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ABSTRACT PAGE 

Markov chain models have played an important role in understanding the relationship between 
single channel gating of intracellular calcium (Ca2+) channels, specifically 1,4,5-trisphosphate 
receptors (IP3Rs) and ryanodine receptors(RyRs), and the stochastic dynamics of Ca2+ 
release events, known as Ca2+ puffs and sparks. Mechanistic Ca2+ release site models are 
defined by the composition of single channel models whose transition probabilities depend on 
the local calcium concentration and thus the state of the other channels. Unfortunately, the large 
state space of such compositional models impedes simulation and computational analysis of 
the whole cell Ca2+ signaling in which the stochastic dynamics of localized Ca2+ release 
events play an important role. This dissertation introduces, implements and validates the 
application of several automated model reduction techniques that significantly reduce the 
computational cost of mechanistic compositionally defined Ca2+ release site models. 

A common feature of Ca2+ channel models is the separation of time scales. For example, the 
well-known bell-shaped equilibrium open probability of IP3Rs can be reproduced by Markov 
Chain models that include transitions mediated by fast Ca2+ activation and slower Ca2+ 
inactivation. Chapter 2 introduces an automated model reduction technique that is based on 
fasUslow analysis that leverages these time scale differences. Rate constants in the single 
channel model are categorized as either fast or slow, groups of release site states that are 
connected by fast transitions are identified and lumped, and transition rates between reduced 
states are chosen consistent with the conditional probability distributions among states within 
each group. The fasUslow reduction approach is validated by the fact that puff/spark statistics 
can be efficiently computed from reduced Ca2+ release site models with small and transient 
error. 

For Markov chain Ca2+ release site models without time-scale separation, the manner in which 
the full model states should be aggregated for optimal reduction is difficult to determine a priori. 
In Chapter 3, a genetic algorithm based approach that mimics the inheritance, mutation and 
selection processes of natural evolution is implemented to reduce these models. Given a full 
model of interest and target reduced model size, this genetic algorithm searches for set 
partitions, each corresponding to a potential scheme for state aggregation, that lead to reduced 
models that well-approximate the full model. A whole cell model with coupled local and global 
Ca2+ signaling is simplified by replacing a compositionally defined full Ca2+ release site model 
with a reduced model obtained through the genetic algorithm. 

In Chapter 4, a Langevin formulation of Ca2+ release sites is introduced as an alternative 
model reduction technique that is applicable when the number of channels per Ca2+ release 
site is too large for the previously discussed reduction methods, but not so large that the 
stochasticity of Ca2+ release is negligible. The Langevin formulation for coupled intracellular 
Ca2+ channels results in stochastic differntial equations that well-approximate the 
corresponding Markov chain models when release sites possess as few as 20 channels, and 
the agreement improves as the number of channels per release site increases. Importantly, the 
computational time required by the Langevin approach does not increase with the size of Ca2+ 
release site. 
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Chapter 1 

Introduction 

Although widely recognized as an important component of all skeletal structures, cal­

cium, as a divalent cation ( Ca2+), is an ubiquitous element of intracellular signaling 

and more importantly, it is a versatile second messenger which regulates many cellular 

activities [Carafoli et al., 2001]. To achieve this versatility, the Ca2+-signaling sys­

tem operates in many different ways. First of all, the time scale of Ca2+ -signals may 

vary over several orders of magnitude [Marchant and Parker, 2000]. Rapid transient 

changes in Ca2+ concentration ([Ca2+]) control cell locomotion, neural transmission, 

hormonal secretion and muscle contraction directly. For example, Ca2+ triggers exo­

cytosis within microseconds at the synaptic junction [Berridge et al., 2003]. Sustained 

[Ca2+J elevation plays pivotal roles in many vital cellular functions such as fertil­

ization, gene expression and apoptosis where Ca2+ operates over minutes or even 

hours [Berridge et al., 1998]. The versatility of Ca2+-signaling also lies in terms of 

amplitude and spacial patterns. For example, the Ca2+ signal that triggers muscle 

contraction are in forms of local [Ca2+J spikes while a Ca2+ wave propagates through­

out the cell during the fertilization process [Berridge et al., 2000]. 
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1.1 Calcium homeostasis 

The Ca2+ signaling system consists of a large number of components sometimes called 

"The Ca2+ -signalling tool kit" including a variety of receptors, transducers, channels, 

buffers, effectors, enzymes, pumps and exchangers. Even though the mechanisms of 

these components are beyond the scope of this thesis, it is important to briefly review 

a few of them which will appear later in this report. 

A common feature of the Ca2+ -signalling processes is a significant elevation in 

[Ca2+]: Ca2+signals usually initiate with a brief pulse of Ca2+ which raises the local 

cytosolic [Ca2+]level roughly 10 times or higher [Berridge et al., 2003]. This feature 

highly depends on the sustained macroscopic [Ca2+] gradients across cell surface and 

intracellular membranes. The membranes that surround cells and other intracellu­

lar organelles are semi-permeable which helps to maintain approximately 104 fold 

[Ca2+] gradients between the cytosol (approximately 100 p,M) and the extracellular 

space, endoplasmic reticulum (ER), sarcoplasmic reticulum (SR) and mitochondria 

[Ca2+] [Cheng and Lederer, 2008]. Sustained high [Ca2+] in the cytosol is toxic 

and the low cytosolic [Ca2+] level is actively maintained by the Ca2+ homeostasis 

mechanisms including 1) the plasmalemma! Na+ /Ca2+ exchanger (NCX) and Ca2+­

ATPase (PMCA), which extrude cytosolic Ca2+ to the extracellular space. 2) the 

ER/SR Ca2+-ATPase (SERCA) which transport Ca2+ back to ER/SR and 3) Ca2+ 

buffers which are Ca2+ binding proteins that sequester free Ca2+, as illustrated in 

Fig. 1.1 [Cheng and Lederer, 2008, Berridge et al., 2003]. 
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VOCC/ROCC PMCA 

Buffers • .... 

ER/SR 

• •• 

Mitochondria 

0 [Ca2+] = 1 - 2 mM 0 [Ca2+] ::::: 1 00 nM 0 [Ca2+] > 100 ~-tM 

Figure 1.1: Schematic representation of intracellular Ca2+ signaling components. Cal­
cium concentration gradients across the plasma membrane, the endoplasmic reticulum 
(ER), and the sarcoplasmic reticulum (SR) are maintained by plasma membrane Ca2+ 
ATPase (PMCA) and sarcoplasmic endoplasmic reticulum Ca2+ ATPase (SERCA) 
pumps, and other ion transport proteins such as the Na+ /Ca2+ exchanger (NCX). 
Uptake of Ca2+ into the mitochondrial matrix is mediated by a highly selective Ca2+ 
channel previously thought to be a uniporter [Kirichok et al., 2004]. Free cytosolic 
Ca2+ is buffered by a host of Ca2+ binding proteins and chelators. Release of Ca2+ 
from the ER or SR is mediated by two families of ROCCs, inositol1,4,5-trisphosphate 
receptors (IP3 Rs) and ryanodine receptors (RyRs). The arrows through transport 
proteins and channels indicate the direction of Ca2+ movement. Adapted from [Groff, 
2008] 
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The Ca2+ -signals can be generated by using both internal and external Ca2+ re­

sources. Ca2+ entry from the extracellular space is mediated by Ca2+ -permeant chan­

nels which are gated by voltage, ligands, temperature and a variety of other mecha­

nisms [Cheng and Lederer, 2008]. In contrast, the Ca2+ release from the intracellular 

Ca2+ reservoir, ER/SR, is mediated by only two families of Ca2+ channels, which are 

the modeling objects of this thesis, the ryanodine receptor (RyR) [Fill and Copello, 

2002, Meissner, 1994] and the Inositol-1-4-5-trisphosphate receptor (IP3 R) [Berridge, 

1993a, Foskett et al., 2007]. These Ca2+ channels are selectively permeable inter­

membrane protein tetramers which, when activated, allow Ca2+ flow passively down 

their concentration gradients. Though both families of Ca2+ channels have three ma­

jor isoforms (type 1, 2, and 3) [Cheng and Lederer, 2008] and require Ca2+ binding 

on their cytosolic side to activate, they are distinct in several aspects. For example, 

RyRs are expressed primarily in excitable cells while IP3 Rs exist in many different 

cell types. More importantly, the opening of IP3Rs requires co-agonist Inositol-1-4-5-

trisphosphate (IP3 ) in addition to Ca2+ binding [Bezprozvanny et al., 1991] while the 

absence of plant alkaloid ryanodine will lower the open probability of RyRs rather 

than prevent the opening of these channels. 

1.2 Local calcium signaling 

The distribution of IP3Rs and RyRs on the ER/SR membranes are known to be in 

clusters, dubbed Ca2+ release sites/complexes. For example, in skeletal and cardiac 

myocytes, Ca2+ release sites are composed of a minimum of 10 and a maximum of 

more than 200 RyRs depending on cell type and species, and the distances between 

release sites are 5-20 times larger than the distance between neighboring channels 

[Franzini-Armstrong et al., 1999]. In the cortical regions of immature Xenopus laevis 
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oocytes, IP3Rs are co-located in clusters of 5 to 50 with inter-cluster distance on the 

order of microns [Sun et al., 1998]. As mentioned in Sec. 1.1, IP3 Rs and RyRs are 

known to be activated by Ca2+. A small increase in cytosolic [Ca2+] close to the Ca2+ 

channels may elevate the open probability of the channels and promote further release 

from the ER/SR, a phenomenon known as Ca2+-induced Ca2+ release (CICR) [Bers, 

2002]. 

The clustering of IP3Rs and RyRs and the CICR phenomenon of results in strong 

interactions and cooperative gating within Ca2+ release sites and further generates a 

variety of intracellular Ca2+ signals. Three distinct modes of Ca2+ mobilization that 

have been observed via confocal microfluorimetry in oocytes, cardiomyocytes, and 

many other cell types: 1) Fundamental response: localized Ca2+ elevations caused by 

the activation of a single channel, also referred to as Ca2+ blips or quarks depending on 

whether the events are mediated by an IP3R or RyR [Niggli, 1999,Berridge, 2006]; 2) 

Elementary response: Ca2+ elevations due to the activation of multiple IP3Rs or RyRs 

associated with a single Ca2+ release site, also referred to as Ca2+ puffs and sparks 

[Cheng et al., 1993a,Cannell et al., 1995,Yao et al., 1995,Parker et al., 1996,Berridge, 

2006]; and 3) Global response: global Ca2+ elevations such as oscillations and waves 

that involve multiple release sites [Cheng et al., 1996, Berridge, 2006]. 

1.3 Markov chain model of single calcium channels 

Historically, the stochastic dynamics of single Ca2+ ion channel gating has been suc­

cessfully modeled using Markov chains. More importantly, when Markov chain models 

of these intracellular Ca2+ -regulated Ca2+ channels are coupled via a mathematical 

representation of a Ca2+ microdomain, simulated Ca2+ release sites may exhibit the 

phenomenon of stochastic Ca2+ excitability where channels open and close in a con-
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certed fashion reminiscent of Ca2+ puffs and sparks [Swillens et al., 1999]. Since the 

main focus of this thesis is to present novel techniques to reduce compositionally de­

fined Markov chain Ca2+ release site models, it would be helpful to briefly review the 

basic mathematical definitions and properties of Markov chains. 

1.3.1 Stochastic processes and Markov chains 

To define a Markov chain, we must first give the definition of a stochastic process. 

Definition Given a probability space (0, :F, P), a stochastic process (or random 

process) with state spaceS is a collection of S-valued random variables on 0 indexed 

by a set T ("time") [Gardiner, 2009]. That is, a stochastic process X is a collection 

{Xt: t E T} 

where each Xt is an F-valued random variable on 0. 

A Markov process, named after Andrey Markov, refers to an ffi.n-valued stochastic 

process X = { Xt : t E T} on a probability space (0, :F, P) that satisfies the Markov 

property: the conditional probability distribution of future states of the process, given 

the present state and the past states, depend only upon the present state; that is, 

the past is irrelevant because it doesn't matter how the current state was obtained. 

The state space S of Markov processes can be continuous, when S is discrete (finite 

or countable), the Markov process is named a Markov chain [Norris, 1997]. 

1.3.2 Discrete-time Markov chains 

A "discrete-time" stochastic process refers to systems where only the order of events 

is important. In these systems, the "time" set T takes the form of a set of integer 
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valued "steps." State changes randomly between "steps" which refer time as well as 

physical distance or any other discrete measurement. 

When a Markov chain takes discrete values and is indexed by a discrete time, it 

is named a discrete-time Markov chain (DTMC), and the Markov property can be 

reformulated as follows: 

Let Sn (n E Z and n ~ 0) represent the state of the DTMC at the nth step, the 

statistical information of a DTMC can be compactly collected by a matrix 

(1.2) 

where 

Pij = Pr{Sn+l = jiSn = i} (1.3) 

indicates the transition probability from state i to state j in a single step. Notice 

that P is a stochastic matrix, i.e. 

N 

LPij = 1, 
j=l 

where N is the cardinality of the state space. 

(1.4) 

The mth power of P, pm, is called them-step transition probability matrix, where 

each element 

(1.5) 

indicates the probability that the system visits state j from state i after exactly m 

steps. Given any initial distribution of the Markov chain 1r(O), the probability that 
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this DTMC is in state i after m steps is consequently 

(1.6) 

Definition A DTM C is called aperiodic if for any state i E S, the set { m 2': 0 

p~";) > 0} has no common divisor other than 1 

Definition A DTMC is called irreducible if there exists m E z+ such that p~';) > 0 

for all i,j E S. 

If a DTMC has both aperiodic and irreducible properties, it has a unique limiting 

distribution ii" which satisfies: 

ii" = ii"P and ire= 1, (1.7) 

where e is a commensurate vector of ones. 

1.3.3 Continuous-time Markov chains 

When modeling the gating of Ca2+ ion channels, we more often use continuous-time 

Markov chains (CTMC), where the "time" set Tis the set of all non-negative real 

numbers, for two main reasons. First, CTMCs monitor the time when the channel 

changes its states, and second the dwell times that these ion channels reside in each 

state are observed to follow exponential distributions [Bezprozvanny and Ehrlich, 

1994]. 

Analogous to the ?-matrices for DTMCs, CTMCs are often described by their 

corresponding infinitesimal generator matrix 

(1.8) 



where 

(1.9) 

indicates the rate of transition from state i to state J per unit time. CTMCs also 

have a corresponding transition probability matrix 

(1.10) 

where 

(1.11) 

Notice that P is a function of time describing the integrated change of rate given 

by matrix Q. This relationship between the ?-matrix and Q-matrix is elegantly 

described by the differential Chapman-Kolmogrov equation: 

d 
dt P(t) = P(t)Q. (1.12) 

Similar to the stationary distribution of DTMCs, irreducible CTMCs also have a 

unique stationary distribution it which leading to a zero changing rate of 1r( t), which 

satisfies: 

itQ = 0 and ire = 1, (1.13) 
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Ca/(Ca+Sr) 55 mM Sr trans 
A 

lOOms 
B 

~L 
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0.0 

~ 0.1 
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~ 0.2 

~ 
11 mM Sr+ 44 mM Ca trans 

0.4 

LL ~ 0.6 

~ 0.8 0 20 0 1000 
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Figure 1.2: (A) Planar lipid bilayer recordings of reconstituted type I IP3 Rs using 
different mole fractions of [Ca2+] on the trans (luminal) side of channels demonstrate 
gating between two conductance levels, 0 pA (closed) and 2 pA (open). The [Ca2+] 
and [IP3] of the cis bath is 0.2 pM and 2 pM, respectively. (B) The distribution 
of open and closed dwell times are well fitted by exponential functions of the trans 
[Ca2+]. Adapted from [Bezprozvanny and Ehrlich, 1994] 

1.4 Markov chain models of single calcium channel 

gating 

Because the conformational changes of IP3Rs and RyRs during the gating processes 

are not yet detectable in vivo, our first understanding of the single Ca2+ channel 

gating kinetics is from the planar lipid bilayer current recordings of reconstituted 

single channels [Bezprozvanny et al., 1991,Bezprozvanny and Ehrlich, 1994]. Fig. 1.2A 

shows several sample planar lipid bilayer recordings of reconstituted type I IP3Rs. 

The channel is closed most of the time and occasionally opens briefly resulting a 2 pA 

current deviation. The channel transfers stochastically between the open and closed 

state, and the dwell times of both states are exponentially distributed. 

Starting from the 1990's the stochastic gating of the IP3Rs and RyRs are success­

fully modeled by Markov chains [Stewart, 1994, Colquhoun and Hawkes, 1995]. Here 
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we introduce the Markov chain models of single Ca2+ channels using the simplest 

two-state model with one closed state (C) and one open state (0): 

(closed) C ~ 0 (open), 

j3 

(1.14) 

where a and j3 are the forward and backward transition rates, respectively, with 

units of time-1 . The transition rates of the single Ca2+ channels are often selected 

such that the model reproduces the experimental observations. Eq. 1.14 defines a 

CTMC, X(t), with state spaceS E {C, 0} and the dwell times in the open and closed 

states are exponentially distributed with expectations 1/ a and 1/ j3 respectively. The 

corresponding infinitesimal generator matrix Q is given by 

Q = {%} = 
( 

-j3a (1.15) 

Markov chain models of IP3 R and RyR gating often include additional experimen­

tal observations other than simply opening and closing. For example, Ca2+ -dependent 

activation [Bezprozvanny et al., 1991,Keizer and Levine, 1996] can be included in the 

two-state model given in Eq. 1.15 by adding the [Ca2+] into the forward transition 

rate 

k+c 

(closed) C ~ 0 (open), 

k-

(1.16) 

where c is the [Ca2+] in the small cytosolic side space close to the channel and k+ 

is the association rate constant with units conc-1time-1
. Adding states is another 
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way to reflect the phenomena observed in experiments. For example, the three­

state single channel models in Chap. 3 and Chap. 4 include an additional long­

lasting closed state which can be reached from the open state to reflect the Ca2+ 

inactivation [Schiefer et al., 1995, Mak and Foskett, 1997]. It is important to be 

aware that conformational structures are also important aspects to be included in 

single Ca2+ channel models. These models are biophysically more realistic but often 

have a larger number of states and are computationally more expensive to study. The 

DeYoung-Keizer model [De Young and Keizer, 1992,Shuai et al., 2007], for example, 

includes 4 subunits and 9 states per unit which results in 495 total states. 

1.5 Compositionally defined Markov chain calcium 

release site models 

Clusters of Ca2+ channels, often called Ca2+ release sites or release complexes, can 

also be modeled by Markov chains [Rfos and Stern, 1997, Swillens et al., 1998, Stern 

et al., 1999, Shuai and Jung, 2002b, Rengifo et al., 2002, Hinch et al., 2004, Mazzag 

et al., 2005, DeRemigio and Smith, 2005, Nguyen et al., 2005, Huertas and Smith, 

2007]. In these Ca2+ release site models intracellular Ca2+ -regulated Ca2+ channels 

are coupled via a mathematical representation of a Ca2+ microdomain, simulated 

Ca2+ release sites may exhibit the phenomenon of stochastic Ca2+ excitability where 

channels open and close in a concerted fashion reminiscent of Ca2+ puffs and sparks. 

These models usually are composed of several identical Ca2+ channels and include 

information such as the gating dynamics (state space) of the single channel, the 

geometry of the release site and the dynamics of cytosolic Ca2+ homeostasis. 

Among all concurrent mathematical models of Ca2+ release sites, compositionally 
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defined Markov chain models contain the most detail of the physiological realism of 

channel interaction and collective gating. As the number of channels the release site 

possesses increases, however, the number of the states of release site models grows 

exponentially, which is the so-called compositional state-space explosion problem. 

Based on prior observation [Nguyen et al., 2005] that the spatial organization of Ca2+ 

release sites does not significantly affect its collective gating dynamics, instantaneous 

mean-field coupling assumption, where all channels are identical and indistinguishable 

[DeRemigio and Smith, 2005, Groff and Smith, 2008a, Hao et al., 2009], is employed 

to reduce the state space. Unfortunately, further reduction is still necessary for many 

Ca2+ release site models under the mean-field assumption to be computationally 

tractable. 
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Chapter 2 

Reduction of calcium release site 

models via fast/ slow analysis and 

iterative 

aggregation/ disaggregation 

2.1 Summary 

Mathematical models of calcium release sites derived from Markov chain models of 

intracellular calcium channels exhibit collective gating reminiscent of the experimen­

tally observed phenomenon of calcium puffs and sparks. Such models often take 

the form of stochastic automata networks in which the transition probabilities of 

each channel depend on the local calcium concentration and thus the state of the 

other channels. In order to overcome the state-space explosion that occurs in such 

compositionally defined calcium release site models, we have implemented several 

automated procedures for model reduction using fast/slow analysis. After catego-
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rizing rate constants in the single channel model as either fast or slow, groups of 

states in the expanded release site model that are connected by fast transitions are 

lumped, and transition rates between reduced states are chosen consistent with the 

conditional probability distribution among states within each group. For small prob­

lems these conditional probability distributions can be numerically calculated from 

the full model without approximation. For large problems the conditional probabil­

ity distributions can be approximated without the construction of the full model by 

assuming rapid mixing of states connected by fast transitions. Alternatively, itera­

tive aggregation/ disaggregation may be employed to obtain reduced calcium release 

site models in a memory-efficient fashion. Benchmarking of several different iterative 

aggregation/disaggregation-based fast/slow reduction schemes establishes the effec­

tiveness of automated calcium release site reduction utilizing the Koury-McAllister­

Stewart method. 

