
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2009

Computational applications in stochastic operations research Computational applications in stochastic operations research

William H. Kaczynski
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Kaczynski, William H., "Computational applications in stochastic operations research" (2009).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623340.
https://dx.doi.org/doi:10.21220/s2-j7gh-w740

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.wm.edu%2Fetd%2F1539623340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-j7gh-w740
mailto:scholarworks@wm.edu

Computational Applications in Stochastic
Operations Research

William H. Kaczynski

Alvin, Texas

Bachelor of Science, United States Military Academy, 1992
Master of Science, Georgia Institute of Technology, 2002

A Dissertation presented to the Graduate Faculty
of the College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Applied Sciences

The College of William & Mary
August, 2009

Copyright @2009 William H. Kaczynski

All rights reserved

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment
of

the requirements for the Degree of

Doctor of Philosophy

William H. aczyns 1

Committee Chair

Dr. John H. Drew

&{t~:~

ABSTRACT PAGE

Several computational applications in stochastic operations research are presented,
where, for each application, a computational engine is used to achieve results that are
otherwise overly tedious by hand calculations, or in some cases mathematically in­
tractable. Algorithms and code are developed and implemented with specific emphasis
placed on achieving exact results and substantiated via Monte Carlo simulation. The
code for each application is provided in the software language utilized and algorithms
are available for coding in another environment. The topics include univariate and bi­
variate nonparametric random variate generation using a piecewise-linear cumulative
distribution, deriving exact statistical process control chart constants for non-normal
sampling, testing probability distribution conformance to Benford's law, and transient
analysis of MIMI s queueing systems. The non parametric random variate generation
chapters provide the modeler with a method of generating univariate and bivariate
samples when only observed data is available. The method is completely nonpara­
metric and is capable of mimicking multimodal joint distributions. The algorithm
is "black-box," where no decisions are required from the modeler in generating vari­
ates for simulation. The statistical process control chart constant chapter develops
constants for select non-normal distributions, and provides tabulated results for re­
searchers who have identified a given process as non-normal. The constants derived
are bias correction factors for the sample range and sample standard deviation. The
Benford conformance testing chapter offers the Kolmogorov-Smirnov test as an alter­
native to the standard chi-square goodness-of-fit test when testing whether leading
digits of a data set are distributed according to Benford's law. The alternative test
has the advantage of being an exact test for all sample sizes, removing the usual sam­
ple size restriction involved with the chi-square goodness-of-fit test. The transient
queueing analysis chapter develops and automates the construction of the sojourn
time distribution for the nth customer in an MIMI s queue with k customers initially
present at time 0 (k ~ 0) without the usual limit on traffic intensity, p < 1, providing
an avenue to conduct transient analysis on various measures of performance for a
given initial number of customers in the system. It also develops and automates the
construction of the sojourn time joint probability distribution function for pairs of
customers, allowing the calculation of the exact covariance between customer sojourn
times.

Contents

1 Introduction

1.1 Stochastic Operations Research

1.2 Software

1.3 Literature Review .

1.4 Outline of the Dissertation

2 Univariate Nonparametric Random Variate Generation

2.1 Introduction

2.2 Moment Matching and Weighted Observations

2.2.1 Matching Moments

2.2.2 Weighted Data Values

2.3 Comparing Estimates .

2.4 Conclusions . .

3 Bivariate Nonparametric Random Variate Generation

3.1 Introduction

3.2 Generating Variates From Bivariate Data .

3.2.1 The Piecewise-Linear CDF .

3.2.2 A Nonparametric Bivariate Generation Algorithm

3.2.3 Applied Examples

3.3 Kernel Density Estimate Comparison

1

1

2

3

4

7

7

12

12

18

23

27

29

29

32

32

35

38

43

Contents

3.3.1 Generating Variates Via Kernel Density Estimation

3.3.2 Comparisons for Unknown Joint Densities

3.3.3 Comparisons for Known Joint Densities .

3.4 Limitations

3.5 Conclusions

4 Control Chart Constants for Non-Normal Sampling

4.1 Introduction . . .

4.2 Constants d2 , d3 .

4.3 Constants c4 , cs .

4.3.1 Normal Sampling

4.3.2 Non-Normal Sampling

4.4 Conclusions

5 Testing Conformance to Benford's Law

5.1 Introduction

5.2 Traditional Conformance Testing

5.3 Alternative Method for Conformance Testing .

5.4 Testing via Kolmogorov-Smirnov

5.5 Conclusions

6 Transient Queueing Analysis

6.1 Introduction

6.2 Basics of the MIMI s Queue

6.3 Creating the Sojourn Time Distribution

6.3.1 Distribution of Tn for the MIMI! Queue .

6.3.2 Distribution of Tn for the MIMI s Queue

6.4 Transient Analysis Applications

6.5 Covariance and Correlation in the MIMI! Queue

6.5.1 Discrete-Event Simulation

ii

43

45

51

57

61

63

63

64

70

70

72

75

77

77

79

82

87

90

91

91

93

96

96

98

99

106

107

Contents

6.6

6.7

6.8

6.5.2 Analytic Methods

Extending Covariance Calculations

Sojourn Time Covariance with k Customers Initially Present

Conclusions

7 Conclusions and Further Work

Appendices

A Relationship to the Trapezoidal and Simpson's Rule

B Computing 6

C Nonparametric Bivariate Generator

C.1 xpw1 (x) and ywtpw1 (xgen)

D Creating the Sojourn Time Distribution

D.1 Queue(X, Y, n, k, s)

D.2 MMSQprob(n, k, s)

D.3 Q(n, i, k, s)

D.4 Bui1dDist(X, Y, n, k, s)

E Average Delay and Service for Percentile Comparison

F Discrete-Event Simulations for Customers 1 and 2

G Derivation of the Trivariate Sojourn Time Distribution

110

119

132

140

141

148

148

152

155

155

159

159

161

162

164

165

168

171

H Three Customer Next-Event Simulation for Computing Covariance184

I Paths for n = 3 Customers in an M / M /1 Queue

J Exact Covariance Calculations in an M/M/1 Queue

J.1 cases(n)

iii

186

188

188

Contents

J.2 ini (n)

J.3 swapa(n, A)

J.4 swapb(n, A)

J.5 okay(n, E)

J.6 path(n, A)

J.7 Cprime(n, C)

J.8 caseprob(n, P)

J.9 probvec(n)

J .10 Tmat (a, b, A)

J.ll inde(a, b, T, A)

J.12 dep(a, b, T, A)

J.13 jpdf(a, b, n)

J.14 conv(m, n)

J.15 Cov(a, b, n)

190

191

192

193

194

195

197

198

199

201

203

205

206

207

K Sojourn Time Monte Carlo Simulation 208

L Counting Sequences with k Customers Present at Time Zero 210

M Monte Carlo Simulation for Covariance Estimation Between Cus-

tomers a and b with k Customers Present at Time Zero 215

N Calculating Covariance Between Customers in an M / M /1 Queue

with k Customers Present at Time Zero

N.1 kcases (n, k) ..

N.2 kpath(n, k, A)

N.3 kCprime(n, k, C)

N.4 kcaseprob(n, k, P)

N.5 kprobvec(n, k)

N.6 kTmat(a, b, k, A)

IV

217

217

219

220

222

223

224

Contents

N.7 kinde(a, b, k, T, A) 226

N.8 kdep(a, b, k, T, A) 228

N.9 kjcdf(a, b, k, n) 231

N.lO kCov(X, Y, a, b, n, k) 232

Bibliography 234

Vita 240

v

Acknowledgements

I am extremely thankful to all those who provided so much of their time and assistance

helping me to produce this dissertation as well as the research conducted. Many

thanks to Professors Christopher Del Negro, John Drew, Rex Kincaid, and Greg Smith

for being a part of the dissertation committee and providing meaningful assistance

with the format, content, and overall dissertation product. I would also like to thank

those who helped with several of the topics included in the dissertation, Professor

John Drew, Professor Nick Loehr, and Jackie McQueston. I would especially like to

recognize the tremendous efforts of my dissertation advisor, Professor Larry Leemis,

who always managed to make himself available and was relentlessly positive, patient,

insightful, and supportive of the research. I am forever indebted to my wife, Natalie,

and my children, Madison, and Haley, for their understanding and patience during

this time.

I would also like to acknowledge others who helped along the way. Michael Lewis

assisted in formulating and verifying solutions of the nonlinear optimization program

in Chapter 2. Barry Nelson assisted in applying empirical likelihood theory to weight­

ing data values in Chapter 2. In Chapter 3 Jeff Robinson, from the General Motors

Research and Development Center, provided the warranty data and Bruce Schmeiser

described the two-dimensional empirical cumulative distribution function. Donald

Wheeler was extremely generous in providing insight to normal and non-normal sam­

pling for statistical process control chart constants in Chapter 4. In Chapter 6 Bert

Zwart described the conditional discrete-event model displayed in Figure 6.6, Shel­

don Ross offered assistance in verifying the covariance and correlation calculations,

and Sid Lawrence, Barry Nelson, Raghu Pasupathy and Bruce Schmeiser assisted in

deriving the sojourn time distributions.

vi

List of Figures

2.1 Empirical and piecewise-linear CDFs. 9

2.2 Piecewise-linear and optimal weighted piecewise-linear CDFs. . 23

3.1 Intersection of a randomly generated x = 8 and the convex hull. 35

3.2 Plot of x' vs. y' and the convex hull. 38

3.3 Plot of the marginal adjusted data, convex hull, and 50 random variates

from x andy. 40

3.4 Plot of n = 299 waiting vs. duration times (minutes) for the Old Faith-

ful Geyser. 41

3.5 Sample adjusted observed data (left) and generated random variates

(right) for waiting vs. duration times (minutes) for n = 299. 42

3.6 Plot of n 1 = 105 and n 2 = 194 waiting vs. duration times (minutes). 42

3.7 Joint density estimate of Old Faithful geyser data. 46

3.8 Example of a failure instance for the KDE joint density estimate. 47

3.9 Scatterplot of miles vs. age (days) at warranty claim, n = 259. 48

3.10 KDE joint density estimate of miles vs. age. 48

3.11 Variate generation for the proposed algorithm vs. variance-corrected

KDE.. 49

3.12 Variate generation for the proposed algorithm vs. reduced smoothing

KDE

3.13 Scatterplot of variates generated via KDE.

vii

49

50

List of Figures

3.14 Observed data (left) and density estimate comparisons for KDE (right)

and the proposed algorithm (center). 52

3.15 Estimated marginal densities for the unit square bivariate uniform dis-

tribution using the proposed algorithm. 53

3.16 Estimated marginal densities for the unit square bivariate uniform dis-

tribution using the alternating algorithm. 54

3.17 Estimated marginal densities for the unit square bivariate uniform dis-

tribution with fixed support (0, 1) x (0, 1). 54

3.18 Estimated marginal densities for the unit square bivariate uniform dis­

tribution using KDE. 55

5.1 Geometry associated with Example 3 ..

5.2 Probability of rejection under H0 for the KS and chi-square GOF tests

for various sample sizes.

5.3 Power curves for the KS and chi-square GOF tests.

6.1 M/M/1 mean sojourn time for p = 9/10 given kat t = 0.

85

88

89

103

6.2 M/M/1 sojourn time CDFs for various n given p = 9/10 and k = 0. 104

6.3 M/M/1 sojourn time CDFs for customer n = 2 for various k given

p = 9/10. 105

6.4 First four moments of theM/ M /1 sojourn time for customers 2 through

100 for p = 1/2 and k = 0, 4, 8. 106

6.5 Discrete-event simulation model for cases 1 and 2. 107

6.6 Conditional discrete-event simulation model for cases 1 and 2. llO

6.7 Scatterplots of the first two customer sojourn times in an M/M/1

queue. 111

6.8 Kernel density estimate of h~,r2 (t 1 , tz) for A = 1 and J.L = 1/2 from

10,000 simulated pairs. ll2

viii

List of Figures

6.9 Case 2 for Theorem 1 with X 1 "'exponential().!), X 2 "'exponential().2),

and x3"' exponential().J). 113

6.10 Five cases for n = 3 customers' sojourn times in an MIMI1 queue. 117

6.11 Path for case 5 of n = 3 customers arrival and departure pattern in an

M I M 11 queue.

6.12 Path segment distributions for case 5 for n = 3 customers.

119

121

6.13 Sojourn time segments for customers 1 and 3 in case 5 of n = 3 customers. 124

6.14 Transition diagram for n + k = 1 + 2 = 3 customers when the first

event is an arrival. 133

6.15 Three cases for k = 2 initial customers and a single n = 1 additional

customer in an MIMI1 queue 135

G.1 Geometric form of subcase 1, caseD, where t2 < min{t1 , t3}. 176

G.2 Geometric form of subcase 2, caseD, where t 1 < t2 < t 3 . 177

G.3 Geometric form of subcase 3, case D, where t 3 < t2 < t 1 . 177

G.4 Geometric form of subcase 4, caseD, where max{t1 , t3 } < t2 < t 1 + t 3 . 178

G.5 Geometric form of subcase 5, caseD, where t2 > t 1 + t 3 . 179

G.6 Geometric presentation of the five subcases for case E. 183

I.l Five paths for n = 3 customers' sojourn times in an M I M 11 queue. 187

ix

List of Tables

2.1

3.1

3.2

3.3

Average absolute error.

Sample statistics for observed and generated data.

Range and percentage of variates outside allowable bounds ..

Parameters for three equiprobable bivariate normals.

3.4 Marginal CDF squared error for the estimates of the bivariate uniform

26

41

51

51

distribution. 56

3.5 Confidence interval count for bivariate normal parameters and p = 0.01. 59

3.6 Confidence interval count for bivariate normal parameters and p = 0.99. 60

4.1 Comparison of d2 and d3 for exponential, normal, Rayleigh, and U(O, 1)

sampling distributions.

4.2 Values of c4 and c5 for exponential, normal, Rayleigh, and U(O, 1)

sampling distributions obtained by Monte Carlo simulation.

5.1 Confidence intervals (o: = 0.05) for the fraction of tests rejected in

500,000 replications.

5.2 Probability of rejecting H 0 under H0 •

67

75

81

82

6.1 Conditional sojourn time distributions for the M/M/1 queue. 97

6.2 Conditional sojourn time distributions for the M j M /3 queue with k = 0. 98

X

List of Tables

6.3 Smallest customer number where the sojourn time transient result is

within 1% of steady state for an MIMI 1 queue with k = 0, 4, 8 and

p = 112. 107

6.4 Discrete-event simulation results using approaches 1 and 2. 109

6.5 Sojourn time variance-covariance matrix for the first n = 10 customers

in an MIM/1 queue with>.= 1, J.L = 2. 128

xi

Chapter 1

Introduction

1.1 Stochastic Operations Research

Operations research, as defined by Winston (2004), is "simply a scientific approach

to decision making that seeks to best design and operate a system, usually under con­

ditions requiring the allocation of scarce resources." Stochastic operations research

is a subset of operations research in which the. system of interest operates in the

presence of some type of randomness. This science is almost always interdisciplinary

in that several tools may be used simultaneously to achieve a desired result. Oper­

ations researchers use tools such as mathematical modeling, statistics, optimization,

probability theory, queueing theory, and simulation. Using such a tool-kit to solve a

problem often requires significant computing power, off-the-shelf or custom software,

software-specific knowledge, and system-specific experience. The use of stochastic

operations research is growing more common in business and industry, especially in

the areas of revenue management and evaluating best practices.

The availability of off-the-shelf software provides increasing opportunities to apply

known theory to real problems, and the availability of cheap computing has revolu­

tionized applications in operations research. Current challenges involve researchers'

abilities to not only tailor computer languages and software to address specific prob-

1

Chapter 1. Introduction

lems, but also to interpret output and state meaningful conclusions. The intent of

this dissertation is to present several computational applications in stochastic oper­

ations research. The applications presented use a variety of computational engines

to achieve exact results to known and new problems, generate random variates for

simulation, test data for conformance to a known probability distribution, and verify

results via simulation. Some of these exact results are novel in theory and appli­

cation, others support previously known, but only simulated results, extending the

current literature. In each case, the code used for a specific problem is available in

the appendices. Where appropriate, segments of code are provided in the main text

for illustration. Additionally, to substantiate exact results, Monte Carlo and discrete­

event simulation code is also provided where necessary. Of particular interest are the

exact symbolic results provided throughout the document, which highlight the ability

of computer algebra systems to efficiently compute in symbolic form. The software

utilized in the dissertation does not suggest a preference; there are many alternatives

that could be used as appropriate substitutes.

1.2 Software

The thread linking the applications that appear in this document is a computational

engine. Each chapter uses at least one software program; a few chapters use several.

The only computer algebra system used is Maple. The reason I chose to use Maple

involves the use of A Probability Programming Language (APPL) written by Glen

et al. (2001). APPL is a compilation of Maple statements packaged conveniently to

manipulate random variables with arbitrary distributions. APPL, and subsequently

Maple, are used in Chapters 4, 5, and 6.

S-Plus and R are statistical and graphical software platforms. Although they

have extensive capability in statistical analysis and computing, they are not capable

of manipulating symbols, thus they are not considered computer algebra systems. S-

2

Chapter 1. Introduction

Plus and R are primarily used in this research for complicated algorithm processing,

discrete-event simulation, Monte Carlo simulation, and graphics. Their use appears

in Chapters 2, 3, 4, 5, and 6. When possible, algorithms written in S-Plus and R

manipulate matrices and vectors, significantly enhancing algorithm speed. It should

be noted however, that the main purpose of this work is not a computer science­

focused work on computational complexity, therefore the author has occasionally

chosen clarity over speed in designing algorithms.

Less prevalent, Microsoft Excel, MATLAB, and C also appear in the dissertation.

Excel and MATLAB both possess solvers that are used in Chapter 2 as computa­

tional engines to solve a nonlinear optimization problem. C is used in Chapters 5

and 6, primarily for its speed as a compiled language. There are certainly many

other software packages that could accomplish the same tasks of those listed above.

However, regardless of the package used, my focus is on implementing some type

of computational device for an application that is otherwise overly tedious or even

intractable.

1.3 Literature Review

Except for Chapters 2 and 3, which are linked, each chapter of this dissertation

differs substantially in content. Reviewing the literature in a single location of the

dissertation would break a logical flow in the document. Therefore, the first section

of each chapter provides an appropriate literature review for the selected chapter

topic. The review for each chapter relied on recommendations from scholars in the

appropriate fields, and articles in the fields. Each chapter has been submitted for

journal publication.

3

Chapter 1. Introduction

1.4 Outline of the Dissertation

This section provides a short outline of the topics that follow in each chapter, and

why the use of a computational engine is included. The problem is introduced and a

brief overview of the chapter follows. The topics are merely introduced; for a detailed

treatment please refer to the associated chapter.

Chapter 2 addresses univariate nonparametric variate generation. The standard

approach to solving the interpolation problem for a trace-driven simulation involving

a continuous random variable is to construct a piecewise-linear cumulative distribu­

tion function (CDF) that fills in the gaps between the data values. This approach

overcomes the interpolation problem associated with simply resampling the data.

Some probabilistic properties of the piecewise-linear estimator are derived, and two

extensions to the standard approach (matching moments and weighted values) are

presented, along with associated random variate generation algorithms. The algo­

rithm is a nonparametric blackbox variate generator requiring only observed data

from the modeler. The algorithm is implemented in S-Plus/R, where the setup por­

tion matches the first two moments of the estimator to the first two moments of the

data, then the execution portion generates a single variate from the piecewise-linear

CDF created from the adjusted observed data.

Chapter 3 contains an extension of the univariate case of nonparametric random

variate generation using a piecewise-linear cumulative distribution function to the

bivariate case. The method is also a blackbox variate generation technique requiring

only data pairs from the modeler. The technique avoids the time consuming and often

arbitrary process of density estimation along with the potential error associated with

estimation. It effectively captures marginal distributions with multiple modes. The

algorithm implemented in S-Plus/R uses the convex hull of the observed data as a

preliminary support, then generates the first element of the two-dimensional random

vector via inversion of the marginal piecewise-linear CDF, and the second element

from a conditional weighted piecewise-linear CDF created from selected values of the

4

Chapter 1. Introduction

second variable. This procedure is especially tedious to implement by hand since

a new conditional weighted piecewise-linear CDF is created for each bivariate pair

generated. This proposed method is compared to the leading nonparametric method,

kernel density estimation, and examples are provided with detailed results on the

performance of each method.

In Chapter 4, expressions for statistical process control chart constants are de­

veloped and computed for non-normal sampling. Statistical process control chart

constants are bias correction factors used to establish three-sigma limits that are

used to identify assignable variation in a system. These constants allow engineers

who monitor processes via periodic sampling to identify system-specific occurrences

outside what would be considered normal operating bounds. Problems are potentially

identified in near real-time as opposed to, for example, producing an entire lot of a

component that is outside of specifications. These constants have only been tabulated

for normal sampling (i.e., the measure of interest is normally distributed). The chap­

ter uses APPL and Maple to obtain exact process control chart constants for both

the normal distribution and select non-normal distributions. For populations clearly

exhibiting non-normal distribution behavior, non-normal control chart constants are

more appropriate.

Chapter 5 develops the use of the Kolmogorov-Smirnov (KS) test as an alternative

to the chi-square goodness-of-fit test for assessing whether data conforms to Benford's

law. Both approaches are compared for select distributions and results concerning

the power of each test are provided as a means for selection. Benford's law states

that in data sets satisfying certain conditions the leading digit X is distributed as

fx(x) = P(X = x) = log10(1 + 1/x), X= 1, 2, ... , 9.

Therefore, the digit 1 appears most often and each subsequent digit appears less

frequently with the digit 9 appearing the least often. A Monte Carlo simulation is

implemented in S-Plus/R to compare the tests. Applications of Benford's law are

5

Chapter 1. Introduction

becoming more popular to identify financial fraud in business and voting fraud.

Chapter 6 contains derivations of the exact distribution of the nth customer so­

journ time in an MIMI s queue with k customers initially present. Algorithms for

computing the covariance between sojourn times for an M I M II queue with k cus­

tomers initially present are also developed. Computer code is provided in the Maple

environment for practical application of transient queue analysis for many system

measures of performance without regard to traffic intensity (i.e., the system may

be unstable with traffic intensity greater than one). The traffic intensity is defined

as the customer arrival rate divided by the service rate. In steady-state queueing

analysis the traffic intensity is restriced to a value less than one. However, many

queueing systems of interest never achieve steady-state. The computational demand

in this chapter is extensive. Without the use of APPL and Maple, results for systems

larger than three customers are unrealistic. However, using the computational engine

provides exact numeric and symbolic results.

The dissertation concludes with Chapter 7, where the results are briefly reviewed

and areas of future work are discussed.

6

Chapter 2

Univariate Nonparametric Random

Variate Generation

2.1 Introduction

Simulation practitioners often advocate a "trace-driven" approach to input modeling,

in which data values are sampled with equal probability. In the univariate case, this

approach is equivalent to generating variates from the empirical cumulative distribu­

tion function (CDF)

F(x) = N(x)
n

-00 <X< 00,

where n is the sample size, N(x) is the number of data values less than or equal to

x, and x 1, x2 , ..• , Xn denote the data values. We limit the discussion here to the case

of raw data, rather than grouped data.

The advantages to the trace-driven approach are that (a) it avoids any error that

might be introduced by fitting the data with an approximate parametric model, and

(b) the sampling technique is identical to bootstrapping (Efron and Tibshirani, 1993)

and, hence, has well-established statistical properties.

7

Chapter 2. Univariate Nonparametric Random Variate Generation

The disadvantages to the trace-driven approach are that (a) no random variate

can be generated between the data values, known as the interpolation problem, and

(b) no random variate can be generated that is smaller than the smallest data value

or larger than the largest data value, known as the extrapolation problem.

A standard technique for overcoming the interpolation problem is to replace the

empirical CDF with a CDF which is piecewise linear between the data values (Banks,

Carson, Nelson, and Nicol, 2001, pages 296-300; Law, 2007, pages 309-310 and page

458; Leemis and Park, 2006, pages 409-411). Since then- 1 gaps between the data

values should assume equal weighting, the piecewise-linear CDF has the form

0 X< X(l)

F(x) =
i- 1 X- X(i)
----+------~~~----
n- 1 (n- 1)(x(i+l) - X(i))

X(i) :'S X < X(i+l); i = 1, 2, ... , n- 1

1

where X(l), x(2), ... , X(n) are the order statistics, i.e., the data values sorted into as­

cending order. This CDF passes through the points

which we refer to as "knot points."

Example 1. Consider the univariate data set of n = 6 observations:

1 2 5 7 8 9.

We assume that these data values are drawn from a continuous population.

The empirical CDF and piecewise-linear CDF are shown in Figure 2.1.

The piecewise-linear CDF strikes the risers of the empirical CDF; the first

intersection occurs 1/5 of the way up the riser at x = 2 and the second

intersection occurs 2/5 of the way up the riser at x = 5. This pattern

8

Chapter 2. Univariate Nonparametric Random Variate Generation

continues until the piecewise-linear CDF strikes the top of the last riser

at x = 9.

F(x)

1.0

0.8

0.6

0.4

0.2

0.0
X

0 2 4 6 8 10

Figure 2.1: Empirical and piecewise-linear CDFs.

The probability density function (PDF) associated with the piecewise-linear CDF is

constant between the data values:

- 1
f (X) = -:-(n--------:1)--:-(X-(,-. +-1) ---X-(i-:-)) X(i)::::; X< X(i+l);i = 1,2, ... ,n- 1.

9

Chapter 2. Univariate Nonparametric Random Variate Generation

The mean of this distribution is

E[X] 1x(n) xf(x) dx
X(!)

n-1 1X(i+l) X

8 x<;J (n- 1)(x(i+1)- X(i)) dx

n-1 2 2
= "'"""' x(i+1) - x(i)

{;;;; 2(n- 1)(x(i+l)- X(i))

n-1 I: X(i) + X(i+1)

i=
1

2(n- 1)

X(l) + 2x(2) + 2x(3) + · · · + 2X(n-1) + X(n)

2(n- 1)

This weighted average of the data values places less weight on the extreme values, and

equals x, the sample mean of the data values, in only rare cases (e.g., a symmetric

data set). The value of E[X] approaches the sample mean x = ~ 2:~ 1 xi in the limit

as n ---+ oo. (The match between the coefficients in the expression for E[X] and the

coefficients in the trapezoidal rule is discussed in Appendix A.) Likewise, the second

moment is

1x(n) x2 J(x) dx
X(!)

n-1 1X(i+l) X2

8 x<;J (n- 1)(x(i+1)- X(i)) dx

n-1 3 3
"'"""' x(i+1) - x(i)

{;;;; 3(n- 1)(x(i+l)- X(i))

n-1 2 + + 2 L x(i) X(i)X(i+l) x(i+ 1)

i=
1

3(n- 1) ·

The variance of the distribution can be computed as a2 = E[X2
] - E[XJ2. For the

data set from Example 1, the mean and variance of the piecewise-linear estimate are

E [X]= 16/3 and Var [X]= 71/9.

10

Chapter 2. Univariate Nonparametric Random Variate Generation

Random variates can be generated efficiently by inverting the piecewise-linear

CDF. Given x(1), x(2), ... , X(n) and a random number generator, an 0(1) variate gen­

eration algorithm is:

generate U rv U(O, 1)
i +--- f(n- 1)Ul
return (x(i) + ((n- 1) U- (i- 1)) (x(i+I)- X(il))

The index i, which assumes one of the integers 1, 2, ... , n- 1 with equal likelihood,

determines which linear segment to invert. Although this 0(1) algorithm is synchro­

nized, monotone, and fast, there are three potential weaknesses that are described in

the paragraphs below.

One potential weakness that arises with the piecewise-linear CDF F(x) occurs

when there are tied values in the data set. These tied values result in a discontinuity

in F(x). More specifically, when there are d tied values at X(i), there will be a discon­

tinuity of height d/(n -1) at X(i)· The associated random variable is mixed (i.e., part

discrete and part continuous), and the random variate generation algorithm will gen­

erate X(i) with probability d/(n -1). If the modeler requires an absolutely continuous

distribution, then it might be reasonable to use the midpoint of the discontinuity at

F(x(i)) as the knot point for the modified CDF. The variate generation algorithm

would need to be modified appropriately.

A second serious weakness of the piecewise-linear approach is that data values

that are close together (a common occurrence) lead to high peaks in the estimated

density and an associated clustering of random variates near these particular data

values. Two ways to overcome this weakness are to (a) use kernel density estimation,

and (b) use the piecewise-linear approach on order statistics selected by discarding

those with, for example, even indices. The pros and cons on these two alternative

methods are addressed later in the chapter.

A third weakness is the extrapolation problem. Due to the finite end points of the

piecewise-linear CDF, generating a variate below the first order statistic, X(I), and

11

Chapter 2. Univariate Nonparametric Random Variate Generation

above the last order statistic of the sample, X(n), is impossible. Bratley, Fox, and

Schrage (1987) offer Marsaglia's tail algorithm as an elegant way to generate from

the tail of a distribution. This approach proves useful in extending possible variate

generation beyond just the sample range of a data set.

In this chapter we present two alternatives that overcome these weaknesses. The

alternatives to the piecewise-linear CDF are nonparametric, thus avoiding potential

error associated with a parametric model. They also allow some extrapolation below

the minimum and maximum data values by stretching and translating observed data

values such that the estimator's mean and variance match the sample mean and

variance. Chapter 2.2 develops these variants in detail and Chapter 2.3 compares

resulting estimators with estimates based on kernel density estimation.

2.2 Moment Matching and Weighted Observations

We consider two variations on the piecewise-linear CDF as a probabilistic model for

a data set drawn from a continuous population. The first variation adjusts the knot

points in the piecewise-linear CDF so that its first and second moments match those

from the data set. The second variation makes adjustments to the piecewise-linear

CDF by allowing different weights for each of the data values.

2.2.1 Matching Moments

Occasions might arise when a modeler would like to (a) maintain the piecewise-linear

nature of the CDF, (b) maintain the heights of the knot points at 0, n~I, n.:_I, ... , 1

(which implies fast variate generation), and (c) match the mean and variance of the

piecewise-linear CDF to the sample mean and sample variance of the observations.

This can only be achieved by adjusting the horizontal values of the knot points. We

begin the development of this process with a simple example.

Example 2. Consider a data set consisting of just n = 2 observations: 0

12

Chapter 2. Univariate Nonparametric Random Variate Generation

and 1. This data set has sample mean x = ~ and unbiased sample variance

s2 = ~- The piecewise-linear CDF for this data set is that associated with

the U(O, 1) distribution, which has mean J.L = ~ and variance CJ
2 = 1

1
2 •

The reduction in the variance associated with the piecewise-linear CDF

is significant in this case because of the small sample size. One way to

match variances is to shift the smaller data value to the left and shift the

larger data value to the right by an equal amount 6 for the piecewise-linear

CDF. The appropriate shift 6 satisfies

((1 + 6) - (0- 6))
2

1
12 2

There are two roots to this quadratic equation. The positive root increases

the larger data value and decreases the smaller data value. The negative

root decreases the larger data value and increases the smaller data value by

a large enough value so that their roles are reversed. For a symmetric data

set like this one, either root will produce the same knot points. Since most

data sets are not symmetric, we always choose the positive root, which is

6 = (J6- 1)/2 ~ 0.7247 in this case. Thus a piecewise-linear CDF with

knot points

(-0.7247, 0), (1.7247, 1)

has a variance which matches the variance of the original data values.

(The means also happen to match in this case although this will not be

true in general.)

The expansion of the support of the piecewise-linear cumulative distribution func­

tion beyond the outermost data values, as illustrated in the previous example, may

not be appropriate for all modeling situations. If the data values collected are ser­

vice times in a queuing model, for instance, spreading the observations might result

in a support that includes negative service times. For the occasions when matching

13

Chapter 2. Univariate Nonparametric Random Variate Generation

means and variances is appropriate, we derive the values of the knot points below.

This derivation will maintain the ratios of the gaps between the data values so that

their spreading is accomplished in the same way a bellows is spread on an accordion.

We stretch the data to match variances first, then shift the data to match the means.

Let X(I), X(2), ... , X(n) be the ordered raw data values as before and let

9i = X(i+l) - X(i)

for i = 1, 2, ... , n- 1 be the ith gap between the observations. Let

I_ 9i _ 9i
9·----

t n-1 X(n) - X(l) L9j
j=l

fori= 1, 2, ... , n- 1 be the normalized gap values. If X(l) is shifted to x(I) = X(l)- 8

and X(n) is shifted to x(n) = X(n) + 8, the width of the support of the adjusted

piecewise-linear CDF is

W = X(n) - X(l) + 28.

To maintain the ratios of the normalized gap values, the adjusted data values are

i-1

x(i) = X(I) - 8 + w L 9;
j=l

fori= 1, 2, ... , n. The root finding problem now reduces to finding the value 8 such

that the unbiased sample variance of the original data values x1 , x2 , ... , Xn matches

the variance of the piecewise-linear CDF associated with the adjusted data values.

Once the variances have been matched, the means are easily matched by shifting

each adjusted data value

" I [x(i) + 2x(2) + ... + 2x(n-I) + x(n) - x-]
x(i) = x(i)- 2(n- 1)

14

Chapter 2. Univariate Nonparametric Random Variate Generation

fori= 1, 2, ... , n. So finally, the knot points of the piecewise-linear CDF that matches

first and second moments with the data are

(x(l)' o), (x(2l, -
1
-), (x('3l, -

2
-), ... , (x(n)' 1). n-1 n-1

Random variate generation via inversion is performed by the algorithm given in the

introduction using the x(i)" Since the differences between the heights of adjacent knot

points is constant, variate generation is fast. The stretching and shifting partially

solves the extrapolation problem by allowing random variates to be generated outside

of the range of the data values. Additionally, in the limit as n ~ oo, the sample

variance s 2 approaches the population variance rY
2

• Therefore, with increasing n, the

value of o is decreasing and as n ~ oo, o ~ 0. Additionally, o must exist since it is

well known that the variance of the piecewise-linear estimator is always less than the

variance of the sample data, and therefore, by construction, there exists o > 0 such

that the adjusted data points equate the variance of the piecewise linear estimator

and the sample variance of the data.

Example 3. Consider again the n = 6 data values

1 2 5 7 8 9.

Find the piecewise-linear CDF knot values with matching means and vari­

ances. In order to match both the mean and variance, we first match the

variances by stretching the data, then apply a shift that matches the

means. For the ordered data values

X(l) = 1, X(2) = 2, X(3) = 5, X(4) = 7, X(5) = 8, X(6) = 9

with gaps

91 = 1,g2 = 3,g3 = 2,g4 = 1,g5 = 1

15

Chapter 20 Univariate Nonparametric Random Variate Generation

and associated normalized gaps

the adjusted data values are

1-8
1 38

= 1 - 8 + (8 + 28) 8 = 2 - 4
4

= 1- 8 + (8 + 28)8 = 5

6 8
1 - 8 + (8 + 28) 8 = 7 + 2

7 38
1 - 8 + (8 + 28) 8 = 8 + 4
1-8 + (8 + 28) = 9 + 80

The sample mean of the data is

1 + 2 + 5 + 7 + 8 + 9 16
i:=-------

6 3

and the unbiased sample variance of the data is

When the adjusted data values are used as arguments in the formula for

the variance of the piecewise-linear CDF, the value of 8 must satisfy the

quadratic equation

[
(1- 8) 2 + (1- 8)(2- 38/4) + 2(2- 38/4)2 + 0 0 0 + (8 + 38/4)(9 + 8) + (9 + 8) 2

]

(3)(5)

- [(1-8)+2(2-38/4)+ 000 +2(8+38/4)+(9+8)]
2 = 32

(2)(5) 3

16

Chapter 2. Univariate Nonparametric Random Variate Generation

which reduces to
518 2598 25982 32
75 + 75 + 600 = 3.

This quadratic equation has positive root

J = -4 + ;5°9 v'259 ~ 0.9710.

Selecting the negative root still matches the variance to that of the piecewise­

linear CDF. However, selecting the negative root of the quadratic equa­

tion projects each of the original ordered data values about (x(l) +x(n)) /2,

which is only harmless for a symmetric data set. Finally, to match means,

16 88 - - -J259 ~ -0.1347
3 259
16 68 -- -J259 ~ 1.1080
3 259
16 8 - - -J259 ~ 4.8362
3 259
16 32 - + -J259 ~ 7.3217
3 259
16 52 - + -v'259 ~ 8.5645
3 259
16 72 - + -J259 ~ 9.8072
3 259

are the x-values associated with the knot points.

An algorithm for adjusting the data values so that the first two moments of the

piecewise-linear model match those of the raw data is (indentation denotes nesting):

Input data values x 1 , x2, ... , Xn

- 1 "'n
X +--- ~ L..i=l Xi

2 I "'n (-)2 S +--- n-1 L..i=l Xi -X

Sort the data values yielding X(l), X(2), ... , X(n)

W +- X(n) - X(l) + 28

17

Chapter 2. Univariate Nonparametric Random Variate Generation

for i t- 1 to n - 1

9i t- X(i+1) - X(i)

9~ t- gi/(X(n)- X(1))

fori t- 1 ton

' J: '"'i-1 '
x(i) t- X(1) - u + w L.Jj=1 gi

Find the positive root 8 of the quadratic equation

n-1 (r)2 + r r + (r)2 2::::: x(i) x(i)x(i+1) x(i+l)

3(n- 1)
i=1

[

r '"'n-1 r r]2
x(1) + 2 0i=2 x(i) + x(n) = s2

2(n- 1)

fori t- 1 ton

, t- , _ x(l) + 0i=2 x(i) + x(n) __

[

r 2 '"'n-1 r r l
x(i) x(i) 2(n- 1) x

This piecewise-linear model associated with data values x(l), x(2), ... , x(n) has a mean

and variance that matches the mean and variance of the original data values. The only

nontrivial step in this algorithm is solving the quadratic equation. This is easily done

in a computer algebra system with its symbolic processing capabilities, but is more

problematic for a standard algorithmic language. Appendix B contains an algorithm

and associated 8-Plus/R code for computing 8 and x(1),x(2), .•. ,x(n)·

2.2.2 Weighted Data Values

One of the algorithms presented in Chapter 3 concerning the generation of bivariate

observations, requires a variant of the univariate piecewise-linear CDF approach which

allows for the data values to be weighted. Let X(1), X(2), ... , X(n) be the sorted obser­

vations and w(1), w(2), ... , w(n), where 2::~ 1 W(i) = 1, be the corresponding positive­

valued weights. Any estimate.d CDF should collapse to F(x) when W(i) = 1/n,

i = 1, 2, ... , n. Although there is no claim made to the uniqueness of the estima­

tor presented here, one approach is to first draw the CDF associated with a discrete

18

Chapter 2. Univariate Nonparametric Random Variate Generation

random variable X with support values X(1), X(2), ... , X(n) and corresponding mass

values w(1), w(2), ... , W(n)· Points on each of the risers can be connected to form a

piecewise-linear estimated CDF. The only question that remains is what the heights

of these points should be. One reasonable approach is to place the first knot point at

(X(l), 0), the second knot point n~ 1 of the way up the second riser (which is associated

with X(2)), the third knot point n~ 1 of the way up the third riser (which is associated

with x(3)), and so on. Using this approach is equivalent to connecting the points

) (
w(2)) (2w(3))

(x(1), 0 , X(2), W(1) + n _
1

, X(3), W(1) + w(2) + n _
1

, ... , (x(n), 1)

to form the piecewise-linear CDF. Define

(i- 1)w(i)
Y(i) = W(l) + W(2) + ... + W(i-1) + -----'---'-­

n-1
i=1,2, ... ,n,

as the height of each knot point. The piecewise-linear CDF for the weighted data

values is

F*(x) =

0

(Y(i+1) - Y(i))(x- X(i)) y (i) + ..:..:.....:_c__:....._....::.....:...:..:....:. __ .'-'-'..

