compute these constants is negligible. 

4.3.2 Non-Normal Sampling 

Given that observations X 1,X2 , ••. ,Xn, are sampled from a non-normal distribution 

calculating c4 and c5 is much more complicated. We first derive a general form of 

each, then investigate its calculation for select distributions. 
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Using (4.5), the general derivation of c4 is 

c4ax = E[S] 

= E [vfs2] 
,---------

E [ n ~It. (X,- X)'] 
1 E [ 

vn=I t,x;- 2nX' +nX'] 
1 E [ 

vn=I t,x;-nx'] 
1 E [ 

vn=I t Xl- [t xi] 2 

jn] . 
•=1 1=1 

Therefore, we calculate c4 as 

-1 [ 1 [ C4 =ax yn=l E 'txl- [txi]
2 /njj. 

•=1 •=1 

(4.8) 

In a similar manner, and using (4.6), it can be shown that a general expression for c5 

is 

Burr (1976) also presents c5 in terms of c4 via the relationship 

c5 = J1- c~. 

Therefore, if we are successful in finding c4 we can easily calculate c5 , narrowing 

the focus of evaluation to c4 . Substituting n = 2 into (4.8), we conclude that the 
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numerator, E{S), is 

The bias correction factor is then calculated via 

Given that the parameter e7x appears in the denominator of the expression, we require 

it to also appear in the numerator forcing a cancellation and a numerical c4 value that 

is independent of e7x. Unfortunately, this only occurs for distributions where a single 

parameter involving the standard deviation appears. The next example highlights 

such an occurrence. 

Example 3. Given that X 1 , and X 2 are iid exponential().) random vari­

ables, find the bias correction factor c4 for the sample standard deviation. 

The APPL statements 

>X ExponentialRV(lambda): 

> Y Difference(X, X): 

> g [[x -> -x, x -> x], [-infinity, 0, infinity]]: 

> Z Transform(Y, g): 

> Mean(Z) I sqrt(2 * Variance(X)): 

yield c4 = -12/2 ~ 0.707. 

APPL also successfully executes the same code for n = 2 for the normal distribution 

(c4 = J271r ~ 0.798, which matches then= 2 tabulated value exactly), exponential 

distribution (c4 = -12/2 ~ 0.707), Erlang distribution (c4 = 3/4), hyperbolic secant 

distribution (c4 ~ 0.768), Rayleigh distribution (c4 = ~ ~ 0.792), and the 

U(O, 1) distribution (c4 = ..;6j3 ~ 0.816). 
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When n = 3, the mean of the sample standard deviation is 

The appearance of the random variables XI, x2, and x3 at various positions in the 

expected value expression make the evaluation of E [S] more difficult. Monte Carlo 

simulation must be relied on to provide the bias correction factors c4 and c5 • Table 2 

provides estimates of c4 and c5 using ten million replications (which ensures that the 

factors are accurate to three digits after the decimal point) for the same distributions 

considered in Table 1. The n = 2 row and normal columns are consistent with the 

exact results provided by APPL. 

C4 C5 

n Expon Normal Rayleigh U(O, 1) Expon Normal Rayleigh U(O, 1) 
2 0.707 0.798 0.792 0.816 0.707 0.602 0.610 0.577 
3 0.797 0.886 0.882 0.912 0.604 0.463 0.472 0.410 
4 0.839 0.921 0.917 0.946 0.544 0.389 0.398 0.324 
5 0.865 0.938 0.935 0.962 0.501 0.346 0.354 0.272 
6 0.883 0.949 0.948 0.972 0.469 0.314 0.318 0.237 
7 0.897 0.957 0.956 0.977 0.443 0.289 0.294 0.212 
8 0.907 0.963 0.964 0.981 0.420 0.270 0.267 0.194 
9 0.916 0.967 0.967 0.984 0.401 0.254 0.254 0.180 
10 0.923 0.971 0.969 0.986 0.386 0.240 0.245 0.169 

Table 4.2: Values of c4 and c5 for exponential, normal, Rayleigh, and U(O, 1) sampling 
distributions obtained by Monte Carlo simulation. 

4.4 Conclusions 

The control chart constants d2 , d3 , c4 , and c5 can be calculated symbolically using 

a computer algebra system in the case of sampling from a normal population. In 

addition, d2 and d3 can be calculated symbolically for several non-normal popula­

tions and c4 and c5 can be calculated symbolically for several non-normal popula­

tions when n = 2. These calculations were performed with the aid of the Maple­

based APPL software, which is available at no cost to non-commercial users at 
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www. APPLSoftware. com. Monte Carlo simulation can be used to estimate control 

chart constants that can not be calculated symbolically. 
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Chapter 5 

Testing Conformance to Benford's 

Law 

5 .1 Introduction 

Frank Benford published "The Law of Anomalous Numbers" in 1938 in which he 

gathered over 20,000 data values from various fields (Benford, 1938). He correctly 

concluded the more general probability law suggesting that leading digits are not 

uniformly distributed over the natural numbers 1, 2, ... , 9. Simon Newcomb (1881) 

made a similar observation more than fifty years earlier in his 1881 article on the 

frequency of use in logarithm tables. He noted that the earlier pages in a book of 

common logarithm tables were more worn than the pages at the end of the book, 

suggesting these pages were referenced more frequently. Though both observations 

occurred more than fifty years apart, the authors' conclusions are amazingly similar, 

with Benford capturing most of the credit for the logarithmic phenomenon known 

today as Benford's law (Hill, 1996). In addition to the attention given to the distri­

bution of the first digit, Benford's law follows-up with a distribution of the second 

digit through the qth digit as well as their joint distribution. His case study in a wide 

range of applications (e.g., population, physics, voltage, addresses) lent additional 
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credibility to the probabilistic logarithmic relation 

Pr(X = x) = log10 (1 + 1/x), 

for x = 1, 2, ... , 9 (Larsen and Marx, 2006). We will refer to this as the Benford 

distribution. The wide range of applications of Benford's law includes the one-day re­

turn on stock market indexes (Ley, 1996), detecting accounting fraud (Nigrini, 1996), 

the distribution of the population of 3,141 counties in the 1990 U.S. Census (Nigrini 

and Wood, 1995), and election forensics (Mebane, 2006). It is the accepted method 

of testing data for human influence since such influence typically interrupts the nat­

urally occurring distribution of first significant digits. We refer to the first significant 

digit as the first non-zero digit in a number (e.g., the first significant digit of 213 is 

2 and the first significant digit of 0.00143 is 1). In addition, results concerning scale­

invariance (Pinkham, 1961), base-invariance (Hill, 1995), and mixtures (Rodriguez, 

2004) potentially offer even more utility in applying Benford's law. Benford and Ni­

grini suggest that data conforming to Benford's law satisfy the following conditions. 

(a) The data must be numeric (and not categorical) because the Benford distribution 

represents the frequencies of leading digits in numerical data sets. (b) The data must 

share a relation to the same phenomenon (e.g., residential addresses). Nigrini sug­

gests, for example, stock prices are influenced by competing economic and financial 

forces. (c) The data must not be restricted by minimum or maximum values thus 

restricting the support of possible values the random variable of interest might as­

sume. (d) The data must occur naturally (without human influence or bias), and they 

are not invented nor assigned, such as telephone numbers or social security numbers. 

Since these numbers can be allocated in any predetermined order, the distribution 

of leading digits in assigned numbers could be biased toward certain digits. (e) The 

data must contain at least four digits. 

This chapter suggests the use of the Kolmogorov-Smirnov (KS) test over the more 

traditional chi-square goodness-of-fit (GOF) test for assessing Benford's law. The KS 
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test accommodates small sample sizes and is exact under the null hypothesis. The 

performance of the two tests are compared for several alternatives. 

5.2 Traditional Conformance Testing 

An accepted method for testing conformance to Benford's law is the Pearson chi­

squared GOF test. Let X be a random variable having the Benford distribution. For 

the continuous random variable T with cumulative distribution function Fr(t) and 

associated iid observations t 1 , t2 , ... , tn, let the random variable Y be the leading digit 

in T and let y1 , y2 , ... , y9 be the tallys of the leading digits. Thus, the probability 

mass function for Y is (Leemis, et al., 2000) 

00 

Pr(Y = y) = :2:: [Fr(Y · 10i)- Fr((y- 1) · 10i)] 
i=-oo 

for y = 1, 2, ... , 9. The null and alternative hypotheses for the test are 

H0 : the random variable Y has the Benford distribution, 

Ha: the random variable Y does not have the Benford distribution. 

The chi-square goodness-of-fit test statistic for this test using the Benford probabilities 

is 
c = t [Yi- nlog10 (1 + 1/i)]

2 

i=I n log10 (1 + 1/i) 

Letting Pi = log10 (1 + 1/i) fori = 1, 2, ... , 9 the expression for the test statistic is 

The distribution of the chi-square statistic c is approximately x2 with eight degrees 

of freedom under H 0 when the expected number of observations in each cell exceeds 

five (i.e., nlog10 (1 + 1/9) = 0.0457n > 5::::} n > 0_ 0~57 = 109). The test measures the 

discrepancy between the observed cell frequency and the expected cell frequency. The 
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closer match between the observed and expected frequencies, the more plausible is 

the null hypothesis and vice versa. This test rejects the null hypothesis at significance 

level a if the test statistic exceeds xL., where a is a right-hand tail probability. 

Example 1. Consider the continuous probability density function 

1 
fr(t) = tln10 1<t<10 

which satisfies Benford's law exactly (for a detailed explanation see Leemis, 

et al., 2000). Using this distribution, we conduct a Monte Carlo simulation 

in which samples are generated from this distribution and then tested as 

described above. We arbitrarily set the significance level to a = 0.05 and 

use sample sizes n = 25, 50, and 100. The simulation tracks the fraction of 

time the null hypothesis is rejected in 500,000 replications. For each sam­

ple size, a confidence interval for the fraction of rejections is calculated as 

described by Leemis and Trivedi (1996). Since the test is asymptotically 

exact and the sample size n = 25 does not meet the cell requirement of at 

least five observations per cell we expect the resulting confidence interval 

coverage to differ from the nominal five percent. For n = 50 and 100, even 

though the n ~ 109 requirement is not met, it appears that the results 

are more reliable. We combine the results of the simulation with those for 

the next distribution below in Table 5.1. 

Now let the random variable W "-' U(O, 2). Furthermore, let V = 10w. 

Then the probability density function of V is 

1 
fv(v) = 2v In 10 1 < v < 100. 

If Y is the leading digit of V it can be shown that the probability mass 

function of Y has the Benford distribution (Leemis, et al., 2000). We 
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proceed as in the previous distribution for the random variable V. Ta­

ble 5.1 depicts confidence intervals for the fraction of rejections under H0 

for the various sample sizes. Only n = 100 produces intervals that cover 

the desired value 0.05 for both T and V. 

Distribution Fraction rejected under H0 

n = 25 n =50 n = 100 
fr(t) (0.0513, 0.0525) (0.0502, 0.0514) (0.0499, 0.0510) 
fv(v) (0.0516, 0.0528) (0.0500, 0.0512) (0.0496, 0.0508) 

Table 5.1: Confidence intervals (a= 0.05) for the fraction of tests rejected in 500,000 
replications. 

The confidence intervals in Table 5.1 depict the chi-square GOF test's dependence 

on sample size. This is problematic for the test for small sample sizes. We note the 

poor performance for n = 25 and n = 50 at capturing a = 0.05 despite the high 

number of replications conducted in the simulation. One additional shortcoming in 

both contrived examples involves the lower limit of the random variable's support. 

Typically the more general case for a random variable, say T, is desired such as t > 0. 

To capture the added requirement 0 < t < 1 we introduce the integer D such that D 

satisfies 

where T is a continuous random variable with positive support and such that the 

leading digit satisfies Benford's law. Using this notation we can capture the leading 

digit ofT for any magnitude of D, where -oo < D < oo. 

Using the chi-squared GOF test statistic cas defined above, we can calculate the 

exact distribution of the test statistic by enumerating the 9n possible outcomes for 

a sample size n. The simplest distribution occurs when n = 2. For a sample of size 
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n = 2 the generalized probability distribution function is 

for i,j, k = 1, 2, 0 0 0, 90 Using each of the 92 = 81 outcomes, the probability of 

rejecting H0 can be calculated exactly for a given sample size n by comparing c to 

xL,o Table 502 provides the exact probabilities of rejecting H0 at a= 0005 for n = 2 

upton= 12 and Monte Carlo estimates (due to CPU limitations) when n > 120 

n 

Pr (reject Ho) 

n 

Pr (reject Ho) 

Table 502: Probability of rejecting H0 under H0 0 

5.3 Alternative Method for Conformance Testing 

For the probability distribution function (PDF) given in Example 1, the cumulative 

distribution function (CDF) is 

ln t 
Fr(t) = ln 10 1 < t < 10 

and the associated variate generation algorithm via inversion of the CDF is 

where U,...., U(O, 1)0 We now define a new random variable Z as 

Z = log10 T mod 10 
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For this new random variable Z, using the substitution forT in the variate generation 

algorithm 

Z log10 T mod 1 

log10(10u) mod 1 

U mod 1 

u 

which is U(O, 1). Thus Z "' U(O, 1). This suggests that testing whether the leading 

digit of this distribution conforms to Benford's distribution is equivalent to testing 

whether Z"' U(O, 1). A more detailed example follows. 

Example 2. Let the continuous random variable W have the piecewise 

pdf 

fw(w) =I ~~w 
9-3w 
-4-

0 < w < 1 

1<w<2 

2 < w < 3, 

and consider the transformation T = lOw. The resulting pdf for T is 

l
int 

t ln(I0)2 

t _ 1 In t 
fr( ) - 2tln10 - 4tln(l0)2 

9 31n t 
4t In 10 - 4t In( 10)2 

1<t<l0 

10 < t < 100 

100 < t < 1000, 

which is known to satisfy Benford's law exactly (Leemis, et al., 2000). 

The cdf of Z = log10 T - D, with W = log10 T from the transformation 
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above, is 

Fz(z) Pr(Z :::; z) 
CXl 

d=-CXl 

2 

L Pr(d:::; W < d + 1) · Pr(W- d:::; zld:::; W < d + 1) 
d=O 

1 1 
= 2 · Pr(W ::S z!O ::S W < 1) + 8 · Pr(W- 1 ::S zl1 ::S W < 2) + 

3 8 · Pr(W- 2 ::S zl2 :::; W < 3) 

11z 11z 31z = 2 0 2ydy+8 0 (2-2y)dy+8 0 (2-2y)dy 

z2 2z - z2 6z - 3z2 

-+ +---
2 8 8 
z 

for 0 < z < 1. Thus Z ,...., U(O, 1). The geometry associated with the 

pdf of W is shown in Figure 5.1. The solid lines are the PDF of W and 

the dashed lines are the segments outside of the range [0, 1] translated to 

[0, 1], along with the resultant sum. This remarkable result shows that if 

the segments of the pdf are translated to 0 < w < 1 and sum to unity, 

then Benford's law is satisfied exactly. This generalizes in the following 

theorem. 

Theorem 5.1 If T is a continuous random variable with support that is a subset 

of (0, oo) and log10 T mod 1 ,...., U(O, 1), then the leading digit ofT has the Benford 

distribution. 

Proof Let W = log10 T and D as defined earlier. Substituting W for log10 T results 

in W mod 1 ,...., U(O, 1). The mod operation effectively removes the quantity left of 

the decimal point in W. This is equivalent to shifting W left as shown in Figure 5.1 

of Example 2. This shifting can also be characterized as subtracting the order of 
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fw(w) 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 w 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 5.1: Geometry associated with Example 3. 

magnitude W- D. This also removes the digits in W left of the decimal place, which 

establishes the support of Z = log10 T-D as [0, 1]. Consider the leading digit, Y = y. 

Summing over all possible orders of magnitude D yields 
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00 

Pr(Y = y) 
d=-oo 

00 

d=-oo 
00 

L Pr (d + log10 (y) ~ log10 (T) < d + log10 (y + 1)) 
d=-oo 

00 

L Pr (log10(y) ~ log10(T)- d < log10 (y + 1)) 
d=-oo 

00 

d=-oo 

Fz(log10 (y + 1))- Fz(log10(y)) 

log10 (y + 1) -log10(y) 
y+1 

log10 --
y 

log10 (1 + 1/y), 

for y = 1, 2, ... , 9, which is the probability mass function for the Benford distribution . 

• 
Though it would be desirable for Theorem 5.1 to be if and only if, the converse of 

the theorem is not true. Consider the following counter-example. Let the continuous 

random variable T have pdf 

h(t) = log10 (1 + 1/i), i:St<i+1; i = 1,2, ... ,9. 

This conforms exactly to the Benford distribution where the support is limited to 

only the first order of magnitude, making the subtraction of D unnecessary. Using 

the transformation technique, the distribution of W = log10 T is 

fw(w) = log10 ( i: 
1

) ·ln(10)·10w, i=1,2, ... ,9 
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which is clearly not uniformly distributed on the interval (0, 1). Therefore, Theo­

rem 5.1 applies for a specific class of Benford populations as illustrated in Examples 1 

and 2. 

5.4 Testing via Kolmogorov-Smirnov 

The result from Theorem 5.1 allows use of the Kolmogorov-Smirnov (KS) test. Under 

the null hypothesis, testing for conformance to the Benford distribution is equivalent 

to testing log10 T mod 1 against the standard uniform distribution. There are two 

immediate benefits arising from this alternate test, (a) the KS test is exact and (b) the 

KS test is appropriate for small sample sizes (the rule of thumb required n > 109 

for the chi-square GOF test). The results for Table 5.2 were extended to n = 40 

for a = 0.05 and a = 0.01 in Figure 5.2. The same probabilities were calculated 

for values upton= 120, however, the behavior is as expected for n > 40, thus we 

chose n = 40 as the upper limit on the plot for clarity. As depicted, the KS test is 

exact for n 2: 1, providing superior performance over the chi-square GOF test. As 

n approaches 109, the chi-square GOF test probability of rejecting H0 is sufficiently 

close to the associated KS value. The stellar performance of the chi-square GOF 

test for n = 2 and a = 0.05 is purely coincidental. It would also be of interest to 

compare the two techniques for mixtures of distributions that morph from exactly 

Benford to some non-Benford distribution associated with the alternative hypothesis. 

To test these instances, we first fix the sample size and significance level at n = 50 

and a = 0.05. We then plot the power curves for the two tests as the distribution 

morphs from a Benford population to some non-Benford distribution by introducing 

a biased coin flip variable, where with probability p a non-Benford variate is produced 

and with probability 1 - p a Benford variate is produced. The chosen non-Benford 

distributions, all with support on 1 ~ t < 10, are (a) U(l, 10) (b) anti-Benford 

(c) triangular(!, 5.5, 10) and (d) inverted triangular. The anti-Benford distribution 
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has pdf 
1 

fr(t) = (11- t) ln(10) 

and the inverted triangular distribution has pdf 

{ 

22/81 - 4x/81 
fr(t) = 

4x/81 - 22/81 

1 ~ t < 10, 

1 ~ t < 5.5 

5.5 ~ t < 10. 

The Monte Carlo experiment consists of ten million replications for each value of 

p, the probability the distribution is other than Benford. We increment p by 0.01, 

providing 101 points for each power curve. For each replication the KS and chi-square 

GOF test statistics are compared to the associated critical values. The experiment 

returns the proportion of outcomes that reject the null hypotheses. Figure 5.3 provides 

side-by-side comparisons for each of the chosen distributions. 

For the uniform and triangular distributions, the power curve of the KS test dom-

0.08 

0.06 

0.04 

X2 GOF, ex = 0.01 
0.02 

KS, ex = 0.01 
0.00 

0 10 20 30 40 

Figure 5.2: Probability of rejection under H 0 for the KS and chi-square GOF tests 
for various sample sizes. 
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Figure 5.3: Power curves for the KS and chi-square GOF tests. 

inates the chi-square GOF test. The anti-Benford distribution exhibits indifference 

when comparing the power curves and finally, the inverted triangular distribution 

favors the chi-square GOF test. Since the inverted triangular distribution occurs less 

frequently in practice than the others, we recommend the KS GOF test over the 

chi-square GOF test. 
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5.5 Conclusions 

Due to the availability of diverse digital data, the opportunity for leading digit statis­

tical testing is becoming more prevalent in government and industry. Thus Benford's 

law (especially the distribution of the leading digit) is being applied to many diverse 

circumstances in the current literature. The chi-squared GOF test is the current 

standard for checking conformance to Benford's law. Although this test is asymptot­

ically exact, it requires a sufficiently large sample size before yielding reliable results. 

Additionally, for smaller sample sizes, the probability of rejecting the null hypothesis 

under H 0 can be erratic rather than monotonic with increasing sample size. An alter­

native test, the KS test, is appropriate and provides better performance as measured 

by power, exactness, and flexibility in sample size for the class of Benford populations 

where for the continuous random variable T, log10 T mod 1 "'"' U(O, 1). This test is 

easy to implement and offers the additional advantage of the ability to test small 

samples. 
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Chapter 6 

'fransient Queueing Analysis 

6.1 Introduction 

Many traditional simulation studies analyze queueing systems in steady-state, requir­

ing appropriate warm-up periods and associated long simulation runs. However, in 

many cases the system being modeled never reaches steady-state; thus steady-state 

simulation results do not accurately portray the system behavior. The ability to ana­

lyze transient results associated with such models is often complicated by intractable 

theory, leaving simulation as the only method for analysis. Further complicating the 

transient analysis is the effect of initial conditions (Kelton and Law, 1985). Since 

steady-state results depend on running the system long enough to negate the impact 

of initial conditions, these steady-state results reveal nothing about the transient 

behavior of the queueing system. Our purpose here is to combine new and exist­

ing results in transient queueing analysis with a symbolic engine in computational 

probability. 

There are many classes of queueing systems where a transient analysis is required, 

e.g., service businesses often model queues that never reach equilibrium. Recognizing 

the need to develop theory for transient results, as opposed to steady-state results, 

has resulted in a wide literature in this area. Initial work in transient analysis ironi-
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cally appeared as an attempt to measure when a system achieved equilibrium. Law 

(1975) notes the consequences of failing to adequately account for the initial transient 

period, leading to Gafarian, et al. (1976) outlining a comprehensive framework for 

the initial transient problem. Morisaku (1976) addresses the time to equilibrium in 

simulations modeling the M / M /1 queue and provides schematics for· the transition 

probabilities given k ~ 0 customers initially present at time t = 0. Pegden and Rosen­

shine (1982) provide a closed-form solution for the probability of exactly i arrivals 

and j servicings over a time horizon of length t in an M / M /1 queue starting empty 

and idle, allowing the calculation of certain performance measures for a specified time 

period. Odoni and Roth (1983) take an empirical approach to compare observed and 

predicted transient state queue length for the M / M /1 queue, noting that for small 

values of t the expected queue length is strongly influenced by initial conditions, and 

provide a good approximation for an upper bound of time to steady-state. Kelton and 

Law (1985) consider the M/M/s (s ~ 1) queue and provide expressions to calculate 

the probabilities of having up to n + k customers in the system upon the arrival of 

the nth customer, where k is the number of customers in the system at time t = 0. 

They then apply these calculations to a variety of measures of performance with 

implications to convergence on steady-state delays and offer methods for choosing 

queue initialization in simulation. Much of the work in this chapter is motivated by 

their results. Kelton (1985) extends the previous work by considering M / Em/1 and 

Em/ M /1 queues. Parthasarathy (1987) provides a transient solution for the proba­

bility that there are n customers in the system at timet for an M / M /1 queue. Abate 

and Whitt (1988) use Laplace transformations to analyze some transient results of 

interest in the M/M/1 queue. Leguesdron, et al. (1993) provide transient probabil­

ities for the M/M/1 queue by inverting the generating function of the uniformized 

Markov chain describing the M / M /1 process. In this chapter we will focus on the 

transient analysis of the M / M /1 and the more general M / M / s queues, specifically 

on the distribution of the nth customer's sojourn time, which is the sum of the nth 
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customer's delay time and service time. 