Mathematical modeling has played an important role in understanding the rela­

tionship between single channel gating of intracellular calcium (Ca2+) channels and 

the stochastic dynamics of Ca2+ release events known as Ca2+ puffs and sparks. 

Ca2+ release site models are defined by the composition of single channel models 

whose transition probabilities depend on the local calcium concentration and thus 

the state of the other channels. Because the large state space of such models im­

pedes computational analysis of the dynamics of Ca2+ release sites, we implement 

and validate the application of several automated model reduction techniques that 

leverage separation of time scales, a common feature of single channel models of inos­

itol 1,4,5-trisphosphate receptors and ryanodine receptors. The authors show for the 

first time that memory-efficient iterative aggregation/disaggregation-based numerical 

schemes are effective for fast/slow reduction of compositionally defined Ca2+ release 

site models. 
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The results of this chapter have been presented as "Reduction of calcium release 

site models via fast/slow analysis and iterative aggregation/disaggregation" in Chaos 

[Hao et al., 2009]. 

2.2 Introduction 

Localized intracellular Ca2+ elevations known as puffs and sparks arise from the con­

certed gating ofinositol1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors 

(RyRs), intracellular Ca2+ channels that are clustered at release sites on the surface 

of the endoplasmic reticulum or sarcoplasmic reticulum [Cheng et al., 1993b, Cheng 

et al., 1996, Yao et al., 1995, Parker and Yao, 1996, Parker et al., 1996, Berridge, 

1997a, Berridge, 1998]. When Markov chain models of these intracellular Ca2+­

regulated Ca2+ channels are coupled via a mathematical representation of a Ca2+ 

microdomain, simulated Ca2+ release sites may exhibit the phenomenon of "stochas­

tic Ca2+ excitability" where channels open and close in a concerted fashion remi­

niscent of Ca2+ puffs and sparks [Swillens et al., 1999, Nguyen et al., 2005]. De­

tailed modeling and analysis of the stochastic dynamics of Ca2+ release has helped 

to develop our understanding of the relationship between single channel kinetics and 

emergent phenomena that lead to localized Ca2+ elevations such as Ca2+ puffs and 

sparks [Swillens et al., 1998, Swillens et al., 1999, Shuai and Jung, 2002b, Shuai and 

Jung, 2003,DeRemigio and Smith, 2005,Shuai et al., 2006,Shuai et al., 2007,Huertas 

and Smith, 2007, Groff and Smith, 2008b, Groff and Smith, 2008a, DeRemigio and 

Smith, 2008]. However, the state-space explosion that results when Ca2+ release site 

models are compositionally defined in terms of single channel models is a challenge to 

physiologically realistic modeling of the stochastic dynamics of Ca2+ release [Nguyen 

et al., 2005, DeRemigio et al., 2008]. 
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Figure 2.1: State-transition diagram for the Keizer-Levine RyR model [Keizer and 
Levine, 1996]. This model includes 2 closed ( C1 and C4 ) and 2 open ( 0 2 and 0 3 ) 

states. The C1 --+ 0 2 and 0 2 --+ 0 3 transitions involve binding of 4 and 3 Ca2+ ions, 
respectively, while the other transitions do not involve Ca2+. Parameters as in [Keizer 
and Levine, 1996]: k 12 = 1500 pM-4s-1 ; k 23 = 1500 pM-3s-1 ; in s-1 : k 21 = 28.8, 
k32 = 385.9, k24 = 1.75, k42 = 0.1. 

Quasi-static approximation based on a separation of time scales is a well-established 

approach to reducing single channel models of Ca2+ -regulated Ca2+ channels. Ordi­

nary differential equation (ODE) models of the dynamics of whole cell Ca2+ responses 

are often reduced through the observation that Ca2+ activation of IP3Rs or RyRs is 

a faster process than Ca2+ -dependent or -independent inactivation. For example, the 

4-state Keizer-Levine RyR model shown in Fig. 2.1 can be reduced to a 2-state model 

that can be represented by a single Hodgkin-Huxley-style gating variable in whole 

cell models of Ca2+ oscillations, because the C1 f-+ 0 2 and 0 2 f-+ 0 3 transitions are 

fast compared to the 0 2 f-+ C4 transitions [Keizer and Levine, 1996]. Similarly, the 

well-known 8-state DeYoung-Keizer IP3R subunit model can be reduced to 2 states 

by assuming both IP3 potentiation and Ca2+ activation are fast compared to Ca2+ 

inactivation [De Young and Keizer, 1992, Li and Rinzel, 1994]. 
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The fast/slow analysis that occurs in many ODE models of intracellular Ca2+ re­

sponses is straightforward because the intracellular channels are coupled to the bulk 

cytosolic [Ca2+], the dynamics of which are assumed to be slow compared to the fast 

transitions within identified groups of states (e.g., C1 , 0 2 , and 0 3 in Fig. 2.1). While 

fast/slow reduction can be applied to Markov chain models of Ca2+ release sites, the 

kinetics of domain Ca2+ near clusters of intracellular channels are considerably faster 

than the kinetics of bulk Ca2+ (milliseconds as opposed to seconds). Consequently, 

in the release site models that are the focus of this chapter, the domain [Ca2+] is 

assumed to be an instantaneous function of the number of open channels at a release 

site. That is, domain Ca2+ is not an environmental variable extrinsic to the Ca2+ 

release site model, but rather an intrinsic aspect of the model that is algebraically 

determined from the current release site state [Hinch et al., 2004, DeRemigio and 

Smith, 2005, Groff and Smith, 2008b, Groff and Smith, 2008a]. The focus of this 

chapter is the implementation and validation of automated fast/slow reduction pro­

cedures for this particular class of Ca2+ release site models, which are large structured 

time-homogeneous Markov chains. 

The remainder of this chapter is organized as follows. In Sees. 2.3 and 2.4 we 

motivate our model formulation and show a representative simulation of a Ca2+ re­

lease site composed of multiple Keizer-Levine RyRs interacting via a common domain 

[Ca2+]. In Sees. 2.5 and 2.6 we demonstrate and validate fast/slow reduction of com­

positionally defined Ca2+ release site models. Importantly, the conditional probability 

distributions required for fast/slow reduction can be numerically approximated with­

out the construction of the full model, resulting in a memory-efficient implementation. 

In Sees. 2. 7 and 2.8 we show how iterative aggregation/ disaggregation methods can 

be employed to obtain a reduced Ca2+ release site model, through exact calculation of 

the required conditional probability distributions. In Sec. 2.9 we show how a fast/slow 

18 



reduced Ca2+ release site model can be used to efficiently compute puff/spark statis­

tics, such as the probability distribution of the time required to achieve a specified 

number of refractory channels after a step increase in [Ca2+]. Sec. 2.10 discusses 

limitations and possible extensions this approach to reduction of Ca2+ release site 

models. 

2.3 Model Formulation 

Stochastic models of single channel gating often take the form of continuous-time 

discrete-state Markov chains (for review see [Colquhoun and Hawkes, 1995, Smith, 

2002]). For example, Fig. 2.1 shows the state-transition diagram for the 4-state 

Keizer-Levine RyR that includes both fast Ca2+ activation and slower Ca2+ -independent 

inactivation [Keizer and Levine, 1996]. Under the assumption that domain [Ca2+] 

changes are fast compared to channel transitions, this single channel model is continuous-

time Markov chain with infinitesimal generator matrix Q = (%) given by 

0 k12c~ 0 0 

k21 0 k23 (coo+ c*)
3 

k24 
Q= (2.1) 

0 k32 0 0 

0 k42 0 0 

where the states have been ordered C1 , 0 2 , 0 3 , C4 . The off-diagonal entries of the Q-

matrix for this irreducible and time-homogeneous Markov chain are transition rates 

defined by 
1 

% = lim APr [S(t + ~t) = jiS(t) = i] 
D..t--+0 ut 

(2.2) 

19 



A 
r··;:o~o········································o·;;·ia····l 

~ ~ , lfx ~ 
: """ /*~fl : i) b (iff~ 1 " ~ 
! I 1 )1 \ 1 ; 0100 Lj 
~ I t l I jl ' ri · .•.............•....................•.........•.................•.......• · 

I 
I 

:O:'i''\'''''''''''''''''''''···~::··r·································;··: 
~ I l fl f s : 

! ooo:IJ 1
1 1 ! 

! I j 
·· ........................................................................ ·· 

B 

... u···,r·:;,z;······~r·····t:····························:···/································· 
! 1 ~~~Jill,, ~ 1 ,.v; 1 \ 
j Yjf i ; 'FJIIi ~'00"Q2;'":~ 1 j 
i l tl /ijfi~ I l "''IIi fi ! 
! .......................................................... t:.:~ ............................... l 

Figure 2.2: (A) Topology of the 4-state Keizer-Levine RyR model showing fast and 
slow transitions (solid and dotted lines, respectively). (B) Topology for the 10-state 
release site composed of 2 Keizer-Levine RyRs. Gray boxes indicate groups of states 
connected by fast transitions. The ordered M-tuples (N1 ,N2 , .. ,NM) satisfy N, E 

{0, ... , N} and 2....::, N, = N where N, = n indicates n channels in state 'l. 

where ~ =f. J and S ( t) E { 1, 2, 3, 4} indicates the state of the stochastically gating 

channel at time t. The diamonds on the diagonal entries of the Q-matrix indicate 

values leading to row sums of zero, q" = - Lni• q,J < 0. Note that the rate con­

stants k24 (and k42 ) for Ca2+ -independent inactivation of the RyR (and recovery from 

inactivation) have units of time-1 . The dissociation rate constants k21 and k32 also 

have units of time-1 . The association rate constants k23 and k12 have units of conc-77 

time-1 where rt = 3 or 4 is the cooperatlvity for Ca2+ bindmg to the regulatory s1te of 

the channel. Consistent with the assumption of fast [Ca2+] changes, the background 

[Ca2+] denoted by c00 is used for the C1 --+ 0 2 transition, while the concentration 

c00 + c* is used for the 0 2 --+ 0 3 transition. The parameter c* denotes the elevation 

over background Ca2+ experienced by the Ca2+ regulatory site of the channel when 

the channel is open. 

Using the parameters of Fig. 2.1, c00 = 0.1 J1M, and c* = 0.065 J1M, the equi-

libration rates for the three pairs of states in the Keizer-Levine RyR model are 
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k12c~ + k21 = 28.9 s-1 (C1 +--+ 02), k23 (coo+ c*)3 + k32 = 393 s-1 (02 +--+ 03), 

and k24 + k42 = 1.85 s-1 ( 0 2 +--+ C4). The solid lines of Fig. 2.2A correspond to 

the fast C1 +--+ 0 2 +--+ 0 3 transitions in the Keizer-Levine RyR, while the dotted line 

corresponds to the slow 02 +--+ c4 transitions. 

All of the statistical properties of the Keizer-Levine RyR can be calculated from its 

Q-matrix (Eq. 2.1). For example, the conditional probability of finding the channel 

in state j at time t provided it was in state 'l at time zero is 

(2.3) 

where t ~ 0 and [etQLJ indicates the element in the ith row and jth column of 

the matrix exponential. In fact, because the Markov chain is time homogeneous, 

Pr [S (t + s) = jiS(s) = i] = p21 (t) for all t ~ 0 and s ~ 0. 

The Ca2+ release site models that are the focus of this chapter involve N identical 

Keizer-Levine RyRs interacting via changes in local [Ca2+] under the assumption 

of "instantaneous mean-field coupling" [Nguyen et al., 2005, DeRemigio and Smith, 

2005, DeRemigio and Smith, 2008]. That is, we assume that the increase in local 

[Ca2+] experienced by each channel is an instantaneous function of the number of 

open channels (No), 

(2.4) 

Because identical channels coupled in this manner are indistinguishable, a release site 

composed of N M-state channels includes 

(
N + M- 1) (N + M- 1)! 

(J(N,M) = N = N! (M -1)! (2.5) 

distinct states. Each of the (J(N, M) states can be written as the ordered M-tuple 

21 



(N1 , N2 , ... , NM) where Ni = n indicates n channels in state i, Ni E {0, ... , N}, and 

L:i Ni = N. Fig. 2.2B uses this notation to illustrate the topology of a 10-state Ca2+ 

release site model composed of 2 coupled Keizer-Levine RyRs. In this case the states 

take the form (Nell N02 , N03 , Nc4 ) and, for example, the rate for the 2000 -J. 1100 

transition is given by 

where N0 = N02 + N03 = 0 and Nc1 = 2 accounts for the fact that either one of the 

2 channels can make a C1 -J. 0 2 transition. Similarly, the rate for the 0110 -J. 0020 

transition is given by 

because N02 = 1 and N 0 = No2 + No3 = 2. Consistent with Fig. 2.2A, the solid 

and dotted lines in Fig. 2. 2B indicate those transitions associated with fast Ca2+­

dependent activation and slow Ca2+ -independent inactivation, respectively. 

2.4 Representative calcium release site simulations 

Fig. 2.3A shows the stochastic dynamics of a Ca2+ release site composed of eight 

identical Keizer-Levine RyRs coupled in the fashion described in Sec. 2.3. In each 

of the three simulations shown, the single channel model parameters follow Fig. 2.1, 

the background [Ca2+] is c00 = 0.1 f-lM, and simulations are performed using the 

exact numerical method attributed to Gillespie [Gillespie, 1977]. When the coupling 

strength c* is relatively small (0.06 f-lM, top panel), increases in the number of open 

channels usually involve one or a few Ca2+ channels, reminiscent of the experimen­

tally observed phenomena of Ca2+ blips and quarks [Sun et al., 1998, Niggli, 1999]. 
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Figure 2.3: A: Representative Ca2+ release site simulations involving eight Keizer­
Levine RyRs instantaneously coupled via a domain [Ca2+] given by c = C00 + N 0 c* 

where C00 = 0.1 pM and c* = 0.06 (top), 0.065 (middle), and 0.07 pM (bottom). 
When the coupling strength c* is sufficiently large, the stochastic dynamics of the 
number of open channels at a release site (No) is reminiscent of puffs/sparks. B: 
Probability distribution of the number of open channels directly calculated from the 
generator matrix of the Ca2+ release site Markov chain models and the corresponding 
puff/spark Score of 0.19 (top), 0.25 (middle), and 0.34 (bottom). Asterisks indicate 
truncated bar for Pr [No= 0] = 0.9576 (top), 0.9561 (middle), and 0.9537 (bottom). 

However, when the coupling strength is increased to c* = 0.065 and 0.07 pM (middle 

and bottom panels), the stochastic dynamics of the number of open channels at a 

release site (No) becomes more robust and concerted. These events often involve a 

significant fraction of the channels at the release site. Event durations (100-300 ms) 

and inter-event intervals (20-50 s) are similar to the experimentally observed localized 

Ca2+ elevations known as Ca2+ puffs and sparks. 

Fig. 2.3B shows the steady-state probability distribution of the number of open 

channels at these simulated Ca2+ release sites, that is, Pr [No = n] where n E {0, 1, ... , N}. 
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Note that these distributions are not estimated via Monte Carlo simulation, but rather 

directly calculated from the stationary distribution of the 165-state expanded Markov 

chain corresponding to 8 coupled Keizer-Levine RyRs (165 = (3(8, 4) in Eq. 2.5). That 

is, after constructing the Q matrix for the Ca2+ release site model, we numerically 

solve 

1rQ = 0 subject to 1re = 1, (2.6) 

where Q is a 165 x 165 matrix, 1r is 1 x 165 row vector, and e is a 165 x 1 column vector 

of ones (see Sec. 2.11.1 ). Each element of the probability distribution of the number 

of open channels (Pr [No = n]) is then constructed as the sum of the appropriate 

elements of 1r. Note that for the different values of the coupling strength used in 

Fig. 2.3B, only subtle differences in the probability distribution of N 0 are visible. On 

the other hand, the presence or absence of puff/sparks in Ca2+ release site simulations 

such as Fig. 2.3A can be accessed from Pr [No= n] without recourse to Monte Carlo 

simulation using a response measure dubbed the puff/spark Score [Nguyen et al., 

2005], 

S _ Var[fo] _ _.!_ Var[No] 
core- E[fo] - N E[No] ' (2.7) 

where fo = No/ N is the fraction of open channels. The puff/spark Score takes 

values between 0 and 1, and a Score of greater than approximately 0.25 indicates the 

presence of robust stochastic Ca2+ excitability (as in the middle and bottom panels 

of Fig. 2.3B). 

In the Ca2+ release site model composed of 8 Keizer-Levine RyRs (Fig. 2.3), higher 

values of the Ca2+ coupling strength ( c* > 0.1 J.LM) lead to sparks with physiologically 

unrealistic duration and ultimately a tonically active release site with low puff/spark 

Score ( c* > 0.4 J.LM, not shown). Of course, release site simulations using a different 

number of channels (N) or a different single channel model lead to results distinct from 
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the representative simulations of Fig. 2.3. Such modeling has played an important role 

in understanding the relationship between the single channel gating of intracellular 

Ca2+ channels and the stochastic dynamics of Ca2+ puffs and sparks (for review 

see [Groff and Smith, 2008b]). 

2.5 Fast/slow reduction for calcium release site 

models 

In the context of ODE modeling of whole cell Ca2+ responses, the Keizer-Levine RyR 

model was reduced from 4 to 2 states by observing that transition rates between the 

dis-inactviated states (C1 , 0 2 , and 0 3 ) are much faster than the transition rates to 

and from the inactivated state C2 [Keizer and Levine, 1996]. Similarly, the 4-state 

Markov chain of Eq. 2.1 can be reduced to a 2-state model, 

q12 

(disinact) cl u 02 u 03 ~ c4 (inact) (2.8) 

where C1 u 0 2 u 0 3 indicates the dis-inactivated macrostate. While the transition 

rate from the inactivated state to the dis-inactivated macrostate in the reduced model 

can be "read off" the full model ( q21 = q 42 , see Fig. 2.1), determining the transition 

rate from the dis-inactivated macrostate to the inactivated state (q12 ) requires an 

estimate of the steady-state conditional probability of being in state 0 2 given that 

the channel is in cl u 02 u 03, because the product of this conditional probability and 

q24 gives rate of inactivation in the reduced model. Under the assumption of rapid 

mixing of dis-inactivated states, this conditional probability can be found using Hill's 
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Figure 2.4: Partition and contraction of the 2-channel Keizer-Levine release site tran­
sition matrix. The transition matrix of the original model (left) is partitioned into 
blocks corresponds to the groups formed by classifying fast and slow transitions. 

diagrammatic method [Hill, 1989] applied to the subgraph C1 ~ 0 2 ~ 0 3 resulting 

in the expression 

Thus, 

(2.9) 

is the required transition rate for dis-inactivation in the reduced Keizer-Levine RyR 

(Eq. 2.8). In the reduced single channel model, the open probability conditioned on 

.occupation of the dis-inactivated macrostate is 
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where 0 = 0 2 U 0 3, while the open probability conditioned on occupation of the 

inactivated state is zero. 

Fast/slow reduction for Ca2+ release sites composed of several channels can be 

illustrated by considering N = 2 Keizer-Levine RyRs coupled via a common domain 

[Ca2+]. As discussed in Sec. 2.4, we assume [Ca2+](t) = C00 + c*No(t) where Na(t) 

is the number of open channels (0, 1, or 2). Fig. 2.2B shows the transition state 

diagram for 2 coupled Keizer-Levine RyRs where each release site state is labeled by 

four digits n 1n 2n 3n 4 with ni E {0, 1, 2} and l::i ni = 2. As mentioned above, the solid 

lines correspond to fast C1 f--+ 0 2 f--+ 0 3 transitions, while the dotted lines correspond 

to slow 0 2 f--+ C4 transitions. The gray boxes of Fig. 2.2B indicate groups of states 

connected by fast transitions that are good candidates for lumping during a fast/slow 

reduction procedure that will result in a 3-state Ca2+ release site model. 

As illustrated in Fig. 2.4, the fast/slow reduction procedure begins by constructing 

the Q-matrix for 2 coupled channels consistent with the partitioning in Fig. 2.2B. The 

resulting matrix takes the form 

Qll Q12 Q13 

Q = Q21 Q22 Q23 

Q31 Q32 Q33 

(2.10) 

where block Q 11 is 6 x 6, block Q22 is 3 x 3, and block Q 33 is 1 x 1 (see Fig. 2.4). 

