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a b s t r a c t

We review current understanding of the potential impact of climate change on the Chesapeake Bay.
Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience
significant changes in climate forcings with respect to historical conditions, including increases in CO2

concentrations, sea level, and water temperature of 50–160%, 0.7–1.6 m, and 2–6 �C, respectively. Also
likely are increases in precipitation amount (very likely in the winter and spring), precipitation intensity,
intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level
variability. The greatest uncertainty is associated with changes in annual streamflow, though it is likely that
winter and spring flows will increase. Climate change alone will cause the Bay to function very differently
in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine
wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an
increase in hypoxia; (5) a reduction of eelgrass, the dominant submerged aquatic vegetation in the Bay; and
(6) altered interactions among trophic levels, with subtropical fish and shellfish species ultimately being
favored in the Bay. The magnitude of these changes is sensitive to the CO2 emission trajectory, so that
actions taken now to reduce CO2 emissions will reduce climate impacts on the Bay. Research needs include
improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring,
modeling, and process studies that can capture the likely non-linear responses of the Chesapeake Bay
system to climate variability, climate change, and their interaction with other anthropogenic stressors.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Estuarine ecosystems are vulnerable to human activities that
lead to nutrient pollution (and consequent eutrophication), excess
or insufficient sedimentation, dredging, river water diversion, and
other types of pollution (UNEP/GPA, 2006). Estuaries are also
particularly vulnerable to climate change because they can respond
to at least three different types of forcing: (1) streamflow quality
and quantity; (2) air-water fluxes of CO2, heat, freshwater (i.e.,
evaporation and precipitation) and momentum (i.e., wind stress);
and (3) fluctuations in sea level and other ocean properties. With
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climate change due to human activity well underway (IPCC, 2007),
there is a need to assess the impacts of climate change on estuaries.

The goal of this paper is to review and synthesize the scientific
literature on climate change impacts on the Chesapeake Bay (Fig. 1),
one of the largest and most productive estuaries in the world
(National Oceanic and Atmospheric Administration, 1990). In 2000,
commercial fisheries landings for the Chesapeake Bay exceeded U.S.
$172 million, accounting for 5% of the value of all United States
fisheries (National Marine Fisheries Service, 2001). Although these
figures are significant, they understate the value of the Chesapeake
Bay and its fisheries because they do not account for the ecological
and recreational services the Bay provides to the food web and
fisheries of the North American Atlantic Coast.

In this review, we follow a logical progression from changes in
climatic and hydrological forcing factors (Section 2), to changes in
watershed fluxes of nutrients and sediment (Section 3) and physical
(Section 4) and biogeochemical (Section 5) conditions in the Bay.
Impacts on Bay living resourcesdvascular plants (Section 6) and fish
and shellfish (Section 7)dare then considered before summarizing
our findings and providing general recommendations for further
study (Section 8). Our synthesis builds on a number of reviews dis-
cussing the impact of climate change on ecosystems, coastal areas
and marine resources of the mid-Atlantic region (Boesch, 2008;
Moore et al., 1997; Moss et al., 2002; Najjar et al., 2000; Rogers and
McCarty, 2000; Wood et al., 2002), the United States (Field et al.,
2001; Scavia et al., 2002), and the World (Kennedy et al., 2002).

Statistically rigorous forecast probabilities are not possible at
this time for climate change and its impacts in the Chesapeake Bay
region. By using expert judgment, however, we believe that we can
defensibly assign rough probabilities regarding the direction of
many changes. To maintain consistency throughout this paper, we
use the following terminology (Manning, 2006) to express proba-
bility ranges: virtually certain (>99%), very likely (90–99%), and
likely (66–90%).

2. Climatic and hydrologic processes affecting the bay

2.1. Atmospheric composition

Being a well-mixed gas in the atmosphere, regional and global
projections of atmospheric CO2 are essentially identical. Projections
for global mean atmospheric CO2 concentration over the next 100
years vary widely, mainly because of the uncertainty in future CO2

emissions (Fig. 2), but also because of poorly understood feedbacks
between climate and the carbon cycle. However, it is virtually
certain that CO2 levels will continue to increase throughout the 21st

century. Surface water CO2 changes are expected to closely track
atmospheric CO2 changes, leading to a decrease in pH and
carbonate ion concentration, [CO3

2�], which is expected to harm
CaCO3-secreting organisms, including shellfish. Orr et al. (2005)
showed that [CO3

2�] and pH decreases averaging about 10% and 0.1,
respectively, have already taken place throughout the surface ocean
due to the invasion of anthropogenic CO2. Under a greenhouse gas
scenario similar to the Intergovernmental Panel on Climate
Change’s (IPCC’s) A2 storyline (Fig. 2), these changes increase to
45% and 0.5, respectively, by 2100.

2.2. Water temperature

Fig. 3 shows 20th-century surface water temperature variability
measured at two locations in the Chesapeake Bay. High variability is
superimposed on a long-term warming; the 1990s were about 1 �C
warmer than the 1960s. Fig. 3 also shows an estimate of surface
water temperature averaged over the mainstem Bay based on data
from the Chesapeake Bay Water Quality Monitoring Program,

which sampled the water column at least monthly at several dozen
stations throughout the mainstem Bay since 1984. The correspon-
dence between the pier data and the Bay-average data during the
period of overlap indicates that the longer time series measured at
the piers reflect mean Bay temperature quite well.

Numerous studies have documented a positive correlation
between water temperature in the Bay and regional atmospheric
and oceanic temperature at time scales ranging from monthly to
decadal (e.g., Cronin et al., 2003; Preston, 2004). It is therefore very
likely that the regional temperature projections made from climate
models can be accurately applied to the Bay.

