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Groundwater Flow in a Sandy Tidal Beach 
2. Two-Dimensional Finite Element Analysis 

C. S. FANG AND S. N. WANG 

Virginia Institute o] Marine Science, Gloucester Point, Virginia 23062 

W. HARRISON 

Erindale College, University o] Toronto, Clarkson, Ontario, Canada 

Abstract. Two-dimensional finite element techniques are described that model closely the 
complicated fluctuations observed in the water table of an ocean beach. The use of triangular 
elements permits the specification of more realistic boundary conditions than the use of line 
elements in a one-dimensional model. Also, results obtai. ned from the two-dimensional model 
for the region close to the ocean compare more favorably with field data than results obtained 
from the one-dimensional finite element model. 

The object of this study was to improve on 
the one-dimensional groundwater flow model of 
Harrison et al. [1971] and to examine the 
efficacy of a two-dimensional finite element 
model with triangular elements. The use of 
finite element methods to attack boundary 
value field problems was anticipated by Zien- 
kiewiez and Cheung [1965]. Later, Zienkiewiez 
and Cheung [1967] gave detailed analyses of 
the theory as well as examples of the applica- 
tion of the finite element method. The applica- 
tion of general variational principles to the 
groundwater flow equation did not occur until 
Neuman and Witherspoon's [1970b, 1971] stud- 
ies. The application of this method has been 
limited to steady flow [Neuman and Wither- 
spoon, 1970a] until now. Modeling the move- 
ment of the beach groundwater when a free 
surface is involved requires complete solution 
of the unsteady equation. Studies by javandel 
and Witherspoon [1969] and France et al. 
[1971] were helpful in this aspect of the ap- 
plication of the finite element method. 

As mentioned in the one-dimensional model 
for groundwater flow in a sandy tidal beach 
[Harrison et al., 1971], the hydrostatic assump- 
tion is critical over the region near the ocean 
boundary where the effects of tidal forces and 
seaward directed head gradient are important. 
A two-dimensional finite element model was 

necessary for modeling the effects of tidal fluc- 
tuations in this region. 

EQUATIONS OF GROUNDWATER FLOW WITI-I A 

FREE SURFACE 

The governing partial differential equation of 
an isotropic, homogeneous porous medium in 
two dimensions can be represented by 

\axe -Jr- •yy• / = S• at (1) 
where S8 is the specific storage and K is the 
hydraulic conductivity. 

The initial condition for the beach ground- 
water flow problem can be specified as 

h(x, y, o) = •o(X, y) (2 

,(x, o) = ,o(X) (3) 
The boundary condition for the beach ground- 

water flow problem for a prescribed head on 
the left boundary A• is 

• = •/(t) (•) 

and for a prescribed flux at the bottom bound- 
ary A• is 

Oh 

•: • = - V(x, t) (5) 
where V is defined as positive downward and 
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¾(x, t) represents the equation of the free sur- 
face (Figure 1). 

Two conditions must be satisfied on the free 
surface: 

(7) 
where S, and I are the specific yield and down- 
ward infiltration through the porous medium 
and n• and n• are the x and y directional cosines 
of the unit outward normal along the free sur- 
face. 

Before finite element analysis is employed, 
the variation principles must be applied to find 
the functional of a particular minimizing func- 
tion h; thus [Neuman and Witherspoon, 1970b, 
1971] 

[ Oy/ 

+ S.h• dxdy + VhdA 

Oh•n dS 

FINI• ELEMENT ANALYSIS 

Assume that the flow region is divided into 
many triangular elements (Figure 1), where {, 
•, and • represent the first, second, and third 
nodes of an elemen• •. The o• is the centroid 

of element •, and • and • are the elemen• co- 
ordinates through the centroid, if no transfor- 
mation angle is assumed. The total head • 
within each triangular element can be uniquely 
defined linearly by 

and 

where N, = (1/2 A)(a, + b, x + c, y), I = i, 
j, and m, and A is the area of the triangular 
element. Letters a, b, and c with subscripts i, j, 
and m are short notations for 

ai -- XiYm- XmYi 

b• = Yi - Y,• (13) 

½i -- 3•m- 3• i 

and the corresponding coefficients for each ele- 
ment are obtained by a cyclic permutation of 
the subscripts in the order i, j, and m. 