To perform the model reduction, we require an estimate of the conditional prob­

ability of being in the various substates of each block. Under the assumption of 

rapid mixing within lumped states, these conditional probability distributions are 

well-approximated by the solutions of the linear systems, 

(2.11) 
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where ~ E {1, 2, 3}. In this expression, Q~ is given by 

(2.12) 

where the sum is over two column vectors, the "diag" operation converts the resulting 

column vector into a diagonal matrix commensurate with Q", the unknowns 7r 1 , 7r2 , 

and 7r3 are 1 x 6, 1 x 3, and 1 x 1, respectively, and the e1 are commensurate column 

vectors of ones. The approximate conditional probability distributions 7r, are then 

used to calculate the transition rates between lumped states yielding the reduced 

model 

(2.13) 

where 

(2.14) 

for~# J and (j" = .L:Jio• -(j,1 . Pseudocode for this fast/slow reduction procedure is 

presented in Algorithm 1. 
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Algorithm 1: Fast/slow reduction 

require: b2 matrices { Q~3 } where b is size of reduced model 

fori= 1, ... , b 

Q~ <--- Qi~ + diag { LJ;;i~ Q~3 e3 } 
solve ir~Q~ = 0 subject to ir~e~ = 1 

endfor 

fori= 1, ... , b 

for j = 1, ... , i - 1, i + 1, ... , b do 

endfor 

endfor 

return Q = ( rJ.~3 ) 

2.6 Validation of fast/slow reduction for release 

sites 

This section validates the numerical approach to fast/slow reduction outlined in 

Sec. 2.5 using a release site model composed of 8 4-state Keizer-Levine RyRs. Mean-

field coupling of these channels leads to a 165 x 165 Q-matrix (cf. Eq. 2.10) that is 

partitioned into 81 blocks when states C1 , 0 2 , and 0 3 are lumped. The 9 square 

blocks on the diagonal of the partitioned generator matrix are of size 45, 36, 28, 21, 

15, 10, 6, 3, and 1 (see Sec. 2.11.2). The fast/slow reduction procedure outlined in 

Algorithm 1leads to a reduced model specified by the 9 x 9 matrix Q (cf. Eq. 2.13). 

Perhaps the most straightforward way to validate this approach is to compare 
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Figure 2.5: Error of fast/slow reduction (Algorithm 1) for a release site composed 
of eight 4-state Keizer-Levine RyRs quantified as in Eqs. 2.15-2.19. Solid, dashed 
and dotted lines use Ca2+ coupling strengths of c* = 0.06, 0.065, and 0.07 p,M, 
respectively ( cf. Fig. 2.3). Background [Ca2+] is C00 = 0.1 p,M and other parameters 
are as in Fig. 2.1. 

the transition probability matrices of the reduced model (P = eu':}) to the transition 

probability matrix of the full model (P = etQ) , see Eq. 2.3. Assuming the full and 

reduced models have b and b states, respectively, we write 

E(t) = P(t)- UP(t)V (2.15) 
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where V is a b x b collector matrix [Nicola, 1998], 

V= 

and the e, are column vectors of ones with lengths commensurate with Q,., and U 

is a b x b distributor matrix given by 

0 
U= (2.16) 

0 0 

The exact conditional probability distributions if, that compose U are row vectors 

given by 

(2.17) 

where 

(2.18) 

is the conformally partitioned exact stationary distribution of the full model satisfying 

Eq. 2.6. 

The solid line of Fig. 2.5 shows the maximum absolute error, 

Emax ( t) = ~~X IE '1 ( t) I , (2.19) 

for a 9-state fast/slow reduced Ca2+ release site model obtained by contracting a full 
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Figure 2.6: Logarithmic plot of the error of fast/slow reduction (Eq. 2.19) when 
Algorithm 1 is applied to a release sites composed of 8 4-state Keizer-Levine RyRs 
with parameters as in Fig. 2.5 (solid line). Dashed and dotted lines show the error of 
fast/slow reduction is decreased when slow transition rates are decreased by 10 and 
100 x, respectively. Other parameters as in Fig. 2.5. 

model with eight 4-state Keizer-Levine RyRs and a coupling strength of c* = 0.06 

JLM (as in the top panel of Fig. 2.3A). For small values of t both P and P are 

approximated by identity matrices and consequently Emax(t) ~ 0. Note that Emax(t) 

reaches a peak of 0.05 at t ~ 10 s and approaches a limiting value of 0.02 as t -----+ oo, a 

value that corresponds to the maximum absolute error of the stationary distribution 

of the reduced model when compared to the contracted stationary distribution of 

the full model. (To see this, recall that the columns of limt ....... oo P(t) are identical and 

each row is given by the elements of the stationary probability distribution for the full 

model that satisfies Eq. 2.6). The total absolute error of the stationary distribution 

32 



0.12 

0.1 

0.08 
E 

max0.06 

0.04 

0.02 

o~~~~~~~~~~~~~~~~ 

10-2 
10° 10

1 

time (s) 

Figure 2.7: Error of fast/slow reduction (Eq. 2.19) when Algorithms 1 (solid line), 
2 (dotted line), and 3 (dashed line) are applied to a release site composed of eight 
4-state Keizer-Levine RyRs. Parameters: C00 = 0.1 p,M, c* = 0.065 p,M, and as in 
Fig. 2.1. 

of the fast/slow reduced model is L:j IEij(oo)l ~ 0.047. 

The dotted and dashed lines of Fig. 2.5 show Emax(t) for the fast/slow reduced 

model when the coupling strength is increased to c* = 0.065 and 0.07 p,M (as in the 

middle and bottom panels of Fig. 2.3A). Stochastic Ca2+ excitability is more pro­

nounced and the puff/spark Score increases for these values of c* (see Fig. 2.3B) and 

both the peak (0.10 and 0.26) and steady state (0.06 and 0.13) errors show a corre-

sponding increase. Perhaps more importantly, Fig. 2.6 repeats this analysis using the 

standard value of the Ca2+ coupling strength (c* = 0.065 p,M) and modified parame-

ter sets for the Keizer-Levine RyR model in which the rate of the slow transitions (k24 
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and k42 ) is decreased by 10 and 100x (dashed and dotted lines, respectively). Note 

that Emax ( t) decreases as the separation of time scales between Ca2+ -dependent acti­

vation and Ca2+ -independent inactivation increases, thereby validating the fast/slow 

reduction procedure of Algorithm 1. 

Because Fig. 2.5 indicates significant model reduction error, we considered al­

ternative fast/slow reduction procedures that follow a solution method for nearly 

completely decomposable Markov chains presented in Stewart's monograph [Stewart, 

1994, pages 285~294]. This approach is distinct from Algorithm 1 in that the di­

agonal elements of the diagonal blocks Qn of the partitioned generator matrix are 

not adjusted to remove negative entries corresponding to slow transitions between 

lumped states (Eq. 2.11). Because the transition rates between macrostates are slow, 

this is a subtle difference. Nevertheless, Fig. 2. 7 shows a decreased model reduction 

error using this modified fast/slow reduction procedure (Algorithm 2, dotted line) 

compared to the previously discussed method (Algorithm 1, solid line). Note that 

an important step in Algorithm 2 involves solving for the Perron vector of Pn, a 

substochastic matrix given by Pn =I+ Q22 /5 for suitable 5. The Perron vector U 2 

solves u 2 Pn = AU2 subject to U 2e2 = 1 where ).. is the spectral radius of P 22 (see Sec. 

2.11.1). 
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Algorithm 2: Modified fast/slow reduction 

require: b2 matrices { Q,
1

} 

fori= 1, ... , b 

6 +--- maxk IQ,.(k, k)l 

P" +---I+ Q,J6 

u, +--- the Perron vector of P" 

endfor 

fori= 1, ... , b 

for j = 1, ... , i - 1, i + 1, ... , b 

endfor 

q" +--- l:rt, -q,J 

endfor 

return Q = ( q,1 ) 
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Algorithm 3: Gold standard reduction with substantial 

storage requirement 

require: b2 matrices { Q ~1 } 
solve -rrQ = 0 subject to -rre = 1 where Q = (Q~1 ) 

for~= 1, ... , b 

endfor 

for~= 1, ... , b 

for J = 1, ... , ~ - 1, ~ + 1, ... , b 

(j~1 +--- ir~Q~1 e1 

endfor 

(j~~ +--- :2::#~ -fi~J 

endfor 

return Q = ( (j~1 ) 

2. 7 Reduction using correct conditional probabil­

ity 

As discussed in Sec. 2.6, the reduction error obtained using both the original and mod­

ified fast/slow reduction methods (Algorithms 1 and 2) is initially zero and asymp­

totically approaches a finite value as t---+ oo (solid and dotted lines of Fig. 2.7). As 

expected, inspection of numerical results associated with Figs. 2.5-2. 7 confirms that 

the reduction error is larger when the conditional probability distributions estimated 

in a block-by-block fashion by Algorithms 1 and 2 become less accurate (not shown). 

That is, the vector norms II*~- ir~ll-with *~and ir~ given by Eq. 2.11 and Eq. 2.17, 

respectively-are larger when Algorithms 1 and 2 are not performing well. Thus, the 
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error present in the fast/slow reduction approach is potentially avoidable, provided a 

better approximation of the conditional probability distributions can be obtained. 

Eq. 2.5 indicates that a Ca2+ release site model composed of eight 4-state Keizer­

Levine RyRs includes (3(8, 4) = 165 distinguishable states. For this relatively small 

release site model, the exact conditional probability distributions it'i can be calculated 

using Eqs. 2.17 and 2.18, because the numerical solution of the stationary distribution 

of the full problem is tractable ('rr, Eq. 2.6). In this case the rate constants for the 

reduced model are given by (jij = itiQijej for i =f. j (cf. Eq. 2.14). For any given 

partitioning of states-i.e., the b2 matrices { Qij }-the reduced model thus obtained 

will be referred to as the "gold standard," because the conditional probability distri­

butions used to perform the reduction are exactly calculated. While this reduction 

may not be optimal, the fact that P(oo) = UP(oo)V (cf. Eq. 3.25) means that the 

error of the gold standard reduced model does at least approach zero as t -----+ oo. The 

dashed lines of Fig. 2.7 show how this important feature of the gold standard reduced 

model (Algorithm 3) leads to finite integrated error, which is not a property of the 

other reductions. In addition, the peak value of Emax obtained (0.03) is significantly 

smaller than the results of Algorithms 1 and 2 (0.10 and 0.05, respectively). 

Because Algorithm 3 uses the exact conditional probability distributions it'i (Eq. 2.17), 

its reduction error-the dashed line of Fig. 2. 7 -indicates that the time scales of Ca2+­

dependent activation and Ca2+ -independent inactivation in the release site model are 

not completely separated. Fig. 2.8 shows that when this "gold standard" reduction 

procedure is repeated using modified parameter sets for the Keizer-Levine RyR model 

in which the rate of the slow transitions ( k24 and k42 ) is decreased by 10 and 100 x, 

the peak error decreases from 0.03 to 5.7 X 10-3 and 6.6 X 10-4 , respectively (cf. 

Fig. 2.6). 

37 



E 10-4 

max 

10
1 

time (s) 

I 
I 

Figure 2.8: Logarithmic plot of the error of fast/slow reduction (Eq. 2.19) when 
Algorithm 3 is applied to a release sites composed of eight 4-state Keizer-Levine RyRs 
with parameters as in Fig. 2.5 (solid line). Dotted and dashed lines show a decreased 
error when the rate of slow transitions is decreased by 10 and 100 x, respectively. 

2.8 Iterative aggregation/ disaggregation methods 

Using Ca2+ release sites composed of a small number of channels, Sec. 2.7 showed that 

model reduction using exact conditional probability distributions (-rr, Algorithm 3) is 

superior to fast/slow reduction procedures that use approximate conditional proba­

bility distributions (11-, Algorithms 1 and 2). On the other hand, the storage require­

ments of Algorithm 3 are far in excess of Algorithms 1 and 2. (Recall that Algorithm 3 

solves for the full model stationary distribution (Eq. 2.6), Algorithm 1 sequentially 

solves for the stationary distributions of the various blocks of the partitioned gen-

era tor matrix of the full model (Eq. 2.11), and Algorithm 2 sequentially solves for 
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the Perron vectors of Pii =I+ Qij8.) Indeed, the substantial storage requirements 

of Algorithm 3 make it inappropriate as a fast/slow reduction procedure for Ca2+ 

release sites with a large number of states. 

Iterative aggregation/disaggregation (IAD) methods are a well-known alternative 

to direct methods for calculating the stationary distribution of large Markov chains 

[Stewart, 1994]. Because these methods often perform well when a Markov chain is 

irreducible and nearly completely decomposable, we implemented a memory-efficient 

version of Algorithm 3 that solves for the stationary distribution of the full model 

using the Koury-McAllister-Stewart lAD method (see Algorithm 4) [Koury et al., 

1984]. For comparison, we also implemented release site reduction procedures that 

utilize the lAD methods of Vantilborgh and Takahashi (algorithms not shown) [Cao 

and Stewart, 1985]. 

Table 2.1 shows the number of iterations required for convergence of the Koury­

McAllister-Stewart and Vantilborgh algorithms for Ca2+ release sites composed of 

up to 80 4-state Keizer-Levine RyRs when C00 = 0.1 p,M and c* = 0.06 p,M. The 

residuals given by 117rQII 1 calculated in a block-by-block fashion from { 1ri} and { Qij} 

are also shown. Small residuals indicate convergence of the lAD methods to the cor­

rect stationary probability distribution 1r, yielding the exact conditional probability 

distributions fti (Eq. 2.18), and a "gold standard" reduced model Q = ((jij) where 

(jij = itiQijej fori =/= j. Our implementation of the Takahashi lAD method was less 

successful than the Koury-McAllister-Stewart and Vantilborgh methods and did not 

converge for N ?:: 30 (not shown). 

Table 2.1 shows that the number of iterations required for the Koury-McAllister­

Stewart and Vantilborgh lAD methods first increases and then decreases as a function 

of N, presumably reflecting the fact that the Ca2+ release site dynamics change sig­

nificantly when N is increased with fixed c* (note that the puff/spark Score increases 
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and decreases in a similar fashion). In fact, for N ~ 50 the low puff/spark Scores in 

Table 2.1 reflect tonically active Ca2+ release sites. 

To ensure that the success of model reduction using the Koury-McAllister-Stewart 

method for large N is not dependent on the release sites being tonically active, bench-

mark calculations were repeated using c* values selected to ensure that the full model 

exhibited robust Ca2+ excitability (Score > 0.25). Using these parameters, Table 2.2 

demonstrates successful release site reduction using the Koury-McAllister-Stewart 

method (Algorithm 4) with up to 80 Keizer-Levine RyRs. While the number of iter­

ations required for convergence depends on the Ca2+ coupling strength, the residuals 

are consistently small. 

In both Table 2.1 and 2.2, the N+1-state reduced Ca2+ release site models are 

contractions of full models with f3(N, 4) states (Eq. 2.5). The largest Ca2+ release 

site model successfully reduced using the Koury-McAllister-Stewart lAD method (see 

Algorithm 4) included (3(80, 4) = 91881 states and 2 · 3(3(80, 3) = 531360 transitions, 

where 3 corresponds to the number of edges in the state-transition diagram for the 

Keizer-Levine RyR (Fig. 2.2A) and 3(3(80, 3) is the number of edges in state-transition 

diagram of the 80-RyR Ca2+ release site (cf. Fig. 2.2B). 
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Algorithm 4: Reduction using Koury-McAllister-Stewart lAD 

require: b2 matrices { Q,
1

} and tolerance 

o <-max, maxk IQ,.(k, k)l 

for I= 1, ... , b 

P" f- I+ Q,.fo 
y~o) <- row vector of 1/b commensurate with P,. 

for J = 1, ... , i- 1, i + 1, .. , b 

P,1 f- Q,;fo 

end for 

endfor 

y(D) <- [ y~o), y~o), ... , yio) J, m <- 0, change <- oo 

while change > tolerance 

m<-m+1 

for 2 = 1, ... , b do 

-(m-1) = (m-1)/ll (m-1)ll Y, Y, Y, 1 

end for 

for I = 1, ... , b do 

for J = 1, ... , b do 

A
(m-1)( ) _ -(m-1)p 

I,J - Y, ,1 e1 

endfor 

end for 

solve w(m- 1l(A(m- 1)- I)= 0 where //w(m- 1)// 1 = 1 

(m) [ (m-1)- (m-1) (m-1)- (m-1)] z <- w1 Y1 , ... , w~, Yt, 

for J = b, b- 1, ... , 1 do 

solve y;m) = y;m) P 11 + 2.::: z~m) P,1 + 2.::: y~m) P,1 

endfor 

end while 

return Q <- o(A (m- 1 ) -I) and 1r <- y(m- 1) 
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2.9 Example direct calculations using fast/slow re-

duct ion 

N 

60 

0 30 

0 
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Figure 2.9: Monte Carlo simulation (solid lines) and direct calculation (broken lines) 
of the number of open ( N 0 ) and refractory ( N R) channels in a stochastic simulation of 
a Ca2+ release site composed of 60 Keizer-Levine RyRs that are either independently 
gating (thin lines, c* = 0) or coupled (thick lines, c* = 0.02 p,M) following an increase 
of the background [Ca2+] from c00 = 0.1 to 0.35 and subsequently to 0.5 p,M (bottom 
panel). 

As mentioned in Sec. 4.2, automated fast/slow reduction techniques are of interest 

because they may facilitate studies of Ca2+ release site dynamics that would other-

wise be intractable due to the state-space explosion that occurs when multiple single 

channel models are coupled; below we illustrate this point. The thin solid lines of 

Fig. 2.9 show the number of open (No) and refractory (NR) channels as a function 
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of time in a stochastic simulation of a Ca2+ release site composed of 60 indepen­

dently gating Keizer-Levine RyRs (c* = 0). While the background [Ca2+] is initially 

c00 = 0.1 f.LM, this value is increased to 0.35 f.LM and 0.5 f.LM at times indicated in 

the lower panel. Note the increase in N0 upon the second step in [Ca2+] corresponds 

to the phenomenon of "Ca2+ adaptation" that is an important aspect of the chapter 

that introduced the RyR model used here (cf. Fig. 2C in [Keizer and Levine, 1996]). 

For comparision, the thick solid lines of Fig. 2.9 show results for a Ca2+ release site 

composed of 60 coupled Keizer-Levine RyRs (c* = 0.02 f.LM); interestingly, in this case 

adaptation is no longer observed. 

More important to our present purposes are the broken lines of Fig. 2.9, which 

show exact results obtained from the probability distribution 1r(t) directly calculated 

using matrix exponentials of fast/slow reduced release generator matrices, that is, 

7r(t) = (2.20) 

where 1r0 Q0 = 0 subject to 1r0 e = 1, and Q0 , Q1 , and Q2 are generator matrices 

reduced from the full model evaluated with C00 = 0.1, 0.35, and 0.5 f.LM, respectively. 

While it is possible to obtain similar results by performing many Monte Carlo simu­

lations and averaging, direct numerical calculation is computationally more efficient 

because the matrix exponential calculations of Eq. 2.20 use the 61-state reduced gen­

erator matrix (0 ::; NR ::; N) as opposed to the 39711-state full model (,8(60, 4) in 

Eq. 2.5). 
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Figure 2.10: Directly calculated probability density of the time until the number of 
refractory channels (NR) increases to N/2, half the total number of channels in the 
release site model. Solid lines show results obtained using the full model generator 
matrices for 8, 12, and 16 channels (sizes 165-969; see Eq. 2.5). Dashed lines show 
results obtained using the fast/slow reduced generator matrix for 8, 12, 16, 40, 60 
and 80 channels (sizes 9-81). In all calculations the initial probability distribution is 
the stationary distribution for C00 = 0.1 f.J,M; at time zero this background [Ca2+] is 
increased to c00 = 0.35 JLM. The coupling strengths were chosen so that c*N = 0.52 
11M (e.g., in the eight channel case c* = 0.065 11M). 

Fig. 2.10 gives another example of how automated fast/slow reduction can be used 

in conjunction with matrix analytic formulas to probe the stochastic dynamics of Ca2+ 

release sites, the size of which would otherwise make direct numerical calculations 

unfeasible, and Monte Carlo simulation inefficient and unreliable. Using N = 8, 

12, and 16 channels, the solid lines of Fig. 2.10 present direct calculations of the 

probability density of the time until the number ofrefractory channels ( N R) increases 
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to N /2, half the total number of channels in the release site model. These were 

calculated by permuting the generator matrix of the full model into the following 

form: 

(2.21) 

where each partition contains rates for transitions between (or within) aggregate 

classes of states where NR < N/2 (a) and NR 2: N/2 (b). The probability distribution 

is given by [Ball and Geoffrey, 2000, Ball et al., 2000] 

(2.22) 

where ea is a commensurate column vector of ones, cf>a is a row vector giving the 

initial probabilities of each state, and for simplicity we assume cf>a = 1r a/7r aea where 

1r = ( 1r a 7rb) is the stationary distribution solving -rrQ = 0. The dashed lines of 

Fig. 2.10 repeat these calculations using the generator matrix for the fast/slow reduced 

model. Not only does the agreement validate the reduction method, but perhaps more 

importantly, by using the fast/slow reduced generator matrix we are able to calculate 

the distributions for release sites composed of 40, 60 and 80 channels (dashed lines). 