Two recent studies have analyzed the output of global climate
models (GCMs) in the Chesapeake Bay region (Hayhoe et al., 2007;
Najjar et al., 2009). Both studies found the multi-model average to
capture the 20th-century warming trend of the northern portion of
the Chesapeake Bay watershed; but the weak cooling observed in
its southern portion (e.g., Allard and Keim, 2007) is not found in
models (Najjar et al., 2009). The degree of projected warming
differs greatly among models (Fig. 4) and scenario (Fig. 5), but it is
nevertheless very likely that temperature will continue to increase
throughout the 21st century. Model-averaged projections in Najjar
et al. (2009) for the six scenarios shown in Fig. 2 range from 3 to
6 �C warming by 2070–2099 (Fig. 5a). When the best-performing
models are used, the projected warming decreases to 2–5 �C
(Fig. 5c). Similar projections were found by Hayhoe et al. (2007).

Changes in temperature extremes can be as important as annual
mean temperature changes. Meehl et al. (2007) analyzed the
output of nine global climate models for changes in heat waves,
defined as ‘‘the longest period in the year of at least five consecutive
days with maximum temperature at least 5 �C higher than the
climatology of the same calendar day.’’ Under the A1B scenario
(Fig. 2), heat waves along the east coast of North America, including
the Mid-Atlantic, are projected to increase by more than two
standard deviations by the end of the 21st century.
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Fig. 1. Map of the Chesapeake Bay, its watershed, and the states in its watershed.
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2.3. Precipitation

Climate models have similar Bay-region precipitation predictions
under enhanced greenhouse gas levels: (1) multi-model averages of
more annual precipitation (Fig. 5c and d), (2) a wide spread among
models of annual precipitation change (Fig. 4), and (3) high
consensus among the models in winter and spring, when precipi-
tation is projected to increase (Fig. 4). The wide spread in modeled

annual precipitation changes reflects the Mid-Atlantic region’s
position at the boundary between subtropical precipitation
decreases and subpolar precipitation increases; consensus increases
for the winter results as this boundary moves south (Meehl et al.,
2007). The difficulty that climate model have had in capturing long-
term trends in precipitation the Northeast U.S. (Hayhoe et al., 2007;
Najjar et al., 2009)dmainly increasing and particularly in extreme
wet events (Groisman et al., 2001, 2004)dmay also be due to its
location.

An important characteristic of precipitation is its intensity,
particularly for watershed export of sediment and phosphorus
(Section 3.1). Defined as the annual mean precipitation divided by
the number of days with rain, precipitation intensity in the Mid-
Atlantic region is expected to increase under the A1B scenario
(Fig. 2) by one standard deviation by the end of the 21st century
(Meehl et al., 2007). This increase was found to be a result of an
increase in annual precipitation as well as the number of dry days,
a finding consistent with changes in storm frequency and intensity
(Section 2.6).

2.4. Streamflow

Much of the interannual variability in streamflow to the Bay is
driven by precipitation, with a relatively small role for evapo-
transpiration (e.g., Najjar, 1999). The Northeast U.S., including the
Chesapeake Bay watershed, has been characterized as a region of
increasing streamflow, particularly in extreme wet events, consis-
tent with the precipitation trends (Groisman et al., 2001, 2004).

Previous hydrological modeling studies found widely varying
streamflow projections in the Northeast U.S.dfrom�40% toþ30% for
roughly a doubling of atmospheric CO2 (summarized in Najjar et al.,
2009)deven when forced by the same climate models (Neff et al.,
2000; Wolock and McCabe, 1999). The discrepancy in future projec-
tions is most likely due to different modeled evapotranspiration
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Marine Science, School of Marine Science, College of William & Mary, Gloucester Point,
Virginia. Bay average temperature was computed by David Jasinski, Chesapeake Bay
Program Office, using surface temperature measurements from the Chesapeake Bay
Water Quality Monitoring Program. Data were first average by month at each station,
then by year, before taking arithmetic mean of all stations.

R.G. Najjar et al. / Estuarine, Coastal and Shelf Science 86 (2010) 1–20 3



responses (and therefore streamflow responses) to temperature
change. This divergence is probably due to the lack of an observational
record of substantial temperature change with which to constrain
hydrological models. For example, the standard deviation of annual
air temperature over the Chesapeake Bay Watershed is 0.5 �C (Najjar
et al., 2009), which is small compared with the multi-model mean
projected 100-year warming (Fig. 5). Other confounding influences on
streamflow, which are generally not considered in future projections,
include vegetation changes, the direct influence of CO2 on evapo-
transpiration, and land use and land cover change.

The seasonality of streamflow to the Chesapeake Bay is
extremely important because it helps to regulate the timing of the
spring phytoplankton bloom and is also very important in regu-
lating nutrient delivery to the Bay (Section 5.1). Hydrological model

simulations by Hayhoe et al. (2007) in the U.S. Northeast predict
greater wintertime flows (due both to snow melt and more rain
rather than snow) and depressed summer flows (due to increased
evapotranspiration and also less groundwater recharge during the
spring snowmelt period). They also predict an advance of the spring
streamflow peak of nearly 2 weeks. January-May average flow of
the Susquehanna River is a significant predictor of summertime
circulation and biogeochemistry (Hagy, 2002; Hagy et al., 2004).
Historically, there is a strong correlation between January-May flow
and precipitation in the Susquehanna River Basin such that frac-
tional flow increases are equal to fractional precipitation increases
(Najjar, 2009). Given the consensus among models regarding spring
and winter precipitation increases, it is likely that January-May
flow of the Susquehanna River will increase in the future.
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Due to projections of a greater number of precipitation-free days
and greater evapotranspiration (resulting from higher tempera-
tures) in the Bay watershed, drought is expected to increase in the
future. Defining drought as a 10%-or-more deficit of monthly soil
moisture relative to the climatological mean, Hayhoe et al. (2007)
simulated increases in droughts of different durations over the
Northeast U.S. For example, the number of short-term (1–3
months) droughts was projected to increase 24–79% (based on the
B1 & A1FI greenhouse gas scenarios, see Fig. 2) by 2070–2099 with
respect to 1961–1990. Medium (3–6 months) and long (>6 months)
droughts had even larger fractional increases.