X(i+1) - X(i)

1

X< X(1)

X(i) :S X < X(i+1); i = 1, 2, ... , n- 1

X 2: X(n)·

This CDF reduces to F(x) in the equal-weighting case when W(i) = 1/n, for i =

1, 2, ... , n. Using the associated probability density function, it can be shown that

E[X] and E[X2
] are

ZWi+1 - Z- Wi 1 n-1 (. (. 1))
E[X] = 2 8 Wi + n _

1
(x(i+1) + X(i))

2 zwi+ 1 - z - wi 2 2 1 n-1 (. (. 1))
E[X] = 3 8 Wi + n _

1
(x(i+ 1) + X(i+ 1)X(i) + x(i)).

19

Chapter 2. Univariate Nonparametric Random Variate Generation

Using these results, we can calculate the variance of the weighted piecewise linear

CDF via Var[X] = E[X2
] - [E[Xjf.

To formulate an algorithm for variate generation, first sort the data, yielding the

X(i) and W(i) values. Then, at the beginning of a simulation, calculate the Y(i) values.

The O(n) algorithm for generating random variates given below also uses inversion.

Generate U"' U(O, 1)
i +-- 1
while (U > Y(i+I))

i+--i+1

return (x(i) + (U- Y(i)) (x(i+l) - X(i)) / (Y(i+l) - Y(i)))

As expected, this algorithm collapses to the equally-weighted algorithm given in

Chapter 2.1 because Y(i) = (i -1)/(n- 1), fori= 1, 2, ... , n in the equally-weighted

case. This algorithm can easily be modified to a O(logn) algorithm by employing a

binary search rather than the linear search presented here.

Occasions might arise in which the weights need to be calculated from data. Con­

sider the previous example. The data values 1, 2, 5, 7, 8, and 9 were stretched and

translated so that the sample mean and variance matched the mean and variance of

the piecewise-linear estimate. This resulted in the lowest data value X(l) = 1 being

shifted to x(1) = -0.1347. For certain types of data sets (e.g., service times), generat­

ing a negative service time might be unacceptable. So the only recourse for a modeler

who wants to (a) keep the x-coordinates of the knot points at the data values and

(b) match moments, is to adjust the weights w 1 , w2 , ... , Wn to values other than the

usual equally-likely weights 1/n. As seen earlier, the effect of moving from a data

set to the piecewise-linear estimator is to decrease the variance. Thus adjusting the

weights will place increased weight on the extreme values (and therefore less weight

on the middle values) so as to increase the variance.

One problem that arises from this approach to matching moments is that there

will typically not be a unique solution for the weights that will match moments. We

therefore introduce the objective function

20

Chapter 2. Univariate Nonparametric Random Variate Generation

TI~=l Wi

TI~=l 1/n

from the empirical likelihood literature (Owen, 2001) to achieve a unique solution.

Thus the optimization problem is nonlinear and is written with constraints as:

maximize

subject to """ tWi+l - Z- Wi _ 1 n-1 (. (. 1))

2ft Wi + n _ 1 (x(i+l) + X(i)) =X

""" zwi+l - z - wi 2 2 1 n-1(. (. 1))
3 {:t wi + n- 1 (x(i+l) + X(i+I)X(i) + x(i))

(
1 ~ (iwi+l- (i -1)wi))

2

2 - 2 {:t Wi + n _
1

(x(i+I) + X(i)) = s

n

i=l

This method is advantageous for certain types of positive data that might be close

to zero, ensuring that negative x values are not created by stretching the data (e.g.,

positive service times). By choosing this method the xi values are not affected.

Example 4. Consider the univariate data set of n = 6 observations:

1 2 5 7 8 9.

Just as in Example 1, we assume that these data values are drawn from

a continuous population. The sample mean and sample variance of the

data are x = 16/3 and s2 = 32/3. Find the corresponding weights, wi, for

i = 1, 2, ... , 6 that solve the above nonlinear program.

This problem was solved in Microsoft Excel and Matlab, yielding the

optimal weights

21

Chapter 2. Univariate Nonparametric Random Variate Generation

W 1 = 0.3721, W2 = 0.0519, w3 = 0.0391,

W 4 = 0.0444, w5 = 0.0761, w6 = 0.4165.

These weights maximize the objective function and match the sample

mean and variance of the data to the mean and variance of the weighted

piecewise-linear CDF. The small sample size results in heavy weights being

placed on the extreme values in order to match the moments.

Because this is a nonlinear optimization program, the solution achieved is quite sen­

sitive to the solver chosen and starting point provided. As expected, as the number

of observations n increases, the optimization problem becomes more difficult to solve.

The next example uses a data set from survival analysis.

Example 5. Consider the univariate data set of n = 23 ball bearing

failure times in millions of revolutions (Lieblein and Zelen, 1956):

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

We assume that these data values are drawn from a continuous population.

Find the corresponding weights, wi fori= 1, 2, ... , 23 that solve the above

nonlinear program.

This problem was again solved in Microsoft Excel and Matlab, yielding

the optimal weights

WI = 0.0665, W2 = 0.0552, ... , W22 = 0.0471, W23 = 0.0850.

Figure 2.2 shows the piecewise-linear CDF for this data and is overlaid

with the optimal weighted piecewise-linear CDF matching the sample

means and variances.

22

Chapter 2. Univariate Nonparametric Random Variate Generation

F(x)

1.0

0.8

0.6

0.4

0.2
Piecewise-linear
Weighted piecewise-linear

0.0
X

0 50 100 150

Figure 2.2: Piecewise-linear and optimal weighted piecewise-linear CDFs.

2.3 Comparing Estimates

Thus far, four estimates have been suggested for generating from a given continuous

data set. They are (a) the piecewise-linear CDF, (b) the piecewise-linear CDF with a

mean and variance matched to the data, (c) the weighted piecewise-linear CDF, and

(d) the piecewise-linear CDF created by order statistics associated with discarding

even indices. These methods all provide a means for variate generation via inversion,

thus are fast, synchronized, and exact. Their main competitor in the literature is

variate generation from an estimated density known as the kernel density. For a

detailed discussion of this method, see Silverman (1986). To compare results for

these estimates, a Monte Carlo simulation study was conducted in which estimates

are created from six known candidate parametric distributions. These distributions

23

Chapter 2. Univariate Nonparametric Random Variate Generation

were selected to adequately cover decreasing failure rate (DFR), increasing failure rate

(IFR), increasing/decreasing failure rate (IFR/DFR), bathtub (BT), and upside-down

bathtub (UBT) hazard functions. A sample was generated from each distribution,

and the corresponding estimates were created. The metric developed for comparing

the CDFs is

where F (x(i)) is the CDF for the known population distribution at X(i), Fi (x(i)) is

the corresponding jth CDF estimate at X(i) for one of the estimates listed below,

n is the sample size, and b is the number of simulation replications. The average

absolute errors for various sample sizes are given in Table 2.1, each forb= 1, 000,000

replications. Common random numbers were used in the simulation to reduce the

variability of the estimators. The results can be replicated using the set. seed (123)

command. The smallest metric in each column is set in boldface type. The four

estimators that are compared are:

• piecewise-linear estimator F(x),

• moment matching piecewise-linear estimator F* (x),

• selected order statistic estimator F 9 (x),

• kernel estimator Fk(x).

The selected order statistic estimator breaks up the clumping that occurs with random

sampling by deleting every order statistic with an even index and using the piecewise­

linear estimator on the remaining order statistics. This is why the sample sizes are

chosen to be odd. The weighted piecewise-linear CDF method is not included in the

study due to the CPU time required to solve multiple replications of the optimization

problem. Two kernel functions were selected for the study: (a) the standard normal

and (b) U(-1, 1). The bandwidth parameter used for each kernel density estimate is

24

Chapter 2. Univariate Nonparametric Random Variate Generation

the optimal bandwidth parameter (Silverman, 1986) described by

b = a(k)l.364 min(s, R/1.34)n- 115

where a(k) = 0.776 for the Gaussian kernel, a(k) = 1.351 for the uniform kernel,

s is the sample standard deviation, and R is the sample range. The results for the

uniform kernel density were not included because the estimates had gaps in their

support. As expected, the kernel density estimate dominates for distributions with a

pronounced mode. However, the arctangent, exponential, and bi-modal exponential

power distributions are more accurately estimated by a piecewise-linear CDF. The

matching moments estimator F(x) for the exponential distribution deserves further

explanation. When stretching values to match variances, negative values are possible,

causing the excess error in the metric. We decided to leave this result as is in Table 2.1

with explanation for emphasis. In conclusion, though we boldface only one error value

for each row of the table (except where ties occur), in many cases the average error

differences between methods appear negligible.

25

Chapter 2. Univariate Nonparametric Random Variate Generation

n=9 class F(x) F*(x) F9(x) Fk(x)
Uniform(O, 1) IFR 0.112 0.105 0.110 0.091

Weibull(l, 1/2) DFR 0.238 0.229 0.250 0.213
Exponential(!) IFR/DFR 0.112 0.118 0.110 0.110
Weibull(l, 2) IFR 0.112 0.099 0.110 0.092

Exponential Power(l, 1/2) BT 0.158 0.169 0.143 0.170
Arctan(l, 1) UBT 0.190 0.164 0.201 0.161

n = 21 class F(x) F*(x) F9(x) Fk(x)
Uniform(O, 1) IFR 0.070 0.068 0.069 0.061

Weibull(l, 1/2) DFR 0.219 0.216 0.222 0.208
Exponential(!) IFR/DFR 0.070 0.094 0.069 0.088

Weibull(l, 2) IFR 0.070 0.066 0.069 0.062
Exponential Power(l, 1/2) BT 0.141 0.150 0.134 0.151

Arctan(l, 1) UBT 0.164 0.150 0.168 0.151

n = 45 class F(x) F*(x) F9(x) Fk(x)
Uniform(O, 1) IFR 0.047 0.046 0.047 0.043

Weibull(l, 1/2) DFR 0.211 0.210 0.212 0.206
Exponential (1) IFR/DFR 0.047 0.082 0.047 0.073

Weibull(l, 2) IFR 0.047 0.046 0.047 0.043
Exponential Power(l, 1/2) BT 0.136 0.142 0.133 0.141

Arctan(l, 1) UBT 0.152 0.135 0.154 0.146

n = 71 class F(x) F*(x) F9(x) Fk(x)
Uniform(O, 1) IFR 0.037 0.037 0.037 0.035

Weibull(l, 1/2) DFR 0.208 0.208 0.209 0.205
Exponential(!) IFR/DFR 0.037 0.076 0.037 0.067
Weibull(l, 2) IFR 0.037 0.037 0.037 0.035

Exponential Power(l, 1/2) BT 0.134 0.140 0.132 0.138
Arctan(l, 1) UBT 0.148 0.125 0.149 0.144

n = 101 class F(x) F*(x) F9(x) Fk(x)
Uniform(O, 1) IFR 0.031 0.031 0.031 0.030

Weibull(l, 1/2) DFR 0.207 0.207 0.208 0.205
Exponential(!) IFR/DFR 0.031 0.072 0.031 0.062
Weibull(l, 2) IFR 0.031 0.031 0.031 0.030

Exponential Power(l, 1/2) BT 0.134 0.138 0.132 0.137
Arctan(l, 1) UBT 0.146 0.118 0.146 0.143

Table 2.1: Average absolute error.

26

Chapter 2. Univariate Nonparametric Random Variate Generation

2.4 Conclusions

The standard solution to the interpolation problem for Monte Carlo or discrete-event

simulation uses a piecewise-linear CDF as a model. The variate generation algorithm

is fast and trivial to implement. We have suggested two modifications to the original

model: (a) stretching and shifting the original data values so that the mean and

variance of the piecewise-linear CDF model matches the mean and variance of the

sample values, and (b) a modification to the model and variate generation algorithm

to account for weighted observations. Both of these modifications could prove to be

useful in further work associated with the generation of bivariate samples.

We conclude with a summary of piecewise-linear and kernel density estimation

pros and cons.

Piecewise-linear advantages:

• No decisions from the modeler; completely nonparametric

• Easily extended to match sample mean and variance

• Easily smoothed to minimize the effect of clustering of data values

• Extends to bivariate data without the assumptions and requirements demanded

if using kernel density estimation

Kernel density estimation drawbacks:

• Arbitrary decisions left to the modeler

kernel density functional form

variance of kernel densities (smoothing parameter)

• Normal kernel density function implies an infinite left hand tail (obviously bad

for certain data, i.e. service times)

27

Chapter 2. Univariate Nonparametric Random Variate Generation

• Inferior uniform density may

- leave undesired gaps

- extend to negative values

Piecewise-linear grouping drawbacks

• Grouping involves arbitrary decisions/parameters from the modeler

• Too much grouping may mask the shape of the distribution

While we recognize the approach presented in this chapter is "not ideal" in density

estimation, our goal is not density estimation. The goal is nonparametric variate

generation, thus density estimation can be considered as an unnecessary step. The

method proposed is a turnkey operation, requiring only the observed data from the

modeler. Additionally, the extension to the bivariate case is extremely desirable.

28

Chapter 3

Bivariate Nonparametric Random

Variate Generation

3.1 Introduction

Parametric univariate random variate generation is a well-established methodology

providing the modeler dozens of distribution choices having a variety of statistical

properties (Banks, et al., 2001, Law, 2007, Leemis and Park, 2006). For paramet­

ric bivariate distributions, however, the number of distribution choices is much more

limited. Additionally, the ability to generate observations from some bivariate distri­

butions relies on the acceptance-rejection method, casting out the preferred inversion

method. Recent literature in copula-based approaches indicates improvement in this

area. Copula-based approaches have often been applied to finance and are becom­

ing more prevalent in other areas such as actuarial science and hydrology. We did

not consider these approaches as candidates for comparison because recent litera­

ture suggests that the method of model selection is not universally accepted (Genest

and Remillard, 2006). Additionally, this approach is a two-stage estimation process

(1. marginals, 2. copula function). There is promising recent work in nonparametric

copula-based approaches, overcoming the two-stage estimation issue. However, we do

29

Chapter 3. Bivariate Nonparametric Random Variate Generation

not compare the proposed algorithm to this work.

Kernel density estimation (KDE) is another popular method for density estima­

tion. Hormann and Leydold (2000) present algorithms that generate variates directly

from a sample via KDE for both the univariate and bivariate cases. In their approach,

resampling occurs from a multivariate normal distribution with a covariance matrix

that matches that of the observed data. In the univariate case, Bratley, Fox, and

Schrage (1987) and Law (2007) describe variate generation methods using the linear

interpolation of the empirical distribution function. Generating variates from KDE

offers the advantages (Devroye and Gyorfi, 1985, Devroye, 1986, Silverman, 1986) of

simplicity and well-established theory of density estimation. However, KDE suffers

from the arbitrary (but necessary) step of fine tuning a smoothing parameter as well

as choosing the appropriate kernel function. Hormann and Leydold (2000) also note

that generating variates from KDE results in the "variance of the empirical distribu­

tion always being larger than the variance of the observed sample," and furthermore,

since generating from KDE is not an inversion method, correlation induction for vari­

ance reduction is lost. Silverman (1986) presents an algorithm that corrects the KDE

variance difference by forcing it to equal the sample variance.

Since the focus of this chapter is modeling bivariate dependencies in input data for

simulation, we now review the literature in this area. In the parametric case, Devroye

(1986) and Johnson (1987) devise strategies for generating from several multivariate

distributions including the multi-normal and the multi-variate Johnson family. Wag­

ner and Wilson (1995) develop techniques for the bivariate Bezier distribution. Taylor

and Thompson (1986) formulate a semi-nonparametric method that comprises sam­

ples from a combination of a nearest neighbor technique and KDE. Matching moments

occurs in some methods as an appropriate means for density estimation. Because the

majority of these published methods assume a known population distribution, they

are coupled with potentially unrealistic distribution properties such as the support,

moments, etc. Additionally, many of these methods rely on the acceptance-rejection

30

Chapter 3. Bivariate Nonparametric Random Variate Generation

technique for variate generation, and thus are not synchronized. This loss in syn­

chronization sacrifices the ability to implement variance reduction through the use

of common random numbers, and carries the added expense of wasted U(O, I)'s. For

all the literature reviewed, the two-dimensional random vectors can handle a single

mode, and very few are capable of representing two-mode marginal distributions. We

were unable to find a flexible family capable of greater than two modes, therefore

generating variates according to some parametric family may not be possible for data

with more than two modes.

In this chapter we intend to show that the proposed bivariate nonparametric

random variate generation algorithm has three specific advantages over its primary

competitor, KDE. The advantages are (1) no reliance on the selected kernel density

function, (2) no reliance on the selected smoothing parameter, and (3) cannot produce

unrealistic variates (i.e. negative values from a service time distribution).

The chapter is organized as follows. Section 3.2 first introduces a piecewise-linear

CDF and explains how to sample from this CDF. It follows with a discussion of how

to manipulate this estimator so that the first two moments of the estimator match

the corresponding moments of the observed data. The section concludes with the

proposed bivariate random variate generation algorithm, an applied example, and an

interesting variant of the algorithm for selected data sets. Section 3.3 compares the

proposed algorithm to KDE for bivariate data with unknown underlying bivariate

densities, along with data generated from known bivariate densities. Where possi­

ble, the comparisons include visual representations, marginal means and variances,

covariances, and squared error between the known and estimated CDFs. The last

section summarizes the results.

31

Chapter 3. Bivariate Nonparametric Random Variate Generation

3.2 Generating Variates From Bivariate Data

One obvious and simple technique for generating variates from a data set

is to sample from the empirical CDF

' 1
F(x, y) = -I(x, y),

n

where I(x, y) is a function that counts the number of (xi, Yi) pairs in the data set

satisfying Xi ::; x and Yi ::; y (i.e., F(x, y) is the fraction of the data pairs falling

to the southwest of (x, y)). An algorithm for generating from the empirical CDF is

equivalent to sampling with replacement from the data pairs (xi, Yi):

1. generate U"' U(O, 1)

2. I+-- fnUl

This random variate generation technique is fast and conceptually straightforward.

The drawback with this method is that the random variates are limited to the data

pairs-which is particularly problematic for a small sample size.

3.2.1 The Piecewise-Linear CDF

In the univariate case, the interpolation problem is easily solved by using a piecewise­

linear approximation to the empirical CDF. The n - 1 gaps between the data values

result in n- 1 piecewise-linear segments for the estimated CDF. If extrapolation in

one or both tails is an issue, then the modeler can use Marsaglia's tail algorithm

(Bratley, Fox, and Schrage, 1987) or kernel density estimation (Silverman, 1986).

32

Chapter 3. Bivariate Nonparametric Random Variate Generation

In the bivariate case, the delineation of the support is less clear than in the

univariate case. Using the rectangular support

for example, is likely to include regions of support that a modeler would want to

exclude. In the method developed here, we use the convex hull of the data values

as a preliminary support. (This support can be modified using techniques described

subsequently.) We define the convex hull traditionally as the minimum convex set

containing the data set of interest in the two-dimensional plane. The variate genera­

tion algorithm (Law, 2007, page 467) relies on conditioning:

1. generate U1 rv U(O, 1)

2. Xo ~ Fx 1 (UI)

3. generate U2 "' U(O, 1)

4. Yo~ FYI~o=x(U2)

5. return (Xo, Yo)

We justify the algorithm with the following derivation. Consider the case where

the joint CDF, Fx,Y(x,y), is known and the joint density fx,y(x,y) exists. The

goal is to simulate the two-dimensional random vector (X, Y). Define the following

variables.

1. Let U, V be independent U(O, 1) random variables.

3. Let Y' = Fy-1~=Xo (V), where Xo = Fx 1(U) =X'. (Primes are used to distin­

guish the simulated random variables from the original random variables X, Y.)

33

Chapter 3. Bivariate Nonparametric Random Variate Generation

Now use the change-of-variable formula (Hogg et al., 2005) to compute the joint

density of (X', Y'). Recall the change-of-variable formula: if (U, V) = S(X', Y'), then

fx',Y' = Uu,v o S) ·I det(DS)I.

In this case, fu,v is the constant function 1 on the unit square, so the term in paren­

theses is just 1. Solving for U and V in terms of X' and Y' above, we find that S is

given by:

Then D S is the 2 x 2 matrix

[
fx*(x') 0]

fx,Y(x', y')/ fx(x') '

where * denotes some irrelevant entry for the determinant. The lower-right entry

follows by differentiating the formula

Jy' f (x' t)dt
F '(') - -oo X,Y '

YIX=x Y - fx(x')

with respect to y'. Computing I det(DS)I gives fx,Y(x', y'), so that (X', Y') does

indeed have the same joint density as (X, Y).

The challenge associated with the development here is to find a reasonable non­

parametric approximation to Fy-1~=x(-). To illustrate the justification in using Fy-1~=x'
consider the scatterplot shown in Figure 3.1 with x = 8. The data indicate a wide

range of potential values to generate for the second element of the random pair, y.

Depending on the unknown bivariate population distribution this might be accept­

able. However, given the observed data, it appears the associated y value should not

potentially occupy this entire range, and might more appropriately be represented by

the limits naturally occurring at the lower and upper intersections with the convex

34

Chapter 3. Bivariate Nonparametric Random Variate Generation

hull.

y

10

8

6

4

2

0

0 2 4 6 8 10

Figure 3.1: Intersection of a randomly generated x = 8 and the convex hull.

3.2.2 A Nonparametric Bivariate Generation Algorithm

By combining strategies used in the univariate case, an algorithm is devised to gener­

ate bivariate random variates from observed data pairs using a nonparametric heuris­

tic approach. This algorithm requires a random sample of bivariate data drawn from

an unknown continuous population distribution. A good algorithm produces variate

pairs that adequately mimic the distribution associated with the observed data. If ap­

propriate, the marginal data are moment matched at the beginning of the algorithm.

The moment-adjusted vectors are created by first stretching the marginal data so that

the variance of the piecewise linear CDF estimator matches that of the sample data

variance, and then shifting the resulting marginal data values to match the marginal

means. This process is only suitable in cases where the adjusted marginal values do

not result in unrealistic data points, e.g., when service times are close to zero and

35

Chapter 3. Bivariate Nonparametric Random Variate Generation

adjusting them could produce impossible negative service times. The advantage of

adjusting the data (when possible) is that the first two moments are conserved by the

estimator, whereas, when the data is not adjusted, it is well known that the piecewise­

linear CDF estimator's variance is less than the sample data variance. Matching the

variances is important in computing the denominator in the correlation expression

Corr(X Y) = Cov(X, Y)
' JV(X)V(Y)

Using the expressions derived Chapter 2, reprinted here, the ordered moment adjusted

vector values x(i) are calculated as

i-1

XU)= X(l)- 8 + W l:g_i,
j=l

where 8 is the appropriate stretching parameter, w is the width of the support of

the adjusted piecewise-linear CDF, and gj is a normalized gap value between sorted

elements of the x vector. This calculation accomplishes matching the variance of the

piecewise-linear CDF estimator to the sample data variance. We then match means

by shifting each data value by

" - ' - [x(i) + 2x(2) + ... + 2x(n-l) + x(n) - -]
x(i) - x(i) () x . 2n-l

The S-plus/R code for this moment matching process (designated as the mm(x) pro­

cedure) is provided in Appendix B. A more detailed explanation on matching the

estimator's moments to the data is given in Chapter 2.

The algorithm is separated into a setup portion, and a generation portion. The

terms xi and Yi represent the observed data pairs, x~ and y~ are the moment adjusted

data pairs, and lastly, (x", y") is the generated variate pair produced by the algorithm.

The corresponding vectors are set in boldface.

36

Chapter 3. Bivariate Nonparametric Random Variate Generation

Setup

1. x' +- mm(x), y' +- mm(y)

2. hull+- convex hull(x', y')

Generation

1. generate U ,..._, U(O, 1)

2. x" +- Fx1 (U)

3. Ylo +- minimum{hull(x")} (the height of lower intersection of the line x = x"
and the convex hull)

4. Yhi +- maximum {hull (x")} (the height of upper intersection of the line x = x"
and the convex hull)

5. A +- { iiYlo < y~ < Yhi}, i = 1, 2, ... , n (the index set of interior points)

1
6. wk +- (()/)2 fork E A where sis the sample standard deviation of

1 + Xk- x" s
x A, the set of interior points

7. FYIX=x +-weighted piecewise-linear CDF conditioned on x = x" (see Chapter 2
for details on creating the weighted piecewise-linear CDF)

8. generate U ,..._, U(O, 1)

9. y" +- FYI~=x(U)

In step 6 of the generation portion of the algorithm, we include s to normalize the

weight calculation. Data pairs with xi values closer to the line x = x" receive higher

weight. Dividing the absolute difference xi - x" by s scales the factors in terms of

standard deviation units.

This algorithm is nonconventional in the sense that it translates the data pairs

directly into a variate generation algorithm, bypassing the usual density estimation

step. There is, of course, an underlying joint probability density function associated

with the algorithm. This joint probability density function is too tedious to calculate

in general.

37

Chapter 3. Bivariate Nonparametric Random Variate Generation

3.2.3 Applied Examples

Example 1. Consider the bivariate data set of size n = 14 random

observations drawn from a continuous population: (4.1, 1.5), (6.2, 3.4),

(8.3, 5.1), (7.8, 6.4), (5.2, 7.8), (2.0, 4.5), (1.9, 1.3), (2.7, 2.1), (3.5, 3.9),

(4.0, 4.3), (3.6, 2.2), (4.4, 5.2), (5.0, 3.1), (5.3, 5.3).

Setup

1. Compute moment-matched x and y vectors, denoted as x' and y' for

the data. Using the S-Plus/R mm(x) function, the adjusted vectors,

to two decimal places, are: x' = (4.08, 6.48, 8.89, 8.32, 5.34, 1.67,

1.56, 2.47, 3.39, 3.96, 3.50, 4.42, 5.11, 5.45) and y' = (1.15, 3.35,

5.32, 6.82, 8.44, 4.63, 0.92, 1.85, 3.93, 4.39, 1.96, 5.44, 3.01, 5.55).

2. Find the convex hull of x' and y'.

y'

10

8

6

4

2

0

0 2 4 6 8 10

Figure 3.2: Plot of x' vs. y' and the convex hull.

Generation The S-Plus/R code provided in Appendix C combines the

38

Chapter 3. Bivariate Nonparametric Random Variate Generation

univariate strategies for generating from bivariate data. Figure 3.2 presents

the adjusted bivariate data and associated convex hull. Using the piecewise­

linear CDF created from the moment matched x' vector, the variate x"

is generated at x" = 8. The vertical dashed line at x" = 8 intersects

the convex hull in exactly two places, denoted as Ylo and Yhi in the algo­

rithm. The horizontal lines at these intersections establish the lower and

upper limits capturing the interior original y data values used to create

the weighted conditional piecewise-linear CDF for Y. The IAI = 5 interior

values are the solid circles in Figure 3.2. These corresponding y values

are appropriately weighted by wk based on their respective horizontal dis­

tance from the vertical dashed line associated with x". Using the weighted

marginal piecewise-linear CDF created by the weighted interior y value,

y" is generated. Using this methodology, Figure 3.3 displays 50 variates

from the original n = 14 data values where both the mean and variance

for the piecewise-linear CDF's of x and y match that of the data.

The previous example illustrates the workings of the algorithm and associated results.

Figure 3.3 shows (and the algorithm requires) that generated variates must lie within

the convex hull created by the original data (if the data is adjusted to match moments,

we can generate slightly outside the original convex hull since matching moments

requires stretching each endpoint by a positive distance 8, and the interior points

by a corresponding proportional distance). Additionally, if the user desires bivariate

data for a certain region not encompassed by the observed data, it is only necessary

to adjust the convex hull as desired. This feature allows significant advantages for

studying specific aspects of a data set. For example, the user could easily develop cases

for data analysis that include regions of interest while also including observed data.

The next example illustrates the algorithm's ability to replicate multi-modal data in

terms of means, variances, and correlation. Hormann and Leydold (2000) highlight

KDE's inability to accurately estimate multi-modal data, which makes meaningful

39

Chapter 3. Bivariate Nonparametric Random Variate Generation

y"

10

8

6

4

2

0 x"

0 2 4 6 8 10

Figure 3.3: Plot of the marginal adjusted data, convex hull, and 50 random variates
from x andy.

variate generation impossible for such distributions.

Example 2. The Old Faithful geyser in Yellowstone Park is a commonly

analyzed phenomenon. The data set (Weisberg, 1980) consists of n =

299 data pairs, the waiting time between eruptions (x;) and the eruption

duration (yi), and is displayed in Figure 3.4, along with the convex hull.

Though not easily visually distinguishable from the scatterplot, the data is

tri-modal. Using a standard bivariate distribution to model this data set,

such as the bivariate normal distribution, would not provide an adequate

fit. For this data, it is appropriate to match the first two moments as

doing so does not significantly change waiting nor duration times due to

the large sample size. Additionally, matching the moments does not create

any negative times.

Figure 3.5 shows the adjusted data and associated convex hull side-by-side

40

Chapter 3. Bivariate Nonparametric Random Variate Generation

duration

6

5

4

3

2

1

0 waiting

40 60 80 100 120

Figure 3.4: Plot of n = 299 waiting vs. duration times (minutes) for the Old Faithful
Geyser.

with the variates generated by our algorithm. The first numerical column

of Table 3.1 provides the sample statistics associated with the data, and

the second column shows that the first and second moments, and the

covariance are adequately conserved in the generated variates. The third

column provides p-values for the hypothesis tests with t-tests used for the

means and F-tests for the variances.

It is apparent that the algorithm will occasionally generate variates in

n = 299 n = 299
observed data generated data p-value

avg waiting 72.31 73.24 0.407
avg duration 3.46 3.39 0.465
var waiting 192.94 183.18 0.654

var duration 1.32 1.42 0.529
covariance -10.28 -9.07

Table 3.1: Sample statistics for observed and generated data.

41

Chapter 3. Bivariate Nonparametric Random Variate Generation

duration duration

6 6

5 5

4 4

3 3

2 2

1 1

0 waiting 0

40 60 80 100 120 40 60 80 100 120

Figure 3.5: Sample adjusted observed data (left) and generated random variates
(right) for waiting vs. duration times (minutes) for n = 299.

duration

6

5

4

3

2

1

0 waiting

40 60 80 100 120

Figure 3.6: Plot of n1 = 105 and n2 = 194 waiting vs. duration times (minutes).

"white-space" (areas of the convex hull not represented by observed sam­

ple data values) of the convex hull as is expected. If this is problematic,

42

Chapter 3. Bivariate Nonparametric Random Variate Generation

we could fine-tune the appearance of the hull to avoid the possibility of

these variates without significantly altering the algorithm. Alternatively,

we could create two convex hulls as shown in Figure 3.6, with n1 = 105

data values in the lower hull and n2 = 194 data values in the upper hull.

The algorithm is modified so that a bivariate pair is generated from the

lower hull with probability 105/299 and the upper hull with probability

194/299. The algorithm's run time change for this adjustment is negligi­

ble.

3.3 Kernel Density Estimate Comparison

3.3.1 Generating Variates Via Kernel Density Estimation

Perhaps the most widely accepted method of univariate density estimation is kernel

density estimation (KDE). The kernel density approximation of the underlying true

distribution is defined as

ix(x) = ~ tK (X- Xi)
nb b

i=l

where K is the kernel function, n is the sample size, and b is the bandwidth (smooth­

ing) parameter. While several kernel functions exist in the literature the most com­

monly used kernel function is the Gaussian kernel,

K()
1 _!x2 x = --e 2 ..;x:rr oo<x<oo

with mean zero and unit variance. These estimators provide a smooth density esti­

mate with proven theoretical properties, making their choice of estimation a sound

one. This estimator does not come without drawbacks. Using this estimator requires

calculation of the bandwidth parameter b. Though many accepted versions of calcu-

43

Chapter 3. Bivariate Nonparametric Random Variate Generation

lating b exist in the literature, choosing a method is not necessarily easy. For large

values of b, oversmoothing occurs and important details about the underlying density

may be lost. Additionally, if the parameter is too small, the resulting estimate is

said to be undersmoothed and subtleties showing up in the density estimate caused

by the sample data may lead to incorrect conclusions on the underlying distribution.

We do not discount the importance of selecting an optimal bandwidth parameter,

but will focus on the KDE method for comparison to the proposed algorithm. We

reference Hormann and Leydold (2000) for use of kernels (and selection of a smooth­

ing parameter) in generating bivariate data from an observed sample. They provide

an efficient algorithm for sampling from a multi-dimensional kernel density estimate.

Using their algorithm with a normal kernel function, generating variates is very fast.

The algorithm is divided into a setup and generation portion.

Setup

For a random sample X 1 , X 2 , ... , X n of d length vectors, compute:

1. the mean vector x,

2. the estimated covariance matrix E,

3. the Cholesky factor l of E,

4. the smoothing parameter b,

5. the variance correction factor cb.

Generation

1. Generate a random integer I uniformly distributed on {1, 2, ... , n }.

2. Generate a random vector W of d independent normal variates.

3. Return Y=x+(Xr-x+l(bW))c11 •

In this algorithm a full covariance matrix is specified from the observed data.

Using the Old Faithful geyser data (Weisberg, 1980), the estimated covariance matrix,

E, is

E = [192.94

-10.28

44

-10.28]

1.32

Chapter 3. Bivariate Nonparametric Random Variate Generation

The joint density is estimated as a sum of n = 299 translated versions of the chosen

kernel function (bivariate normal in this case) multiplied by ~b. Though there are

many accepted versions of calculating b for the univariate case, the multidimensional

case is more challenging. Silverman (1986) suggests a simple calculation forb as

= (4) l/(d+4)

b (d+2)n '

where d is the dimension of the data. Thus the bivariate case results in

Additionally, a variance correction factor is included because the variance of the

empirical distribution is always larger than the variance of the observed data (Sil­

verman, 1986). Hormann and Leydold (2000) define the variance correction as cb,

where

3.3.2 Comparisons for Unknown Joint Densities

To compare the two variate generation methods, 100 replications were made, each of

size n = 299 variates, using the geyser data introduced earlier. Prior to the study

it was determined that a single replication is considered acceptable if it successfully

captures the tri-modal KDE density appearing in Figure 3.7.

This density was computed directly from then= 299 data pairs using S-Plus/R

as described in Bowman and Azzalini (1997) for a normal kernel function and a nor­

mal optimal smoothing parameter. These estimated joint density plots are only used

as a visual tool for comparing variate generation methods. The methods compared

are (1) nonparametric algorithm for unadjusted waiting and duration times, (2) non­

parametric algorithm for adjusted waiting and duration times, and (3) Hormann and

45

Chapter 3. Bivariate Nonparametric Random Variate Generation

Figure 3.7: Joint density estimate of Old Faithful geyser data.

Leydold's variance-corrected KDE algorithm. For each method and replication a

three-dimensional estimated joint density plot like the one shown in Figure 3. 7 was

inspected for a tri-modal density. Methods one and two (those proposed in this chap­

ter) always captured the tri-modal appearance, while the KDE algorithm failed 35

times out of 100. An example of a failure instance is depicted in Figure 3.8.

Recognizing that the chosen smoothing parameter in the KDE algorithm is "over­

smoothing" due to the multi-modality of the distribution, the parameter value was

reduced by half as suggested in Hormann and Leydold (2000) and the experiment was

repeated. Doing so resulted in six failures out of 100 replications. This reduction in

failures is evidence of the estimated density's sensitivity to the smoothing parameter

selection. And, while the generated density estimate improved dramatically, it is still

outperformed by the proposed completely nonparametric algorithm.

The next example consists of warranty claim data provided by General Motors

for model year 2000 cars sold in the month of December, 2000. The bivariate data

46

Chapter 3. Bivariate Nonparametric Random Variate Generation

Figure 3.8: Example of a failure instance for the KDE joint density estimate.

values are the mileage and the age of the vehicle at warranty claim. All vehicles share

a three-year (1095 day), 36,000 mile warranty. This data set is unique because it is

bounded below at zero and above at three years/36,000 miles. Given the lower and

upper bounds on the data, it is inappropriate to stretch the data and match moments

as on the geyser data. A scatterplot of the data is provided in Figure 3.9, and the

corresponding three-dimensional density estimate in Figure 3.10. The figures depict

a pronounced mode close to the origin and a less prevalent mode near the mileage

axis upper bound. This is logical because a buyer might not recall when a three-year

warranty will expire, but can easily notice the approaching 36,000 mile warranty limit.

General Motors might be interested in the impact of adjusting warranty durations.