Because the matrix exponential in Eq. 2.22 must be calculated for many different 

values oft, full model calculations are extremely time consuming if not impossible 

due to storage limitations. On the other hand, calculating the matrix exponentials 

in the reduced model case takes less than a second. While performing the model 

reduction using the lAD-based reduction method (Algorithm 4) is overhead, this step 

need be performed only once. 
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2.10 Discussion 

We have implemented and validated several numerical procedures for reducing com­

positionally defined calcium release site models through fast/slow analysis. In all the 

approaches presented here, rate constants in the single channel model are categorized 

as either fast or slow, groups of states in the release site model that are connected 

by fast transitions are identified and lumped, and transition rates between reduced 

states are chosen consistent with exact or approximate conditional probability distri­

butions among states within each group. For Ca2+ release site models that are small 

enough to allow direct calculation of the stationary distribution of the full model, 

Algorithm 3 is preferred in spite of its substantial storage requirements, because the 

exact conditional probability distributions result in a reduced model that is natural 

for the chosen partitioning of states. For release sites composed of many channels, the 

conditional probability distributions can be approximated without the construction 

of the full model by assuming rapid mixing of states connected by fast transitions 

(Algorithms 1 and 2). Alternatively, an iterative aggregation/disaggregation (lAD) 

method can be employed to obtain a reduced Ca2+ release site model in a memory­

efficient fashion. 

We compared the convergence properties of reduction algorithms usmg three 

lAD methods: Koury-McAllister-Stewart, Vantilborgh, and Takahashi [Koury et al., 

1984, Cao and Stewart, 1985]. Our results suggest that Koury-McAllister-Stewart 

lAD-based reduction method is superior in the context of Ca2+ release site modeling 

(Algorithm 4). Calculations performed using Vantilborgh lAD required more iter­

ations to converge than Koury-McAllister-Stewart, while those using the Takahashi 

method often did not converge (not shown). Note that memory-efficient implemen­

tation of model reduction using Algorithm 4 begins with enumeration of the state 
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space of a full Ca2+ release site model. This preliminary step must also be performed 

without excessive storage requirements (see Appendix B and Algorithms 5 and 6). 

Deyoung-Keizer IP
3
R 

Figure 2.11: State space size (Eq. 2.5) of the full Ca2+ release site model (solid 
line), size of the largest (dashed line) and average (dotted line) diagonal block of 
the partitioned generator matrix for 1 ~ N ~ 100 4-state Keizer-Levine RyRs (see 
Fig. 2.4). The reduced release site model has b = N + 1 states (not shown) because 
slow transitions in the Keizer-Levine RyR separate 2 groups of states (Fig. 2.2). 

We were able to validate Algorithms 1-4 by confirming that the transition proba-

bility matrix of the reduced model well-approximates the corresponding contraction 

of the full model transition probability matrix, provided the separation of time scales 

between fast and slow processes is large enough (Figs. 2.6 and 2.8). As expected, 

both Algorithm 1 and 2 yield more error than the memory-inefficient reduction that 

uses the exact conditional probability distributions (Algorithm 3). Note that the 

Koury-McAllister-Stewart lAD-based Algorithm 4 produces the same reduced model 
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as Algorithm 3. The essential difference between Algorithms 3 and 4 is the numeri­

cal scheme used to calculate the exact conditional probability distributions. Because 

Algorithm 3 is not tractable for large Ca2+ release site models, we recommend Algo­

rithm 4 to investigators interested in Ca2+ release site model reduction based on a 

separation of time scales. 

It is important to note that while we have validated the four model reduction 

procedures presented here (Algorithms 1-4), the performance of a particular reduced 

model is a complicated matter that will depend on the single channel model used 

and, of course, the choice of parameters that influence the time scale separation of 

transitions identified as fast and slow. 

While the error measure based on transition probability matrices (Eq. 3.25) is 

sufficient for our present purposes, we have not yet performed a detailed study of 

puff/spark duration and inter-event interval in full and reduced Ca2+ release site 

models. The extent to which model reduction may perturb measures of particular 

relevance to the stochastic dynamics of Ca2+ release is a question that deserves fur­

ther consideration. Because puff/spark statistics are coarser measures of release site 

dynamics than the transition probability matrix itself, a reduced model could per­

form well with respect to the distribution of spark durations (for example), even when 

Emax(t) is not promising. While it is of some concern that Emax(t) often grows with 

the number of channels (Fig. 2.12), this doesn't adversely affect the reduced model 

probability densities of Fig. 2.10. 

Although beyond the scope of this chapter, Algorithm 4 can be implemented in a 

distributed parallel fashion. Such implementation would likely be required to perform 

fast/slow reduction when Ca2+ release sites are composed of single channel models 

with many states. For example, a DeYoung-Keizer-like IP3R model [De Young and 

Keizer, 1992] that includes 4 independent eight-state subunits-each with one bind-
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Figure 2.12: Reduction error of "gold standard" reduction procedure (Algorithm 3) 
for release sites composed of 8 (solid line), 12 (dotted line) and 16 (dashed line) four­
state Keizer-Levine RyRs. c00 = 0.1 J.LM, c* = 0.065 J.LM, and other parameters as in 
Fig. 2.1. 

ing site for IP3 and 2 binding sites for Ca2+ -results in a single channel model with 

{1(4, 8) = 330 distinguishable states (Eq. 2.5). Assuming fast IP3-potentiation, fast 

Ca2+ -activation, and slow Ca2+ -inactivation, the topology of the fast and slow transi-

tions results in 2 groups of 4 states for each subunit. This results in five groups with 35, 

80, 100, 80, and 35 states for the single channel model, that is, ,B(nd1smact> 4),B(nmact, 4) 

for nmact = 0, 1, 2, 3, 4 and nmact + nd1smact = 4. Assuming a release site composed of 

N DeYoung-Keizer-like IP3Rs, Fig. 2.11 shows the state space size of the full model 

(solid line), and the size of the largest (dashed line) and average (dotted line) diagonal 

block (cf. Eq. 2.10). Note that the limiting slopes for the DeYoung-Keizer IP3R are 
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much greater than those observed for the Keizer-Levine RyR. For the Keizer-Levine 

RyR, the number of states in the full model is (3(N, 4) rv N 3 and the largest block size 

is (3(N, 3) rv N 2 (all channels in the largest group that includes 3 states; see Fig. 2.2). 

For the De Young-Keizer-like IP3R, the number of states in the full model is O(N330 ) 

and the largest block size is O(N326
) (326 = 330 states- 5 groups+ 1). 

Throughout this chapter we assume that the fast and slow transitions of the 

single channel model are identified by the modeler, and this specification is used to 

partition the full model generator matrix ( cf. Fig. 2.2). While this makes sense given 

the likely prior understanding of time scales of single channel kinetics, this approach 

neglects the effect of [Ca2+] changes on separation of time scales. That is, a Ca2+­

dependent transition such as C1 -t 0 2 or 0 2 -t 0 3 in the Keizer-Levine RyR may 

be slow or fast depending on N0 (t). While the memory-efficient Algorithm 4 leads 

to the "gold standard" reduced model for any given partitioning, the approach to 

partitioning used here may not be optimal. In fact, when a 165-state release site 

is reduced to 9 states as in Figs. 2.5-2.8, there are (3(9, 165) ~ 3 x 1014 possible 

partitioning schemes. Given the separation of time scales in the Keizer-Levine RyR, 

the chosen partitioning scheme is presumably among the best, but it is unclear how to 

demonstrate this without enumerating all the possibilities and comparing reduction 

errors. An important topic for future work is automated determination of the optimal 

partitioning of a full model generator matrix to achieve a target number of reduced 

model states. In cases where the reduction error is defined in terms of a puff/spark 

statistic of interest (e.g., spark duration), the optimal partitioning schemes would 

presumably be sensitive to the aggregate classes of states being lumped (e.g., closed 

vs. open) as well as separation of time scales [DeRemigio et al., 2008]. In future work 

we hope to combine the automated fast/slow reduction procedure presented here with 

whole cell modeling techniques that include a probability density-based description of 
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the local [Ca2+] experienced by clusters of intracellular and plasma membrane Ca2+ 

channels [Williams et al., 2007, Williams et al., 2008]. 

Algorithm 5: Yif,(nball, nbin) 

Recursive state space generation 

require: nball, nbin 

if nbin = 1 return nball 

if nball = 0 return 1 x nbin matrix of zeros 

B ,___ f/J (an empty matrix) 

for £ = nball, nball - 1, ... , 0 

BR = Yif,(nball- £, nbin- 1) 

B L ,___ column vector of£ 's with same number 

of rows as BR 

endfor 

return B 

2.11 Appendices 

2.11.1 Implementation of fast/slow reduction procedures 

Algorithms 1~6 were implemented in Matlab (The MathWorks, Inc.). Equations of 

the form xA = 0 subject to xe = 1 were solved by evaluating x ,___ ( 0 1 )/( A e ) 

where the slash corresponds to Matlab's mrdi vide command. When solving an equa-

tion of the form xP = >.x subject to xe = 1 we used Matlab's eigs command to 

find the eigenvector corresponding to the eigenvalue with largest real part and then 
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normalize the result. In our implementation of Algorithm 4, the aggregation and dis­

aggregation steps were solved using eigs and mldi vide, in spite of the fact that the 

aggregated system for nearly completely decomposable Markov chains is expected to 

be ill-conditioned [Stewart, 1994, pages 321-322]. It is possible that the inferior per-

formance of the Takahashi method could be improved with a different implementation 

of these steps (Table 2.1). 

2.11.2 Generation of state space and blocks of partitioned 

full model 

Instantaneous mean-field coupling of N identical M-state channels yields a Ca2+ 

release site model with f3(N, M) states where 

(N + M -1)! 
N! (M -1)! . 

Assuming transitions in the single channel model are labelled fast or slow in a manner 

that results in L groups of states of size mi, m 2, ... , mL with 'l:~=I m, = M, the 

partitioned matrix corresponding to Eq. 2.10 will have (3(N, L) blocks, each of which 

can be labelled as (nin2 ... nL) indicating n, channels in group 2 where 'l:~=I n, = N. 

The diagonal block corresponding to macrostate (n1n 2 ... nL) is a square matrix of 

SIZe 

An important aspect of the memory-efficient model reduction approach of Algo­

rithm 4 is construction of the b2 input matrices { Q ,
1

}. To ensure that the storage 

requirements of specifying the full model are not limiting, it is helpful to construct the 

Q,
1 

independently. This was accomplished using a recursive function IE(nball, nbm) 
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that returns a matrix enumerating (in anti-lexicographical order) the number of ways 

that nball indistinguishable items can be arranged in nbin distinguishable locations 

(Algorithm 5). For example, the full state space for two four-state channels is the 

10 x 4 matrix 

2 0 0 0 

1 1 0 0 

1 0 1 0 
llll(2, 4) = (2.23) 

1 0 0 1 

0 0 0 2 

When the state space of the full model (l!ll(N, M)) is large, the state space of the 

reduced model (l!ll( N, L)) is constructed instead, where L is the number of groups 

of states separated by slow transitions ( L < M). Denoting the rows of l!ll( N, L) as 

{n1n2 ... nL} where n 1 = 0, 1, ... , m 1 ; n2 = 0, 1, ... , m 2 ; etc., the states in the full 

model that compose any particular lumped state n 1n 2 ••• nL can be enumerated as 

following: 

llll1(ni, m1) llll1(n2, m2) 

lllll(nl,ml) llll1(n2,m2) 

lllll(ni,mi) llll1(n2,m2) 

llll1(ni, m1) llll2(n2, m2) 

IBl1(nL, mL) 

llll2(nL, mL) 

JBlK(nL, mL) 

IBl1(nL, mL) 

where llllk(ne, me) indicates the kth row of llll(ne, me) and an upper case K indicates 

the final row. 
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Algorithm 6: IR(B) 

Determine transition rates for a given block of the full model 

require: origin and destination states B 

n +-- number of rows of B 

R +-- n x n matrix of zeros 

fori= 1, ... , n 

for j = i + 1, i + 2, ... , n do 

..6. +-- (jth row of B)- (ith row of B) 

if ..6. contains exactly one -1 and one 1 then 

R( i, j) +-- index of the -1 in .6.. 

R(j, i) +-- index of the 1 in .6.. 

endif 

endfor 

endfor 

return R 

With the subset of the full model state space corresponding to a particular lumped 

state n 1n2 ... nL available, it is possible to construct the blocks Qij of the partitioned 

full model without knowledge of the entire state space. This is accomplished using 

Algorithm 6, which takes as input a matrix B corresponding to a set of states and 

returns as output the matrix IR(B) = R = (rkc), where the rkc are nonzero if and 

only if a transition is possible between states Bk and Be and, when a transition is 

possible, the origin and destination states of the one channel that changes state are 

rkc and rck, respectively. For example, focusing on the subsequence ofrows of Eq. 2.23 
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corresponding zero inactivated channels (Nc2 = 0), 

2 0 0 0 

1 1 0 0 

1 0 1 0 
B= 

0 2 0 0 

0 1 1 0 

0 0 2 0 

the function IR(B) evaluates to 

0 1 1 0 0 0 

2 0 2 1 1 0 

3 3 0 0 1 1 
IR(B) = (2.24) 

0 2 0 0 2 0 

0 3 2 3 0 2 

0 0 3 0 3 0 

The diagonal block of the full model corresponding to transitions within states of B 

is then given by 

q12 q13 

q21 q23 q12 q13 

QBB= 
q31 q32 q12 q13 

q21 q23 

q31 q21 q32 q23 

q31 q32 

where the dots indicate zero, the % are the i _,. j transition rates of the single channel 
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model that either do not depend on [Ca2+] or are evaluated using No consistent 

with the relevant row of B, and the indices for these transition rates are chosen by 

reading off the elements of IR(B) and IR(B)T. Off-diagonal blocks of the full model 

corresponding to transitions between two groups of states (B_ and B+) are found in 

a similar manner, beginning with the evaluation of 

using Algorithm 6. The matrices R_+ and R_+ provides indices of the single channel 

model transition rates needed to produce Q8 _ 8 + and Q8 +8 -. 
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KMS Vantilborgh 
N Iter Resid Iter Resid Score 

10 15 1. 9e-10 15 7 .4e-10 0.35 
20 36 2.6e-9 85 2.9e-8 0.49 
30 33 2.3e-9 99 5.6e-8 0.33 
40 28 2.2e-9 73 3.8e-8 0.23 
50 22 2.9e-9 59 4.5e-8 0.15 
60 13 4.5e-10 14 3.4e-9 <0.01 
70 5 1.2e-9 8 9 .4e-10 <0.01 
80 9 1.31e-9 15 1.88e-9 <0.01 

Table 2.1: Benchmark calculations using two iterative aggregation/ disaggregation 
algorithms: Koury-McAllister-Stewart (KMS) and Vantilborgh. The number of it­
erations (Iter) before convergence of the iteration vector (tolerance = 10-s in Al­
gorithm 4), and the residual (Resid) of the calculated stationary distribution vector 
7T' given by 117T'Qih are shown. Parameters: C00 = 0.1 J-LM, c* = 0.06 J-LM and as in 
Fig. 2.1. Because the Ca2+ coupling strength is fixed, release sites with large N are 
tonically active resulting in low puff/spark Score (cf. Table 2.2). 

I KMS 
N Iter Resid ScoreS I 
30 44 1.7e-9 0.04 0.50 
30 39 2.9e-9 0.05 0.41 
30 33 2.3e-9 0.06 0.33 
40 53 1. 7e-9 0.03 0.51 
40 46 1.6e-9 0.04 0.39 
40 33 3.3e-9 0.05 0.30 
50 57 3.3e-9 0.03 0.44 
50 46 2.1e-9 0.04 0.30 
50 28 4.4e-9 0.05 0.22 
60 97 3.01e-9 0.02 0.52 
60 64 3.54e-9 0.03 0.36 
60 38 1.47e-9 0.04 0.23 

Table 2.2: Benchmark calculations using c* values chosen so that the puff/spark Score 
of the full model indicated robust Ca2+ excitability. See legend of Table 2.1. 
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Chapter 3 

Reduction of calcium release site 

models using a genetic algorithm 

3.1 Summary 

Mathematical models of calcium release sites derived from Markov chain models of in­

tracellular calcium channels exhibit collective gating reminiscent of the experimentally 

observed phenomenon of calcium puffs and sparks. Such models often take the form 

of stochastic automata networks in which the transition probabilities of each channel 

depend on the local calcium concentration and thus the state of the other channels. In 

prior work, to overcome the state-space explosion that occurs in such compositionally 

defined calcium release site models, we have implemented several automated proce­

dures for model reduction based on fast/slow analysis where rate constants in release 

site models are categorized as either fast or slow, groups of states that are connected 

by fast transitions are lumped, and transition rates between reduced states are cho­

sen consistent with the conditional probability distribution among states within each 

group. Here we implemented a genetic algorithm based approach to find reduced 
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models that produce moderate errors for problems without time-scale separation. 

Given a full model and a specified target size for a reduced model, this algorithm 

mutates and select members of a population of set partitions, each corresponding to 

a potential scheme for state aggregation, using a fitness function that favors partitions 

leading to reduced models approximate the full model on the behaviors of interest. 

With this genetic algorithm based approach, release site/ complex models which are 

too large to benefit from computational approaches, moment closure approaches for 

example, are able to be reduced to reasonable sizes with very low reduction errors for 

a wide range of SR [Ca2+] and a reasonable amount of computational effort. 

3.2 Introduction 

As a second messenger, calcium ions (Ca2+) plays an important role in many phys­

iological activities. Signaling occurs when the cell is stimulated to release calcium 

ions (Ca2+) from the endoplasmic/sarcoplasmic reticulum (ER/SR), the intracellu­

lar Ca2+ reservoir, and/or when Ca2+ enters the cell through plasma membrane ion 

channels [Clapham, 1995]. The intracellular Ca2+ release which causes localized Ca2+ 

elevations known as puffs and sparks arise from concerted gating of clusters of inositol 

1,4,5-trisphosphate receptors (IP3Rs) or ryanodine receptors (RyRs) on the surface 

of (ER/SR) [Berridge, 1997b,Cheng et al., 1996,Yao et al., 1995]. In cardiac myocyte 

excitation-contraction coupling (ECC), for example, the cell membrane depolarizes 

causing L-type Ca2+ channels to open and the Ca2+ influx further activates RyRs 

located on SR, known as Ca2+-induced Ca2+ release (CICR) [Endo, 1977]. 

In the literature, the behavior of single IP3R/RyR channel gating is often modeled 

by continuous-time descrete-state Markov chans (CTMCs) [Colquhoun and Hawkes, 

1995, Smith, 2002]. When Markov chain models of these channels are coupled via a 
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Ca2+ microdomain, by which the transition rates between the states of each chan­

nel become dependent to the states of other channels, the simulated Ca2+ chan­

nel clusters (release sites) may exhibit stochastic excitability that is reminiscent of 

Ca2+ puff/sparks [Nguyen et al., 2005]. However, the number of states possessed by 

these compositionally defined Ca2+ release site models increases exponentially as the 

number of channels increases. This combinatorial state-space explosion causes some 

modeling approaches to become intractable. 

While the dynamics of any individual Ca2+ release site can in principle be obtained 

by Monte Carlo simulation regardless of model complexity, in practice these simula­

tions are prohibitively computationally intensive due to large state spaces. Moreover, 

because cells usually possess a large number of release sites, compositionally defined 

Ca2+ release site models have often been excluded from multiscale whole cell simula­

tions. On the other hand, many recently developed approaches that accelerate whole 

cell simulations, e.g., probability density and moment closure approaches [Williams 

et al., 2007, Williams et al., 2008], require release sites to be as compact as possible 

while retaining the physiological realism of collective channel gating. For these rea­

sons, we developed several automated approaches based on fast/slow analysis [Hao 

et al., 2009] to reduce Markov chain Ca2+ release site models where the rate con­

stants in release site models are categorized as either fast or slow, groups of states 

that are connected by fast transitions are lumped so that the full model is compressed 

into a tractable size while the physiological gating and interaction properties of the 

channels are preserved. However, when the time-scale separation between transition 

rates that is necessary for fast/slow analysis is absent, the manner in which the full 

model states should be partitioned and aggregated for optimal reduction is difficult 

to determine a priori. Naively enumerating all partitions for a Markov chain Ca2+ 

release site models and choosing the one with the least error is not possible because 
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the number of possible partitions is too large. For example, a release site model com­

posed of merely 5 three-state Ca2+ channels (15 states) can be partitioned in 1010 

distinct ways. In this chapter we discuss the implementation of a genetic algorithm 

that is able to automatically and rapidly select partition schemes that reduce the 

corresponding Markov chain model reduction error. 

