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Groundwater Flow in a Sandy Tidal Beach 
1. One-Dimensional Finite Element Analysis 

W. HARRISON 

Erindale College, University of Toronto, Clarkson, Ontario, Canada 

C. S. FANG AND S. N. WANG 

Virginia Institute of Marina Science, Gloucester Point, Virginia 23062 

Abstract. A 31-day time series of observations of beach water table and tidal fluctuations 
was obtained from 13 wells along a profile perpendicular to the sho.reline at Virginia Beach, 
Vœrginia. Finite element techniques were applied to solve the one-dimensional, unsteady 
state, nonlinear equation for groundwater movement. For the finite element analysis, the 
semi-infinite mass (unconfmed aquifer) had to be replaced by a finite mass. The boundary 
conditions were found from the field data by directly solving the flow equation with a 
finite difference technique. The finite element method, using the variational principle, pro- 
vided a reasonable solution and afforded economy in computer time. Field data were com- 
pared with the corresponding finite element solution. The results indicate the general ac- 
curacy of the methodology. 

Several workers [e.g., Grant, 1948; Emery 
and Foster, 1948; Duncan, 1964] have shown in 
a qualitative way the importance of the slope 
of the beach water table and its elevation above 

tide level to the stability of sandy foreshore 
slopes. The goal of this work was to document 
carefully the fluctuations in a beach water table 
and then develop models of the fluctuations for 
application to the foreshore stability problem. 
The present study was directed toward deter- 
mining the feasibility of a one-dimensional 
model by using finite element techniques. 

A 31-day time series of observations of the 
variables fisted in Table 1 was obtained to docu- 

ment pertinent interactions in the beach-ocean- 
groundwater system. Thirteen wells for moni- 
toring the water table and 26 pipe stations for 
monitoring changes in beach elevation were po- 
sitioned along an 83-meter transect oriented 
perpendicular to the shoreline and extending 
from the edge of the foredune to the low water- 
line (Figure 1). Four multitube probes were 
installed for extracting small amounts of ground- 
water for tests of salinity and to facilitate dye 
tests of flow characteristics (Figure 1). The 
wells consisted of (1) a no. 18 slotted PVC 
(poly-vinyl-chloride) pipe, 102 mm in diameter, 

jetted into the beach to a depth of 3.5 meters 
and (2) a 32-mm OD steel pipe jetted to a 
depth of 5 meters and touching the PVC pipe. 
A float pulley system mounted on the pipes 
drove a potentiometer that provided adc out- 
put voltage that corresponded linearly to the 
instantaneous water level. Water table eleva- 

tions were recorded at the site on computer- 
compatible magnetic tape (after A/D (analog- 
to-digital) conversion). Details for this and the 
other measurement systems, as well as the com- 
plete time series of measurements for the var- 
iables in Table 1, appear in Harrison and 
Fausak [1970]. 

The gently sloping, quartz sand beach that 
was studied (Figure 1) has a representative por- 
osity of about 34% (the median grain diameter 
of pit samples was 0.37-0.59 ram). At Cape 
Henry, the mean range of the astronomical tide 
is about 0.85 meter and the spring range is 1.1 
meters; the tide is semidiurnal with a slight 
diurnal inequality. 

Low, long-period swells characterized the first 
10 days of the 30-day study period. They were 
followed by 3 days of high, short-period waves 
that, combined with a storm surge, resulted in 
flooding of the backshore (Figure 1) for two 
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1314 HARRISON, FANG, AND WANG 

TABLE 1. Measured and Derived Variables for the Beach-Ocean-Groundwater System at Fort Story, 
Virginia Beach, Virginia, August 10-September 9, 1969 

Variable Sampling Frequency Value Range Accuracy Estimate 

Elevation of beach surface E•,, High, low, and midtide 
meters msl levels 

-0.940-3.693 4-0.005 (above water) 
4-0.020 (below water) 

Elevation of tidal plane Et, Continuous -0.55-1.27 4-0.05 
meters msl 

Elevation of water table Ew, Every 10 or every 15 0.291-1.999 4-0.003 
meters msl minutes 

Mean height of 50 successive 
breaking waves (Hb •, 
meters msl 

High, low, and midtide 0.19-1.30 4-0.10 
levels 

Slope of the foreshore m, 
degrees 

Derived (high, low, 4.0-11.0 4-0.5 
and midtide levels) 