The MIMis queue is defined in Section 6.2 for a positive integers, and a method 

is given for calculating the probability distribution of the number of customers an 

arriving customer sees upon arrival to an MIMI s queue. Section 6.3 describes how the 

sojourn time distribution is calculated for a given customer in an MIMI s queue with k 

customers initially present in the system, k ~ 0. Section 6.4 includes examples using 

the implemented procedures to calculate exact sojourn time distributions, related 

measures of performance, and graphical illustrations for varying parameters such 

as traffic intensity and number of customers in the system. Section 6.5 offers two 

approaches for calculating the covariance and correlation among customers in an 

M I M 11 queue. Section 6.6 extends the covariance and correlation calculations by 

automating the process of finding the joint probability distribution function between 

two customers, and provides the exact covariance and correlation calculations for 

varying traffic intensities. Section 6. 7 concludes the chapter by reviewing the content. 

Commented code is available in the appendices for all computations conducted here. 

6.2 Basics of the M/M/s Queue 

The MIMI s queue is governed by iid exponential inter arrival times (the arrival stream 

is a Poisson process) with arrival rate >., and iid exponential service times among s 

identical servers, each with service rate f..L· The interarrival times and the service 

times are mutually independent. The traffic intensity of the system is p = >.j SJ..L. The 

system consists of a single queue with customers waiting to be serviced by one of the 

identical s parallel servers. If an arriving customer finds at least one idle server, the 

customer immediately proceeds to service; otherwise the customer joins the single 

queue of those waiting for service in a first-come, first-served manner. To achieve 

classic steady-state results the traffic intensity must satisfy p < 1. This critical 

assumption is not required in transient analysis, described here, because the system 
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of interest never reaches equilibrium. 

Let Pk(n, i) be the probability that upon the arrival of the nth customer there are 

i customers in the system including the nth customer (in queue or in service), given 

k customers are present at time t = 0. Using propositions provided by Kelton and 

Law (1985), reprinted here for completeness (proofs are available in the reference), 

and a recursion algorithm, Pk(n, i) for i = 1, 2, ... , n + k can be computed. Using 

these probabilities, it is possible to find the distribution of the sojourn time for the 

nth customer in an MIMI s queue, given k customers are present at time t = 0. 

Proposition 1 addresses the case of no exits prior to the nth customer's arrival, given 

k ~ 1. Proposition 2 is identical to Proposition 1 except that the system is empty 

and idle at t = 0 (i.e., k = 0). Proposition 3 addresses the case that the first customer 

finds i - 1 other customers present for k > 0. Proposition 4 is the more general case 

that customer n ~ 2 finds i other customers present, given k ~ 0. 

Proposition 1. If k ~ 1, then for n ~ 1, 

1 
[pi(P + l)t if k ~ s 

Pk(n,k+n)= pniTI;=1 [p+(k+j-1)ls] if k+n$_s 

pnl [(p+ 1)n-s+kTI;;:~[p+ (k+ j -1)lsJ] if k < s < k+n. 

Proposition 2. For n ~ 1, 

if n $_ s 

n > s. 

Proposition 3. If k ~ 1, then for 2 $_ i $_ k, 

{PI [p + (i- 1)ls]} n~=~+l {1- PI [p + (k- j + 1)ls]} if k $_ s 

PI(P + 1)k-i+2 

{PI [(p+ 1)k-s+l [p+ (i -1)lsl]} · 

n;:~ {1- PI [p + (s- j)ls]} 
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Proposition 4. For n 2: 2, and 2 ::; i ::; k + n- 1, 

[pl(p + 1)]2:::~~:_.-11 [1I(P + 1)]j-i+l Pk(n- 1,j) if i > s 

{p/ [p + (i- 1)ls]} · 

Pk(n, i) = { 2:::;:~_ 1 [ f1t:;+
1 
{1- PI [p + (j- h + 1)1 s]}] · 

Pk ( n - 1, i) + ( TI~~i1 { 1 - PI [p + ( s - h) Is]}] · 
I:~::- 1 [1l(p+1)]j-s+lpk(n-1,j)} if i:Ss. 

Using these four propositions, Pk(n, 1) is calculated by subtracting the comple­

mentary probability from one. These results are coded in the Maple procedure· 

Queue (X, Y, n, k, s), where 

• X is the exponential interarrival time distribution, 

• Y is the exponential service time distribution, 

• n is the index of the customer of interest, 

• k is the number of customers in the system at time t = 0, 

• s is the number of identical parallel servers. 

The procedure is written in Maple and uses A Probability Programming Language 

(APPL), which can be downloaded for free at www. APPLsoftware. com and is de­

scribed in Glen, et al. (2001). We choose to calculate the distribution of the sojourn 

time because it is a purely continuous random variable enabling us to exploit asso­

ciated procedures in APPL. The Queue procedure and associated subprocedures are 

provided in Appendix D. The sojourn time distribution results provided by Queue 

were checked against a percentile comparison of n = 10,000,000 sojourn times cre­

ated by the C code in Appendix E. 
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6.3 Creating the Sojourn Time Distribution 

Once the necessary Pk(n, i), i = 1, 2, ... , n + k, probabilities are calculated, the exact 

sojourn time distribution for the nth customer can be calculated. We define Xn as 

the number of customers, including customer n, in the system at time t, the arrival 

time of the nth customer. The possible values of Xn can vary from a minimum of 1, 

which occurs when customer n arrives to an empty queue, to a maximum of n + k, 

which occurs when 0 exits occur prior to customer n's arrival, matching the possible 

values for i in the expression Pk ( n, i) above. The mathematical derivations for both 

the M I M 11 and MIMI s queues make extensive use of the memory less property, 

permitting the construction of the distribution of Tn, the sojourn time of customer 

-n. We present each case separately below. 

6.3.1 Distribution of Tn for the M/M/1 Queue 

For an M I M 11 queue starting empty and idle, the delay time of the first customer 

is zero because the customer proceeds directly to service upon arrivaL Therefore, 

the first customer has an exponential(p.) sojourn time distribution. Conditioning on 

customer 1's service time, one can calculate the probabilities of customer 2 arriving 

before and after customer 1 finishes service. These well-known results (Kleinrock 

(1975), Hillier and Lieberman(2005), Winston (2004)) are 

P(Y<X)=~, 
/\+p. 

>. 
P(X < Y) = -­

>.+p. 

where X is an exponential(>.) interarrival time and Y is an exponential(p.) service 

time. The first probability represents customer 2 proceeding directly to service, in 

which case his sojourn time is simply his service time, which is exponential(p.). The 

second probability represents the likelihood that customer 2 will delay prior to service. 

Using the memoryless property, customer 2 delays an exponential(p.) time before 

being serviced in an additional exponential(p.) time. Using these two probabilities, 
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it is easy to see that customer 2's sojourn time distribution is a mixture, where 

the mix probabilities are the P0 (n, i)'s and the distributions are determined by the 

combinations of delays and services potentially encountered. It is well known that for 

X 1, X 2 , ... , X n iid exponential (A) random variables that 

n 

L xi"" Erlang(.X, n). (6.1) 
i=l 

Using this result, the MIMI 1 queue sojourn time distribution for k = 0 initial cus­

tomers generalizes very elegantly to include k > 0, as indicated in Table 6.1. Line i 

of the table occurs with probability Pk (n, i) and lists the distribution of the sojourn 

time for the nth customer, conditioned on i customers being in the system upon his 

arrival. 

Conditional sojourn 
Xn Delay Service time distribution 
1 0 exponential(J.L) exponential(J.L) 
2 exponential(J.L) exponential(J.L) Erlang(J.L, 2) 
3 Erlang(J.L, 2) exponential(J.L) Erlang(J.L, 3) 
4 Erlang(J.L, 3) exponential(J.L) Erlang(J.L, 4) 

n+k Erlang(J.L, n + k - 1) exponential(J.L) Erlang(J.L, n + k) 

Table 6.1: Conditional sojourn time distributions for the M I M 11 queue. 

Let 9i(t) be the PDF of an Erlang(J.L, i) random variable. Using the conditional 

sojourn time distributions for i = 1, 2, ... , n + k potential customers in the system, 

each with probability Pk(n, i), the PDF for the nth customer's sojourn time Tn is the 

mixture 
n+k 

fn(t) = L Pk(n, i)gi(t) t > 0. (6.2) 
i=l 

This result is simple in the MIMI1 case because we can take advantage of (6.1), 

resulting in a mixture of n + k Erlang distributions. 
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6.3.2 Distribution of Tn for the M/M/ s Queue 

Givens > 1 parallel identical servers, the nth customer's sojourn time distribution is 

still a mixture of n + k conditional sojourn time distributions. However, each distribu­

tion might be more complicated. For illustration, consider an M I M 13 queue starting 

empty and idle with exponential(.\) arrivals and three identical exponential(J.L) servers. 

It is clear that for customers 1, 2, and 3, the sojourn time is exponential(J.L) since all 

three customers proceed directly to service. Therefore, in the general case, for the 

number of customers in the system including customer n, which we defined as Xn, 

when Xn ::; s the conditional sojourn time distribution is exponential(J.L). However, 

if Xn > s, then the nth customer experiences a delay while observing Xn- s service 

completions. When s > 1 and Xn > s, the service distribution observed by customers 

in queue is exponential with rate SJ.L. Using this result, it is apparent that the delay 

time for the nth customer is the sum of Xn- s independent exponential(sJ.L) random 

variables, and using (6.1) is Erlang(sJ.L, Xn - s). To calculate the nth customer's 

sojourn time for a particular value of Xn, we sum his delay time and his service 

time. Table 6.2 shows the distributions conditioned on the number of customers Xn 

encountered by customer n (including himself) for the M I M 13 queue, given k = 0 

customers present at time t = 0. The APPL procedure Convolution calculates the 

distribution of a sum of independent random variables. We use the symbol EB to 

represent convolution. 

Xn Delay Service Conditional sojourn time distribution 
1 0 exponential(J.L) exponential(J.L) 
2 0 exponential(J.L) exponential (J.L) 
3 0 exponential(J.L) exponential (J.L) 
4 exponential(3J.L) exponential(J.L) exponential(3J.L) EB exponential(J.L) 
5 Erlang(3J.L, 2) exponential(J.L) Erlang(3J.L, 2) EB exponential(J.L) 

n Erlang(3J.L, n - 3) exponential(J.L) Erlang(3J.L, n- 3) EB exponential(J.L) 

Table 6.2: Conditional sojourn time distributions for the M I M 13 queue with k = 0. 
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Since Xn represents the number of customers in the system upon arrival of the 

nth customer, including himself, the first row in Table 6.2 corresponds to customer n 

arriving to an empty system and the last row corresponds to no service completions 

prior to customer n's arrival. The general form for the MIMI s sojourn time prob­

ability density function is identical to (6.2), however, in the MIMis case each 9i(t) 

can potentially require an additional step to calculate the distribution of a sum of 

random variables. 

6.4 Transient Analysis Applications 

It is apparent that calculating (6.2) for large n is tedious. Kelton and Law (1985) 

acknowledge the computational difficulty in achieving the Pk(n, i) probabilities alone. 

Conducting the added steps of up ton-s convolutions for theM I M Is queue and then 

mixing the resulting conditional distributions with the appropriate probabilities can 

be complicated to implement. APPL provides the underlying computational engine 

to achieve exact results for such problems. As mentioned earlier, the APPL procedure 

Queue(X, Y, n, k, s) returns the exact sojourn time distribution for customer n. 

Queue recursively calls MMsQprob(n, k, s), which uses recursion to calculate the 

necessary Pk(n, i) probabilities. APPL is capable of symbolic results, as illustrated 

in Examples 1 and 2. 

Example 1. Consider an MIMI1 queue with arrival rate .X and service 

rate J.L starting empty and idle at time t = 0. For the fourth customer, 

calculate the probabilities P0 ( 4, i) for i = 1, 2, 3, 4. 

The APPL command MMsQprob(4, 0, 1) returns the exact symbolic 
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probabilities 

Po(4, 1) 
5p2 + 4p + 1 

(p + 1)5 

? 0(4,2) = 
p (5p2 + 4p + 1) 

(p + 1)5 

Po(4,3) 
p2 (3p+1) 

(p + 1)4 

Po(4,4) = (p+ 
1

)3 , 

where p = )..jp,. It is easy to verify that for any p > 0, "L:=I P0(4,i) = 1, 

as required. For example, a simple substitution letting p = 9/10 yields 

? 0 (4, 1) 
865000 

0.34933983 ~ 

2476099 

Po(4, 2) 
778500 

0.31440585 = ~ 

2476099 

Po(4, 3) 
29970 

0.22997061 ~ 

130321 

Po(4, 4) 
729 

0.10628371. = -- ~ 
~ 

6859 

Example 2. For the queue described in Example 1, calculate the fourth 

customer's sojourn time distribution, mean sojourn time and sojourn time 

variance. 

The APPL statements 

X:= ExponentialRV(lambda); 
Y := ExponentialRV(mu); 
T := Queue(X, Y, 4, 0, 1); 
Mean(T); 

Variance (T) ; 

calculate the desired results. The first two lines define the interarrival and 

service time distributions, while the third line calculates the fourth cus­

tomer's sojourn time distribution. The last two lines are self explanatory. 

100 



Chapter 6. Transient Queueing Analysis 

The resulting distribution is 

Using J4(t) above, the Mean and Variance commands return 

and 

(181j.t2 A8 + 484j.t3 A7 + 816j.t4A6 + 868j.t5 A5 + 574j.t6 A4+ 

244j.t7 A3 + 40j.tA9 + 68j.t8 A2 + 12j.t9 A+ j.tlO + 4A10) I 
(J.L2 (A+ J.L)lO) . 

Substituting A = 1 and J.L = 10/9, the results simplify to 

f 4 ( t) = 
5000 

e-10/9
t (361t3 + 2109t2 + 5190t + 5190) t > 0 

66854673 ' 

E [T J = 23323347 ~ 
4 12380495 ~ 

2.50205566. 

1.88387839, and V [T4] = 
383506725720906 
153276656445025 

The CPU time associated with the examples is negligible. Examples 1 and 2 rep­

resent simple applications of these procedures that circumvent time intensive hand­

calculations. They serve only as indications of more challenging problems solvable 

using these procedures. 

Example 3. Calculate the mean sojourn time of the 30th customer in an 

M/M/2 queue with arrival rate A= 1, service rate J.L = 9/20 (p = 10/9), 

and k = 3 customers initially present. 

The mean can be calculated in a single APPL statement by embedding 
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the function calls 

Mean(Queue(ExponentialRV(1), ExponentialRV(9/20), 30, 3, 2)); 

which yields 

207 4 70302076553093092838324 78 853310563 2236520526343624 7313994 0556987510172876794 6601484880138641283 5644 7 4 794 93554887634 0 
2153404667282007194 786000335221029668922469167884251043145507 337 4 9941439 539486606617833 59707 58 7864 51263 877164 5692063053 

or, to 10 digits, 9.634524585. 

Being able to represent the sojourn time distribution for the nth customer in closed 

form also provides valuable information on asymptotic behavior for queueing systems, 

including steady state convergence rates for different initial conditions. Figure 6.1 

shows the mean sojourn time for customer n = 1, 2, ... , 120 in an M/M/1 queue 

with >. = 1, J.L = 10/9, and p = 9/10 for several values of k. The points that are 

plotted have been connected by lines. As expected, despite the initial condition, 

all cases appear to move toward the steady-state value of 9 with increasing n. The 

horizontal axis is only limited to n = 120 for display purposes and in fact, identical 

computations were carried out for n > 300 customers to verify convergence. However, 

as shown in the cases where k = 6 and k = 10, the convergence to steady-state is 

not always monotone. Additionally, in testing various traffic intensities, the rate 

of convergence to steady-state increases rapidly with decreasing traffic intensity for 

varying values of k. 

APPL also has the ability to calculate the closed-form cumulative distribution 

function (CDF) for the nth customer's sojourn time permitting CDF comparisons 

for varying n as well as distribution percentiles for a given customer. The procedure 

call CDF(T) returns the exact CDF for customer 4 {from Example 1). Figure 6.2 

displays the sojourn time CDF for varying n with fixed k = 0 and p = 9/10. The 

differences in CDFs across n correspond to the increasing mean attributed to the 

delays experienced by successive customers, e.g., customer 2 has delay time zero or 

exponential(J.L) whereas the nth customer (for n > 2) faces a finite mixture of n 

potential delay distributions. The CDF associated with n = oo corresponds to the 
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Figure 6.1: M/M/1 mean sojourn time for p = 9/10 given kat t = 0. 

steady-state distribution of the sojourn time, which is exponentially distributed with 

a mean of 9 (Kleinrock, 1975). 

Varying k for an M j M /1 queue also provides another basis for comparison of 

CDFs. Figure 6.3 fixes n = 2, p = 9/10, and plots the resulting CDFs across k. 

Kelton and Law (1985) make a similar comparison using convergence to steady state 

delay time. Using the CDF for multiple values of k allows direct comparison of sojourn 

time percentiles for customer n. As depicted, the sojourn time CDF for customer 2 is 

extremely sensitive to the initial condition k. As an illustration, the 80th percentiles 

for k = 0, 3, 6 are 

! 
1.935 

F2-
1(0.80) ~ 4.432 

7.510 

k=O 

k=3 

k = 6. 

These percentiles are achieved using the APPL statements 

X ExponentialRV(1); 
Y ExponentialRV(10 I 9); 
Z := Queue(X, Y, 2, k, 1); 
IDF(Z, 0.8); 
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Figure 6.2: M / M /1 sojourn time CDFs for various n given p = 9/10 and k = 0. 

when k = 0,3,6. The last statement, IDF(Z, 0.8), numerically solves Fz(z) = 0.80 

on the interval (0, oo). 

Given the complete specification of the sojourn time distribution, one can use 

APPL to calculate not only the mean but also the 2nd, 3rd, and 4th moments for 

customer n. This is especially valuable for steady-state analysis. It is common in sim­

ulation to verify attainment of steady-state behavior by examining the mean delay or 

mean sojourn time. Though some literature exists on estimating transient mean and 

variance, we are not aware of any literature addressing higher moments. Literature 

addressing the second moment seems mostly focused on variance estimation and not 

necessarily convergence. Therefore, even when the first moment might acceptably 

approximate the steady state value, there is reason for further analysis of higher mo­

ments. For example, Figure 6.4 displays the first four moments of the sojourn time 

for customer n in an M/M/1 queue, where>.= 1, f.L = 2, p = 1/2, with the initial 

condition k = 0, 4, 8. The steady-state values for the four measures of performance 

(the first four moments) are 1, 1, 2, 9 The code used to calculate the values plotted in 

Figure 6. 4 is 
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Figure 6.3: M / M /1 sojourn time CDFs for customer n = 2 for various k given 
p = 9/10. 

X := ExponentialRV(1); 
Y := ExponentialRV(2); 
for i from 2 to 100 by 1 do 

T := Queue(X, Y, i, k, 1): 
print(i, evalf(Mean(T)), evalf(Variance(T)), evalf(Skewness(T)), 

evalf(Kurtosis(T))): 
od: 

for k = 0, 4, 8. The vertical dashed lines give the smallest customer number for which 

all three of the transient values are within 1% of the steady state value. The relatively 

low traffic intensity p = 1/2 was selected purposely to allow quick convergence and 

easy visual inspection. Even with this somewhat low traffic intensity, it is apparent 

that the higher moments converge more slowly than the lower moments. In other 

scenarios where p > 1/2, the higher moments exhibit an even slower convergence. 

Each vertical dashed line in Figure 6.4 was triggered by the k = 8 curve, suggesting 

that the moments are more sensitive to a heavily pre-loaded system. For the cases 

k = 0, 4, 8, the customer numbers for which the transient results were within 1% of 

the steady-state values are listed in Table 6.3. To verify the initial-condition effect 

on the convergence rate of the first four moments, k was increasingly incremented 
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Figure 6.4: First four moments of the M/M/1 sojourn time for customers 2 through 
100 for p = 1/2 and k = 0,4,8. 

beyond eight and displayed a further slowing of convergence. 
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k=O k=4 k=8 
E[T] 19 21 36 

JVar[T] 27 29 46 
E [((T- JL)/oi] 28 29 50 
E [((T- JL)/o/] 34 35 56 

Table 6.3: Smallest customer number where the sojourn time transient result is within 
1% of steady state for an M/M/1 queue with k = 0,4, 8 and p = 1/2. 

6.5 Covariance and Correlation in the M/M/1 Queue 

The dependence exhibited in sojourn times of successive customers is one reason for 

the difficulty in calculating interval estimators for queue measures of performance. 

In the simplest case, consider an empty and idle M / M /1 queue with interarrival and 

service rates >. and JL· Our desire is to calculate the covariance between the sojourn 

times of customers 1 and 2. Though the exact value of the covariance is available 

directly (and will be presented subsequently) we outline two approaches to simulate 

the result which are helpful in the presentation of the analytic result. 

6.5.1 Discrete-Event Simulation 

As previously discussed, customer 1 proceeds directly to service and two cases exist 

for customer 2. In the first case, customer 2 proceeds directly to service. In the second 

case, he delays until customer 1 's departure. Both cases are shown in Figure 6.5. This 

subsection introduces two simulation approaches for generating the first two customer 

sojourn times. 

The first approach is a standard discrete-event simulation model. Without loss of 

generality, assume that customer 1 arrives at time 0. In the next-event approach, 

a service time is generated for customer 1 according to the service distribution, 

exponential(JL), and an arrival time, a2 , for customer 2 is generated according to 

the time between arrivals distribution, exponential(>.). If the arrival occurs after 

customer 1 's service completion, then customer 2 is also assigned an independent 
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Case l f------f----+----t---

Figure 6.5: Discrete-event simulation model for cases 1 and 2. 

exponential(J.L) service time (case 1). In the second case in which customer 2's arrival 

time occurs before customer 1's completion of service (a2 < TI), customer 2 delays 

for T1 - a2 time units. We then add the exponential(J.L) service time to the delay 

time to calculate T2 . We define the gap occurring in case two as, Y = T1 - a2 . It 

can be shown analytically that Y "' exponential(J.L) by computing the distribution of 

the difference T1 - A2 , where A2 is the random arrival time of the second customer 

and is distributed exponential(.A), and then truncating the result on the left at zero. 

(Alternately, it can be reasoned that Y "' exponential(J.L) by the memoryless prop­

erty for the exponential distribution since the remaining service time for customer 1 

after customer 2's arrival has the same distribution as an unconditional service time.) 

Therefore, by using (6.1), in case 2 the sojourn time for customer 2 is distributed 

Erlang(J.L, 2). 

The second approach is a conditional discrete-event model, where the initial event, 

whose occurrence time is denoted as E 1 in Figure 6.6, is either a completion of service 

for customer 1 with probability J.L/(.A+J.L) or the arrival of customer 2 with probability 

.A/ (.A + J.L). Since E 1 is the minimum of the arrival time of customer 2 and service 

time of customer 1, E 1 "' exponential(.A + J.L). The R/8-Plus simulation code for 

each approach is listed in Appendix F. Using n = 10,000,000 replications, the two 

approaches are compared in Table 6.4. The simulation was run with three separate 

.A and J.L pairs, capturing traffic intensities less than one, close to one, and greater 

than one. Though the two approaches displayed in Table 6.4 are fundamentally 
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1 Case I a2 

E• 
! Case 2 

Figure 6.6: Conditional discrete-event simulation model for cases 1 and 2. 

different, they are stochastically identical, so the resulting measures of performance 

are the same. Table 6.4 displays increasing correlation as traffic intensity increases. 

Scatterplots for n = 1000 (T1 , T2 ) pairs are provided in Figure 6.7 for each (>., J.L) 

pair in Table 6.4. These correlation measures indicate the degree of dependence that 

occurs in the customers' sojourn times. As expected, in an unstable queue where 

p > 1, the correlation is highest. 

A kernel density estimate of the joint distribution h 1 ,T2 ( t 1 , t2 ) from 10, 000 pairs 

is plotted in Figure 6.8 for >. = 1 and J.l = 1/2. The estimate uses a normal kernel 

function with a smoothing parameter as prescribed in Bowman and Azzalini (1997). 

This three-dimensional image also indicates the relatively high correlation shown in 

Table 6.4 associated with this unstable traffic intensity. 