2.5. Sea level

Tide gauge measurements reveal a steady increase in sea level
throughout the Chesapeake Bay during the 20th century (Fig. 6).
Global-mean sea surface height increased at a rate of
1.8� 0.3 mm yr�1 over the second half of the 20th century (Church
et al., 2004), substantially smaller than Chesapeake Bay rates,
which range from 2.7 to 4.5 mm yr�1 (average 3.5 mm yr�1, n¼ 6)
(Zervas, 2001), a difference most likely due to long-term subsi-
dence (Davis and Mitrovica, 1996). Rahmstorf (2007) developed
a semi-empirical approach that predicts global sea-level increases
of 700 to 1000 mm by 2100 for a range of scenarios spanning B1 to
A1FI (Fig. 2d). Allowing for errors in the climate projections and in
the semi-empirical model, the projected range increases to 500 to
1400 mm. If we add a Chesapeake Bay local component of
2 mm yr�1 to this, we obtain sea-level increases of approximately
700 to 1600 mm by 2100, a projection we consider to be very likely.

Sea-level variability is very likely to increase in the future. As
noted below (Section 4.1), the tidal range is likely to increase as
a result of increases in mean sea level in the Bay. Further, increases
in extreme wave heights will accompany the likely increases in
intense storms, both tropical and extratropical, discussed next.

2.6. Storms

Tropical cyclones and extratropical winter cyclones have had
dramatic and long-lasting effects on the Chesapeake Bay. For example,
50% of all the sediment deposited in the Northern Chesapeake Bay
between 1900 and the mid-1970s was due to Tropical Storm Agnes
(June 1972) and the extratropical cyclone associated with the Great
Flood of (March) 1936 (Hirschberg and Schubel, 1979).

Trenberth et al. (2007) summarized recent studies on tropical
cyclone trends, noting a significant upward trend globally in their
destructiveness since the 1970s, which is correlated with sea
surface temperature. Christensen et al. (2007) and Meehl et al.
(2007) summarized future projections in tropical cyclones,
concluding that it is likely that peak wind intensities will increase.

Past and future trends in extratropical cyclones are fairly clear at
the hemispheric scale but not at the regional scale. There is good
evidence that mid-latitude winter storm frequency decreased and
intensity increased over the second half of the 20th century (e.g.,
Paciorek et al., 2002). However, an analysis of U.S. East Coast
extratropical winter storms showed no significant trend in
frequency and a marginally significant decline in intensity (Hirsch
et al., 2001). Lambert and Fyfe (2006) showed remarkable consis-
tency among GCMs in the future projections of winter extratropical
cyclone activity. For the A1B scenario (see Fig. 2), the multi-model
means over the Northern Hemisphere are a 7% decrease in
frequency of all extratropical winter cyclones and 19% increase in
intense extratropical winter cyclones, comparing the 2081–2100
period to the 1961–2000 period. In a study focused on North
America, Teng et al. (2007) tentatively suggested that cyclone
frequency in the Northeast U.S. will decrease.

3. Fluxes of nutrients and sediment from the watershed

The fluxes of sediments and nutrients from the landscape have
been profoundly affected by climate variability, and so it is
reasonable to expect that future climate change will alter material
fluxes to the Bay. Most of the nutrient inputs to the Chesapeake Bay
come from non-point sources such as agriculture and atmospheric
deposition. In this section we address non-point source (NPS)
sediment and nutrient pollution, with particular emphasis on
atmospheric deposition because of the large uncertainties involved.
We also consider how climate change may influence the roles of
wetlands and point sources in nutrient loading to the Bay.

3.1. Non-point pollution by sediments and phosphorus

Because most NPS phosphorus pollution is particle bound, the
controls on sources and fluxes of sediments and phosphorus are
similar (e.g., Sharpley et al., 1995). The major control on NPS sedi-
ment and phosphorus pollution is the rate of erosion, which is
influenced by the interaction of land-use patterns and climate (e.g.,
Meade, 1988). Erosion rates from forest ecosystems are quite low
whereas erosion from agricultural and developed lands can be very
high (Swaney et al., 1996). Erosion occurs when water flows over
these surfaces, and that in turn occurs when soils are saturated
with water or during major precipitation or snowmelt events.

Annual sediment loading to the Chesapeake Bay is a non-linear
function of annual streamflow (Fig. 7), indicating an increase in
total suspended sediment concentration as flow increases, which
likely results from enhanced erosion and resuspension of sedi-
ments in the streambed. Even if the mean discharge were to remain
unchanged, erosion could increase if the precipitation intensity
were to increase, a projection that is more certain than annual
streamflow changes (Sections 2.3 and 2.4). To date, there has been
little if any testing of how various climate change scenarios may
affect erosion in the watersheds of the Chesapeake Bay.

NPS phosphorus pollution is a function of the amount of phos-
phorus associated with eroded soils in addition to the rate of
erosion. Agricultural soils are elevated in phosphorus compared to
forest soils because of the addition of inorganic fertilizers and
manure (e.g., Sharpley et al., 1995). Not only can erosion of these P-
rich agricultural soils be a major source of phosphorus pollution,
but the problem remains as agricultural lands are converted into
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suburban landscapes; phosphorus losses can be particularly great
from erosion at construction sites when the soils are former agri-
cultural soils, and even storm water retention ponds and wetlands
can be major sources of NPS phosphorus pollution if the systems
are constructed with P-rich soils (Davis, 2007).

3.2. Non-point pollution by nitrogen

Nitrogen NPS pollution is controlled by an interaction of nitrogen
inputs to the landscape and climate. For many large watersheds in
the temperate zone, including the major tributary rivers of the
Chesapeake Bay, the average export flux of nitrogen from a water-
shed is 20–25% of the net anthropogenic nitrogen inputs (NANI) to
the watershed, where NANI is defined as the use of synthetic
nitrogen fertilizer, nitrogen fixation associated with agro-ecosys-
tems, atmospheric deposition of oxidized forms of nitrogen (NOy),
and the net input of nitrogen in foods and feeds for humans and for
animal agriculture (e.g., Boyer and Howarth, 2008). However, the
percentage of NANI that is exported out of a watershed in rivers is
related to climate. For example, Boynton and Kemp (2000) showed
that years with high runoff resulted in enhanced nutrient export
from the Chesapeake Watershed. Castro et al. (2003) modeled
nitrogen fluxes to the major estuaries of the United States, including
the Chesapeake Bay, as a function of NANI, land use, and climate.
Their models suggested that land use is a very important factor in
determining export of NANI, with greater export from urban and
suburban landscapes and much lower export from forests, and that
land use and climate may interact strongly.