Using the same type study as the geyser data, we test the proposed variate gen­

eration algorithm against both the variance-corrected KDE and reduced smoothing

parameter variance-corrected KDE sampling techniques. Figure 3.11 depicts one

resulting joint density comparison instance. Once again, it is apparent that variance-

47

Chapter 3. Bivariate Nonparametric Random Variate Generation

age (days)

1000 0
0

0

0 go

800 0 0

li

600
0 (j 0

o a
0

400 0 0

0

200

0

0

0

0
0

0

0

00

0
0

0 0 0

0

0 0

0

0
0

0

0

§:
~

'6 :

o:

0 10000 20000 30000

miles

Figure 3.9: Scatterplot of miles vs. age (days) at warranty claim, n = 259.

Figure 3.10: KDE joint density estimate of miles vs. age.

48

Chapter 3. Bivariate Nonparametric Random Variate Generation

corrected KDE "oversmooths," while the reduced smoothing parameter KDE per­

forms better in estimating the observed warranty data as depicted in Figure 3.12.

Figure 3.11: Variate generation for the proposed algorithm vs. variance-corrected
KDE.

0 0

Figure 3.12: Variate generation for the proposed algorithm vs. reduced smoothing
KDE.

A scatterplot of the KDE variance-corrected results, shown in Figure 3.13, displays

the tendency of KDE to generate more densely at the pronounced mode, further

accentuating the possibility of variates outside of the support rectangle when the

mode is close to zero, as is the case in this example. In addition, variates are also

produced that lie outside the upper bounds for mileage and age. This behavior

49

Chapter 3. Bivariate Nonparametric Random Variate Generation

is troublesome for KDE and not easily overcome without resorting to some type of

acceptanc~rejection or thinning method. Both of these options ruin synchronization,

which might be needed if a variance-reduction technique is employed.

age (days)

1200

1000

800

600

400

200

0

-200

-10000 10000 30000 50000

Figure 3.13: Scatterplot of variates generated via KDE.

The range of variates produced by the two approaches further accentuates their

differences. Table 3.2 lists the minimums and maximums for each approach, along

with the percentage of realizations falling outside the allowable warranty bounds.

Given that all the generated variates for the proposed algorithm must (by construc­

tion) fall within the allotted bounds, impossible variates cannot occur. Consequently,

using the KDE sampling method requires discarding impossible variates. Finally,

visual comparisons of 100 joint densities for each approach resulted in the proposed

algorithm dominating KDE in capturing the original data's depiction of customer

warranty claims.

Using the normal kernel poses difficulty in modeling bounded data in two dimen­

sions, as well as capturing multi-modal behavior. In months where sales numbers are

higher, the upper limits of mileage and age are even more densely covered, further

50

Chapter 3. Bivariate Nonparametric Random Variate Generation

min max min max percent percent
miles miles age(days) age(days) <0 > 3/36K

observed data 8 35993 0 1056 0.0 0.0

proposed algorithm 14 35983 0 1047 0.0 0.0
var. corr. KD E -11093 53178 -156 1104 18.5 7.0
reduced sm. param.
var. corr. KD E -2907 39984 -34 1179 8.5 6.2

Table 3.2: Range and percentage of variates outside allowable bounds.

exhibiting multi-modal behavior.

In the proposed variate generation algorithm, the modeler has the choice between

using the convex hull associated with the data pairs or using the rectangle with oppo­

site corners (0, 0) and (36000, 1095). Figure 3.9 shows that there will be a significant

difference between these two choices.

3.3.3 Comparisons for Known Joint Densities

We will now compare KDE and the proposed algorithm for two known joint densities,

the first of which has infinite support and the second with bounded support.

The first example is an equiprobable mixture of three bivariate normal distribu­

tions, with parameters as indicated in Table 3.3.

Bivariate normal
parameters

f.LX 2 4 8
f.Ly 1 8 4
ax 1 1 2
ay 2 1 2
p 1/5 -1/5 -1/3

Table 3.3: Parameters for three equiprobable bivariate normals.

Using this mixture as the underlying density, n = 150 variates were generated for

use as the observed sample data. We then compare standard KDE with a Gaussian

kernel (bandwidth parameter is 1/n116) and the proposed algorithm for 150 generated

51

Chapter 3. Bivariate Nonparametric Random Variate Generation

variates. Figure 3.14 illustrates the observed data in the left-hand plot, the KDE

generated estimate on the right and the proposed algorithm's estimate in the center.

A visual inspection indicates oversmoothing in the KDE case, a situation that could

be remedied through manipulation of the smoothing parameter. Further work with

the smoothing parameter did refine the KDE estimate suitably, and as expected,

given a mixture of bivariate normals, KDE does well with proper selection of the

smoothing parameter.

Figure 3.14: Observed data (left) and density estimate comparisons for KDE (right)
and the proposed algorithm (center).

As a second example, consider a uniform bivariate distribution with uniform sup­

port on the unit square. We will use this example to illustrate how our algorithm

performs in the limit with regard to the marginals, which in this case are bounded by

52

Chapter 3. Bivariate Nonparametric Random Variate Generation

(0, 1). The experiment consists first of generating k = 20, 50, 100 data pairs from the

bivariate uniform. Using these k data pairs, we then exercise the proposed algorithm

and KDE, generating a single m = 1 two-dimensional variate for each. We repeat this

experiment 100, 000 times and check the resulting marginal densities which we would

like to converge to the theoretical marginals, each U(O, 1). Figure 3.15 shows the

resulting marginal densities for the proposed algorithm using k = 50 observed data

pairs. The left-hand plot indicates that the density appears to converge to U(O, 1)

as desired. However, the conditioned density clearly does not. This result occurs

because of the algorithm's tendency to designate more mass where the generated x

value intersects the convex hull of the observed data. So, even though we replicate

the experiment many times, there is the tendency to not adequately cover the vertical

axis toward the upper and lower limits.

F(x)
1.0

0.8

0.6

0.4

0.2

0.0
-0.5

X

0.0 0.5 1.0 1.5

F(y)
1.0

0.8

0.6

0.4

0.2

0.0
-0.5

r
0.0 0.5 1.0 1.5 °

Figure 3.15: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using the proposed algorithm.

A suitable manipulation of the algorithm allows us to partially correct this short­

coming by spreading the error equally between x and y. Since the vertical axis suffers

in marginal estimation, we can modify the algorithm by alternating the roles of x

andy on each subsequent (x, y) pair generated. Figure 3.16 depicts the estimated

marginal densities after manipulating the algorithm.

In the General Motors example, the support is rectangular, and furthermore,

53

Chapter 3. Bivariate Nonparametric Random Variate Generation

F(x) F(v)
1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 X 0.0 y
-o.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5

Figure 3.16: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using the alternating algorithm.

known. In this case we could have artificially created the convex hull limits since the

minimum and maximum for each marginal is known and fixed. For this example, we

now fix the support as the unit rectangle, thus the convex hull is {0, 1) x {0, 1). We

will run two cases for the fixed support, the proposed algorithm and the alternating

algorithm. Given that the hull is fixed for both cases, the corresponding results do not

differ significantly. Figure 3.17 shows the marginals for the first case, the proposed

algorithm.

F(x)
1.0

0.8

0.6

0.4

0.2

0.0 f----'t----.-----r----,
-0.5 0.0 0.5 1.0 1.5

X

F(t:)
1.0

0.8

0.6

0.4

0.2

0.0 ··-··-···· .
-{)_5 0.0 0.5 1.0

y
1.5

Figure 3.17: Estimated marginal densities for the unit square bivariate uniform dis­
tribution with fixed support (0, 1) x {0, 1).

54

Chapter 3. Bivariate Nonparametric Random Variate Generation

Lastly, we perform the same experiment for KDE, again using a Gaussian kernel

and the same smoothing parameter used earlier. Figure 3.18 shows that although

KDE does well over most of the support, it also suffers at the lower and upper end of

the support. Furthermore, the KDE method of course generates a substantial number

of impossible variates.

F(x)
1.0

0.8

0.6

0.4

0.2

0.0
-0.5 0.0

F(y)
1.0

0.8

0.6

0.4

0.2

1.0
y

1.5

Figure 3.18: Estimated marginal densities for the unit square bivariate uniform dis­
tribution using KDE.

Table 3.4 displays the squared error between the CDF and N = 100,000 generated

data points, calculated as

where F(xi) is the estimated marginal CDF value at xi and F(xi) is the theoretical

CDF value at xi. As another measure, we could include a quantile comparison,

however, other than the lower and upper quantile discrepancies for KDE, there does

not seem to be much difference across the board. As expected, KDE performs well

throughout, except for the impossible variates generated. We could also change the

kernel to a distribution with fixed support, which would reduce the extremity to which

KDE produces impossible variates. However, the inclusion of such a comparison does

55

Chapter 3. Bivariate Nonparametric Random Variate Generation

not substantially change the overall results.

Since it is impossible to generate variates exactly from some data set without

knowing the underlying distribution, questioning the quality of the variates generated

from some known parametric distribution is justified. These hypothetical examples

show that using the proposed algorithm exhibits quality at least as good as KDE. In

terms of generation speed, KDE has the advantage over the proposed algorithm. In

testing the vectorized version of the proposed algorithm's code versus KDE, excluding

setup, we find that KDE runs about twice as fast, and given that the proposed

algorithm's run time is a function of n, KDE's advantage is more pronounced for

large sample sizes.

n =20 X error Y error correlation
Proposed Algorithm 3.7 X 10 5 3.3 X 10 3 0.007

Alternating Algorithm 6.8 x w-4 6.7 X 10-4 0.008
Fixed Support Algorithm 1.3 X 10-3 2.2 x w-3 0.022

Alternating Fixed Support Algorithm 3.9 x w-4 4.1 x w-4 0.012
KDE Algorithm 5.7 x w-4 5.3 x w-4 -0.002

n =50 X error Y error correlation
Proposed Algorithm 1.1 X 10 -5 3.8 X 10 3 0.001

Alternating Algorithm 9.0 x w-4 8.5 X 10-4 -0.001
Fixed Support Algorithm 2.8 x w-4 2.2 x w-3 0.015

Alternating Fixed Support Algorithm 3.3 x w-4 3.0 x w-4 0.009
KDE Algorithm 3.7 x w-4 3.6 x w-4 0.004

n = 100 X error Y error correlation
Proposed Algorithm 3.2 X 10 6 3.8 X 10 3 -.001

Alternating Algorithm 8.9 x w-4 9.1 X 10-4 -9.2 X 10-5

Fixed Support Algorithm 7.7 x w-5 2.6 x w-3 -6.6 X 10-4

Alternating Fixed Support Algorithm 4.7 x w-4 4.8 x w-4 -7.1 x w-4

KDE Algorithm 2.6 x w-4 2.5 x w-4 -0.006

Table 3.4: Marginal CDF squared error for the estimates of the bivariate uniform
distribution. ·

56

Chapter 3. Bivariate Nonparametric Random Variate Generation

3.4 Limitations

There are a number of limitations associated with the proposed algorithm which we

outline in this chapter. The three limitations discussed here are

1. The lack of an expression for the nonparametric joint PDF,

2. The algorithm's performance relative to KDE,

3. The speed of the algorithm.

Though the proposed nonparametric algorithm is "blackbox" in that no decisions

are required by the modeler, there is an underlying joint PDF. The algorithm goes

directly from data to random variates, bypassing the usual step of specifying the PDF

because of its complicated nature for large values of n. For small n, however, the joint

PDF is easily available, as illustrated in the example below.

Example 3. Consider a data set that consists of just three (n = 3)

noncollinear pairs. The convex hull is the triangle with the data pairs

as vertices and no data values are internal to the convex hull. More

specifically, consider the data pairs

(1, 1), (2, 1), (3, 3).

Exploiting the fact that the x-values are equally spaced, the variate gen­

eration algorithm reduces to

generate X ,...., U(1, 3)
if (X < 2) generate Y ,...., U(1, X)
else generate Y ,...., U(2X - 3, X)

The joint PDF of X and Y associated with this algorithm can be deter­

mined as the product of the marginal distribution for X

fx(x) = 1/2 0<x<2

57

Chapter 3. Bivariate Nonparametric Random Variate Generation

and the conditional distribution

yielding

1

x-1
1

3-x

2(x- 1)

{

1

!x,y(x, y) =
1

2(3-x)

1 < y < x; 1 < x < 2

2x - 3 < y < x; 2 ~ x < 3

1 < y < x; 1 < x < 2

2x - 3 < y < x; 2 ~ x < 3.

Characteristics of this joint distribution are consistent with variates gen­

erated by the algorithm. The covariance of X and Y, for example, is

1/3, and the sample covariance of variates generated by the algorithm

converges to 1/3 as the number of data pairs generated tends to infinity.

Second, the algorithm's performance is compared with that of KDE. There are

few bivariate parametric distributions where variate generation is easy. We use the

bivariate normal distribution to compare the impact of correlated random variables

on the proposed algorithm and KDE. We expect KDE to perform extremely well since

the underlying distribution is bivariate normal. The infinite tails associated with the

bivariate normal distribution give an advantage to KDE, just as a bounded region,

such as in the General Motors warranty data case, gives an advantage to the proposed

algorithm. For the study, the underlying distribution is given by the parameters

f.LX = 1, f.LY = 2, f7X = 4, Uy = 3, p = 0.01, 0.99,

where p varies from extremely low to high correlation. In addition to these two

extreme values of p, the same study considered intermediate values of p, however

including them here is not informative. For each value of p, we chose n = 100 and

58

Chapter 3. Bivariate Nonparametric Random Variate Generation

n = 200 as the observed sample sample sizes from the bivariate normal distribution.

For each of the observed sample sizes, N = 10 and N = 40 variates were gener­

ated using KDE and the proposed algorithm (with and without moment matching).

These variates were then used to calulate confidence intervals for the means, stan­

dard deviations, and correlation. The experiment for each (n, N) pair combination

was conducted 10,000 times and the count of confidence intervals containing each

of the five parameters were tallied. Using the F distribution associated with the

Clopper-Pearson confidence interval considered not significantly different from 9, 500

and n = 0.01, the confidence interval counts are in the interval [9443, 9555]. Ta­

bles 3.5 and 3.6 contain the results of the simulation study, where boldface numbers

are in [9443, 9555].

n N J-Lx f-LY ax ay p algorithm
100 10 9413 9304 9496 8722 9513 moment matched algorithm

9384 9285 9514 8468 9503 proposed algorithm
9392 9403 9112 9097 9396 KDE

100 40 9041 8652 9188 4921 9213 moment matched algorithm
9038 8638 9089 3937 9204 proposed algorithm
9113 9097 8068 8109 9079 KDE

200 10 9438 9418 9528 8879 9554 moment matched algorithm
9421 9390 9552 8752 9523 proposed algorithm
9445 9447 9205 9230 9400 KDE

200 40 9291 9111 9382 5331 9451 moment matched algorithm
9251 9100 9391 4759 9390 proposed algorithm
9298 9300 8650 8568 9313 KDE

Table 3.5: Confidence interval count for bivariate normal parameters and p = 0.01.

For low correlation, where we expected KDE to perform extremely well, the results

do not indicate KDE dominating the proposed algorithm for producing variates that

properly mimic the five distribution parameters. On the contrary, KDE performs

rather poorly; in several instances it is outperformed by the proposed algorithm, re­

gardless of whether moments are matched. These results were a bit disappointing

for KDE, given the underlying distribution is bivariate normal with almost zero cor-

59

Chapter 3. Bivariate Nonparametric Random Variate Generation

relation. One weakness of the proposed algorithm is apparent in the O'y column.

This weakness can be partially overcome by implementing the alternating algorithm

described in the previous chapter.

n N /-LX f.LY O"x O'y p algorithm
100 10 9407 9388 9483 9463 9399 moment matched algorithm

9400 9394 9493 9468 9393 proposed algorithm
9420 9401 8711 9386 861 KDE

100 40 9063 9051 9161 9121 7801 moment matched algorithm
9010 9001 9088 9033 7682 proposed algorithm
9123 9034 7132 9106 0 KDE

200 10 9458 9443 9549 9531 9344 moment matched algorithm
9432 9431 9539 9521 9347 proposed algorithm
9450 9466 8967 9478 1304 KDE

200 40 9291 9255 9382 9334 7094 moment matched algorithm
9224 9212 9336 9294 7082 proposed algorithm
9319 9285 7756 9261 0 KDE

Table 3.6: Confidence interval count for bivariate normal parameters and p = 0.99.

There is no surprise that KDE had trouble inducing extremely high correlation, how­

ever, we did expect KDE to perform better in capturing the other distribution pa­

rameters. The proposed algorithm clearly outperformed KDE in inducing correlation.

Using another distribution that is bounded below (e.g., the bivariate exponential)

would be even more troublesome for KDE because it would produce negative vari­

ates. Choosing to reject the negative variates (which would be required in variate

generation) induces bias. The same problem exists in KDE for the car mileage and

time data presented earlier in which both X and Y were bounded above and below.

The final limitation noted for the proposed algorithm is generation speed. While

generating the first element of the random variate pair is fast, generating the second

element requires creating the conditional piecewise-linear CDF, which is slow for

large n. However, the algorithm benefits when high correlation exists in the observed

variate pairs. High correlation results in a tight convex hull where once the first

element of the random pair is generated, the conditional piecewise-linear CDF may

60

Chapter 3. Bivariate Nonparametric Random Variate Generation

involve only a small number of data points, or in the most extreme case, may be

uniformly distributed between the points where the x variate intersects the convex

hull.

3.5 Conclusions

A nonparametric method of generating bivariate data was presented with examples in

this chapter. The method is blackbox, synchronized, and effectively captures multi­

modal two-variable dependencies for most data sets. The method does not require

any information about the underlying distribution of the empirical data, nor does it

require joint density estimation as an intermediate step for variate generation. Thus,

given an appropriate observed bivariate data set, a researcher is capable of generating

variates without the risk of introducing error associated with generating from some

incorrect parametric distribution. Given continuous bivariate data, this method is

capable of producing variates efficiently, and, in the case of observed data falling into

recognizable groups, the algorithm can be easily altered for suitable employment.

In a comparison study, the method performs at least as well as an accepted KDE

generation algorithm in terms of estimation quality for selected data sets. Three

significant contributions of the proposed algorithm are (1) it is completely nonpara­

metric and requires no parameters from the modeler, (2) it is simple to implement,

and (3) it is a one-to-one (synchronized) variate generation algorithm whose resulting

random vectors are capable of representing multi-modal bivariate distributions and

will not produce impossible variates for fixed supports. In summary, the algorithm's

advantages over sampling from a KDE algorithm are

• no reliance on selected kernel density function

• no reliance on selected smoothing parameter

• cannot produce unrealistic variates (e.g., negative times from a service time

61

Chapter 3. Bivariate Nonparametric Random Variate Generation

distribution).

Three decisions are required from the modeler that are dependent on the data

set. First, the modeler must decide if the data should be stretched in order to match

moments. Second, the modeler must decide whether to use the convex hull associated

with the (stretched or raw) data, or use a rational convex hull as in the case of the

warranty data. Finally, the modeler must decide whether a single convex hull, as in

Figure 3.4, or multiple convex hulls, as in Figure 3.6, is appropriate.

62

Chapter 4

Control Chart Constants for

Non-Normal Sampling

4.1 Introduction

Control charts are widely used in industry to provide insight on process behavior and

identify assignable causes associated with a shift in the mean value of the process.

These charts were first proposed in a memo by Walter Shewhart in 1923 at Bell

Telephone Laboratories. To create the control limits, estimates for the mean and

standard error of the population are required, along with constants that serve as bias

correction factors (Shewhart, 1980). The first control chart constants, then denoted

by d2 and d3 (for the sample range), were proposed by Tippett (1925). McKay

and Pearson (1933) obtained the exact distribution of the sample range for n = 3

observations drawn from a normal distribution. Hartley and Pearson (1951) tabulated

the fractiles of the mean of the sample range for n = 2 ton= 20 (Wheeler, 2000).

The terms bias correction factor and control chart constant are used interchangeably.

Bias correction factors for standard deviations followed a similar development.

They too are based on an underlying normal distribution. For both sets of con­

stants, extensive work exists (Wheeler, 2000) showing the robustness of these con-

63

Chapter 4. Control Chart Constants for Non-Normal Sampling

stants for data from non-normal distributions. For the most part, similar constants

for non-normal distributions do not appear in the literature for two reasons: (1) most

applications involve sampling from normal populations, and (2) they are not easily

computed. The purpose of this chapter is to offer an alternative method of computa­

tion using A Probability Programming Language (APPL), developed by Glen et al.

(2001), to compute the exact values of these control chart constants. Additionally,

APPL typically provides exact results rather than approximations. Although normal

sampling can be assumed in the vast majority of statistical process control applica­

tions, occasions will arise where non-normal sampling is an appropriate assumption.

The development here allows an engineer to easily obtain the appropriate control

chart constants in these alternate settings.

The aforementioned constants d2 and d3 relate to the distribution of the sample range,

denoted by R. The correction factor d2 is a function of the mean of the sample range

and the population standard deviation. Given a random sample X 1 , X 2 , ... , Xn from

a population with cumulative distribution function F(x), probability density function

J(x), finite unknown variance ui, and associated order statistics Xc1), Xc2), ... , X(n),

the sample range, R, is

R = Xcn)- X(l)· (4.1)

The joint probability density function of the order statistics X(i) and Xcj) associ­

ated with a sample size n given by Hogg et al. (2005) is

n! i-1 j-i-1
fx<;J,x(j) (x(i)> X(j)) = (i _ 1)!(j _ i _ 1)!(n _ j)! [F(x(i))] [F(x(J))- F(x(iJ)]

X [1- F(X(j))r-j f(x(i))f(x(j)) X(i) < X(j)

64

Chapter 4. Control Chart Constants for Non-Normal Sampling

for integers 1 :S i < j :S n. For i = 1, j = n, this simplifies to

X(l) < X(n)·

(4.2)

Burr (1967) uses a change of variable, X(n) = Xc1) + R (since, by definition R =

X(n) - Xcl)) in (4.2) to find the joint density of X(l) and R and then integrates

out Xcl) to find the probability density function of R. This, of course, works well for

distributions with closed form cumulative distribution functions; however, cumulative

distribution functions involving mathematically intractable integrals are problematic.

Once the distribution of R is obtained, it is used it to correct bias by

(4.3)

Burr (1967) also suggests an easier approach to find E[R], which lends itself well

to implementation in APPL. Using (4.1), for a sample of size n, the expected value

of the sample range is

(4.4)

therefore, using (4.3) and (4.4), we can express d2 as

This result can be implemented using the APPL RangeStat procedure for select

distributions. This procedure returns the distribution of the sample range for a sample

of size n. Equivalently, we can use the OrderStat procedure, and return d2 values

exactly. For sampling from a normally distributed population we can always remove

the mean by subtraction, resulting in a random variable with mean zero. For n = 3

consider the APPL statements

> n := 3:

65

Chapter 4. Control Chart Constants for Non-Normal Sampling

>X := NormalRV(O, sigma):

> (Mean(OrderStat(X, n, n)) - Mean(OrderStat(X, n, 1)))

I sqrt(Variance(X));

which yield the exact value of d2 = 3/ .jir. Though this is convenient, APPL is only

capable of returning the exact symbolic expression of d2 for n = 2 and n = 3. For

n > 3, the problem is mathematically intractable and the integrals must be evaluated

numerically. However, if population distribution parameter values are input for the

code above, APPL is capable of solving for d2 when n 2: 3. Since ~ depends only

on n (and is independent of f..l, a), assigning values to these distribution parameters

does not affect ~.

We proceed in a similar manner for d3 , which corrects for the standard deviation

of the range. The relationship is

d
_ aR

3--.
ax

Since APPL can compute the exact distribution of R, we can also obtain aR easily

for select distributions.

Example 1. Given that X 1, X 2 , and X 3 are iid exponential(>.) random

variables, find the bias correction factors d2 and d3 for the sample range.

The APPL statements

> n - 3:

> X - ExponentialRV(lambda):

> R - Rang eSt at (X, n):

> d2 - Mean(R) I sqrt(Variance(X));

> d3 - sqrt(Variance(R)) I sqrt(Variance(X));

yield

and

66

Chapter 4. Control Chart Constants for Non-Normal Sampling

Likewise, when n = 18,

d = 42142223 ~ .440
2

12252240
3 and

d = v238357395880861 ~
1 260 3 12252240 . .

Table 1 compares values for d2 and d3 , given the sample is drawn from exponential,

normal, Rayleigh, and U(O, 1) distributions for sample sizes n = 2 ton= 20. These

constants do not depend on the rate parameter >. (for the exponential and Rayleigh

distributions) nor /.L or e7 (for the normal distribution).

d2 d3
n Expon Normal Rayleigh U(O, 1) Expon Normal Rayleigh U(O, 1)
2 1.000 1.128 1.121 1.155 1.000 0.853 0.863 0.816
3 1.500 1.693 1.681 1.732 1.118 0.888 0.897 0.775
4 1.833 2.059 2.041 2.078 1.167 0.880 0.885 0.693
5 2.083 2.326 2.300 2.309 1.193 0.864 0.866 0.617
6 2.283 2.534 2.501 2.474 1.210 0.848 0.848 0.553
7 2.450 2.704 2.663 2.598 1.221 0.833 0.830 0.500
8 2.593 2.847 2.797 2.694 1.230 0.820 0.815 0.455
9 2.718 2.970 2.912 2.771 1.235 0.808 0.802 0.418
10 2.829 3.078 3.012 2.834 1.241 0.797 0.790 0.386
11 2.929 3.173 3.100 2.887 1.245 0.787 0.779 0.358
12 3.020 3.258 3.179 2.931 1.248 0.778 0.769 0.334
13 3.103 3.336 3.250 2.969 1.251 0.770 0.759 0.313
14 3.180 3.407 3.314 3.002 1.253 0.762 0.752 0.294
15 3.252 3.472 3.373 3.031 1.255 0.755 0.745 0.278
16 3.318 3.532 3.427 3.057 1.257 0.749 0.738 0.263
17 3.381 3.588 3.477 3.079 1.259 0.743 0.731 0.250
18 3.440 3.640 3.524 3.099 1.260 0.738 0.726 0.238
19 3.495 3.689 3.568 3.118 1.261 0.733 0.720 0.227
20 3.548 3.735 3.608 3.134 1.263 0.729 0.715 0.217

Table 4.1: Comparison of d2 and d3 for exponential, normal, Rayleigh, and U(O, 1)
sampling distributions.

As shown in Table 1, APPL is able to calculate exact values of d2 and d3 for the

exponential, Rayleigh, and standard uniform distributions. All other distributions

required numerical integration to calculate d2 and d3 . So, in theory, we could estimate

d2 and d3 for any arbitrary sampling distribution. While this might be novel, it is

67

Chapter 4. Control Chart Constants for Non-Normal Sampling

not special to APPL because we are really using Maple's capability to estimate the

result with numerical integration. If we do provide numeric values for parameters, we

can take advantage of APPL to calculate the constants. In some cases, as illustrated

in Example 2, APPL provides exact results.

There may be applications (e.g., life testing associated with bulbs or fuses) where

a non-normal distribution is appropriate, and this provides an easy way to calculate

control chart constants. Additionally, Tadikamalla et al. (2008) substantiate non­

normal applications providing examples that calculate the upper and lower control

limits for the logistic and Laplace distributions. Though they only consider symmet­

ric distributions, the same practice can be considered for nonsymmetric cases using

APPL, with an added advantage of never referring to a chart calculated for specific

values of n and kurtosis estimates.

Example 2. Given that X 1 and X 2 are iid Weibull(2, 3) random vari­

ables, find the bias correction factor d2 for the sample range. The APPL

statements

> n 2:

>X WeibullRV(2, 3):

> d2 (Mean(OrderStat(X, n, n)) - Mean(OrderStat(X, n, 1)))

I sqrt(Variance(X)):

yield

The APPL procedure OrderStat (X, n, r) computes the exact distribution of the

rth order statistic drawn from a sample of size n drawn from a population described

by the random variable X.

In order to find d2 and d3 from first principles (as provided by Wheeler (2000)),

given an underlying parametric distribution, we must assign values to the distribu­

tion parameters. Even with small sample sizes, the process control literature provides

68

Chapter 4. Control Chart Constants for Non-Normal Sampling

well-established parameter estimation methods. However, given the normal distribu­

tion's wide acceptance in process control, current literature focuses on the normal

distribution's mean J.L and standard deviation a, potentially suggesting an area of

further work. Conceivably, if we knew enough about the observed process data to use

a non-normal parametric model, we should also be confident in estimating the distri­

bution's parameters. Thus APPL provides an efficient foundation for calculating d2

and d3 .

Selecting a distribution to adequately model observed data has many troubling

issues. If the researcher does not want to make assumptions accompanying a certain

parametric distribution nor introduce potential error in selection, he or she can also

create a distribution via bootstrapping with well-established statistical properties

(Efron and Tibshirani, 1993). Once a probability distribution function is created

using bootstrapping, APPL can compute the constants d2 and d3 as shown in Example

3 using the BootstrapRV procedure.

Example 3. Given the arbitrary probability distribution function fx (x)

created by bootstrapping for the observed order statistics X(l) = 1, X(2) =

3, x(3) = 4, and X(4) = 7, compute the constants d2 and d3 for sample size

n = 3. The APPL statements

> data [1' 3' 4' 7] :

> X ·= BootstrapRV(data):

> R ·= RangeStat(X, 3):

> d2 ·= Mean(R) I sqrt(Variance(X));

> d3 - sqrt(Variance(R)) I sqrt(Variance(X));

yield

d2 = 19vl3/20 ~ 1.645 and d3 = h637 /60 ~ 0.856.

69

Chapter 4. Control Chart Constants for Non-Normal Sampling

4.3 Constants c 4, c5

Similar to d2 and d3 , the control chart constants c4 and c5 are also bias correction

factors. However, as d2 and d3 corrected for the mean and standard deviation of the

sample range R, c4 and c5 correct for the mean of the sample standard deviation,

S, and its standard error. This is unusual because we usually discuss a sample's

mean and standard deviation, but we are now focused on the sample's mean standard

deviation and the variance of the standard deviation. We denote the mean of the

standard deviation by f.Ls and its standard deviation by as. Thus the relationships

are

(4.5)

and

as= .jVar(S) = csax. (4.6)

4.3.1 Normal Sampling

The derivations of c4 and c5 are based on the fact that E [S2
] = al- and the well-known

result
(n- l)S2

2
rv Xn-l (4.7)

for normal sampling (Hogg et al., 2005), where x;_ 1 denotes a chi square random

variable with n - 1 degrees of freedom. The mean of the sample standard deviation

is

70

Chapter 4. Control Chart Constants for Non-Normal Sampling

Solving for c4 yields

C40"X E [S]

E [v'Si]
,..------

e[S'~=~·~]
E [o-x (n-1)S

2
]

vn-=-r o-i

= ~E[P.:]·

E [Xn-1]
C4 = ;-:::---:;- ,

vn-1

where Xn- 1 denotes a chi random variable with n-1 degrees of freedom. The standard

deviation of the sample standard deviation is

Solving for c5 yields

)Var[S]

J E [S2] - [E [S]]2

Jo-i- E[S] E[S]

c5 =

o-2 _ ~E [C2x2]
2

X n _ 1 y Xn-1

1
_ E [Xn-1] 2

n-1

E [Xn-1] 2

1 - __:;.___:c....

n -1

The result provided in (4. 7) yields a distinct advantage for finding c4 and c5 in the

normal sampling case. We can use APPL to perform the calculations independently

of the parameters u and J.t, producing the exact results for c4 and c5 which depend

only on the sample size n. The procedure c4(n) is given below. A similar procedure,

71

Chapter 4. Control Chart Constants for Non-Normal Sampling

c5 (n), was written for c5 .

> c4 := proc(n)

> local X, c4;

> X := ChiRV(n - 1):

> c4 := Mean(X) I sqrt(n - 1):

> return(c4);

> end proc;

A call to c4 and c5 with the argument n = 4, for example, yields the exact values

2V6
c4 = r:;; ~ 0.921

3y7f
and 1g4 c5 = - 9 - - ~ 0.389.

3 7f

These symbolic expressions are somewhat novel in that these constants are typically

tabulated in decimal form rather than exactly in symbolic form. Furthermore, to

illustrate the value of the APPL application and Maple's symbolic computational

ability, consider the unlikely large sample size n = 100. A call to c4 (1 00) produces

c = 39614081257132168796771975168v'22 ~ 0.997.
4

105095150568296034723763017975vlrr

The associated exact expression for c5 is much too large to fit here, but the numerical

value is c5 ~ 0.071. The CPU time to compute these constants is negligible.

4.3.2 Non-Normal Sampling

Given that observations X 1,X2 , ••. ,Xn, are sampled from a non-normal distribution

calculating c4 and c5 is much more complicated. We first derive a general form of

each, then investigate its calculation for select distributions.

72

Chapter 4. Control Chart Constants for Non-Normal Sampling

Using (4.5), the general derivation of c4 is

c4ax = E[S]

= E [vfs2]
,---------

E [n ~It. (X,- X)']
1 E [

vn=I t,x;- 2nX' +nX']
1 E [

vn=I t,x;-nx']
1 E [

vn=I t Xl- [t xi] 2

jn] .
•=1 1=1

Therefore, we calculate c4 as

-1 [1 [C4 =ax yn=l E 'txl- [txi]
2 /njj.

•=1 •=1

(4.8)

In a similar manner, and using (4.6), it can be shown that a general expression for c5

is

Burr (1976) also presents c5 in terms of c4 via the relationship

c5 = J1- c~.

Therefore, if we are successful in finding c4 we can easily calculate c5 , narrowing

the focus of evaluation to c4 . Substituting n = 2 into (4.8), we conclude that the

73

Chapter 4. Control Chart Constants for Non-Normal Sampling

numerator, E{S), is

The bias correction factor is then calculated via

Given that the parameter e7x appears in the denominator of the expression, we require

it to also appear in the numerator forcing a cancellation and a numerical c4 value that

is independent of e7x. Unfortunately, this only occurs for distributions where a single

parameter involving the standard deviation appears. The next example highlights

such an occurrence.

Example 3. Given that X 1 , and X 2 are iid exponential().) random vari­

ables, find the bias correction factor c4 for the sample standard deviation.

The APPL statements

>X ExponentialRV(lambda):

> Y Difference(X, X):

> g [[x -> -x, x -> x], [-infinity, 0, infinity]]:

> Z Transform(Y, g):

> Mean(Z) I sqrt(2 * Variance(X)):

yield c4 = -12/2 ~ 0.707.

APPL also successfully executes the same code for n = 2 for the normal distribution

(c4 = J271r ~ 0.798, which matches then= 2 tabulated value exactly), exponential

distribution (c4 = -12/2 ~ 0.707), Erlang distribution (c4 = 3/4), hyperbolic secant

distribution (c4 ~ 0.768), Rayleigh distribution (c4 = ~ ~ 0.792), and the

U(O, 1) distribution (c4 = ..;6j3 ~ 0.816).

74

Chapter 4. Control Chart Constants for Non-Normal Sampling

When n = 3, the mean of the sample standard deviation is

The appearance of the random variables XI, x2, and x3 at various positions in the

expected value expression make the evaluation of E [S] more difficult. Monte Carlo

simulation must be relied on to provide the bias correction factors c4 and c5 • Table 2

provides estimates of c4 and c5 using ten million replications (which ensures that the

factors are accurate to three digits after the decimal point) for the same distributions

considered in Table 1. The n = 2 row and normal columns are consistent with the

exact results provided by APPL.

C4 C5

n Expon Normal Rayleigh U(O, 1) Expon Normal Rayleigh U(O, 1)
2 0.707 0.798 0.792 0.816 0.707 0.602 0.610 0.577
3 0.797 0.886 0.882 0.912 0.604 0.463 0.472 0.410
4 0.839 0.921 0.917 0.946 0.544 0.389 0.398 0.324
5 0.865 0.938 0.935 0.962 0.501 0.346 0.354 0.272
6 0.883 0.949 0.948 0.972 0.469 0.314 0.318 0.237
7 0.897 0.957 0.956 0.977 0.443 0.289 0.294 0.212
8 0.907 0.963 0.964 0.981 0.420 0.270 0.267 0.194
9 0.916 0.967 0.967 0.984 0.401 0.254 0.254 0.180
10 0.923 0.971 0.969 0.986 0.386 0.240 0.245 0.169

Table 4.2: Values of c4 and c5 for exponential, normal, Rayleigh, and U(O, 1) sampling
distributions obtained by Monte Carlo simulation.

4.4 Conclusions

The control chart constants d2 , d3 , c4 , and c5 can be calculated symbolically using

a computer algebra system in the case of sampling from a normal population. In

addition, d2 and d3 can be calculated symbolically for several non-normal popula­

tions and c4 and c5 can be calculated symbolically for several non-normal popula­

tions when n = 2. These calculations were performed with the aid of the Maple­

based APPL software, which is available at no cost to non-commercial users at

75

Chapter 4. Control Chart Constants for Non-Normal Sampling

www. APPLSoftware. com. Monte Carlo simulation can be used to estimate control

chart constants that can not be calculated symbolically.

76

http://www.APPLSoftware.com

Chapter 5

Testing Conformance to Benford's

Law

5 .1 Introduction

Frank Benford published "The Law of Anomalous Numbers" in 1938 in which he

gathered over 20,000 data values from various fields (Benford, 1938). He correctly

concluded the more general probability law suggesting that leading digits are not

uniformly distributed over the natural numbers 1, 2, ... , 9. Simon Newcomb (1881)

made a similar observation more than fifty years earlier in his 1881 article on the

frequency of use in logarithm tables. He noted that the earlier pages in a book of

common logarithm tables were more worn than the pages at the end of the book,

suggesting these pages were referenced more frequently. Though both observations

occurred more than fifty years apart, the authors' conclusions are amazingly similar,

with Benford capturing most of the credit for the logarithmic phenomenon known

today as Benford's law (Hill, 1996). In addition to the attention given to the distri­

bution of the first digit, Benford's law follows-up with a distribution of the second

digit through the qth digit as well as their joint distribution. His case study in a wide

range of applications (e.g., population, physics, voltage, addresses) lent additional

77

Chapter 5. Testing Conformance to Benford's Law

credibility to the probabilistic logarithmic relation

Pr(X = x) = log10 (1 + 1/x),

for x = 1, 2, ... , 9 (Larsen and Marx, 2006). We will refer to this as the Benford

distribution. The wide range of applications of Benford's law includes the one-day re­

turn on stock market indexes (Ley, 1996), detecting accounting fraud (Nigrini, 1996),

the distribution of the population of 3,141 counties in the 1990 U.S. Census (Nigrini

and Wood, 1995), and election forensics (Mebane, 2006). It is the accepted method

of testing data for human influence since such influence typically interrupts the nat­

urally occurring distribution of first significant digits. We refer to the first significant

digit as the first non-zero digit in a number (e.g., the first significant digit of 213 is

2 and the first significant digit of 0.00143 is 1). In addition, results concerning scale­

invariance (Pinkham, 1961), base-invariance (Hill, 1995), and mixtures (Rodriguez,

2004) potentially offer even more utility in applying Benford's law. Benford and Ni­

grini suggest that data conforming to Benford's law satisfy the following conditions.