6.5.2 Analytic Methods 

One way to calculate the exact covariance between customers 1 and 2 requires the 

joint probability density function, h 1 ,r2 (t1, t2). The method used here for computing 

the joint density uses Theorem 6.1 below. 
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>.=1,J..L=2 Approach 1 Approach 2 
E[TI] 0.500 0.500 
V[TI] 0.250 0.250 
E[T2] 0.666 0.666 
V[T2] 0.388 0.389 
E[Y] 0.499 0.500 
V[Y] 0.249 0.250 

E[T2Jc2] 0.999 1.000 
V[T2Jc2] 0.499 0.500 

Cov(T1, T2) 0.138 0.139 
Corr(T1, T2) 0.445 0.445 

>. = 1, J..L = 10/9 Approach 1 Approach 2 
E[TI] 0.900 0.900 
V[TI] 0.809 0.810 
E[T2] 1.326 1.326 
V[T2] 1.395 1.395 
E[Y] 0.900 0.900 
V[Y] 0.809 0.809 

E[T2Jc2] 1.800 1.799 
V[T2Jc2] 1.619 1.619 

Cov(T1, T2) 0.585 0.585 
Corr(TI, T2) 0.551 0.550 

>. = 1, J..L = 1/2 Approach 1 Approach 2 
E[TI] 1.999 2.000 
V[TI] 3.999 4.002 
E[T2] 3.333 3.334 
V[T2] 7.552 7.563 
E[Y] 1.998 2.001 
V[Y] 3.999 4.007 

E[T2Jc2J 3.999 4.000 
V[T2Jc2] 7.995 8.009 

Cov(T1, T2) 3.549 3.561 
Corr(T1, T2) 0.646 0.647 

Table 6.4: Discrete-event simulation results using approaches 1 and 2. 
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Figure 6. 7: Scatterplots of the first two customer sojourn times in an M j M /1 queue. 

Theorem 6.1 Let X 1 "' exponential(>-.1), X 2 "' exponential(>-.2 ), and 

X 3 "' exponential(>.3 ) be independent random variables. The joint probability density 

function of (T1, T2) =(XI+ X2, XI+ X3) is 

h,r,(t,, t,) ~ { 

)..
1 

)..
2

)..
3 

( eA1t1 _ e(A2+Aa)tl) e-Altl-A2tt-A3t 2 

)..1- )..2- )..3 

)..
1 

)..
2

)..
3 

( eA1t2 _ e(A2+Aa)t2) e-A2tl-Alt2-A3t2 

)..1- )..2- )..3 

111 



Chapter 6. Transient Queueing Analysis 

Figure 6.8: Kernel density estimate of /r1 ,r2 (ti, t2 ) for A= 1 and f.l = 1/2 from 10,000 
simulated pairs. 

Proof The joint CDF of T1 and T2 is 

Pr (T1 ::; t1, T2 ::; t2) 

Pr (X1 + X2 ::; t1, X1 + X3 ::; t2) 
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After evaluating the integrals and differentiating, fhT2 ( t 1, t 2) is 

• 
Theorem 6.1 provides the joint PDF of the first two sojourn times for case 2, which 

must be weighted appropriately by the probability that the arrival of customer 2 

occurs prior to customer 1's completion of service, or A./(A. + J.L). Case 1 consists of 

independent sojourn times, so the joint density can be written as the product of the 

densities of the sojourn times T1 and T2 and weighted by J.L/(A. + J.L). The resulting 

joint density is a mixture of the two possible cases displayed in Figure 6.6. We apply 

Theorem 1 to case 2 because of the dependence that occurs due to the overlap of the 

sojourn times. Figure 6.9 depicts the relationships between the sojourn times T1, T2 

and the random variables XI, x2, and x3 used in Theorem 1. 

Case 2 

Figure 6.9: Case 2 for Theorem 1 with X 1 "'exponential(A.1), X 2 "' exponential(A.2), 
and x3 rv exponential(A.3)· 

Substituting >.. 1 = J.L, >..2 = >.. + J.L, and >..3 = J.L into the mixture of cases 1 and 2 

yields the joint PDF of T1 and T2 as 

J.L2 ( >..e-1Lt2 + J.Le->.tl-!Lt1-1Lt2) 

A.+J.L 
J.L2 ( >..e->.t1 -1Lt1 +>.t2 + J.Le->.t1-ILtl-ILt2) 

A.+J.L 
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Using this joint PDF, the covariance between the sojourn times of customers 1 and 2 

is 

Substituting >. = 1 and J.L = 2, for example, produces 

which is consistent with the simulation results in Table 6.4. We now use the results 

of Theorem 6.1 in Example 4. 

Example 4. Let T1 and T2 be the sojourn times for customers 1 and 2 re­

spectively in an initially empty and idle M j M /1 queue with exponential(!) 

times between arrivals and exponential(2) service times. Find the distri­

bution of the sample meanT= (T1 + T2)/2 as well as E[T] and V[T]. 

Applying equation (6.3) with >. = 1 and J.L = 2, the joint PDF of T1 and 

T2 is 

/r,,r,(t,, ! 2) ~ { 

Define the transformation 

and 

with inverse 

T1=U+V and 

It can be shown that the functions U and V define a one-to-one transfor-

mation, thus, using the bivariate transformation technique described in 
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Hogg et al. (2005), the joint PDF of U and V is 

-u ~ v < 0 

0 < v < u, 

where J is the Jacobian of the inverse transformation defined as 

8tl 8tl 
8u dv 1 1 

J= 
8t2 8t2 

= -2. 
1 -1 

8u 8v 

Substituting t 1 = u + v, t 2 = u- v, J = -2 and integrating out the 

dummy transformation variable v, the resulting PDF of U = T is 

fu(u) = 4e-4u + 2e-2u- 6e-6u u > 0. 

The mean of U is 

E[U] 100 

u · fu(u)du 

= 100 

u · ( 4e-4u + 2e-2u - 6e-6u) du 

7 

12. 

Likewise, the variance of U using V [U] = E [U2
]- (E[U])2

, where 

E [U2
] = 100 

u
2 

· fu(u)du 

= 1oo u2 . ( 4e-4u + 2e-2u - 6e-6u) du 

41 

72' 
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results in 

V[U] = 41 - [!_] 2 
72 12 

11 

48 

Using the Queue(X, Y, n, k, s) procedure for customers 1 and 2, the 

mean sojourn times are E[Td = 1/2 and E[T2] = 2/3 and the corre­

sponding variances are V[T1] = 1/4 and V[T2] = 7/18. The covariance of 

sojourn times T1 and T2 was identified as Cov(T1 , T2 ) = 5/36. Therefore, 

the mean sojourn time for customers 1 and 2 is 

and the variance is 

7 
12' 

further substantiating the distribution of U = T given above. 

Proceeding in this manner, we now derive similar expressions for the first three 

customers arriving to an empty and idle M / M /1 queue. We could use first princi­

ples to derive the trivariate PDF fr1 ,r2 ,r3 (ti, t2, t3); however, since covariance only 

occurs between two customers, it is easier to calculate each respective paired joint 

distribution for covariance calculations. A derivation of the trivariate distribution 

is provided in Appendix G; using the three variable distribution provides identical 

covariance results. However, calculating this trivariate joint distribution is tedious, 

and because the number of cases increases with the number of customers (as will be 

shown subsequently), the distribution complexity increases. When considering n = 3 

customers, there are five possible ways customers can arrive and be serviced. In gen­

eral, for n customers, the number of ways arrivals and departures can occur is given 
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by the nth Catalan number, which is 

(2n)! 
Cn = (n!)(n + 1)! · 

Figure 6.10 shows the five possible arrangements for n = 3 customers along with the 

sojourn times T1 , T2 , and T3 for each, with the arrival and completion times for the ith 

customer denoted by ai and ci respectively. The vertical arrows at event times repre­

sent service completions (pointing up) or arrivals (pointing down). This competing­

event approach parallels the second simulation algorithm from Section 6.5.1. Using 

+--T3 --+ Case I 

t 
Cz 

T3 - Case2 

CaseS 

Figure 6.10: Five cases for n = 3 customers' sojourn times in an M/M/1 queue. 

the same conditioning approach as in the proof of Theorem 1, the joint PDFs for 

each of the pairs (T1 , T2), (T1, T3), and (T2 , T3) in each of the five cases can be de­

termined and then mixed to achieve the three associated joint PDFs. The mixture 

probabilities are calculated by multiplying the appropriate number of competing ar-
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rivals (with probability >..j(A.+J.L)) or service completions (with probability J.L/(A.+J.L)). 

For example, in case 1 shown in Figure 6.10, there are two instances with competing 

risks, both of which result in a service completion, thus the probability of this case 

is J.L2/(>.. + J.L) 2. Using these joint densities, the symmetric n = 3 variance-covariance 

matrix 

is 

1 
J.L2 

~= • 

• 

>..(2J.L + >..) 
(>.. + J.L)2J.L2 

2>..2 + 4A.J.L + J.L2 
(>.. + J.L)2J.L2 

• 

>._2(>._2 + 4A.J.L + 5J.L2) 

(>.. + J.L)4J.L2 

>..(2>..2 + 8A.2J.L + llA.J.L2 + 2J.L3
) 

(>.. + J.L)4J.L2 

3>..6 + 18A.5J.L + 45A.4J.L2 + 54A.3J.L3 + 30A.2J.L4 + 8A.J.L5 + J.L6 

(>.. + J.L)6J.L2 

Substituting >.. = 1 and J.L = 2, for example, results in 

1 5 

4 36 

~= 
7 . -

18 

• • 

29 
324 
13 
54 

1451 
2916 

0.1389 

0.3889 

• 

0.08951 
0.2407 . 

0.4976 

These results have been verified via Monte Carlo for the first n = 3 customers 

in Appendix H. The sojourn time variance increases with customer number down 

the diagonal of the matrix because of the nature of the queueing process, where 

the sojourn time distribution for each additional customer is dependent on all the 

previous customers. On the other hand, the off-diagonal covariance entries in each 

row decrease with customer separation, for example 0"13 < 0"12. 

118 



Chapter 6. Transient Queueing Analysis 

6.6 Extending Covariance Calculations 

Consider the n = 3 case where all three customers arrive prior to the first customer's 

completion of service (this is Case 5 in Figure 6.10). Using a 1 to represent an arrival 

and a -1 for a departure, this sequence of arrivals and departures can be represented 

by the vector 

[ 1 1 1 -1 -1 -1 ] . 

Figure 6.11 depicts this case as a path from the bottom left node to the top right 

node of the figure. Moving right in the figure indicates an arrival and moving up 

indicates a service completion. Diagonal moves are not permitted. Each of the five 

possible sequences of arrivals and departures for n = 3, shown in Figure 6.10, can 

be depicted by a specific path from the bottom left node to the top right node. The 

paths are shown collectively in Appendix I. 

• 

1 
departure 

• • 

1 departure 

• • • 

1 departure 

• • ·-----+ • 
arrival arrival arrival 

Figure 6.11: Path for case 5 of n = 3 customers arrival and departure pattern in an 
M / M /1 queue. 

Ruskey and Williams (2008) present an elegant algorithm that generates all such 

paths of arrival and service completions for a given number of customers n. The 

algorithm is based on a simple iterative successor rule that uses prefix shifts (definition 

forthcoming) to exhaust the possible arrival and service completion scenarios. In 

Figure 6.11 these are the 6!/(3!4!) = 5 paths that can be drawn from the bottom 
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left node to the top right node without going above the diagonal line that connects 

these two nodes, and using only rightward and upward transitions. The algorithm is 

"loopless" in that it requires a constant amount of computation in transforming the 

current case to its successor. Define the case matrix C with dimension (2n)!/((n!)(n+ 

1)!) by 2n as the exhaustive list of possible arrival and service completion scenarios 

for n customers. To initiate the matrix the first row of C is 

c1 = [ 1 -1 1 1 -1 -1 ] . 

The first row is always the ordered string created by an arrival, a service com­

pletion, n - 1 arrivals, and n- 1 service completions. The iterative successor rule 

described by Ruskey and Williams (2008) is: "Locate the leftmost [-1, 1] and suppose 

its 1 is in position k. If the (k + 1)-st prefix shift is valid (a possible arrival/service 

completion sequence), then it is the successor; if it is not valid then the k-th prefix 

shift is the successor." The ( k + 1 )-st prefix shift for the sequence 

is 

The length of the sequence is always 2n because the number of arrivals and departures 

is balanced at n each. An example of an invalid sequence is 

[ 1 -1 -1 1 1 -1 ] 

because the second service completion occurs prior to the second arrival. For n = 3, 

the case matrix C is 
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1 -1 1 1 -1 -1 

1 1 -1 1 -1 -1 

C= 1 -1 1 -1 1 -1 

1 1 -1 -1 1 -1 

1 1 1 -1 -1 -1 

(Note that the order of the five rows does not match the order of the cases in Fig­

ure 6.10.) 

Figure 6.12 further categorizes each segment of the path based on whether there 

exists a competing risk (competing event) in which c?Se the distribution of the time 

until the next event (either an arrival or a completion) is given by 

min{ exponential(>..), exponential(J..L)} ""exponential(>..+ J..L), 

where the time between arrivals is distributed as exponential(>..) and the service time 

distribution is exponential(J..L). 

• 

1 " • • ,,': 1 ,'" : 

.

. : ......... /: . . " 
1 fJ 

./ A. + fJ A. + fJ . ---.-'-'-. . -~-. 
.. -:. ·- ----------------------------- ~ 

Figure 6.12: Path segment distributions for case 5 for n = 3 customers. 

Competing risks can only occur along path segments originating inside the dashed 

triangle shown in Figure 6.12. These path segments are exponential(.A.+J..L) distributed 

and are correspondingly labeled .X + J..L· Once all customers have arrived, the only 
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possible events are service completions; thus each vertical path segment along the 

rightmost edge of Figure 6.12 is distributed exponential(J.L) and labeled f-1.· If the 

path of interest intersects the diagonal line that passes through the bottom left node 

and the top right node, the queueing system empties and the next event must be an 

arrival, which occurs in an exponential(>.) time into the future. While the system is 

empty, none of the customers' sojourn times are affected, therefore waiting for the 

next arrival does not impact customer sojourn time distribution. The interior triangle 

in the path diagram also provides a method to calculate the probability of all possible 

paths. For path segments originating inside the triangle, a move right occurs with 

probability .A/(.A + J.L) and a move up occurs with probability J.L/(.A + J.L). For the 

particular path shown in Figure 6.12 there are two segments originating inside the 

triangle, both of which are horizontal, representing two successive arrivals. Thus this 

case probability is 

.A+,u .A+J.L 

In order to capture the structure of the segment distributions for a given path, 

represented as a row of the case matrix C, another vector of length 2n - 1 is cre­

ated where each entry corresponds to the sojourn time distribution for a particular 

segment. There are three possible entries in this vector: 

1. exponential(>.+ J.L), which is indicated by a 1 

2. exponential(J.L), which is indicated by a 2 

3. no distribution as a result of an emptied system, which is depicted as a 0. 

The vector is of length 2n - 1 since the first customer's arrival time can be ignored 

as it does not affect sojourn time. For the particular path shown in Figure 6.12 the 

corresponding segment distribution vector is 

[11222]. 
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Define the new matrix C' with dimension ( 2n)! / ( ( n!) ( n + 1)!) by 2n- 1 as the segment 

distribution matrix for each case in C. For n = 3, the matrix C' is 

1 0 1 2 2 

1 1 1 2 2 

C'= 1 0 1 0 2 

1 1 1 0 2 

1 1 2 2 2 

The two vectors, which are each the fifth row of the corresponding matrices 

c5 = [ 1 1 1 -1 -1 -1 ] and c~ = [ 1 1 2 2 2 ] 

contain the information necessary to calculate the contribution of Case 5 to the joint 

PDF for the sojourn times of any two customers. Using C1, define the 2 x 2 matrix 

R1 with elements 

where Tis and Tif are the start and finish indices for customer i in row l of the case 

matrix c. Define Tjs and Tjf similarly for customer j. Using c5 above, for customers 

i = 1 and j = 3, 

Customer 1 's arrival is the first event to occur. Customer 1 's departure is the fourth 

event to occur. Customer 3's arrival is the third event to occur. Customer 3's depar­

ture is the sixth event to occur. 

The R1 matrix provides two critical pieces of information. First, for the given 

case l, if rif < r 1s then the sojourn times for customers i and j are independent 

since customer i departs prior to customer j's arrival. Therefore, if T;J < r15 , the 
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contribution of case l to the joint PDF is created by simply multiplying the sojourn 

time PDFs for customers i and j. Second, by computing rif- ris and Tjf- r 18 and 

then indexing across C{, the appropriate segment distributions can be combined to 

form the joint sojourn time PDF for customers i and j. 

When Tif > r1s the joint probability distribution is calculated by conditioning in 

a similar fashion to the proof of Theorem 1. However, it is first necessary to find the 

independent and overlapping segments for the customers of interest. For the arrival 

and service completion scenario described by C5 , Figure 6.13 shows sojourn times 

T1 and T3 for customers 1 and 3. The independent portion of customer 1 's sojourn 

I exp(). + f.l) I 
a 1 a2 

Tl........;----+ 

c I exp(). + f.l) II 
a3 

l I exp(.u) j exp(.u) I exp(.u) 

Figure 6.13: Sojourn time segments for customers 1 and 3 in case 5 of n = 3 customers. 

time consists of the two exponential( A + J.L) segments. The independent portion of 

customer 3's sojourn time consists of the two exponential(JL) segments shown on the 

right side of Figure 13. The dependent (overlap) portion between customers 1 and 3 

consists of the single exponential(JL) segment falling within the dashed vertical lines. 

Using C~ and R5 , these segments can be determined without reference to Figure 6.13, 

as follows: Given r 11 > r 38 , that is customer 3 arrives prior to customer 1 completing 

service, the independent portions of customer 1 's sojourn time distribution are found 

by (a) calculating r3s - rls = 3- 1 = 2 and then (b) collecting the elements in c~ 

beginning at index r 18 = 1 and indexing T3 8 - r 18 - 1 = 1 additional element of the 

vector. For C~ = [ 1 1 2 2 2 J , the first two entries, c~ 1 and c~2 correspond to the 
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two exponential(>.+ p,) segments. Likewise, customer 3's independent sojourn time 

segments are found by (a) calculating r 3f - rlf = 6-4 = 2 and then (b) collecting the 

elements in q beginning at index rlf = 4 and indexing r 3J - r 1J - 1 = 1 additional 

element of the vector. This amounts to the two exponential(p,) segments in elements 

four and five of q. The dependent portion is identified by starting at the element 

T3 8 = 3 and indexing Tif - T3 5 - 1 = 0 additional elements, the third element of C~, a 

single exponential(p,) segment. 

In this case, calculating the joint PDF is straightforward since the indepen­

dent portions for each customer are iid exponential random variables. Defining 

the independent cumulative distribution function portions for customers 1 and 3 as 

X 1 ""Erlang(>. + p,, 2) and X 3 ""Erlang(p,, 2) respectively, and the dependent (over­

lap) random variable as W "" exponential(p,), the contribution of Case 5 to the joint 

CDF of (T1 , T3 ) = (X1 + W,X3 + W), conditioning on the dependent distribution 

segment W, is 

P(T1:::; t1,T3:::; t3) 

P(X1 + W :::; t1, X3 + W :::; t3) 

Since closed-form versions of Fx1 (t1 - w) and Fx3 (t3 - w) are available, Maple is 

capable of evaluating this expression, though for large n it can be time consuming. 

When the independent distribution segments are not iid exponential random vari-
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ables, the calculation is more problematic since we can no longer use ( 6.1) to easily 

express F_J(1 (t1 - w) and Fx3 (t3- w). Convolution is required, and though capable, 

Maple, and subsequently APPL, slow very quickly with increasing n. To overcome 

this shortfall, consider Theorem 6.2, which appears to be a faster approach than the 

two suggested in Hagwood (2009). 

Theorem 6.2 If S1 '"" Erlang(>..1, m) and S2 '""Erlang(>..2 , n) are independent random 

variables, then the PDF ofY = S1 + S 2 is 

1 ze ~ ( _ 1y n- yn-1-xe(>.2->.1)s. 
[ 

)..m)..n ->.2y n-
1 

{ ( 1) 
(m- 1)!(n- 1)! ~ x 

( r m X .S 
m-l+x ( _ 1 + )1 m-1+x-r }] y 

~ -1 (m- 1 +X- r)!(>..z- )..I)r+1 s=O 
y > 0. 

Proof Since S1 and S2 are independent, the PDF of Y = S1 + S2 using convolution 

and the binomial theorem is 

fy(y) 

y > 0. • 
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The APPL procedure Cov(a, b, n) applies Theorem 6.2 to calculate the covariance 

between customers a and b (a < b) in a system of n customers. For computa­

tional considerations (i.e., evaluating the fewest cases necessary for a given n), set­

ting the number of customers n = b provides the fastest result. Additionally, calling 

Cov(a, b, n) where n > b produces a result identical ton= b because customers 

arriving after customer b do not affect the covariance of previous customers. The 

commented procedure is available in Appendix J. 

Rewriting the integral as a sum via Theorem 6.2 avoids the calls to Convolution(X, Y) 

in APPL as well as integrating for each case and piece, and the speed-up was signifi­

cant. One can always use this approach, even when the independent part of a partic­

ular customer's sojourn time contains many independent distribution segments. The 

times for these segments can only be exponential( A+ J.L) distributed or exponential(J.L) 

distributed, implying their sum can always be written as the sum of two independent 

Erlang random variables. The symmetric variance-covariance matrix for n = 10 

customers with parameters A= 1, J.L = 2, and p = 1/2 is showcased in Table 6.5 pro­

viding the exact values. CPU time is a factor in these computations. Each element 

in the tenth column of the variance-covariance matrix is calculated from a joint PDF 

which is a mixture of C10 = 20!/(10!11!) = 16,796 component distributions, each 

corresponding to a unique ordering of arrivals and departures. 
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Q 
::::::r' 
~ 

1 5 29 181 1181 2647 18191 127111 2699837 19319845 "0 
c-t-- - - -- -- -- (t) 

4 36 324 2916 26244 78732 708588 6377292 172186884 1549681956 >-1 

0':> 
7 13 239 1543 10303 23485 163493 3462503 24719519 

• - - -- --
18 54 1458 13122 118098 354294 3188646 86093442 774840978 ~ 

1451 8531 53995 356291 805705 5576849 39197977 836647331 ~ 
i::l 

• • -- -- C/J 

2916 26244 236196 2125764 6377292 57395628 516560652 13947137604 ...... 
(t) 

i::l 
34514 209794 1357010 3031606 20810726 145390102 3088887890 c-t-

• • • -- .0 59049 531441 4782969 14348907 129140163 1162261467 31381059609 >= 
(t) 

12525605 77889229 170586983 1156711327 8013045911 169183999981 >= 
(t) • • • • ...... 

19131876 172186884 516560652 4649045868 41841412812 1129718145924 i::l 
(]q 

..... I • 551583889 1162296371 7727099083 52871149859 1106749378225 > 
tv • • • • i::l 
00 774840978 2324522934 20920706406 188286357654 5083731656658 ~ ........ 

10582107143 67728246079 454382575415 9394007745229 '-<:! 
C/J • • • • • • ...... 

13947137604 125524238436 1129718145924 30502389939948 w 

225196533287 1455144635743 29498588275973 
• • • • • • • 282429536481 2541865828329 68630377364883 

75890492486993 1482244865480580 
• • • • • • • • 91507169819844 2470693585135780 

28549065408995300 
• • • • • • • • • 33354363399333100 

Table 6.5: Sojourn time variance-covariance matrix for the first n = 10 customers in an M/M/1 queue with ), = 1, 
1-l = 2. 
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Because these values are difficult to compare in fractional form, the same matrix 

is provided again, with matrix elements rounded to four decimal places. 