Howarth et al. (2006) compared the average percentage export of
NANI across 16 major river basins in the northeastern U.S. (Fig. 8). In
the watersheds where precipitation and river discharge is greater,
the percentage of NANI that flows downriver to coastal ecosystems is
up to 40–45%, while in drier regions only 10–20% is exported over
long-term periods. Howarth et al. (2006) attributed this to sinks of
nitrogen in the landscape, with less denitrification in the wetter
watersheds due to lower water residence times in wetlands and low-
order (i.e., headwater) streams. Given the climate change predictions
for increased precipitation presented by Najjar et al. (2000), and
assuming no change in NANI or land use, Howarth et al. (2006)
predicted an increase in nitrogen flux down the Susquehanna River
of 17% by 2030 and 65% by 2095 (associated with precipitation

increases of 4% and 15%, respectively). More updated precipitation
projections for the Susquehanna River Basin (e.g., Fig. 4; Hayhoe
et al., 2007; Najjar et al., 2009) would yield similar results.

Schaefer and Alber (2007) expanded on the analysis of Howarth
et al. (2006) by including data from the major watersheds in the
southeastern U.S. This larger data set showed a significant influence
of temperature, with low percentage export of NANI at high
temperatures and a greater percentage export of NANI at low
temperatures. Schaefer and Alber (2007) attributed the temperature
effect on export to act through denitrification, with warmth favoring
higher rates. The significant correlation with temperature observed
by Schaefer and Alber (2007) is driven by the large temperature
difference between the northeastern and southeastern regions.
Other controlling factors such as soil types may be at play across this
larger data set. If temperature is the major factor controlling the
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percentage export of NANI, as Schaefer and Alber (2007) conclude,
a warming of 3 �C would decrease the nitrogen flux down the Sus-
quehanna by about 20%, a trend opposite that predicted by Howarth
et al. (2006).

Process-based simulation models of biogeochemical cycling in
watersheds offer another approach for assessing the impact of
climate change on riverine N export to coastal waters. However, the
current level of uncertainty about the importance of underlying
mechanisms that relate nitrogen flux to climatic controls inherently
limits the usefulness of such models. Another weakness of process-
based models is that they treat organic forms of nitrogen poorly.
Though much of the flux of nitrogen in rivers occurs as inorganic
nitrogen, increased atmospheric deposition can increase the export
of organic nitrogen from forests (Brookshire et al., 2007).

The only process-model-based climate change study of N export
we are aware of in the watersheds of the Chesapeake Bay is that of
Johnson and Kittle (2007), who simulated the response of annual
nitrogen loading in the Western Branch of the Patuxent River,
Maryland to changes in annual mean air temperature and precipi-
tation (Fig. 9). They find that N export decreases by about 3% for
a temperature increase of 1 �C and increases by 5% for a precipita-
tion increase of 5% (Fig. 9), sensitivities that are much smaller than
those found by Howarth et al. (2006) and Schaefer and Alber (2007).

3.3. Atmospheric deposition of nitrogen

Atmospheric N input to the Bay occurs both directly onto the
surface of the Bay and onto the landscape with subsequent export
to the Bay, and includes both wet deposition and deposition as dry
gases and particles. Unfortunately, the dry deposition of many
abundant nitrogen pollutant gases (such as NO, NO2, HONO, and
NH3) is not measured in any of the national deposition monitoring
programs (NADP, CASTnet, or AIRMon). Total N deposition is
therefore poorly known, with estimates ranging from 14% to 64% of
the total nitrogen load to the Chesapeake Bay (Castro et al., 2003;
Howarth, 2006).

Climate change may alter both the pattern of nitrogen deposition
(due to changes in reaction kinetics, precipitation, and wind
patterns) and the retention of nitrogen once it is deposited (Section
3.2). Climate change could also influence this partitioning through
impacts on growth and productivity of forests, which have been

shown to strongly influence the retention of deposited nitrogen
(Aber et al., 1998). The impact of these changes may be mediated by
forest disturbances, such as gypsy moth outbreaks (Eshleman et al.,
2000), which may also be sensitive to climatic variation and change
(Gray, 2004).

Climate change also will eventually lead to major changes in the
species composition of forests, and these changes are also likely to
influence nutrient export. Modeling studies have suggested that
habitat for some tree species within the Chesapeake Bay watershed
will increase, such as red maple, sweetgum, and loblolly pine, while
other currently plentiful species are expected to decline, such as
black cherry, American beech, and other oaks (Iverson et al., 2005).
Tree species composition, and the resulting litter quality, are
important factors in controlling variation in N cycling in temperate
forest soils (e.g., Lovett et al., 2002). Greater abundances of sugar
maple and striped maple, for example, were associated with
greater net nitrate production in soils relative to coniferous trees
(Venterea et al., 2003), making stands dominated by maple species
more susceptible to losses of nitrate to surface waters.