Barometric pressure p, inches 
of mercury 

Continuous 29.550-30.285 4-0.005 

Rainfall r, cm Hourly during storms 

Position of swash limit s Hourly and at high, 
low, and midtide levels 

Trace to 2.22 4-0.1 

Stations G-Z 4-0.25 meter 

3.96-13.20 4-0.02 Mean period of 50 successive High, low, and midtide 
breaking waves (Tb •, seconds levels 

Stations G-Z are shown in Figure 1; msl, mean sea level. 
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Fig. 1. Plan and profile views of the Fort Story study site (inset), showing typical beach 
and water table profiles, the spatiM distribution of profile stations (A-Z), water table monitor- 
ing wells (1-13) and water table samplin g Probes (1-4). 
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full tidal cycles. (Nine days were required for 
the groundwater level to return to its prestorm 
position.) In the remaining 17 days of the study, 
the wave climate was similar to that of the first 

10 days. Rainfall amounted to 10.2 cm during 
the 30-day period. The greatest hourly rainfall 
was 2.22 cm, an event that caused an increase of 
about 1.5 cm in the water level at all wells. The 

effects of rainfall, as well as sudden fluctuations 
in atmospheric pressure, can be ignored in the 
following. 

WATER TABLE RESPONSE CHARACTERISTICS 

It is commonly assumed [Chow, 1964, pp. 
13-37] that for an unconfined aquifer connect- 
ing with the ocean, the tide wave will damp ex- 
ponentially as it is propagated inland, so that, 
if the water table fluctuations are small relative 

to the saturated thickness, the amplitude y at 
any distance x inland is 

y = hoe exp [--x(•'S/toT) •/2] 

.sin j 
where y -- ho sin ,o•t at x -- 0, and y ---- 0 at 
x -- oo; to is the tide period, T is the coefficient 
of transmissibility, t is time, and S is the storage 
coefficient. A seaward-directed head gradient is 
almost invariably present in beach aquifers, 
however. During rising tide, the head gradient 
causes the water table to rise more rapidly than 
predicted by equation 1. During falling tide, the 
water table falls more slowly than predicted. 
Therefore, equation 1 cannot be used to model 
the tide wave response of the water table in a 
natural beach. 

To gain insight into the response character- 
istics of the beach water table, Fausak [1970] 
performed the following linear multiregression 
analysis on the water table elevation data for 
each well: 

= a, x, p) 
where -]-2y is the total change in elevation of 
the water table for a rising half tidal cycle, 
-•2ho is the total increase in elevation of the 
tide plane in a well for a rising half tidal cycle, 
x is the horizontal distance from a given well to 
a point on the foreshore one-half the vertical 
distance between the: preceding low water and 
the succeeding high water levels, d is the verti- 

cal distance between the high fide still water 
level and a horizontal line passing through the 
average position of the swash at its highest 
level, and p is the change in atmospheric pres- 
sure over a rising half tidal cycle (Figure 2). 

The results of the regression analysis (Figure 
3) indicate the significance of the tidal forcing 
function through most of the 50-meter width of 
instrumented beach. As expected, the distance of 
a well from the foreshore x is the most signifi- 
cant factor in water table fluctuations for wells 

closest to the ocean. The regression analysis sug- 
gests that positive water table fluctuations in 
wells 12 and 13 (closest to the shore) will be 
as strong a function of x as of the rise in the 
tide 2ho. At the landwardmost well (Figure 3, 
well 1) the increase in water level is as much a 
function of p as of 2ho. In general, however, 
Figure 3 indicates that we may feel confident in 
using the tidal fluctuation as the primary forc- 
ing function when we are attempting to model 
water table fluctuations between wells I and 

13. A certain amount of noise (unexplained vari- 
ability) will be present in the output of any 
model, especially for the seawardmost end of 
the water table, owing to the unaccounted ef- 
fects of the swash and the variable distance of 
the wells from the foreshore surface as sand is 

eroded and deposited. 
Owing to the lack of information on porosity 

and hydraulic conductivity throughout the 
beach, only a small finite region was chosen for 
analysis. Also, owing to unmeasured factors at 
the bottom boundary, the finite difference ap- 
proximation of boundary conditions for such a 
small region results in an unstable problem. 
Furthermore, the finite difference method seems 
to be restricted to a homogeneous isotropic 
medium or to an anisotropic medium with the 
two principle axes parallel in all parts of the 
flow region. The finite element method, how- 
ever, requires no such restriction [Neumar• and 
Witherspoon, 1970a]. Hence the finite element 
method was chosen for application and the field 
data were corrected by imposing a boundary 
condition referred to as the 'drainage velocity.' 