Developed in the 1970s by John Holland [Holland, 1975], genetic algorithms are 

widely used as computational schemes to find exact or approximate solutions for 

optimization and search problems. Genetic algorithms have been applied to various 

aspects of biological research, e.g. the profiling of the gene expression in bacteria 

[DiGesu et al., 2005, To and Vohradsky, 2007] and phylogenetic analysis of proteins 

[Hill et al., 2005]. However, the application of genetic algorithms in the context of the 

automated reduction of Ca2+ release site models is novel. In our implementation, a 

population of set partitions are randomly generated, each corresponding to a potential 

scheme for state aggregation. The program 'evolves' this population by selecting the 

partitions that lead to reduced models that approximate the full model behavior. 

Unlike the fast/slow analysis of Chap. 2 that assumes fixed ER/SR [Ca2+] and 

instantaneous coupling between the channels [Hao et al., 2009], we motivate a whole 

cell homeostasis formulation which takes both local and global Ca2+signaling into 

consideration and the reduced models selected by the genetic algorithm generate 

small error for a wide range of ER/SR [Ca2+]. 

The remainder of this paper is organized as follows. In Section 3.3 we motivate 

the model reduction process by partitioning a minimal whole cell model of Ca2+ 

homeostasis where bidirectional influence of local and global Ca2+ signals are modeled. 

In section 3.4 we introduce genetic algorithms and detail their implementation in the 

model reduction context. In Section 3.5, we demonstrate that the reduced model 

approximates the full model with regard to several important steady-state responses 
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observed in the minimal whole cell environment. To show that the reduction technique 

is applicable to more realistic Ca2+ release site models, we also present Ca2+ release 

site reduction results using a single channel model that includes both cytosolic and 

luminal Ca2+ regulation. 

3.3 Model formulation 

3.3.1 A minimal whole cell model 

We will demonstrate and validate our Ca2+ release site model reduction approach us­

ing a whole cell model of a quiescent cytosolic environment that takes Ca2+ homeosta­

sis into account (Fig. 3.1). Similar to previous work by Hartman and colleagues [Hart­

man et al., 2010), in this minimal whole cell model both local and global Ca2+ re­

sponses to the stochastic gating of Ca2+ channels are considered and release and 

reuptake fluxes are balanced. Fig. 3.1 shows the components and fluxes of the model. 

A large number of heterogeneous local Ca2+ signals associated with a large number 

of Ca2+ release sites are coupled to the bulk cytosolic and ER/SR [Ca2+]. Each Ca2+ 

release site is composed of 10-30 Ca2+ channels. In this formulation, release sites 

may experience different "domain" [Ca2+], but all channels in a given release site 

experience the same local cytosolic and luminal [Ca2+]. Consistent with prior work 

by Hinch and colleagues [Hinch et al., 2004,Hinch et al., 2006,Greenstein et al., 2006], 

when the number of open channels in a Ca2+ release site changes, the local [Ca2+] 

is assumed to rapidly reach a new equilibrium in the spatially restricted domain. 

The change in the balance of the leak and reuptake by endo(sarco)plasmic reticulum 

Ca2+-ATPase (SERCA) pumps caused by this change in domain [Ca2+] will influence 

the bulk Ca2+ concentrations and further affect the puff/spark dynamics. 
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Figure 3.1: Diagram of model components and fluxes. The bulk endoplas­
mic/sarcoplasmic reticulum [Ca2+] is represented by Cer/sn the bulk cytosolic and 
external [Ca2+] is Ccyt and Cext respectively. Ca2+ channels locate on the ER/SR 
membrane forming release sites. The domain [Ca2+] (c~yt and c~r/sr ) are rapidly 
changed by the release currents (Jrel) when the number of open channels changes. 
Other fluxes considered in this model are: diffusion from cytosolic domain to the bulk 
cytosol (Jcyt), diffusion from the bulk ER/SR to the luminal side domains (Jerfsr), 

a passive leak from the ER/SR to the cytosol (lzeak), the SERCA pump flux that 
resequesters Ca2+ in to the ER/SR (lpump) and fluxes across the plasma membrane 
(Jpm)· 
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3.3.2 Steady-state of domain concentration 

Fig. 3.1 illustrates the fluxes in this whole cell formulation. The domain [Ca2+] for 

each release site c~yt and c~r/sr are coupled to each other via the release flux lrel 

when one or more channels are open. As in mentioned in Sec. 3.3.1, the domain 

[Ca2+] associated with each release site is distinct and all domains are coupled to the 

bulk cytosolic and luminal compartments via the fluxes lcyt and ler/sr· Under these 

assumptions, the domain fluxes are given by: 

;n ( d,n d,n) 
rel = Vrel'Yn Cer / sr - Ccyt ' (3.1) 

J n _ ( d,n ) 
cyt - Vcyt Ccyt - Ccyt ' (3.2) 

;n ( d,n ) 
erfsr = Ver/sr Cer/sr - Cer/sr ' (3.3) 

where Vret is the maximum release rate through a release site, Ccyt and Cer/sr are 

the bulk cytosolic and ER/SR concentrations, and "in = n/ N is the fraction of open 

channels at anN-channel release site. The rate constants Vcyt and Ver/sr determine the 

time required for the decay and refilling of the cytosolic and luminal microdomains, 

respectively [Mazzag et al., 2005, Huertas and Smith, 2007]. 

Because the dynamics of domain Ca2+ is fast compared to the stochastic gating 

of Ca2+ channels (3.3.1), the domain fluxes associated with each release site must 

balance for any specific release site: 

(3.4) 

The domain [Ca2+] of any release site with n channels open can be obtained directly 

by solving Eq. 3.4 as a function of the bulk cytosolic and luminal [Ca2+] (ccyt and 
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Cer/sr), that is, 

d n Vcyt Ver/sr 
Cc~t - - Ccyt + - Cerjsr 

Vcyt + Ver/sr Vcyt + Ver/sr 
(3.5) 

(3.6) 

where 

and (3.7) 

Notice that for a release site with N channels, the number of open channels takes in-

teger values from 0 toN. Consequently, there are N + 1 pairs of cytosolic and luminal 

domain [Ca2+] values for any given values of the bulk concentration (ccytandcer). 

3.3.3 Concentration balance equations for the bulk cytosol 

and ER 

As shown in Fig. 3.1, the bulk cytosolic and luminal [Ca2+] are both influenced by 

the Ca2+ fluxes to and from their associated microdomains, J'/;yt and J:;r. The bulk 

concentrations also interact via a SERCA pump flux that takes the form: 

(3.8) 

and a passive leak from the ER/SR to the cytosol, 

lzeak = Vzeak ( Cer / sr - Ccyt) · (3.9) 
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Following previous work [Hartman et al., 2010], our model formulation assumes a 

permeabilized cell and the plasma membrane flux 1pm is 

1pm = kpm ( Cext - Ccyt), (3.10) 

where kpm is chosen large enough so that the bulk cytosolic [Ca2+] is "clamped" to 

the extracellular bath (cext = 0.1f.L M). 

Now that all Ca2+ fluxes are defined, the concentration balance equations for the 

bulk cytosolic and ER compartments are given by: 

dccyt 
dt 

dcerlsr 
dt 

1'{yt + 1zeak- 1pump + 1pm, 

~ ( 1'{;. 1 sr - 1zeak + 1pump) , 
Aer I sr 

(3.11) 

(3.12) 

where Aerlsr = Verlsr/Vcyt, Vcyt and Verlsr are the effective cytosolic and ER/SR 

volumes, i.e., taking Ca2+ buffering into account. 1'{yt and 1'{;.lsr are the sums of fluxes 

over all release sites. Notice that under the fast domain Ca2+ assumption, there are 

only N + 1 pairs of possible domain [Ca2+] values (Sec 3.3.2) and consequently 1'{yt 

and 1'[;.lsr can be expressed as, 

N 

L fnv~t ( c~;;;- Ccyt) (3.13) 
n=O 

N 

L fnv~lsr ( Cerlsr - C~~fsr) (3.14) 
n=O 

where fn is the fraction of release sites with n open channels. 
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3.3.4 Markov chain model of single channel gating 

The stochastic gating of single channels is studied by a continuous-time discrete-state 

Markov chain model. For simplicity, this single channel model has only three states 

including both Ca2+ activation and Ca2+ inactivation. The transition diagram of this 

model is given by 

c 0 R (3.15) 

In this transition diagram k:t ( c~yt) 2 and k;, where i E {a, b}, are transition rates 

with units of reciprocal time. k:t is an association rate constant with units of conc-'7 

time-1 where 77 is the cooperativity of Ca2+ binding, and c~yt is the domain [Ca2+] 

experienced by the release site on the cytosol side. Under the assumption that the 

formation and collapse of local Ca2+ is fast compared to channel gating, when the 

local Ca2+ concentrations are specified, the transition-state diagram Eq. 3.15 defines 

a continuous time Markov chain with infinitesimal generator matrix Q = ( q,1 ) given 

by: 

0 k;J:(c~yt)2 0 

Q= k-
a 0 k-:; ( c~yt)2 (3.16) 

0 k-
b 0 

The off-diagonal entries of the Q-matrix for this irreducible and time-homogeneous 

Markov chain are transition rate from state i to state j, defined by 

1 
q,1 = lim A Pr[S(t + t::lt) = jiS(t) = i], 

.0.t->O ut 
(3.17) 

where i =/:- j and the diamonds ( o) on the diagonal entries are negative values leading 

to row sums of zero. 
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All of the statistical properties of the Ca2+ channel can be calculated from its 

Q-matrix (Eq. 3.16). Importantly, the time evolution of the probability distribution 

over all three state of this model can be calculated by solving the ordinary differential 

equation (ODE) system: 

(3.18) 

where 1r(t) = (we, w0 , 7rR) is a row vector containing the probability of finding the 

channel in each state at time t, given the initial condition 1r(O). Notice that the 

limiting probability distribution 1r s of Markov chains (the steady state of Eq. 3.18) 

does not depend on the initial condition 1r(O), and can be obtained by solving 

11' 8Q=O subjectto 1!'8 e=1, (3.19) 

where e is a commensurate column vector of ones. 

3.3.5 Compositionally defined Ca2+ release site models 

The Ca2+ release site models that are used to demonstrate the implementation of 

the reduction approach involve N identical Ca2+ channels. These channels interact 

via cytosolic local [Ca2+] changes under the "fast domain mean-field coupling" as-

sumption [Nguyen et al., 2005, DeRemigio and Smith, 2005] illustrated in Fig. 3.1, 

which means these identical channels are indistinguishable. In general, a release site 

composed of N M-state channels includes 

(N + M -1)! 
N! (M -1)! 

(3.20) 

distinct states. In this 3-state single channel model case, the N-channel release site 

has f3(N, 3) = (N + 2)(N + 1)/2 states, each can be written in the form of ordered 3-
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tuple (Nc, N 0 , NR), where N, = k, ('z, E {C, 0, R}) indicates k channels are in state i, 

and L, N, = N. With this notation, the states of any release site is a well ordered 

set and can be conveniently ranked anti-lexicographically. Fig. 3.2 enumerated all the 

states and illustrate the topology of the 3-state single channel model (Fig. 3.2A) and 

a release site composed of 2 3-state channels (Fig. 3.2B). 

A B 

CD 
100 

lrv t3' 
0 I 0\6/-0 0 ~ 

···········as-~ 
2 0 0 ~­

:········· Il ......... : 
I2 

I Q)i r······®······················ 
I I 0 -r--t IIIII I 0 II 

;:::::r~. ~ ; 1 ® @ 
~ 0 2 0 ;' : 0 I I - 0 0 2 ~ · ................ · : ..................................... .. 

Figure 3.2: (A) The tuple representation of the three-state single channel model in 
Eq. 3.15. States C, 0, Rare represented by (100), (010), (001) respectively. (B) The 
topology and connectivity of a release site composed of two three-state channels in 
the tuple representation. The 6 states CC, CO, C R, 00, 0 R, RR are represented by 
(200), (110), (101), (020), (011), (002) respectively. The ranks of the states are labeled 
in circles. Dashed line boxes and grey boxes represent two sample 3-partitions of the 
2-channel release site I 1 and I 2 in 3.4.2. 

3.4 Reduction technique 

Our basic strategy of reducing Ca2+ release site models to a smaller model with 

pre-determined size b includes three major steps: 

Step 1. Partition the full model into b groups. 

Step 2. Lump the states within each group. 
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Step 3. Find proper transition rates between groups. 

In previous work [Hao et al., 2009], Step 1 was achieved automatically based on the 

separation of time scales. In this paper, we employ a genetic algorithm to search for 

k-partition schemes that generate small reduction errors for general Ca2+ release site 

models, especially those without time-scale difference. By "k-partition" we mean a 

partition that divides the states of a release site model into k groups. Step 2 and 

Step 3 in this reduction technique are carried on from [Hao et al., 2009]. Even though 

the genetic algorithm based technique can be used to reduce any Ca2+ release site 

models to any pre-determined size, an example of partitioning the 6-state release site 

model in Fig. 3.2B into 3 groups will be described in detail hereafter for the sake of 

simplicity. 

3.4.1 Conventional genetic algorithm 

Genetic algorithms are probabilistic search algorithms that were introduced by John 

Holland in the 1970s [Holland, 1975]. They have been used to find exact or approxi­

mate solutions to optimization and search problems with objective functions that are 

discontinuous, nonlinear, difficult to calculate, etc. [Davis, 1991, Michalewicz, 1994] 

based on the mechanics of natural selection. These algorithms manipulate a popula­

tion of solutions to the objective function and implement a "survival of the fittest" 

strategy in their search for better solutions. The general methodology of genetic 

algorithms is displayed in a flowchart in Fig. 3.3. 

The algorithm starts with Initialization where a number of "individuals" (solu­

tion candidates) are randomly generated to form an initial "population." The size NP 

of the population is usually kept as a constant throughout the entire search procedure. 

Then, this population goes through the Evaluation procedure where each individual 
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Initialization 
NP candidate 

Yes 

Evaluation 

Selection 

Reproduction 

Figure 3.3: A simplified flow chart of the general procedures of genetic algorithms. 
The program start with the Initialization subroutine then loop through Evalua­
tion, Selection and Reproduction till the stop criteria is met. 

will have his "fitness" evaluated by the objective function. After each round of eval-

uation the program checks whether the termination criteria is satisfied. The program 

usually ends if a solution satisfies the minimum criteria or a predetermined number of 

generations is reached. If none of the termination criteria is satisfied, the program will 

move on to the Selection process, which is usually stochastic and designed so that 

the individual with better "fitness" have higher probability to be selected compared 

to those who are less fit. Only a fraction of the current population (Ns individuals, 

where N 8 < NP) can survive and enter the Reproduction process as the "parent" 

solutions. For each "child" (a new solution candidate) to be produced, one or more 

"parent" solutions are selected, recombined (crossover) and/or varied (mutation). 

The Reproduction process continues till NP individuals are generated thus a new 

generation of population is formed. The new generation will then go through Eval-
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uation process to have their "fitness" evaluated and the entire program continues 

untill the one or more of the termination criteria are satisfied. 

3.4.2 Implementation of genetic algorithm to partition states 

Initialization 

Our purpose of using genetic algorithms is to find partition schemes of full Ca2+ release 

site models so that the resulting reduced models better approximate the full models. 

In this context, each "Individual" (Ii) is a set partition scheme which divides the 

j3(N, M) states that the full model possesses into b groups. To make physical sense, 

the requirement of the partition process is that each group must be connected within, 

that is, there is a path from any state to any other state. In Fig. 3.2 gives two sample 

valid 3-partitions which divides the 6-state release site model into 3 groups by dashed 

circles and grey boxes: 

I 1 = ({1,2},{3,5,6},{4}) 

I 2 = ({1},{2},{3,4,5,6}) 

In the Initialization process, NP distinct 3-partitions are randomly generated. 

Evaluation 

In the Evaluation process each of the NP "Individuals" (partition schemes) must be 

applied to the full model and have their corresponding reduced model compared to 

the full model. The "fitness" of each "Individual" is then assigned in a manner that 

favors the ones that produce less error. 
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We demonstrate this procedure in more detail with 

I 1 = ({1,2},{3,5,6},{4}) 

given in 3.4.2. First, the generator matrix associated with the two-channel release 

site model Q is permuted to the order of I. The permutation for I 1 is shown in 

Fig. 3.4. The new generator matrix Q is then partitioned into a bxb block matrix ( b 

= 3 for I 1) following the scheme given by each I. The stationary distribution ir of Q 

is conformally partitioned as 

(3.21) 

The generator matrix Q of the target reduced Ca2+ release site model is a bxb matrix 

qll ql2 qlb 

Q= 
q21 q22 q2b 

(3.22) 

qbl qb2 qbb 

where 

q~J = fr~Q~JeJ (3.23) 

for ~ =J. j and qn = LJT'~ -ii~r fr~ is the conditional probability distribution of the 

states within group i: 

(3.24) 

and e~ are commensurate column vectors of ones. 

When the reduced matrix is generated, the transition probability matrix (jump 
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Figure 3.4: Permutation of states and partition structure for two three-state channels 
following partition scheme I 1 = ( {1, 2}, {3, 5, 6}, { 4} ). (A) The rows and columns of 
the expanded generator matrix Q(2l are both permuted following the order given by 
the grouping scheme in I 1 . (B) The block structure given by the thicker lines shows 
the the partitioning of the generator matrix following I 1 . (C) The corresponding 
reduced matrix calculated as Eq. 3.23 

matrix) of their corresponding reduced model (P = etQ) is compared to the transition 

probability matrix of the full model (P = etQ). Assuming the full model has b states, 

we write 

E(t) = P(t)- u P(t)V (3.25) 

where V is a b x b collector matrix [Nicola, 1998] 

0 
V= 

the ei are column vectors of ones with lengths commensurate with Qii, and U is a 
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b x b distributor matrix given by 

j[l 0 0 

0 7r2 0 
U= (3.26) 

0 0 1rr, 

Notice that, 7ri is the exact conditional probability distribution of the states within 

group i, calculated from the stationary distribution of the full model. The transition 

probabilities of the reduced model and the full model agree with each other exactly 

in the limit. As shown in Fig. 3.5, the maximum difference on transition probabilities 

falls below 10-9 within 1 second. 
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Figure 3.5: The maximum (Emax) of the transition probability matrix E(t) as a func­
tion of time from the reduction of two three-state Ca2+ channels (Eq. 3.15) following 
the partition scheme I 1 when the ER/SR [Ca2+] (cer/sr) is 100 p,M (dot-dashed line), 
to 600 p,M (solid line), and 1100 p,M (dashed line). Parameters: kd = 4.5 f.LM-'7 
ms-1 , k: = 0.2 p,M-'7 ms-1

, k;; = kt; = 500 ms-1 , Ccyt = 0.1 f.LM, 17 = 2. Cytosolic 
side domain [Ca2+] is calculated from Eq. 3.5. 
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The b x b matrix E( t) is cumbersome to use for evaluation, we consequently define 

Emax(t) = ~1x IEij(t)l, the element of E(t) with largest absolute value at timet. 

Note that Emax is a function of both time and Cer/sr because the transition rates of 

the full Ca2+ release site model are functions of the luminal [Ca2+] (Sec. 3.3.1) and 

consequently Fig. 3.5 plots the reduction error Emax as a function of Cer/sr assuming 

the same partition scheme I and reduction procedure. For example, Fig. 3.5 shows 

Emax(t; Cer/sr) for Ca2+ release site model in Fig. 3.2(B) reduced to a 3-state model 

following the partition scheme given by I 1 . As validated in [Hao et al., 2009], the 

reduced model well approximates the full model when Emax is small. The maximum 

transition error is in the range 100- 2000 j.tM as the luminal [Ca2+] is raised from 

100 J.tM (dot-dash-dot line) to 1100 J.tM (dashed line). 
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Figure 3.6: The integrated reduction error£ as a function of Cer/sr (100- 2000 f.LM). 
The reduction errors associated with partition scheme I 1 and I 2 are shown by the 
dashed and solid line, respectively. The star and dot indicate the maximum values. 
Parameters are as in Fig. 3.5. 
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To have the reduced model applicable in the whole cell simulation described in 

Sec 3.3.1, the objective we want to achieve through the genetic algorithm is to pick 

partitions that produce small reduction errors for all possible ER/SR [Ca2+] values 

at all times. Consequently, we define 

£(cerlsr) = J Emax(t, Cerlsr)dt, (3.27) 

the area under each curve in Fig. 3.5. Then, for any partition scheme I, the integrated 

error £ can be calculated as a function of Cer 1 sr and the maximum £ ( Cer 1 sr) selected 

as the global reduction error of scheme I. In Fig. 3.6 the dashed and solid lines 

show the integrated error £ associated with I 1 and I 2 , respectively, as a function of 

Cerlsr (150- 2000 f.LM). Because partitions that result in lower reduction errors are 

preferred, the "fitness" of a given partition scheme F is defined by 

(3.28) 

As shown in Fig. 3.6, when the full model is partitioned and lumped following I 1 

(dashed line), the maximum possible error (star) generated by the reduced model £1 

is approximately 210 times larger than the maximum error (dot) generated by using 

I 2 . The "fitness" of I 1 is consequently 210 times less than the fitness of I 2 . 