0.2500 0.1389 0.0895 0.0621 0.0450 0.0336 0.0257 0.0199 0.0157 0.0125 

• 0.3889 0.2407 0.1639 0.1176 0.0872 0.0663 0.0513 0.0402 0.0319 

• • 0.4976 0.3251 0.2286 0.1676 0.1263 0.0972 0.0759 0.0600 

• • • 0.5845 0.3948 0.2837 0.2113 0.1611 0.1251 0.0984 

• • • • 0.6547 0.4524 0.3302 0.2488 0.1915 0.1498 

• • • • • 0.7119 0.5000 0.3694 0.2808 0.2177 

0 • • • 0 0 0.7587 0.5396 0.4022 0.3080 

• • • • • • • 0.7974 0.5725 0.4298 

• • • • • • • • 0.8293 0.5999 

• • • • • • • • • 0.8559 

As the traffic intensity increases, so do the values in the variance-covariance matrix. 

To illustrate, the same matrix is provided for the increased traffic intensity param-

eters ,\ = 1, f..l = 10/9, and p = 9/10. The increasing sojourn-time variance along 

the diagonal is expected with the increasing traffic intensity. In addition, the rate 

that covariance between customers decreases as customer separation increases is less 
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pronounced. 

0.8100 0.5856 0.4737 0.4040 0.3553 0.3189 0.2904 0.2673 0.2481 0.2318 

• 1.3956 1.1097 0.9393 0.8226 0.7363 0.6692 0.6150 0.5702 0.5323 

• • 1.9561 1.6298 1.4167 1.2626 1.1441 1.0494 0.9714 0.9057 

• • • 2.5021 2.1458 1.8995 1.7142 1.5679 1.4484 1.3485 

• • • • 3.0364 2.6565 2.3831 2.1715 2.0009 1.8593 

• • • • • 3.5605 3.1614 2.8652 2.6310 2.4389 

• • • • • • 4.0754 3.6600 3.3444 3.0904 

• • • • • • • 4.5818 4.1524 3.8199 

• • • • • • • • 5.0803 4.6386 

• • • • • • • • • 5.5713 

Using this variance-covariance matrix for traffic intensity p = 9/10, consider the 

following example. 

Example 5. Let Ti, i = 1, 2, ... , 10, be the sojourn times for the first 

n = 10 customers in an M / M /1 queue with arrival rate ,\ = 1 and service 

rate f..L = 10/9 that is initially empty and idle. Find the variance of the 

average sojourn time for the ten customers. 

Define the average sojourn time as 

- 1 10 

T= 10L1i· 
i=l 

Since the sojourn times are not independent random variables, the vari-
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ance of the average sojourn time is 

Var(T) 

The result is the sum of all elements in the variance-covariance matrix 

multiplied by the constant 1/100. The sum of the variance-covariance 

matrix rounded to four significant digits is 177.6642i therefore the variance 

ofT is 

v (T) ~ 1.7766. 

To verify the calculation a Monte Carlo simulation (listed in Appendix K) 

was conducted five times, each using one million replications. The result­

ing 95% confidence interval for the variance ofT wasTE (1.773, 1.781), 

which agrees with the analytic result. 

Ttaditional steady-state queueing theory and analysis lacks the insight provided 

in these transient variance-covariance matrices. For businesses where the number 

of customers in a day is so small that true steady state is never achieved, routine 

queueing measures of performance are not representative of reality. Additionally, 

consider a system where the traffic intensity exceeds one. For a such a system, an 

analyst might be interested in customer covariance. Increasing the traffic intensity 

so that p > 1 does not preclude covariance calculations using this method, and 

therefore allows transient analysis of such systems. A variance-covariance matrix for 

p = 3/2, is presented below. Given this traffic intensity, the system is unstable and 

the expected sojourn times for successive customers increase without bound. Along 

the main diagonal the customer variance is clearly increasing, and the covariance 
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decreases as the separation occurs between customers. This decrease is monotonic, 

and though not studied in detail here, it appears that the rate of covariance decrease 

might be of interest for an unstable traffic intensity. 

2.2500 1.8900 1.7172 1.6135 1.5438 1.4937 1.4558 1.4263 1.4027 1.3835 

• 4.1400 3.7368 3.5018 3.3459 3.2344 3.1507 3.0856 3.0337 2.9913 

• • 6.0957 5.6825 5.4166 5.2292 5.0896 4.9817 4.8958 4.8261 

• • • 8.1312 7.7208 7.4397 7.2332 7.0747 6.9493 6.8479 

• • • • 10.2424 9.8410 9.5538 9.3361 9.1652 9.0276 

• • • • • 12.4235 12.0342 11.7463 11.5230 11.3444 

• • • • • • 14.6687 14.2931 14.0081 13.7828 

• • • • • • • 16.9727 16.6115 16.3319 

• • • • • • • • 19.3310 18.9846 

• • • • • • • • • 21.7397 

6.7 Sojourn Time Covariance with k Customers 

Initially Present 

When k customers are present in the M / M /1 queue at time zero, the approach used to 

compute sojourn-time covariance between customers becomes more difficult. When 

the two customers of interest possess indices larger than k (i.e., Ti where i > k), 

then the approach is similar to that derived in Section 6.6. However, there are two 

other possibilities. The first possibility is that the first customer has an index of k or 

less, and the second customer has an index larger than k. In this instance, the only 

difference in deriving the joint CDF is that the lower indexed customer begins his 

sojourn time at time zero. In the second possibility, both customers have an index 

of k or below. If these indices are i and j, where i < j :=:; k, the time intervals for 

sojourn times Ti and T1 begin at zero. It is obvious that Tt :=:; T1, since the completion 
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time for customer i must occur prior to the completion time for customer j. For each 

of the possibilities above the covariance derivation that follows will mirror the empty 

and idle covariance derivation in Section 6.6. 

To illustrate the calculations, consider an M j M /1 queue with k = 2 customers 

initially present at time zero and a single additional customer, n = 1. The transition 

diagram where the first event (not including the k customers initially present at time 

zero) is an arrival, which is analogous to Figures 6.11 and 6.12, is given in Figure 6.14. 

The total number of customers passing through the system is n + k = 3. Using 1 

• 

1 
departure 

• • 

1 departure 

• • 

1 departure 

• • ·---+ • 
arrival arrival arrival 

Figure 6.14: Transition diagram for n + k = 1 + 2 = 3 customers when the first event 
is an arrival. 

to denote an arrival and -1 to denote a departure, each arrival/departure ordering 

instance for n + k = 3 customers must contain exactly three -1 's (completions of 

service) and a single 1 (arrival). The algorithm presented by Ruskey and Williams 

(2008) does not facilitate listing all orderings for an unbalanced system, where the 

number of departures is greater than the number of arrivals (as opposed to an empty 

and idle queue at time zero). However, we can produce all possible arrival-departure 

sequences with a simple manipulation of the algorithm, as well as count the number 

of possible sequences. A derivation and proof of a formula for counting the number of 

possible sequences is provided in Appendix L. The general counting result, denoted 

by C(nJk), follows, where n represents the number of customers passing through the 
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system that arrive after time zero and k is the number of customers present at time 

zero: 
Lk/2J (k .) 

C(nik) = L ( -1)j -:- J Cn+k-j 
j=O J 

for k = 0, 1, 2, ... and n = 1, 2, ... , where l·J denotes the greatest integer function. 

The case matrix Cis found by applying the Ruskey and Williams (2008) algorithm for 

n+k customers, then deleting the instances where the first k events do not correspond 

to arrivals. As seen previously, the case matrix for n + k = 1 + 2 = 3 customers is 

1 -1 1 

1 1 -1 

1 -1 -1 

1 -1 -1 

c = 1 -1 1 -1 1 -1 

1 -1 1 

1 

1 -1 -1 

1 1 -1 -1 -1 

Rows 2, 4, and 5 correspond to the first k = 2 events being arrivals. Rows 1 and 3 

must be deleted from the case matrix, since for each row, a completion of service 

occurs prior to the first two arrivals. Deleting these rows results in the case matrix 

c = I ~ ~ =~ -~ -~ =~I 
1 1 1 -1 -1 -1 

with the remaining rows representing all possible arrival-departure sequences. We 

can further simplify the case matrix by deleting the first k columns, resulting in 

c = I =~ -~ -~ =~ I 
1 -1 -1 -1 

The rows of the case matrix correspond to the three cases shown in Figure 6.15. 
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-T,_. -T3_. 
Case 1 

T2 

t a3 c3 
c2 

I I 

=d 
a3 

T3 l Case2 

T2 
c, 

I I a, a3 
T3 a2 

f 
Case 3 : T,-

T2 

c, c2 c3 

Figure 6.15: Three cases for k = 2 initial customers and a single n = 1 additional 
customer in an M / M /1 queue. 

The algorithm for computing the joint PDF, and subsequently the covariance, of 

the sojourn times of any two customers does not differ significantly from the algorithm 

presented in Section 6.6. However, for the sojourn times T1 and T2 in Figure 6.15, a 

new theorem is introduced. 

Theorem 6.3 Let X ,..._, exponential(>.1 ) and Y ,..._, exponential(>.2 ) be independent 

random variables. The joint PDF of (T1 , T2 ) =(X, X+ Y) is 
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Proof The joint CDF of TI and T2 is 

Fr1,r2(ti, t2) = Pr (TI :::; ti, T2 :::; t2) 

= Pr (X :::; ti, X+ Y:::; t2) 

Pr (X :::; t~, Y :::; t2 - X) 

= 1tl 1t2-x fx(x). Jy(y) dydx 

= 1tl 1t2-x (Aie->.lx). (A2e->.2y) dydx 

AI _ A2 + A2e->.1t2 + A2e->.2h _ AI e->.2t1 _ A2e->.2t1->.1t2+>.1t1 
= 

AI- A2 

• 
Theorem 6.3 provides the joint PDF for the sojourn times TI and T2 of the first two 

customers initially present at time zero. It may be more complicated to calculate the 

joint PDFs for the sojourn times of other pairs of customers who were initially present 

at time zero. This is due to the fact that if (i, j) =/:. (1, 2) and i < j :::; k, where k is 

the number of customers present at time zero, the time intervals of duration X and 

Y during which customers i and j, respectively, are served may each be composed of 

multiple independent exponentially distributed time segments. Each of these multiple 

segments is limited to only one of two possibilities, an exponential(A + f.-l) segment 

or an exponential(fl) segment. In this more complicated situation we let (Ti, Ti) = 

(X, X + Y) as in Theorem 6.3 and apply Theorem 6.2 to quickly find the PDF's 

of X and Y (using the procedure conv(m, n) ), then let Maple handle the sojourn 

time joint PDF calculation. When the second customer of interest has an index ~ 

k, the sojourn time joint PDF follows an application of Theorem 6.1 as described in 

Section 6.6 when cases exist with dependence. 

Using the final case matrix C above, the associated segment distribution matrix 
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C' is 

C' = [ ~ ~ ~ ~I 
1 2 2 2 

where the possible elements are the same as defined in Section 6.6. The probability 

vector associated with the case matrix C is 

Using the case matrix C and the segment distribution matrix C', the joint PDFs for 

each case are created by selecting the appropriate segments for a given pair of cus­

tomers, where the segments are identified by the R1 matrix discussed in Section 6.6. 

Once the joint PDF's are created for each case, they are mixed with the probability 

vector to determine the sojourn time joint PDF for covariance calculations. These cal­

culations are coded in Maple as the procedure kCov (X, Y, a, b, n, k) . The first 

two arguments X andY are the distribution of time between arrivals, exponential(>.), 

and the service time distribution, exponential(J.L), respectively. They are entered in 

the APPL list-of-lists format. The arguments a and b are the customers of inter­

est for the covariance calculation, where a < b. The argument n is the number of 

customers processing through the system not including those present at time zero, 

which is indicated by the last argument, k. Therefore, the total number of customers 

processing through the system is n + k, and a covariance calculation between any 

two of these customers can be achieved with the appropriate function call. For exam­

ple, the function call kCov(ExponentialRV(1), ExponentialRV(2), 1, 2, 6, 4) 

calculates the covariance between customers 1 and 2 in an M / M /1 queue with an 

arrival rate)..= 1, with service time rate J1. = 2, with k = 4 customers present at time 

zero, and an additional n = 6 customers process through the system. The complete 
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variance-covariance matrix using these paramters is 

1 1 1 1 211 1579 11651 28553 630131 4646155 
4 4 4 4 972 8748 78732 236196 6377292 57395628 

• 1 1 1 211 1579 11651 28553 630131 4646155 
2 2 2 486 4374 39366 118098 3188646 28697814 

• • 3 3 211 1579 11651 28553 630131 4646155 
4 4 324 2916 26244 78732 2125764 19131876 

• • • 1 211 1579 11651 28553 630131 4646155 
243 2187 19683 59049 1594323 14348907 

• • • • 37289 271153 1966777 1588153 34755203 763875281 
26244 236196 2125764 2125764 57395628 1549681956 

• • • • • 1629655 11663887 9353743 203800469 4465399991 
1062882 9565938 9565938 258280326 6973568802 

• • • • • • 263490131 208262483 4506205633 98323535707 
172186884 172186884 4649045868 125524238436 

• • • • • • 1!1 
63939878 1359189250 29402061622 
43046721 1162261467 31381059609 

• • • • • • • • 179260456277 379721786263 
125524238436 3389154437772 

• • • • • • • • • 62708955663745 
45753584909922 

Unlike the previous variance-covariance matrices, some row elements, in particular 

those elements associated with customers that are initially present, do not decrease 

monotonically. To explain these entries, consider Theorem 6.4. 

Theorem 6.4 If X 1 , X 2 , ... , Xn are iid exponential(J.L) random variables and 

s 

s = 1, 2, ... , n, 

then Var(Ti) = Cov(Ti, 1!), 0 < i < l :S n. 

Proof Note that E[Tk] = k/ J.L fork= 1, 2, ... , nand that Ti and Xr are independent 
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for 1 :; i < r :; n. 

Cov(Ti, 11) = E [ (ri- ~) (rt- ~) J 

E [ (r.- ~) { (r,- ~) + .~. ( x.- ~)}] 
E[(r,-~)'] +E{.~, [(r.-~) (x.-DJ} 
Var(Ii) + t E (Ii - i) E (xr -~) 

r=i+ l f-L f-L 

Var(Ii). • 
We can apply Theorem 6.4 to those customer pairs where both indices i,j:; k. There­

fore, the entries in the variance-covariance matrix for customer pairs (1, 2), (1, 3), 

and (1, 4) are 

Likewise, for the customer pairs (2, 3) and (2, 4) 

Furthermore, it can be shown in general that 

for i < j :; k, where k customers are present at time zero. For example, consider 

a single-server box office with exponential(J.L) service times which will be offering 

tickets to a popular concert the next day. If 1000 patrons, each buying one ticket, 

camp out the night before determined to get the best seats for the concert, these 

k = 1000 customers are present at time zero and therefore we can pre-determine the 

covariance between any two of the customers. Additionally, Theorem 6.4 presents the 
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non-intuitive result that Cov(T1 , T2 ) = Cov(T1, TIOoo). The correlation decreases with 

increasing lag, however, as expected due to the diminishing effect of the intermediate 

customer sojourn times reflected in the denominator of the defining formula of the 

correlation. Theorem 6.4's results are confirmed by the Monte Carlo simulation in 

Appendix M and the Maple code used to compute the exact covariance values between 

two customers is listed in Appendix N. 

6.8 Conclusions 

Previous transient analysis results for the M / M /1 and M / M / s queues have been 

combined with the functionality of the Maple computational engine (and subsequently 

APPL) to develop both symbolic and numeric exact sojourn time PDFs that can be 

manipulated to compute and study various measures of performance. A complete 

variance-covariance matrix for the first n = 10 customers and varying traffic intensity 

is calculated, illustrating this approach's ability to determine the joint PDF between 

two customer sojourn times. The results offer a framework for describing how the 

well-known M / M / s queue steady-state results occur as the queue progresses toward 

steady-state. When possible, results are checked against corresponding Monte Carlo 

simulation and/ or previous literature. 
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Conclusions and Further Work 

This dissertation presents a variety of applications in stochastic operations research, 

where each application requires the use of a computational engine. Without the 

computational engine, the results are either intractable or overly tedious to compute. 

These applications contribute to and extend the current literature for their respective 

fields. Additionally, the applications offer insight into other problems found to be 

similar in structure. 

Harnessing the computational power available today and implementing it effec­

tively requires the researcher to fundamentally understand the software and/or com­

putational engine utilized as well as the first-principles theory of the problem at hand. 

The algorithms and associated code generally stem from a first-principles approach to 

the problem. As with most versions of coded algorithms, computational complexity 

is almost always of interest. As mentioned in the introduction, many other languages 

and/or software packages could have been utilized to achieve the same results, some 

in a faster and more efficient manner. Additionally, the author recognizes that the 

code, as it is written, might not be the most efficient means available. However, the 

algorithms and their respective code are meant to be straightforward in design and 

simplicity. Additionally, the author has made an effort to present procedures easily 

implemented by minimizing necessary syntax and setup work for the user. Where 
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possible, computed results are available symbolically, using generic coding. 

Substantiating results to problems addressed here is difficult. Most of the solutions 

are returned exactly, and the problems as described are overly tedious to calculate 

with pencil and paper. Therefore, careful attention is paid to substantiating results. 

The best method for verification is Monte Carlo simulation. In all cases, Monte Carlo 

simulation was used for multiple runs, each run with a corresponding high number 

of replications, to create a confidence interval for the exact solution. The problem 

complexity sometimes required these simulations to run for extended time periods, 

where CPU time for the Monte Carlo estimate exceeded CPU time to achieve the exact 

solution. Additionally, when variate generation methods were compared (Chapters 2 

and 3), a Monte Carlo simulation was the best tool for conducting the study in the 

presence of multiple population distributions. 

As an example of verifying previous results, consider the work in Chapter 6. 

Much of the work completed in this chapter was motivated by a course taken in 

Computational Probability where the monograph used for the course was Drew et al. 

(2007), explaining the use of Maple and APPL throughout. It is because of APPL that 

Chapter 6 of the dissertation became possible, where, by framing MIMI 1 transient 

analysis queueing as a new class of computational probability problems, along with 

applying propositions made by Kelton and Law (1985), led to exact sojourn time 

distributions and sojourn time covariance calculations. Though the propositions have 

been known for 23 years, an application using them to calculate a distribution and 

subsequently measures of performance has eluded researchers. The procedures that 

this dissertation adds to APPL 's suite of available tools furthers its capability by 

embarking on bivariate probability distribution functions. I hope the addition of 

these procedures aids in revolutionizing the field of computational probability, and 

its influence in research and education. 

I now summarize the applications presented beginning with Chapter 2. Given an 

observed univariate data set assumed to come from an unknown continuous popu-
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lation distribution, generating variates for simulation from the piecewise-linear CDF 

created by connecting the steps created by the empirical distribution function is not 

novel. However, by doing so, the variance of the piecewise-linear estimator is always 

less than the unbiased sample variance of the observed data. Chapter 2 corrects the 

estimator by stretching and shifting the observed data such that the mean and vari­

ance of the estimator match the mean and variance of the data set, improving the 

quality of the variates produced by the estimator. Certain types of data might be 

inappropriate for stretching and shifting. For example, consider data arising from a 

service-time distribution, where the mean of the distribution is close to zero. Stretch­

ing and shifting such data might result in an impossible negative service time. To 

overcome this problem, Chapter 2 also offers an alternative method to match the 

mean and variance that does not affect the location of the observed data on the real 

line. This second method assigns appropriate weights to the data values that result 

in an estimator whose mean and variance equal the mean and variance of the sample 

data. The weights are are the solution to a nonlinear optimization program. Using 

either method bypasses the time-consuming and often arbitrary process of density 

estimation. 

Chapter 3 extends the method of using a piecewise-linear CDF for variate gen­

eration to a two-dimensional random vector. The method presented is completely 

nonparametric and includes several examples showcasing its ability to effectively rep­

resent bivariate distributions with multiple modes. The method is a synchronized 

variate generation algorithm requiring only an observed bivariate data set from the 

user. The method used for the first variate in the two-dimensional random vector is 

produced exactly as outlined in Chapter 2. Using the first variate as a reference point, 

select data values from the sample data are collected to form a second piecewise-linear 

CDF conditioned on the value of the first variate. The second variate is produced 

via inversion from a conditional piecewise-linear CDF. Because each two-dimensional 

random vector produced requires the creation of a conditional weighted piecewise-
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linear CDF, this method is slower than its main competitor in the literature, kernel 

density estimation. However, while kernel density estimation can produce impossible 

variates in certain applications, the bivariate variate generation algorithm does not. 

Extensive comparisons are conducted, and results are provided in tabular and graphic 

form. 

Select control chart constants for non-normal sampling are derived in Chapter 4. 

These are derived in symbolic form for the normal distribution as well as select non­

normal distributions. APPL is used exclusively for the calculations in this chapter. 

The constants denoted as d2 , d3 , c4 , and c5 are bias correction factors, where d2 and d3 

correct for the mean and standard deviation of the sample range, and c4 and c5 correct 

for the mean of the sample standard deviation and its standard error. Although the 

constants associated with the normal distribution have been shown to be robust for 

non-normal processes, there can be substantial differences in control chart constants 

as shown in Tables 4.1 and 4.2. Conceivably, if an engineer knows enough about a 

process to warrant that the random variable of interest is non-normal in distribution, 

then he should be confident in estimating necessary parameters and applying the 

appropriate non-normal control chart constants. In the situation where estimated 

distribution parameters are required to derive the control chart constants, tabulated 

results are available up to reasonable sample sizes. 

In Chapter 5, the KS goodness-of-fit test is offered as an alternative to the more 

traditional chi-square goodness-of-fit testing on whether leading digits of sample data 

conform to Benford's law. Before conducting the test, the data is transformed, where 

the data represented by the continuous random variable T is transformed as Z = 

log10 T mod 1. The derivation shows that testing whether the leading digit of T 

conforms to Benford's distribution is equivalent to testing whether Z rv U(O, 1). Given 

this result, the KS test is appropriate (and exact) in testing whether Z rv U ( 0, 1). 

Since the test is exact for any sample size, the "rule of thumb" commonly suggested for 

chi-square goodness-of-fit testing (in testing for Benford, this was n > 109) is no longer 
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necessary. The power curves for each test were plotted for four select non-Benford 

distributions. The results of the comparison suggest that the KS goodness-of-fit test 

should be used instead of the chi-square goodness-of-fit test. 

In the final topic considered in the dissertation, transient queueing analysis is 

explored for the MIMI s queue. The chapter begins by providing a background of 

the queueing discipline, along with an explanation of how transient analysis differs 

from steady-state analysis. Complete specification of customer sojourn time dis­

tribution are developed for the nth customer when k 2:: 0 customers are present 

in the system at time zero. Examples are provided where, using the sojourn time 

distribution, several measures of performance are examined for varying customer 

numbers. The customer sojourn time distribution is extended to create bivariate 

sojourn time distributions for pairs of customers, allowing calculations of exact cor­

relations and covariances between customers. A complete variance-covariance ma­

trix is provided for n = 10 customers for varying traffic intensities. The APPL 

and Maple code written is made available in the appendix as well as online at 

http://WYW.math.wm.edu;-leemis/QueueAPPL.txt. These procedures provide a 

framework for investigating the behavior of the MIMI s queue as it evolves toward 

steady-state. 

As an extension of the work already completed in Chapter 2, where a piecewise­

linear cumulative distribution function was formed by connecting points on a given 

empirical cumulative distribution function, I propose to extend the the work to the 

Kaplan-Meier estimator. Specifically, I will apply the univariate nonparametric vari­

ate generation work to generating variates from the Kaplan-Meier estimator for right­

censored data in mathematical reliability theory. In the current literature, variates 

are generated from this estimate in a manner similar to bootstrapping (i.e., sampling 

with replacement). It is my intent to produce an algorithm that connects knot points 

along the Kaplan-Meier estimate with continuous segments allowing interpolation for 

variates from an estimator that shares the mean and variance of the observed lifetime 
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data. Creating this estimator requires that the lifetime data be stretched and shifted 

so the resluting estimator's moments match those of the lifetime data. 