3.4. Freshwater wetlands

Freshwater wetlands are the interface between human activities
in uplands and the streams and rivers of the Chesapeake Bay
watershed, and thus have the potential to regulate nutrient inputs
to the Bay. Of particular importance for nutrient abatement in the
Chesapeake Bay Watershed are riparian ecosystems along low-
order streams (Lowrance et al., 1997). Most wetland processes are
dependent on catchment-level hydrology (Gitay et al., 2001) and
are therefore susceptible to climate change. Potential impacts range
from extirpation to enhancement, and include alterations in
community structure and changes in ecological function (Burkett
and Kusler, 2000). There is evidence that wetlands that depend
primarily on precipitation for their water supply may be more
vulnerable to climate change than those that depend on regional
groundwater systems (Winter, 2000). The number and complexity
of factors that influence wetland occurrence and type make it
difficult to predict the fate of wetlands directly from knowledge of
temperature and precipitation changes alone. Needed are predic-
tions of change in hydrology that will be induced by both climate
and land cover change. For example, the hydrologic impacts from
changes in rainfall patterns will depend on the amount and location
of impervious surfaces in the watershed.

Climate-induced impacts to wetlands will be layered onto an
already compromised state of the resource. An assessment of
wetland condition in the Upper Juniata River Watershed, PA (War-
drop et al., 2007b) reported that over 68% of the total wetland area
was in medium or low condition, correlated with increasing agri-
culture and urbanization in the watershed. Two regional assess-
ments of wetland condition indicate that the ability of wetlands in
both the Upper Juniata and Nanticoke River watersheds to perform
valuable functions, such as removal of inorganic nitrogen and
retention of inorganic particulates, is already significantly reduced
(Wardrop et al., 2007a), with the majority of wetlands functioning
below reference standard levels. These impacts are expressed
primarily by modification of supporting hydrology (Brooks et al.,
2004). Climate-induced hydrologic regime changes may simply
stress these systems further, resulting in their decreased capacity to
serve important ecotone functions.

3.5. Point source pollution

Growing human populations are very likely to interact with
changes in climate to alter discharge from point sources of pollution,
such as water treatment plants, industrial facilities, and urban storm
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water systems. Theoretical relationships and studies from other
regions suggest the potential for significant impacts, but little work
has been done in the Chesapeake Bay Watershed. A screening
assessment of the potential impact of climate change on combined
sewer overflow (CSO) in the Great Lakes and New England found that
CSO systems are designed to function under historical precipitation
regimes (U.S. Environmental Protection Agency, 2008b). Design
capacity of CSO systems was found to be linearly proportional to
anticipated precipitation intensity; as a consequence, significant
increases in precipitation intensity (Section 2.3) will likely under-
mine design assumptions and increase the frequency of overflow
events. A similar analysis for publicly-owned treatment works
(POTWs) found that the operations of POTWs are sensitive to both
the volume of incoming effluent and the hydrologic condition of
receiving waters (U.S. Environmental Protection Agency, 2008c).
Climate change could therefore have a significant effect on both
National Pollutant Discharge Elimination System (NPDES) permit-
ting and POTW financing.

4. Bay physical response

4.1. Circulation

There are no direct measurements of estuarine circulation in the
Chesapeake Bay that document the influence of climate variability.
Rather, measurements of temperature and salinity have been used
to quantify stratification and infer circulation patterns and rates of
mixing. Hagy (2002) analyzed mainstem Bay salinity and temper-
ature data to show that the April–September average stratification
in the mid-Bay is strongly and positively correlated to the January–
May average Susquehanna River flow. Given the likely increase in
this flow in the future (Section 2.4), it appears that summer-time
stratification increases are likely as well. It is unlikely that warming
will enhance this stratification significantly because the time scale
of climate change is expected to be long enough that the Bay as
a whole will warm. Hagy’s (2002) diagnostic box modeling of the
circulation also showed that the summer-averaged landward
advection below the pycnocline into the middle Bay increases with
the January–May average Susquehanna River flow.

The only numerical modeling study to consider the impact of
climate change on Chesapeake Bay circulation is the recent study by
Zhong et al. (2008). This study suggests that the tidal range near
Baltimore, Maryland, which is in the upper portion of the Ches-
apeake Bay, will increase by 15–20% if sea level increases by 1 m.
Zhong et al. (2008) argued that this amplitude increase is caused by
friction reduction and the Bay being closer to its resonant period.
Increases in tidal range are very likely to be accompanied by
increases in mixing and shoreline inundation.

4.2. Salinity

Salinity variations throughout the Bay have been shown to be
strongly tied to streamflow (e.g., Schubel and Pritchard, 1986).
Gibson and Najjar (2000) estimated that a change in annual Sus-
quehanna River flow of 10% would result in a change in annual mean
salinity (of opposite sign) of about 1, 4, and 7% in the lower, middle,
and upper mainstem Bay, respectively. Maximum change in salt
concentration is in the central Bay, approximately �0.6 for a 10%
flow increase. With projected annual flow changes by the end of the
21st century of �40 to þ30% (Section 2.4), annual mean salinity in
the central Bay could change by as much as 2 in either direction.

Salinity variability is very likely to be affected by climate change.
Given the projected increases in January–May flow of the Susque-
hanna River (Section 2.4), we can expect a decrease in mean salinity
during the winter and spring; summer and fall projections are

much more uncertain. Saltwater intrusion events with durations
greater than 1 month are likely to increase because of the projected
increases in drought frequency (Section 2.4).

Only one study has attempted to quantify salinity variations
due to sea-level rise in the Chesapeake Bay. After accounting for
streamflow variations, Hilton et al. (2008) found significant trends
in about half of the volume of the mainstem Chesapeake Bay
between 1949 and 2006, during which average sea level in the Bay
rose by about 0.2 m. The mean salinity change in these regions was
about 0.8, at least half of which could be explained by sea-level
rise, according to hydrodynamic model simulations. Given
a salinity sensitivity to sea level of about 0.4 O 0.2 m¼ 2 m�1,
a sea-level rise of 0.7 to 1.6 m by 2100 (Section 2.5) would increase
salinity by 1.4 to 3.2.