Selection and Reproduction 

This section introduces how the genetic algorithm implementation forms the "next 

generation" from the current "population." The conventional reproduction pro-

cess in genetic algorithms usually consists of selection, crossover and mutation. 

However, when implementing the genetic algorithm to optimize set partitions, the 
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popular crossover procedure, which requires a pair of "parents" to generate one 

"child," was time-consuming because of the combinatorial bookkeeping required to 

ensure that every group of states in the "child" set partition was a connected compo­

nent. Because the goal of our work is to reduce computational cost of Ca2+ release 

site models, we avoided a crossover process in our genetic algorithm implementation 

and incorporated the selection process into the mutation process for simplicity and 

computational effectiveness. 

We start with building a discrete probability distribution used in the selection of 

the next generation of set partitions. The probability mass function (PMF), which 

indicates the probability Pi for each "individual," Ii, to be selected, is given as a 

member of the subsequent generation 

(3.29) 

that is, the probabilities of selection is proportional to the "fitness," Fi. To generate 

each "child," we start with randomly select a "parent" (I) from the current "popu-

lation" following the corresponding PMF. For example, the probability of I 1 being 

selected is 210 times less than the probability that I 2 is selected. 

After a parent I is selected, a mutation process begins by randomly selecting and 

joining a pair of groups of states in the parent partition scheme, and then randomly 

splitting this aggregated group of states into two new connected groups. Notice that 

the two groups initially selected is a valid pair only when they are originally connected 

to each other in the full model, i.e., at least one state in the first group is connected 

by a transition to at least one state in the second group. As an example, for I 1 in 

Fig. 3.2 all three groups are connected in the full model so any two groups can be 
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picked, while for I 2 groups {1} and {3, 4, 5, 6} are not connected so they are not a 

valid pair. 

In our implementation of the genetic algorithm, we allow multiple mutations of this 

kind for each partition scheme, selected for the subsequent generation. A geometric 

distribution is assigned to the number of mutations Nm, 

Pr(Nm = k) = (1- p)k-lp, (3.30) 

where k = 1, 2, ... and p = 0.8. 

This selection and mutation process continues until the new generation of size 

NP is generated, their fitnesses determined as this new generation is used in another 

cycle of evaluation. The genetic algorithm continues until a set partition is found 

that has a "fitness" :F ~ 1000 (reduction error£ less than 0.1% for all luminal [Ca2+]) 

or the algorithm is terminated by reaching the maximum number of allowed iterations 

(2000). 

3.5 Results 

In this section we first validate the genetic algorithm implemented in Sec 3.4.2 by 

showing that the algorithm converges and produces set partition schemes that gener­

ate small reduction error. To further demonstrate that the genetic algorithm can be 

applied to general Ca2+ channels, we use this approach to reduce a release site that 

is composed of several four-state channels (Fig. 3.8) that are activated by cytosolic 

Ca2+ and the activation affinity is regulated by the luminal [Ca2+]. We then integrate 

the reduced Ca2+ release site model into the whole cell model simulation and show 

that the reduced model is a good approximation to the full model. 
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3.5.1 Reducing Ca2+ release site models that are composed 

of 3-state channels 

Fig. 3. 7 shows an example of the convergence of the genetic algorithm. We applied the 

genetic algorithm to reduce a Ca2+ release site that is composed of 10 3-state channels 

(66 states) to a 11-state model. The population size NP = 10 and the reduction error 

E was measured for 50 log-spaced Cer/sr values range from 100pM to 2000pM. Each 

column of stars is the 10 individuals of a "generation". The black stars indicate the 

individual (partition) that produces the smallest error in its generation. The criteria 

that ends the program is set to be E < 10-3 or 2000 generations generated, whichever 

satisfied first. In this specific reduction experiment, the program did generate 2000 

generations and the minimum E was 0.0043. 
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Figure 3. 7: A sample evolution record from the genetic algorithm. A Ca2+ release site 
composed of 10 three-state channels is designated to be reduced to a 11-state model. 
One of every 10 generations is plotted. Each column of stars indicates a generation 
of 10 individuals and the one that produces the least error is indicated by the black 
star. Parameters are as in Fig. 3.5. 
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3.5.2 Reducing Ca2+ release site models that are composed 

of 4-state channels with luminal regulation 

In this section we demonstrate that reduced Ca2+ release models can replace the full 

model in the whole cell Ca2+ homeostasis model described in Sec. 3.3.1 with good 

accuracy. To validate that the reduction procedure fits a wide variety of models, we 

introduce a 4-state model (Fig. 3.8) which is activated by cytosolic Ca2+ and the 

activation affinity is regulated by the luminal [Ca2+]. 

The 4-state Ca2+ channel model is assumed to have a regular or "unsensitized" 

mode (states Cu, Ou) in which the activation dissociation constant (Ka = Jk; /k");), 

is higher than the activation dissociation constant (Kd = Jk;; /k!) of the "sensitized" 

mode (Cs, 0 8 ). We also assume that the channel is more likely to be in the "sensitized" 

mode when the ER/SR [Ca2+] is high. The transition rates are kt(c~yt) 2 , kjc~r/sr 

and ki, where i, j E {a, ... , e}, with units of reciprocal time. kt is an association rate 

constant with units of conc7J time-1 where 17 is the cooperativity of Ca2+ binding 

while c~yt and c~r/sr are the domain [Ca2+] experienced by the release site on the 

cytosol and ER/SR side respectively. Notice that we assume that the Ca2+ binding 

cooperativity (17 = 1) of the channel sensitization (luminal regulation) process is 

different from the binding cooperativity of the activation process (17 = 2). 
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Figure 3.8: Transition diagram of the four-state Ca2+ channel model. The channel is 
activated by cytosolic Ca2+ (transitions Cu ---+ Ou and Cs ---+ 0 8 ) and is "sensitized" 
by ER/SR Ca2+ (transitions Cu ---+ Cs and Ou ---+ 0 8 ). Parameters: kd = k! = 

4 5 M- 2 -t k+ - k+ - 1 M-1 - 1 k- - k- - 500 - 1 - 0 1 M . f-L ms , c - e - f-L ms , a - b - ms , Ccyt - . f-L . 

85 



An important motivation of using this 4-state model is that luminal regulation 

of RyRs is observed in many experiments [Shannon et al., 2004, Stevens et al., 2009] 

but the detailed mechanism is yet not clear. In this paper, we are interested in 

how the "sensitization" of the activation of each individual Ca2+ channels affects 

the cooperative gating of the Ca2+ release site. Consequently we experiment on 

different sensitized activation rates as well as the dissociation constant Kc = k;; / k"}; 

(Fig. 3.8) of the sensitization process. On the other hand, the parameters of the 

regular or "unsensitized" Ca2+ activation were picked consistent with the parameters 

in [Hartman et al., 2010], where many puff/spark statistics of a group of 10 2-state 

Ca2+ -activated channels were studied. 

We assumed that the number of Ca2+ release sites is large enough that the distri-

bution of release site states can be well approximated by solving 1r(t) from Eq. 3.18 

instead of using Monte Carlo simulation. However, simply substituting 7rn for fn in 

Eqs. 3.13 and 3.14 will fail because the "fast domain" assumption is a singular limit 

of the ODE system. Consequently, instead of using Eqs. 3.11 and 3.12 we consider 

the total cytosolic (ccyt) and ER/SR [Ca2+] (cer/sr), which are sums of the bulk and 

domain concentrations weighted by effective volume ratios, 

Ccyt 

Cer/sr 

where, c~yt and c:r/sr are the given by 

-d 
cer/sr 

+Ad -d 
Ccyt cytccyt 

A~r-d 
Cer/sr + \""Cer/sr' 

/\sr 

n=O 

N 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 



which are the mean values of the cytosolic and SR domain Ca2+ concentrations. The 

effective volume ratios in Eqs. 3.31 and 3.32 are given by 

A~yt 
vd,r 

cyt (3.35) 
Vcyt ' 

A~r 
vd,r 

(3.36) sr 

Vcyt ' 

where ~~'{ and V8~,T are the effective volumes of the aggregated cytosolic and SR 

domains, respectively. The equations that balance Ccyt and [Ca2+] Cer/sr are given by: 

dccyt 

dt 
dcer/sr 

dt 

ffez + ]zeak - I pump + Jpm, 

~ (- ffez - ]zeak + I pump) · 
Aer / sr 

The total release flux J'fe1 is given by 

N 

JT """ T ( d,n d,n) 
rel = ~ Tln"fnVrel Cer/sr- Ccyt ' 

n=O 

(3.37) 

(3.38) 

(3.39) 

where 'Yn = n/N, c~~~ and c:~fsr are giVen by Eqs. 3.5-3.7, Tin is the probability 

that a randomly sampled release site has n open channels, and can be found from 

1r = (r~o,7rl, · · · ,r~N) by integrating Eq. 3.18. 

87 

file:///O.OI
file:///6.So


A4oo 

-~ 
~ 200 

(/) ..... 
(/) (/) 

(.) 

• 

o~--------------

c 

(]) ...... 
0 
(.) 

C/) 

• 

0 ...... 

10-4 

D 
-E 100 -c 
0 

:;::. 
~ 50 ...... 
::J 
0 

.............. 
....~ 

~~ 
........... 

.......... .... 

0 
0 

0 
0 

0 
00 

Oo 

Figure 3.9: Effects of luminal regulation calculated from release sites composed of 10 
luminal regulated Ca2+ channels. Results from the full release site model and reduced 
model are shown by lines and empty circles (and crosses in B), respectively. The filled 
circles show corresponding results from the release site that composed of 10 two-state 
Ca2+ activated channel without luminal regulation. (A) Steady state ER/SR [Ca2+] 
as a function of Kc. (B) Steady state open probability (dashed line) and the fraction 
of open channels (solid line) as a function of K0 . (C) Spark scores as a function of 
Kc. (D) Spark durations as a function of Kc. 

88 



Fig. 3.9 shows a comparison of 20 numerical calculations of the stationary dy­

namics of a Ca2+ release site composed of 10 4-state RyRs (286 states, lines) and the 

corresponding reduced 34 state model (circles and crosses) using different values of 

the disassociation rate of sensitization Kc. The filled circles show the results of a 

release site composed of 10 2-state RyRs. When the disassociation rate of sensitiza-

tion Kc is high enough, the sensitized states are rarely visited and consequently the 

4-state model results should approach the 2-state model results. As shown in Fig. 3.9 

the 4-state model well approximates the 2-state model when Kc is approximately 

1000 ~tM. 

In Fig. 3.9, panel A shows that decreasing the Kc will decrease the bulk SR 

[Ca2+] and the results calculated from the reduced Ca2+ release site model are close 

approximations to the full model. Fig. 3.9B shows the open probability of a single 

4-state channel (dashed line) as a function of Kc. The solid line in Fig. 3.9B shows 

the fraction of open channels fo of the 10-channel release site, where 

fo = E[No]/N, (3.40) 

and 
N 

E[No] = L n1rn (3.41) 
n=O 

is the average number of open channels per release site. The reduced model gives 

good approximation to both parameters of the full model (empty circles and crosses). 

As Kc decreases, both parameters increase which indicates adding the sensitized the 

states increase the open probability of the channels which further causes a lower 

steady state SR [Ca2+] which is consistent with Fig. 3.9A. In prior work [Nguyen 
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et al., 2005] we defined the puff/spark Score as 

S 
_ Var[fo] _ ~ Var[No] 

core- E[fo] - N E[No] (3.42) 

from which the presence or absence of puff/spark can be assessed. This measure 

ranges between 0 and 1, and values that are larger than 0.2 indicate presence ofrobust 

Ca2+ puffs/sparks. Fig. 3.9C, shows the Scores of the full model and the reduced 

model as a function of Kc. The reduced model Scores give a close approximation to 

the full model results. 

Notice that the Score values are above 0.35 for all Kc values, indicating robust 

Ca2+ puff/sparks present in both the full and reduced model. We further studied 

the mean duration of spontaneous Ca2+ puff/sparks occurring as a function of Kc 

in the whole cell formulation, shown in Fig. 3.9D. We assume that a transition from 

N0 = 4 to No = 5 is considered to initialize a puff/spark and a transition from 

N0 = 1 to N 0 = 0 (all channels closed) terminates the puff/spark. The mean 

puff/spark duration was calculated using the matrix analytic method described in 

[Groff and Smith, 2008a]. As Kc decreases, or as the channels are more likely to be 

in the sensitized, the puff/spark duration increases indicating the luminal regulation 

of the channel might lead to longer puff/sparks, which is consistent with experimental 

observations [Gyorke and Gyorke, 1998,Stevens et al., 2009]. Compared to the Ca2+ 

release site model composed of 10 2-state channels (filled circle in Fig. 3.9D), the 

average puff/spark duration of a release site composed of the same number of 4-state 

channels can be up to four times (when Kc = 1 ) longer. While in prior work [Hao 

et al., 2009], similar comparison to a Ca2+ release site composed of Keizer-Levine 

model [Keizer and Levine, 1996] and its corresponding reduced model gave good 

agreement, in this new study the reduced model tends to slightly underestimate the 

90 



puff/spark durations. 

3.6 Discussion 

We have implemented and validated a novel genetic algorithm based searching tech­

nique to find reduced models that produce moderate errors for Ca2+ release sites 

without time-scale separation. Given a full model and the designated size of the 

reduced model, this algorithm samples and evolves a population of set partitions, 

each corresponding to a potential scheme for state aggregation, toward the partitions 

that lead to reduced models which approximate the full model on the behaviors of 

interest. A Ca2+ release site composed of 10 four-state channels that are activated by 

the cytosolic Ca2+ and regulated by luminal Ca2+ is reduced by this technique and 

the steady state responses of the reduced model well approximates the full model in 

the minimal whole cell homeostasis environment proposed in Sec 3.3.1 (Fig. 3.9). 

When a Ca2+ release site model is reduced, the resulting models usually have 

significantly fewer states, which is inevitably accompanied by losing some transition 

information and different state aggregation schemes may preserve different informa­

tion. A main benefit from using genetic algorithms is that the evaluation function 

is flexible enough to pick state aggregation schemes that maximize any information 

that is of specific interest to the user. In this report, for example, we are interested 

in how luminal regulation affects the spark behavior of the Ca2+ release site. The 

evaluation function is consequently designed to assign higher fitness to the partitions 

which generate small errors in a wide range of ER/SR [Ca2+]. As another example, if 

the spark frequency is crucial in some study, we can conveniently edit the evaluation 

function to calculate the spark frequency of each reduced model generated from par­

tition I and assign higher fitness to the ones that better approximate the full model 
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spark frequency. 

Although this genetic algorithm based reduction technique is very flexible, it is im­

portant to note that this procedure is more time-consuming compared to the fast/slow 

reduction technique [Hao et al., 2009], because for each Individual I, we reduce the 

full model following the aggregation scheme, calculating the reduction error and then 

assign fitness. Because we use 10 as the population size and 2000 generations are 

generated untill the program terminates, the total time consumed is approximately 

20000 fold that of the fast/slow procedure. Fortunately, for any specific objective 

assigned to the reduced model, the reduction procedures need to execute only once 

and the reduced release site model are potentially able to save significantly more time 

in the whole cell simulations. 

An interesting phenomenon we observed when reducing Ca2+ release site models 

with the genetic algorithm based approach is that the state aggregation schemes that 

result in small reduction errors tend to be "heavy headed." That is, these "good" 

partitions usually feature one large group which collects more than 50% of the states 

while other groups contain significantly less (some times only one or two) states. 

Moreover, the states aggregated in the small groups are highly likely to be the states 

that are visited less often in the full model and this phenomenon exclusively exists 

in all Ca2+ release site reduction procedures. This observation is a good reason for 

the fact that the generator matrix associated with the reduced model Q are very ill 

conditioned. On the other hand, his observation suggests that we can generate a 

biased initial population to accelerate the evolution procedure. 
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Chapter 4 

Langevin description of the 

stochastic dynamics of calcium 

release sites 

4.1 Summary 

Compositionally defined Markov chain models have been used to study the relation­

ship between single channel gating of intracellular calcium (Ca2+) channels and the 

stochastic dynamics of Ca2+ "puffs" and "sparks," intracellular Ca2+ release events 

that arise from the cooperative activity of clusters of Ca2+ channels. In such models, 

the transition probabilities of individual channels depend on the local Ca2+ concen­

tration and thus the state of the other channels. Consequently, Markov chain models 

of Ca2+ release sites often possess intractably large state spaces that impede computa­

tional analysis. To overcome this difficulty, we derived a general Langevin formulation 

for the stochastic dynamics of Ca2+ release sites composed of a large number of in­

tracellular Ca2+ channels. We validate this Langevin formulation by comparison to 
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Markov chain simulations and perform benchmark simulations that demonstrate its 

computational efficiency for single channel models with 2 and more states and release 

sites composed of 20 to 200 channels. 

4.2 Introduction 

Stochastic dynamics are becoming an increasingly important factor to be incorpo­

rated into the study of genetics, computational cell biology and system biology. For 

example, expression and nonexpression of cell surface pili during an infection of the 

urinary tract by E. coli occurs in a stochastic fashion [Low et al., 2001]. In car­

diac myocytes, membrane depolarization during the action potential causes L-type 

Ca2+ channels to open, and Ca2+ current through these channels causes the release 

of a larger amount of Ca2+ from the sarcoplasmic reticulum, a process known as 

Ca2+-induced Ca2+ release (CICR) [Beuckelmann and Wier, 1988]. Because different 

groups of RyRs experience different local Ca2+ concentrations, they stochastically 

gate in a manner that depends on whether nearby sarcolemmal Ca2+ channels have 

recently been open or closed [Stern, 1992]. In cell signal transduction which is re­

stricted in a small volume, stochastic molecular fluctuations inevitably arise because 

of small molecular numbers. In this case, stochastic modeling approaches are required 

to faithfully reproduce detailed fluctuations in the number of molecules since even a 

change by a few molecules could produce a substantial change in concentration. 

In the context of stochastic modeling of Ca2+ release sites, that is, clusters of 

Ca2+ release channels, the stochastic signaling dynamics are often modeled by Markov 

chain models because the distributions of the open/ close dwell time follow exponential 

or Erlang distributions. For a single channel, Markov chain models specify each 

functional state and the transition rates between states are selected such that the 
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model reproduces experimental single channel records. Ideally, Ca2+ release sites are 

compositionally defined by specifying how multiple individual channels interact and 

thereby lead to concerted stochastic phenomena such as stochastic Ca2+ excitabiliy, 

known as puffs and sparks [Berridge, 1993b, Cheng et al., 1996, Nguyen et al., 2005]. 

In mechanistic models of cell signal transduction, gene regulatory networks and 

calcium signaling, etc., there is often a compositional structure whereby a number of 

same or similar components/modules are combined to create a larger system. These 

systems can usually be idealized as stochastic automata networks (SANs) where each 

component has many functional states and the transitions rates between them depend 

on the states of other components [Nguyen et al., 2005]. However, the compositional 

nature of signaling complexes results in a combinatorial state-space explosion that 

is an important practical consideration that can cause modeling approaches with 

state-dependent computational efficiency to become intractable. 

While the dynamics of any individual Ca2+ release site can theoretically be ob­

tained by Monte Carlo simulation regardless of model complexity, these simulations 

can be computationally intensive. In prior work, Smith and collaborators have de­

veloped and validated modeling approaches to accelerating multiscale calculations of 

calcium signaling in cardiac myocytes. For example, probability density and moment 

closure approaches [Williams et al., 2007, Williams et al., 2008], which assume large 

number of Ca2+ release sites, small number of states per release site and fast subspace 

[Ca2+] dynamics, can be approximately 1000 times faster than Monte Carlo simula­

tions. Some approaches, on the other hand, focus on automated reduction of Ca2+ 

release site models where the release sites are compressed into a tractable size while the 

physiological gating and interaction properties of the channels are preserved [LaMar 

et al., 2011, Hao et al., 2009]. In this chapter we present a Langevin formulation of 

the stochastic dynamics of Ca2+ release sites that is an alternative model reduction 
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technique in the context of multiscale models of Ca2+ handling [Hinch et al., 2006] 

applicable when a cell has a very large number of Ca2+ release sites, but a moder­

ate number of channels per release site. We validate our Langevin formulation of 

compositionally defined Ca2+ release sites by comparison of full and reduced signal­

ing complexes that demonstrates that the statistic of puffs and sparks are indeed 

captured by the reduced model. 

In the context of calcium signaling, prior work utilizing Langevin formulation 

has largely focused on the case where noise terms are added to a "common pool" 

compartmental model [Shuai and Jung, 2002a] and the intracellular calcium channels 

are assumed to stochastically gate in an independent fashion while coupled to the 

bulk cytosolic [Ca2+]. In this prior work the model formulation accounts for the 

finite number of calcium release units in the cell, but the properties of the stochastic 

driving force in the Langevin equation is best interpreted as representing molecular 

fluctuations due to the finite number of calcium release sites when each release site 

is composed of a single channel (initially a continuous ordinary differential equation 

model). 