(a) The data must be numeric (and not categorical) because the Benford distribution

represents the frequencies of leading digits in numerical data sets. (b) The data must

share a relation to the same phenomenon (e.g., residential addresses). Nigrini sug­

gests, for example, stock prices are influenced by competing economic and financial

forces. (c) The data must not be restricted by minimum or maximum values thus

restricting the support of possible values the random variable of interest might as­

sume. (d) The data must occur naturally (without human influence or bias), and they

are not invented nor assigned, such as telephone numbers or social security numbers.

Since these numbers can be allocated in any predetermined order, the distribution

of leading digits in assigned numbers could be biased toward certain digits. (e) The

data must contain at least four digits.

This chapter suggests the use of the Kolmogorov-Smirnov (KS) test over the more

traditional chi-square goodness-of-fit (GOF) test for assessing Benford's law. The KS

78

Chapter 5. Testing Conformance to Benford's Law

test accommodates small sample sizes and is exact under the null hypothesis. The

performance of the two tests are compared for several alternatives.

5.2 Traditional Conformance Testing

An accepted method for testing conformance to Benford's law is the Pearson chi­

squared GOF test. Let X be a random variable having the Benford distribution. For

the continuous random variable T with cumulative distribution function Fr(t) and

associated iid observations t 1 , t2 , ... , tn, let the random variable Y be the leading digit

in T and let y1 , y2 , ... , y9 be the tallys of the leading digits. Thus, the probability

mass function for Y is (Leemis, et al., 2000)

00

Pr(Y = y) = :2:: [Fr(Y · 10i)- Fr((y- 1) · 10i)]
i=-oo

for y = 1, 2, ... , 9. The null and alternative hypotheses for the test are

H0 : the random variable Y has the Benford distribution,

Ha: the random variable Y does not have the Benford distribution.

The chi-square goodness-of-fit test statistic for this test using the Benford probabilities

is
c = t [Yi- nlog10 (1 + 1/i)]

2

i=I n log10 (1 + 1/i)

Letting Pi = log10 (1 + 1/i) fori = 1, 2, ... , 9 the expression for the test statistic is

The distribution of the chi-square statistic c is approximately x2 with eight degrees

of freedom under H 0 when the expected number of observations in each cell exceeds

five (i.e., nlog10 (1 + 1/9) = 0.0457n > 5::::} n > 0_ 0~57 = 109). The test measures the

discrepancy between the observed cell frequency and the expected cell frequency. The

79

Chapter 5. Testing Conformance to Benford's Law

closer match between the observed and expected frequencies, the more plausible is

the null hypothesis and vice versa. This test rejects the null hypothesis at significance

level a if the test statistic exceeds xL., where a is a right-hand tail probability.

Example 1. Consider the continuous probability density function

1
fr(t) = tln10 1<t<10

which satisfies Benford's law exactly (for a detailed explanation see Leemis,

et al., 2000). Using this distribution, we conduct a Monte Carlo simulation

in which samples are generated from this distribution and then tested as

described above. We arbitrarily set the significance level to a = 0.05 and

use sample sizes n = 25, 50, and 100. The simulation tracks the fraction of

time the null hypothesis is rejected in 500,000 replications. For each sam­

ple size, a confidence interval for the fraction of rejections is calculated as

described by Leemis and Trivedi (1996). Since the test is asymptotically

exact and the sample size n = 25 does not meet the cell requirement of at

least five observations per cell we expect the resulting confidence interval

coverage to differ from the nominal five percent. For n = 50 and 100, even

though the n ~ 109 requirement is not met, it appears that the results

are more reliable. We combine the results of the simulation with those for

the next distribution below in Table 5.1.

Now let the random variable W "-' U(O, 2). Furthermore, let V = 10w.

Then the probability density function of V is

1
fv(v) = 2v In 10 1 < v < 100.

If Y is the leading digit of V it can be shown that the probability mass

function of Y has the Benford distribution (Leemis, et al., 2000). We

80

Chapter 5. Testing Conformance to Benford's Law

proceed as in the previous distribution for the random variable V. Ta­

ble 5.1 depicts confidence intervals for the fraction of rejections under H0

for the various sample sizes. Only n = 100 produces intervals that cover

the desired value 0.05 for both T and V.

Distribution Fraction rejected under H0

n = 25 n =50 n = 100
fr(t) (0.0513, 0.0525) (0.0502, 0.0514) (0.0499, 0.0510)
fv(v) (0.0516, 0.0528) (0.0500, 0.0512) (0.0496, 0.0508)

Table 5.1: Confidence intervals (a= 0.05) for the fraction of tests rejected in 500,000
replications.

The confidence intervals in Table 5.1 depict the chi-square GOF test's dependence

on sample size. This is problematic for the test for small sample sizes. We note the

poor performance for n = 25 and n = 50 at capturing a = 0.05 despite the high

number of replications conducted in the simulation. One additional shortcoming in

both contrived examples involves the lower limit of the random variable's support.

Typically the more general case for a random variable, say T, is desired such as t > 0.

To capture the added requirement 0 < t < 1 we introduce the integer D such that D

satisfies

where T is a continuous random variable with positive support and such that the

leading digit satisfies Benford's law. Using this notation we can capture the leading

digit ofT for any magnitude of D, where -oo < D < oo.

Using the chi-squared GOF test statistic cas defined above, we can calculate the

exact distribution of the test statistic by enumerating the 9n possible outcomes for

a sample size n. The simplest distribution occurs when n = 2. For a sample of size

81

Chapter 50 Testing Conformance to Benford's Law

n = 2 the generalized probability distribution function is

for i,j, k = 1, 2, 0 0 0, 90 Using each of the 92 = 81 outcomes, the probability of

rejecting H0 can be calculated exactly for a given sample size n by comparing c to

xL,o Table 502 provides the exact probabilities of rejecting H0 at a= 0005 for n = 2

upton= 12 and Monte Carlo estimates (due to CPU limitations) when n > 120

n

Pr (reject Ho)

n

Pr (reject Ho)

Table 502: Probability of rejecting H0 under H0 0

5.3 Alternative Method for Conformance Testing

For the probability distribution function (PDF) given in Example 1, the cumulative

distribution function (CDF) is

ln t
Fr(t) = ln 10 1 < t < 10

and the associated variate generation algorithm via inversion of the CDF is

where U,...., U(O, 1)0 We now define a new random variable Z as

Z = log10 T mod 10

82

Chapter 5. Testing Conformance to Benford's Law

For this new random variable Z, using the substitution forT in the variate generation

algorithm

Z log10 T mod 1

log10(10u) mod 1

U mod 1

u

which is U(O, 1). Thus Z "' U(O, 1). This suggests that testing whether the leading

digit of this distribution conforms to Benford's distribution is equivalent to testing

whether Z"' U(O, 1). A more detailed example follows.

Example 2. Let the continuous random variable W have the piecewise

pdf

fw(w) =I ~~w
9-3w
-4-

0 < w < 1

1<w<2

2 < w < 3,

and consider the transformation T = lOw. The resulting pdf for T is

l
int

t ln(I0)2

t _ 1 In t
fr() - 2tln10 - 4tln(l0)2

9 31n t
4t In 10 - 4t In(10)2

1<t<l0

10 < t < 100

100 < t < 1000,

which is known to satisfy Benford's law exactly (Leemis, et al., 2000).

The cdf of Z = log10 T - D, with W = log10 T from the transformation

83

Chapter 5. Testing Conformance to Benford's Law

above, is

Fz(z) Pr(Z :::; z)
CXl

d=-CXl

2

L Pr(d:::; W < d + 1) · Pr(W- d:::; zld:::; W < d + 1)
d=O

1 1
= 2 · Pr(W ::S z!O ::S W < 1) + 8 · Pr(W- 1 ::S zl1 ::S W < 2) +

3 8 · Pr(W- 2 ::S zl2 :::; W < 3)

11z 11z 31z = 2 0 2ydy+8 0 (2-2y)dy+8 0 (2-2y)dy

z2 2z - z2 6z - 3z2

-+ +---
2 8 8
z

for 0 < z < 1. Thus Z ,...., U(O, 1). The geometry associated with the

pdf of W is shown in Figure 5.1. The solid lines are the PDF of W and

the dashed lines are the segments outside of the range [0, 1] translated to

[0, 1], along with the resultant sum. This remarkable result shows that if

the segments of the pdf are translated to 0 < w < 1 and sum to unity,

then Benford's law is satisfied exactly. This generalizes in the following

theorem.

Theorem 5.1 If T is a continuous random variable with support that is a subset

of (0, oo) and log10 T mod 1 ,...., U(O, 1), then the leading digit ofT has the Benford

distribution.

Proof Let W = log10 T and D as defined earlier. Substituting W for log10 T results

in W mod 1 ,...., U(O, 1). The mod operation effectively removes the quantity left of

the decimal point in W. This is equivalent to shifting W left as shown in Figure 5.1

of Example 2. This shifting can also be characterized as subtracting the order of

84

Chapter 5. Testing Conformance to Benford's Law

fw(w)

1.0

0.8

0.6

0.4

0.2

0.0 w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.1: Geometry associated with Example 3.

magnitude W- D. This also removes the digits in W left of the decimal place, which

establishes the support of Z = log10 T-D as [0, 1]. Consider the leading digit, Y = y.

Summing over all possible orders of magnitude D yields

85

Chapter 5. Testing Conformance to Benford's Law

00

Pr(Y = y)
d=-oo

00

d=-oo
00

L Pr (d + log10 (y) ~ log10 (T) < d + log10 (y + 1))
d=-oo

00

L Pr (log10(y) ~ log10(T)- d < log10 (y + 1))
d=-oo

00

d=-oo

Fz(log10 (y + 1))- Fz(log10(y))

log10 (y + 1) -log10(y)
y+1

log10 --
y

log10 (1 + 1/y),

for y = 1, 2, ... , 9, which is the probability mass function for the Benford distribution .

•
Though it would be desirable for Theorem 5.1 to be if and only if, the converse of

the theorem is not true. Consider the following counter-example. Let the continuous

random variable T have pdf

h(t) = log10 (1 + 1/i), i:St<i+1; i = 1,2, ... ,9.

This conforms exactly to the Benford distribution where the support is limited to

only the first order of magnitude, making the subtraction of D unnecessary. Using

the transformation technique, the distribution of W = log10 T is

fw(w) = log10 (i:
1

) ·ln(10)·10w, i=1,2, ... ,9

86

Chapter 5. Testing Conformance to Benford's Law

which is clearly not uniformly distributed on the interval (0, 1). Therefore, Theo­

rem 5.1 applies for a specific class of Benford populations as illustrated in Examples 1

and 2.

5.4 Testing via Kolmogorov-Smirnov

The result from Theorem 5.1 allows use of the Kolmogorov-Smirnov (KS) test. Under

the null hypothesis, testing for conformance to the Benford distribution is equivalent

to testing log10 T mod 1 against the standard uniform distribution. There are two

immediate benefits arising from this alternate test, (a) the KS test is exact and (b) the

KS test is appropriate for small sample sizes (the rule of thumb required n > 109

for the chi-square GOF test). The results for Table 5.2 were extended to n = 40

for a = 0.05 and a = 0.01 in Figure 5.2. The same probabilities were calculated

for values upton= 120, however, the behavior is as expected for n > 40, thus we

chose n = 40 as the upper limit on the plot for clarity. As depicted, the KS test is

exact for n 2: 1, providing superior performance over the chi-square GOF test. As

n approaches 109, the chi-square GOF test probability of rejecting H0 is sufficiently

close to the associated KS value. The stellar performance of the chi-square GOF

test for n = 2 and a = 0.05 is purely coincidental. It would also be of interest to

compare the two techniques for mixtures of distributions that morph from exactly

Benford to some non-Benford distribution associated with the alternative hypothesis.

To test these instances, we first fix the sample size and significance level at n = 50

and a = 0.05. We then plot the power curves for the two tests as the distribution

morphs from a Benford population to some non-Benford distribution by introducing

a biased coin flip variable, where with probability p a non-Benford variate is produced

and with probability 1 - p a Benford variate is produced. The chosen non-Benford

distributions, all with support on 1 ~ t < 10, are (a) U(l, 10) (b) anti-Benford

(c) triangular(!, 5.5, 10) and (d) inverted triangular. The anti-Benford distribution

87

Chapter 5. Testing Conformance to Benford's Law

has pdf
1

fr(t) = (11- t) ln(10)

and the inverted triangular distribution has pdf

{

22/81 - 4x/81
fr(t) =

4x/81 - 22/81

1 ~ t < 10,

1 ~ t < 5.5

5.5 ~ t < 10.

The Monte Carlo experiment consists of ten million replications for each value of

p, the probability the distribution is other than Benford. We increment p by 0.01,

providing 101 points for each power curve. For each replication the KS and chi-square

GOF test statistics are compared to the associated critical values. The experiment

returns the proportion of outcomes that reject the null hypotheses. Figure 5.3 provides

side-by-side comparisons for each of the chosen distributions.

For the uniform and triangular distributions, the power curve of the KS test dom-

0.08

0.06

0.04

X2 GOF, ex = 0.01
0.02

KS, ex = 0.01
0.00

0 10 20 30 40

Figure 5.2: Probability of rejection under H 0 for the KS and chi-square GOF tests
for various sample sizes.

88

Chapter 5. Testing Conformance to Benford's Law

Power Power

1.0 1.0
U(l, 10) Anti-Benford

0.8 0.8 '
'

' KS
' 0.6 0.6

'
x2

0.4 0.4

0.2 KS 0.2

0.0 p 0.0 p

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Power Power

1.0 1.0 Inverted
Tri(l, 5.5, 10) Tri(l, 5.5, 10)

0.8 0.8

0.6 0.6 '
' x2 ' KS

0.4 0.4
'

0.2 KS ' 0.2
xz ,

'
' ' ' '

0.0 p 0.0 p

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.3: Power curves for the KS and chi-square GOF tests.

inates the chi-square GOF test. The anti-Benford distribution exhibits indifference

when comparing the power curves and finally, the inverted triangular distribution

favors the chi-square GOF test. Since the inverted triangular distribution occurs less

frequently in practice than the others, we recommend the KS GOF test over the

chi-square GOF test.

89

Chapter 5. Testing Conformance to Benford's Law

5.5 Conclusions

Due to the availability of diverse digital data, the opportunity for leading digit statis­

tical testing is becoming more prevalent in government and industry. Thus Benford's

law (especially the distribution of the leading digit) is being applied to many diverse

circumstances in the current literature. The chi-squared GOF test is the current

standard for checking conformance to Benford's law. Although this test is asymptot­

ically exact, it requires a sufficiently large sample size before yielding reliable results.

Additionally, for smaller sample sizes, the probability of rejecting the null hypothesis

under H 0 can be erratic rather than monotonic with increasing sample size. An alter­

native test, the KS test, is appropriate and provides better performance as measured

by power, exactness, and flexibility in sample size for the class of Benford populations

where for the continuous random variable T, log10 T mod 1 "'"' U(O, 1). This test is

easy to implement and offers the additional advantage of the ability to test small

samples.

90

Chapter 6

'fransient Queueing Analysis

6.1 Introduction

Many traditional simulation studies analyze queueing systems in steady-state, requir­

ing appropriate warm-up periods and associated long simulation runs. However, in

many cases the system being modeled never reaches steady-state; thus steady-state

simulation results do not accurately portray the system behavior. The ability to ana­

lyze transient results associated with such models is often complicated by intractable

theory, leaving simulation as the only method for analysis. Further complicating the

transient analysis is the effect of initial conditions (Kelton and Law, 1985). Since

steady-state results depend on running the system long enough to negate the impact

of initial conditions, these steady-state results reveal nothing about the transient

behavior of the queueing system. Our purpose here is to combine new and exist­

ing results in transient queueing analysis with a symbolic engine in computational

probability.

There are many classes of queueing systems where a transient analysis is required,

e.g., service businesses often model queues that never reach equilibrium. Recognizing

the need to develop theory for transient results, as opposed to steady-state results,

has resulted in a wide literature in this area. Initial work in transient analysis ironi-

91

Chapter 6. Transient Queueing Analysis

cally appeared as an attempt to measure when a system achieved equilibrium. Law

(1975) notes the consequences of failing to adequately account for the initial transient

period, leading to Gafarian, et al. (1976) outlining a comprehensive framework for

the initial transient problem. Morisaku (1976) addresses the time to equilibrium in

simulations modeling the M / M /1 queue and provides schematics for· the transition

probabilities given k ~ 0 customers initially present at time t = 0. Pegden and Rosen­

shine (1982) provide a closed-form solution for the probability of exactly i arrivals

and j servicings over a time horizon of length t in an M / M /1 queue starting empty

and idle, allowing the calculation of certain performance measures for a specified time

period. Odoni and Roth (1983) take an empirical approach to compare observed and

predicted transient state queue length for the M / M /1 queue, noting that for small

values of t the expected queue length is strongly influenced by initial conditions, and

provide a good approximation for an upper bound of time to steady-state. Kelton and

Law (1985) consider the M/M/s (s ~ 1) queue and provide expressions to calculate

the probabilities of having up to n + k customers in the system upon the arrival of

the nth customer, where k is the number of customers in the system at time t = 0.

They then apply these calculations to a variety of measures of performance with

implications to convergence on steady-state delays and offer methods for choosing

queue initialization in simulation. Much of the work in this chapter is motivated by

their results. Kelton (1985) extends the previous work by considering M / Em/1 and

Em/ M /1 queues. Parthasarathy (1987) provides a transient solution for the proba­

bility that there are n customers in the system at timet for an M / M /1 queue. Abate

and Whitt (1988) use Laplace transformations to analyze some transient results of

interest in the M/M/1 queue. Leguesdron, et al. (1993) provide transient probabil­

ities for the M/M/1 queue by inverting the generating function of the uniformized

Markov chain describing the M / M /1 process. In this chapter we will focus on the

transient analysis of the M / M /1 and the more general M / M / s queues, specifically

on the distribution of the nth customer's sojourn time, which is the sum of the nth

92

Chapter 6. Transient Queueing Analysis

customer's delay time and service time.

The MIMis queue is defined in Section 6.2 for a positive integers, and a method

is given for calculating the probability distribution of the number of customers an

arriving customer sees upon arrival to an MIMI s queue. Section 6.3 describes how the

sojourn time distribution is calculated for a given customer in an MIMI s queue with k

customers initially present in the system, k ~ 0. Section 6.4 includes examples using

the implemented procedures to calculate exact sojourn time distributions, related

measures of performance, and graphical illustrations for varying parameters such

as traffic intensity and number of customers in the system. Section 6.5 offers two

approaches for calculating the covariance and correlation among customers in an

M I M 11 queue. Section 6.6 extends the covariance and correlation calculations by

automating the process of finding the joint probability distribution function between

two customers, and provides the exact covariance and correlation calculations for

varying traffic intensities. Section 6. 7 concludes the chapter by reviewing the content.

Commented code is available in the appendices for all computations conducted here.

6.2 Basics of the M/M/s Queue

The MIMI s queue is governed by iid exponential inter arrival times (the arrival stream

is a Poisson process) with arrival rate >., and iid exponential service times among s

identical servers, each with service rate f..L· The interarrival times and the service

times are mutually independent. The traffic intensity of the system is p = >.j SJ..L. The

system consists of a single queue with customers waiting to be serviced by one of the

identical s parallel servers. If an arriving customer finds at least one idle server, the

customer immediately proceeds to service; otherwise the customer joins the single

queue of those waiting for service in a first-come, first-served manner. To achieve

classic steady-state results the traffic intensity must satisfy p < 1. This critical

assumption is not required in transient analysis, described here, because the system

93

Chapter 6. Transient Queueing Analysis

of interest never reaches equilibrium.

Let Pk(n, i) be the probability that upon the arrival of the nth customer there are

i customers in the system including the nth customer (in queue or in service), given

k customers are present at time t = 0. Using propositions provided by Kelton and

Law (1985), reprinted here for completeness (proofs are available in the reference),

and a recursion algorithm, Pk(n, i) for i = 1, 2, ... , n + k can be computed. Using

these probabilities, it is possible to find the distribution of the sojourn time for the

nth customer in an MIMI s queue, given k customers are present at time t = 0.

Proposition 1 addresses the case of no exits prior to the nth customer's arrival, given

k ~ 1. Proposition 2 is identical to Proposition 1 except that the system is empty

and idle at t = 0 (i.e., k = 0). Proposition 3 addresses the case that the first customer

finds i - 1 other customers present for k > 0. Proposition 4 is the more general case

that customer n ~ 2 finds i other customers present, given k ~ 0.

Proposition 1. If k ~ 1, then for n ~ 1,

1
[pi(P + l)t if k ~ s

Pk(n,k+n)= pniTI;=1 [p+(k+j-1)ls] if k+n$_s

pnl [(p+ 1)n-s+kTI;;:~[p+ (k+ j -1)lsJ] if k < s < k+n.

Proposition 2. For n ~ 1,

if n $_ s

n > s.

Proposition 3. If k ~ 1, then for 2 $_ i $_ k,

{PI [p + (i- 1)ls]} n~=~+l {1- PI [p + (k- j + 1)ls]} if k $_ s

PI(P + 1)k-i+2

{PI [(p+ 1)k-s+l [p+ (i -1)lsl]} ·

n;:~ {1- PI [p + (s- j)ls]}

94

if k > s and i > s

if i $_ s < k.

Chapter 6. Transient Queueing Analysis

Proposition 4. For n 2: 2, and 2 ::; i ::; k + n- 1,

[pl(p + 1)]2:::~~:_.-11 [1I(P + 1)]j-i+l Pk(n- 1,j) if i > s

{p/ [p + (i- 1)ls]} ·

Pk(n, i) = { 2:::;:~_ 1 [f1t:;+
1
{1- PI [p + (j- h + 1)1 s]}] ·

Pk (n - 1, i) + (TI~~i1 { 1 - PI [p + (s - h) Is]}] ·
I:~::- 1 [1l(p+1)]j-s+lpk(n-1,j)} if i:Ss.

Using these four propositions, Pk(n, 1) is calculated by subtracting the comple­

mentary probability from one. These results are coded in the Maple procedure·

Queue (X, Y, n, k, s), where

• X is the exponential interarrival time distribution,

• Y is the exponential service time distribution,

• n is the index of the customer of interest,

• k is the number of customers in the system at time t = 0,

• s is the number of identical parallel servers.

The procedure is written in Maple and uses A Probability Programming Language

(APPL), which can be downloaded for free at www. APPLsoftware. com and is de­

scribed in Glen, et al. (2001). We choose to calculate the distribution of the sojourn

time because it is a purely continuous random variable enabling us to exploit asso­

ciated procedures in APPL. The Queue procedure and associated subprocedures are

provided in Appendix D. The sojourn time distribution results provided by Queue

were checked against a percentile comparison of n = 10,000,000 sojourn times cre­

ated by the C code in Appendix E.

95

http://www.APPLsoftware.com

Chapter 6. Transient Queueing Analysis

6.3 Creating the Sojourn Time Distribution

Once the necessary Pk(n, i), i = 1, 2, ... , n + k, probabilities are calculated, the exact

sojourn time distribution for the nth customer can be calculated. We define Xn as

the number of customers, including customer n, in the system at time t, the arrival

time of the nth customer. The possible values of Xn can vary from a minimum of 1,

which occurs when customer n arrives to an empty queue, to a maximum of n + k,

which occurs when 0 exits occur prior to customer n's arrival, matching the possible

values for i in the expression Pk (n, i) above. The mathematical derivations for both

the M I M 11 and MIMI s queues make extensive use of the memory less property,

permitting the construction of the distribution of Tn, the sojourn time of customer

-n. We present each case separately below.

6.3.1 Distribution of Tn for the M/M/1 Queue

For an M I M 11 queue starting empty and idle, the delay time of the first customer

is zero because the customer proceeds directly to service upon arrivaL Therefore,

the first customer has an exponential(p.) sojourn time distribution. Conditioning on

customer 1's service time, one can calculate the probabilities of customer 2 arriving

before and after customer 1 finishes service. These well-known results (Kleinrock

(1975), Hillier and Lieberman(2005), Winston (2004)) are

P(Y<X)=~,
/\+p.

>.
P(X < Y) = -­

>.+p.

where X is an exponential(>.) interarrival time and Y is an exponential(p.) service

time. The first probability represents customer 2 proceeding directly to service, in

which case his sojourn time is simply his service time, which is exponential(p.). The

second probability represents the likelihood that customer 2 will delay prior to service.

Using the memoryless property, customer 2 delays an exponential(p.) time before

being serviced in an additional exponential(p.) time. Using these two probabilities,

96

Chapter 6. Thansient Queueing Analysis

it is easy to see that customer 2's sojourn time distribution is a mixture, where

the mix probabilities are the P0 (n, i)'s and the distributions are determined by the

combinations of delays and services potentially encountered. It is well known that for

X 1, X 2 , ... , X n iid exponential (A) random variables that

n

L xi"" Erlang(.X, n). (6.1)
i=l

Using this result, the MIMI 1 queue sojourn time distribution for k = 0 initial cus­

tomers generalizes very elegantly to include k > 0, as indicated in Table 6.1. Line i

of the table occurs with probability Pk (n, i) and lists the distribution of the sojourn

time for the nth customer, conditioned on i customers being in the system upon his

arrival.

Conditional sojourn
Xn Delay Service time distribution
1 0 exponential(J.L) exponential(J.L)
2 exponential(J.L) exponential(J.L) Erlang(J.L, 2)
3 Erlang(J.L, 2) exponential(J.L) Erlang(J.L, 3)
4 Erlang(J.L, 3) exponential(J.L) Erlang(J.L, 4)

n+k Erlang(J.L, n + k - 1) exponential(J.L) Erlang(J.L, n + k)

Table 6.1: Conditional sojourn time distributions for the M I M 11 queue.

Let 9i(t) be the PDF of an Erlang(J.L, i) random variable. Using the conditional

sojourn time distributions for i = 1, 2, ... , n + k potential customers in the system,

each with probability Pk(n, i), the PDF for the nth customer's sojourn time Tn is the

mixture
n+k

fn(t) = L Pk(n, i)gi(t) t > 0. (6.2)
i=l

This result is simple in the MIMI1 case because we can take advantage of (6.1),

resulting in a mixture of n + k Erlang distributions.

97

Chapter 6. Transient Queueing Analysis

6.3.2 Distribution of Tn for the M/M/ s Queue

Givens > 1 parallel identical servers, the nth customer's sojourn time distribution is

still a mixture of n + k conditional sojourn time distributions. However, each distribu­

tion might be more complicated. For illustration, consider an M I M 13 queue starting

empty and idle with exponential(.\) arrivals and three identical exponential(J.L) servers.

It is clear that for customers 1, 2, and 3, the sojourn time is exponential(J.L) since all

three customers proceed directly to service. Therefore, in the general case, for the

number of customers in the system including customer n, which we defined as Xn,

when Xn ::; s the conditional sojourn time distribution is exponential(J.L). However,

if Xn > s, then the nth customer experiences a delay while observing Xn- s service

completions. When s > 1 and Xn > s, the service distribution observed by customers

in queue is exponential with rate SJ.L. Using this result, it is apparent that the delay

time for the nth customer is the sum of Xn- s independent exponential(sJ.L) random

variables, and using (6.1) is Erlang(sJ.L, Xn - s). To calculate the nth customer's

sojourn time for a particular value of Xn, we sum his delay time and his service

time. Table 6.2 shows the distributions conditioned on the number of customers Xn

encountered by customer n (including himself) for the M I M 13 queue, given k = 0

customers present at time t = 0. The APPL procedure Convolution calculates the

distribution of a sum of independent random variables. We use the symbol EB to

represent convolution.

Xn Delay Service Conditional sojourn time distribution
1 0 exponential(J.L) exponential(J.L)
2 0 exponential(J.L) exponential (J.L)
3 0 exponential(J.L) exponential (J.L)
4 exponential(3J.L) exponential(J.L) exponential(3J.L) EB exponential(J.L)
5 Erlang(3J.L, 2) exponential(J.L) Erlang(3J.L, 2) EB exponential(J.L)

n Erlang(3J.L, n - 3) exponential(J.L) Erlang(3J.L, n- 3) EB exponential(J.L)

Table 6.2: Conditional sojourn time distributions for the M I M 13 queue with k = 0.

98

Chapter 6. Transient Queueing Analysis

Since Xn represents the number of customers in the system upon arrival of the

nth customer, including himself, the first row in Table 6.2 corresponds to customer n

arriving to an empty system and the last row corresponds to no service completions

prior to customer n's arrival. The general form for the MIMI s sojourn time prob­

ability density function is identical to (6.2), however, in the MIMis case each 9i(t)

can potentially require an additional step to calculate the distribution of a sum of

random variables.

6.4 Transient Analysis Applications

It is apparent that calculating (6.2) for large n is tedious. Kelton and Law (1985)

acknowledge the computational difficulty in achieving the Pk(n, i) probabilities alone.

Conducting the added steps of up ton-s convolutions for theM I M Is queue and then

mixing the resulting conditional distributions with the appropriate probabilities can

be complicated to implement. APPL provides the underlying computational engine

to achieve exact results for such problems. As mentioned earlier, the APPL procedure

Queue(X, Y, n, k, s) returns the exact sojourn time distribution for customer n.

Queue recursively calls MMsQprob(n, k, s), which uses recursion to calculate the

necessary Pk(n, i) probabilities. APPL is capable of symbolic results, as illustrated

in Examples 1 and 2.

Example 1. Consider an MIMI1 queue with arrival rate .X and service

rate J.L starting empty and idle at time t = 0. For the fourth customer,

calculate the probabilities P0 (4, i) for i = 1, 2, 3, 4.

The APPL command MMsQprob(4, 0, 1) returns the exact symbolic

99

Chapter 6. Transient Queueing Analysis

probabilities

Po(4, 1)
5p2 + 4p + 1

(p + 1)5

? 0(4,2) =
p (5p2 + 4p + 1)

(p + 1)5

Po(4,3)
p2 (3p+1)

(p + 1)4

Po(4,4) = (p+
1

)3 ,

where p =)..jp,. It is easy to verify that for any p > 0, "L:=I P0(4,i) = 1,

as required. For example, a simple substitution letting p = 9/10 yields

? 0 (4, 1)
865000

0.34933983 ~

2476099

Po(4, 2)
778500

0.31440585 = ~

2476099

Po(4, 3)
29970

0.22997061 ~

130321

Po(4, 4)
729

0.10628371. = -- ~
~

6859

Example 2. For the queue described in Example 1, calculate the fourth

customer's sojourn time distribution, mean sojourn time and sojourn time

variance.

The APPL statements

X:= ExponentialRV(lambda);
Y := ExponentialRV(mu);
T := Queue(X, Y, 4, 0, 1);
Mean(T);

Variance (T) ;

calculate the desired results. The first two lines define the interarrival and

service time distributions, while the third line calculates the fourth cus­

tomer's sojourn time distribution. The last two lines are self explanatory.

100

Chapter 6. Transient Queueing Analysis

The resulting distribution is

Using J4(t) above, the Mean and Variance commands return

and

(181j.t2 A8 + 484j.t3 A7 + 816j.t4A6 + 868j.t5 A5 + 574j.t6 A4+

244j.t7 A3 + 40j.tA9 + 68j.t8 A2 + 12j.t9 A+ j.tlO + 4A10) I
(J.L2 (A+ J.L)lO) .

Substituting A = 1 and J.L = 10/9, the results simplify to

f 4 (t) =
5000

e-10/9
t (361t3 + 2109t2 + 5190t + 5190) t > 0

66854673 '

E [T J = 23323347 ~
4 12380495 ~

2.50205566.

1.88387839, and V [T4] =
383506725720906
153276656445025

The CPU time associated with the examples is negligible. Examples 1 and 2 rep­

resent simple applications of these procedures that circumvent time intensive hand­

calculations. They serve only as indications of more challenging problems solvable

using these procedures.

Example 3. Calculate the mean sojourn time of the 30th customer in an

M/M/2 queue with arrival rate A= 1, service rate J.L = 9/20 (p = 10/9),

and k = 3 customers initially present.

The mean can be calculated in a single APPL statement by embedding

101

Chapter 6. Transient Queueing Analysis

the function calls

Mean(Queue(ExponentialRV(1), ExponentialRV(9/20), 30, 3, 2));

which yields

207 4 70302076553093092838324 78 853310563 2236520526343624 7313994 0556987510172876794 6601484880138641283 5644 7 4 794 93554887634 0
2153404667282007194 786000335221029668922469167884251043145507 337 4 9941439 539486606617833 59707 58 7864 51263 877164 5692063053

or, to 10 digits, 9.634524585.

Being able to represent the sojourn time distribution for the nth customer in closed

form also provides valuable information on asymptotic behavior for queueing systems,

including steady state convergence rates for different initial conditions. Figure 6.1

shows the mean sojourn time for customer n = 1, 2, ... , 120 in an M/M/1 queue

with >. = 1, J.L = 10/9, and p = 9/10 for several values of k. The points that are

plotted have been connected by lines. As expected, despite the initial condition,

all cases appear to move toward the steady-state value of 9 with increasing n. The

horizontal axis is only limited to n = 120 for display purposes and in fact, identical

computations were carried out for n > 300 customers to verify convergence. However,

as shown in the cases where k = 6 and k = 10, the convergence to steady-state is

not always monotone. Additionally, in testing various traffic intensities, the rate

of convergence to steady-state increases rapidly with decreasing traffic intensity for

varying values of k.

APPL also has the ability to calculate the closed-form cumulative distribution

function (CDF) for the nth customer's sojourn time permitting CDF comparisons

for varying n as well as distribution percentiles for a given customer. The procedure

call CDF(T) returns the exact CDF for customer 4 {from Example 1). Figure 6.2

displays the sojourn time CDF for varying n with fixed k = 0 and p = 9/10. The

differences in CDFs across n correspond to the increasing mean attributed to the

delays experienced by successive customers, e.g., customer 2 has delay time zero or

exponential(J.L) whereas the nth customer (for n > 2) faces a finite mixture of n

potential delay distributions. The CDF associated with n = oo corresponds to the

102

Chapter 6. Transient Queueing Analysis

8

6

4

2

0 20 40 60 80 100 120

Figure 6.1: M/M/1 mean sojourn time for p = 9/10 given kat t = 0.

steady-state distribution of the sojourn time, which is exponentially distributed with

a mean of 9 (Kleinrock, 1975).

Varying k for an M j M /1 queue also provides another basis for comparison of

CDFs. Figure 6.3 fixes n = 2, p = 9/10, and plots the resulting CDFs across k.

Kelton and Law (1985) make a similar comparison using convergence to steady state

delay time. Using the CDF for multiple values of k allows direct comparison of sojourn

time percentiles for customer n. As depicted, the sojourn time CDF for customer 2 is

extremely sensitive to the initial condition k. As an illustration, the 80th percentiles

for k = 0, 3, 6 are

!
1.935

F2-
1(0.80) ~ 4.432

7.510

k=O

k=3

k = 6.

These percentiles are achieved using the APPL statements

X ExponentialRV(1);
Y ExponentialRV(10 I 9);
Z := Queue(X, Y, 2, k, 1);
IDF(Z, 0.8);

103

Chapter 6. Transient Queueing Analysis

F(t)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

Figure 6.2: M / M /1 sojourn time CDFs for various n given p = 9/10 and k = 0.

when k = 0,3,6. The last statement, IDF(Z, 0.8), numerically solves Fz(z) = 0.80

on the interval (0, oo).

Given the complete specification of the sojourn time distribution, one can use

APPL to calculate not only the mean but also the 2nd, 3rd, and 4th moments for

customer n. This is especially valuable for steady-state analysis. It is common in sim­

ulation to verify attainment of steady-state behavior by examining the mean delay or

mean sojourn time. Though some literature exists on estimating transient mean and

variance, we are not aware of any literature addressing higher moments. Literature

addressing the second moment seems mostly focused on variance estimation and not

necessarily convergence. Therefore, even when the first moment might acceptably

approximate the steady state value, there is reason for further analysis of higher mo­

ments. For example, Figure 6.4 displays the first four moments of the sojourn time

for customer n in an M/M/1 queue, where>.= 1, f.L = 2, p = 1/2, with the initial

condition k = 0, 4, 8. The steady-state values for the four measures of performance

(the first four moments) are 1, 1, 2, 9 The code used to calculate the values plotted in

Figure 6. 4 is

104

Chapter 6. Transient Queueing Analysis

F(t)

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10

Figure 6.3: M / M /1 sojourn time CDFs for customer n = 2 for various k given
p = 9/10.

X := ExponentialRV(1);
Y := ExponentialRV(2);
for i from 2 to 100 by 1 do

T := Queue(X, Y, i, k, 1):
print(i, evalf(Mean(T)), evalf(Variance(T)), evalf(Skewness(T)),

evalf(Kurtosis(T))):
od:

for k = 0, 4, 8. The vertical dashed lines give the smallest customer number for which

all three of the transient values are within 1% of the steady state value. The relatively

low traffic intensity p = 1/2 was selected purposely to allow quick convergence and

easy visual inspection. Even with this somewhat low traffic intensity, it is apparent

that the higher moments converge more slowly than the lower moments. In other

scenarios where p > 1/2, the higher moments exhibit an even slower convergence.