In Chapter 3, five interesting potential areas of further work for the proposed 

algorithm are immediately evident. The first deals with studying how changes in the 

weighting function, wk, of the interior points, XA, affect the resulting random pairs 

produced by the algorithm. The second area concerns the use of nonconvex hulls 

that allow for "dents" in the support. The third area concerns a two-dimensional 

extension of Marsaglia's tail algorithm. The fourth area concerns generation speed. 

The current algorithm generates the first element of the bivariate pair quickly and 

the second element slowly. The setup portion of the algorithm can be modified so as 

to generate both variates quickly by storing a set of conditional PDFs. The fifth area 

concerns how a similar algorithm might be extended to higher dimensions. 

One area of further study for Chapter 4 might exist in searching for relation­

ships analogous to (4.7), which depend only on the single parameter n. Burr (1968) 

presents a strong case for normal sampling applications; however, Wheeler (2000) 

notes a trough in Burr's skewness versus kurtosis plot (especially in U-shaped distri­

butions) where using normal-sampling-based control chart constants would severely 

misrepresent the population. 

When testing conformance to Benford's law in Chapter 5, future work includes 

examining whether the KS test is appropriate for populations conforming to Stigler's 

law as well as mixtures of other leading digit distributions. This potentially allows 

for testing more classes of distributions with a test that is exact for any sample size. 

The first-principles derivation displayed in Chapter 6 suggests a possibility for 

future research would be to apply the approaches provided in this work to a GIG 11 

and perhaps even the more general GIG Is queue. Even though symbolic results might 

prove impossible, later versions of computational engines have improved in numeric 

methods, increasing the likelihood of achieving solutions. Additionally, making use 

of other computational formulae (such as Hagwood (2009)) may offer significant time 
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savings in calculations and is another interesting avenue for future work. 
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Appendix A 

Relationship to the Trapezoidal 

and Simpson's Rule 

Suppose that F = Fx: lR -t [0, 1] is an unknown continuous cumulative distribution 

function (CDF) and X 1 , X2 , ... , Xn are i.i.d. random variables with this distribution. 

Let 

(A.1) 

denote the particular values obtained in a given random sample, sorted into weakly 

increasing order. Our goal is to use this sample to estimate F, which will then be 

used to simulate further observations. (We additionally assume that the support of 

the population is positive for simplicity. If the lower bound of the support happens 

to be a finite negative value, the results given in this appendix can be achieved by 

shifting the data values and adjusting the associated moments.) 

For convenience, assume that F is strictly increasing on some (unknown) interval 

of possible values [a, b]. Thus, F: [a, b] -t [0, 1] is an invertible function with inverse 

p-I: [0, 1] -t [a, b]. Letting U ,...... U(O, 1), the probability integral transformation 

(Fishman, 2006, page 77) states that X and each Xi has the same distribution as 
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p-1(U). In particular, 

Furthermore, to simulate random observations from the distribution of X, we need 

only use a random number generator to generate random numbers u E [0, 1], and 

then compute F- 1 (u). 

Let Y(i) = (i-1)/(n-1) fori= 1, 2, ... , n. Given the input data (A.1), symmetry 

suggests that we estimate F by a piecewise-linear function for which F0 (x(i)) = Y(i) for 

i = 1, 2, ... , n. This is equivalent to estimating F-1 by a piecewise-linear function 

F0
1 such that F0-

1(Y(i)) = X(i) fori= 1, 2, ... , n. 

More generally, we might postulate that F-1 is some continuous function (not 

necessarily piecewise linear) such that F-1(Y(i)) = X(i) for i = 1, 2, ... , n. We can 

then use numerical integration techniques to estimate integrals involving the unknown 

function F- 1 . This is easy to do, since the Y(i) 's form a partition of [0, 1] into n - 1 

subintervals of equal length. For example, using the trapezoidal rule to estimate E[X] 

gives 

E[X] E[F-1 (U)] 

11 p-1(u) du 

1-0 
~ 

2
(n _ 

1
) (Fo-

1(Y(l)) + 2Fa-
1
(Y(2)) + 2Fo-

1
(Y(3)) + · · · + F0-

1(Y(nJ)) 

= 
X(l) + 2x(2) + 2x(3) + · · · + 2X(n-1) + X(n) 

2(n- 1) 

Of course, this is exactly the formula obtained by using a piecewise-linear approxi­

mation in Section 2.1. Similarly, the trapezoidal estimate of E[X2
] is 

1 2 22 22 2 
2 1 -1 2 x(1) + x(2) + ... + x(n-1) + x(n) 

E[X ] = F (u) du ~ ( ) . 
o 2n-1 

We remark that this expression does not necessarily equal J0

1 F0-
1 (u) 2 du, but it is 
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certainly one reasonable way to estimate E[X2]. Note that both of our formulas give 

unbiased estimators for the mean and second moment of X, although these are not 

the usual unbiased estimators commonly employed in statistics. 

The simplest approach to simulating observations from X is to use the piecewise­

linear estimate F0-
1 for F-1. One more advanced approach is to replace F0-

1 by 

some affine transformation F1-
1 = cF0-

1 + d, for suitable constants c, d. One way 

to proceed is to choose c and d so that E[F11 (U)] equals the sample mean of the 

X(i)'s, and Var[F1-
1(U)] equals the unbiased sample variance of the X(i)'s. A related 

approach (which is a bit simpler computationally) is to choose c and d so that the 

trapezoidal estimates of E[X] and E[X2] (computed with respect to F1-
1) equal the 

corresponding sample moments (computed using the X(i)'s). In more detail, let m 1 = 

I:i X(i), m2 = I:i x~i)' 

X(l) + 2x(2) + · · · + 2X(n-1) + X(n) 

t 1 = 2(n- 1) ' 

2 +2 2 2 2 2 x(1) x(2) + · · · + x(n-1) + x(n) 
t2 = --'---'---'-.:___-:-----:----'--.:___-~ 

2(n- 1) 

Then we can choose c and d to satisfy 

We then simulate random observations from X by generating random numbers u E 

[0, 1], and computing simulated values cF0-
1(u) +d. 

The preceding discussion suggests some tantalizing extensions. What if we used 

more advanced numerical integration techniques to estimate integrals involving the 

unknown function F-1? For example, when n-1 is even, we could use Simpson's Rule 

to estimate E[X] and E[X2], which amounts to using piecewise-quadratic estimates 

of the functions F- 1(y) and F-1(y)2. This leads to formulas such as 

E[X] = E[F-1(U)] ~ X(l) + 4x(2) + 2x(3) + 4x(4) + · · · + 4X(n-1) + X(n). 

3(n- 1) 
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One could then try to modify the associated piecewise-quadratic functions by affine 

transformations to attain a. closer match to the sample mean and unbiased sample 

variance. 
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Appendix B 

Computing 8 

The quadratic equation in 15 in Section 2.2.1 is 

L x(i) x(i)x(i+1) x(i+l) - x(1) L-i=2 x(i) + x(n) = s2 
n-1 ( I )2 + I I + ( I )2 [ I + 2 "'n-1 I I ]2 

i= 
1 

3 ( n - 1) 2 ( n - 1) ' 

where x(i) = X(l) - 15 + w I:~:,~ gj, i = 1, 2, ... , n. This appendix contains the algebra 

and an associated S-Plus/R function to solve this equation. 

First, simplify the expression for x(i) as 
i-1 

x(i) = X(1) - 0 + (x(n) - X(l) + 215) L X(i+
1
) - X(i) 

j=1 X(n) - X(1) 

X(n) - X(1) + 215 
= X(1) - 15 + (x(i) - X(l)) 

X(n)- X(l) 

[

2X(i)- X(n)- X(l)] s: 
= X(i) + u. 

X(n)- X(1) 

Define T(i) as the portion of this equation in the brackets: 
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for i = 1, 2, ... , n. Thus x(i) can be written more compactly as 

Returning to the quadratic equation and replacing x(i) with x(i) + rw5 yields: 

_ X(l) + 2 Li=2 (x(i) + r(i)8) + X(n) , _ 
8

2 = O. 
[ 

n-1 ]2 

2(n- 1) 

Expanding this quadratic equation in 8 in the form a82 + M + c = 0 and collecting 

terms yields the following expressions for a, b, and c: 

L r(i) L r(i)r(i+1) L r(i+1) 1 L n-1 2 n-1 n-1 2 (n 1 ) 2 

a = + + - -- ··=2 r(i) 
i= 1 3(n- 1) i=1 3(n- 1) i= 1 3(n- 1) (n- 1)2 

• 

n-1 n-1 n-1 
b ="""" 2x(i)r(i) +"""" X(i)r(i+1) + X(i+1)r(i) +"""" 2x(i+l)r(i+1) 

L 3(n- 1) L 3(n- 1) L 3(n- 1) 
t=1 t=1 t=1 

- (n ~ l)' [X(>)+ 2 ~X(<)+ X(n)l ~ r(<) 

n-1 2 n-1 n-1 2 ( 
2 

'\"'n-1 )2 
"""" X(i) """" X(i)X(i+1) """" X(i+1) X(l) + L...i=2 X(i) + X(n) 2 

c = ~ 3(n- 1) + ~ 3(n- 1) + ~ 3(n- 1)- 4(n- 1)2 -s 

Given the values of a, b, and c, the positive root of the quadratic equation is given 
-b + Jb2 - 4aC S: d 11 II II • 

by 8 = 
2

a . The values of u an x(1),x(2), ... ,x(n) can be calculated m 

S-Plus using the function mm (for "matching moments") given below. 

mm <- function(x) { 
X <- sort(x) 
n <- length(x) 
xbar <- mean(x) 
xvar <- var(x) 
r <- (2 * X - x [n] - X [1]) I (x [n] - X [1]) 
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} 

rlo <- r[1:(n- 1)] 
rhi <- r[2:n] 
rmid <- r[2:(n- 1)] 

xlo <- x[1:(n- 1)] 
xhi <- x[2:n] 
xmid <- x[2:(n- 1)] 

aa <- 1 I (3 * (n - 1)) * (sum(rlo * rlo) + sum(rlo * rhi) + 

sum(rhi * rhi)) - 1 I (n - 1) - 2 * (sum(rmid) - 2) 
bb <- 1 I (3 * (n - 1)) * (sum(2 * xlo * rlo) + sum(xlo * 

rhi + xhi * rlo) + sum(2 * xhi * rhi)) - 1 I 
(n - 1) - 2 * sum(rmid) * (x[1] + x[n] + 2 * sum(xmid)) 

cc <- 1 I (3 * (n - 1)) * (sum(xlo - 2) + sum(xlo * xhi) + 

sum(xhi - 2)) - 1 I (4 * (n - 1) - 2) * ((x[1] + x[n] + 

2 * sum(xmid)) - 2) - xvar 

del <- (-bb + sqrt(bb - 2 - 4 * aa * cc)) I (2 * aa) 
xp <- x + r * del 
xpp <- xp - ((sum(xp) - xp[1] I 2 - xp[n] I 2) I (n - 1) - xbar) 
xpp 

As expected, this function returns the vector of values, namely, 

-0.1347206 1.1080189 4.8362375 7.3217166 8.5644561 9.8071956 

from Example 3 when called with 

mm(c(1, 2, 5, 7, 8, 9)) 

This function can be downloaded from www .math. wm. edulrvleemisl2009mm. code. 
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Appendix C 

Nonparametric Bivariate 

Generator 

The R/S-Plus code below contains all the elements necessary to generate random 

bivariate pairs given the x and y vectors consisting of the observed data using the 

algorithm described in Chapter 3. The code is separated into three portions, setup, 

generation, and the main program. Indentation denotes nesting. 

C.l xpwl(x) and ywtpwl(xgen) 

# OPTIONAL MOMENT MATCHING SETUP PORTION 
# xnew <- mm(x) 
# ynew <- mm(y) 

orderxnew <- order(xnew) 
xnewlength <- length(xnew) 

x <- xnew[orderxnew] 
y <- ynew[orderxnew] 

hullindex <- chull(x,y) 
m <- length(hullindex) 
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xhull <- x[hullindex] 
yhull <- y[hullindex] 
hullorder <- order(xhull,yhull) 
indexmin <- hullorder[1] 
indexmax <- hullorder[m] 

# determine the line separating the upper and lower hull 
slope <- (yhull[indexmax] - yhull[indexmin]) I (xhull[indexmax] 

- xhull[indexmin]) 
intercept <- yhull[indexmax] - slope * xhull[indexmax] 
count <- 0 

# find length (segments) of upper and lower hulls 
count <- length(which(yhull[hullorder] > slope * xhull[hullorder] 

+ intercept)) 

# VARIATE GENERATION FUNCTIONS 

# generate x from the piecewise-linear CDF from original 
# (or moment matched) x vector 

xpwl <- function(x) { 
u <- runif (1) 

i <- ceiling((xnewlength 1) * u) 
x[i] + ((xnewlength- 1) * u- (i- 1)) * (x[i + 1] - x[i]) 

} 

# generate y from the weighted piecewise-linear CDF created by 
# conditioning on the x value generated 

ywtpwl <- function(xgen) { 

# find segments of hull lower and upper intersection with xgen, 
# determine intersecting y values 

for (i in 1:length(upperx)) { 
if ((xgen >= upperx[i]) && (xgen <= upperx[i + 1])) { 
upperslope <- (uppery[i] - uppery[i+1]) I (upperx[i] -

upperx[i + 1]) 
upperint <- uppery[i + 1] - upperslope * upperx[i + 1] 
ymax <- upperslope * xgen + upperint 
} 
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} 

for (i in 1:length(lowerx)) { 

} 

if ((xgen >= lowerx[i]) && (xgen <= lowerx[i + 1])) { 
lowerslope <- (lowery[i] - lowery[i + 1]) I (lowerx[i] 

- lowerx[i + 1]) 

} 

lowerint <- lowery[i + 1] - lowerslope * lowerx[i + 1] 
ymin <- lowerslope * xgen + lowerint 

# collect y values between ymin and ymax forming the set A 
j <- 0 
ybetweenindex <- 0 
for (i in 1:xnewlength) { 

if (y[i] <= ymax & y[i] >= ymin) { 
j <- j + 1 
ybetweenindex[j] <- i 

} 

} 

# create x and y vectors for interior points, augment 
# with ymin, ymax 

ybetween <- y[ybetweenindex] 
xbetween <- x[ybetweenindex] 
ybetweenorder <- order(ybetween) 
yvec <- c(ymin, ybetween[ybetweenorder], ymax) 
xvec <- c(xgen, xbetween[ybetweenorder], xgen) 

# weight y values by distance from xgen, w(i) = 1 I (1 + 

# ((x(i) - xgen) I sqrt(var(xvec))) - 2) 
yweight <- 0 
for (i in 1:length(yvec)) { 

yweight[i] <- 1 I (1 + ((xvec[i] - xgen) I 
sqrt(var(xvec))) - 2) 

} 

# normalize weights 
ynmwt <- 0 
for (i in 1:length(yvec)) { 

ynmwt[i] <- yweight[i] I sum(yweight) 
} 
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} 

# find new y knot points of the weighted piecewise-linear CDF 
yknots <- matrix(O:O, length(yvec)) 
yknots [1] <- 0 
for (i in 2:length(yvec)) { 

} 

yknots[i] <- sum(ynmwt[1:(i- 1)]) + (i- 1) * (ynmwt[i]) 
I (length(yvec) - 1) 

# generate y value pwl from knot point y values 
u1 <- runif (1) 

i <- 1 
while (u1 > yknots[i + 1]) { 

i <- i + 1 
} 

yvec[i] + (u1 - yknots[i]) * (yvec[i + 1] - yvec[i]) I 
(yknots[i + 1] - yknots[i]) 

# MAIN PROGRAM 

# set N to the desired number of random variates here 
# Generated <- matrix(O:O, N, 2) collects the resulting 
# random variate pairs 

for (i in 1:N) { 
xgen <- xpwl(x) 

} 

ygen <- ywtpwl(xgen) 
Generated[i, 1] <- xgen 
Generated[i, 2] <- ygen 
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Creating the Sojourn Time 

Distribution 

The following procedures do not exist in APPL and were written to accomplish the 

goals outlined in Chapter 6. They make internal use of other APPL procedures and 

are intended to become part of the procedures offered in the APPL suite of software. 

D.l Queue(X, Y, n, k, s) 

# Queue(X, Y, n, k, s) 
# ----------------------------------------------·-----

# Computes the sojourn time distribution of the nth 
# customer in an M/M/s queue, given k customers are 
# in the system at time 0. Queue calls the 
# subprocedure MMsQprob(n, k, s) (and subsequently 
# calls Q(n, i, k, s)) which recursively calculates 
# the required probabilities of the nth customer 
# seeing exactly i customers, including himself, in 
# the system upon arrival for i = 1 to n + k 
# customers. Calculations are based on algorithms 
#provided in Kelton and Law (1985). Calls the 
# subprocedure BuildDist(X, Y, n, k, s) which builds 
# the conditional sojourn time distribution for 
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# i = 1 customer to i = n + k customers in the 
# system. Queue mixes the prob~bilities with the 
# conditional sojourn time distributions to return 
# the exact PDF of the sojourn time in the APPL 
# list-of-lists format. Requires the 
# subprocedures mentioned above along with the APPL 
# software. The exponential arrival and service 
# random variables must be defined in the APPL 
# format. The procedure call is 
# Queue(X, Y, n, k, s), where X is the arrival time 
# distribution, Y is the service time distribution, 
# n is the customer of interest, k is the number of 
# customers in the system at time 0, and s is the 
# number of identical parallel servers. Both X and 
# Y must be exponential random variables in the 
# APPL list-of-lists format. 
# 
#Name 

# Author 
# Language 
# Latest Revision 

Queue.mw 
Billy Kaczynski 
MAPLE 9 
09111108 

# ---------------------------------------------------
Queue := proc(X, Y, n, k, s) 

global rho; 
local i :: integer, lst :: list, TIS :: list; 
rho 1 I Mean(X) I (s * 1 I Mean(Y)); 
lst := BuildDist(X, Y, n, k, s); 
TIS := Mixture(MMsQprob(n, k, s), lst); 
return TIS; 

end: 
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D.2 MMSQprob(n, k, s) 

# MMSQprob(n, k, s) 
# ---------------------------------------------------
#Computes Pk(n, i)'s for an M/M/s queue, which is 
# the probability that customer n will see i 
# customers in the system including himself at time Tn 
# with k customers initially in the system at time 0. 
# Calls the subprocedure Q(n, i, k, s) which 
# recursively calculates the required probabilities 
# using the algorithms provided in Kelton and Law 
# (1985). The procedure returns the ordered 
# probabilities for i = 1 customer (an empty queue) 
# to i = n + k customers in a list. Note that the 
# parameter rho for an M/M/s queue is 
#rho= lambda I (s * mu). 
# 
# Name 
# Author 
# Language 
# Latest Revision 

MMsQprob.mw 
Billy Kaczynski 
MAPLE 9 
09/03/08 

# ---------------------------------------------------
MMsQprob := proc(n, k, s) 

local i :: integer, lst :: list; 
lst := []; 
for i from 1 to n + k do 

lst := [op(lst), Q(n, i, k, s)]; 
od; 
return lst; 

end; 
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D.3 Q(n, i, k, s) 

# Q(n, i, k, s) 

# ---------------------------------------------------
# Computes the single probability Pk(n, i) for an 
# MIMis queue recursively according to the algorithms 
#provided in Kelton and Law (1985). 
# Name Q.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
09103108 

# ---------------------------------------------------
Q := proc(n, i, k, s) 

option remember; 
global rho; 
local p, j :: integer, h · · integer; 
if (k >= 1) and (i = k + n) then 

if k >= s then p := (rho I (rho + 1)) - n 
elif k + n <= s then 

p := rho - n I (mul(rho + (k + j - 1) 

j = 1 .. n)) 
elif (k < s) and (s < k + n) then 

I 

p - rho - n I ((rho + 1) - (n s + k) 
(mul(rho + (k + j - 1) I s, 
j = 1 .. s - k))) 

fi; 
fi; 
if (k = 0) and (i = n) then 

if n <= s then 

fi; 

p rho - n I mul(rho + (j - 1) I s, 
j = 1 .. n) 

elif n > s then 

fi; 

p := rho - n I ((rho + 1) - (n - s) * 
mul(rho + (j- 1) Is, j = 1 .. s)) 

if i 1 then 
p := 1- add(Q(n, j, k, s), j = 2 .. n + k) 

fi; 

s, 

* 

if (k >= 1) and (i >= 2) and (i <= k) and (n = 1) then 
if k <= s then 
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p - rho I (rho + (i - 1) I s) * mul(1 - rho 
I (rho + (k - j + 1) I s)' 
j = 1 .. k-i+1) 

elif (k > s) and (i > s) then 
p - rho I (rho + 1) - (k - i + 2) 

elif (i <= s) and (s < k) then 
p - rho I ((rho + 1) - (k - s + 1) * (rho + 

(i - 1) I s)) * mul(1 - rho I (rho + 
(s - j) Is), j = 1 .. s - i) 

fi; 
fi; 
if (n >= 2) and (i >= 2) and (i <= k + n - 1) then 

if i > s then 
p := rho I (rho + 1) * add((1 I (rho + 1) -

(j - i + 1) * Q(n- 1, j, k, s)), 

j = i - 1 .. k + n- 1) 

elif i <= s then 
p rho I (rho + (i - 1) I s) * 

fi; 
fi; 
return p; 

end: 

(add((mul(1 - rho I (rho + (j - h + 1) 
Is), h = 1 .. j- i + 1)) * Q(n- 1, j, 
k, s), j = i- 1 .. s- 1) + product(1-
rho I (rho+ (s- h) Is), h = 1 .. s­
i) * add((1 I (rho + 1)) - (j - s + 1) 
* Q(n- 1, j, k, s), j = s .. k + 

n - 1)); 
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D.4 BuildDist(X, Y, n, k, s) 

# BuildDist(X, Y, n, k, s) 
# ---------------------------------------------------
# Creates the appropriate conditional sojourn time 
# distribution for each case where a customer arrives 
# to find i = 1 to i = n + k customers present, 
# including himself, in an MIMis queue with k customers 
# intially present. The procedure call is 
# BuildDist(X, Y, n, k, s), where X is the arrival time 
# distribution, Y is the service time distribution, n 
# is the customer number of interest, k is the number 
# of customers in the system at time 0, and s is the 
# number of identical parallel servers. Both X and Y 
# must be exponential random variables in the APPL 
# list-of-lists format. 
# 

# Name 

# Author 
# Language 
# Latest Revision 

BuildDist.mw 
Billy Kaczynski 
MAPLE 9 
09103108 

# ---------------------------------------------------
BuildDist := proc(X, Y, n, k, s) 

local i :: integer, lst :: list; 
lst := []; 

for i from 
if s = 1 

lst := 

else 

1 to n + k do 
then 

[op(lst), ErlangRV(l I Mean(Y), i)] 

if (i <= s) or (s > n + k) then 
lst [op(lst), Y]; 

else 

fi; 
fi; 

od; 

lst 

return lst; 
end; 

[op(lst), Convolution(ErlangRV(s * 
1 I Mean(Y), i-s), Y)]; 
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Appendix E 

Average Delay and Service for 

Percentile Comparison 

I* ---------------------------------------------------------
* This program alters ssq1.c from Leemis and Park (2005) 
* to capture the average delay and service times for an 
* MIMI1 queue with an arrival rate = 1 and a service 
* rate = 1019 for the third customer, given the queue is 
* empty and idle at time T = 0. The program also writes 
* 10,000,000 service times to use as an empirical CDF for 
* comparing the 99th percentile to the exact percentile 
* as provided by the APPL procedure Queue. 