Similarly, the time derivatives within each 
element can be represented by 

Ot- -• (14) 
where 

ß • ---- • , (15) 

When the whole region is divided into many 
small elements, the functional of the region can 
be expressed by the summation of the func- 
tional of all the indiadual elements as 

K• K• M 

•1 •K•+I 

= + + 
When the coordinates and the total heads for 

the three nodes of each element are substituted 

into equation 9, h can be represented in terms 
of the coordinates and the total heads at three 

nodes in matrix form as 

where 

h = [N][h]' (10) 

hi 

[hi' = h• (11) 

hm 

where wrs', w,, and w•., are the element func- 
tionals of the elements• along the free surface, 
in the inside region, and along the boundary 
of the prescribed flux, respectively; K• is the 
total number of elements along the free surface, 
K2 -- K• is the total number of inner elements; 
M -- K•. is the total number of elements along 
the prescribed flux boundary; and M is the 
total number of elements in the whole region. 

In (8) the integral along the prescribed flux 
boundary f•, Vh dA existed only in the element 
functionals w•,,, and the integral along the free 
surface vanished except in wrs e. Therefore the 
element functional can be rewritten as 
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Fig. 1. 

FREE SURFACE ] (.x,t) = downward infiltration along the free surface 

m 

J OCEAN 

R (x,y) 

•' (x, t) 

y! 

m 

0 A2 

v (x, t) 

Ai 

U e 

Definition sketch for the triangular elements and nodes, inœtial conditions, and 
boundary conditions. 

+ «K • + S •h •-Oh•l dx dy (17) • OtJ 

• . \Ox I 

K*(Oh:h • h • Oh*q dx dy (18) 

+ f• V *h* dA 
•FS • 

+ •K • + S.•h • Oh• dx dy (19) 
OtJ 

_ 
where the supersc•pt e indicates the param- 
eters of an element e under consideration and 

R • means to take the area integral of the ele- 
ment being considered. 

If the function h is defined uniquely and con- 

tinuously throughout the region, then the func- 
tional can be minimized with respect to all 
nodal values of the total head h•; that is, 

Ow _ Oh• = Oh• 

•= • •=•=+• Oh• - 0 (20) 
If the linear variation of h between two 

adjacent nodes of an element and the uniform 
flux through the boundary of an .element along 
A,are assumed and there are N nodes in the 

whole region, then (20) becomes • linear sys- 
tem of N equations at •ny particular time step, 
which c•n be written as 

[P][h], + [Q] • , = [R] (21) 
where [P] and [Q], called the overall matrices, 
are N X N square matflees; [h]• is an N X 1 
row matrix formed by the total head of all the 
nodes at the particular time step being consid- 
ered, and so is [Oh/Otis; and [R] is an N X 1 
constant row matrix obtained owing to the 
existence of the prescribed flux and the infiltra- 
tion flux. 
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When the central finite difference approxima- 
tion for [Oh/Ot], is made as 

o• o• + ([•]• [•]•-•) •t t t-At 

then (21) becomes 

[v][a]• = [•1 

where 

FANG• WANG• AND •-IARRISON 

matrices can be obtained in Zienkiewiez and 

Cheung [1967]. The results are as follows. 

For inner elements 

(22) -• 

= 
(23) Oo• e 

_•m_ (27) 
For elements along the boundary of prescribed 
flux 2 

[D] = [P] -•- • [Q] (24) 

2 [E] = [R] q-- [Q] • [h]t_ t--At 

and ,At is the time step increment. Then the 
total head of all nodes h•, i ---- 1, 2, "-, N, 
should be found from (23) instead of (21). If 
there are just N' nodes (N' < N) with an un- 
known total head, and these are numbered first, 
then only the first N' nonredundant equations 
in (23) are useful. The prescribed values of all 
given h• should be substituted into (23) and 
the constant terms moved to the right-hand 
side of the equation to get a new linear system 
of N' equations: 

where 

,[D'][•], = [W] (2•) 

Dii' = Dii i = 1, 2, '" , N' 

j = 1, 2, '" , N' 

N 

E•' = Ei- • Diihi 
i=N'+I 

(26) 

i = 1, 2, '" , N' 

To obtain overall matrices and the total heads 

of all nodes shown in the above procedures, 
the terms OO•Fs•/Oh•, Oo•/Oh•, and 
would be obtained first as expressed in (20). 
Equation 20 is the source of element matrices 
and the reason why element matrices must be 
found before overall matrices. 