Each vertical dashed line in Figure 6.4 was triggered by the k = 8 curve, suggesting

that the moments are more sensitive to a heavily pre-loaded system. For the cases

k = 0, 4, 8, the customer numbers for which the transient results were within 1% of

the steady-state values are listed in Table 6.3. To verify the initial-condition effect

on the convergence rate of the first four moments, k was increasingly incremented

105

Chapter 6. Transient Queueing Analysis

E[Tn]
4

~ k~ n = 36;

k=O 0 ---,__ _____________ .:...._ _________ n

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

'
n = 46:

'

n =50;
' ' ' ' '
' ' L------------------~------n

E[((Tn- Jl)/cr)4
]

12

10

8

6

4

0 10 20 30 40 50 60

Figure 6.4: First four moments of the M/M/1 sojourn time for customers 2 through
100 for p = 1/2 and k = 0,4,8.

beyond eight and displayed a further slowing of convergence.

106

Chapter 6. Transient Queueing Analysis

k=O k=4 k=8
E[T] 19 21 36

JVar[T] 27 29 46
E [((T- JL)/oi] 28 29 50
E [((T- JL)/o/] 34 35 56

Table 6.3: Smallest customer number where the sojourn time transient result is within
1% of steady state for an M/M/1 queue with k = 0,4, 8 and p = 1/2.

6.5 Covariance and Correlation in the M/M/1 Queue

The dependence exhibited in sojourn times of successive customers is one reason for

the difficulty in calculating interval estimators for queue measures of performance.

In the simplest case, consider an empty and idle M / M /1 queue with interarrival and

service rates >. and JL· Our desire is to calculate the covariance between the sojourn

times of customers 1 and 2. Though the exact value of the covariance is available

directly (and will be presented subsequently) we outline two approaches to simulate

the result which are helpful in the presentation of the analytic result.

6.5.1 Discrete-Event Simulation

As previously discussed, customer 1 proceeds directly to service and two cases exist

for customer 2. In the first case, customer 2 proceeds directly to service. In the second

case, he delays until customer 1 's departure. Both cases are shown in Figure 6.5. This

subsection introduces two simulation approaches for generating the first two customer

sojourn times.

The first approach is a standard discrete-event simulation model. Without loss of

generality, assume that customer 1 arrives at time 0. In the next-event approach,

a service time is generated for customer 1 according to the service distribution,

exponential(JL), and an arrival time, a2 , for customer 2 is generated according to

the time between arrivals distribution, exponential(>.). If the arrival occurs after

customer 1 's service completion, then customer 2 is also assigned an independent

107

Chapter 6. Transient Queueing Analysis

Case l f------f----+----t---

Figure 6.5: Discrete-event simulation model for cases 1 and 2.

exponential(J.L) service time (case 1). In the second case in which customer 2's arrival

time occurs before customer 1's completion of service (a2 < TI), customer 2 delays

for T1 - a2 time units. We then add the exponential(J.L) service time to the delay

time to calculate T2 . We define the gap occurring in case two as, Y = T1 - a2 . It

can be shown analytically that Y "' exponential(J.L) by computing the distribution of

the difference T1 - A2 , where A2 is the random arrival time of the second customer

and is distributed exponential(.A), and then truncating the result on the left at zero.

(Alternately, it can be reasoned that Y "' exponential(J.L) by the memoryless prop­

erty for the exponential distribution since the remaining service time for customer 1

after customer 2's arrival has the same distribution as an unconditional service time.)

Therefore, by using (6.1), in case 2 the sojourn time for customer 2 is distributed

Erlang(J.L, 2).

The second approach is a conditional discrete-event model, where the initial event,

whose occurrence time is denoted as E 1 in Figure 6.6, is either a completion of service

for customer 1 with probability J.L/(.A+J.L) or the arrival of customer 2 with probability

.A/ (.A + J.L). Since E 1 is the minimum of the arrival time of customer 2 and service

time of customer 1, E 1 "' exponential(.A + J.L). The R/8-Plus simulation code for

each approach is listed in Appendix F. Using n = 10,000,000 replications, the two

approaches are compared in Table 6.4. The simulation was run with three separate

.A and J.L pairs, capturing traffic intensities less than one, close to one, and greater

than one. Though the two approaches displayed in Table 6.4 are fundamentally

108

Chapter 6. Transient Queueing Analysis

1 Case I a2

E•
! Case 2

Figure 6.6: Conditional discrete-event simulation model for cases 1 and 2.

different, they are stochastically identical, so the resulting measures of performance

are the same. Table 6.4 displays increasing correlation as traffic intensity increases.

Scatterplots for n = 1000 (T1 , T2) pairs are provided in Figure 6.7 for each (>., J.L)

pair in Table 6.4. These correlation measures indicate the degree of dependence that

occurs in the customers' sojourn times. As expected, in an unstable queue where

p > 1, the correlation is highest.

A kernel density estimate of the joint distribution h 1 ,T2 (t 1 , t2) from 10, 000 pairs

is plotted in Figure 6.8 for >. = 1 and J.l = 1/2. The estimate uses a normal kernel

function with a smoothing parameter as prescribed in Bowman and Azzalini (1997).

This three-dimensional image also indicates the relatively high correlation shown in

Table 6.4 associated with this unstable traffic intensity.

6.5.2 Analytic Methods

One way to calculate the exact covariance between customers 1 and 2 requires the

joint probability density function, h 1 ,r2 (t1, t2). The method used here for computing

the joint density uses Theorem 6.1 below.

109

Chapter 6. Transient Queueing Analysis

>.=1,J..L=2 Approach 1 Approach 2
E[TI] 0.500 0.500
V[TI] 0.250 0.250
E[T2] 0.666 0.666
V[T2] 0.388 0.389
E[Y] 0.499 0.500
V[Y] 0.249 0.250

E[T2Jc2] 0.999 1.000
V[T2Jc2] 0.499 0.500

Cov(T1, T2) 0.138 0.139
Corr(T1, T2) 0.445 0.445

>. = 1, J..L = 10/9 Approach 1 Approach 2
E[TI] 0.900 0.900
V[TI] 0.809 0.810
E[T2] 1.326 1.326
V[T2] 1.395 1.395
E[Y] 0.900 0.900
V[Y] 0.809 0.809

E[T2Jc2] 1.800 1.799
V[T2Jc2] 1.619 1.619

Cov(T1, T2) 0.585 0.585
Corr(TI, T2) 0.551 0.550

>. = 1, J..L = 1/2 Approach 1 Approach 2
E[TI] 1.999 2.000
V[TI] 3.999 4.002
E[T2] 3.333 3.334
V[T2] 7.552 7.563
E[Y] 1.998 2.001
V[Y] 3.999 4.007

E[T2Jc2J 3.999 4.000
V[T2Jc2] 7.995 8.009

Cov(T1, T2) 3.549 3.561
Corr(T1, T2) 0.646 0.647

Table 6.4: Discrete-event simulation results using approaches 1 and 2.

llO

Chapter 6. Transient Queueing Analysis

T2
15

10

5
A.=l, J.L=2,p=1/2

0

0 5 10 15
T2

15

10

5
A=1, J.L=10/9, p=9/10

0

0 5 10 15
T2

15

10

5
A= 1, J.L= 1/2, p =2

0

0 5 10 15

Figure 6. 7: Scatterplots of the first two customer sojourn times in an M j M /1 queue.

Theorem 6.1 Let X 1 "' exponential(>-.1), X 2 "' exponential(>-.2), and

X 3 "' exponential(>.3) be independent random variables. The joint probability density

function of (T1, T2) =(XI+ X2, XI+ X3) is

h,r,(t,, t,) ~ {

)..
1

)..
2

)..
3

(eA1t1 _ e(A2+Aa)tl) e-Altl-A2tt-A3t 2

)..1-)..2-)..3

)..
1

)..
2

)..
3

(eA1t2 _ e(A2+Aa)t2) e-A2tl-Alt2-A3t2

)..1-)..2-)..3

111

Chapter 6. Transient Queueing Analysis

Figure 6.8: Kernel density estimate of /r1 ,r2 (ti, t2) for A= 1 and f.l = 1/2 from 10,000
simulated pairs.

Proof The joint CDF of T1 and T2 is

Pr (T1 ::; t1, T2 ::; t2)

Pr (X1 + X2 ::; t1, X1 + X3 ::; t2)

112

Chapter 6. Transient Queueing Analysis

After evaluating the integrals and differentiating, fhT2 (t 1, t 2) is

•
Theorem 6.1 provides the joint PDF of the first two sojourn times for case 2, which

must be weighted appropriately by the probability that the arrival of customer 2

occurs prior to customer 1's completion of service, or A./(A. + J.L). Case 1 consists of

independent sojourn times, so the joint density can be written as the product of the

densities of the sojourn times T1 and T2 and weighted by J.L/(A. + J.L). The resulting

joint density is a mixture of the two possible cases displayed in Figure 6.6. We apply

Theorem 1 to case 2 because of the dependence that occurs due to the overlap of the

sojourn times. Figure 6.9 depicts the relationships between the sojourn times T1, T2

and the random variables XI, x2, and x3 used in Theorem 1.

Case 2

Figure 6.9: Case 2 for Theorem 1 with X 1 "'exponential(A.1), X 2 "' exponential(A.2),
and x3 rv exponential(A.3)·

Substituting >.. 1 = J.L, >..2 = >.. + J.L, and >..3 = J.L into the mixture of cases 1 and 2

yields the joint PDF of T1 and T2 as

J.L2 (>..e-1Lt2 + J.Le->.tl-!Lt1-1Lt2)

A.+J.L
J.L2 (>..e->.t1 -1Lt1 +>.t2 + J.Le->.t1-ILtl-ILt2)

A.+J.L

113

(6.3)

Chapter 6. Transient Queueing Analysis

Using this joint PDF, the covariance between the sojourn times of customers 1 and 2

is

Substituting >. = 1 and J.L = 2, for example, produces

which is consistent with the simulation results in Table 6.4. We now use the results

of Theorem 6.1 in Example 4.

Example 4. Let T1 and T2 be the sojourn times for customers 1 and 2 re­

spectively in an initially empty and idle M j M /1 queue with exponential(!)

times between arrivals and exponential(2) service times. Find the distri­

bution of the sample meanT= (T1 + T2)/2 as well as E[T] and V[T].

Applying equation (6.3) with >. = 1 and J.L = 2, the joint PDF of T1 and

T2 is

/r,,r,(t,, ! 2) ~ {

Define the transformation

and

with inverse

T1=U+V and

It can be shown that the functions U and V define a one-to-one transfor-

mation, thus, using the bivariate transformation technique described in

114

Chapter 6. Transient Queueing Analysis

Hogg et al. (2005), the joint PDF of U and V is

-u ~ v < 0

0 < v < u,

where J is the Jacobian of the inverse transformation defined as

8tl 8tl
8u dv 1 1

J=
8t2 8t2

= -2.
1 -1

8u 8v

Substituting t 1 = u + v, t 2 = u- v, J = -2 and integrating out the

dummy transformation variable v, the resulting PDF of U = T is

fu(u) = 4e-4u + 2e-2u- 6e-6u u > 0.

The mean of U is

E[U] 100

u · fu(u)du

= 100

u · (4e-4u + 2e-2u - 6e-6u) du

7

12.

Likewise, the variance of U using V [U] = E [U2
]- (E[U])2

, where

E [U2
] = 100

u
2

· fu(u)du

= 1oo u2 . (4e-4u + 2e-2u - 6e-6u) du

41

72'

115

Chapter 6. Transient Queueing Analysis

results in

V[U] = 41 - [!_] 2
72 12

11

48

Using the Queue(X, Y, n, k, s) procedure for customers 1 and 2, the

mean sojourn times are E[Td = 1/2 and E[T2] = 2/3 and the corre­

sponding variances are V[T1] = 1/4 and V[T2] = 7/18. The covariance of

sojourn times T1 and T2 was identified as Cov(T1 , T2) = 5/36. Therefore,

the mean sojourn time for customers 1 and 2 is

and the variance is

7
12'

further substantiating the distribution of U = T given above.

Proceeding in this manner, we now derive similar expressions for the first three

customers arriving to an empty and idle M / M /1 queue. We could use first princi­

ples to derive the trivariate PDF fr1 ,r2 ,r3 (ti, t2, t3); however, since covariance only

occurs between two customers, it is easier to calculate each respective paired joint

distribution for covariance calculations. A derivation of the trivariate distribution

is provided in Appendix G; using the three variable distribution provides identical

covariance results. However, calculating this trivariate joint distribution is tedious,

and because the number of cases increases with the number of customers (as will be

shown subsequently), the distribution complexity increases. When considering n = 3

customers, there are five possible ways customers can arrive and be serviced. In gen­

eral, for n customers, the number of ways arrivals and departures can occur is given

116

Chapter 6. Transient Queueing Analysis

by the nth Catalan number, which is

(2n)!
Cn = (n!)(n + 1)! ·

Figure 6.10 shows the five possible arrangements for n = 3 customers along with the

sojourn times T1 , T2 , and T3 for each, with the arrival and completion times for the ith

customer denoted by ai and ci respectively. The vertical arrows at event times repre­

sent service completions (pointing up) or arrivals (pointing down). This competing­

event approach parallels the second simulation algorithm from Section 6.5.1. Using

+--T3 --+ Case I

t
Cz

T3 - Case2

CaseS

Figure 6.10: Five cases for n = 3 customers' sojourn times in an M/M/1 queue.

the same conditioning approach as in the proof of Theorem 1, the joint PDFs for

each of the pairs (T1 , T2), (T1, T3), and (T2 , T3) in each of the five cases can be de­

termined and then mixed to achieve the three associated joint PDFs. The mixture

probabilities are calculated by multiplying the appropriate number of competing ar-

117

Chapter 6. Transient Queueing Analysis

rivals (with probability >..j(A.+J.L)) or service completions (with probability J.L/(A.+J.L)).

For example, in case 1 shown in Figure 6.10, there are two instances with competing

risks, both of which result in a service completion, thus the probability of this case

is J.L2/(>.. + J.L) 2. Using these joint densities, the symmetric n = 3 variance-covariance

matrix

is

1
J.L2

~= •

•

>..(2J.L + >..)
(>.. + J.L)2J.L2

2>..2 + 4A.J.L + J.L2
(>.. + J.L)2J.L2

•

>._2(>._2 + 4A.J.L + 5J.L2)

(>.. + J.L)4J.L2

>..(2>..2 + 8A.2J.L + llA.J.L2 + 2J.L3
)

(>.. + J.L)4J.L2

3>..6 + 18A.5J.L + 45A.4J.L2 + 54A.3J.L3 + 30A.2J.L4 + 8A.J.L5 + J.L6

(>.. + J.L)6J.L2

Substituting >.. = 1 and J.L = 2, for example, results in

1 5

4 36

~=
7 . -

18

• •

29
324
13
54

1451
2916

0.1389

0.3889

•

0.08951
0.2407 .

0.4976

These results have been verified via Monte Carlo for the first n = 3 customers

in Appendix H. The sojourn time variance increases with customer number down

the diagonal of the matrix because of the nature of the queueing process, where

the sojourn time distribution for each additional customer is dependent on all the

previous customers. On the other hand, the off-diagonal covariance entries in each

row decrease with customer separation, for example 0"13 < 0"12.

118

Chapter 6. Transient Queueing Analysis

6.6 Extending Covariance Calculations

Consider the n = 3 case where all three customers arrive prior to the first customer's

completion of service (this is Case 5 in Figure 6.10). Using a 1 to represent an arrival

and a -1 for a departure, this sequence of arrivals and departures can be represented

by the vector

[1 1 1 -1 -1 -1] .

Figure 6.11 depicts this case as a path from the bottom left node to the top right

node of the figure. Moving right in the figure indicates an arrival and moving up

indicates a service completion. Diagonal moves are not permitted. Each of the five

possible sequences of arrivals and departures for n = 3, shown in Figure 6.10, can

be depicted by a specific path from the bottom left node to the top right node. The

paths are shown collectively in Appendix I.

•

1
departure

• •

1 departure

• • •

1 departure

• • ·-----+ •
arrival arrival arrival

Figure 6.11: Path for case 5 of n = 3 customers arrival and departure pattern in an
M / M /1 queue.

Ruskey and Williams (2008) present an elegant algorithm that generates all such

paths of arrival and service completions for a given number of customers n. The

algorithm is based on a simple iterative successor rule that uses prefix shifts (definition

forthcoming) to exhaust the possible arrival and service completion scenarios. In

Figure 6.11 these are the 6!/(3!4!) = 5 paths that can be drawn from the bottom

119

Chapter 6. Transient Queueing Analysis

left node to the top right node without going above the diagonal line that connects

these two nodes, and using only rightward and upward transitions. The algorithm is

"loopless" in that it requires a constant amount of computation in transforming the

current case to its successor. Define the case matrix C with dimension (2n)!/((n!)(n+

1)!) by 2n as the exhaustive list of possible arrival and service completion scenarios

for n customers. To initiate the matrix the first row of C is

c1 = [1 -1 1 1 -1 -1] .

The first row is always the ordered string created by an arrival, a service com­

pletion, n - 1 arrivals, and n- 1 service completions. The iterative successor rule

described by Ruskey and Williams (2008) is: "Locate the leftmost [-1, 1] and suppose

its 1 is in position k. If the (k + 1)-st prefix shift is valid (a possible arrival/service

completion sequence), then it is the successor; if it is not valid then the k-th prefix

shift is the successor." The (k + 1)-st prefix shift for the sequence

is

The length of the sequence is always 2n because the number of arrivals and departures

is balanced at n each. An example of an invalid sequence is

[1 -1 -1 1 1 -1]

because the second service completion occurs prior to the second arrival. For n = 3,

the case matrix C is

120

Chapter 6. Transient Queueing Analysis

1 -1 1 1 -1 -1

1 1 -1 1 -1 -1

C= 1 -1 1 -1 1 -1

1 1 -1 -1 1 -1

1 1 1 -1 -1 -1

(Note that the order of the five rows does not match the order of the cases in Fig­

ure 6.10.)

Figure 6.12 further categorizes each segment of the path based on whether there

exists a competing risk (competing event) in which c?Se the distribution of the time

until the next event (either an arrival or a completion) is given by

min{ exponential(>..), exponential(J..L)} ""exponential(>..+ J..L),

where the time between arrivals is distributed as exponential(>..) and the service time

distribution is exponential(J..L).

•

1 " • • ,,': 1 ,'" :

.

. : /: . . "
1 fJ

./ A. + fJ A. + fJ . ---.-'-'-. . -~-.
.. -:. ·- ----------------------------- ~

Figure 6.12: Path segment distributions for case 5 for n = 3 customers.

Competing risks can only occur along path segments originating inside the dashed

triangle shown in Figure 6.12. These path segments are exponential(.A.+J..L) distributed

and are correspondingly labeled .X + J..L· Once all customers have arrived, the only

121

Chapter 6. Transient Queueing Analysis

possible events are service completions; thus each vertical path segment along the

rightmost edge of Figure 6.12 is distributed exponential(J.L) and labeled f-1.· If the

path of interest intersects the diagonal line that passes through the bottom left node

and the top right node, the queueing system empties and the next event must be an

arrival, which occurs in an exponential(>.) time into the future. While the system is

empty, none of the customers' sojourn times are affected, therefore waiting for the

next arrival does not impact customer sojourn time distribution. The interior triangle

in the path diagram also provides a method to calculate the probability of all possible

paths. For path segments originating inside the triangle, a move right occurs with

probability .A/(.A + J.L) and a move up occurs with probability J.L/(.A + J.L). For the

particular path shown in Figure 6.12 there are two segments originating inside the

triangle, both of which are horizontal, representing two successive arrivals. Thus this

case probability is

.A+,u .A+J.L

In order to capture the structure of the segment distributions for a given path,

represented as a row of the case matrix C, another vector of length 2n - 1 is cre­

ated where each entry corresponds to the sojourn time distribution for a particular

segment. There are three possible entries in this vector:

1. exponential(>.+ J.L), which is indicated by a 1

2. exponential(J.L), which is indicated by a 2

3. no distribution as a result of an emptied system, which is depicted as a 0.

The vector is of length 2n - 1 since the first customer's arrival time can be ignored

as it does not affect sojourn time. For the particular path shown in Figure 6.12 the

corresponding segment distribution vector is

[11222].

122

Chapter 6. Transient Queueing Analysis

Define the new matrix C' with dimension (2n)! / ((n!) (n + 1)!) by 2n- 1 as the segment

distribution matrix for each case in C. For n = 3, the matrix C' is

1 0 1 2 2

1 1 1 2 2

C'= 1 0 1 0 2

1 1 1 0 2

1 1 2 2 2

The two vectors, which are each the fifth row of the corresponding matrices

c5 = [1 1 1 -1 -1 -1] and c~ = [1 1 2 2 2]

contain the information necessary to calculate the contribution of Case 5 to the joint

PDF for the sojourn times of any two customers. Using C1, define the 2 x 2 matrix

R1 with elements

where Tis and Tif are the start and finish indices for customer i in row l of the case

matrix c. Define Tjs and Tjf similarly for customer j. Using c5 above, for customers

i = 1 and j = 3,

Customer 1 's arrival is the first event to occur. Customer 1 's departure is the fourth

event to occur. Customer 3's arrival is the third event to occur. Customer 3's depar­

ture is the sixth event to occur.

The R1 matrix provides two critical pieces of information. First, for the given

case l, if rif < r 1s then the sojourn times for customers i and j are independent

since customer i departs prior to customer j's arrival. Therefore, if T;J < r15 , the

123

Chapter 6. Transient Queueing Analysis

contribution of case l to the joint PDF is created by simply multiplying the sojourn

time PDFs for customers i and j. Second, by computing rif- ris and Tjf- r 18 and

then indexing across C{, the appropriate segment distributions can be combined to

form the joint sojourn time PDF for customers i and j.

When Tif > r1s the joint probability distribution is calculated by conditioning in

a similar fashion to the proof of Theorem 1. However, it is first necessary to find the

independent and overlapping segments for the customers of interest. For the arrival

and service completion scenario described by C5 , Figure 6.13 shows sojourn times

T1 and T3 for customers 1 and 3. The independent portion of customer 1 's sojourn

I exp(). + f.l) I
a 1 a2

Tl........;----+

c I exp(). + f.l) II
a3

l I exp(.u) j exp(.u) I exp(.u)

Figure 6.13: Sojourn time segments for customers 1 and 3 in case 5 of n = 3 customers.

time consists of the two exponential(A + J.L) segments. The independent portion of

customer 3's sojourn time consists of the two exponential(JL) segments shown on the

right side of Figure 13. The dependent (overlap) portion between customers 1 and 3

consists of the single exponential(JL) segment falling within the dashed vertical lines.

Using C~ and R5 , these segments can be determined without reference to Figure 6.13,

as follows: Given r 11 > r 38 , that is customer 3 arrives prior to customer 1 completing

service, the independent portions of customer 1 's sojourn time distribution are found

by (a) calculating r3s - rls = 3- 1 = 2 and then (b) collecting the elements in c~

beginning at index r 18 = 1 and indexing T3 8 - r 18 - 1 = 1 additional element of the

vector. For C~ = [1 1 2 2 2 J , the first two entries, c~ 1 and c~2 correspond to the

124

Chapter 6. Transient Queueing Analysis

two exponential(>.+ p,) segments. Likewise, customer 3's independent sojourn time

segments are found by (a) calculating r 3f - rlf = 6-4 = 2 and then (b) collecting the

elements in q beginning at index rlf = 4 and indexing r 3J - r 1J - 1 = 1 additional

element of the vector. This amounts to the two exponential(p,) segments in elements

four and five of q. The dependent portion is identified by starting at the element

T3 8 = 3 and indexing Tif - T3 5 - 1 = 0 additional elements, the third element of C~, a

single exponential(p,) segment.

In this case, calculating the joint PDF is straightforward since the indepen­

dent portions for each customer are iid exponential random variables. Defining

the independent cumulative distribution function portions for customers 1 and 3 as

X 1 ""Erlang(>. + p,, 2) and X 3 ""Erlang(p,, 2) respectively, and the dependent (over­

lap) random variable as W "" exponential(p,), the contribution of Case 5 to the joint

CDF of (T1 , T3) = (X1 + W,X3 + W), conditioning on the dependent distribution

segment W, is

P(T1:::; t1,T3:::; t3)

P(X1 + W :::; t1, X3 + W :::; t3)

Since closed-form versions of Fx1 (t1 - w) and Fx3 (t3 - w) are available, Maple is

capable of evaluating this expression, though for large n it can be time consuming.

When the independent distribution segments are not iid exponential random vari-

125

Chapter 6. Transient Queueing Analysis

ables, the calculation is more problematic since we can no longer use (6.1) to easily

express F_J(1 (t1 - w) and Fx3 (t3- w). Convolution is required, and though capable,

Maple, and subsequently APPL, slow very quickly with increasing n. To overcome

this shortfall, consider Theorem 6.2, which appears to be a faster approach than the

two suggested in Hagwood (2009).

Theorem 6.2 If S1 '"" Erlang(>..1, m) and S2 '""Erlang(>..2 , n) are independent random

variables, then the PDF ofY = S1 + S 2 is

1 ze ~ (_ 1y n- yn-1-xe(>.2->.1)s.
[

)..m)..n ->.2y n-
1

{ (1)
(m- 1)!(n- 1)! ~ x

(r m X .S
m-l+x (_ 1 +)1 m-1+x-r }] y

~ -1 (m- 1 +X- r)!(>..z-)..I)r+1 s=O
y > 0.

Proof Since S1 and S2 are independent, the PDF of Y = S1 + S2 using convolution

and the binomial theorem is

fy(y)

y > 0. •
126

Chapter 6. Transient Queueing Analysis

The APPL procedure Cov(a, b, n) applies Theorem 6.2 to calculate the covariance

between customers a and b (a < b) in a system of n customers. For computa­

tional considerations (i.e., evaluating the fewest cases necessary for a given n), set­

ting the number of customers n = b provides the fastest result. Additionally, calling

Cov(a, b, n) where n > b produces a result identical ton= b because customers

arriving after customer b do not affect the covariance of previous customers. The

commented procedure is available in Appendix J.

Rewriting the integral as a sum via Theorem 6.2 avoids the calls to Convolution(X, Y)

in APPL as well as integrating for each case and piece, and the speed-up was signifi­

cant. One can always use this approach, even when the independent part of a partic­

ular customer's sojourn time contains many independent distribution segments. The

times for these segments can only be exponential(A+ J.L) distributed or exponential(J.L)

distributed, implying their sum can always be written as the sum of two independent

Erlang random variables. The symmetric variance-covariance matrix for n = 10

customers with parameters A= 1, J.L = 2, and p = 1/2 is showcased in Table 6.5 pro­

viding the exact values. CPU time is a factor in these computations. Each element

in the tenth column of the variance-covariance matrix is calculated from a joint PDF

which is a mixture of C10 = 20!/(10!11!) = 16,796 component distributions, each

corresponding to a unique ordering of arrivals and departures.

127

Q
::::::r'
~

1 5 29 181 1181 2647 18191 127111 2699837 19319845 "0
c-t-- - - -- -- -- (t)

4 36 324 2916 26244 78732 708588 6377292 172186884 1549681956 >-1

0':>
7 13 239 1543 10303 23485 163493 3462503 24719519

• - - -- --
18 54 1458 13122 118098 354294 3188646 86093442 774840978 ~

1451 8531 53995 356291 805705 5576849 39197977 836647331 ~
i::l

• • -- -- C/J

2916 26244 236196 2125764 6377292 57395628 516560652 13947137604
(t)

i::l
34514 209794 1357010 3031606 20810726 145390102 3088887890 c-t-

• • • -- .0 59049 531441 4782969 14348907 129140163 1162261467 31381059609 >=
(t)

12525605 77889229 170586983 1156711327 8013045911 169183999981 >=
(t) • • • •

19131876 172186884 516560652 4649045868 41841412812 1129718145924 i::l
(]q

..... I • 551583889 1162296371 7727099083 52871149859 1106749378225 >
tv • • • • i::l
00 774840978 2324522934 20920706406 188286357654 5083731656658 ~

10582107143 67728246079 454382575415 9394007745229 '-<:!
C/J • • • • • •

13947137604 125524238436 1129718145924 30502389939948 w

225196533287 1455144635743 29498588275973
• • • • • • • 282429536481 2541865828329 68630377364883

75890492486993 1482244865480580
• • • • • • • • 91507169819844 2470693585135780

28549065408995300
• • • • • • • • • 33354363399333100

Table 6.5: Sojourn time variance-covariance matrix for the first n = 10 customers in an M/M/1 queue with), = 1,
1-l = 2.

Chapter 6. Transient Queueing Analysis

Because these values are difficult to compare in fractional form, the same matrix

is provided again, with matrix elements rounded to four decimal places.

0.2500 0.1389 0.0895 0.0621 0.0450 0.0336 0.0257 0.0199 0.0157 0.0125

• 0.3889 0.2407 0.1639 0.1176 0.0872 0.0663 0.0513 0.0402 0.0319

• • 0.4976 0.3251 0.2286 0.1676 0.1263 0.0972 0.0759 0.0600

• • • 0.5845 0.3948 0.2837 0.2113 0.1611 0.1251 0.0984

• • • • 0.6547 0.4524 0.3302 0.2488 0.1915 0.1498

• • • • • 0.7119 0.5000 0.3694 0.2808 0.2177

0 • • • 0 0 0.7587 0.5396 0.4022 0.3080

• • • • • • • 0.7974 0.5725 0.4298

• • • • • • • • 0.8293 0.5999

• • • • • • • • • 0.8559

As the traffic intensity increases, so do the values in the variance-covariance matrix.

To illustrate, the same matrix is provided for the increased traffic intensity param-

eters ,\ = 1, f..l = 10/9, and p = 9/10. The increasing sojourn-time variance along

the diagonal is expected with the increasing traffic intensity. In addition, the rate

that covariance between customers decreases as customer separation increases is less

129

Chapter 6. Transient Queueing Analysis

pronounced.

0.8100 0.5856 0.4737 0.4040 0.3553 0.3189 0.2904 0.2673 0.2481 0.2318

• 1.3956 1.1097 0.9393 0.8226 0.7363 0.6692 0.6150 0.5702 0.5323

• • 1.9561 1.6298 1.4167 1.2626 1.1441 1.0494 0.9714 0.9057

• • • 2.5021 2.1458 1.8995 1.7142 1.5679 1.4484 1.3485

• • • • 3.0364 2.6565 2.3831 2.1715 2.0009 1.8593

• • • • • 3.5605 3.1614 2.8652 2.6310 2.4389

• • • • • • 4.0754 3.6600 3.3444 3.0904

• • • • • • • 4.5818 4.1524 3.8199

• • • • • • • • 5.0803 4.6386

• • • • • • • • • 5.5713

Using this variance-covariance matrix for traffic intensity p = 9/10, consider the

following example.

Example 5. Let Ti, i = 1, 2, ... , 10, be the sojourn times for the first

n = 10 customers in an M / M /1 queue with arrival rate ,\ = 1 and service

rate f..L = 10/9 that is initially empty and idle. Find the variance of the

average sojourn time for the ten customers.

Define the average sojourn time as

- 1 10

T= 10L1i·
i=l

Since the sojourn times are not independent random variables, the vari-

130

Chapter 6. Transient Queueing Analysis

ance of the average sojourn time is

Var(T)

The result is the sum of all elements in the variance-covariance matrix

multiplied by the constant 1/100. The sum of the variance-covariance

matrix rounded to four significant digits is 177.6642i therefore the variance

ofT is

v (T) ~ 1.7766.

To verify the calculation a Monte Carlo simulation (listed in Appendix K)

was conducted five times, each using one million replications. The result­

ing 95% confidence interval for the variance ofT wasTE (1.773, 1.781),

which agrees with the analytic result.

Ttaditional steady-state queueing theory and analysis lacks the insight provided

in these transient variance-covariance matrices. For businesses where the number

of customers in a day is so small that true steady state is never achieved, routine

queueing measures of performance are not representative of reality. Additionally,

consider a system where the traffic intensity exceeds one. For a such a system, an

analyst might be interested in customer covariance. Increasing the traffic intensity

so that p > 1 does not preclude covariance calculations using this method, and

therefore allows transient analysis of such systems. A variance-covariance matrix for

p = 3/2, is presented below. Given this traffic intensity, the system is unstable and

the expected sojourn times for successive customers increase without bound. Along

the main diagonal the customer variance is clearly increasing, and the covariance

131

Chapter 6. Transient Queueing Analysis

decreases as the separation occurs between customers. This decrease is monotonic,

and though not studied in detail here, it appears that the rate of covariance decrease

might be of interest for an unstable traffic intensity.

2.2500 1.8900 1.7172 1.6135 1.5438 1.4937 1.4558 1.4263 1.4027 1.3835

• 4.1400 3.7368 3.5018 3.3459 3.2344 3.1507 3.0856 3.0337 2.9913

• • 6.0957 5.6825 5.4166 5.2292 5.0896 4.9817 4.8958 4.8261

• • • 8.1312 7.7208 7.4397 7.2332 7.0747 6.9493 6.8479

• • • • 10.2424 9.8410 9.5538 9.3361 9.1652 9.0276

• • • • • 12.4235 12.0342 11.7463 11.5230 11.3444

• • • • • • 14.6687 14.2931 14.0081 13.7828

• • • • • • • 16.9727 16.6115 16.3319

• • • • • • • • 19.3310 18.9846

• • • • • • • • • 21.7397

6.7 Sojourn Time Covariance with k Customers

Initially Present

When k customers are present in the M / M /1 queue at time zero, the approach used to

compute sojourn-time covariance between customers becomes more difficult. When

the two customers of interest possess indices larger than k (i.e., Ti where i > k),

then the approach is similar to that derived in Section 6.6. However, there are two

other possibilities. The first possibility is that the first customer has an index of k or

less, and the second customer has an index larger than k. In this instance, the only

difference in deriving the joint CDF is that the lower indexed customer begins his

sojourn time at time zero. In the second possibility, both customers have an index

of k or below. If these indices are i and j, where i < j :=:; k, the time intervals for

sojourn times Ti and T1 begin at zero. It is obvious that Tt :=:; T1, since the completion

132

Chapter 6. Transient Queueing Analysis

time for customer i must occur prior to the completion time for customer j. For each

of the possibilities above the covariance derivation that follows will mirror the empty

and idle covariance derivation in Section 6.6.

To illustrate the calculations, consider an M j M /1 queue with k = 2 customers

initially present at time zero and a single additional customer, n = 1. The transition

diagram where the first event (not including the k customers initially present at time

zero) is an arrival, which is analogous to Figures 6.11 and 6.12, is given in Figure 6.14.

The total number of customers passing through the system is n + k = 3. Using 1

•

1
departure

• •

1 departure

• •

1 departure

• • ·---+ •
arrival arrival arrival

Figure 6.14: Transition diagram for n + k = 1 + 2 = 3 customers when the first event
is an arrival.

to denote an arrival and -1 to denote a departure, each arrival/departure ordering

instance for n + k = 3 customers must contain exactly three -1 's (completions of

service) and a single 1 (arrival). The algorithm presented by Ruskey and Williams

(2008) does not facilitate listing all orderings for an unbalanced system, where the

number of departures is greater than the number of arrivals (as opposed to an empty

and idle queue at time zero). However, we can produce all possible arrival-departure

sequences with a simple manipulation of the algorithm, as well as count the number

of possible sequences. A derivation and proof of a formula for counting the number of

possible sequences is provided in Appendix L. The general counting result, denoted

by C(nJk), follows, where n represents the number of customers passing through the

133

Chapter 6. Transient Queueing Analysis

system that arrive after time zero and k is the number of customers present at time

zero:
Lk/2J (k .)

C(nik) = L (-1)j -:- J Cn+k-j
j=O J

for k = 0, 1, 2, ... and n = 1, 2, ... , where l·J denotes the greatest integer function.

The case matrix Cis found by applying the Ruskey and Williams (2008) algorithm for

n+k customers, then deleting the instances where the first k events do not correspond

to arrivals. As seen previously, the case matrix for n + k = 1 + 2 = 3 customers is

1 -1 1

1 1 -1

1 -1 -1

1 -1 -1

c = 1 -1 1 -1 1 -1

1 -1 1

1

1 -1 -1

1 1 -1 -1 -1

Rows 2, 4, and 5 correspond to the first k = 2 events being arrivals. Rows 1 and 3

must be deleted from the case matrix, since for each row, a completion of service

occurs prior to the first two arrivals. Deleting these rows results in the case matrix

c = I ~ ~ =~ -~ -~ =~I
1 1 1 -1 -1 -1

with the remaining rows representing all possible arrival-departure sequences. We

can further simplify the case matrix by deleting the first k columns, resulting in

c = I =~ -~ -~ =~ I
1 -1 -1 -1

The rows of the case matrix correspond to the three cases shown in Figure 6.15.

134

Chapter 6. Transient Queueing Analysis

-T,_. -T3_.
Case 1

T2

t a3 c3
c2

I I

=d
a3

T3 l Case2

T2
c,

I I a, a3
T3 a2

f
Case 3 : T,-

T2

c, c2 c3

Figure 6.15: Three cases for k = 2 initial customers and a single n = 1 additional
customer in an M / M /1 queue.

The algorithm for computing the joint PDF, and subsequently the covariance, of

the sojourn times of any two customers does not differ significantly from the algorithm

presented in Section 6.6. However, for the sojourn times T1 and T2 in Figure 6.15, a

new theorem is introduced.

Theorem 6.3 Let X ,..._, exponential(>.1) and Y ,..._, exponential(>.2) be independent

random variables. The joint PDF of (T1 , T2) =(X, X+ Y) is

135

Chapter 6. Transient Queueing Analysis

Proof The joint CDF of TI and T2 is

Fr1,r2(ti, t2) = Pr (TI :::; ti, T2 :::; t2)

= Pr (X :::; ti, X+ Y:::; t2)

Pr (X :::; t~, Y :::; t2 - X)

= 1tl 1t2-x fx(x). Jy(y) dydx

= 1tl 1t2-x (Aie->.lx). (A2e->.2y) dydx

AI _ A2 + A2e->.1t2 + A2e->.2h _ AI e->.2t1 _ A2e->.2t1->.1t2+>.1t1
=

AI- A2

•
Theorem 6.3 provides the joint PDF for the sojourn times TI and T2 of the first two

customers initially present at time zero. It may be more complicated to calculate the

joint PDFs for the sojourn times of other pairs of customers who were initially present

at time zero. This is due to the fact that if (i, j) =/:. (1, 2) and i < j :::; k, where k is

the number of customers present at time zero, the time intervals of duration X and

Y during which customers i and j, respectively, are served may each be composed of

multiple independent exponentially distributed time segments. Each of these multiple

segments is limited to only one of two possibilities, an exponential(A + f.-l) segment

or an exponential(fl) segment. In this more complicated situation we let (Ti, Ti) =

(X, X + Y) as in Theorem 6.3 and apply Theorem 6.2 to quickly find the PDF's

of X and Y (using the procedure conv(m, n)), then let Maple handle the sojourn

time joint PDF calculation. When the second customer of interest has an index ~

k, the sojourn time joint PDF follows an application of Theorem 6.1 as described in

Section 6.6 when cases exist with dependence.