The Langevin formulation presented here is distinguished from this previous work 

in the following ways. First, the channels in each Ca2+ release site are coupled, i.e. 

the opening or closing of the channels affects the transition rates of its neighboring 

channels. Second, prior work by Jung and collaborators essentially added a noise 

term to a single Hodgin-Huxley-style gating variable equation that represents the 

slow Ca2+ inactivation of an intracellular Ca2+ channel, that is derived under the 

assumption that Ca2+ activation of intracellular Ca2+ channels is a much faster pro­

cess than Ca2+ inactivation [De Young and Keizer, 1992,Li and Rinzel, 1994]. In our 

approach, noise terms corresponding to every channel transition are added and no 

quasistatic assumption is made. Third, the implementation of the Langevin descrip-
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tion is automated in the manner that any Markov model of a single Ca2+ channel can 

be transformed to the corresponding Langevin equations in an automated fashion. 

Our Langevin formulation is applicable and efficient in situations where the number 

of release sites in a cell is large enough that molecular fluctuations are negligible, 

while the number of channels per release site is moderate. 

As an application of this approach to model reduction, we use a Langevin de­

scription of 20 and 60 release sites to address specific questions about the manner 

in which Ca2+ inactivation of single channel models influences spark/puff statistics. 

We focus on how correlations in spark amplitude, duration, and inter-event interval 

associated with successive release events can carry a signature of the presence and 

time-constants of inactivation processes occurring at the molecular level. 

4.3 Model Formulation 

4.3.1 Conventional Markov chain model with Ca2+ activation 

To introduce the model formation, consider a minimal two-state model for ryan­

odine/inositol 1,4,5-trisphosphate receptor (RyR/IP3R) where only Ca2+ activation 

presents. A Markov chain description of such stochastic two-state single-channel gat­

ing is diagrammed by the following transition-state diagram: 

k+c11 

(closed) C !::; 0 (open) 

k-

( 4.1) 

where k+ c'~~ and k- are transition rates with units of reciprocal time, k+ is an associa­

tion rate constant with units of cone-'ll time- 1 , T) is the cooperativity of Ca2+ binding, 
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and cis the local [Ca2+] that may be either constant or a function of time. We make 

the assumption of instantaneous mean-field coupling [DeRemigio and Smith, 2005], 

and further assume that the local [Ca2+] experienced by all channels of a release site 

is 

(4.2) 

where No is the number of open channels, C00 is the fixed background [Ca2+] and c* 

is the [Ca2+J elevation caused by each opening channel. 

A minimal model which considers both Ca2+ activation and inactivation is also 

used below to evaluate the Langevin model. The transition diagram of this 3-state 

model is 

C t:::; 0 t:::; R (4.3) 

where R indicates the long-lasting closed (refractory) state entered via Ca2+ inactiva­

tion. We assume that 7], the cooperativity of Ca2+ binding, is the same for both the 

activation and inactivation process. Under the assumption of instantaneous mean­

field coupling Eq. 4.2, the domain [Ca2+] for the 0 ---+ R transition is greater than 

the [Ca2+] for the C ---+ 0 transition due to the self-induced increase in local Ca2+ 

experienced by the channel when open. 

The transition-state diagram Eq. 4.3 becames 

c ±:::; 0 R (4.4) 

and the corresponding infinitesimal generator matrix is 
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0 

(4.5) 

0 -kb" <:; 

where the diagonal elements ( <:;) are such that the row sum of the matrix Q are zero. 

A vector 7r is the stationary distribution of a Markov chain if it satisfies 

7rQ = 0 subject to 7re = 1 (4.6) 

where 7re is an inner product and e is a commensurate column vector of ones. The 

stationary distribution of Markov chain models can be most conveniently either solved 

analytically or numerically depending on the size of the model. For example, for the 

two-state single channel model (Eq. 4.1), we can analytically solve Eq. 4.6 to find 

and 

If a collection of N such Ca2+ channels are co-localized at a release site and coupled 

via local [Ca2+], the transition diagram for the release site as a collective entity is 

0 1 N-1 N (4.7) 

(N- 1)k-

where the states of the system, {0, 1, ... , N}, indicate the number of open channels, 

and the local [Ca2+] used in each Ca2+-mediated transition is en= c00 +N0 c*(Eq. 4.2). 
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In general, the transition between two neighboring states takes the form: 

n n+1 (4.8) 

nk~ 

where the number of open channels n is a integer between 0 and N. 

The absence or presence of the localized Ca2+ elevations known as puffs and sparks 

is one of the most important properties of Ca2+ release sites. In prior work we have 

defined a response measure dubbed the puff/spark Score, which is defined as the index 

of dispersion of the fraction of open channels [Nguyen et al., 2005]: 

Var[fo] 
Score= E[fo] 

1 Var[No] 
N E[N0 ] 

(4.9) 

This measure ranges between 0 and 1, and values that are close to or larger than 0.25 

indicates presence of robust Ca2+ puffs/sparks. 

4.3.2 The Langevin description of Ca2+ release sites com-

posed of two-state channenls 

When the number of channels, N, is large, Eq. 4.8 indicate that the number of open 

channels is changing at rate 

dNa dt = a(N- No)- f3No, (4.10) 

where the backward transition rate (3 = k- is a constant while the forward transition 

rate a = k+(coo + N0 c*Y' is a function of No. By dividing both sides by N, the 

number of open channels, we can derive an ordinary differential equation (ODE) for 
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the fraction of open channels f 0 (t) taking values between 0 and 1, 

dfo - = a(1- fo)- f3fo. 
dt 

(4.11) 

In the Langevin description, fluctuations in the fraction of open channels due to the 

finite value of N are described using a stochastic ODE that takes the form 

dfo 
dt = g(fo) + ~(t). (4.12) 

In this equation, g(fo) = a(1- fo)- f3f0 corresponds to the deterministic dynamics 

previously described. These deterministic dynamics are supplemented with a rapidly 

varying forcing term, ~(t), which is a random variable parameterized by time. A 

solution of Eq. 4.12, j 0 (t), must satisfy the equation for a particular instantiantion of 

~(t). Alternatively, if the statistics of ~(t) are given, f 0 (t) is a new random variable 

formally defined by Eq. 4.12 that has a probability density function that can be either 

calculated analytically or integrated numerically from the Fokker-Plank equation that 

corresponds to Eq. 4.12. 

In order to use a Langevin equation of the form of Eq. 4.12 to simulate a large 

number of ion channels, we must make an appropriate choice for both the determin-

istic function g(f0 ) as well as the statistics of the random variable ~(t). Recalling the 

average rate equation for the dynamics of the open fraction of channels, Eq. 4.11, we 

write 

dfo dt =a (1- fo)- f3fo + ~(t). (4.13) 

An appropriate choice for ~ is a fluctuating function of time that has zero mean, 

(~(t)) = 0, 
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and an autocorrelation function given by 

(~(t)~(t')) = r (Jo) 15 (t- t'), 

where () indicates a "trial" or "ensemble average." 15 is the Dirac delta function 

and rUo) is a "two-time" covariance that depends on the system state, f 0 . It can 

be shown [Keizer, 1987] that the variance rU 0 ) is inversely proportional to N and 

proportional to the sum of the rates of both the 0 --t C and C --t 0 transitions, that 

lS, 

rUo) = a (1- fo) + f3fo 
N . (4.14) 

An appropriate choice for ~(t) is thus ~(t) = Jr (J0 )fl.B(t) where the fl.B are the 

increments of a Wiener process (discussed further in section 4.4.1). 

4.3.3 The Langevin description of Ca2+ release sites that 

consist of channels with 3 or more states 

When a release site consists of Ca2+ channels with N states (N :2: 3), the correspond-

ing Langevin equation is 
df 
dt = Qf+f.(t). ( 4.15) 

In Eq. 4.15 the state of the release site is represented by the N x 1 column vector f 

where each element fi indicates the fraction of the channels that are in state i. By 

conservation of probability we have eT f = 1 where e is a N x 1 column vector of ones, 

and theN x 1 column vectors f,(t) is the rapidly varying force with mean zero 

(f.(t)) = 0 
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and two-time covariance 

(~(t)~r(t')) = r (f) 15 (t- t') ( 4.16) 

where r = (1'21 ) so that written in scalar form we have (~2 (t)~1 (t')) = "(21 (f) 15 (t- t'). 

Because the Ca2+ release site models are composed of identical single channel 

models whose transitions take the form of (Eq. 4.5), the off-diagonal elements of the 

two-time covariance matrix r = ( 'Yt,J) take the form 

'YtJ 
q,JJ2 + qJdJ 

N 

'Yn -I: "f,J 
r/-t 

(zf:J) ( 4.17) 

(4.18) 

where the diagonals are non-negative (1',2 2: 0) and the off-diagonals are non-positive 

(1'21 :::; 0, z ::J J ). In Matlab notation we can write the matrix r as 

r = r - diag (f'e) 

where 

f' = - ( D1Q + (JT D f) . 

The diagonal entries of matrix D1 are the values of j, and Q is the generator matrix 

Q with the diagonal zeroed out: Q = Q- diag[diag(Q)]. The simulation of this 

random vector ~(t) will be discussed in Sec. 4.4.2. 
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4.4 Results 

4.4.1 Simulation of the Langevin equations for two-state chan-

nels 

While the trajectory of a real Wiener process, B(t), is differentiable nowhere, it can 

be simulated by numerically integrating a piecewise constant approximation to the 

Wiener increment fl.B(t) where (tl.B(t)) = 0 and 

{ 
1/ fl.t 

(fl.B(t)fl.B(t')) = O 
t E [t, t + fl.t] 

otherwise 

The smaller fl.t is, the closer our simulation approximates a real Wiener process. 

The dynamical part of the SDE is integrated by the forward Newton's method 

where the time step is also chosen as fl.t so that both the deterministic and stochastic 

part of the SDE are updated for each iteration. Consequently, the general formula 

for generating a random trajectory of fo is: 

fo(i + 1) ~ /';t ( <> (1 - fo(i)) - j3 fo(i) + l" (1 
- fo(~ + j3 fo(i) ry) , (4.19) 

where N is the total number of channels simulated and 77 is a Gaussian random 

variable with mean 0 and variance 1. 

The Langevin equations of Ca2+ release sites that consist of 20 to 200 two-state 

channels (Eq. 4.1) are simulated and when the coupling strength c* is such that the 

Score is optimized, robust puffs/sparks are observed (Fig. 4.1 A) as seen in the Monte 

Carlo simulations of corresponding Markov chain models (Fig. 4.1 B). The distribu-

tions of the number of open channels are compared to the steady state distributions of 
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the corresponding Markov chain model and show agreement for as few as 20 channels 

(Fig. 4.1 C). This agreement improves slightly as the number of channels simulated 

grows and all Langevin results more or less overestimate the probability of fewer open 

channels. 
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Figure 4.1: (A) Example Monte Carlo simulation of a Markov chain model of 20 two­
state Ca2+ channels (Eq. 4.1). (B) Example simulation of the corresponding Langevin 
equation. (C) Stationary distribution of the Markov chain model (histogram) and 
probability distribution of the fraction of open channels for 50 Langevin simulations 
(mean values are shown by crosses and error bars indicate standard deviation) for 20 
two-state Ca2+ channels. Parameters: k+ = 1.5 t-tM-7Jms-1 , k- = 0.5 ms-1 , c* = 
0.06 t-tM, 77 = 2. 
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Figure 4.2: The Ca2+ puff/spark Score as a function of the coupling strength (c*) 
when the number of two-state Ca2+ -activated channels (Eq. 4.1) is N = 20 (solid 
line) and N = 60 (dotted line) calculated from the Markov chain model stationary 
distributions. For comparison the corresponding Langevin equations were simulated 
and the dependence of the puff/spark Score on c* was calculated using the mean and 
variance of the fraction of open channels for this stationary stochastic process. Error 
bars indicate mean and 95% confidence interval of Scores for 10 trials of the Langevin 
simulation using integration time step 10-4 second, each of which is 10 seconds in 
duration. Parameters are as in Fig. 4.1 
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Three possible mechanisms that contribute to puff and spark termination observed 

in prior works include: stochastic attrition, ryanodine/IP3 receptor inactivation and 

luminal regulation [Stern and Cheng, 2004, Groff and Smith, 2008a]. Because inacti­

vation and luminal regulation are not present in the two-state Ca2+ channel model 

(Eq. 4.1), the termination of the puffs/ sparks in Fig. 4.1 are due to stochastic at­

trition. In prior work utilizing Markov chain models, it was found that for a given 

number of channels N, there often exists a range of coupling strengths (c*) that gives 

rise to puff/sparks terminated by stochastic attrition. Furthermore, the range for c* 

that leads to puff/sparks narrows as N increases [DeRemigio and Smith, 2005]. To 

determine whether the number of two-state channels at a Ca2+ release site and cou­

pling strength affect the dynamics of stochastic attrition in the Langevin simulations 

is similar to the Markov chain models, the Score of release sites composed of 20 and 60 

channels was calculated using both approaches and plotted as a function of coupling 

strength c*. Fig. 4.2 shows that the Scores of the Langevin model well-approximate 

the Scores of the Markov chain model, thereby validating the Langevin formulation 

and our numerical implementation of the stochastic model. 
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Figure 4.3: (A) Linear relationship between puff/spark amplitude and puff/spark 
duration is shown using the Langevin equation (circles) and Markov chain models 
(stars) of 20 two-sate (Eq. 4.1) Ca2+ channels. (B, C, D) The cumulative probability 
distribution of the puff/spark amplitude (B), duration (C) and inter-event intervals 
(D) observed in the Monte carlo simulations of the Markov chain (solid lines) and 
Langevin (dashed lines) models. Thick and thin lines correspond to N =20 and 60 
two-state Ca2+ channels, respectively. Coupling strengths c* are selected such that 
the puff/spark Scores are high (see Fig. 4.2). c* = 0.06 J-lM and 0.0194 J-lM for 
the 20-channel and 60-channel release sites, respectively, . Other parameters as in 
Fig. 4.1. 
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We also compared the Langevin and Markov chain models with respect to three 

additional puff/spark statistics. As demonstrated diagrammatically in Fig. 4.4, we 

define the Duration (D) of a Ca2+ release event to be the random period of time 

between event initiation (after a release site makes a transition from N 0 = 0 -----* 1 

open channels, shown by black dots in Fig. 4.4) and termination (when all channels 

close via a final N0 = 1 -----* 0 transition). The Amplitude (A) of a Ca2+ release 

event is the integrated area under the N0 (t). In confocal microscopy experiments, 

puff/spark amplitude is usually defined as the normalized fluorescence b.F / F0 , where 

F0 denotes the resting fluorescence [Song et al., 1997]. Assuming a linear relationship 

between N0 and the Ca2+ flux, this definition of puff/spark amplitude reflects the 

cumulative amount of Ca2+ released from the ER/SR during an event. 

To compare these puff/spark statistics in the Markov chain and Langevin models, 

20 and 60 Ca2+ channels are simulated until 105 large events (where the number of 

open channels is transiently greater or equal to five, N 0 2: 5) are observed. The 

coupling strength (c*) used is such that the puff/spark Sores of the release sites are 

optimized. 

In Fig. 4.3 (A), the amplitudes of Ca2+ release events from the 20-channel release 

site are plotted as a function of the duration. Fig. 4.3 (B, C, D) shows the cumulative 

distribution functions (CDFs) for the puff/spark amplitudes (A), puff/spark durations 

(D) and puff/spark intervals (I) respectively. Consistent with Fig. 4.1, all three CDFs 

obtained from the Langevin model sit above the Monte Carlo result, indicating that 

more small events take place in Langevin simulations. In spite of this slight over 

estimate of the number of small events, the Langevin results generally agree with the 

Monte Carlo simulation results for as few as 20 channels (thick lines). Furthermore, 

this agreement is improved when the release site is composed of 60 channels (thin 

lines). Note that, as the number of channels simulated increases, the number of 
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A 20 

B 20 
25 ms 

Figure 4.4: (A) a sample simulation of 20 three-state Ca2+ channels (Eq. 4.4) using 
Langevin description that includes five Ca2+ release events with amplitudes: A1 = 
66.35 ms, A2 = 15.05 ms, A3 = 315.98 ms, A4 = 28.79 ms, and A 5 = 130.55 ms. (B) 
When threshold of puff/sparks is set to be 30 ms, only three events whose amplitudes 
are above the threshold are selected for further study. 

states visited during Monte Carlo simulations using Gillespie algorithm also increases, 

consequently the run time for simulating the Makov chain model grows dramatically. 

In contrast, the computation cost of simulating the Langevin model doesn't change. 

For the simulations of 20 channels shown in Fig. 4.3, the Langevin simulation takes 

approximately twice as long as the Monte Carlo simulations. When 60 channels are 

simulated, the Langevin approach takes about 70% of the time that was consumed 

by Monte Carlo simulations. 
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4.4.2 Simulating Langevin equations of Ca2+ release sites 

that are composed of channels with 3 or more states 

Similar to simulating the Langevin equation for two-state channels, when a Ca2+ 

release site is composed of m(m > 2) states, we can produce a piecewise constant 

approximation to the rapidly fluctuating force ~ ( t), which is a m x 1 vector, with 

specified two-time covariance consistent with Eq. 4.16, 

r { r 1 t::,.t t' E [t, t + t::,.t] 
(~(t)~ (t')) = 

0 otherwise, 
( 4.20) 

where r is am x m covariance matrix and ~~T is a outer product. This is done by 

peforming a Cholesky factorization at each time step 

where r (and thus A) are functions of the system state f(t) through Eqs. 4.17 and 

4.18 and we have dropped the index i for clarity. The values for the piecewise constant 

fluctuating force are given by 

(4.21) 

where the elements of /:::;.B are independent and identically distributed normal random 

variables with mean zero and variance 1/ /:::;.t. (If r is m x m, there are of course m 

elements of /:::;.B produced for each time step.) 

Fig. 4.5 shows simulation trajectories for Ca2+ release sites composed of 20 three­

state channels (Eq. 4.4). The parameters in these simulations are selected such that 

robust puff/spark events are observed (Score = 0.38 and 0.42 for panels A and B, 

respectively) when the Ca2+ inactivation affinity is sufficiently high (i.e., the dissoci-
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ation constant Kb = (kt; /k:) 11'7 = 0.58 p,M), but are tonically open (Score < 0.1) 

when the channels include low-affinity Ca2+ inactivation (Kb = 5.8p,M). In prior 

work, Groff and Smith [Groff and Smith, 2008a] showed that high-affinity Ca2+ inac­

tivation may facilitate puff/spark termination in two distinct ways depending on the 

Ca2+ inactivation rates. Fig. 4.5 A and B reproduce these puff/spark dynamics with 

two different termination mechanisms (see legend). Note that the variance of the 

number of refractory channels (NR) is small when the inactivation rate is slower and 

sparks are terminating by stochastic attrition on a back ground of refractory channels 

(Var[NR] = 1.0 in B). When sparks terminate due to the recruitment of refractory 

channels during each puff/spark event the variance of the number of refractory chan­

nels (NR) is large (Var[NR] = 2.8 in A). 

Fig. 4.5A illustrates how the accumulation of refractory channels during puff/sparks 

can contribute to the termination of Ca2+ release events. Note that the number of 

refractory channels (NR) increases significantly during each puff/spark event and de­

creases during the inter-event intervals. Moreover, N R usually reaches its local max­

imum value, usually larger than the average number of refractory channels (E[NR]), 

at the end of each puff/spark. In Fig. 4.5B, the inactivation and de-inactivation rate 

is reduced by 10-fold of those used in Fig. 4.5A without changing the dissociation 

constant for Ca2+ inactivation Kb. In this case, the number of refractory channels is 

relatively constant throughout the entire simulation and thus the puff/spark events 

do not appear to terminate by the accumulation of refractory channels. Groff and 

Smith referred to this phenomenon as puff/spark terminating by stochastic attrition 

as a background of refractory channels. 
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Figure 4.5: (A, C) Example Langevin and Monte Carlo simulation trajectory of 20 
three-state channels (Eq. 4.4) showing puff/spark termination facilitated by the re­
cruitment of refractory channels (black line) during puff/spark events. Parameters: 
7] = 2, k"!: = 1.5 f-LM-17ms-1

, kt = 0.015 f-LM- 17ms-1
, k;; = 0.5 ms-1

, kl: = 0.005 
ms-1

, C00 = 0.05 f-LM, c* = 0.075 f-LM. (B, D) Example Langevin and Monte Carlo sim­
ulation when the Ca2+ inactivation rate is reduced 10-fold (kt = 0.0015 f-LM- 2ms-1 

and kl: = 0.0005 ms- 1
). The number of refractory channels (black line) is nearly 

constant and puff/spark terminate without additional recruitment of refractory chan­
nels. 
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Figure 4.6: The Ca2+ puff/spark Score as a function of the coupling strength (c*) 
when the number of three-state Ca2+channels (Eq. 4.4) is N = 20 (solid lines) 
and N = 60 (dashed lines) are calculated using the stationary distribution of the 
Markov chain model. While the dissociation constant for Ca2+ inactivationis held 
constant (Kb = 5.8 p,M), two sets of inactivation rates are used (thin lines: kt = 
0.015 p,M-2ms-1 , kb" = 0.005 ms-1

; thick lines: kt = 0.0015 p,M-2ms-1 , kb" = 0.0005 
ms- 1

). The corresponding Langevin simulation are calculated from the average prob­
ability distribution of fo (10 trials of 10 seconds duration, crosses). Other parameters 
are as in Fig. 4.5 
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Fig. 4.6 shows how the stochastic excitability for Ca2+ release sites is affected 

by the coupling strength (c*) when inactivation is present (Eq. 4.4) This can be 

compared to Fig. 4.2 where inactivation is absent. The lines are calculated directly 

from the stationary distribution of the Markov chain models. Each cross, on the 

other hand, is the average Score of 10 independent simulations at a same c* value 

and the corresponding 95% confidence interval is given by the error bars. In the 

20 channel simulations, Langevin results slightly underestimate the Scores, but the 

approximation improves as the simulated release sites are composed more channels. 