4.3. Suspended sediment

Excess sediment contributes substantially to the Bay’s poor
water quality (Langland et al., 2003), the majority of this sediment is
non-volatile (Cerco et al., 2004), and this non-volatile component is
mainly delivered by rivers (Smith et al., 2003). In 2003, The Ches-
apeake Bay Program (CBP), proposed to reduce land-based sedi-
ment loading 18% by 2010 in order to achieve the water clarity
needed for underwater grasses to survive (Chesapeake Bay
Program, 2003). A least squares fit to the data in Fig. 7 yields
a sediment load of 87 kg s�1 for the mean streamflow of 1890 m3 s�1

during 1990–2004. Using projected flow changes by the end of the
21st century of�40 toþ30% (Section 2.4), we estimate that the mean
sediment load could increase to 200 kg s�1, more than a doubling, or
decrease to 28 kg s�1, less than a third of the current load. Thus
climate change has the potential to either undo efforts to meet
water clarity goals or make it much easier to reach them. As noted
above, more intense precipitation in fewer events will probably
increase sediment loading, but the sensitivity is unknown.

In addition to natural and anthropogenic processes in watersheds
that influence suspended sediment concentrations in rivers, estua-
rine suspended sediment is controlled by a variety of processes: the
amount of streamflow entering the estuary, shoreline erosion, in situ
biological production and decomposition, the re-suspension of
particulate matter through currents (driven by winds, tides and
buoyancy forces), the redistribution by advection and mixing within
the estuary, and the rate of sedimentation. Many of these controls are
also sensitive to climate, but quantitative relationships that link
climate change to changes in sediment fluxes are lacking.

5. Estuarine biogeochemistry

5.1. Nutrient cycling and plankton productivity

While dominated by diatoms throughout the year (Adolf et al.,
2006), phytoplankton production and species composition in the
Chesapeake Bay generally follow predictable seasonal patterns
dictated primarily by streamflow, light, and temperature (Malone
et al., 1996; Marshall and Nesius, 1996). Meteorology, through river
discharge, governs spring bloom timing and extent (Harding, 1994).
During the relatively low-light, cold, and turbulent winter/early-
spring period, centric diatoms dominate the flora (Sellner, 1987). As
nutrients delivered by the spring freshet are exhausted from the
surface waters, a substantial fraction of the spring diatom bloom
sinks (mostly as intact cells) through the pycnocline. Thereafter,
surface summer productivity is supported by nutrient supply from
below the pycnocline via wind-induced destratification and pyc-
nocline tilting (Malone, 1992). During the warm stable summer
months, the algal community shifts to a mixture of picoplankton,
small centric diatoms, and flagellates (Malone et al., 1986).
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Aperiodic dinoflagellate blooms are also frequent and some taxa,
such as Pfiesteria spp. and Karlodinium veneficum (Place et al., 2008),
may exert toxic or other harmful effects. At this time, primary
productivity (most of which is due to rapid nutrient recycling),
microzooplankton grazing, zooplankton production, and fish
production (Section 7.3) are high.

Climate change has the potential to alter Bay phytoplankton
dynamics through changes in precipitation and the intensity and
frequency of storms. The projected winter–spring precipitation
increases for the Bay watershed (Fig. 4, Section 2.3) will likely
increase nutrient loading during these seasons, leading to higher
planktonic production. Higher temperatures will likely result in an
earlier spring bloom, which could cause trophic uncoupling or
change the spatial distributions of particular taxa (e.g., Edwards
and Richardson, 2004). The summer period, depicted as more
drought-likely (Section 2.4), could be typified by sporadic, high
intensity storms and discharge events. If storms are overland,
resulting discharge would lead to increases in short-term stratifi-
cation and increased preponderance of algal blooms (Mulholland
et al., 2009), including some of the problematic taxa identified
above. Should the intense storms pass over the Bay and tributaries,
mixing of the water column would very likely occur, probably with
increased discharge; this would yield optimal conditions for diatom
growth, similar to the fall bloom in the mesohaline Bay (Sellner,
1987). Climate change might therefore result in an annual phyto-
plankton cycle with a larger-than-average spring diatom bloom,
followed by small cells during the summer drought, interspersed
with aperiodic dinoflagellate blooms or diatom maxima after
storms pass. Species diversity already appears to have increased
over the last 20 years (Marshall et al., 2004) as has chlorophyll
a (Kemp et al., 2005), effects largely attributed to eutrophication.
The continued interactive effects of climate change and eutrophi-
cation on these already documented changes are likely to be
profound in the Chesapeake Bay system.

5.2. CO2 and temperature effects on plankton

CO2 is the preferred form of carbon for the principle carbon-
fixing enzyme, ribulose-1,5-bisphosphate carboxylase–oxygenase
(Rubisco); however, most of the dissolved inorganic carbon in
seawater is bicarbonate ion (HCO3

�). As a consequence, most cells
have various carbon concentrating mechanisms (CCMs) in order to
concentrate CO2 near active Rubisco sites. Species without CCMs
are very likely to benefit directly from increases in CO2 (Section 2.1,
Fig. 2b). Further, there are different forms of Rubisco with different
affinities for CO2. Some of the bloom-forming microalgae are
dinoflagellates that appear to have a form of Rubisco that has a low
affinity for CO2 compared with the Rubisco found in most other
microalgae (e.g., Ratti et al., 2007). CO2 increases might alleviate
carbon limitation of Rubisco and allow higher growth rates of these
dinoflagellates, thereby increasing the number of harmful algal
blooms throughout the system. While high CO2 might result in
increased C productivity, enhanced carbon fixation does not result
in enhanced nutrient drawdown or increases in the C content of
cells (Riebesell et al., 2007). Rather, enhanced carbon fixation, at
least in some cases, results in release of dissolved organic carbon
(DOC) that could fuel microbial heterotrophs and change net
system metabolism (Riebesell et al., 2007).

CO2 has been shown to stimulate diatom growth relative to that of
prymnesiophytes in incubations of natural communities (Tortell et al.,
2002), and it has stimulated dinoflagellate (Rost et al., 2006), cocco-
lithophorid (Riebesell et al., 2007), and cyanobacterial growth in
cultures. Synechococcus growth as well as growth of the raphidophyte
Heterosigma akashiwo were stimulated under both high CO2 and high
temperature scenarios (Fu et al., 2008a,b), whereas the common late

spring bloom-former Prorocentrum. minimum was less affected (Fu
et al., 2008b).