Zienkiewicz and Cheung [1967] furnish con- 
siderable background, application, and research 
material on the finite element method. This 

method was introduced for analysis of fluid mo- 
tion in porous media by Taylor and Brown 
[1967], Finn [1967], and Zienkiewicz et al., 
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Fig. 2. Definition sketch for variables y, x, d, ha, and p used in the regression analysis. 

[1966]. Recently Neuman and Witherspoon 
[1970b] have derived the general variational 
principle for transient groundwater flow. Guy- 
man [1970] has applied finite element methods 
to solve the one-dimensional unsteady diffusion- 
convection problem. 

GROUNDWATER FLOW EQUATIOl•I 

A differential equation of groundwater move- 
ment was derived in accordance with the fol- 

lowing assumptions: (1) that the flow is one- 
dimensional, (2) that the density of the fluid is 
constant, (3) that Darcy's law is valid, (4) that 
the groundwater occurs in a homogeneous sand 
body, and (5) that the beach sand drains in- 
stantaneously. 

According to the principle of conservation of 
mass, the continuity equation of groundwater in 
a homogeneous sand body can be written as 

O(KhOh) Oh v=o (3) 
where V -- V(x, t) is a function describing the 
bottom mass flux of the groundwater, and 

x, direction normal to the shoreline; 
f, porosity; 
t, time; 

K, hydraulic conductivity; 
h, total head. 

When the variation principle is applied to (3) 
for conditions at a particular instant, the func- 

Fig. 3. 

0 i 0 20 30 40 50 
DISTANCE IN METERS 

Relative importance of 2h•, x, d, and p, as indicated by percent reduction in sums 
of squares (R s) of 2y [after Fausak, 1970, Figure 8]. 
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tional of the minimizing function of h for each 
element is: 

for all inner elements, and 

+ 
and 

i M 

+ - 

for boundary elements. 

dx 

(4) 

•hl•__ o 

It was assumed in deriving the preceding 
equations that Kh in the term (a/ax) [Kh 
(Oh/Ox)] of (3) was taken as the function of x 
only [Volker, 1969]; also, [i(0h/at) -- V] is 
treated as • function of x at a particular time. 
Thus the variational principle can be applied 
directly to (3) [Weinstock, 1952]. 

The boundary was applied to the prescribed 
value of h for each time step in this study; 
therefore (5) and (6) are identical to (4). 

The general concept of the method is to 
imagine the surface subdivided into • group of 
subassemblages or elements that are intercon- 
nected only at the element joints. Thus the 
one-dimensional region is divided into many sub- 
regions (Figure 4). 

If it is assumed that the linear function of h 

passes through two end points of each element 
and if (4) is represented in local element coordi- 
nates, the contribution over the ruth element 
for the (n -- 1)th node is given by: 

oI • 3k • k' k • 
- -- h,`_•h. -- Oh,_• 4y,• h,`_? 2y,• 4y,• 

3 at 6 at 2 

Similarly, for the nth node, 

(7) 
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0 C 
P. $ 4 . o .$. n ...... N (N,I): 21 

V(x,t) 

I•t well •Node Numbers 13th well 
X:O X:L 

Fig. 4. Definition sketch for application of finite 
element model to field d•ta. 

Oi '• k,• 
-- m An-12 

Oh,` 4y 
km h,`_lh,` • 3k'•h • 2y • • ,` 

?y'• Oh,` V'•y '• imym Ohn-1 { (8) [ 6 Ot 30t 2 
where y• is the length of the ruth element, the 
subscripts indicate nodal counters, and the 
superscripts indicate element counters. 

Considering the overall contribution of deriva- 
tives of the minimizing function on nodal point 
n due to all elements and setting equal to zero, 
one obtains: 

0I 0 r •. oi,• Oh,,- Oh,, = Oh,, -- 0 
That is, 

(OZ•/O•) + (OZ•/O•2 = 0 (•) 
Substituting (8) into (9) and expressing •he 

results in matrix fo• yield: 

--4y • k4y + 4y '+'] -- 4y '+'] h"• 
Lh,+• 

2Y• 2Y•+¾L h. h.+i 

LOh•.•/Otj 
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Equation 10 represents a system of nonlinear tion of the matrix for the entire system, (3) 
functions of h•_•, h•, and h•+• for every node. calculation of nodal head values due to imposed 