The detailed formulation of the element 

1'3 

For elements along the free surface 

FS = [•c][•]' + [s•] • 

o 

Sy • 

+ '•-- (X i -- Xm) 0 0 
o 

2 Oh e 
1 21 

(29) 

where 

Ibibi 
K• Fbib • [•C] = • 

L_b,,,bi 

b•bi 

bibi 

bmbi 

bib,,• 

bibm I 

LC•C• 

C•Ci 

CiCi CiC,• 

CmCm 
:. 

and 

(ao) 
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NiN, dxdy ff• N,Nidxdy ff• N,Nmdxdy 
NiNidxdy ff• NiNidxdy ff• N•Nmdxd 
N•N, dxdy ff•.N,•Nidxdy ff•N,•N.•dxdy I 
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(31) 

and Ax is the length of the side of an element 
along the prescribed flux boundary. 

In deriving the above element matrices, we 
numbered the nodes of elements along the free 
surface and the boundary of the prescribed 
flux as shown in Figure 1. Also, we assumed 
that h varied linearly from one node to another. 

BOUNDARY CONDITIONS 

Mathematical modeling of groundwater flow 
requires a knowledge of hydraulic conductivity 
and specific storage as well as appropriate 
boundary conditions. The lack of precise meas- 
urements of these two geohydrologic param- 
eters will cause uncertainty in preparing mathe- 
matical models. Freeze and Witherspoon [1968] 
tried to estimate the parameters by a trial and 
error process of matching calculated and meas- 
ured data at various points. Kleinecke [1971] 
attempted to employ linear programing to 
achieve the same purpose. Hydrologic records 
over large regions were needed to use even the 
simplest forms of boundary conditions. There- 
fore, it is necessary to replace the semi-infinite, 
unconfined aquifer with a finite region. 

There are two types of boundaries, prescribed 
head and prescribed flux boundaries. Such 
boundaries are used in most studies; however, 
for the beach groundwater problem, if a finite 
region is selected, portions of the boundaries 
will not possess such simple forms. Both the 
bottom boundary and the ocean (right) 
boundary (Figure 1) conditions are complicated 
functions of space and time due to the seaward 
directed head gradient and tidal fluctuations. 
The assumption of the existence of the hydro- 
static condition required for the one-dimen- 
sional model on the ocean boundary [Harrison, 
et al., 1971] was somewhat weak; it may be 
replaced here by a prescribed boundary condi- 
tion (see below). 

The drainage velocity V (x, t), calculated from 

the field data [Harrison et al., 1971] by the 
finite difference method, was used to impose the 
effects of the tide on each element of the bottom 

boundary. If there is any infiltration in the 
system it will be lumped into this term. 

For the present two-dimensional model, the 
landward (left) boundary was assumed to be 
hydrostatic. The ocean boundary was approxi- 
mated by imposing a uniform horizontal flux 
along the boundary of each element (Figure 1). 

This horizontal flux could be approximated 
by Darcy's law as 

½ 
U e = ----(h• -- h•) (32) 

Ax 

where point I is any point on the boundary 
and Ax is selected as small as possible. Because 
point 2 has the same altitude as point I and 
(10) holds for any element, the uniform bound- 
ary flux becomes 

U e - Ax [b][h]e (33) 
The effects of this flux must be considered, 

as shown in (28), to be expressed implicitly in 
terms of the unknown nodal heads before the 

given nodal heads are substituted into (23). 
The same procedure is also followed for the 
left boundary, whether a prescribed head or a 
hydrostatic condition is imposed. 

FREI• SURFACI• 

The most difficult problem with the free 
surface boundary for the beach groundwater 
problem lies in treating the free surface as a 
moving boundary to preserve the accuracy of 
the model. At each time step the iteration 
method was chosen for relocating the position 
of the free surface and then recalculating its 
element matrices. Over several time steps, the 
position of the free surface can change con- 
siderably. It is necessary, therefore, to reset 
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nodes and elements or shift nodes every few 
steps. 

For simplification, shifting was restricted to 
vertical coordinates; thus 

= d- (yN -- 

where yN, and y, represent the y coordinate of 
node i under consideration, before and after 
shifting, and yN• and y• represent the new and 
old y coordinates of the free surface node j, 
which is directly above the inner node i. Then, 
the new total head hJ after a shift can be found 
by averaging the values obtained from equation 
10 (Figure 2): 

1 

.h,' - 4A(e)[(a• q- b•x, q- C•yN•)h, 

(ai:-•- bixi + ciyNi)hi 

(am + bmx, + cmyNi)hm] (e) 

1 

q- 4A(e+•)[(a• q- b•x• -']-' c•yN•)h• 

q- (ak q- bkx, -']-' c, yN•)h, 

-]- (a,,, -]- bmx• -]- c,,,yN•)h,,,] (•+1' (34) 
where the superscripts (e) and (e + 1) cor- 
respond to transformed elements e and e + 1, 
respectively. 