* 
* Name 
* Author 
* Language 
* Latest Revision 

mm1.c 
Billy Kaczynski 
ANSI C 
9-10-08 

* ---------------------------------------------------------

#include <stdio.h> 
#include <math.h> 
#include "rng.h" 
#define LAST 
#define START 
FILE * fptr; 

4L 
0.0 

I* number of jobs processed *I 
I* initial time *I 
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double Exponential(double m) 
I* ---------------------------------------------------
* generate an Exponential random variate, use m > 0.0 
* ---------------------------------------------------

return (-m * log(1.0- Random())); 
} 

double GetArrival(void) 
I* ------------------------------
* generate the next arrival time 
* ------------------------------
*I 

{ 

} 

static double arrival = START; 
arrival+= Exponential(1.0); 
return (arrival); 

double GetService(void) 
I* ------------------------------
* generate the next service time 
* ------------------------------

return (Exponential(0.9)); 
} 

int main(void) 
{ 

long index o· 
' 

long i 10000000; 
long t = o· 

' 
double arrival START; 
double delay; 
double service; 
double wait; 
double departure START; 
struct { 

double delay; 

I* job index 

I* time of arrival 

I* delay in queue 

I* service time 

I* delay + service 

I* time of departure 

I* sum of ... 
I* delay times 
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} 

double wait; 
double service; 
double interarrival; 

} sum = {0.0, 0.0, 0.0}; 

PutSeed(123456789); 
fptr = fopen("data.dat", "w"); 
for (t = 0; t < i; t++) { 

index = 0; 
arrival = START; 
departure = START; 

while (index < LAST) { 
index++; 
arrival = GetArrival(); 

< departure) 

wait times 
service times *I 
interarrival times *I 

if (arrival 
delay departure - arrival; /*delay in queue*/ 

else 
I* no delay *I delay 

service 
wait 
departure 

= 0.0; 
GetService(); 
delay + service; 
arrival + wait; /*time of departure *I 

if (index 
sum.delay 
sum.wait 

3) { 

+= delay; 
+= wait; 

sum.service += service; 
fprintf (fptr, "%7. 5lf\n", wait); } 

} 

sum.interarrival = arrival - START; 
} 

fclose(fptr); 
printf ( "\nfor the %ldrd job\n", index - 1); 

printf (" average wait ............ = %6. 5f\n 11
, 

sum.wait I i); 
printf(" average delay 

sum.delay I i); 
printf(" average service time 

sum.service I i); 
return (0); 

= %6.5f\n 11
, 

= %6.5f\n", 
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Appendix F 

Discrete-Event Simulations for 

Customers 1 and 2 

The following simulations are written for R/S-Plus providing the measures of perfor­

mance for approaches 1 and 2 in Section 6.5.1. The time to execute the simulation 

is negligible. Each code segment has been vectorized in order to take advantage of 

R/S-Plus' efficiency in manipulating vectors. 

# ---------------------------------------------------

# Next-event discrete-event simulation for customers 
# 1 and 2 to calculate their covariance and 
# correlation. 
# Name 
# Author 
# Language 
# Latest Revision 

approach1.txt 
Billy Kaczynski 
R/S-Plus 
10/29/08 

# ---------------------------------------------------

# Approach 1: 

N <- 10000000 
lambda <- 1 
mu <- 2 
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t1 <- rexp(N, mu) 
a2 <- rexp(N, lambda) 
c1 <- which(a2 > t1) 
c2 <- which(t1 > a2) 
t1c1 <- t1[c1] 
t1c2 <- t1[c2] 
y <- t1 [c2] - a2 [c2] 
t2c1 <- rexp(length(c1), mu) 
t2c2 <- rexp(length(Y), mu) + Y 
t1 <- c (t1c1, t1c2) 
t2 <- c(t2c1, 

mean(t1) 
var (t1) 
mean(t2) 
var(t2) 
mean(Y) 
var(Y) 
mean(t2c2) 
var(t2c2) 
cov(t1, t2) 
cor(t1, t2) 

t2c2) 
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# ---------------------------------------------------
# Conditional discrete-event simulation for customers 
# 1 and 2 to calculate their covariance and 
# correlation. 
# Name 
# Author 
# Language 
# Latest Revision 

approach2.txt 
Billy Kaczynski 
R/S-Plus 
10/29/08 

# ---------------------------------------------------

# Approach 2: 

N <- 10000000 
U <- runif (N) 

lambda <- 1 
mu <- 2 
p <- lambda I (lambda + mu) 

t1 <- rexp(N, lambda+ 
t2 <- rexp(N, mu) 
c1 <- which(U > p) 
c2 <- which(U < p) 
y <- rexp(length(c2), 
t1c1 <- t1[c1] 
t1c2 <- t1[c2] 
t2c1 <- t2 [c1] 
t2c2 <- t2 [c2] 
t1 <- c(t1c1, 
t2 <- c(t2c1, 

mean(t1) 
var(t1) 
mean(t2) 
var(t2) 
mean(Y) 
var(Y) 
mean(t2c2) 
var(t2c2) 
cov(t1, t2) 
cor(t1, t2) 

+ y 

+ y 

t1c2) 
t2c2) 

mu) 

mu) 
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Appendix G 

Derivation of the Trivariate 

Sojourn Time Distribution 

The trivariate joint probability distribution of the sojourn times for customers 1, 2, 

and 3 in an initially empty and idle M/M/1 queue is derived below. The approach 

uses first principles for each of the five possible arrival/departure ordering sequences, 

along with a geometric description of the more complicated cases. The cases are 

ordered by increasing complexity as A, B, C, D, and E, with A being the simplest 

case, where the first three sojourn times are independent. Cases Band C each possess 

one independent sojourn time and two dependent sojourn times. Cases D and E are 

the most complicated cases, where dependence occurs between all three customers. 

Let 7i be the sojourn time for customer i = 1, 2, 3 in an M/M/1 queue with 

arrival rate >. and service rate J.L. Define FA(t1 , t 2 , t 3) and fA(t 1 , t2 , t3) as the joint 

CDF and PDF respectively for case A for the first three customers. The notation for 

cases B through E follow accordingly. Define the probabilities PA,PB, ... ,PE as the 
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probability that cases A through E occur respectively. The case matrix, C, is 

1 -1 1 -1 1 -1 

1 -1 1 1 -1 -1 

C= 1 1 -1 -1 1 -1 

1 1 -1 1 -1 -1 

1 1 1 -1 -1 -1 

where rows 1 through 5 of C correspond to cases A through E, with 1 indicating 

an arrival and -1 indicating a departure. The corresponding segment distribution 

matrix C' for n = 3 is 
1 0 1 0 2 

1 0 1 2 2 

C'= 1 1 1 0 2 

1 1 1 2 2 

1 1 2 2 2 

There are three possible entries in C', corresponding to the distribution for each 

successive segment: 

• exponential(>.+ p,), which is indicated by a 1 

• exponential(p,), which is indicated by a 2 

• no distribution as a result of an emptied system, which is indicated by a 0. 

Case A. In case A, the first three customer sojourn times are independent. The 

joint CDF is therefore the product of the CDFs for each customer. The path segment 

distributions for T1 , T2 , T3 are exponential (A+ p,), exponential(>.+ p,), exponential(p,) 

respectively. Therefore, 
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Case A occurs with probability PA = ~-L2 / (>. + !-L)2
. Taking partial derivatives yields 

the joint PDF 

Case B. In case B, customer 1 's sojourn time is independent of the sojourn times 

of customers 2 and 3. Customers 2 and 3 share a distribution segment whose duration 

is denoted by Y. The path segment distributions for T1 , T2 , T3 are exponential(,\+ 1-L), 

exponential(,\+ 1-L) + Y, Y + exponential(!-L), respectively, where Y"' exponential(!-L)· 

Because of the dependence occurring between customers 2 and 3, the value of Y 

cannot exceed either the value of T2 or of T3 . Thus the interval over which y varies 

depends on the relative sojourn time possibilities t2 < t3 and t3 < t2. Conditioning 

on Y, the joint CDF for case B is 

1t2 (1- e-(>.+p)tl) (1- e-(>.+p)(t2-Y)) 

(1- e-p(t3 -y)) 1-Le-JLYdy t2 < t3 

1t3 (1- e-(>.+p)tl) (1- e-(>.+p)(t2-Y)) 
(G.1) 

(1- e-p(t3 -y)) 1-Le-JLYdy t3 < t2. 

Case B occurs with probability Ps = Al-L/(>.+ 1-LY Taking partial derivatives yields 

the joint PDF 

Case C. This case is analogous to case B except that customer 3's sojourn time is 

independent and customers 1 and 2 share the distribution segment whose duration is 

denoted by Y. The path segment distributions for T1 , T2 , T3 are exponential(>.+!-L)+Y, 

Y +exponential(,\+ /-L), exponential(/-L), respectively, where Y"' exponential(,\+ 1-L)-
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Conditioning on Y, the joint CDF, which is similar in structure to (G.1) for case B, 

is 

1tl ( 1 - e-C>.+JL)(tl-Yl) ( 1 - e-(>.+JL)(t2-Y)) 

(1- e-JLt3) (.X+ f.L) e-(>.+JL)Ydy t1 < t2 

1t2 (1- e-(>.+JL)(tl-Yl) (1- e-(>.+JL)(t2-Y)) 

(G.2) 

(1- e-~'t3 ) (.X+ f.L) e-(>.+JL)Ydy t2 < t1. 

Case C occurs with probability Pc = Af.L2 /(.X+ f.L) 3
. Taking partial derivatives yields 

the joint PDF 

f.L ( 2>.f.Le->.t2-JLt2-JLt3 + ). 2e->.t2-JLt2-JLt3 + f.L2e->.t2-JLt2-JLt3 _ 

).2e->.t2-JLt2->.t1-JLt1 -JLt3 _ 2 f.L.xe->.t2-JLt2->.t1-JLt1-JLt3 _ 

f.L2e->.t2-JLt2->.t1 -JLtl-JLt3) 

f.L ( _ ).2e->.t2-JLt2->.t1-JLt1 -JLt3 _ 2 Af.Le->.t2-JLt2->.tJ -JLh -JLt3+ 

).2e->.t1-JLt1-JLt3 + 2.Xf.Le->.t1-JLt1-JLt3 + f.L2e->.t1-JLt1-JLt3 _ 

f.L2e->.t2-JLt2->.t1-JLt1 -JLt3) 

Case D. In case D, pairwise dependence occurs between customers 1 and 2 as 

well as between customers 2 and 3. This dependence leads to a more complicated 

version of the joint CDF occurring in five separate subcases based on the length of 

relative sojourn times. The joint CDF of T1 , T2 , and T3 is given by the integral over 

region K, where K = { (y, z) : 0 < y < t1, y + z < t2, 0 < z < t 3}. Since the geometric 

form of the region over which y and z can vary depend on the relative sizes of t1 , t2 , 

and t3 , we must determine appropriate limits of integration for y and z separately for 

each of five possible cases: 
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The path segment distributions for T1 , T2 , T3 are 

(T1 , T2 , T3 ) '""' (exponential(>.+ J-L) + Y, Y +exponential(>.+ J-L) + Z, 

Z + exponential(J-L)), 

where Y '""'exponential(>.+ J-L) and Z'""' exponential(J-L). The integrand for each case, 

denoted by I, is 

Using this integrand, the joint CDF is 

FD(tl, t2, t3) = J J Idy dz 

K 

where the region K is as formerly described. Case D occurs with probability PD = 

>.2 J.L/ (>. + Jl )3
. These five subcases correspond to the five shaded regions of integration 

sketched in Figures G.l through G.5. 

Subcase 1 of Case D. In this subcase, where t2 < min{t1 , t3}, the region 

of integration occurs in they, z plane as shown in Figure G.l, resulting in 

the following integral for the joint CDF: 
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Taking partial derivatives of the joint CDF yields the joint PDF 

!D
1 
(tl> tz, t3) = (A+ A2tzet2(>.+11-) + 2AJ.dzet2(>.+!1-) + J.L2t2et2(>.+/1-)_ 

Aet2(>.+11-) _ J.Let2(>.+11-) + J.L) e->.t2-l-'t2->.t1-l-'tl-l-'t3 J.L2 

z 

y 

Figure G.1: Geometric form of subcase 1, caseD, where t2 < min{t1 , t3 }. 

Subcase 2 of Case D. In this subcase, where t 1 < t 2 < t 3 , the region of 

integration occurs in the y, z plane as shown in Figure G.2, resulting in 

the following integral for the joint CDF: 

At this point in the derivation, the joint PDFs become too cumbersome 

to express here. However, these expressions are tenable and are used to 

include all cases and achieve the trivariate distribution. 

Subcase 3 of Case D. Subcase 3 is analogous to subcase 2 except that 

the ordering of sojourn time lengths changes to t 3 < t2 < t 1 . The region 

of integration again occurs in they, z plane as shown in Figure G.3. This 
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z 

y 

Figure G.2: Geometric form of subcase 2, case D, where t1 < t2 < t3 . 

region results in the following expression for the joint CDF: 

z 

y + z = t2 

y 

Figure G.3: Geometric form of subcase 3, caseD, where t 3 < t2 < t 1 . 

Subcase 4 of Case D. In this subcase, where max{ t 1 , t 3 } < t 2 < t 1 + t3 , 

the region of integration occurs in they, z plane as shown in Figure G.4. 

Because of the shape of the region, the integration must be split into two 
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parts. The joint CDF is found as 

z 

y 

Figure G.4: Geometric form of subcase 4, case D, where max{ t1 , t3 } < t2 < t1 + t3 . 

Subcase 5 of Case D. In this subcase, where t2 > t 1 + t3 , the region 

of integration occurs in the y, z plane as shown in Figure G.5. The joint 

CDF is found as 

An intermediate check of the validity of the derivations for case D can be accom­

plished by integrating each subcase joint PDF !Di(ti, t2, t3) over its corresponding 

support, which we will denote by R;, i = 1, 2, ... , 5. Since case D results in a valid 

joint PDF when not weighted by PD, the sum of the five subcases integrated appro-
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z 

y + z = t2 

y 

Figure G.5: Geometric form of subcase 5, case D, where t2 > t1 +h. 

priately should be one. Thus it should be true that 

Defining PD; as the contribution of subcase i to the above sum, the contributions of 

each of the five subcases follow. 

For subcase 1, we must further consider the relative sizes of t1 and t3 . There are 

two possibilities, t 1 < t3 and t 1 > t3 , which lead to the contribution of subcase 1 as 

PD1 = 100 1t3 1t1 

fD 1 (ti,tz,t3)dt2dt1dt3 + 100 1t1 1t3 

fD 1 (ti,tz,t3)dt2dt3dt1 

J..L (2>..J..L + )..2 + J..L2) 
- (>..+2J..L)2(2>..+3J..L). 

Using the subcase 2 joint PDF, the contribution of the subcase is 

179 



Appendix G. Derivation of the Trivariate Sojourn Time Distribution 

Using the subcase 3 joint PDF, the contribution of the subcase is 

Using the subcase 4 joint PDF, the contribution of the subcase is 

J.l (3>.2 + 7Aj.L + 4J.L2) 

(2-\ + 3J.L) (2J.L + >. )2 

Using the subcase 5 joint PDF, the contribution of the subcase is 

It can be shown by elementary algebra that, as desired, 

Case E. In case E, all three arrivals occur prior to the first departure, resulting 

in pairwise dependence between customers 1 and 2, and customers 2 and 3, as well 

as three-way dependence between the customers. This is the most complicated of the 

five cases, though it does share some commonality with case D. The joint CDF of T1 , 

T2 , and T3 is given by the integral over region K, where K = { (y, z, w) : 0 < y, 0 < 

z, 0 < w, y + z < t1 , y + z + w < t2 , z + w < t3 }. Since the limits of integration for y, 

z, and w depend on the relative sizes of t1, t 2 , and t3 , we must determine appropriate 

limits separately for each of the following five possible cases: 
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The path segment distributions for T1, T2 , T3 are exponential(A+J.L)+Y +Z, Y +Z+W, 

z + w + exponential(J.L)' where y rv exponential(). + J.L)' z rv exponential(J.L)' and 

W""" exponential(J.L). The integrand for each case, denoted by I, is 

Using this integrand, the joint CDF is 

FE(t1, t2, t3) =I I I I dy dz dw, 

K 

where the region K is as formerly described. Case E occurs with probability PE = 

For each of the five subcases of case E, the integrals required to compute the joint 

CDF are provided. However, the three-dimensional figures associated with these 

subcases are not included. 

Subcase 1 of Case E. The joint CDF is found as 

Subcase 2 of Case E. The joint CDF is found as 

Subcase 3 of Case E. The joint CDF is found as 
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Subcase 4 of Case E. The joint CDF is found as 

Subcase 5 of Case E. The joint CDF is found as 

After computing the joint CDFs for each subcase and taking partial derivatives 

to find the joint PDFs, the overall joint PDF for the sojourn times of the first three 

customers can be computed as the mixture 

If the joint CDFs calculated for the five cases, A through E, are correct, then the 

resulting joint PDFs (produced by taking the third order partial derivatives of the 

joint CDFs with respect to t1, t2, and t3) should each yield the result 1 when inte­

grated over the first octant of (t1, t2, t3) space. In order to perform this consistency 

check for the CDF in case E, we must partition the first octant into regions, each of 

which has a different algebraic expression for the PDF, and determine appropriate 

limits of integration for each region. There are six such regions, five corresponding 

to the five subcases listed for case E above, and one region on which the PDF is 

0, given by the impossible situation t2 > t1 + t3 (this inequality is never satisfied 

since the time interval of duration t2 is a subset of the union of the time inter­

vals of duration t1 and t3 ). These six regions in the first octant are bordered by 

the coordinate planes and by the following three planes, all of which pass through 

(0, 0, 0): t1 = t2, t1 = t3, t2 = t3, and t2 = t1 + t3. Figure G.6 depicts these six 

regions by showing their intersection with the plane t1 + t2 + t3 = 2. Each region 

"begins" at (0, 0, 0), has three planar sides and is of infinite extent. To check the 
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(0, 0, 2) 

~r--+--------~~--~~ 

(0, 2, 0) 

t, 

Figure G.6: Geometric presentation of the five subcases for case E. 

accuracy of the trivariate distribution, E [Td, E [T2], E [T3], Cov(T1 , T2), Cov(T1 , T3 ), 

and Cov(T2 , T3 ) were computed. The results matched exactly those produced by 

the Queue(X, Y, n, k, s) procedure and were further supported by Monte Carlo 

simulation. Additionally, the marginal distributions of the sojourn times of the first 

three customers were computed from the trivariate distribution, and these marginal 

distributions matched those computed by conditioning. The Maple code to calculate 

all joint PDFs is given at w..TT.T.math.wm.edu/leemis/trivariate.txt. 
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Appendix H 

Three Customer Next-Event 

Simulation for Computing 

Covariance 

The following simulation is written for R/S-plus providing the verification for the 

covariance calculations in Section 6.5.2 for n = 3 customers. 

# --------------------------------------------------
# Discrete-event simulation for customers 1, 2, and 
# 3 to calculate their covariance. 
#Name simt1t2t3.txt 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
R/S-Plus 
11/04/08 

# --------------------------------------------------

N <- 100000 
t1 <- rexp(N, 2) 
a2 <- rexp (N, 1) 
a3 <- a2 + rexp(N, 1) 
c2 <- c(1:N) 
c3 <- c(1:N) 
for (i in 1:N) { 
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if (t1[i] > a2[i]) c2[i] <- t1[i] + rexp(1, 2) 
else c2[i] <- a2[i] + rexp(1, 2) 

} 

t2 <- c2 - a2 
for (i in 1:N) { 

if (a3 [i] > c2 [i]) {c3 [i] <- a3 [i] + rexp(1, 2)} 
if (a3[i] < t1[i]) {c3[i] <- c2[i] + rexp(1, 2)} 
if (a3[i] < c2[i] & a3[i] > t1[i]) c3[i] <- c2[i] + rexp(1, 2) 

} 

t3 <- c3 - a3 

covt1t2 <- mean(t1 * t2) - mean(t1) * mean(t2) 
covt1t2 
covt1t3 <- mean(t1 * t3) - mean(t1) * mean(t3) 
covt1t3 
covt2t3 <- mean(t2 * t3) - mean(t2) * mean(t3) 
covt2t3 
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Appendix I 

Paths for n == 3 Customers in an 

M/M/1 Queue 

The number of arrival/departure paths possible for n = 3 customers is the third 

Catalan number, or 
(2n)! 

c3 = '( )' = 5. n. n+1. 

Figure I.1 depicts the five cases as paths from the bottom left node to the top right 

node of each figure. The cases are ordered according to the rows of C, the case matrix, 

which are created by the prefix-shift algorithm presented in Section 6.6. In the case 

matrix C, an arrival is annotated by a 1 and a departure by a -1. This algorithm 

guarantees the generation of all such possible paths. For n = 3, the case matrix C is 

1 -1 1 

1 1 -1 

1 -1 -1 

1 -1 -1 

C= 1 -1 1 -1 

1 

1 

1 -1 -1 

1 -1 

1 -1 

1 1 -1 -1 -1 

Moving right in the figure denotes an arrival and moving up denotes a service 

completion. Diagonal moves are not permitted. These paths provide the methodology 
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for calculating the probability associated with each case along with the appropriate 

probability distribution for each case. 

• 

i 
• • 

i 

• 

i 
• • 

i 

• 

i t___.. 
f___..___.. . ._____,..... .____.. . 

i i . _____,..... . . ._____,....._____,..... . ._____,..... . . 
• 

i t___.. 
• • • 

i . _____,....._____,..... . 

• 

i 
• • 

i 
• • • 

i . _____,.... ._____,..... _____,.... . 
Figure I.l: Five paths for n = 3 customers' sojourn times in an M / M /1 queue. 

187 



Appendix J 

Exact Covariance Calculations in 

an M/M/1 Queue 

The list of procedures presented here collectively calculates the covariance between 

two specific customers in an MIMI 1 queue, without regard to the usual traffic inten­

sity requirement p < 1. Select procedures also return interesting pieces of information, 

such as the joint PDF for customers a and b, the probability a specific case occurs, a 

vector of probabilities for all cases, etc. Each procedure is summarized in a comment 

block and required arguments are provided. 