Using the final case matrix C above, the associated segment distribution matrix

136

Chapter 6. Transient Queueing Analysis

C' is

C' = [~ ~ ~ ~I
1 2 2 2

where the possible elements are the same as defined in Section 6.6. The probability

vector associated with the case matrix C is

Using the case matrix C and the segment distribution matrix C', the joint PDFs for

each case are created by selecting the appropriate segments for a given pair of cus­

tomers, where the segments are identified by the R1 matrix discussed in Section 6.6.

Once the joint PDF's are created for each case, they are mixed with the probability

vector to determine the sojourn time joint PDF for covariance calculations. These cal­

culations are coded in Maple as the procedure kCov (X, Y, a, b, n, k) . The first

two arguments X andY are the distribution of time between arrivals, exponential(>.),

and the service time distribution, exponential(J.L), respectively. They are entered in

the APPL list-of-lists format. The arguments a and b are the customers of inter­

est for the covariance calculation, where a < b. The argument n is the number of

customers processing through the system not including those present at time zero,

which is indicated by the last argument, k. Therefore, the total number of customers

processing through the system is n + k, and a covariance calculation between any

two of these customers can be achieved with the appropriate function call. For exam­

ple, the function call kCov(ExponentialRV(1), ExponentialRV(2), 1, 2, 6, 4)

calculates the covariance between customers 1 and 2 in an M / M /1 queue with an

arrival rate)..= 1, with service time rate J1. = 2, with k = 4 customers present at time

zero, and an additional n = 6 customers process through the system. The complete

137

Chapter 6. Transient Queueing Analysis

variance-covariance matrix using these paramters is

1 1 1 1 211 1579 11651 28553 630131 4646155
4 4 4 4 972 8748 78732 236196 6377292 57395628

• 1 1 1 211 1579 11651 28553 630131 4646155
2 2 2 486 4374 39366 118098 3188646 28697814

• • 3 3 211 1579 11651 28553 630131 4646155
4 4 324 2916 26244 78732 2125764 19131876

• • • 1 211 1579 11651 28553 630131 4646155
243 2187 19683 59049 1594323 14348907

• • • • 37289 271153 1966777 1588153 34755203 763875281
26244 236196 2125764 2125764 57395628 1549681956

• • • • • 1629655 11663887 9353743 203800469 4465399991
1062882 9565938 9565938 258280326 6973568802

• • • • • • 263490131 208262483 4506205633 98323535707
172186884 172186884 4649045868 125524238436

• • • • • • 1!1
63939878 1359189250 29402061622
43046721 1162261467 31381059609

• • • • • • • • 179260456277 379721786263
125524238436 3389154437772

• • • • • • • • • 62708955663745
45753584909922

Unlike the previous variance-covariance matrices, some row elements, in particular

those elements associated with customers that are initially present, do not decrease

monotonically. To explain these entries, consider Theorem 6.4.

Theorem 6.4 If X 1 , X 2 , ... , Xn are iid exponential(J.L) random variables and

s

s = 1, 2, ... , n,

then Var(Ti) = Cov(Ti, 1!), 0 < i < l :S n.

Proof Note that E[Tk] = k/ J.L fork= 1, 2, ... , nand that Ti and Xr are independent

138

Chapter 6. Transient Queueing Analysis

for 1 :; i < r :; n.

Cov(Ti, 11) = E [(ri- ~) (rt- ~) J

E [(r.- ~) { (r,- ~) + .~. (x.- ~)}]
E[(r,-~)'] +E{.~, [(r.-~) (x.-DJ}
Var(Ii) + t E (Ii - i) E (xr -~)

r=i+ l f-L f-L

Var(Ii). •
We can apply Theorem 6.4 to those customer pairs where both indices i,j:; k. There­

fore, the entries in the variance-covariance matrix for customer pairs (1, 2), (1, 3),

and (1, 4) are

Likewise, for the customer pairs (2, 3) and (2, 4)

Furthermore, it can be shown in general that

for i < j :; k, where k customers are present at time zero. For example, consider

a single-server box office with exponential(J.L) service times which will be offering

tickets to a popular concert the next day. If 1000 patrons, each buying one ticket,

camp out the night before determined to get the best seats for the concert, these

k = 1000 customers are present at time zero and therefore we can pre-determine the

covariance between any two of the customers. Additionally, Theorem 6.4 presents the

139

Chapter 6. Transient Queueing Analysis

non-intuitive result that Cov(T1 , T2) = Cov(T1, TIOoo). The correlation decreases with

increasing lag, however, as expected due to the diminishing effect of the intermediate

customer sojourn times reflected in the denominator of the defining formula of the

correlation. Theorem 6.4's results are confirmed by the Monte Carlo simulation in

Appendix M and the Maple code used to compute the exact covariance values between

two customers is listed in Appendix N.

6.8 Conclusions

Previous transient analysis results for the M / M /1 and M / M / s queues have been

combined with the functionality of the Maple computational engine (and subsequently

APPL) to develop both symbolic and numeric exact sojourn time PDFs that can be

manipulated to compute and study various measures of performance. A complete

variance-covariance matrix for the first n = 10 customers and varying traffic intensity

is calculated, illustrating this approach's ability to determine the joint PDF between

two customer sojourn times. The results offer a framework for describing how the

well-known M / M / s queue steady-state results occur as the queue progresses toward

steady-state. When possible, results are checked against corresponding Monte Carlo

simulation and/ or previous literature.

140

Chapter 7

Conclusions and Further Work

This dissertation presents a variety of applications in stochastic operations research,

where each application requires the use of a computational engine. Without the

computational engine, the results are either intractable or overly tedious to compute.

These applications contribute to and extend the current literature for their respective

fields. Additionally, the applications offer insight into other problems found to be

similar in structure.

Harnessing the computational power available today and implementing it effec­

tively requires the researcher to fundamentally understand the software and/or com­

putational engine utilized as well as the first-principles theory of the problem at hand.

The algorithms and associated code generally stem from a first-principles approach to

the problem. As with most versions of coded algorithms, computational complexity

is almost always of interest. As mentioned in the introduction, many other languages

and/or software packages could have been utilized to achieve the same results, some

in a faster and more efficient manner. Additionally, the author recognizes that the

code, as it is written, might not be the most efficient means available. However, the

algorithms and their respective code are meant to be straightforward in design and

simplicity. Additionally, the author has made an effort to present procedures easily

implemented by minimizing necessary syntax and setup work for the user. Where

141

Chapter 7. Conclusions and Further Work

possible, computed results are available symbolically, using generic coding.

Substantiating results to problems addressed here is difficult. Most of the solutions

are returned exactly, and the problems as described are overly tedious to calculate

with pencil and paper. Therefore, careful attention is paid to substantiating results.

The best method for verification is Monte Carlo simulation. In all cases, Monte Carlo

simulation was used for multiple runs, each run with a corresponding high number

of replications, to create a confidence interval for the exact solution. The problem

complexity sometimes required these simulations to run for extended time periods,

where CPU time for the Monte Carlo estimate exceeded CPU time to achieve the exact

solution. Additionally, when variate generation methods were compared (Chapters 2

and 3), a Monte Carlo simulation was the best tool for conducting the study in the

presence of multiple population distributions.

As an example of verifying previous results, consider the work in Chapter 6.

Much of the work completed in this chapter was motivated by a course taken in

Computational Probability where the monograph used for the course was Drew et al.

(2007), explaining the use of Maple and APPL throughout. It is because of APPL that

Chapter 6 of the dissertation became possible, where, by framing MIMI 1 transient

analysis queueing as a new class of computational probability problems, along with

applying propositions made by Kelton and Law (1985), led to exact sojourn time

distributions and sojourn time covariance calculations. Though the propositions have

been known for 23 years, an application using them to calculate a distribution and

subsequently measures of performance has eluded researchers. The procedures that

this dissertation adds to APPL 's suite of available tools furthers its capability by

embarking on bivariate probability distribution functions. I hope the addition of

these procedures aids in revolutionizing the field of computational probability, and

its influence in research and education.

I now summarize the applications presented beginning with Chapter 2. Given an

observed univariate data set assumed to come from an unknown continuous popu-

142

Chapter 7. Conclusions and Further Work

lation distribution, generating variates for simulation from the piecewise-linear CDF

created by connecting the steps created by the empirical distribution function is not

novel. However, by doing so, the variance of the piecewise-linear estimator is always

less than the unbiased sample variance of the observed data. Chapter 2 corrects the

estimator by stretching and shifting the observed data such that the mean and vari­

ance of the estimator match the mean and variance of the data set, improving the

quality of the variates produced by the estimator. Certain types of data might be

inappropriate for stretching and shifting. For example, consider data arising from a

service-time distribution, where the mean of the distribution is close to zero. Stretch­

ing and shifting such data might result in an impossible negative service time. To

overcome this problem, Chapter 2 also offers an alternative method to match the

mean and variance that does not affect the location of the observed data on the real

line. This second method assigns appropriate weights to the data values that result

in an estimator whose mean and variance equal the mean and variance of the sample

data. The weights are are the solution to a nonlinear optimization program. Using

either method bypasses the time-consuming and often arbitrary process of density

estimation.

Chapter 3 extends the method of using a piecewise-linear CDF for variate gen­

eration to a two-dimensional random vector. The method presented is completely

nonparametric and includes several examples showcasing its ability to effectively rep­

resent bivariate distributions with multiple modes. The method is a synchronized

variate generation algorithm requiring only an observed bivariate data set from the

user. The method used for the first variate in the two-dimensional random vector is

produced exactly as outlined in Chapter 2. Using the first variate as a reference point,

select data values from the sample data are collected to form a second piecewise-linear

CDF conditioned on the value of the first variate. The second variate is produced

via inversion from a conditional piecewise-linear CDF. Because each two-dimensional

random vector produced requires the creation of a conditional weighted piecewise-

143

Chapter 7. Conclusions and Further Work

linear CDF, this method is slower than its main competitor in the literature, kernel

density estimation. However, while kernel density estimation can produce impossible

variates in certain applications, the bivariate variate generation algorithm does not.

Extensive comparisons are conducted, and results are provided in tabular and graphic

form.

Select control chart constants for non-normal sampling are derived in Chapter 4.

These are derived in symbolic form for the normal distribution as well as select non­

normal distributions. APPL is used exclusively for the calculations in this chapter.

The constants denoted as d2 , d3 , c4 , and c5 are bias correction factors, where d2 and d3

correct for the mean and standard deviation of the sample range, and c4 and c5 correct

for the mean of the sample standard deviation and its standard error. Although the

constants associated with the normal distribution have been shown to be robust for

non-normal processes, there can be substantial differences in control chart constants

as shown in Tables 4.1 and 4.2. Conceivably, if an engineer knows enough about a

process to warrant that the random variable of interest is non-normal in distribution,

then he should be confident in estimating necessary parameters and applying the

appropriate non-normal control chart constants. In the situation where estimated

distribution parameters are required to derive the control chart constants, tabulated

results are available up to reasonable sample sizes.

In Chapter 5, the KS goodness-of-fit test is offered as an alternative to the more

traditional chi-square goodness-of-fit testing on whether leading digits of sample data

conform to Benford's law. Before conducting the test, the data is transformed, where

the data represented by the continuous random variable T is transformed as Z =

log10 T mod 1. The derivation shows that testing whether the leading digit of T

conforms to Benford's distribution is equivalent to testing whether Z rv U(O, 1). Given

this result, the KS test is appropriate (and exact) in testing whether Z rv U (0, 1).

Since the test is exact for any sample size, the "rule of thumb" commonly suggested for

chi-square goodness-of-fit testing (in testing for Benford, this was n > 109) is no longer

144

Chapter 7. Conclusions and Further Work

necessary. The power curves for each test were plotted for four select non-Benford

distributions. The results of the comparison suggest that the KS goodness-of-fit test

should be used instead of the chi-square goodness-of-fit test.

In the final topic considered in the dissertation, transient queueing analysis is

explored for the MIMI s queue. The chapter begins by providing a background of

the queueing discipline, along with an explanation of how transient analysis differs

from steady-state analysis. Complete specification of customer sojourn time dis­

tribution are developed for the nth customer when k 2:: 0 customers are present

in the system at time zero. Examples are provided where, using the sojourn time

distribution, several measures of performance are examined for varying customer

numbers. The customer sojourn time distribution is extended to create bivariate

sojourn time distributions for pairs of customers, allowing calculations of exact cor­

relations and covariances between customers. A complete variance-covariance ma­

trix is provided for n = 10 customers for varying traffic intensities. The APPL

and Maple code written is made available in the appendix as well as online at

http://WYW.math.wm.edu;-leemis/QueueAPPL.txt. These procedures provide a

framework for investigating the behavior of the MIMI s queue as it evolves toward

steady-state.

As an extension of the work already completed in Chapter 2, where a piecewise­

linear cumulative distribution function was formed by connecting points on a given

empirical cumulative distribution function, I propose to extend the the work to the

Kaplan-Meier estimator. Specifically, I will apply the univariate nonparametric vari­

ate generation work to generating variates from the Kaplan-Meier estimator for right­

censored data in mathematical reliability theory. In the current literature, variates

are generated from this estimate in a manner similar to bootstrapping (i.e., sampling

with replacement). It is my intent to produce an algorithm that connects knot points

along the Kaplan-Meier estimate with continuous segments allowing interpolation for

variates from an estimator that shares the mean and variance of the observed lifetime

145

http://www.math.wm.edu/~leemis/QueueAPPL.txt

Chapter 7. Conclusions and Further Work

data. Creating this estimator requires that the lifetime data be stretched and shifted

so the resluting estimator's moments match those of the lifetime data.

In Chapter 3, five interesting potential areas of further work for the proposed

algorithm are immediately evident. The first deals with studying how changes in the

weighting function, wk, of the interior points, XA, affect the resulting random pairs

produced by the algorithm. The second area concerns the use of nonconvex hulls

that allow for "dents" in the support. The third area concerns a two-dimensional

extension of Marsaglia's tail algorithm. The fourth area concerns generation speed.

The current algorithm generates the first element of the bivariate pair quickly and

the second element slowly. The setup portion of the algorithm can be modified so as

to generate both variates quickly by storing a set of conditional PDFs. The fifth area

concerns how a similar algorithm might be extended to higher dimensions.

One area of further study for Chapter 4 might exist in searching for relation­

ships analogous to (4.7), which depend only on the single parameter n. Burr (1968)

presents a strong case for normal sampling applications; however, Wheeler (2000)

notes a trough in Burr's skewness versus kurtosis plot (especially in U-shaped distri­

butions) where using normal-sampling-based control chart constants would severely

misrepresent the population.

When testing conformance to Benford's law in Chapter 5, future work includes

examining whether the KS test is appropriate for populations conforming to Stigler's

law as well as mixtures of other leading digit distributions. This potentially allows

for testing more classes of distributions with a test that is exact for any sample size.

The first-principles derivation displayed in Chapter 6 suggests a possibility for

future research would be to apply the approaches provided in this work to a GIG 11

and perhaps even the more general GIG Is queue. Even though symbolic results might

prove impossible, later versions of computational engines have improved in numeric

methods, increasing the likelihood of achieving solutions. Additionally, making use

of other computational formulae (such as Hagwood (2009)) may offer significant time

146

Chapter 7. Conclusions and Further Work

savings in calculations and is another interesting avenue for future work.

147

Appendix A

Relationship to the Trapezoidal

and Simpson's Rule

Suppose that F = Fx: lR -t [0, 1] is an unknown continuous cumulative distribution

function (CDF) and X 1 , X2 , ... , Xn are i.i.d. random variables with this distribution.

Let

(A.1)

denote the particular values obtained in a given random sample, sorted into weakly

increasing order. Our goal is to use this sample to estimate F, which will then be

used to simulate further observations. (We additionally assume that the support of

the population is positive for simplicity. If the lower bound of the support happens

to be a finite negative value, the results given in this appendix can be achieved by

shifting the data values and adjusting the associated moments.)

For convenience, assume that F is strictly increasing on some (unknown) interval

of possible values [a, b]. Thus, F: [a, b] -t [0, 1] is an invertible function with inverse

p-I: [0, 1] -t [a, b]. Letting U ,...... U(O, 1), the probability integral transformation

(Fishman, 2006, page 77) states that X and each Xi has the same distribution as

148

Appendix A. Relationship to the Trapezoidal and Simpson's Rule

p-1(U). In particular,

Furthermore, to simulate random observations from the distribution of X, we need

only use a random number generator to generate random numbers u E [0, 1], and

then compute F- 1 (u).

Let Y(i) = (i-1)/(n-1) fori= 1, 2, ... , n. Given the input data (A.1), symmetry

suggests that we estimate F by a piecewise-linear function for which F0 (x(i)) = Y(i) for

i = 1, 2, ... , n. This is equivalent to estimating F-1 by a piecewise-linear function

F0
1 such that F0-

1(Y(i)) = X(i) fori= 1, 2, ... , n.

More generally, we might postulate that F-1 is some continuous function (not

necessarily piecewise linear) such that F-1(Y(i)) = X(i) for i = 1, 2, ... , n. We can

then use numerical integration techniques to estimate integrals involving the unknown

function F- 1 . This is easy to do, since the Y(i) 's form a partition of [0, 1] into n - 1

subintervals of equal length. For example, using the trapezoidal rule to estimate E[X]

gives

E[X] E[F-1 (U)]

11 p-1(u) du

1-0
~

2
(n _

1
) (Fo-

1(Y(l)) + 2Fa-
1
(Y(2)) + 2Fo-

1
(Y(3)) + · · · + F0-

1(Y(nJ))

=
X(l) + 2x(2) + 2x(3) + · · · + 2X(n-1) + X(n)

2(n- 1)

Of course, this is exactly the formula obtained by using a piecewise-linear approxi­

mation in Section 2.1. Similarly, the trapezoidal estimate of E[X2
] is

1 2 22 22 2
2 1 -1 2 x(1) + x(2) + ... + x(n-1) + x(n)

E[X] = F (u) du ~ () .
o 2n-1

We remark that this expression does not necessarily equal J0

1 F0-
1 (u) 2 du, but it is

149

Appendix A. Relationship to the Trapezoidal and Simpson's Rule

certainly one reasonable way to estimate E[X2]. Note that both of our formulas give

unbiased estimators for the mean and second moment of X, although these are not

the usual unbiased estimators commonly employed in statistics.

The simplest approach to simulating observations from X is to use the piecewise­

linear estimate F0-
1 for F-1. One more advanced approach is to replace F0-

1 by

some affine transformation F1-
1 = cF0-

1 + d, for suitable constants c, d. One way

to proceed is to choose c and d so that E[F11 (U)] equals the sample mean of the

X(i)'s, and Var[F1-
1(U)] equals the unbiased sample variance of the X(i)'s. A related

approach (which is a bit simpler computationally) is to choose c and d so that the

trapezoidal estimates of E[X] and E[X2] (computed with respect to F1-
1) equal the

corresponding sample moments (computed using the X(i)'s). In more detail, let m 1 =

I:i X(i), m2 = I:i x~i)'

X(l) + 2x(2) + · · · + 2X(n-1) + X(n)

t 1 = 2(n- 1) '

2 +2 2 2 2 2 x(1) x(2) + · · · + x(n-1) + x(n)
t2 = --'---'---'-.:___-:-----:----'--.:___-~

2(n- 1)

Then we can choose c and d to satisfy

We then simulate random observations from X by generating random numbers u E

[0, 1], and computing simulated values cF0-
1(u) +d.

The preceding discussion suggests some tantalizing extensions. What if we used

more advanced numerical integration techniques to estimate integrals involving the

unknown function F-1? For example, when n-1 is even, we could use Simpson's Rule

to estimate E[X] and E[X2], which amounts to using piecewise-quadratic estimates

of the functions F- 1(y) and F-1(y)2. This leads to formulas such as

E[X] = E[F-1(U)] ~ X(l) + 4x(2) + 2x(3) + 4x(4) + · · · + 4X(n-1) + X(n).

3(n- 1)

150

Appendix A. Relationship to the Trapezoidal and Simpson's Rule

One could then try to modify the associated piecewise-quadratic functions by affine

transformations to attain a. closer match to the sample mean and unbiased sample

variance.

151

Appendix B

Computing 8

The quadratic equation in 15 in Section 2.2.1 is

L x(i) x(i)x(i+1) x(i+l) - x(1) L-i=2 x(i) + x(n) = s2
n-1 (I)2 + I I + (I)2 [I + 2 "'n-1 I I]2

i=
1

3 (n - 1) 2 (n - 1) '

where x(i) = X(l) - 15 + w I:~:,~ gj, i = 1, 2, ... , n. This appendix contains the algebra

and an associated S-Plus/R function to solve this equation.

First, simplify the expression for x(i) as
i-1

x(i) = X(1) - 0 + (x(n) - X(l) + 215) L X(i+
1
) - X(i)

j=1 X(n) - X(1)

X(n) - X(1) + 215
= X(1) - 15 + (x(i) - X(l))

X(n)- X(l)

[

2X(i)- X(n)- X(l)] s:
= X(i) + u.

X(n)- X(1)

Define T(i) as the portion of this equation in the brackets:

152

Appendix B. Computing 6

for i = 1, 2, ... , n. Thus x(i) can be written more compactly as

Returning to the quadratic equation and replacing x(i) with x(i) + rw5 yields:

_ X(l) + 2 Li=2 (x(i) + r(i)8) + X(n) , _
8

2 = O.
[

n-1]2

2(n- 1)

Expanding this quadratic equation in 8 in the form a82 + M + c = 0 and collecting

terms yields the following expressions for a, b, and c:

L r(i) L r(i)r(i+1) L r(i+1) 1 L n-1 2 n-1 n-1 2 (n 1) 2

a = + + - -- ··=2 r(i)
i= 1 3(n- 1) i=1 3(n- 1) i= 1 3(n- 1) (n- 1)2

•

n-1 n-1 n-1
b ="""" 2x(i)r(i) +"""" X(i)r(i+1) + X(i+1)r(i) +"""" 2x(i+l)r(i+1)

L 3(n- 1) L 3(n- 1) L 3(n- 1)
t=1 t=1 t=1

- (n ~ l)' [X(>)+ 2 ~X(<)+ X(n)l ~ r(<)

n-1 2 n-1 n-1 2 (
2

'\"'n-1)2
"""" X(i) """" X(i)X(i+1) """" X(i+1) X(l) + L...i=2 X(i) + X(n) 2

c = ~ 3(n- 1) + ~ 3(n- 1) + ~ 3(n- 1)- 4(n- 1)2 -s

Given the values of a, b, and c, the positive root of the quadratic equation is given
-b + Jb2 - 4aC S: d 11 II II •

by 8 =
2

a . The values of u an x(1),x(2), ... ,x(n) can be calculated m

S-Plus using the function mm (for "matching moments") given below.

mm <- function(x) {
X <- sort(x)
n <- length(x)
xbar <- mean(x)
xvar <- var(x)
r <- (2 * X - x [n] - X [1]) I (x [n] - X [1])

153

Appendix B. Computing 8

}

rlo <- r[1:(n- 1)]
rhi <- r[2:n]
rmid <- r[2:(n- 1)]

xlo <- x[1:(n- 1)]
xhi <- x[2:n]
xmid <- x[2:(n- 1)]

aa <- 1 I (3 * (n - 1)) * (sum(rlo * rlo) + sum(rlo * rhi) +

sum(rhi * rhi)) - 1 I (n - 1) - 2 * (sum(rmid) - 2)
bb <- 1 I (3 * (n - 1)) * (sum(2 * xlo * rlo) + sum(xlo *

rhi + xhi * rlo) + sum(2 * xhi * rhi)) - 1 I
(n - 1) - 2 * sum(rmid) * (x[1] + x[n] + 2 * sum(xmid))

cc <- 1 I (3 * (n - 1)) * (sum(xlo - 2) + sum(xlo * xhi) +

sum(xhi - 2)) - 1 I (4 * (n - 1) - 2) * ((x[1] + x[n] +

2 * sum(xmid)) - 2) - xvar

del <- (-bb + sqrt(bb - 2 - 4 * aa * cc)) I (2 * aa)
xp <- x + r * del
xpp <- xp - ((sum(xp) - xp[1] I 2 - xp[n] I 2) I (n - 1) - xbar)
xpp

As expected, this function returns the vector of values, namely,

-0.1347206 1.1080189 4.8362375 7.3217166 8.5644561 9.8071956

from Example 3 when called with

mm(c(1, 2, 5, 7, 8, 9))

This function can be downloaded from www .math. wm. edulrvleemisl2009mm. code.

154

http://www.math.wm.edu/~leemis/2009niiii.code

Appendix C

Nonparametric Bivariate

Generator

The R/S-Plus code below contains all the elements necessary to generate random

bivariate pairs given the x and y vectors consisting of the observed data using the

algorithm described in Chapter 3. The code is separated into three portions, setup,

generation, and the main program. Indentation denotes nesting.

C.l xpwl(x) and ywtpwl(xgen)

OPTIONAL MOMENT MATCHING SETUP PORTION
xnew <- mm(x)
ynew <- mm(y)

orderxnew <- order(xnew)
xnewlength <- length(xnew)

x <- xnew[orderxnew]
y <- ynew[orderxnew]

hullindex <- chull(x,y)
m <- length(hullindex)

155

Appendix C. Nonparametric Bivariate Generator

xhull <- x[hullindex]
yhull <- y[hullindex]
hullorder <- order(xhull,yhull)
indexmin <- hullorder[1]
indexmax <- hullorder[m]

determine the line separating the upper and lower hull
slope <- (yhull[indexmax] - yhull[indexmin]) I (xhull[indexmax]

- xhull[indexmin])
intercept <- yhull[indexmax] - slope * xhull[indexmax]
count <- 0

find length (segments) of upper and lower hulls
count <- length(which(yhull[hullorder] > slope * xhull[hullorder]

+ intercept))

VARIATE GENERATION FUNCTIONS

generate x from the piecewise-linear CDF from original
(or moment matched) x vector

xpwl <- function(x) {
u <- runif (1)

i <- ceiling((xnewlength 1) * u)
x[i] + ((xnewlength- 1) * u- (i- 1)) * (x[i + 1] - x[i])

}

generate y from the weighted piecewise-linear CDF created by
conditioning on the x value generated

ywtpwl <- function(xgen) {

find segments of hull lower and upper intersection with xgen,
determine intersecting y values

for (i in 1:length(upperx)) {
if ((xgen >= upperx[i]) && (xgen <= upperx[i + 1])) {
upperslope <- (uppery[i] - uppery[i+1]) I (upperx[i] -

upperx[i + 1])
upperint <- uppery[i + 1] - upperslope * upperx[i + 1]
ymax <- upperslope * xgen + upperint
}

156

Appendix C. Nonparametric Bivariate Generator

}

for (i in 1:length(lowerx)) {

}

if ((xgen >= lowerx[i]) && (xgen <= lowerx[i + 1])) {
lowerslope <- (lowery[i] - lowery[i + 1]) I (lowerx[i]

- lowerx[i + 1])

}

lowerint <- lowery[i + 1] - lowerslope * lowerx[i + 1]
ymin <- lowerslope * xgen + lowerint

collect y values between ymin and ymax forming the set A
j <- 0
ybetweenindex <- 0
for (i in 1:xnewlength) {

if (y[i] <= ymax & y[i] >= ymin) {
j <- j + 1
ybetweenindex[j] <- i

}

}

create x and y vectors for interior points, augment
with ymin, ymax

ybetween <- y[ybetweenindex]
xbetween <- x[ybetweenindex]
ybetweenorder <- order(ybetween)
yvec <- c(ymin, ybetween[ybetweenorder], ymax)
xvec <- c(xgen, xbetween[ybetweenorder], xgen)

weight y values by distance from xgen, w(i) = 1 I (1 +

((x(i) - xgen) I sqrt(var(xvec))) - 2)
yweight <- 0
for (i in 1:length(yvec)) {

yweight[i] <- 1 I (1 + ((xvec[i] - xgen) I
sqrt(var(xvec))) - 2)

}

normalize weights
ynmwt <- 0
for (i in 1:length(yvec)) {

ynmwt[i] <- yweight[i] I sum(yweight)
}

157

Appendix C. Nonparametric Bivariate Generator

}

find new y knot points of the weighted piecewise-linear CDF
yknots <- matrix(O:O, length(yvec))
yknots [1] <- 0
for (i in 2:length(yvec)) {

}

yknots[i] <- sum(ynmwt[1:(i- 1)]) + (i- 1) * (ynmwt[i])
I (length(yvec) - 1)

generate y value pwl from knot point y values
u1 <- runif (1)

i <- 1
while (u1 > yknots[i + 1]) {

i <- i + 1
}

yvec[i] + (u1 - yknots[i]) * (yvec[i + 1] - yvec[i]) I
(yknots[i + 1] - yknots[i])

MAIN PROGRAM

set N to the desired number of random variates here
Generated <- matrix(O:O, N, 2) collects the resulting
random variate pairs

for (i in 1:N) {
xgen <- xpwl(x)

}

ygen <- ywtpwl(xgen)
Generated[i, 1] <- xgen
Generated[i, 2] <- ygen

158

Appendix D

Creating the Sojourn Time

Distribution

The following procedures do not exist in APPL and were written to accomplish the

goals outlined in Chapter 6. They make internal use of other APPL procedures and

are intended to become part of the procedures offered in the APPL suite of software.

D.l Queue(X, Y, n, k, s)

Queue(X, Y, n, k, s)
--·-----

Computes the sojourn time distribution of the nth
customer in an M/M/s queue, given k customers are
in the system at time 0. Queue calls the
subprocedure MMsQprob(n, k, s) (and subsequently
calls Q(n, i, k, s)) which recursively calculates
the required probabilities of the nth customer
seeing exactly i customers, including himself, in
the system upon arrival for i = 1 to n + k
customers. Calculations are based on algorithms
#provided in Kelton and Law (1985). Calls the
subprocedure BuildDist(X, Y, n, k, s) which builds
the conditional sojourn time distribution for

159

Appendix D. Creating the Sojourn Time Distribution

i = 1 customer to i = n + k customers in the
system. Queue mixes the prob~bilities with the
conditional sojourn time distributions to return
the exact PDF of the sojourn time in the APPL
list-of-lists format. Requires the
subprocedures mentioned above along with the APPL
software. The exponential arrival and service
random variables must be defined in the APPL
format. The procedure call is
Queue(X, Y, n, k, s), where X is the arrival time
distribution, Y is the service time distribution,
n is the customer of interest, k is the number of
customers in the system at time 0, and s is the
number of identical parallel servers. Both X and
Y must be exponential random variables in the
APPL list-of-lists format.

#Name

Author
Language
Latest Revision

Queue.mw
Billy Kaczynski
MAPLE 9
09111108

Queue := proc(X, Y, n, k, s)

global rho;
local i :: integer, lst :: list, TIS :: list;
rho 1 I Mean(X) I (s * 1 I Mean(Y));
lst := BuildDist(X, Y, n, k, s);
TIS := Mixture(MMsQprob(n, k, s), lst);
return TIS;

end:

160

Appendix D. Creating the Sojourn Time Distribution

D.2 MMSQprob(n, k, s)

MMSQprob(n, k, s)

#Computes Pk(n, i)'s for an M/M/s queue, which is
the probability that customer n will see i
customers in the system including himself at time Tn
with k customers initially in the system at time 0.
Calls the subprocedure Q(n, i, k, s) which
recursively calculates the required probabilities
using the algorithms provided in Kelton and Law
(1985). The procedure returns the ordered
probabilities for i = 1 customer (an empty queue)
to i = n + k customers in a list. Note that the
parameter rho for an M/M/s queue is
#rho= lambda I (s * mu).

Name
Author
Language
Latest Revision

MMsQprob.mw
Billy Kaczynski
MAPLE 9
09/03/08

MMsQprob := proc(n, k, s)

local i :: integer, lst :: list;
lst := [];
for i from 1 to n + k do

lst := [op(lst), Q(n, i, k, s)];
od;
return lst;

end;

161

Appendix D. Creating the Sojourn Time Distribution

D.3 Q(n, i, k, s)

Q(n, i, k, s)

Computes the single probability Pk(n, i) for an
MIMis queue recursively according to the algorithms
#provided in Kelton and Law (1985).
Name Q.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
09103108

Q := proc(n, i, k, s)

option remember;
global rho;
local p, j :: integer, h · · integer;
if (k >= 1) and (i = k + n) then

if k >= s then p := (rho I (rho + 1)) - n
elif k + n <= s then

p := rho - n I (mul(rho + (k + j - 1)

j = 1 .. n))
elif (k < s) and (s < k + n) then

I

p - rho - n I ((rho + 1) - (n s + k)
(mul(rho + (k + j - 1) I s,
j = 1 .. s - k)))

fi;
fi;
if (k = 0) and (i = n) then

if n <= s then

fi;

p rho - n I mul(rho + (j - 1) I s,
j = 1 .. n)

elif n > s then

fi;

p := rho - n I ((rho + 1) - (n - s) *
mul(rho + (j- 1) Is, j = 1 .. s))

if i 1 then
p := 1- add(Q(n, j, k, s), j = 2 .. n + k)

fi;

s,

*

if (k >= 1) and (i >= 2) and (i <= k) and (n = 1) then
if k <= s then

162

Appendix D. Creating the Sojourn Time Distribution

p - rho I (rho + (i - 1) I s) * mul(1 - rho
I (rho + (k - j + 1) I s)'
j = 1 .. k-i+1)

elif (k > s) and (i > s) then
p - rho I (rho + 1) - (k - i + 2)

elif (i <= s) and (s < k) then
p - rho I ((rho + 1) - (k - s + 1) * (rho +

(i - 1) I s)) * mul(1 - rho I (rho +
(s - j) Is), j = 1 .. s - i)

fi;
fi;
if (n >= 2) and (i >= 2) and (i <= k + n - 1) then

if i > s then
p := rho I (rho + 1) * add((1 I (rho + 1) -

(j - i + 1) * Q(n- 1, j, k, s)),

j = i - 1 .. k + n- 1)

elif i <= s then
p rho I (rho + (i - 1) I s) *

fi;
fi;
return p;

end:

(add((mul(1 - rho I (rho + (j - h + 1)
Is), h = 1 .. j- i + 1)) * Q(n- 1, j,
k, s), j = i- 1 .. s- 1) + product(1-
rho I (rho+ (s- h) Is), h = 1 .. s­
i) * add((1 I (rho + 1)) - (j - s + 1)
* Q(n- 1, j, k, s), j = s .. k +

n - 1));

163

Appendix D. Creating the Sojourn Time Distribution

D.4 BuildDist(X, Y, n, k, s)

BuildDist(X, Y, n, k, s)

Creates the appropriate conditional sojourn time
distribution for each case where a customer arrives
to find i = 1 to i = n + k customers present,
including himself, in an MIMis queue with k customers
intially present. The procedure call is
BuildDist(X, Y, n, k, s), where X is the arrival time
distribution, Y is the service time distribution, n
is the customer number of interest, k is the number
of customers in the system at time 0, and s is the
number of identical parallel servers. Both X and Y
must be exponential random variables in the APPL
list-of-lists format.

Name

Author
Language
Latest Revision

BuildDist.mw
Billy Kaczynski
MAPLE 9
09103108

BuildDist := proc(X, Y, n, k, s)

local i :: integer, lst :: list;
lst := [];

for i from
if s = 1

lst :=

else

1 to n + k do
then

[op(lst), ErlangRV(l I Mean(Y), i)]

if (i <= s) or (s > n + k) then
lst [op(lst), Y];

else

fi;
fi;

od;

lst

return lst;
end;

[op(lst), Convolution(ErlangRV(s *
1 I Mean(Y), i-s), Y)];

164

Appendix E

Average Delay and Service for

Percentile Comparison

I* ---
* This program alters ssq1.c from Leemis and Park (2005)
* to capture the average delay and service times for an
* MIMI1 queue with an arrival rate = 1 and a service
* rate = 1019 for the third customer, given the queue is
* empty and idle at time T = 0. The program also writes
* 10,000,000 service times to use as an empirical CDF for
* comparing the 99th percentile to the exact percentile
* as provided by the APPL procedure Queue.

*
* Name
* Author
* Language
* Latest Revision

mm1.c
Billy Kaczynski
ANSI C
9-10-08

* ---

#include <stdio.h>
#include <math.h>
#include "rng.h"
#define LAST
#define START
FILE * fptr;

4L
0.0

I* number of jobs processed *I
I* initial time *I

165

Appendix E. Average Delay and Service for Percentile Comparison

double Exponential(double m)
I* ---
* generate an Exponential random variate, use m > 0.0
* ---

return (-m * log(1.0- Random()));
}

double GetArrival(void)
I* ------------------------------
* generate the next arrival time
* ------------------------------
*I

{

}

static double arrival = START;
arrival+= Exponential(1.0);
return (arrival);

double GetService(void)
I* ------------------------------
* generate the next service time
* ------------------------------

return (Exponential(0.9));
}

int main(void)
{

long index o·
'

long i 10000000;
long t = o·

'
double arrival START;
double delay;
double service;
double wait;
double departure START;
struct {

double delay;

I* job index

I* time of arrival

I* delay in queue

I* service time

I* delay + service

I* time of departure

I* sum of ...
I* delay times

166

*I

*I
*I
*I
*I
*I
*I
*I

Appendix E. Average Delay and Service for Percentile Comparison

}

double wait;
double service;
double interarrival;

} sum = {0.0, 0.0, 0.0};

PutSeed(123456789);
fptr = fopen("data.dat", "w");
for (t = 0; t < i; t++) {

index = 0;
arrival = START;
departure = START;

while (index < LAST) {
index++;
arrival = GetArrival();

< departure)

wait times
service times *I
interarrival times *I

if (arrival
delay departure - arrival; /*delay in queue*/

else
I* no delay *I delay

service
wait
departure

= 0.0;
GetService();
delay + service;
arrival + wait; /*time of departure *I

if (index
sum.delay
sum.wait

3) {

+= delay;
+= wait;

sum.service += service;
fprintf (fptr, "%7. 5lf\n", wait); }

}

sum.interarrival = arrival - START;
}

fclose(fptr);
printf ("\nfor the %ldrd job\n", index - 1);

printf (" average wait = %6. 5f\n 11
,

sum.wait I i);
printf(" average delay

sum.delay I i);
printf(" average service time

sum.service I i);
return (0);

= %6.5f\n 11
,

= %6.5f\n",

167

file:///nfor

Appendix F

Discrete-Event Simulations for

Customers 1 and 2

The following simulations are written for R/S-Plus providing the measures of perfor­

mance for approaches 1 and 2 in Section 6.5.1. The time to execute the simulation

is negligible. Each code segment has been vectorized in order to take advantage of

R/S-Plus' efficiency in manipulating vectors.