For easy handling, (10) is defined as: forces and boundary conditions, and (4) cal- 

f. = (h2, ha, .'. , h._•, h., 

h.+•, ..., hN) = 0 (11) 

n- 2, 3, 4, ... , N 

but 

n•l n•N-]-I 

Thus 

f•---- Axh•_12 -• A:•h, • • A•h•+• :• • A4h•_•h '• 

culation of the water table elevation in each 

element from the nodal displacement. 
There are three general methods for solving 

a system of nonlinear equations: (1) the New- 
ton-Raphson method, (2) the secant method, 
and (3) the descent method. The choice of 
method depends on many factors, including 
the nature of the available data and personal 
preference, but the most important points are 
efficiency and accuracy. Of the well-known 
methods for solving a general set of simulta- 
neous, nonlinear equations in which the cor- 
rections are computed as linear combinations 
of the residues, the generalized Newton-Raphson 

(12) iterative method is considered the best and 
When (10) and (12) are related, the coefficients 
A are: 

As = 

A9= -- 2 ' 

f,nym 
6At 

h.,-a, fm+lym+l h.+, '-a' 
At 6At 

NUMERICAL ANALYSIS 

Basic steps. The basic steps in the formula- 
tion of the finite element method can be sum- 

•oo t •) © (• (• © 
60 ]00 MIN 

.•o 4 i i i i i i i i 

'oo t © Q • QQ 0 

•' •0 t 
.• ß 0 0 ' 0 

• ß 0 

•0 600 MIN • • 

• •o I I I I I I I I 

o •oo MIN 
• •o 

•o i i I ! I i i i i 

• •oo • 

• • • • Q Q 0 
' • 0 

ß 0 

• •o I•00 MIN • 

• I I I I I I I I I • •o 

• • • • o •o ooo o • ß • •oo 

15oo MIN • • • 0 

•o 

DISTANCE (me•e• 

4 I I I I I I 

W ELLS 

marized as follows: (1) development of the Fig. 5. Comparison between field data (solid 
element equation coefficient matrix, (2) genera- circles) and computer results (open circles). 
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was used here to solve (10). Fang [1968] has 
given a detailed description of this method. 
A brief discussion follows. 

Denote the kth approximation of iteration 
for the actual roots [h,], i -- 1, 2, ... , I, as 
[h,•]; then (11) may be expanded in Taylor 
series about [h,•], higher order other than first 
derivative terms being truncated: 

+ [h• (•+• -- h• (13) 

If h• (• are found close to the actual root, 
then F• [h• (•] • 0. Equation 13 represents 
• system of 5near equations that can be ex- 
pressed in matrix form as 

- (14) 
where [J] is the Jacobian matrix. 

The JacobJan matrix has the form 

three nonzero elements for each row, except 
for the first and final rows, in which there are 
two nonzero elements. 

The iterative steps may be summarized as 
follows: 

1. Find [h,('•]. (It must be a close approxi- 
mation to the root; otherwise the equation may 
not converge.) For the first iteration the value 
of the previous time step is used as an ap- 
proximation; if k > 0, the result of the previous 
iteration is used. 

2. Compute 

Ahi ---- hi (•+•-- hi (•) (15) 

by solving the system of linear equations 
(equation 14). 

3. Find hj (k+•' by using a reasonable con- 
vergent criterion. 

Boundary conditions. The prescribed values 

[J] = 

-O F• 
Oh• Oh2 

OF•. OF•. 
Oh• 

OF•. 

Oh•. Ohs 

OFa OFa 
Oh•. Ohs Oh4 

OFt_• OFt_• OFt_• 
Oht-a Oht 

OFt OFt 
Oht-• Oht _ 

Note that each row of the Jacobian matrix 

contains at most three nonzero elements. For 

large I the matrix is spare and one can take 
advantage of the large number of zeros. The 
modified subroutine from the IBM system 360 
subroutine package (SIMQ) takes advantage 
of the large number of zeros in the matrix of 
coefficients by using the Gaussian elimination 
method, which gives a rapidly convergent pro- 
cedure with the generalized Newton-Raphson 
iteration method. 

That is, all the nonzero elements of [J] are 
placed on the diagonal region. There are only 

of h obtained from the field experimental data 
are applied to the left- and right-hand boundary 
nodal points. 

The most confused boundary condition oc- 
curs on the bottom side of the control region. 
As mentioned in the last part o.f the section 
on water table response, the lateral and bot- 
tom fluxes were lumped into drainage. velocity 
as sinks or sources that affect the beach ground- 
water flow severely. It is difficult to handle the 
drainage velocity function V(x, t) in proper 
mathematical form because this boundary is 
a function of both space and time, Owing to 
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Fig. 6. Salinity' structure of the beach groundwater before (August 17, 1'969) and after 
(August 27, 1969) storm wave flooding of backshore. 

the combined effects of the tide, waves, fore- 
shore changes, and rainfall. 