J .1 cases(n) 

#cases(n) 
#--------------------------------------------------------
# Generates all possible arrival/departure sequences for 
# n customers in an M/M/1 queue initially empty and idle. 
#Resulting list of sequences consists of 1's and -1's, 
# where a 1 is an arrival and a -1 is a departure. The 
# sequences are returned in the matrix C, of dimension c 
# by 2n, where c in the nth Catalan number calculated as 
# (2n)! In! I (n + 1)!. The procedure calls ini(n) to 
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# initialize the first sequence in the matrix, then uses 
#the procedures swapa(n, A), swapb(n, A), and okay(n, A) 
# to create the remaining sequences according to a 
# prefix shift algorithm. For each row in the resulting 
# matrix, an associated path matrix can be generated via 
#the procedure path(n, A). 
# 

# Name cases.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
01112109 

#--------------------------------------------------------

cases := proc(n) 
options remember; 
local c, C, i; 
c := (2 * n)! In! I (n + 1) !; 
C := Matrix(c, 2 * n); 
for i from 1 to c do 

if (i = 1) then 
C[[i], 1 -1] ini(n); 

else 
c [ [i] ' 1 -1] swapa(n, C[[i- 1], 1 .. -1]); 

fi: 
if (okay(n, C[[i], 1 .. -1]) = 0) then 

C[[i], 1 .. -1] := swapb(n, C[[i - 1], 1 .. -1]); 

fi: 
od: 
return C; 

end: 
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J .2 ini(n) 

#ini(n) 
#--------------------------------------------------------
# Initializes the matrix C according the Ruskey and 
# Williams (2008) . Returns the first row of C to enable 
# use of their prefix shift algorithm. Requires the 
# parameter n, the number of customers. 
# 

#Name ini.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 

# Latest Revision 01/11/09 
# -------------------------------------------------------

ini := proc(n) 
options remember; 
local L, i; 
L :=Matrix(!, 2 * n, -1): 
L[1, 1] := 1: 
for i from 3 to (n + 1) do 

L [1, i] : = 1 

od: 
for i from (n + 2) to (2 * n) do 

L[1, i] -1 

od: 
return L: 

end: 
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J.3 swapa(n, A) 

# swapa(n, A) 
#--------------------------------------------------------
# Conducts the (k + 1)st prefix shift in creating all 
# instances of the case matrix, C, according to Ruskey 
#and Williams (2008). Requires the arguments n, number 
# of customers, and A, row i of C. Returns the 
# successor of C[i, ] to be checked by the procedure 
# okay(n, A). 
# 

# Name swapa.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 
# Latest Revision 01/11/09 
# -------------------------------------------------------

swapa := proc(n, A) 
local check, i, temp1, j, R; 
R :=A; 
check := 1; 

for i from 2 to (2 * n - 1) do 
if ((R[1, i] = -1) and (R[1, (i + 1)] = 1)) then 

temp1 := R[1, i + 2]; 
R[1 .. 1, 3 .. (i+2)] R[1 .. 1, 2 .. (i + 1)]; 
check := 0; 
R[1, 2] := temp1; 

fi: 
if (check = 0) then break fi; 

od: 
return R: 

end: 
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J.4 swapb(n, A) 

# swapb(n, A) 
#--------------------------------------------------------
# Conducts the (k)th prefix shift in creating all 
# instances of the case matrix, C, according to Ruskey 
#and Williams (2008). Requires the arguments n, number 
# of customers, and A, row i of C. Returns the 
# successor of C[i, ] in the event that okay(n, a) 
# identifies the output of swapa(n, a) invalid. 
# 

# Name swapb.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
01/11/09 

# -------------------------------------------------------

swapb := proc(n, B) 
local check, i, temp, j; 
check := 1; 
for i from 2 to (2 * n - 2) do 

if ((B[1, i] = -1) and (B[1, (i + 1)] = 1)) then 
temp := B[1, i + 1]; 
B[[1 .. 1], [3 .. (i + 1)]] := B[1 .. 1, 2 .. (i)]; 
check := 0; 
B[1, 2] := temp; 

fi: 
if (check = 0) then break fi; 

od: 
return B: 

end: 
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J.5 okay(n, E) 

# okay(n, E) 
#--------------------------------------------------------
# Checks the output of swapa(n, A) for an illegal prefix 
# shift, meaning the result contains an impossible 
# arrival/service sequence. Requires arguments n, 
# number of customers, and E, resulting vector from 
# swapa(n, A). If the (k + 1)st shift is legal, 
# okay(n, E) returns 1, signifying the correct successor 
# in C. If the (k + 1)st shift is illegal, okay(n, E) 

# returns 0 which in turn calls swapb(n, A) to produce 
# the correct successor row in C. 
# 

# Name okay.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 
# Latest Revision 01/11/09 
# --------------------------------------------------------

okay := proc(n, E) 

local s, i, test; 
test : = 1: 
s := 0; 
for i from 1 to (2 * n - 1) do 

s : = s + E [1, i] ; 
if (s < 0) then 

test := 0; 
break; 

fi: 
od: 
return test; 

end: 
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J .6 path(n, A) 

# path(n, A) 
#---------------------------------------------------------
#Creates a path matrix of size (n + 1) by (n + 1), where 
# 1's represent the arrival/service sequence for a given 
# row of the case matrix C. All other elements in the 
# path matrix are 0. The path starts at t.he lower-left 
# corner of the matrix and moves to the upper-right 
# corner. The first leg of the path is always the 
# arrival of customer 1 represented by the entries in the 
# [n + 1, 1] and [n + 1, 2] positions. A 1 to the right 
# of the previous 1 signifies an arrival, while a 1 above 
# the previous 1 signifies a service completion. The 
# procedure requires the arguments n, number of customers 
# and A, a row from the case matrix C. 
# 
# Name path.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 
# Latest Revision 01/12/09 
# ---------------------------------------------------------

path := proc(n, A) 
local j, row, col, pat; 
row n + 1; 
col := 2; 
pat := Matrix(n + 1, n + 1); 
pat [n + 1 , 1] : = 1; 
pat [n + 1, 2] : = 1; 
for j from 2 to (2 * n) do 

if (A[1, j] = 1) then 
col := col + 1; 
pat[row, col] := 1; 

else 
row := row - 1; 
pat[row, col] := 1; 

fi; 
od: 
return pat; 

end: 
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J.7 Cprime(n, C) 

# Cprime(n, C) 
#----------------------------------------------------------
#Produces the matrix defined as C', that is the 
# distribution segment matrix where each row represents 
# the distribution segments for the case represented by 
# the corresponding row in the case matrix C. The 
# elements of C' are limited to a 0, 1, and 2, where 0 
# implies no sojourn time distribution segment due to an 
# emptying of the system, 1 implies a competing risk of an 
# arrival or completion of service and is distributed 
# exponential(lambda + mu), and a 2 implies a service 
# completion distribution leg which is distributed 
# exponential(mu). The matrix C' has the same number of 
# rows as C, and 2n - 1 columns. Cprime(n, C) calls 
# path(n, A) and uses the path matrix to determine the 
# appropriate probability distribution function segments. 
# The procedure requires the arguments n, number of 
# customers and C, the case matrix. 
# 

# Name 
# Author 
# Language 
# Latest Revision 

Cprime.mw 
Billy Kaczynski 
MAPLE 9 
01/12/09 

# ----------------------------------------------------------

Cprime := proc(n, C) 
local prime, i, pat, dist, j, row, col; 
prime := Matrix(RowDimension(C), 2 * n- 1); 
for i from 1 to RowDimension(C) do 

row n + 1; 
col := 2; 
pat := path(n, C[[i], 1 .. -1]); 
dist := Matrix(1, 2 * n- 1); 
for j from 1 to (2 * n - 1) do 

if (pat[row- 1, col] = 1) and (col < n + 1) then 
row : = row - 1 ; 
dist[1, j] := 1; 

elif (pat[row- 1, col] 1) and (col n + 1) then 
row : = row - 1 ; 
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dist[1, j] := 2; 
elif (pat[row, col + 1] 

col := col + 1; 
dist[1, j] := 1; 

else 
col : = col + 1 ; 
dist[1, j] 0; 

fi; 

od; 
prime [ [i] , 1 . . -1] 

od; 
return prime; 

end: 

dist; 

1) and (row + col > n + 2) then 
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J.8 caseprob(n, P) 

# caseprob(n, P) 
#---------------------------------------------------------------
# Computes the probability associated with a given row of the 
# case matrix C as represented by the path created by 
# path(n, A). Similar to how C' identifies the appropriate 
# distribution segments along the path, caseprob(n, P) 
# identifies the appropriate probability for each leg of the 
# path based on whether a competing risk occurs. Requires the 
# arguments n, number of customers and P, the path of a given 
# case. Returns the probability of the case passed to the 
# procedure. 
# 

#Name caseprob.mw 
Billy Kaczynski 
MAPLE 9 
01112109 

# Author 
# Language 
# Latest Revision 
# ---------------------------------------------------------------

caseprob := proc(n, P) 
global X, Y; 
local p, j, row, col; 
p := 1; 
row := n + 1; 
col := 2; 
for j from 1 to (2 * n - 1) do 

if (P[row - 1, col] = 1) and (col < n + 1) then 
row : = row - 1; 
p := p * 1 I Mean(Y) I (1 I Mean(X) + 1 I Mean(Y)); 

elif (P[row - 1, col] = 1) and (col n + 1) then 
row := row - 1; 

elif (P[row, col + 1] 
col := col + 1; 

1) and (row + col > n + 2) then 

p := p * 1 I Mean(X) I (1 I Mean(X) + 1 I Mean(Y)); 
else col 
fi; 

od: 
return p; 

end: 

col + 1; 
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J .9 probvec(n) 

# probvec(n) 
#------------------------------------------------------------
# Uses the procedure caseprob(n, P) successively to build a 
# vector of probabilities, one for each case of the C matrix. 
#This vector has length (2n)! In! I (n = 1)!, which the the 
# n-th Catalan number. Requires the argument n, the number 
# of customers. 
# 
# Name 

# Author 
# Language 
# Latest Revision 

probvec.mw 
Billy Kaczynski 
MAPLE 9 
01112109 

# ------------------------------------------------------------

probvec := proc(n) 
local i, p, c; 
c := (2 * n)! In! I (n + 1)!; 
p := Vector(c); 
for i from 1 to c do 

p[i] caseprob(n, path(n, cases(n) [[i], 1 
od: 
return p; 

end: 
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J.lO Tmat(a, b, A) 

# Tmat(a, b, A) 
#-------------------------------------------------------------
# Creates the 2 by 2 matrix for determining whether selected 
# customer sojourn times are independent. Also provides 
# information on the required distribution segments for 
# calculating the joint distribution between two customers. 
# Requires the arguments a, the first customer of interest in 
# the system, b, the second customer of interest in the 
# system, and A, a single row of the case matrix C, 
# representing a given case. It uses this row of C to 
# identify the start and finish indices for customers a and 
# b. If these indices overlap, sojourn times are dependent, 
# if they do not overlap the sojourn times are independent. 
# 

# Name 

# Author 
# Language 
# Latest Revision 

Tmat.mw 
Billy Kaczynski 
MAPLE 9 
01/12/09 

# -------------------------------------------------------------

Tmat := proc(a, b, A) 
local sta, fina, stb, finb, indexa, indexb, i, T; 
indexa := 0; 
indexb := 0; 
for i from 1 to ColumnDimension(A) do 

if A[1, i] = 1 then 
indexa := indexa + 1; 
if indexa = a then sta i 
fi: 
if indexa 
fi: 

elif A [1, i] 
indexb := 
if indexb 
fi: 
if indexb 
fi: 

fi: 
od: 

= b then stb - i 

= -1 then 
indexb - 1· 

' 
-(a) then fina 

-(b) then finb 

·= i 

- i 
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T := Matrix(2, 2, [[sta, fina], [stb, finb]]); 

return T; 
end: 
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J.ll inde(a, b, T, A) 

# inde(a, b, T, A) 
#-----------------------------------------------------------------
# Calculates the case-specific joint cumulative distribution 
# function for customers a and b whose sojourn times are 
# independent by multiplying the CDFs of each customer. The 
# individual customer CDFs are calculated by determining the 
# type and number of distribution legs using the arguments a, the 
# first customer of interest, b, the second customer of interest, 
# T, the resulting matrix from the call Tmat(a, b, A), and A, the 
# row of C' associated with the specific case. The CDF forms 
# for each case arise from appropriately defined random variables 
# in APPL. The procedure returns the joint cumulative distribution 
# function in a vector of length two, where both elements are 
# identical in order to match the piecewise result for customers 
# with dependent sojourn times. 
# 

#Name 

# Author 
inde.mw 
Billy Kaczynski 
MAPLE 9 
01/12109 

# Language 
# Latest Revision 
# -----------------------------------------------------------------

inde := proc(a, b, T, A) 
options remember; 
global X, Y; 
local i, dist1, dist2, jcdf, expa, expb; 
expa := 0; 
expb := 0; 
for i from 1 to (T[1, 2] - T[1, 1]) do 

if A[1, T[1, 1] + i - 1] = 1 then 
expa := expa + 1; 

elif A[1, T[1, 1] + i - 1] = 2 then 
expb expb + 1; 

fi: 
od: 
if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa) 
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb) 
else dist1 := [[unapply(conv(expa, expb), t)], [0, infinity], 

["Continuous", "PDF"]]; 
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fi: 
expa := 0; 
expb := 0; 
for i from 1 to (T[2, 2] - T[2, 1]) do 

if A[1, T[2, 1] + i - 1] = 1 then 
expa := expa + 1; 

elif A[1, T[2, 1] + i - 1] = 2 then 
expb 

fi: 
od: 

expb + 1; 

if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa) 
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb) 
else dist2 := [[unapply(conv(expa, expb), t)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
jcdf apply(op(CDF(dist1)[1]), t[a]) * 

apply(op(CDF(dist2)[1]), t[b]); 
return Matrix([jcdf, jcdf]); 

end: 

202 



Appendix J. Exact Covariance Calculations in an M/M/1 Queue 

J.12 dep(a, b, T, A) 

# dep(a, b, T, A) 
#------------------------------------------------------------------
# Calculates the case-specific joint cumulative distribution 
# function for customers a and b whose sojourn times are dependent 
#by conditioning on the overlap distribution segment(s). The 
# customer sojourn time segments are divided up into their 
# associated independent and dependent (overlap) portions. This 
# amounts to three segments, customer a's independent portion 
# defined as dist1, customer b's independent portion defined as 
# dist2, and the dependent overlap portion defined as dist3. The 
# joint cumulative distribution function has two pieces, for the 
# cases when t[a] < t[b] and t[b] < t[a]. 
# 
#Name dep.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
01/12/09 

# -----------------------------------------------------------------

dep := proc(a, b, T, A) 
options remember; 
global X, Y; 
local i, expa, expb, dist1, dist2, dist3, jcdftop, jcdfbot; 
expa := 0; 
expb := 0; 
for i from 1 to (T[2, 1] - T[1, 1]) do 

if A[1, T[1, 1] + i - 1] = 1 then 
expa := expa + 1; 

elif A[1, T[1, 1] + i - 1] = 2 then 
expb 

fi: 
od: 

expb + 1; 

if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa) 
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb) 
else dist1 := [[unapply(conv(expa, expb), t)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
expa - O· 

' 
expb - O· 

' 
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for i from 1 to (T[2, 2] - T[1, 2]) do 
if A[1, T[1, 2] + i - 1] = 1 then 

expa := expa + 1; 
elif A[1, T[1, 2] + i - 1] = 2 then 

expb expb + 1; 
fi: 

od: 
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa) 
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb) 
else dist2 := [[unapply(conv(expa, expb), t)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
expa := 0; 
expb := 0; 
fori from 1 to (T[1, 2] - T[2, 1]) do 

if A[1, T[2, 1] + i - 1] = 1 then 
expa : = expa + 1 ; 

elif A[1, T[2, 1] + i - 1] = 2 then 
expb 

fi: 
od: 

expb + 1; 

if expb = 0 then dist3 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa) 
elif expa = 0 then dist3 := ErlangRV(1 I Mean(Y), expb) 
else dist3 [[unapply(conv(expa, expb), t)], [0, infinity], 

fi: 
jcdftop 

jcdfbot 

["Continuous", "PDF"]]; 

int(apply(op(CDF(dist1)[1]), t[a] - y) * 
apply(op(CDF(dist2)[1]), t[b] - y) * 
apply(op(PDF(dist3)[1]), y), y = 0 .. t[a]); 
int(apply(op(CDF(dist1)[1]), t[a] - y) * 
apply(op(CDF(dist2)[1]), t[b] - y) * 
apply(op(PDF(dist3)[1]), y), y = 0 .. t[b]); 

return Matrix([jcdftop, jcdfbot]); 
end: 
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J .13 jpdf(a, b, n) 

# jpdf(a, b, n) 
#----------------------------------------------------------------
# Creates the case joint cumulative distribution functions in a 
#matrix with dimension (2n)! In! I (n + 1)! by 2. Calls the 
# procedure Tmat(a, b, A) and depending on the structure 
#returned, calls the procedures inde(a, b, T, A) or 
# dep(a, b, T, A) to generate the appropriate case-wise joint 
# cumulative distribution function. Requires arguments a, the 
# index of the first customer of interest, b, the index of the 
# second customer of interest, and n, the number of customers. 
# 

#Name jpdf.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
01113109 

# ----------------------------------------------------------------

jpdf := proc(a, b, n) 
local C, i, c, dist, T; 
C := cases(n); 
c := (2 * n)! In! I (n + 1)!; 
dist := Matrix(c, 2); 
for i from 1 to c do 

T := Tmat(a, b, C[[i], 1 .. -1]); 
if T[1, 2] < T[2, 1] then 

dist[[i], 1 -1] inde(a, b, T, Cprime(n, C[[i], 1 .. -1])); 
else 

dist [ [i], 1 
fi: 

od: 
return dist; 

end: 

-1] dep(a, b, T, Cprime(n, C[[i], 1 .. -1])); 
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J.14 conv(m, n) 

# conv(m, n) 
#-----------------------------------------------------------------
# Sums the appropriate distribution segments for the independent 
# and dependent portions of customer sojourn times bypassing the 
# required calls to Convolution(X, Y) in APPL by rewriting the 
# integral as sums. Saves significant CPU time by recognizing 
# that these segments can all be written as a sum of Erlang random 
# variables. Requires the arguments m, the number of 
# expon(lambda + mu) segments and n, the number of expon(mu) 
# segments. 
# 
#Name conv.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
0212109 

# -----------------------------------------------------------------

conv := proc(m, n) 
options remember; 
global X, Y; 
local f1, f2, r, x, t, pdf; 
f1 := unapply((-1) - r * (m- 1 + x)! * (t) - (m- 1 + x- r) I 

(m- 1 + x- r)! I (1 I Mean(Y) - (1 I Mean(X) + 

1 I Mean(Y))) - (r + 1), r, x); 
f2 unapply((-1) - x * (n- 1)! I (n- 1- x)! I x! * 

w - (n - 1 - x) * exp((1 I Mean(Y) (1 I Mean(X) + 
1 I Mean(Y))) * t), x); 

pdf (1 I Mean(X) + 1 I Mean(Y)) - m * (1 I Mean(Y)) - n * 
exp(-(1 I Mean(Y)) * w) I (m- 1)! I (n- 1)! * add(f2(x) 
* add(f1(r, x), r = 0 .. m- 1 + x), x = 0 .. n- 1); 

return simplify(subs(t = w, pdf) - subs(t = 0, pdf)); 
end: 
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J.l5 Cov(a, b, n) 

# Cov(X, Y, a, b) 
#------------------------------------------------------------------
# Mixes the results returned by probvec(n) and jpdf(a, b, n) to 
# compute the joint cumulative distribution function encompassing 
# all cases. Differentiates the results to produce the piecewise 
# joint probability distribution function. Calls Queue(n, k, s) 
# to find the appropriate expected values for the customers of 
# interest, then uses the expected values along with the expected 
#value E(T[a]T[b]) found using the joint probability distribution 
#function to compute the covariance as Cov(T[a], T[b]) = 
# E(T[a]T[b]) - E(T[a])E(T[b]). Requires the arguments X, the 
# distribution of time between arrivals in the APPL list-of-lists 
#format, Y, the service time distribution in the list-of-lists 
# format, a, the index of the first customer of interest, and b, 
#the index of the second customer of interest (a< b). 
# 
#Name cov.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
01/13/09 

# ------------------------------------------------------------------

Cov := proc(X, Y, a, b) 
global lambda!, lambda2; 
local JPDFMAT, PVEC, JPDF, fta, ftb, Etatb, Eta, Etb, Cov; 
JPDFMAT := jpdf(a, b, b); 
PVEC := probvec(b); 
JPDF := Transpose(JPDFMAT) . PVEC; 
fta := simplify(diff(diff(JPDF[1], t[a]), t[b])); 
ftb := simplify(diff(diff(JPDF[2], t[a]), t[b])); 
Etatb := int(int(t[a] * t[b] * fta, t[a] = 0 .. t[b]), 

t[b] = 0 .. infinity) + int(int(t[a] * t[b] * 
ftb, t[b] = 0 .. t[a]), t[a] = 0 .. infinity); 

Eta Mean(Queue(X, Y, a, 0, 1)); 
Etb := Mean(Queue(X, Y, b, 0, 1)); 
Cov Etatb - Eta * Etb; 
return Cov; 

end: 
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Appendix K 

Sojourn Time Monte Carlo 

Simulation 

The following S-Plus/R code is a Monte Carlo simulation capturing sojourn times 

of the first n customers in an M j M /1 queue that is initially empty and idle and 

computing the variance of their sample mean. The simulation is used to verify the 

calculations shown in Example 5 in Chapter 6. The algorithm used to create the code 

is from Leemis and Park (2006). 

# ------------------------------------------------------------

#Monte Carlo simulation for customers 1, 2, ... , n to 
# calculate their sojourn times in an M/M/1 queue. 
# Name 
# Author 
# Language 
# Latest Revision 

tn.txt 
Billy Kaczynski 
R/S-Plus 
02/04/09 

# ------------------------------------------------------------

lambda <- 1 
mu <- 10 I 9 
N <- 1000000 
n <- 10 
Tbar <- matrix(O, N) 
for (j in 1:N) { 
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C <- matrix(O, n) 
D <- matrix(O, n) 
A <- matrix(O, n) 
S <- rexp(n, mu) 
C[1] <- S[1] 

for (i in 2:n) { 
A[i] <- A[i - 1] + rexp(lambda) 

} 

i <- 1 
while (i < n) { 

i <- i + 1 

} 

if (A [i] < C [i - 1]) { 

D[i] <- C[i - 1] - A[i] 
} 

else 
D[i] <- 0 
C [i] <- A [i] + D [i] + S [i] 

Tbar[j] <- mean(D + S) 
} 

var(Tbar) 
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Appendix L 

Counting Sequences with k 

Customers Present at Time Zero 

It is natural to ask the following question: If a queueing system is preloaded with 

k customers at time zero, and n more customers arrive after time zero, how many 

sequences of arrival and service times are possible? We will develop a formula to 

answer that question. 

Any particular sequence of arrivals and servicings can be represented by a vector 

of 1 's and -1 's as before, but since the system is preloaded with k customers, the 

vector must begin with k ones. For example, if a system is preloaded with k = 2 

customers and n = 1 additional customer arrives later, the three possible sequences 

of arrivals and servicings are represented by the vectors 

(1, 1, 1, -1, -1, -1), (1, 1, -1, 1, -1, -1), and (1, 1, -1, -1, 1, -1). 

Denote the number of ways that n additional customers can arrive and be served, 

given that the system is preloaded with k customers that must also be served by 

C(nlk). Using this notation, C(niO) = Cn, the nth Catalan number, as defined 

earlier. 
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It is easy to see that C(nj1) = Cn+l for n = 1, 2, 3, ... since both can be determined 

by counting vectors with n + 1 ones and n + 1 minus ones, each vector beginning with 

a one. 

Developing a general formula for C(njk) is based on two recursion formulas, one 

for k even and one for k odd. If k ~ 2 is even, the vectors of k + n ones and k + n 

minus ones that comprise C(njk) are the same as the vectors of (n + 1) + (k- 1) 

ones and (n + 1) + (k- 1) minus ones that comprise C(n + 1jk- 1), except for those 

vectors of C(n + 1jk- 1) that begin with k- 1 ones followed immediately by a minus 

one, of which there are C(n + 1jk- 2), because the k- 1 ones followed by a minus 

one effectively constitute a preload of k - 2 customers that must be followed by n + 1 

arrivals. Thus if k ~ 2 is even, 

C(njk) = C(n + 1jk -1)- C(n + 1jk- 2) 

for n = 1, 2, .... 

If k ~ 3 is odd, we again form the vectors of C(njk) by removing inappropriate 

vectors from those that comprise C(n + 1jk- 1). However, in this case we remove 

vectors that begin with k - 1 ones followed by a minus one in two steps. We first 

remove vectors that begin with k - 1 ones followed by the ordered pair ( -1, 1), of 

which there are C(njk - 1) because the k - 1 ones followed by ( -1, 1) effectively 

constitute a preload of k - 1 customers that must be followed by n arrivals. We then 

remove vectors that begin with k - 1 ones followed by ( -1, -1), of which there are 

C(n + 1jk- 3), because the k- 1 ones followed by (-1, -1) effectively constitute a 

preload of k - 3 customers that must be followed by n + 1 arrivals. Thus if k ~ 3 is 

odd, 

C(njk) = C(n + 1jk- 1)- C(njk- 1)- C(n + 1jk- 3) 

for n = 1, 2, .... 

Using the fact that C(njO) = Cn and C(nj1) = Cn+l for n = 1, 2, ... and the 
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above two recursion formulas, we find that for n = 1, 2, ... , 

C(nl2) = Cn+2- Cn+l1 

C(nl3) = Cn+3- 2Cn+21 

C(nl4) = Cn+4 - 3Cn+3 + Cn+21 

C(nl5) Cn+5 - 4Cn+4 + 3Cn+3, 

C(nl6) Cn+6- 5Cn+5 + 6Cn+4- Cn+31 

C(nl7) Cn+7 - 6Cn+6 + 10Cn+5 - 4Cn+4· 

The pattern emerging in these formulas can be expressed by the following general 

result: 
Lk/2J k . 

C(nlk)= '2:::>-I)J( ~ 1)cn+k-j 
j=O J 

for k = 0, I, 2, ... and n = I, 2, ... , where l·J denotes the greatest integer function. 