Next-event discrete-event simulation for customers
1 and 2 to calculate their covariance and
correlation.
Name
Author
Language
Latest Revision

approach1.txt
Billy Kaczynski
R/S-Plus
10/29/08

Approach 1:

N <- 10000000
lambda <- 1
mu <- 2

168

Appendix F. Discrete-Event Simulations for Customers 1 and 2

t1 <- rexp(N, mu)
a2 <- rexp(N, lambda)
c1 <- which(a2 > t1)
c2 <- which(t1 > a2)
t1c1 <- t1[c1]
t1c2 <- t1[c2]
y <- t1 [c2] - a2 [c2]
t2c1 <- rexp(length(c1), mu)
t2c2 <- rexp(length(Y), mu) + Y
t1 <- c (t1c1, t1c2)
t2 <- c(t2c1,

mean(t1)
var (t1)
mean(t2)
var(t2)
mean(Y)
var(Y)
mean(t2c2)
var(t2c2)
cov(t1, t2)
cor(t1, t2)

t2c2)

169

Appendix F. Discrete-Event Simulations for Customers 1 and 2

Conditional discrete-event simulation for customers
1 and 2 to calculate their covariance and
correlation.
Name
Author
Language
Latest Revision

approach2.txt
Billy Kaczynski
R/S-Plus
10/29/08

Approach 2:

N <- 10000000
U <- runif (N)

lambda <- 1
mu <- 2
p <- lambda I (lambda + mu)

t1 <- rexp(N, lambda+
t2 <- rexp(N, mu)
c1 <- which(U > p)
c2 <- which(U < p)
y <- rexp(length(c2),
t1c1 <- t1[c1]
t1c2 <- t1[c2]
t2c1 <- t2 [c1]
t2c2 <- t2 [c2]
t1 <- c(t1c1,
t2 <- c(t2c1,

mean(t1)
var(t1)
mean(t2)
var(t2)
mean(Y)
var(Y)
mean(t2c2)
var(t2c2)
cov(t1, t2)
cor(t1, t2)

+ y

+ y

t1c2)
t2c2)

mu)

mu)

170

Appendix G

Derivation of the Trivariate

Sojourn Time Distribution

The trivariate joint probability distribution of the sojourn times for customers 1, 2,

and 3 in an initially empty and idle M/M/1 queue is derived below. The approach

uses first principles for each of the five possible arrival/departure ordering sequences,

along with a geometric description of the more complicated cases. The cases are

ordered by increasing complexity as A, B, C, D, and E, with A being the simplest

case, where the first three sojourn times are independent. Cases Band C each possess

one independent sojourn time and two dependent sojourn times. Cases D and E are

the most complicated cases, where dependence occurs between all three customers.

Let 7i be the sojourn time for customer i = 1, 2, 3 in an M/M/1 queue with

arrival rate >. and service rate J.L. Define FA(t1 , t 2 , t 3) and fA(t 1 , t2 , t3) as the joint

CDF and PDF respectively for case A for the first three customers. The notation for

cases B through E follow accordingly. Define the probabilities PA,PB, ... ,PE as the

171

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

probability that cases A through E occur respectively. The case matrix, C, is

1 -1 1 -1 1 -1

1 -1 1 1 -1 -1

C= 1 1 -1 -1 1 -1

1 1 -1 1 -1 -1

1 1 1 -1 -1 -1

where rows 1 through 5 of C correspond to cases A through E, with 1 indicating

an arrival and -1 indicating a departure. The corresponding segment distribution

matrix C' for n = 3 is
1 0 1 0 2

1 0 1 2 2

C'= 1 1 1 0 2

1 1 1 2 2

1 1 2 2 2

There are three possible entries in C', corresponding to the distribution for each

successive segment:

• exponential(>.+ p,), which is indicated by a 1

• exponential(p,), which is indicated by a 2

• no distribution as a result of an emptied system, which is indicated by a 0.

Case A. In case A, the first three customer sojourn times are independent. The

joint CDF is therefore the product of the CDFs for each customer. The path segment

distributions for T1 , T2 , T3 are exponential (A+ p,), exponential(>.+ p,), exponential(p,)

respectively. Therefore,

172

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

Case A occurs with probability PA = ~-L2 / (>. + !-L)2
. Taking partial derivatives yields

the joint PDF

Case B. In case B, customer 1 's sojourn time is independent of the sojourn times

of customers 2 and 3. Customers 2 and 3 share a distribution segment whose duration

is denoted by Y. The path segment distributions for T1 , T2 , T3 are exponential(,\+ 1-L),

exponential(,\+ 1-L) + Y, Y + exponential(!-L), respectively, where Y"' exponential(!-L)·

Because of the dependence occurring between customers 2 and 3, the value of Y

cannot exceed either the value of T2 or of T3 . Thus the interval over which y varies

depends on the relative sojourn time possibilities t2 < t3 and t3 < t2. Conditioning

on Y, the joint CDF for case B is

1t2 (1- e-(>.+p)tl) (1- e-(>.+p)(t2-Y))

(1- e-p(t3 -y)) 1-Le-JLYdy t2 < t3

1t3 (1- e-(>.+p)tl) (1- e-(>.+p)(t2-Y))
(G.1)

(1- e-p(t3 -y)) 1-Le-JLYdy t3 < t2.

Case B occurs with probability Ps = Al-L/(>.+ 1-LY Taking partial derivatives yields

the joint PDF

Case C. This case is analogous to case B except that customer 3's sojourn time is

independent and customers 1 and 2 share the distribution segment whose duration is

denoted by Y. The path segment distributions for T1 , T2 , T3 are exponential(>.+!-L)+Y,

Y +exponential(,\+ /-L), exponential(/-L), respectively, where Y"' exponential(,\+ 1-L)-

173

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

Conditioning on Y, the joint CDF, which is similar in structure to (G.1) for case B,

is

1tl (1 - e-C>.+JL)(tl-Yl) (1 - e-(>.+JL)(t2-Y))

(1- e-JLt3) (.X+ f.L) e-(>.+JL)Ydy t1 < t2

1t2 (1- e-(>.+JL)(tl-Yl) (1- e-(>.+JL)(t2-Y))

(G.2)

(1- e-~'t3) (.X+ f.L) e-(>.+JL)Ydy t2 < t1.

Case C occurs with probability Pc = Af.L2 /(.X+ f.L) 3
. Taking partial derivatives yields

the joint PDF

f.L (2>.f.Le->.t2-JLt2-JLt3 +). 2e->.t2-JLt2-JLt3 + f.L2e->.t2-JLt2-JLt3 _

).2e->.t2-JLt2->.t1-JLt1 -JLt3 _ 2 f.L.xe->.t2-JLt2->.t1-JLt1-JLt3 _

f.L2e->.t2-JLt2->.t1 -JLtl-JLt3)

f.L (_).2e->.t2-JLt2->.t1-JLt1 -JLt3 _ 2 Af.Le->.t2-JLt2->.tJ -JLh -JLt3+

).2e->.t1-JLt1-JLt3 + 2.Xf.Le->.t1-JLt1-JLt3 + f.L2e->.t1-JLt1-JLt3 _

f.L2e->.t2-JLt2->.t1-JLt1 -JLt3)

Case D. In case D, pairwise dependence occurs between customers 1 and 2 as

well as between customers 2 and 3. This dependence leads to a more complicated

version of the joint CDF occurring in five separate subcases based on the length of

relative sojourn times. The joint CDF of T1 , T2 , and T3 is given by the integral over

region K, where K = { (y, z) : 0 < y < t1, y + z < t2, 0 < z < t 3}. Since the geometric

form of the region over which y and z can vary depend on the relative sizes of t1 , t2 ,

and t3 , we must determine appropriate limits of integration for y and z separately for

each of five possible cases:

174

file:///ti-/iti-

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

The path segment distributions for T1 , T2 , T3 are

(T1 , T2 , T3) '""' (exponential(>.+ J-L) + Y, Y +exponential(>.+ J-L) + Z,

Z + exponential(J-L)),

where Y '""'exponential(>.+ J-L) and Z'""' exponential(J-L). The integrand for each case,

denoted by I, is

Using this integrand, the joint CDF is

FD(tl, t2, t3) = J J Idy dz

K

where the region K is as formerly described. Case D occurs with probability PD =

>.2 J.L/ (>. + Jl)3
. These five subcases correspond to the five shaded regions of integration

sketched in Figures G.l through G.5.

Subcase 1 of Case D. In this subcase, where t2 < min{t1 , t3}, the region

of integration occurs in they, z plane as shown in Figure G.l, resulting in

the following integral for the joint CDF:

175

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

Taking partial derivatives of the joint CDF yields the joint PDF

!D
1
(tl> tz, t3) = (A+ A2tzet2(>.+11-) + 2AJ.dzet2(>.+!1-) + J.L2t2et2(>.+/1-)_

Aet2(>.+11-) _ J.Let2(>.+11-) + J.L) e->.t2-l-'t2->.t1-l-'tl-l-'t3 J.L2

z

y

Figure G.1: Geometric form of subcase 1, caseD, where t2 < min{t1 , t3 }.

Subcase 2 of Case D. In this subcase, where t 1 < t 2 < t 3 , the region of

integration occurs in the y, z plane as shown in Figure G.2, resulting in

the following integral for the joint CDF:

At this point in the derivation, the joint PDFs become too cumbersome

to express here. However, these expressions are tenable and are used to

include all cases and achieve the trivariate distribution.

Subcase 3 of Case D. Subcase 3 is analogous to subcase 2 except that

the ordering of sojourn time lengths changes to t 3 < t2 < t 1 . The region

of integration again occurs in they, z plane as shown in Figure G.3. This

176

Appendix G. Derivation of the 'Ihvariate Sojourn Time Distribution

z

y

Figure G.2: Geometric form of subcase 2, case D, where t1 < t2 < t3 .

region results in the following expression for the joint CDF:

z

y + z = t2

y

Figure G.3: Geometric form of subcase 3, caseD, where t 3 < t2 < t 1 .

Subcase 4 of Case D. In this subcase, where max{ t 1 , t 3 } < t 2 < t 1 + t3 ,

the region of integration occurs in they, z plane as shown in Figure G.4.

Because of the shape of the region, the integration must be split into two

177

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

parts. The joint CDF is found as

z

y

Figure G.4: Geometric form of subcase 4, case D, where max{ t1 , t3 } < t2 < t1 + t3 .

Subcase 5 of Case D. In this subcase, where t2 > t 1 + t3 , the region

of integration occurs in the y, z plane as shown in Figure G.5. The joint

CDF is found as

An intermediate check of the validity of the derivations for case D can be accom­

plished by integrating each subcase joint PDF !Di(ti, t2, t3) over its corresponding

support, which we will denote by R;, i = 1, 2, ... , 5. Since case D results in a valid

joint PDF when not weighted by PD, the sum of the five subcases integrated appro-

178

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

z

y + z = t2

y

Figure G.5: Geometric form of subcase 5, case D, where t2 > t1 +h.

priately should be one. Thus it should be true that

Defining PD; as the contribution of subcase i to the above sum, the contributions of

each of the five subcases follow.

For subcase 1, we must further consider the relative sizes of t1 and t3 . There are

two possibilities, t 1 < t3 and t 1 > t3 , which lead to the contribution of subcase 1 as

PD1 = 100 1t3 1t1

fD 1 (ti,tz,t3)dt2dt1dt3 + 100 1t1 1t3

fD 1 (ti,tz,t3)dt2dt3dt1

J..L (2>..J..L +)..2 + J..L2)
- (>..+2J..L)2(2>..+3J..L).

Using the subcase 2 joint PDF, the contribution of the subcase is

179

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

Using the subcase 3 joint PDF, the contribution of the subcase is

Using the subcase 4 joint PDF, the contribution of the subcase is

J.l (3>.2 + 7Aj.L + 4J.L2)

(2-\ + 3J.L) (2J.L + >.)2

Using the subcase 5 joint PDF, the contribution of the subcase is

It can be shown by elementary algebra that, as desired,

Case E. In case E, all three arrivals occur prior to the first departure, resulting

in pairwise dependence between customers 1 and 2, and customers 2 and 3, as well

as three-way dependence between the customers. This is the most complicated of the

five cases, though it does share some commonality with case D. The joint CDF of T1 ,

T2 , and T3 is given by the integral over region K, where K = { (y, z, w) : 0 < y, 0 <

z, 0 < w, y + z < t1 , y + z + w < t2 , z + w < t3 }. Since the limits of integration for y,

z, and w depend on the relative sizes of t1, t 2 , and t3 , we must determine appropriate

limits separately for each of the following five possible cases:

180

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

The path segment distributions for T1, T2 , T3 are exponential(A+J.L)+Y +Z, Y +Z+W,

z + w + exponential(J.L)' where y rv exponential(). + J.L)' z rv exponential(J.L)' and

W""" exponential(J.L). The integrand for each case, denoted by I, is

Using this integrand, the joint CDF is

FE(t1, t2, t3) =I I I I dy dz dw,

K

where the region K is as formerly described. Case E occurs with probability PE =

For each of the five subcases of case E, the integrals required to compute the joint

CDF are provided. However, the three-dimensional figures associated with these

subcases are not included.

Subcase 1 of Case E. The joint CDF is found as

Subcase 2 of Case E. The joint CDF is found as

Subcase 3 of Case E. The joint CDF is found as

181

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

Subcase 4 of Case E. The joint CDF is found as

Subcase 5 of Case E. The joint CDF is found as

After computing the joint CDFs for each subcase and taking partial derivatives

to find the joint PDFs, the overall joint PDF for the sojourn times of the first three

customers can be computed as the mixture

If the joint CDFs calculated for the five cases, A through E, are correct, then the

resulting joint PDFs (produced by taking the third order partial derivatives of the

joint CDFs with respect to t1, t2, and t3) should each yield the result 1 when inte­

grated over the first octant of (t1, t2, t3) space. In order to perform this consistency

check for the CDF in case E, we must partition the first octant into regions, each of

which has a different algebraic expression for the PDF, and determine appropriate

limits of integration for each region. There are six such regions, five corresponding

to the five subcases listed for case E above, and one region on which the PDF is

0, given by the impossible situation t2 > t1 + t3 (this inequality is never satisfied

since the time interval of duration t2 is a subset of the union of the time inter­

vals of duration t1 and t3). These six regions in the first octant are bordered by

the coordinate planes and by the following three planes, all of which pass through

(0, 0, 0): t1 = t2, t1 = t3, t2 = t3, and t2 = t1 + t3. Figure G.6 depicts these six

regions by showing their intersection with the plane t1 + t2 + t3 = 2. Each region

"begins" at (0, 0, 0), has three planar sides and is of infinite extent. To check the

182

Appendix G. Derivation of the Trivariate Sojourn Time Distribution

(0, 0, 2)

~r--+--------~~--~~

(0, 2, 0)

t,

Figure G.6: Geometric presentation of the five subcases for case E.

accuracy of the trivariate distribution, E [Td, E [T2], E [T3], Cov(T1 , T2), Cov(T1 , T3),

and Cov(T2 , T3) were computed. The results matched exactly those produced by

the Queue(X, Y, n, k, s) procedure and were further supported by Monte Carlo

simulation. Additionally, the marginal distributions of the sojourn times of the first

three customers were computed from the trivariate distribution, and these marginal

distributions matched those computed by conditioning. The Maple code to calculate

all joint PDFs is given at w..TT.T.math.wm.edu/leemis/trivariate.txt.

183

http://www.math.wm.edu/leemis/trivariate.txt

Appendix H

Three Customer Next-Event

Simulation for Computing

Covariance

The following simulation is written for R/S-plus providing the verification for the

covariance calculations in Section 6.5.2 for n = 3 customers.

--
Discrete-event simulation for customers 1, 2, and
3 to calculate their covariance.
#Name simt1t2t3.txt
Author
Language
Latest Revision

Billy Kaczynski
R/S-Plus
11/04/08

--

N <- 100000
t1 <- rexp(N, 2)
a2 <- rexp (N, 1)
a3 <- a2 + rexp(N, 1)
c2 <- c(1:N)
c3 <- c(1:N)
for (i in 1:N) {

184

Appendix H. Three Customer Next-Event Simulation for Computing
Covariance

if (t1[i] > a2[i]) c2[i] <- t1[i] + rexp(1, 2)
else c2[i] <- a2[i] + rexp(1, 2)

}

t2 <- c2 - a2
for (i in 1:N) {

if (a3 [i] > c2 [i]) {c3 [i] <- a3 [i] + rexp(1, 2)}
if (a3[i] < t1[i]) {c3[i] <- c2[i] + rexp(1, 2)}
if (a3[i] < c2[i] & a3[i] > t1[i]) c3[i] <- c2[i] + rexp(1, 2)

}

t3 <- c3 - a3

covt1t2 <- mean(t1 * t2) - mean(t1) * mean(t2)
covt1t2
covt1t3 <- mean(t1 * t3) - mean(t1) * mean(t3)
covt1t3
covt2t3 <- mean(t2 * t3) - mean(t2) * mean(t3)
covt2t3

185

Appendix I

Paths for n == 3 Customers in an

M/M/1 Queue

The number of arrival/departure paths possible for n = 3 customers is the third

Catalan number, or
(2n)!

c3 = '()' = 5. n. n+1.

Figure I.1 depicts the five cases as paths from the bottom left node to the top right

node of each figure. The cases are ordered according to the rows of C, the case matrix,

which are created by the prefix-shift algorithm presented in Section 6.6. In the case

matrix C, an arrival is annotated by a 1 and a departure by a -1. This algorithm

guarantees the generation of all such possible paths. For n = 3, the case matrix C is

1 -1 1

1 1 -1

1 -1 -1

1 -1 -1

C= 1 -1 1 -1

1

1

1 -1 -1

1 -1

1 -1

1 1 -1 -1 -1

Moving right in the figure denotes an arrival and moving up denotes a service

completion. Diagonal moves are not permitted. These paths provide the methodology

186

Appendix I. Paths for n = 3 Customers in an M / M /1 Queue

for calculating the probability associated with each case along with the appropriate

probability distribution for each case.

•

i
• •

i

•

i
• •

i

•

i t___..
f___..___.. . ._____,..... .____.. .

i i . _____,..... . . ._____,....._____,..... . ._____,..... . .
•

i t___..
• • •

i . _____,....._____,..... .

•

i
• •

i
• • •

i . _____,.... ._____,..... _____,.... .
Figure I.l: Five paths for n = 3 customers' sojourn times in an M / M /1 queue.

187

Appendix J

Exact Covariance Calculations in

an M/M/1 Queue

The list of procedures presented here collectively calculates the covariance between

two specific customers in an MIMI 1 queue, without regard to the usual traffic inten­

sity requirement p < 1. Select procedures also return interesting pieces of information,

such as the joint PDF for customers a and b, the probability a specific case occurs, a

vector of probabilities for all cases, etc. Each procedure is summarized in a comment

block and required arguments are provided.

J .1 cases(n)

#cases(n)
#--
Generates all possible arrival/departure sequences for
n customers in an M/M/1 queue initially empty and idle.
#Resulting list of sequences consists of 1's and -1's,
where a 1 is an arrival and a -1 is a departure. The
sequences are returned in the matrix C, of dimension c
by 2n, where c in the nth Catalan number calculated as
(2n)! In! I (n + 1)!. The procedure calls ini(n) to

188

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

initialize the first sequence in the matrix, then uses
#the procedures swapa(n, A), swapb(n, A), and okay(n, A)
to create the remaining sequences according to a
prefix shift algorithm. For each row in the resulting
matrix, an associated path matrix can be generated via
#the procedure path(n, A).

Name cases.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
01112109

#--

cases := proc(n)
options remember;
local c, C, i;
c := (2 * n)! In! I (n + 1) !;
C := Matrix(c, 2 * n);
for i from 1 to c do

if (i = 1) then
C[[i], 1 -1] ini(n);

else
c [[i] ' 1 -1] swapa(n, C[[i- 1], 1 .. -1]);

fi:
if (okay(n, C[[i], 1 .. -1]) = 0) then

C[[i], 1 .. -1] := swapb(n, C[[i - 1], 1 .. -1]);

fi:
od:
return C;

end:

189

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J .2 ini(n)

#ini(n)
#--
Initializes the matrix C according the Ruskey and
Williams (2008) . Returns the first row of C to enable
use of their prefix shift algorithm. Requires the
parameter n, the number of customers.

#Name ini.mw
Author Billy Kaczynski
Language MAPLE 9

Latest Revision 01/11/09

ini := proc(n)
options remember;
local L, i;
L :=Matrix(!, 2 * n, -1):
L[1, 1] := 1:
for i from 3 to (n + 1) do

L [1, i] : = 1

od:
for i from (n + 2) to (2 * n) do

L[1, i] -1

od:
return L:

end:

190

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.3 swapa(n, A)

swapa(n, A)
#--
Conducts the (k + 1)st prefix shift in creating all
instances of the case matrix, C, according to Ruskey
#and Williams (2008). Requires the arguments n, number
of customers, and A, row i of C. Returns the
successor of C[i,] to be checked by the procedure
okay(n, A).

Name swapa.mw
Author Billy Kaczynski
Language MAPLE 9
Latest Revision 01/11/09

swapa := proc(n, A)
local check, i, temp1, j, R;
R :=A;
check := 1;

for i from 2 to (2 * n - 1) do
if ((R[1, i] = -1) and (R[1, (i + 1)] = 1)) then

temp1 := R[1, i + 2];
R[1 .. 1, 3 .. (i+2)] R[1 .. 1, 2 .. (i + 1)];
check := 0;
R[1, 2] := temp1;

fi:
if (check = 0) then break fi;

od:
return R:

end:

191

Appendix J. Exact Covariance Calculations in an MIMI 1 Queue

J.4 swapb(n, A)

swapb(n, A)
#--
Conducts the (k)th prefix shift in creating all
instances of the case matrix, C, according to Ruskey
#and Williams (2008). Requires the arguments n, number
of customers, and A, row i of C. Returns the
successor of C[i,] in the event that okay(n, a)
identifies the output of swapa(n, a) invalid.

Name swapb.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
01/11/09

swapb := proc(n, B)
local check, i, temp, j;
check := 1;
for i from 2 to (2 * n - 2) do

if ((B[1, i] = -1) and (B[1, (i + 1)] = 1)) then
temp := B[1, i + 1];
B[[1 .. 1], [3 .. (i + 1)]] := B[1 .. 1, 2 .. (i)];
check := 0;
B[1, 2] := temp;

fi:
if (check = 0) then break fi;

od:
return B:

end:

192

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.5 okay(n, E)

okay(n, E)
#--
Checks the output of swapa(n, A) for an illegal prefix
shift, meaning the result contains an impossible
arrival/service sequence. Requires arguments n,
number of customers, and E, resulting vector from
swapa(n, A). If the (k + 1)st shift is legal,
okay(n, E) returns 1, signifying the correct successor
in C. If the (k + 1)st shift is illegal, okay(n, E)

returns 0 which in turn calls swapb(n, A) to produce
the correct successor row in C.

Name okay.mw
Author Billy Kaczynski
Language MAPLE 9
Latest Revision 01/11/09
--

okay := proc(n, E)

local s, i, test;
test : = 1:
s := 0;
for i from 1 to (2 * n - 1) do

s : = s + E [1, i] ;
if (s < 0) then

test := 0;
break;

fi:
od:
return test;

end:

193

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J .6 path(n, A)

path(n, A)
#---
#Creates a path matrix of size (n + 1) by (n + 1), where
1's represent the arrival/service sequence for a given
row of the case matrix C. All other elements in the
path matrix are 0. The path starts at t.he lower-left
corner of the matrix and moves to the upper-right
corner. The first leg of the path is always the
arrival of customer 1 represented by the entries in the
[n + 1, 1] and [n + 1, 2] positions. A 1 to the right
of the previous 1 signifies an arrival, while a 1 above
the previous 1 signifies a service completion. The
procedure requires the arguments n, number of customers
and A, a row from the case matrix C.

Name path.mw
Author Billy Kaczynski
Language MAPLE 9
Latest Revision 01/12/09

path := proc(n, A)
local j, row, col, pat;
row n + 1;
col := 2;
pat := Matrix(n + 1, n + 1);
pat [n + 1 , 1] : = 1;
pat [n + 1, 2] : = 1;
for j from 2 to (2 * n) do

if (A[1, j] = 1) then
col := col + 1;
pat[row, col] := 1;

else
row := row - 1;
pat[row, col] := 1;

fi;
od:
return pat;

end:

194

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.7 Cprime(n, C)

Cprime(n, C)
#--
#Produces the matrix defined as C', that is the
distribution segment matrix where each row represents
the distribution segments for the case represented by
the corresponding row in the case matrix C. The
elements of C' are limited to a 0, 1, and 2, where 0
implies no sojourn time distribution segment due to an
emptying of the system, 1 implies a competing risk of an
arrival or completion of service and is distributed
exponential(lambda + mu), and a 2 implies a service
completion distribution leg which is distributed
exponential(mu). The matrix C' has the same number of
rows as C, and 2n - 1 columns. Cprime(n, C) calls
path(n, A) and uses the path matrix to determine the
appropriate probability distribution function segments.
The procedure requires the arguments n, number of
customers and C, the case matrix.

Name
Author
Language
Latest Revision

Cprime.mw
Billy Kaczynski
MAPLE 9
01/12/09

--

Cprime := proc(n, C)
local prime, i, pat, dist, j, row, col;
prime := Matrix(RowDimension(C), 2 * n- 1);
for i from 1 to RowDimension(C) do

row n + 1;
col := 2;
pat := path(n, C[[i], 1 .. -1]);
dist := Matrix(1, 2 * n- 1);
for j from 1 to (2 * n - 1) do

if (pat[row- 1, col] = 1) and (col < n + 1) then
row : = row - 1 ;
dist[1, j] := 1;

elif (pat[row- 1, col] 1) and (col n + 1) then
row : = row - 1 ;

195

Appendix J. Exact Covariance Calculations in an M / M /1 Queue

dist[1, j] := 2;
elif (pat[row, col + 1]

col := col + 1;
dist[1, j] := 1;

else
col : = col + 1 ;
dist[1, j] 0;

fi;

od;
prime [[i] , 1 . . -1]

od;
return prime;

end:

dist;

1) and (row + col > n + 2) then

196

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.8 caseprob(n, P)

caseprob(n, P)
#---
Computes the probability associated with a given row of the
case matrix C as represented by the path created by
path(n, A). Similar to how C' identifies the appropriate
distribution segments along the path, caseprob(n, P)
identifies the appropriate probability for each leg of the
path based on whether a competing risk occurs. Requires the
arguments n, number of customers and P, the path of a given
case. Returns the probability of the case passed to the
procedure.

#Name caseprob.mw
Billy Kaczynski
MAPLE 9
01112109

Author
Language
Latest Revision

caseprob := proc(n, P)
global X, Y;
local p, j, row, col;
p := 1;
row := n + 1;
col := 2;
for j from 1 to (2 * n - 1) do

if (P[row - 1, col] = 1) and (col < n + 1) then
row : = row - 1;
p := p * 1 I Mean(Y) I (1 I Mean(X) + 1 I Mean(Y));

elif (P[row - 1, col] = 1) and (col n + 1) then
row := row - 1;

elif (P[row, col + 1]
col := col + 1;

1) and (row + col > n + 2) then

p := p * 1 I Mean(X) I (1 I Mean(X) + 1 I Mean(Y));
else col
fi;

od:
return p;

end:

col + 1;

197

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J .9 probvec(n)

probvec(n)
#--
Uses the procedure caseprob(n, P) successively to build a
vector of probabilities, one for each case of the C matrix.
#This vector has length (2n)! In! I (n = 1)!, which the the
n-th Catalan number. Requires the argument n, the number
of customers.

Name

Author
Language
Latest Revision

probvec.mw
Billy Kaczynski
MAPLE 9
01112109

--

probvec := proc(n)
local i, p, c;
c := (2 * n)! In! I (n + 1)!;
p := Vector(c);
for i from 1 to c do

p[i] caseprob(n, path(n, cases(n) [[i], 1
od:
return p;

end:

198

-1]));

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.lO Tmat(a, b, A)

Tmat(a, b, A)
#---
Creates the 2 by 2 matrix for determining whether selected
customer sojourn times are independent. Also provides
information on the required distribution segments for
calculating the joint distribution between two customers.
Requires the arguments a, the first customer of interest in
the system, b, the second customer of interest in the
system, and A, a single row of the case matrix C,
representing a given case. It uses this row of C to
identify the start and finish indices for customers a and
b. If these indices overlap, sojourn times are dependent,
if they do not overlap the sojourn times are independent.

Name

Author
Language
Latest Revision

Tmat.mw
Billy Kaczynski
MAPLE 9
01/12/09

Tmat := proc(a, b, A)
local sta, fina, stb, finb, indexa, indexb, i, T;
indexa := 0;
indexb := 0;
for i from 1 to ColumnDimension(A) do

if A[1, i] = 1 then
indexa := indexa + 1;
if indexa = a then sta i
fi:
if indexa
fi:

elif A [1, i]
indexb :=
if indexb
fi:
if indexb
fi:

fi:
od:

= b then stb - i

= -1 then
indexb - 1·

'
-(a) then fina

-(b) then finb

·= i

- i

199

Appendix J. Exact Covariance Calculations in an M / M /1 Queue

T := Matrix(2, 2, [[sta, fina], [stb, finb]]);

return T;
end:

200

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.ll inde(a, b, T, A)

inde(a, b, T, A)
#---
Calculates the case-specific joint cumulative distribution
function for customers a and b whose sojourn times are
independent by multiplying the CDFs of each customer. The
individual customer CDFs are calculated by determining the
type and number of distribution legs using the arguments a, the
first customer of interest, b, the second customer of interest,
T, the resulting matrix from the call Tmat(a, b, A), and A, the
row of C' associated with the specific case. The CDF forms
for each case arise from appropriately defined random variables
in APPL. The procedure returns the joint cumulative distribution
function in a vector of length two, where both elements are
identical in order to match the piecewise result for customers
with dependent sojourn times.

#Name

Author
inde.mw
Billy Kaczynski
MAPLE 9
01/12109

Language
Latest Revision

inde := proc(a, b, T, A)
options remember;
global X, Y;
local i, dist1, dist2, jcdf, expa, expb;
expa := 0;
expb := 0;
for i from 1 to (T[1, 2] - T[1, 1]) do

if A[1, T[1, 1] + i - 1] = 1 then
expa := expa + 1;

elif A[1, T[1, 1] + i - 1] = 2 then
expb expb + 1;

fi:
od:
if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa)
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb)
else dist1 := [[unapply(conv(expa, expb), t)], [0, infinity],

["Continuous", "PDF"]];

201

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

fi:
expa := 0;
expb := 0;
for i from 1 to (T[2, 2] - T[2, 1]) do

if A[1, T[2, 1] + i - 1] = 1 then
expa := expa + 1;

elif A[1, T[2, 1] + i - 1] = 2 then
expb

fi:
od:

expb + 1;

if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa)
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb)
else dist2 := [[unapply(conv(expa, expb), t)], [0, infinity],

["Continuous", "PDF"]];
fi:
jcdf apply(op(CDF(dist1)[1]), t[a]) *

apply(op(CDF(dist2)[1]), t[b]);
return Matrix([jcdf, jcdf]);

end:

202

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.12 dep(a, b, T, A)

dep(a, b, T, A)
#--
Calculates the case-specific joint cumulative distribution
function for customers a and b whose sojourn times are dependent
#by conditioning on the overlap distribution segment(s). The
customer sojourn time segments are divided up into their
associated independent and dependent (overlap) portions. This
amounts to three segments, customer a's independent portion
defined as dist1, customer b's independent portion defined as
dist2, and the dependent overlap portion defined as dist3. The
joint cumulative distribution function has two pieces, for the
cases when t[a] < t[b] and t[b] < t[a].

#Name dep.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
01/12/09

dep := proc(a, b, T, A)
options remember;
global X, Y;
local i, expa, expb, dist1, dist2, dist3, jcdftop, jcdfbot;
expa := 0;
expb := 0;
for i from 1 to (T[2, 1] - T[1, 1]) do

if A[1, T[1, 1] + i - 1] = 1 then
expa := expa + 1;

elif A[1, T[1, 1] + i - 1] = 2 then
expb

fi:
od:

expb + 1;

if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa)
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb)
else dist1 := [[unapply(conv(expa, expb), t)], [0, infinity],

["Continuous", "PDF"]];
fi:
expa - O·

'
expb - O·

'

203

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

for i from 1 to (T[2, 2] - T[1, 2]) do
if A[1, T[1, 2] + i - 1] = 1 then

expa := expa + 1;
elif A[1, T[1, 2] + i - 1] = 2 then

expb expb + 1;
fi:

od:
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa)
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb)
else dist2 := [[unapply(conv(expa, expb), t)], [0, infinity],

["Continuous", "PDF"]];
fi:
expa := 0;
expb := 0;
fori from 1 to (T[1, 2] - T[2, 1]) do

if A[1, T[2, 1] + i - 1] = 1 then
expa : = expa + 1 ;

elif A[1, T[2, 1] + i - 1] = 2 then
expb

fi:
od:

expb + 1;

if expb = 0 then dist3 := ErlangRV(1 I Mean(X) + 1 I Mean(Y), expa)
elif expa = 0 then dist3 := ErlangRV(1 I Mean(Y), expb)
else dist3 [[unapply(conv(expa, expb), t)], [0, infinity],

fi:
jcdftop

jcdfbot

["Continuous", "PDF"]];

int(apply(op(CDF(dist1)[1]), t[a] - y) *
apply(op(CDF(dist2)[1]), t[b] - y) *
apply(op(PDF(dist3)[1]), y), y = 0 .. t[a]);
int(apply(op(CDF(dist1)[1]), t[a] - y) *
apply(op(CDF(dist2)[1]), t[b] - y) *
apply(op(PDF(dist3)[1]), y), y = 0 .. t[b]);

return Matrix([jcdftop, jcdfbot]);
end:

204

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J .13 jpdf(a, b, n)

jpdf(a, b, n)
#--
Creates the case joint cumulative distribution functions in a
#matrix with dimension (2n)! In! I (n + 1)! by 2. Calls the
procedure Tmat(a, b, A) and depending on the structure
#returned, calls the procedures inde(a, b, T, A) or
dep(a, b, T, A) to generate the appropriate case-wise joint
cumulative distribution function. Requires arguments a, the
index of the first customer of interest, b, the index of the
second customer of interest, and n, the number of customers.

#Name jpdf.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
01113109

--

jpdf := proc(a, b, n)
local C, i, c, dist, T;
C := cases(n);
c := (2 * n)! In! I (n + 1)!;
dist := Matrix(c, 2);
for i from 1 to c do

T := Tmat(a, b, C[[i], 1 .. -1]);
if T[1, 2] < T[2, 1] then

dist[[i], 1 -1] inde(a, b, T, Cprime(n, C[[i], 1 .. -1]));
else

dist [[i], 1
fi:

od:
return dist;

end:

-1] dep(a, b, T, Cprime(n, C[[i], 1 .. -1]));

205

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.14 conv(m, n)

conv(m, n)
#---
Sums the appropriate distribution segments for the independent
and dependent portions of customer sojourn times bypassing the
required calls to Convolution(X, Y) in APPL by rewriting the
integral as sums. Saves significant CPU time by recognizing
that these segments can all be written as a sum of Erlang random
variables. Requires the arguments m, the number of
expon(lambda + mu) segments and n, the number of expon(mu)
segments.

#Name conv.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
0212109

conv := proc(m, n)
options remember;
global X, Y;
local f1, f2, r, x, t, pdf;
f1 := unapply((-1) - r * (m- 1 + x)! * (t) - (m- 1 + x- r) I

(m- 1 + x- r)! I (1 I Mean(Y) - (1 I Mean(X) +

1 I Mean(Y))) - (r + 1), r, x);
f2 unapply((-1) - x * (n- 1)! I (n- 1- x)! I x! *

w - (n - 1 - x) * exp((1 I Mean(Y) (1 I Mean(X) +
1 I Mean(Y))) * t), x);

pdf (1 I Mean(X) + 1 I Mean(Y)) - m * (1 I Mean(Y)) - n *
exp(-(1 I Mean(Y)) * w) I (m- 1)! I (n- 1)! * add(f2(x)
* add(f1(r, x), r = 0 .. m- 1 + x), x = 0 .. n- 1);

return simplify(subs(t = w, pdf) - subs(t = 0, pdf));
end:

206

Appendix J. Exact Covariance Calculations in an M/M/1 Queue

J.l5 Cov(a, b, n)

Cov(X, Y, a, b)
#--
Mixes the results returned by probvec(n) and jpdf(a, b, n) to
compute the joint cumulative distribution function encompassing
all cases. Differentiates the results to produce the piecewise
joint probability distribution function. Calls Queue(n, k, s)
to find the appropriate expected values for the customers of
interest, then uses the expected values along with the expected
#value E(T[a]T[b]) found using the joint probability distribution
#function to compute the covariance as Cov(T[a], T[b]) =
E(T[a]T[b]) - E(T[a])E(T[b]). Requires the arguments X, the
distribution of time between arrivals in the APPL list-of-lists
#format, Y, the service time distribution in the list-of-lists
format, a, the index of the first customer of interest, and b,
#the index of the second customer of interest (a< b).