Fourier series analysis /or drainage velocity. 
Assume that ¾(x, t) is constant over each in- 
terval x, _• x _• x,+• and can be calculated 
from actual field data by the Eulerian finite 
difference formulation, where i -- 1, 2, ..', 12, 
and the x, are the coordinates of the wells. 

From the results of the Eulerian finite dif.. 

ference method, we find that V(x, t), x, _• x _• 
x•+•, shows much fluctuation from time to time. 
To simplify the Fourier series analysis, we first 
take the time average' 

( V}(x, 0 = N (16) 
x , _< x _< x • + • t • _< t _< t. 
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In our example we take 100 time cycles (each The small differences between the field data 
cycle is 15 minutes) as the period. If the time and the theoretical results are due to the effects 
average is taken for each 20 cycles, three of x and d (equation 2) mentioned earlier. The 
average values in each average interval give effects of capillarity and groundwater density 
a more accurate Fourier series. gradients are also important (these effects 

The average value of two different intervals possess a complex relationship to space and 
is taken as the value at the point of discon- time). Density gradients in the groundwater 
tinuity. We then find the Fourier series' are due to variations in water temperature and 

salinity [cf. Jansson, 1967]. As shown in Figure 

•( 2•-nt 2•nt) 6, the groundwater salinity for the summer (V)(x, t) - an cos • -]- bn sin- - beach (August 17, 1969) ranged from near 

(17) zero at well 3 to 26%0 (parts per thousand) at well 13 at high tide (1200 hours). At low 
for each well interval. The Fourier series co- tide (1733 hours) the saline groundwater had 
e•cients are used in the subroutine to find the migrated slightly seaward. At the end of a 
drainage velocity for each time step. storm that sent ocean water over the berm 

and onto the backshore, however, the salinity 
ArrL•cAT•O• or T•E •r•OD of the groundwater had increased markedly 

The analytical method was applied to the (Figure 6). (Flushing of the saline water can 
field data as follows (Figure 4): The prescribed be gaged by the distance moved by the 18%o 
values of h were applied at C and 0 for every isoline (about 8 meters) in the 87.5 hours be- 
time step. The drainage velocity V(x, t) was tween 1430 on August 27 and 0600 on Sep- 
applied on the bottom boundary (0C) as the tember 1.) The point is that a normal horizontal 
source term. Also, the following data were used density gradient in the beach groundwater 
in the example' 21 total nodes; 34% porosity; changed to a vertical density gradient as the 
hydraulic conductivity, 0.014 cm?sec; length result of storm flooding. 
of each element, 250 cm; time increment for The procedure developed in this study can 
each step, 15 minutes. be applied to noneven elements and nonhomo- 

geneous materials and makes it possible to 
Rr•SVL•S A•D CO•CrVS•O• predict water table fluctuations in any sandy, 

The finite element method was applied to two-dimensional tidal beach, when only the 
solve the nonlinear equation for treating the drainage velocity (obtained from two wells) 
complicated case of beach water table fiuctua- and the predicted fluctuations in ocean level 
tions. The finite element method, based on the are known. 
variational principle, provides an accurate solu- The existence of small oscillations in com- 
tion with an economy of computer time. A purer results near the ocean boundary indicates 
compromise decision was made as to the that the hydrostatic assumption is critical in 
assumed position of the boundaries. In the this region, in which the effects of tidal forces 
finite element analysis, the semi-infinite mass and seaward-directed head gradient are im- 
(unconfined aquifer) was replaced by a finite portant. Apparently the idea of imposing a 
mass. The drainage velocities were found from drainage velocity to improve the one-dimen- 
the field data by calculating the pertinent sional model has not completely solved the 
differential equation directly with a finite dif- problem. Subsequent work will be concerned 
ference technique. Then a Fourier function with the two-dimensional case and will use 
was used to describe the mean regional drainage triangular elements to improve this deficiency. 
velocity characteristics and the beach water 
table response to the input tidal fluctuation. Acknowledgments. This research was sup- 
Comparing the results (Figure 5) of this pro- ported by the Geography Branch of the Ofi%e 
cedure and the field data indicates that the of Naval Research under contract Nonr-N00014- 

70-C-000A (ONR task NR 388-097). We thank 
finite element method is accurate enough to Drs. John Bredehoeft and George Pinder for 
solve the problem of fluctuation of the beach critical review of the manuscript. Contribution 
groundwater table. 392 of the Vixgini• Institute of Marine Science. 
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