Temperature increases are very likely to affect the metabolic
status of the Chesapeake Bay. In a synthesis of microbial rate
measurements in the Chesapeake Bay, Lomas et al. (2002) found
that planktonic respiration increases with temperature more
rapidly than photosynthesis. Their results suggest that the Bay
might become net heterotrophic on an annual time scale, reversing
its current net autotrophic status (Smith and Kemp, 1995). The
combined impact of excess DOC release by phytoplankton due to
carbon overproduction and increasing temperature are very likely
to have significant effects on the microbial community.

5.3. Harmful algal blooms and pathogens

Peperzak (2003) conducted several experiments with brackish
bloom-forming and non-bloom forming taxa under simulated
stratified conditions and a 4 �C temperature increase. Skeletonema
costatum, a common winter–spring taxon in the Bay, was not per-
turbed by the shift to stratified conditions. However, P. minimum,
the spring co-dominant in the Chesapeake (and occasional toxin
producer), and two raphidophytes (Heterosigma spp.) found in mid-
Atlantic coastal bays, were stimulated by the increased stratifica-
tion and temperature.

Shifts in algal taxonomic composition from flow-induced
stratification pose potential problems both in terms of altered food
web structure and toxicity to trophic groups. Several taxa can
reduce zooplankton grazing and fecundity due to poor food quality
(e.g., Harvey et al., 1989) or the production of toxins or grazing-
deterrent compounds (e.g., Adolf et al., 2007). Very high cell
abundances can also reduce grazing pressure from co-occurring
zooplankton populations (e.g., Sellner and Olson, 1985). Pelagic
bacterial production may increase as well due to surface-mixed-
layer lysis of dinoflagellates (Sellner et al., 1992), favoring hetero-
trophic flagellates rather than copepods. The net result is an
increase in the importance of the microbial food web rather than
the classical food chain that supports fish production.

Additional impacts of an altered climate, specifically prolonged
droughts (Hayhoe et al., 2007), will result in increased oceanic
intrusion into the Bay, introducing coastal populations of phyto-
plankton, including several harmful taxa. This occurred during the
spring and summer of 2002 following drought conditions in 1999–
2002: coastal populations of Dinophysis acuminata were delivered to
the lower Potomac River estuary (Marshall et al., 2004), resulting in
fears for okadaic acid intoxication and diarhettic shellfish poisoning
for the oyster-consuming public. During summer 2007, prolonged
drought followed by storm events that resulted in overland run-off is
thought to have triggered an extensive bloom of Cochlodinium pol-
ykrikoides in the lower Chesapeake Bay (Mulholland et al., 2009).
Alexandrium monolitum, common in the Gulf of Mexico but previ-
ously undetected in the Chesapeake Bay watershed, appeared to
enter the Chesapeake Bay and co-occurred with C. polykrikoides
during the latter half of this bloom (Marshall and Egerton, 2009).

The leafy chlorophyte Enteromorpha, a macroalga, is stimulated
by elevated water temperatures (Lotze and Worm, 2002) and along
with a similar taxon, Ulva, is characteristic of eutrophic estuaries
including the Chesapeake and its tributaries. It is conceivable that
warmer winters and springs might favor earlier growth of these two
macroalgae and contribute to fouling of shorelines and submerged
vegetation, clogging of commercial fish nets, and hypoxic conditions
in sheltered bays. Further, the decay of these blooms has been
associated with the onset of other harmful algal blooms in other
areas, such as Aureococcus anophagefferens (Kana et al., 2004).

Harmful bacteria will also respond to temperature changes. Some
true heterotrophic bacteria, like the Vibrio species, are associated
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with serious illnesses, such as gangrene and sepsis. Pathogenic
species, such as Vibrio vulnificus and Vibrio cholerae, have been
identified in Chesapeake Bay waters (summarized in Rose et al.,
2000). Vibrio cholerae and Vibrio. parahaemolyticus appear to be
associated with elevated sea surface temperatures (Colwell, 1996;
McLaughlin et al., 2005). Further, growth of a free-living strain of this
bacterium has been shown to be stimulated by a coastal dinofla-
gellate bloom off of California (Mouriño-Pérez et al., 2003), reaching
levels three orders of magnitude higher than the known minimum
infectious dose. Therefore, climate-induced increases in harmful
algal blooms may increase threats to human health either directly or
by fueling pathogen growth with bloom-derived organic matter.

Shellfish ingestion and concentration of pathogenic bacteria can
also lead to outbreaks of gastroenteritis, and with V. vulnificus,
death in some human consumers (Rose et al., 2000 and references
therein). Increasing temperatures in the Chesapeake Bay would
favor these bacteria (as noted above), increasing the threat of this
disease in the basin.

5.4. Dissolved oxygen

Dissolved oxygen levels have become a central indicator of the
overall health of the Chesapeake Bay. Hypoxia is caused by the
combination of the sinking of the spring phytoplankton bloom,
which fuels bottom respiration, and density stratification, which
inhibits mixing that would otherwise replenish the deeper waters
with oxygen (Malone, 1992). The significant trend of increasing
intensity, duration, and extent of hypoxic conditions since 1950 is
related to increased nutrient loading from human activities in the
watershed (Hagy et al., 2004).

Climate influences the spatial and temporal distribution of
hypoxic conditions. Hagy et al. (2004) found January–May average
flow of the Susquehanna River to be a good predictor of the
subsequent summertime volumes of low-oxygen water. Their
functional fits to the data suggest that a 10% flow increase will
increase the volume of anoxic water (<0.2 mg l�1) by 10%, severely
hypoxic water (<1.0 mg l�1) by 6%, and mildly hypoxic water
(<2.0 mg l�1) by 3%. Thus, if January–May Susquehanna River flow
increases throughout the 21st century, as expected (Section 2.4),
then it is very likely that summertime oxygen levels will decline.