To employ (34), all elements around any 
shifted node should be given; therefore the 
numbering system has to be read in as one of 
initial setup. 

APPLICATION or METHOD 

To facilitate computer programing, the nodes 
on the free surface were numbered first (nodes 
1-19, Figure 3). Then all nodes with an un- 
known total head were numbered (nodes 20-69), 
after which nodes with a given head were 
numbered (nodes 70-74). Similarly, the ele- 
ments along the free surface were numbered 
first, from I to 40, in the element-numbering 
system. The elements along the free surface 
should be smaller than the other elements to 
obtain accurate results. 

Once the node element configuration is de- 
cided, data cards for the numbering system 
should be prepared. The initial total head and 
the coordinates are also needed. The starting 

time was 0645 EDT, August 11, 1969 [Harrison 
and Fausak, 1970]. 

The computer program continuously seeks the 
element matrices, which are based on (30) and 
(31), before obtaining the overall matrices 
(21). Then it finds the time derivatives of the 
total head at time t -- At before reaching (23). 
The prescribed values of h, which are obtained 
from the field data [Harrison and Fausak, 
1970], are then applied on the nodes of the 
landward boundary (nodes 71-74, Figure 3), 
where the hydrostatic state is assumed to exist. 
A prescribed value of h is also applied at the 
upper node (70) of the ocean boundary, where 
the hydrostatic condition does not exist. 

The prescribed head values were substituted 
into (23) to obtain a linear system of simulta- 
neous equations such as (25). The equations 
were solved by the elimination method, the 
largest pivotal divisor being used to obtain the 
total head for all nodes at any time step under 
consideration. The program then proceeded to 
consider the effects of the moving free surface. 
The necessity of resetting the node element 
configuration was checked every five cycles. The 
results of each time step were used as initial 
values for the next time step. This procedure 
was followed as long as desired. 

Fourier coefficients for bottom drainage ve- 
locities were read at the initial setup; a sub- 
routine was called to find the drainage velocities 
from the given coefficients for each time step. 
The following data were also read in' total 
nodes, 74; total elements, 110; porosity, 34%; 
hydraulic conductivity, 0.014 cm/sec; specific 
storage, 0.003125 ]/cm (liters per centimeter); 
and time increment for each step, 15 minutes. 

m 

' (xi, yNi) '• 
' (xi, yi ) k 

Fig. 2. Definition sketch for shifting vertical 
coordinates. 



Groundwater Flow 127 

72 

73 

LANDWARD 

59 

Fig. 3. 

60 61 62 65 64 65 

Definition sketch for numbering nodes and elements. 
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66 67 
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The storage coefficient may be considered 
equal to the specific yield for an unconfined 
flow with a free surface [Chow, 1964]. Since 
only field tests of porosity and hydraulic con- 
ductivity were made, Chow's Figure 13-2 was 
chosen to find the specific yield. This was found 
to be 25% for the given porosity. The specific 
storage was taken as 0.003125 lfcm for an aver- 
age flow region assumed to be 80 cm thick by 
virtue of the fact that the storage coefficient 
is equal to the product of the specific storage 
and the thickness of the aquifer when the 
aquifer is homogeneous and uniformly thick 
[Jacob, 1940, 1950]. 

r•SVLTS AnD DXSCVSSm• 

As shown in Figure 4, the two-dimensional 
finite element method has provided an accurate 
solution for the complicated beach water table 
fluctuations of groundwater flow. A compromise 
decision was made relative to the assumed 

positions of the boundaries, the value of the 
specific storage, and the average drainage ve- 
locity. A Fourier series was used to describe the 
mea• regional drainage velocity characteristics 

and the beach water table response to the input 
tidal fluctuations. Comparison of the results 
(Figure 4) for the one-dimensional case, the 
two-dimensional case, and the field data in- 
dicates that the two-dimensional finite element 

method is more accurate for modeling the 
fluctuations of the beach groundwater table 
than the one-dimensional method. 

Even though one-dimensional field data were 
used as the boundary conditions for the two- 
dimensional case, the results still exhibit less 
fluctuation after many time steps near the 
ocean boundary (Figure 4), where the effects 
of the tidal fluctuations are large. The small 
discrepancies (Figure 4) can be further reduced 
by using smaller elements over this region, since 
no matter what combinations of element sizes 

are used, a system of linear matrix equations 
will finally result from the two-dimensional 
finite element method. For the one-dimensional 

case, a system of nonlinear functions was ob- 
tained, and the equations were solved by the 
Newton-Raphson iteration method [Harrison 
et al., 1971]. The Newton-Raphson method, 
according to our testing, seems restricted to 
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