It is easy to see that this general result is true for k = 0 and k = I. In order to 

show that it is true for k 2: 2, we proceed by induction, showing that if the result 

is true for 0, I, 2, ... , k- I, then the result is true for k. Since there are different 

recursion formulas for k even and k odd, we must treat these two cases separately. 

First let us suppose that k 2: 2 is even and that the general result is true for 

0, 1, 2, ... , k- 1. Then for n = I, 2, ... , 

C(nlk) C(n +Ilk- I)- C(n +Ilk- 2) 

lk21 J . (k- 1 - j) lk22 J . (k- 2- j) 
= f; ( -1)1 j Cn+k-j- f; ( -I)1 j Cn+k-1-j· 

212 



Appendix L. Counting Sequences with k Customers Present at Time 
Zero 

Shifting the index of summation by one in the second sum, the previous line becomes 

C(nik) ~ . (k -1 - j) ~ . (k -1 -j) L.,..( -1)1 
. Cn+k-j + L.,..( -1)1 

. _ 1 Cn+k-j 
j=O J j=l J 

~ C•+> + ~(-l)i [ e-~- j) + (k 7 ~; j) l Cn+k-; + (-!)'12Cn+>-'i' 

Lk/2J (k .) L (-1)j ~ J Cn+k-j, 
j=O J 

as desired. Second, we complete the proof by induction by showing that if k 2: 3 is 

odd and the general result is true for 0, 1, 2, ... , k- 1, then it is true for k. For k 2: 3 

odd and n = 1, 2, ... , 

C(nik) = C(n + 1lk- 1)- C(nik- 1)- C(n + 1lk- 3) 

= ~ . (k -1 -j) ~ . (k -1 - j) 
L.,.. ( -1 )1 . Cn+k-j - L.,.. ( -1 )1 . Cn+k-1-j 
j=O J j=O J 

~ ·(k-3-j) - L.,..( -1)1 
. Cn+k-2-j· 

j=O J 

Shifting the index of summation by one in the second sum and by two in the third 

sum, the previous line becomes 

C(nik) = I:(-1)J(k- ~- j)cn+k-j + I:(-1)j(~ = {)cn+k-j 
j=O J j=l J 

~ ·(k-1-j) - L.,..( -1)1 . _ 
2 

Cn+k-j· 
j=2 J 

Removing the first two terms from the first sum, the first and last term from the 
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second sum, and the last term from the last sum yields 

k+1 k+1 
C(nlk) = Cn+k- (k- 2)Cn+k-l- Cn+k-l + (-1)-2 Cn+k-1- (-1)-2 Cn+k-1 

2 2 

Lk;

1 

- j [(k- 1- j) (k- j) - (k- 1- j)] . + ( 1) . + . 
1 

. 
2 

Cn+k-J 
. J J- J-
]=2 

k;1 (k ") 
= Cn+k- (k- 1)Cn+k-1 + L( -1)j ~ J Cn+k-j 

j=2 J 

Lk/2J (k .) 
:L(-1)j ~J Cn+k-j· 
j=O J 
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Appendix M 

Monte Carlo Simulation for 

Covariance Estimation Between 

Customers a and b with k 

Customers Present at Time Zero 

This code estimates the covariance between the sojourn times of customers i and j 

in an M j M /1 queue with k customers present at time zero, where i, j :::; k. The code 

substantiates the results from Theorem 6.4. 

# ----------------------------------------------------------------
# Monte Carlo simulation for the sojourn time covariance between 
# customers i, j <: k, where k customers are present at time zero. 
# 
# Name 

# Author 
# Language 
# Latest Revision 

kcov.txt 
Billy Kaczynski 
R/S-Plus 
03/20/09 

# ----------------------------------------------------------------

N <- 1000000 
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Between Customers a and b with k Customers Present at Time Zero 

T1 <- rexp(N, 5) 
T2 <- Tl + rexp(N, 5) 
T3 <- T2 + rexp(N, 5) 
T4 <- T3 + rexp(N, 5) 
T5 <- T4 + rexp(N, 5) 
cov(T1, T2) 
cov(Tl, T3) 
cov(Tl, T4) 
cov(T1, T5) 
cov(T2, T3) 
cov(T2, T4) 
cov(T2, T5) 
cov(T3, T4) 
cov(T3, T5) 
cov(T4, T5) 
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Appendix N 

Calculating Covariance Between 

Customers in an M/M/1 Queue 

with k Customers Present at Time 

Zero 

The list of procedures presented here calculates the covariance between two specific 

customers in an M / M /1 queue, where k customers are present at time zero and n 

additional customers arrive and process through the system after time zero, without 

regard to the usual traffic intensity requirement p < 1. Some procedures mentioned 

but not included have already been provided in Appendix E. 

N.l kcases(n, k) 

# kcases(n, k) 
# ----------------------------------------------------------------

# Generates all possible arrival/departure sequences for n 
# customers in an M/M/1 queue with k customers initially present. 
#Resulting list of sequences consists of 1's and -1's, where a 1 
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# is an arrival and a -1 is a departure. The sequences are 
# returned in the matrix C. The procedure calls cases(n + k) 
# which subsequently calls ini(n + k) to initialize the first 
#sequence in the matrix, then uses the procedures swapa(n, A), 
# swapb(n, A), and okay(n, A) to create the remaining sequences 
# according to a prefix-shift algorithm. C is then simplified by 
# deleting the rows where the first k entries are not 1s. 
# Furthermore, the first k columns are also deleted since they 
# must all contain 1s to represent the arrivals of the k 
# customers present at time zero. For each row in the resulting 
# matrix, an associated path matrix can be generated via the 
#procedure kpath(n, k, A). 
# 
#Name 
# Author 
# Language 
# Latest Revision 

kcases.mw 
Billy Kaczynski 
MAPLE 9 
03/07/09 

#-----------------------------------------------------------------

kcases := proc(n, k) 
local i, j, C; 
C := cases(n + k); 
j := 1; 
while j < RowDimension(C) + 1 do 

if (add(C[j, i], i = 1 .. k) <> k) then 
C := DeleteRow(C, j); 

else 
j ·= j + 1; 

fi: 
od: 
C := DeleteColumn(C, 1 .. k); 
return C; 

end: 
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N.2 kpath(n, k, A) 

# kpath(n, k, A) 
#----------------------------------------------------------------
#Creates a path matrix of size (n + k + 1) by (n + 1), where 1s 
# represent the arrival/service sequence for a given row of the 
# case matrix C. All other elements in the path matrix are 0. 
# The path starts at the lower-left corner of the matrix and 
# moves to the upper-right corner. The first leg of the path is 
# either the arrival of a customer represented by the entry in 
# the [n + k + 1, 2] position or a departure represented by the 
# entry in the [n + k, 1] position. A 1 to the right of the 
# previous 1 signifies an arrival, while a 1 above the previous 1 
# signifies a service completion. The procedure requires the 
# arguments n, the number of customers processing through the 
# system arriving after time 0, k, the number of customers 
# present at time 0, and A, a row from the case matrix C. 
# 
#Name kpath.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
03/07/09 

# ----------------------------------------------------------------

kpath := proc(n, k, A) 
local j, row, col, pat; 
row := n + k + 1; 
col := 1; 
pat := Matrix(n + k + 1, n + 1); 
pat[n + k + 1, 1] := 1; 
for j from 1 to (2 * n + k) do 

if (A[1, j] = 1) then 
col := col + 1; 
pat[row, col] := 1; 

else 
row := row - 1; 
pat[row, col] := 1; 

fi; 
od: 
return pat; 

end: 
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N.3 kCprime(n, k, C) 

# kCprime(n, k, C) 
#----------------------------------------------------------------
#Produces the matrix defined as C', that is the distribution 
# segment matrix where each row represents the distribution 
# segments for the case represented by the corresponding row 
# in the case matrix C. The elements of C' are limited to a 
# 0, 1, and 2, where 0 implies no sojourn time distribution 
# segment due to an emptying of the system, 1 implies a 
# competing risk of an arrival or completion of service and is 
#distributed exponential(lambda + mu), and a 2 implies a 
# service completion distribution leg which is distributed 
# exponential(mu). The matrix C' has the same number of rows as 
# C, and 2(n + 1) + k columns. Cprime(n, k, C) calls 
# kpath(n, k, A) and uses the path matrix to determine the 
# appropriate probability distribution function segments. 
# The procedure requires the arguments n, number of customers 
# arriving after time 0, k, the number of customers present at 
# time 0, and C, the case matrix. 
# 

#Name 
# Author 
# Language 
# Latest Revision 

kCprime.mw 
Billy Kaczynski 
MAPLE 9 
03/07/09 

# ---------------------------------------------------------------

kCprime := proc(n, k, C) 
local prime, i, pat, dist, j, row, col; 
prime := Matrix(RowDimension(C), 2 * n + k); 
for i from 1 to RowDimension(C) do 

row := n + k + 1; 
col := 1; 
pat := kpath(n, k, C[[i), 1 .. -1)); 
dist := Matrix(1, 2 * n + k); 
for j from 1 to (2 * n + k) do 

if (pat[row - 1, col) = 1) and (col < n + 1) then 
row : = row - 1 ; 
dist[1, j] := 1; 

elif (pat[row - 1, col] 1) and (col n + 1) then 
row : = row - 1 ; 
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dist[1, j] := 2; 
elif (pat[row, col + 1] 

col : = col + 1; 
dist[1, j] := 1; 

else 
col := col + 1; 
dist[1, j] 0; 

fi; 
od; 
prime [ [i] , 1 . . -1] : = dist; 

od; 
return prime; 

end: 

1) and (row + col > n + 2) then 
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N.4 kcaseprob(n, k, P) 

# kcaseprob(n, k, P) 
#----------------------------------------------------------------
# Computes the probability associated with a given row of the 
# case matrix C as represented by the path created by 
# kpath(n, k, A). Similar to how C' identifies the appropriate 
# distribution segments along the path, kcaseprob(n, k, P) 
# identifies the appropriate probability for each leg of the 
# path based on whether a competing risk occurs. Requires the 
# arguments n, number of customers arriving after time 0, k, 
# the number of customers present at time 0, and P, the path 
# of a given case. Returns the probability of the case passed 
# to the procedure. 
# 
# Name kcaseprob.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 
# Latest Revision 03107109 

# ---------------------------------------------------------------

kcaseprob := proc(n, k, P) 
global X, Y; 
local p, j, row, col; 
p := 1; 
row := n + k + 1; 
col := 1; 

for j from 1 to (2 * n + k) do 
if (P[row - 1, col] = 1) and (col < n + 1) then 

row : = row - 1 ; 
p := p * 1 I Mean(Y) I (1 I Mean(X) + 1 I Mean(Y)); 

elif (P[row - 1, col] 1) and (col n + 1) then 
row := row - 1; 

elif (P[row, col + 1] 

col := col + 1; 
1) and (row + col > n + 2) then 

p := p * 1 I Mean(X) I (1 I Mean(X) + 1 I Mean(Y)); 
else col := col + 1; 

fi; 
od: 
return p; 

end: 
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N.5 kprobvec(n, k) 

# kprobvec(n, k) 
#----------------------------------------------------------------
# Uses the procedure kcaseprob(n, k, P) successively to build a 
# vector of probabilities, one for each case of the C matrix. 
# This vector has length C. Requires the arguments n, the number 
# of customers arriving after time 0 and k, the number of 
# customers present at time 0. 
# 
# Name 
# Author 
# Language 
# Latest Revision 

kprobvec.mw 
Billy Kaczynski 
MAPLE 9 
03/07/09 

# ---------------------------------------------------------------

kprobvec := proc(n, k) 
local i, p, C; 
C := kcases(n, k); 
p := Vector(RowDimension(C)); 
for i from 1 to RowDimension(C) do 

p[i] kcaseprob(n, k, kpath(n, k, C[[i], 1 .. -1])); 

od: 
return p; 

end: 
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N.6 kTmat(a, b, k, A) 

# kTmat(a, b, k, A) 
#----------------------------------------------------------------
# Creates the 2 by 2 matrix for determining whether selected 
# customer sojourn times are independent and whether the customer 
# index is less than or equal to k, the number of customers 
# present at time 0. Also provides information on the required 
# distribution segments for calculating the joint distribution 
# between two customers. Requires the arguments a, the index of 
# the first customer of interest in the system, b, the index of 
# the second customer of interest in the system, k, the number of 
# customers present at time 0, and A, a single row of the case 
# matrix C, representing a given case. It uses this row of C to 
# identify the start and finish indices for customers a and b. 
# If these indices overlap, sojourn times are dependent, if they 
# do not overlap the sojourn times are independent. 
# 

#Name kTmat.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
03/08/09 

# ---------------------------------------------------------------

kTmat := proc(a, b, k, A) 
local sta, fina, stb, finb, indexa, indexb, i, T; 
indexa := 0; 
indexb := 0; 
if a <= k then 

sta : = 1; 
else 

for i from 1 to ColumnDimension(A) do 
if A[1, i] = 1 then 

indexa := indexa + 1; 
if indexa = a - k then sta := i + 1 fi: 

fi: 
od: 

fi: 
indexa := 0; 
if b <= k then 

stb := 1; 
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else 
for i from 1 to ColumnDimension(A) do 
if A[1, i] = 1 then 

indexa := indexa + 1; 
if indexa = b - k then stb i + 1 fi: 

fi: 
od: 

fi: 

for i from 1 to ColumnDimension(A) do 
if A[1, i] = -1 then 

indexb := indexb - 1; 
if indexb = -a then fina 
if indexb = -b then finb 

fi: 
od: 

- i fi: 
- i fi: 

T := Matrix(2, 2, [[sta, fina], [stb, finb]]); 
return T; 

end: 
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N.7 kinde(a, b, k, T, A) 

# kinde(a, b, k, T, A) 
#----------------------------------------------------------------
# Calculates the case-specific joint cumulative distribution 
# function for customers a and b whose sojourn times are 
# independent by multiplying the CDFs of each customer. The 
# individual customer CDFs are calculated by determining the 
# type and number of distribution legs using the arguments a, 
# the index of the first customer of interest, b, the index of the 
# second customer of interest, T, the resulting matrix from the 
#call kTmat(a, b, k, A), and A, the row of C' associated with the 
# specific case. The CDF forms for each case arise from 
# appropriately defined random variables in APPL. The procedure 
# returns the joint cumulative distribution function in a 
# vector of length two, where both elements are identical in 
# order to match the piecewise result for customers with 
# dependent sojourn times. 
# 
#Name kinde.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
03115109 

# ---------------------------------------------------------------

kinde := proc(a, b, k, T, A) 
options remember; 
global X, Y; 
local i, dist1, dist2, jcdf, expa, expb; 
expa := 0; 
expb := 0; 
fori from 0 to (T[1, 2] - T[1, 1]) do 

if A[1, T[1, 1] + i] = 1 then 
expa := expa + 1; 

elif A[1, T[1, 1] + i] = 2 then 
expb 

fi: 
od: 

expb + 1; 

if expb 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I 
Mean(Y), expa) 

elif expa 0 then dist1 ErlangRV(1 I Mean(Y), expb) 
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else dist1 

fi: 
expa := 0; 
expb := 0; 

[[unapply(conv(expa, expb), w)], [0, infinity], 
["Continuous", "PDF"]] ; 

for i from 0 to (T[2, 2] - T[2, 1]) do 
if A[1, T[2, 1] + i] = 1 then 

expa := expa + 1; 
elif A[1, T[2, 1] + i] = 2 then 

expb := expb + 1; 
fi: 

od: 
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I 

Mean(Y), expa) 
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb) 
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
jcdf := apply(op(CDF(dist1)[1]), t[a]) * 

apply(op(CDF(dist2)[1]), t[b]); 
return Matrix([jcdf, jcdf]); 

end: 
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N.8 kdep(a, b, k, T, A) 

# kdep(a, b, k, T, A) 
#----------------------------------------------------------------
# Calculates the case-specific joint cumulative distribution 
# function for customers a and b whose sojourn times are 
# dependent by conditioning on the overlap distribution 
# segment(s). The customer sojourn time segments are divided 
# into their associated independent and dependent (overlap) 
# portions. This amounts to three segments, customer a's 
# independent portion defined as dist1, customer b's 
# independent portion defined as dist2, and the dependent 
# overlap portion defined as dist3. The joint cumulative 
# distribution function has two pieces, for the cases when 
# t[a] < t[b] and t[b] < t[a]. When a and bare both less than 
# or equal to k, only two distribution segments arise, dist1 
# and dist2, because both sojourn times start at time 0. 
#Therefore the sojourn time T[b] > T[a], and the resulting 
# joint cumulative distribution function has only a single piece. 
# 
#Name kdep.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
03115109 

# ---------------------------------------------------------------

kdep := proc(a, b, k, T, A) 
options remember; 
global X, Y; 
local i, expa, expb, dist1, dist2, dist3, jcdftop, jcdfbot; 
expa := 0; 
expb := 0; 
if ((a <= k) and (b <= k)) then 

for i from 0 to (T[1, 2] - T[1, 1]) do 
if A[1, T[1, 1] + i] = 1 then 

expa := expa + 1; 
elif A[1, T[1, 1] + i] = 2 then 

expb := expb + 1; 
fi: 

od: 
if expb 0 then dist1 ErlangRV(1 I Mean(X) + 1 I Mean(Y), 
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expa) 
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb) 
else dist1 := [[unapply(conv(expa, expb), w)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
expa := 0; 
expb := 0; 
for i from 1 to (T[2, 2] - T[1, 2]) do 

if A[1, T[1, 2] + i] = 1 then 
expa := expa + 1; 

elif A[1, T[1, 2] + i] = 2 then 
expb := expb + 1; 

fi: 
od: 
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), 

expa) 
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb); 
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
jcdftop simplify(int(int(apply(op(PDF(dist2)[1]), y) * 

apply(op(PDF(dist1)[1]), x), y = 0 
( t [b] - x)) , x = 0 . . t [a] ) ) ; 

return Matrix([jcdftop]); 
else 

for i from 1 to (T[2, 1] - T[1, 1]) do 
if A[1, T[1, 1] + i - 1] = 1 then 

expa := expa + 1; 
elif A[1, T[1, 1] + i - 1] = 2 then 

expb := expb + 1; 
fi: 

od: 
fi: 
if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), 

expa); 
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb); 
else dist1 := [[unapply(conv(expa, expb), w)], [0, infinity], 

["Continuous", "PDF"]] ; 
fi: 
expa := 0; 
expb := 0; 
for i from 1 to (T[2, 2] - T[1, 2]) do 
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end: 

if A[1, T[1, 2] + i] = 1 then 
expa := expa + 1; 

elif A[1, T[1, 2] + i] = 2 then 
expb expb + 1; 

fi: 
od: 
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), 

expa); 
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb); 
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity], 

["Continuous", "PDF"]]; 
fi: 
expa := 0; 
expb := 0; 
fori from 0 to (T[1, 2] - T[2, 1]) do 

if A[1, T[2, 1] + i] = 1 then 
expa := expa + 1; 

elif A[1, T[2, 1] + i] = 2 then 
expb 

fi: 
od: 

expb + 1; 

if expb = 0 then dist3 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), 
expa); 

elif expa = 0 then dist3 := ErlangRV(1 I Mean(Y), expb); 
else dist3 := [[unapply(conv(expa, expb), w)], [0, infinity], 

fi: 
jcdftop 

jcdfbot 

["Continuous", "PDF"]]; 

int(apply(op(CDF(dist1)[1]), t[a] - y) * 
apply(op(CDF(dist2)[1]), t[b] - y) * 
apply(op(PDF(dist3)[1]), y), y = 0 .. t[a]); 
int(apply(op(CDF(dist1)[1]), t[a] - y) * 
apply(op(CDF(dist2)[1]), t[b] - y) * 
apply(op(PDF(dist3)[1]), y), y = 0 .. t[b]); 

return Matrix([jcdftop, jcdfbot]); 
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N.9 kjcdf(a, b, k, n) 

# kjcdf(a, b, k, n) 
#-----------------------------------------------------------------
# Creates the case joint cumulative distribution functions in a 
# matrix by calling the procedure kTmat(a, b, k, A) and depending 
# on the structure returned, calls the procedures 
# kinde(a, b, k, T, A) or kdep(a, b, k, T, A) to generate the 
# appropriate case-wise joint cumulative distribution function. 
# Requires arguments a, the index of the first customer of interest, 
# b, the index of the second customer of interest, and n, the number 
# of customers arriving after time 0, and k, the number of customers 
# present at time 0. 
# 

# Name kjcdf.mw 
# Author 
# Language 
# Latest Revision 

Billy Kaczynski 
MAPLE 9 
03/15/09 

# ----------------------------------------------------------------

kjcdf := proc(a, b, k, n) 
local C, i, dist, T; 
C := kcases(n, k); 
dist := Matrix(RowDimension(C), 2); 
for i from 1 to RowDimension(C) do 

T := kTmat(a, b, k, C[[i], 1 .. -1]); 
if T[1, 2] < T[2, 1] then 

dist[[i], 1 .. -1] := kinde(a, b, k, T, kCprime(n, k, C[[i], 
1 .. -1])); 

else 
dist [ [i] , 1 . . -1] 

fi: 
od: 
return dist; 

end: 

kdep(a, b, k, T, kCprime(n, k, C[[i], 
1 . . -1])) ; 
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N.lO kCov(X, Y, a, b, n, k) 

# kCov(X, Y, a, b, n, k) 
#----------------------------------------------------------------
# Mixes the results returned by kprobvec(n, k) and 
# kjpdf(a, b, n, k) to compute the joint cumulative distribution 
# function encompassing all cases. Differentiates the results to 
# produce the piecewise joint probability distribution function. 
# Calls Queue(n, k, s) to find the appropriate expected values 
# for the customers of interest, then uses the expected values, 
# along with the expected value E(T[a]T[b]) found using the joint 
# probability distribution function, to compute the covariance as 
# Cov(T[a], T[b]) = E(T[a]T[b]) - E(T[a])E(T[b]). Requires the 
# arguments X, the distribution of time between arrivals in the 
# APPL list-of-lists format, Y, the service time distribution in 
# the list-of-lists format, a, the index of the first customer of 
# interest, and b, the index of the second customer of interest 
# (a< b), n, the number of customers arriving after time 0, and k, 
# the number of customers present at time 0. 
# 

# Name kcov.mw 
# Author Billy Kaczynski 
# Language MAPLE 9 
# Latest Revision 03/17/09 
# ---------------------------------------------------------------
kCov := proc(X, Y, a, b, n, k) 

local JPDFMAT, PVEC, JPDF, fta, ftb, Etatb, Eta, Etb, Cov, fa, 
fb, ftab; 

JPDFMAT := kjcdf(a, b, k, n); 
PVEC := kprobvec(n, k); 
JPDF := Transpose(JPDFMAT) . PVEC; 
if ((a <= k) and (b <= k)) then 

ftab := simplify(diff(diff(JPDF[1], t[a]), t[b])); 
Etatb := int(int(t[a]*t[b]*ftab, t[a] = 0 .. t[b]), 

t[b] = 0 .. infinity); 
Eta int ( t [a] * int (ftab, t [b] t [a] . . infinity) , 

t[a] = 0 .. infinity); 
Etb int(t[b] * int(ftab, t[a] 0 .. t[b]), 

t[b] = 0 infinity); 
Cov Etatb - Eta * Etb; 
return Cov; 
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end: 

else 
fta := simplify(diff(diff(JPDF[1], t[a]), t[b])); 
ftb := simplify(diff(diff(JPDF[2], t[a]), t[b])); 
Etatb := int(int(t[a] * t[b] * fta, t[a] = 0 .. t(b]), 

t[b] = 0 .. infinity) + int(int(t[a] * t[b] * 
ftb, t[b] = 0 .. t[a]), t[a] = 0 .. infinity); 

fa := simplify(int(fta, t[b] = t[a] .. infinity) + int(ftb, 
t [b] = 0 .. t [a]) ) ; 

Eta := int(t[a] * fa, t[a] = 0 .. infinity); 
fb := simplify(int(fta, t[a] = 0 .. t[b]) + int(ftb, 

t [a] = t [b] . . infinity)); 
Etb := int(t[b] * fb, t[b] = 0 .. infinity); 
Cov := Etatb - Eta * Etb; 
return Cov; 

fi: 
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