For both 20 (solid) and 60 (dashed) three-state channels, both methods show that 

a range of coupling strength (c*) that gives rise to robust puff/sparks similar to the 

two-state case. Both methods also agree that the range for c* that leads to stochastic 

excitability narrows as N increases. 

4.5 Using the Langevin model to probe puff/spark 

statistics 

The distribution of individual puff/spark durations, amplitudes and inter-event in­

tervals can be measured in living cells using confocal fluorescence microscopy [Parker 

and Wier, 1997,Klein et al., 1999,Smith and Parker, 2009]. Although less commonly 

measured in experiments, we were interested in the relationship between successive 

puff/spark amplitudes and how puff/sparks and inter-puff/spark intervals may be 

correlated with each other, and how these correlations depend on single channel 

properties, such as Ca2+ inactivation (Eq. 4.4). Markov chain modeling of Ca2+, 

these relationships are not easily obtained through direct analysis of Q matrices; 

consequently, Monte Carlo simulations are required and thus can be extremely time-
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consuming when release sites are composed of large number of channels. We have 

found that our Langevin formulation (Section 4.3.3) reduces the computational cost 

of Ca2+ release site simulations to a degree that allows analyze of correlation in suc­

cessive puff/spark properties. 

In Sec. 4.4.1, we defined duration (D), amplitude (A) and inter-event intervals 

(I) for Ca2+ release events. Because small Ca2+ release events (blips) are often 

not detectable in confocal micro-fluorescence experiments, we define an amplitude 

"threshold", Ae, and events whose amplitudes superthreshold (A> Ae) are preserved 

in the analysis of correlations. Fig. 4.4A shows a simulation trajectory of a release 

site composed of 20 Ca2+ channels with five Ca2+ release events. If Ae is set to be 

30 ms, only three events are selected for analysis and the corresponding puff/spark 

durations, amplitudes and inter-puff/spark intervals are demonstrated in Fig. 4.4B. 

Because amplitude threshold Ae is to some extent arbitrary, Pearson correlation 

coefficients are calculated using a range of Ae values. Fig. 4. 7 A shows the relationship 

between successive puff/spark amplitudes. When inactivation and de-inactivation 

rates are set to be the standard parameters (as in Fig. 4.5A), for Ca2+ release sites that 

are composed of 20 (solid line), 60 (dotted line), 80 (not shown) and 100 (not shown) 

channels, a small negative correlation between successive puff/spark amplitudes is 

observed that indicates event-to-event alternation in puff/spark amplitudes. This 

negative correlation reaches its minimum value when Ae is about 15 ms for 20 channels 

and 20 ms for 60 channels. 

When the Ca2+ inactivation/de-inactivation rates in the single channel model are 

increased by 10 times, the negative correlation for the 20-channel release site became 

barely observable but the negative correlation for the 60 channel release site is stronger 

(data not shown). Consequently, we did parameter studies on the inactivation and 

de-inactivation rates since, together with the number of channels, they seem to affect 
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Figure 4.7: (A) Correlation of successive puff/spark amplitudes ofrelease sites consist 
of 20 (solid) and 60 (dashed) 3-state Ca2+ channels as a function of selected amplitude 
threshold. Parameters are as in Fig. 4.5. (B) The strongest negative correlation for 
20 (solid) and 60 channels (dotted) when the inactivation/de-inactication rate are 
changed to different folds of the parameters in Fig. 4.5. 

the successive puff/spark amplitude correlations. To keep the Ca2+ affinity (Kb) fixed, 

the inactivation and de-inactivation rates are either reduced or increased by the same 

factor. For each pair of inactivation/de-inactivation rates studied, 10 independent 

Langevin simulations are carried out and 106 Ca2+release events are collected from 

each individual simulation. The amplitude correlation of each parameter averaged 

through the ten trials is shown in Fig. 4. 7B by dots and crosses for 20 and 60 channels 

respectively, and the standard deviations are shown by error bars. 

Simulations of both 20 and 60 channels show that the negative correlations be­

tween successive puff/spark amplitudes are significantly weakened when the inactiva-

tion rates are reduced by 100 fold compared to the standard parameters. Recalling 

Fig. 4.5B, when inactivation rate is slow enough that the number of refractory chan­

nels stays almost constant, the Ca2+ release site approximates a two-state release site 

that is composed of fewer channels. On the other hand, when the inactivation rates 
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are large, the negative correlation is also weakened due to the fast recovery from the 

refractory state. The speculated reason for this negative correlation is consequently 

high affinity, moderately slow inactivation since when inactivation presents, a compar­

atively larger fraction of channels are inactivated by the end of each large puff/spark 

event (shown in Fig. 4.5A), thus fewer channels are available to participate in the 

next Ca2+ release event and consequently the next puff/spark is very likely to have a 

comparatively small amplitude. Similar study was carried out for Ca2+ channels with­

out inactivation (data not shown) and the fact that no obvious negative correlation 

is found further supported our speculation. 

Interestingly, as the release site under simulation is composed of a larger number 

of channels, the strongest negative correlations are reached at a slower inactivation 

rate. For instance, while the negative correlation for successive puff/spark amplitudes 

is the strongest at the standard parameter for 20 channels, the inactivation rate has to 

be reduced by 10 fold and 100 fold for 60 channels (Fig. 4.5B) and 80 channels (data 

not shown) respectively, to reach their strongest negative correlation. The strength of 

the maximum negative correlation, on the other hand, is shown to be slightly larger 

for larger release sites. 

When the relationship between puff/spark amplitudes and their preceding inter­

event intervals are studied in the same manner, positive correlations are shown for 

20 and 60 channels when standard parameters are used (Fig. 4.8A). The explanation 

to this observation is also accumulated refractory channels terminating puff/sparks 

(as in Fig. 4.5A). In this case, longer inter-event intervals indicates more recover time 

for the channels that are inactivated by the end of the preceding puff/spark allowing 

more channels to be available for release events, consequently the following event 

amplitudes are likely to be larger compared to that of those who follow brief quiescent 

periods. Similar to the previous study, the inactivation/de-inactivation rates must be 

119 



A 8 A vs. I 
-f n n-1 

t + 
0.2 0.2 

-f 
t: t: 
0 0 
u 0.1 u 0.1 

f 
I f f f f f I I f 

0 0 

0 20 40 60 80 100 0.001 O.Ql 0.1 10 100 
e (ms) 

Figure 4.8: Correlation of puff/spark amplitudes (upper) and the previous quiescent 
duration of release sites consist of 20 (solid) and 60 (dotted) 3-state Ca2+ channels 
as a function of selected amplitude threshold. The change of the correlation as a 
function of the inactivation rate when 10% of the events are selected as puff/sparks, 

slow enough such that the channels spend adequate time in the refractory state before 

recovery, yet not too slow so that the number of refractory channels increase as more 

channels are open. Actually, when the inactivation is either reduced or increased by 

100 fold, the positive correlations fade out for both 20 and 60 channels (Fig. 4.8B). 

On the other hand, the amplitudes of puff/sparks does not appear to affect the 

interval length before the next Ca2+ release events. In Fig. 4.9 the puff/spark am-

plitudes and their following inter-event intervals are also shown to have only very 

weak positive correlations (less than 10%) when standard parameters are used for 60 

channels (dotted line in Fig. 4.9A) and this positive correlation only exists when the 

inactivation/ de-inactivation rates are moderately slower than activation rate (dashed 

line in Fig. 4.8B) which are results consistent with the two results discussed above. 

However, the positive correlation is barely shown for 20 channels (solid lines). It was 

reported in literature that no significant correlation between peak spark amplitude 

and the immediate following interval in rat ventricular myocytes [Parker and Wier, 
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Figure 4.9: Correlation of puff/spark amplitudes (upper) and the following quiescent 
duration of release sites consist of 20 (solid) and 60 (dotted) 3-state Ca2+ channels 
as a function of selected amplitude threshold. The change of the correlation as a 
function of the inactivation rate when 10% of the events are selected as puff/sparks. 

1997] Spark amplitudes and their preceding inter-event intervals are also reported 

to lack significant correlation in the study of frog muscle fibres [Klein et al., 1999]. 

4.6 Discussion 

We have presented a Langevin formulation for the stochastic dynamics of calcium 

release sites. Using a two-state model with Ca2+activation only and a three-state 

Ca2+ channel model with both Ca2+ activation and inactivation, we demonstrated 

that the Langevin description is a good substitution to models of the correspond­

ing compositionally defined Markov chain Ca2+ release site models. The Langevin 

simulation results for the Ca2+ release sites that are composed of 20 - 150 channels 

are almost identical to the corresponding Monte Carlo simulation results on the sta-

tionary distributions of the fraction of open channels, the puff/spark scores and the 

distributions of puff/spark statistics. 
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As an application demonstrating the computational efficiency of this approach, 

using Ca2+ release sites that are composed of 20 or 60 three-state Ca2+ channels, 

we studied whether Ca2+ inactivation affects the correlations between the successive 

puff/spark amplitudes and inter-event intervals, which are computationally expensive 

to get statistics if otherwise simulated by Monte Carlo simulations. We observed some 

interesting correlations exist among puff/spark amplitude and inter-event interval 

lengths and that the existence of these correlations are highly dependent to Ca2+ 

inactivation rates. 

4.6.1 Spark amplitude and inter-event interval correlations 

We started with studying the correlations between successive puff/spark amplitudes of 

20 and 60 three-state Ca2+under the standard parameters (as in Fig. 4.5A) and discov­

ered small negative correlations between successive puff/spark amplitudes. Then how 

the inactivation/ de-inactivation rates affects this correlation is studied and negative 

correlations are shown only when the inactivation/de-inactivation are approximately 

20 to 500 times slower as compared to the activation rates for 20 channels and 50 to 

2000 times slower for 60-channel release sites. 

The reason for this negative correlation is very likely to be that a larger fraction 

of channels are inactivated by the end of large release events causing less channels are 

available for the following puff/spark. To further verify our speculation, we studied 

the correlations between puff/spark amplitude and their preceding and following inter­

event interval lengths. In the parameter range where negative correlations between 

successive puff/spark amplitudes are found, puff/spark amplitudes are shown to be 

positively affected by their preceding inter-event interval but are not significantly 

correlated to their following inter-event interval. 
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Even though many experimental studies are done to study the distribution of 

Ca2+ puff/spark amplitudes, rinsing times and durations [Cheng et al., 1999, Rios 

et al., 2001,Shen et al., 2004] and some of them study correlations between the peak 

amplitudes of Ca2+ release events and their corresponding rising time [Lacampagne 

et al., 2000], we didn't find data discussing the correlation between successive spark 

amplitudes. Yet the few experimental data which were collected toward the study of 

how Ca2+ puff/spark amplitudes interfere with the intervals preceding or following 

them showed no significant correlations between these statistics. 

4.6.2 Promise and limitations of the Langevin implementa-

tion 

In prior work, Langevin equations are utilized to reduce the computation cost of a 

specific cluster of unregulated Li-Rinzel IP3 receptors where all channels are inde­

pendent to each other [Shuai and Jung, 2002a]. Different from their work, which was 

restricted to a 2-state model, we aimed at developing an automated program which 

is able to transform Ca2+release sites with arbitrary number of states into Langevin 

formulations. Luminal and cytosolic Ca2+regulation, diffusions and buffering can be 

easily integrated into our program because the deterministic part of these stochastic 

differential equations are solved as dynamical systems: 

dCmyo 

dt 
dcsr 

dt 

/3m yo [ Vrel "in ( Csr - Cmyo) - Vmyo ( Cmyo - c:;,yo)] 

f3~r [vrel "in (csr + Cmyo) + Vsr (c~- Csr)], 

( 4.22) 

( 4.23) 

where Eq. 4.22 and Eq. 4.23 describe the Ca2+ change in the myocyte and in SR 

respectively, A is the SR to myoplasmic domain volume ratio, /3myo ( Cmya) and f3sr ( Csr) 
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are functions of the domain concentrations accounting for rapid buffering. 

With a three-state Ca2+channel model, we validated that when the size of a Ca2+ 

release site is fairly large (N ;::: 20), the Langevin formulation approximates Markov 

chain results very well and the results usually improve as the number of channels 

models increases. More importantly, the main advantage of the Langevin formulation 

is that the computation cost does not increase as the number of channels modeled 

mcreases. 

However, the Langevin equations are currently solved by forward Newton's method 

with Cholvesky factorization finding the square root of the covariance matrix. These 

numerical methods, especially Chokove command in Matlab, are not very time effi­

cient. We are still searching for numerical solutions of the Langevin formulations so 

that the computational efficiency is further improved. 

4. 7 A pen dices 

4.7.1 Producing Gaussian random variates with specified co­

variance matrix 

An n x n real symmetric matrix M is "positive semi-definite" if zT M z ;::: 0 for all non­

zero vectors z with real entries (z ERn). A covariance matrix~ is square, symmetric, 

and positive semi-definite and therefore has the Cholesky-like decomposition 

and the random variables y can be calculated as 
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where the xi are independent and identically distributed normal random variables 

that satisfy the mean and covariance of x are (x) = 0 and (xxT) =I. Consequently, 

the mean and covariance of yare (y) = (ATx) = AT(x) = ATO = 0 and (yyT) =I; 

because 

4. 7.2 Fokker-Planck descriptions for 2-state Ca2+ channels 

From "Noise in spatially extended systems" [Garcfa-Ojalvo and Sancho, 1999], the 

Langevin equation for the zero-dimensional system 

dx 
dt = f(x) + g(x)'fl(t) 

where 

('fl(t)) = 0 

and 

('fl(t)'fl(t')) = 2D8 (t- t') 

has the corresponding Fokker-Planck equation: 

8 8 82 

8
t P(x, t) =-

8
xJ(x)P(x, t) + D 

8
x2 g2 (x)P(x, t). 

Assuming natural boundary conditions (See Section 4.7.4), the steady-state proba-

bility distribution is given by 

A {j f(x) } P00 (x) = g(x) 2 exp Dg2 (x) dx , 

where A is a normalization constant. 

125 



4. 7.3 Steady-state probability distribution for two-state chan-

nel 

Assuming a two-state channel with constant transition rates the Langevin equation 

lS 

dx vax+/3(1-x) 
dt = -ax+ /3(1- x) + N TJ(t), 

f(x) 
g(x) 

where 

(TJ(t)) = 0, 

and 

(TJ(t)TJ(t')) = 8 (t- t'). 

The corresponding Fokker-Planck equation is 

a a a2 

at P(x, t) =-axf(x)P(x, t) + D ax2 l(x)P(x, t). 

Assuming natural boundary conditions, we can define the stochastic potential as 

J f(x) 
U(x) =- 92 (x) dx. (4.24) 

The steady state distribution is given by 

A 
P oo(x) = g(x) 2 exp { -2U(x)}. 

When a, j3 are constants, we can calculate U(x) analytically: 

_ U(x) = J f(x) dx = J -ax+ /3(1- x) dx = J j3- (a+ j3)x dx 
N g2 (x) ax+ /3(1- x) j3 +(a- j3)x 
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Let a = - (a + {3), b = d = {3, e = a - {3, using the integral table formula, 

J ax+ b dx = (be- ad) log( ex+ d)+ aex 
ex+ d e2 

we find 
U(x) 

---
N 

2a{3 a+ {3 
(a_ {3) 2 log [ax+ {3(1- x)]- a_ {3x. 

The steady state distribution is given by 

4No.f3 1 { a + {3 } P00 (x) =A [ax+ ,8(1- x)] (o.-f3)
2

- exp -2N a_ {3x . 

If the transition diagram of a two-state channel with Ca2+ activation is given by, 

Eq. 4.1 then 

{; : 
where r is the maximum (i.e. when all channels open) Ca2+ release caused by channel 

gating and x is the fraction of open channels. In this case a became a function of x 

and consequently the integral table formula is not applicable any more. 

substitute a and {3 by their value: 

u 

Theoretically, the integrand is is always integrable since it is a rational function. 

However, there is not a trivial formula for the cubic function above. Consequently, 

we integrated the integrand in Eq. 4.24 numerically. 
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Figure 4.10: The steady state probability distribution of a 20-channel Ca2+ release 
site numerically integrated from the Fokker Plank equation is shown with the solid 
curve and discretized follow the number of open channels (white histogram). The 
same distribution statistically collected from a sample simulation is plotted with the 
dashed line. The corresponding Markov chain model stationary distribution is shown 
with black histograms. Parameters are as in Fig. 4.1 

4. 7.4 Boundary condition 

In our simulations, free boundary condition is used in match with the assumption that 

is necessary for analytically solving the steady state solutions of Langevin equations. 

However, since open fractions of a release site have to be within [0, 1] to make physical 

sense, the values of fo which go beyond this interval are collected as either of the 

boundary value. 
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Chapter 5 

Summary of results 

This dissertation proposed several techniques to reduce the computational cost of 

compositionally defined Markov chain Ca2+ release site models, which is an important 

step toward mechanistic modeling that traverses the molecular and cellular levels 

of Ca2+ signaling dynamics. Compositionally defined Markov chain Ca2+ release 

site models reminiscent the physiological realism of interacting Ca2+ channels and 

collective gating. Unfortunately, the large state space of such compositional models 

impedes simulation and computational analysis in multiscale simulations of the whole 

cell Ca2+ signaling in which the stochastic dynamics of localized Ca2+ release events 

play an important role. In this dissertation we validated that our novel techniques are 

able to produce reduced models that have significantly fewer states while maximizing 

the preservation of the collective gating properties of computationally defined Markov 

chain Ca2+ release sites. We also utilize these reduction approaches to calculate 

some puff/spark statistics that are otherwise expensive to collect from experiments 

or traditional simulation methods. 

Chapter 2 introduces several automated model reduction techniques based on 

fast/slow analysis that leverages these time scale differences that are often exhibited 
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by ligand-gated intracellular channels. Rate constants in the single channel model 

are categorized as either fast or slow, groups of release site states that are connected 

by fast transitions are identified and lumped, and transition rates between reduced 

states are chosen consistent with the conditional probability distributions among 

states within each group. The fast/slow reduction approach is validated by the fact 

that puff/spark statistics can be efficiently computed from reduced Ca2+ release site 

models with small and transient reduction error. For release site composed of many 

channels, the conditional probability distributions can be approximated without the 

construction of the full model by assuming a rapid mixing of states connected by fast 

transitions. Alternatively, an lAD method can be employed to obtain a reduced Ca2+ 

release site model in a memory-efficient fashion. 

In Chapter 3, a genetic algorithm based approach is implemented to find reduced 

models with moderate errors in the absence of time-scale separation. Given a full 

model of interest and target reduced model size, this genetic algorithm searches for set 

partitions, each corresponding to a potential scheme for state aggregation, that lead 

to reduced models that well-approximate the full model mimicking the inheritance, 

mutation, and selection processes of natural evolution. Compared to the fast/slow 

based approach (Chapter 2), the genetic algorithm based approach is more expensive 

computationally but more flexible and realistic. The Evaluation subroutine can be 

easily modified so that the resulting reduced model is able to approximate the full 

model on different aspects and fit different model formulations. 

While the techniques presented in Chapters 2 and 3 significantly reduce the size of 

mechanistic Ca2+ release site models, the stationary distribution of the full model is 

required for the implementation of both approaches. In practice, this limits the size of 

full models that can be targeted for reduction and, for release sites composed of iden­

tical channels, the number of channels per release site is constrained. In Chapter 4, a 
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Langevin formulation of the Ca2+ release sites is introduced as an alternative model 

reduction technique that is applicable in situations in which the number of channels 

per Ca2+ release site is too large for the previously discussed reduction methods, but 

not so large that the stochastic dynamics of Ca2+ release can be neglected. The 

Langevin formulation for coupled intracellular Ca2+ channels results in stochastic 

differential equations that well-approximate the corresponding Markov chain models 

when release sites possess as few as 20 channels, and the agreement improves as the 

number of channels per release site increases. Importantly, the computational time 

required by the Langevin approach does not increase with the size of Ca2+ release 

sites. With this approach we are able to study and report the correlations between 

puff/spark statistics theoretically for the first time. 
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