#Name cov.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
01/13/09

--

Cov := proc(X, Y, a, b)
global lambda!, lambda2;
local JPDFMAT, PVEC, JPDF, fta, ftb, Etatb, Eta, Etb, Cov;
JPDFMAT := jpdf(a, b, b);
PVEC := probvec(b);
JPDF := Transpose(JPDFMAT) . PVEC;
fta := simplify(diff(diff(JPDF[1], t[a]), t[b]));
ftb := simplify(diff(diff(JPDF[2], t[a]), t[b]));
Etatb := int(int(t[a] * t[b] * fta, t[a] = 0 .. t[b]),

t[b] = 0 .. infinity) + int(int(t[a] * t[b] *
ftb, t[b] = 0 .. t[a]), t[a] = 0 .. infinity);

Eta Mean(Queue(X, Y, a, 0, 1));
Etb := Mean(Queue(X, Y, b, 0, 1));
Cov Etatb - Eta * Etb;
return Cov;

end:

207

Appendix K

Sojourn Time Monte Carlo

Simulation

The following S-Plus/R code is a Monte Carlo simulation capturing sojourn times

of the first n customers in an M j M /1 queue that is initially empty and idle and

computing the variance of their sample mean. The simulation is used to verify the

calculations shown in Example 5 in Chapter 6. The algorithm used to create the code

is from Leemis and Park (2006).

--

#Monte Carlo simulation for customers 1, 2, ... , n to
calculate their sojourn times in an M/M/1 queue.
Name
Author
Language
Latest Revision

tn.txt
Billy Kaczynski
R/S-Plus
02/04/09

--

lambda <- 1
mu <- 10 I 9
N <- 1000000
n <- 10
Tbar <- matrix(O, N)
for (j in 1:N) {

208

Appendix K. Sojourn Time Monte Carlo Simulation

C <- matrix(O, n)
D <- matrix(O, n)
A <- matrix(O, n)
S <- rexp(n, mu)
C[1] <- S[1]

for (i in 2:n) {
A[i] <- A[i - 1] + rexp(lambda)

}

i <- 1
while (i < n) {

i <- i + 1

}

if (A [i] < C [i - 1]) {

D[i] <- C[i - 1] - A[i]
}

else
D[i] <- 0
C [i] <- A [i] + D [i] + S [i]

Tbar[j] <- mean(D + S)
}

var(Tbar)

209

Appendix L

Counting Sequences with k

Customers Present at Time Zero

It is natural to ask the following question: If a queueing system is preloaded with

k customers at time zero, and n more customers arrive after time zero, how many

sequences of arrival and service times are possible? We will develop a formula to

answer that question.

Any particular sequence of arrivals and servicings can be represented by a vector

of 1 's and -1 's as before, but since the system is preloaded with k customers, the

vector must begin with k ones. For example, if a system is preloaded with k = 2

customers and n = 1 additional customer arrives later, the three possible sequences

of arrivals and servicings are represented by the vectors

(1, 1, 1, -1, -1, -1), (1, 1, -1, 1, -1, -1), and (1, 1, -1, -1, 1, -1).

Denote the number of ways that n additional customers can arrive and be served,

given that the system is preloaded with k customers that must also be served by

C(nlk). Using this notation, C(niO) = Cn, the nth Catalan number, as defined

earlier.

210

Appendix L. Counting Sequences with k Customers Present at Time
Zero

It is easy to see that C(nj1) = Cn+l for n = 1, 2, 3, ... since both can be determined

by counting vectors with n + 1 ones and n + 1 minus ones, each vector beginning with

a one.

Developing a general formula for C(njk) is based on two recursion formulas, one

for k even and one for k odd. If k ~ 2 is even, the vectors of k + n ones and k + n

minus ones that comprise C(njk) are the same as the vectors of (n + 1) + (k- 1)

ones and (n + 1) + (k- 1) minus ones that comprise C(n + 1jk- 1), except for those

vectors of C(n + 1jk- 1) that begin with k- 1 ones followed immediately by a minus

one, of which there are C(n + 1jk- 2), because the k- 1 ones followed by a minus

one effectively constitute a preload of k - 2 customers that must be followed by n + 1

arrivals. Thus if k ~ 2 is even,

C(njk) = C(n + 1jk -1)- C(n + 1jk- 2)

for n = 1, 2,

If k ~ 3 is odd, we again form the vectors of C(njk) by removing inappropriate

vectors from those that comprise C(n + 1jk- 1). However, in this case we remove

vectors that begin with k - 1 ones followed by a minus one in two steps. We first

remove vectors that begin with k - 1 ones followed by the ordered pair (-1, 1), of

which there are C(njk - 1) because the k - 1 ones followed by (-1, 1) effectively

constitute a preload of k - 1 customers that must be followed by n arrivals. We then

remove vectors that begin with k - 1 ones followed by (-1, -1), of which there are

C(n + 1jk- 3), because the k- 1 ones followed by (-1, -1) effectively constitute a

preload of k - 3 customers that must be followed by n + 1 arrivals. Thus if k ~ 3 is

odd,

C(njk) = C(n + 1jk- 1)- C(njk- 1)- C(n + 1jk- 3)

for n = 1, 2,

Using the fact that C(njO) = Cn and C(nj1) = Cn+l for n = 1, 2, ... and the

211

Appendix L. Counting Sequences with k Customers Present at Time
Zero

above two recursion formulas, we find that for n = 1, 2, ... ,

C(nl2) = Cn+2- Cn+l1

C(nl3) = Cn+3- 2Cn+21

C(nl4) = Cn+4 - 3Cn+3 + Cn+21

C(nl5) Cn+5 - 4Cn+4 + 3Cn+3,

C(nl6) Cn+6- 5Cn+5 + 6Cn+4- Cn+31

C(nl7) Cn+7 - 6Cn+6 + 10Cn+5 - 4Cn+4·

The pattern emerging in these formulas can be expressed by the following general

result:
Lk/2J k .

C(nlk)= '2:::>-I)J(~ 1)cn+k-j
j=O J

for k = 0, I, 2, ... and n = I, 2, ... , where l·J denotes the greatest integer function.

It is easy to see that this general result is true for k = 0 and k = I. In order to

show that it is true for k 2: 2, we proceed by induction, showing that if the result

is true for 0, I, 2, ... , k- I, then the result is true for k. Since there are different

recursion formulas for k even and k odd, we must treat these two cases separately.

First let us suppose that k 2: 2 is even and that the general result is true for

0, 1, 2, ... , k- 1. Then for n = I, 2, ... ,

C(nlk) C(n +Ilk- I)- C(n +Ilk- 2)

lk21 J . (k- 1 - j) lk22 J . (k- 2- j)
= f; (-1)1 j Cn+k-j- f; (-I)1 j Cn+k-1-j·

212

Appendix L. Counting Sequences with k Customers Present at Time
Zero

Shifting the index of summation by one in the second sum, the previous line becomes

C(nik) ~ . (k -1 - j) ~ . (k -1 -j) L.,..(-1)1
. Cn+k-j + L.,..(-1)1

. _ 1 Cn+k-j
j=O J j=l J

~ C•+> + ~(-l)i [e-~- j) + (k 7 ~; j) l Cn+k-; + (-!)'12Cn+>-'i'

Lk/2J (k .) L (-1)j ~ J Cn+k-j,
j=O J

as desired. Second, we complete the proof by induction by showing that if k 2: 3 is

odd and the general result is true for 0, 1, 2, ... , k- 1, then it is true for k. For k 2: 3

odd and n = 1, 2, ... ,

C(nik) = C(n + 1lk- 1)- C(nik- 1)- C(n + 1lk- 3)

= ~ . (k -1 -j) ~ . (k -1 - j)
L.,.. (-1)1 . Cn+k-j - L.,.. (-1)1 . Cn+k-1-j
j=O J j=O J

~ ·(k-3-j) - L.,..(-1)1
. Cn+k-2-j·

j=O J

Shifting the index of summation by one in the second sum and by two in the third

sum, the previous line becomes

C(nik) = I:(-1)J(k- ~- j)cn+k-j + I:(-1)j(~ = {)cn+k-j
j=O J j=l J

~ ·(k-1-j) - L.,..(-1)1 . _
2

Cn+k-j·
j=2 J

Removing the first two terms from the first sum, the first and last term from the

213

Appendix L. Counting Sequences with k Customers Present at Time
Zero

second sum, and the last term from the last sum yields

k+1 k+1
C(nlk) = Cn+k- (k- 2)Cn+k-l- Cn+k-l + (-1)-2 Cn+k-1- (-1)-2 Cn+k-1

2 2

Lk;

1

- j [(k- 1- j) (k- j) - (k- 1- j)] . + (1) . + .
1

.
2

Cn+k-J
. J J- J-
]=2

k;1 (k ")
= Cn+k- (k- 1)Cn+k-1 + L(-1)j ~ J Cn+k-j

j=2 J

Lk/2J (k .)
:L(-1)j ~J Cn+k-j·
j=O J

214

Appendix M

Monte Carlo Simulation for

Covariance Estimation Between

Customers a and b with k

Customers Present at Time Zero

This code estimates the covariance between the sojourn times of customers i and j

in an M j M /1 queue with k customers present at time zero, where i, j :::; k. The code

substantiates the results from Theorem 6.4.

--
Monte Carlo simulation for the sojourn time covariance between
customers i, j <: k, where k customers are present at time zero.

Name

Author
Language
Latest Revision

kcov.txt
Billy Kaczynski
R/S-Plus
03/20/09

--

N <- 1000000

215

Appendix M. Monte Carlo Simulation for Covariance Estimation
Between Customers a and b with k Customers Present at Time Zero

T1 <- rexp(N, 5)
T2 <- Tl + rexp(N, 5)
T3 <- T2 + rexp(N, 5)
T4 <- T3 + rexp(N, 5)
T5 <- T4 + rexp(N, 5)
cov(T1, T2)
cov(Tl, T3)
cov(Tl, T4)
cov(T1, T5)
cov(T2, T3)
cov(T2, T4)
cov(T2, T5)
cov(T3, T4)
cov(T3, T5)
cov(T4, T5)

216

Appendix N

Calculating Covariance Between

Customers in an M/M/1 Queue

with k Customers Present at Time

Zero

The list of procedures presented here calculates the covariance between two specific

customers in an M / M /1 queue, where k customers are present at time zero and n

additional customers arrive and process through the system after time zero, without

regard to the usual traffic intensity requirement p < 1. Some procedures mentioned

but not included have already been provided in Appendix E.

N.l kcases(n, k)

kcases(n, k)
--

Generates all possible arrival/departure sequences for n
customers in an M/M/1 queue with k customers initially present.
#Resulting list of sequences consists of 1's and -1's, where a 1

217

Appendix N. Calculating Covariance Between Customers in an
MIMI 1 Queue with k Customers Present at Time Zero

is an arrival and a -1 is a departure. The sequences are
returned in the matrix C. The procedure calls cases(n + k)
which subsequently calls ini(n + k) to initialize the first
#sequence in the matrix, then uses the procedures swapa(n, A),
swapb(n, A), and okay(n, A) to create the remaining sequences
according to a prefix-shift algorithm. C is then simplified by
deleting the rows where the first k entries are not 1s.
Furthermore, the first k columns are also deleted since they
must all contain 1s to represent the arrivals of the k
customers present at time zero. For each row in the resulting
matrix, an associated path matrix can be generated via the
#procedure kpath(n, k, A).

#Name
Author
Language
Latest Revision

kcases.mw
Billy Kaczynski
MAPLE 9
03/07/09

#---

kcases := proc(n, k)
local i, j, C;
C := cases(n + k);
j := 1;
while j < RowDimension(C) + 1 do

if (add(C[j, i], i = 1 .. k) <> k) then
C := DeleteRow(C, j);

else
j ·= j + 1;

fi:
od:
C := DeleteColumn(C, 1 .. k);
return C;

end:

218

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.2 kpath(n, k, A)

kpath(n, k, A)
#--
#Creates a path matrix of size (n + k + 1) by (n + 1), where 1s
represent the arrival/service sequence for a given row of the
case matrix C. All other elements in the path matrix are 0.
The path starts at the lower-left corner of the matrix and
moves to the upper-right corner. The first leg of the path is
either the arrival of a customer represented by the entry in
the [n + k + 1, 2] position or a departure represented by the
entry in the [n + k, 1] position. A 1 to the right of the
previous 1 signifies an arrival, while a 1 above the previous 1
signifies a service completion. The procedure requires the
arguments n, the number of customers processing through the
system arriving after time 0, k, the number of customers
present at time 0, and A, a row from the case matrix C.

#Name kpath.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
03/07/09

--

kpath := proc(n, k, A)
local j, row, col, pat;
row := n + k + 1;
col := 1;
pat := Matrix(n + k + 1, n + 1);
pat[n + k + 1, 1] := 1;
for j from 1 to (2 * n + k) do

if (A[1, j] = 1) then
col := col + 1;
pat[row, col] := 1;

else
row := row - 1;
pat[row, col] := 1;

fi;
od:
return pat;

end:

219

Appendix N. Calculating Covariance Between Customers in an
M/M/1 Queue with k Customers Present at Time Zero

N.3 kCprime(n, k, C)

kCprime(n, k, C)
#--
#Produces the matrix defined as C', that is the distribution
segment matrix where each row represents the distribution
segments for the case represented by the corresponding row
in the case matrix C. The elements of C' are limited to a
0, 1, and 2, where 0 implies no sojourn time distribution
segment due to an emptying of the system, 1 implies a
competing risk of an arrival or completion of service and is
#distributed exponential(lambda + mu), and a 2 implies a
service completion distribution leg which is distributed
exponential(mu). The matrix C' has the same number of rows as
C, and 2(n + 1) + k columns. Cprime(n, k, C) calls
kpath(n, k, A) and uses the path matrix to determine the
appropriate probability distribution function segments.
The procedure requires the arguments n, number of customers
arriving after time 0, k, the number of customers present at
time 0, and C, the case matrix.

#Name
Author
Language
Latest Revision

kCprime.mw
Billy Kaczynski
MAPLE 9
03/07/09

kCprime := proc(n, k, C)
local prime, i, pat, dist, j, row, col;
prime := Matrix(RowDimension(C), 2 * n + k);
for i from 1 to RowDimension(C) do

row := n + k + 1;
col := 1;
pat := kpath(n, k, C[[i), 1 .. -1));
dist := Matrix(1, 2 * n + k);
for j from 1 to (2 * n + k) do

if (pat[row - 1, col) = 1) and (col < n + 1) then
row : = row - 1 ;
dist[1, j] := 1;

elif (pat[row - 1, col] 1) and (col n + 1) then
row : = row - 1 ;

220

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

dist[1, j] := 2;
elif (pat[row, col + 1]

col : = col + 1;
dist[1, j] := 1;

else
col := col + 1;
dist[1, j] 0;

fi;
od;
prime [[i] , 1 . . -1] : = dist;

od;
return prime;

end:

1) and (row + col > n + 2) then

221

Appendix N. Calculating Covariance Between Customers in an
MIMI 1 Queue with k Customers Present at Time Zero

N.4 kcaseprob(n, k, P)

kcaseprob(n, k, P)
#--
Computes the probability associated with a given row of the
case matrix C as represented by the path created by
kpath(n, k, A). Similar to how C' identifies the appropriate
distribution segments along the path, kcaseprob(n, k, P)
identifies the appropriate probability for each leg of the
path based on whether a competing risk occurs. Requires the
arguments n, number of customers arriving after time 0, k,
the number of customers present at time 0, and P, the path
of a given case. Returns the probability of the case passed
to the procedure.

Name kcaseprob.mw
Author Billy Kaczynski
Language MAPLE 9
Latest Revision 03107109

kcaseprob := proc(n, k, P)
global X, Y;
local p, j, row, col;
p := 1;
row := n + k + 1;
col := 1;

for j from 1 to (2 * n + k) do
if (P[row - 1, col] = 1) and (col < n + 1) then

row : = row - 1 ;
p := p * 1 I Mean(Y) I (1 I Mean(X) + 1 I Mean(Y));

elif (P[row - 1, col] 1) and (col n + 1) then
row := row - 1;

elif (P[row, col + 1]

col := col + 1;
1) and (row + col > n + 2) then

p := p * 1 I Mean(X) I (1 I Mean(X) + 1 I Mean(Y));
else col := col + 1;

fi;
od:
return p;

end:

222

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.5 kprobvec(n, k)

kprobvec(n, k)
#--
Uses the procedure kcaseprob(n, k, P) successively to build a
vector of probabilities, one for each case of the C matrix.
This vector has length C. Requires the arguments n, the number
of customers arriving after time 0 and k, the number of
customers present at time 0.

Name
Author
Language
Latest Revision

kprobvec.mw
Billy Kaczynski
MAPLE 9
03/07/09

kprobvec := proc(n, k)
local i, p, C;
C := kcases(n, k);
p := Vector(RowDimension(C));
for i from 1 to RowDimension(C) do

p[i] kcaseprob(n, k, kpath(n, k, C[[i], 1 .. -1]));

od:
return p;

end:

223

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.6 kTmat(a, b, k, A)

kTmat(a, b, k, A)
#--
Creates the 2 by 2 matrix for determining whether selected
customer sojourn times are independent and whether the customer
index is less than or equal to k, the number of customers
present at time 0. Also provides information on the required
distribution segments for calculating the joint distribution
between two customers. Requires the arguments a, the index of
the first customer of interest in the system, b, the index of
the second customer of interest in the system, k, the number of
customers present at time 0, and A, a single row of the case
matrix C, representing a given case. It uses this row of C to
identify the start and finish indices for customers a and b.
If these indices overlap, sojourn times are dependent, if they
do not overlap the sojourn times are independent.

#Name kTmat.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
03/08/09

kTmat := proc(a, b, k, A)
local sta, fina, stb, finb, indexa, indexb, i, T;
indexa := 0;
indexb := 0;
if a <= k then

sta : = 1;
else

for i from 1 to ColumnDimension(A) do
if A[1, i] = 1 then

indexa := indexa + 1;
if indexa = a - k then sta := i + 1 fi:

fi:
od:

fi:
indexa := 0;
if b <= k then

stb := 1;

224

Appendix N. Calculating Covariance Between Customers in an
MIMI 1 Queue with k Customers Present at Time Zero

else
for i from 1 to ColumnDimension(A) do
if A[1, i] = 1 then

indexa := indexa + 1;
if indexa = b - k then stb i + 1 fi:

fi:
od:

fi:

for i from 1 to ColumnDimension(A) do
if A[1, i] = -1 then

indexb := indexb - 1;
if indexb = -a then fina
if indexb = -b then finb

fi:
od:

- i fi:
- i fi:

T := Matrix(2, 2, [[sta, fina], [stb, finb]]);
return T;

end:

225

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.7 kinde(a, b, k, T, A)

kinde(a, b, k, T, A)
#--
Calculates the case-specific joint cumulative distribution
function for customers a and b whose sojourn times are
independent by multiplying the CDFs of each customer. The
individual customer CDFs are calculated by determining the
type and number of distribution legs using the arguments a,
the index of the first customer of interest, b, the index of the
second customer of interest, T, the resulting matrix from the
#call kTmat(a, b, k, A), and A, the row of C' associated with the
specific case. The CDF forms for each case arise from
appropriately defined random variables in APPL. The procedure
returns the joint cumulative distribution function in a
vector of length two, where both elements are identical in
order to match the piecewise result for customers with
dependent sojourn times.

#Name kinde.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
03115109

kinde := proc(a, b, k, T, A)
options remember;
global X, Y;
local i, dist1, dist2, jcdf, expa, expb;
expa := 0;
expb := 0;
fori from 0 to (T[1, 2] - T[1, 1]) do

if A[1, T[1, 1] + i] = 1 then
expa := expa + 1;

elif A[1, T[1, 1] + i] = 2 then
expb

fi:
od:

expb + 1;

if expb 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I
Mean(Y), expa)

elif expa 0 then dist1 ErlangRV(1 I Mean(Y), expb)

226

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

else dist1

fi:
expa := 0;
expb := 0;

[[unapply(conv(expa, expb), w)], [0, infinity],
["Continuous", "PDF"]] ;

for i from 0 to (T[2, 2] - T[2, 1]) do
if A[1, T[2, 1] + i] = 1 then

expa := expa + 1;
elif A[1, T[2, 1] + i] = 2 then

expb := expb + 1;
fi:

od:
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I

Mean(Y), expa)
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb)
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity],

["Continuous", "PDF"]];
fi:
jcdf := apply(op(CDF(dist1)[1]), t[a]) *

apply(op(CDF(dist2)[1]), t[b]);
return Matrix([jcdf, jcdf]);

end:

227

Appendix N. Calculating Covariance Between Customers in an
M/M/1 Queue with k Customers Present at Time Zero

N.8 kdep(a, b, k, T, A)

kdep(a, b, k, T, A)
#--
Calculates the case-specific joint cumulative distribution
function for customers a and b whose sojourn times are
dependent by conditioning on the overlap distribution
segment(s). The customer sojourn time segments are divided
into their associated independent and dependent (overlap)
portions. This amounts to three segments, customer a's
independent portion defined as dist1, customer b's
independent portion defined as dist2, and the dependent
overlap portion defined as dist3. The joint cumulative
distribution function has two pieces, for the cases when
t[a] < t[b] and t[b] < t[a]. When a and bare both less than
or equal to k, only two distribution segments arise, dist1
and dist2, because both sojourn times start at time 0.
#Therefore the sojourn time T[b] > T[a], and the resulting
joint cumulative distribution function has only a single piece.

#Name kdep.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
03115109

kdep := proc(a, b, k, T, A)
options remember;
global X, Y;
local i, expa, expb, dist1, dist2, dist3, jcdftop, jcdfbot;
expa := 0;
expb := 0;
if ((a <= k) and (b <= k)) then

for i from 0 to (T[1, 2] - T[1, 1]) do
if A[1, T[1, 1] + i] = 1 then

expa := expa + 1;
elif A[1, T[1, 1] + i] = 2 then

expb := expb + 1;
fi:

od:
if expb 0 then dist1 ErlangRV(1 I Mean(X) + 1 I Mean(Y),

228

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

expa)
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb)
else dist1 := [[unapply(conv(expa, expb), w)], [0, infinity],

["Continuous", "PDF"]];
fi:
expa := 0;
expb := 0;
for i from 1 to (T[2, 2] - T[1, 2]) do

if A[1, T[1, 2] + i] = 1 then
expa := expa + 1;

elif A[1, T[1, 2] + i] = 2 then
expb := expb + 1;

fi:
od:
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y),

expa)
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb);
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity],

["Continuous", "PDF"]];
fi:
jcdftop simplify(int(int(apply(op(PDF(dist2)[1]), y) *

apply(op(PDF(dist1)[1]), x), y = 0
(t [b] - x)) , x = 0 . . t [a])) ;

return Matrix([jcdftop]);
else

for i from 1 to (T[2, 1] - T[1, 1]) do
if A[1, T[1, 1] + i - 1] = 1 then

expa := expa + 1;
elif A[1, T[1, 1] + i - 1] = 2 then

expb := expb + 1;
fi:

od:
fi:
if expb = 0 then dist1 := ErlangRV(1 I Mean(X) + 1 I Mean(Y),

expa);
elif expa = 0 then dist1 := ErlangRV(1 I Mean(Y), expb);
else dist1 := [[unapply(conv(expa, expb), w)], [0, infinity],

["Continuous", "PDF"]] ;
fi:
expa := 0;
expb := 0;
for i from 1 to (T[2, 2] - T[1, 2]) do

229

Appendix N. Calculating Covariance Between Customers in an
M/M/1 Queue with k Customers Present at Time Zero

end:

if A[1, T[1, 2] + i] = 1 then
expa := expa + 1;

elif A[1, T[1, 2] + i] = 2 then
expb expb + 1;

fi:
od:
if expb = 0 then dist2 := ErlangRV(1 I Mean(X) + 1 I Mean(Y),

expa);
elif expa = 0 then dist2 := ErlangRV(1 I Mean(Y), expb);
else dist2 := [[unapply(conv(expa, expb), w)], [0, infinity],

["Continuous", "PDF"]];
fi:
expa := 0;
expb := 0;
fori from 0 to (T[1, 2] - T[2, 1]) do

if A[1, T[2, 1] + i] = 1 then
expa := expa + 1;

elif A[1, T[2, 1] + i] = 2 then
expb

fi:
od:

expb + 1;

if expb = 0 then dist3 := ErlangRV(1 I Mean(X) + 1 I Mean(Y),
expa);

elif expa = 0 then dist3 := ErlangRV(1 I Mean(Y), expb);
else dist3 := [[unapply(conv(expa, expb), w)], [0, infinity],

fi:
jcdftop

jcdfbot

["Continuous", "PDF"]];

int(apply(op(CDF(dist1)[1]), t[a] - y) *
apply(op(CDF(dist2)[1]), t[b] - y) *
apply(op(PDF(dist3)[1]), y), y = 0 .. t[a]);
int(apply(op(CDF(dist1)[1]), t[a] - y) *
apply(op(CDF(dist2)[1]), t[b] - y) *
apply(op(PDF(dist3)[1]), y), y = 0 .. t[b]);

return Matrix([jcdftop, jcdfbot]);

230

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.9 kjcdf(a, b, k, n)

kjcdf(a, b, k, n)
#---
Creates the case joint cumulative distribution functions in a
matrix by calling the procedure kTmat(a, b, k, A) and depending
on the structure returned, calls the procedures
kinde(a, b, k, T, A) or kdep(a, b, k, T, A) to generate the
appropriate case-wise joint cumulative distribution function.
Requires arguments a, the index of the first customer of interest,
b, the index of the second customer of interest, and n, the number
of customers arriving after time 0, and k, the number of customers
present at time 0.

Name kjcdf.mw
Author
Language
Latest Revision

Billy Kaczynski
MAPLE 9
03/15/09

--

kjcdf := proc(a, b, k, n)
local C, i, dist, T;
C := kcases(n, k);
dist := Matrix(RowDimension(C), 2);
for i from 1 to RowDimension(C) do

T := kTmat(a, b, k, C[[i], 1 .. -1]);
if T[1, 2] < T[2, 1] then

dist[[i], 1 .. -1] := kinde(a, b, k, T, kCprime(n, k, C[[i],
1 .. -1]));

else
dist [[i] , 1 . . -1]

fi:
od:
return dist;

end:

kdep(a, b, k, T, kCprime(n, k, C[[i],
1 . . -1])) ;

231

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

N.lO kCov(X, Y, a, b, n, k)

kCov(X, Y, a, b, n, k)
#--
Mixes the results returned by kprobvec(n, k) and
kjpdf(a, b, n, k) to compute the joint cumulative distribution
function encompassing all cases. Differentiates the results to
produce the piecewise joint probability distribution function.
Calls Queue(n, k, s) to find the appropriate expected values
for the customers of interest, then uses the expected values,
along with the expected value E(T[a]T[b]) found using the joint
probability distribution function, to compute the covariance as
Cov(T[a], T[b]) = E(T[a]T[b]) - E(T[a])E(T[b]). Requires the
arguments X, the distribution of time between arrivals in the
APPL list-of-lists format, Y, the service time distribution in
the list-of-lists format, a, the index of the first customer of
interest, and b, the index of the second customer of interest
(a< b), n, the number of customers arriving after time 0, and k,
the number of customers present at time 0.

Name kcov.mw
Author Billy Kaczynski
Language MAPLE 9
Latest Revision 03/17/09

kCov := proc(X, Y, a, b, n, k)

local JPDFMAT, PVEC, JPDF, fta, ftb, Etatb, Eta, Etb, Cov, fa,
fb, ftab;

JPDFMAT := kjcdf(a, b, k, n);
PVEC := kprobvec(n, k);
JPDF := Transpose(JPDFMAT) . PVEC;
if ((a <= k) and (b <= k)) then

ftab := simplify(diff(diff(JPDF[1], t[a]), t[b]));
Etatb := int(int(t[a]*t[b]*ftab, t[a] = 0 .. t[b]),

t[b] = 0 .. infinity);
Eta int (t [a] * int (ftab, t [b] t [a] . . infinity) ,

t[a] = 0 .. infinity);
Etb int(t[b] * int(ftab, t[a] 0 .. t[b]),

t[b] = 0 infinity);
Cov Etatb - Eta * Etb;
return Cov;

232

Appendix N. Calculating Covariance Between Customers in an
M / M /1 Queue with k Customers Present at Time Zero

end:

else
fta := simplify(diff(diff(JPDF[1], t[a]), t[b]));
ftb := simplify(diff(diff(JPDF[2], t[a]), t[b]));
Etatb := int(int(t[a] * t[b] * fta, t[a] = 0 .. t(b]),

t[b] = 0 .. infinity) + int(int(t[a] * t[b] *
ftb, t[b] = 0 .. t[a]), t[a] = 0 .. infinity);

fa := simplify(int(fta, t[b] = t[a] .. infinity) + int(ftb,
t [b] = 0 .. t [a])) ;

Eta := int(t[a] * fa, t[a] = 0 .. infinity);
fb := simplify(int(fta, t[a] = 0 .. t[b]) + int(ftb,

t [a] = t [b] . . infinity));
Etb := int(t[b] * fb, t[b] = 0 .. infinity);
Cov := Etatb - Eta * Etb;
return Cov;

fi:

233

Bibliography

[1] J. Abate and W. Whitt. Transient behavior of the M/M/1 queue via Laplace

transforms. Advances in Applied Probability, 20(1):145-178, 1988.

[2] J. Banks, J.S. Carson, B.L. Nelson, and D.M. Nicol. Discrete-event system

simulation. Prentice-Hall, 2001.

[3] F. Benford. The law of anomalous numbers. Proceedings of the American Philo­

sophical Society Held at Philadelphia for Promoting Useful Knowledge, 78(4):551,

1938.

[4] A.W. Bowman and A. Azzalini. Applied smoothing techniques for data analysis:

The kernel approach with S-Plus illustrations. Oxford University Press, 1997.

[5] P. Bratley, B.L. Fox, and L.E. Schrage. A guide to simulation. Springer-Verlag,

1987.

[6] I.W. Burr. The effect of non-normality on constants for X and R charts. Indus­

trial Quality Control, 23(11):563-569, 1967.

[7] I.W. Burr. On a general system of distributions. III. The sample range. Journal

of the American Statistical Association, 63:636-643, 1968.

[8] I.W. Burr. Statistical quality control methods. CRC Press, 1976.

[9] L. Devroye. Non-uniform random variate generation. Springer-Verlag, 1986.

234

Bibliography

[10] L. Devroye and L. Gyorfi. Nonparametric density estimation. The L-1 view.

1985.

[11] J .H. Drew, D.L. Evans, A. G. Glen, and L.M. Leemis. Computational probability:

Algorithms and applications in the mathematical sciences. Springer, 2007.

[12] B. Efron and R.J. Tibshirani. An introduction to the bootstrap. Monographs on

Statistics and Applied Probability, 57:1-177, 1993.

[13] G.S. Fishman, R. Durrett, R.B. Myerson, M.A. Bean, E.P.C. Kao, J.J. Higgins,

S. Keller-McNulty, and R.L. Scheaffer. A first course in Monte Carlo. Thomson

Brooks/Cole, 2006.

[14] A.V. Gafarian, C.J. Ancker Jr., and T. Morisaku. The problem of the initial

transient in digital computer simulation. Proceedings of the 76 Bicentennial

Conference on Winter Simulation, 49-51, 1976.

[15] C. Genest and B. Remillard. Discussion of copulas: Tales and facts, by Thomas

Mikosch. Extremes, 9{1):27-36, 2006.

[16] A.G. Glen, D.L. Evans, and L.M. Leemis. APPL: A probability programming

language. The American Statistician, 55(2):156-166, 2001.

[17] C. Hagwood. An application of the residue calculus: The distribution of the sum

of nonhomogeneous gamma variates. The American Statistician, 63(1):37-39,

2009.

[18] H.O. Hartley and E.S. Pearson. Moment constants for the distribution of range

in normal samples. Biometrika, 38{3-4):463-464, 1951.

[19] T.P. Hill. A statistical derivation of the significant-digit law. Statistical Science,

10:354-363, 1995.

235

Bibliography

[20] T.P. Hill. Base-invariance implies Benford's law. Proceedings of the American

Mathematical Society, 123(3):887-895, 1995.

[21] F.S. Hillier and G.J. Lieberman. Introduction to operations research. McGraw­

Hill, 2005.

[22] R.V. Hogg, A.T. Craig, and J. McKean. Introduction to mathematical statistics.

Macmillan, 2005.

[23] W. Hormann and J. Leydold. Random-number and random-variate generation:

automatic random variate generation for simulation input. In Proceedings of

the 32nd conference on Winter simulation. Society for Computer Simulation

International San Diego, CA, USA, 675-682, 2000.

[24] M.E. Johnson. Multivariate statistical simulation. Wiley, 1987.

[25] W.D. Kelton. Transient exponential-Erlang queues and steady-state simulation.

Communications of the ACM, 28(7):741-749, 1985.

[26] W.D. Kelton and A.M. Law. The transient behavior of the MjMjs queue, with

implications for steady-state simulation. Operations Research, 33(2):378-396,

1985.

[27] L. Kleinrock. Queueing systems. John Wiley & Sons, 1975.

[28] R.J. Larsen and M.L. Marx. An introduction to mathematical statistics and its

applications. Prentice-Hall, 2006.

[29] A. Law. Simulation modelling and analysis. McGraw-Hill, 2007.

[30] A.M. Law. A comparison of two techniques for determining the accuracy of

simulation output. Technical Report 75-11, University of Wisconsin at Madison,

1975.

236

Bibliography

[31] L.M. Leemis and S.K. Park. Discrete-event simulation: A first course. Prentice­

Hall, 2006.

[32] L.M. Leemis, B.W. Schmeiser, and D.L. Evans. Survival distributions satisfying

Benford's law. The American Statistician, 54(4):236-241, 2000.

[33] L.M. Leemis and K.S. Trivedi. A comparison of approximate interval estimators

for the binomial parameter. The American Statistician, 50(1):63-68, 1996.

[34] P. Leguesdron, J. Pellaumail, G. Rubino, and B. Sericola. Transient analysis of

the M/M/1 queue. Advances in Applied Probability, 25(3):702-713, 1993.

[35] E. Ley. On the peculiar distribution of the U.S. stock indexes' digits. The

American Statistician, 50(4):311-313, 1996.

[36] J. Lieblein and M. Zelen. Statistical investigation of the fatigue life of deep­

groove ball bearings. Journal of Research of the National Bureau of Standards,

57(5):273-316, 1956.

[37] A.T. McKay and E.S. Pearson. A note on the distribution of range in samples

of n. Biometrika, 25(3-4):415-420, 1933.

[38] W.R. Mebane Jr. Election forensics: Vote counts and benford's law. Summer

Meeting of the Political Methodology Society, University of California-Davis,

July, 2006.

[39] T. Morisaku. Techniques for data-truncation in digital computer simulation. PhD

thesis, University of Southern California, Los Angeles, 1976.

[40] S. Newcomb. Note on the frequency of use of the different digits in natural

numbers. American Journal of Mathematics, 4(1/4):39-40, 1881.

[41] M. Nigrini. A taxpayer compliance application of Benford's law. Journal of the

American Taxation Association, 18(1):72-91, 1996.

237

Bibliography

[42] M. Nigrini and W. Wood. Assessing the integrity of tabulated demographic data,

preprint, University of Cincinnati and St Marys University. 1995.

[43] A.R. Odoni and E. Roth. Empirical investigation of the transient behavior of

stationary queueing systems. Operations Research, 31(3):432-455, 1983.

[44] A.B. Owen. Empirical likelihood. Chapman & Hall/CRC, 2001.

[45] P. R. Parthasarathy. A transient solution to an M j M /1 queue: A simple ap­

proach. Advances in Applied Probability, 19(4):997-998, 1987.

[46] C.D. Pegden and M. Rosenshine. Some new results for the M/M/1 queue.

Management Science, 28(7):821-828, 1982.

[47] R.S. Pinkham. On the distribution of first significant digits. The Annals of

Mathematical Statistics, 32(4):1223-1230, 1961.

[48] R.J. Rodriguez. First significant digit patterns from mixtures of uniform distri­

butions. The American Statistician, 58(1):64-71, 2004.

[49] F. Ruskey and A. Williams. Generating balanced parentheses and binary trees

by prefix shifts. Proceedings of the 12th Computing: The Australasian Theory

Symposium (CATS2008}, CRPIT, 77:107-115, 2008.

[50] W.A. Shewhart. Economic control of quality of manufactured product. American

Society for Quality Control, 1980.

[51] B.W. Silverman. Density estimation for statistics and data analysis. Chapman

& Hall/CRC, 1986.

[52] P. Tadikamalla, M. Banciu, and D. Popescu. An improved range chart for normal

and long-tailed symmetrical distributions. Naval Research Logistics, 55(1):91,

2008.

238

Bibliography

[53] M.S. Taylor and J.R. Thompson. A data based algorithm for the generation of

random vectors. Computational Statistics and Data Analysis, 4(2):93-101, 1986.

[54] L.H.C. Tippett. On the extreme individuals and the range of samples.

Biometrika, 17:364, 1925.

[55] M.A.F. Wagner and J .R. Wilson. Graphical interactive simulation input mod­

eling with bivariate Bezier distributions. ACM Transactions on Modeling and

Computer Simulation, 5(3):163-189, 1995.

[56] S. Weisberg. Applied linear regression. Wiley, 1980.

[57] D.J. Wheeler. Normality and the process behavior chart. SPC Press, 2000.

[58] W.L. Winston. Operations research: Applications and algorithms. Thompson,

2004.

239

Vita

William H. Kaczynski is a Lieutenant Colonel in the United States Army, and is

currently assigned as an assistant professor in the Department of Mathematical Sci­

ences at the United States Military Academy located in West Point, New York. He

was commissioned in the U.S. Army aviation branch as a Second Lieutenant in 1992,

earning a Bachelor of Science degree in Economics from the United States Military

Academy. He also holds a Master of Science degree in Operations Research from the

Georgia Institute of Technology from 2002. He is a career Army officer with 17 years

of service in varied Army leadership positions. He has been assigned at Fort Rucker,

AL, Fort Bliss, TX, Fort Carson, CO, Camp Page, Republic of South Korea, the

Georgia Institute of Technology, and the College of William & Mary. He is married

to the former Natalie E. Moreland, and they have two daughters, Madison and Haley.

240

	Computational applications in stochastic operations research
	Recommended Citation

	ProQuest Dissertations