Lower O2 solubility associated with warming would contribute to
further reductions in bottom water O2 concentrations. The sensitivity
of the oxygen saturation concentration to temperature at the
temperature of sub-pycnocline waters in July (w20 �C) is �0.16
mg l�1 �C�1. The difference in oxygen concentration between
severely hypoxic and anoxic waters as defined above is 0.8 mg l�1.
Thus a warming of even 5 �C could make waters that are currently
severely hypoxic turn anoxic solely due to solubility effects.

Higher temperatures would also tend to accelerate rates of
nutrient recycling, further stimulating phytoplankton production
and potentially deposition (e.g., Kemp et al., 2005). This, coupled
with the CO2-stimulated phytoplankton production and the sug-
gested shift towards greater heterotrophy with warming (Section
5.2), would tend to drive oxygen concentrations even lower.
Simulation modeling studies for the northern Gulf of Mexico
support these hypothesized responses of bottom water hypoxia to
climate change scenarios (Justić et al., 2003).

6. Vascular plants

6.1. Submerged aquatic vegetation

Availability of light is a primary factor regulating submerged
aquatic vegetation (SAV) abundance and spatial distribution in the
Chesapeake Bay (Kemp et al., 2004, 2005). A major decline in the

Bay’s SAV abundance, which began in the mid-1960s (Orth and
Moore, 1983), was very likely due to widespread decreases in light
availability that resulted from increases in suspended sediments and
nutrient-stimulated growth of planktonic and epiphytic algae
throughout the estuary (e.g., Moore and Wetzel, 2000). The light
sensitivity of SAV may be particularly problematic in the context of
climate change given the possibility of significant increases in sedi-
ment loading resulting from greater and more episodic precipitation
(Sections 2.3 and 3.1).

SAV species exhibit widely varying sensitivity to temperature,
with optimal growth ranges of 22–25 �C for eelgrass (Bintz et al.,
2003) and 30–35 �C for various freshwater plants growing in
brackish habitats (Santamarı́a and van Vierssen, 1997). It is antici-
pated that higher temperatures will favor some species over others
(Ehlers et al., 2008). However, a massive summer 2005 die-off in
Chesapeake Bay eelgrass, which was triggered by an extended hot
period with daily peak water temperatures exceeding 33–35 �C,
underscores the fact that the Bay is near the southern geographic
limit for this species (Moore and Jarvis, 2008; Orth et al., review).
With heat waves projected to increase in the Mid-Atlantic region
(Section 2.2), we can expect such die-offs to become more frequent
in the future. It appears that high temperatures and low water
column mixing may contribute to internal oxygen deficiency,
degradation of meristematic tissue, and mortality for eelgrass and
other SAV (Greve et al., 2003). Higher temperatures may also favor
growth of epiphytic algae to further reduce light available to SAV
(Bintz et al., 2003; Short and Neckles, 1999).

Inter-annual variations in SAV distribution and abundance in the
Choptank River estuary and other mesohaline Bay areas appear to
correspond to fluctuations in freshwater flow. In general, decreased
river flow results in reduced nutrient and sediment loading, clearer
estuarine water, and higher plant growth (Stevenson et al.,1993). For
example, a resurgence of the euryhaline widgeon grass (Ruppia
maritima) occurred in the lower Choptank estuary after three
successive drought periods (2–4 years each) during the 1980s and
early 1990s (Kemp et al., 2005; Orth et al., review). This pioneer SAV
species, which is sensitive to variations in light availability and
reproduces annually from an established seed bank, has expanded in
this region to form generally stable monospecific stands (Orth et al.,
review). These R. maritima beds, however, exhibit year-to-year fluc-
tuations in abundance that correlate well with spring river flow and
summer water clarity (Fig. 10). In previous decades, this region was
also populated by a more diverse community of SAV comprised
mostly of freshwater species that have varying tolerance for brackish
conditions (e.g., Moore et al., 2000). For many of these plant species,
increased salinity associated with reductions in river flow can
produce osmotic stress that precludes their growth and survival,
despite improved water clarity (Stevenson et al.,1993). Thus, climate-
induced variations in freshwater flow would tend to affect SAV
communities in middle regions of the Bay and its tributaries in
complex ways, with abundance of salt-tolerant species expanding
but species diversity declining under reduced flow conditions.

In addition to temperature, salinity, and light, SAV is sensitive to
pH and CO2 concentration. Although eelgrass was shown to
increase productivity under elevated CO2 levels, with a 25%
increase in biomass under a doubling of CO2, there was no response
under light-limiting conditions (Palacios and Zimmerman, 2007).
Earlier studies showed that responses vary substantially with
duration of exposure to CO2 levels (e.g., Thom, 1996). The more
recent results, however, suggest that CO2 increases could aid SAV
restoration efforts, but only if measures are also taken to maintain
sufficient water clarity. In addition, SAV species vary widely in their
affinities for both carbon dioxide and bicarbonate (e.g., Beer and
Koch, 1996), suggesting that higher CO2 levels may contribute to
alteration in species composition.
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6.2. Estuarine wetlands

Inundation by rising sea levels is one of the most direct threats
faced by coastal and estuarine wetlands in the Chesapeake Bay
region. The amount of land inundated by a given sea-level rise is
a complex function of elevation, shoreline geology, land use, land
cover, wetland ecology, and the rate of sea-level rise. Two studies
have estimated inundation for the Chesapeake Bay shoreline, and
both have relied on elevation alone. Titus and Richman (2001), using
Digital Elevation Models (DEMs) and shoreline data, estimated that
about 2500 km2 of land is below the 1.5-m elevation contour in
Virginia and Maryland (essentially the shores of Chesapeake Bay).
Wu et al. (2009) used DEMs with finer (30-m) horizontal resolution
to estimate that 1700 km2 of land in Virginia and Maryland lies
below the 0.7-m contour, about half of which is wetlands.

The current forecasts for the rates of sea-level rise in the Ches-
apeake Bay are significantly greater than rates experienced for the
last several centuries (Section 2.5). At present it is not clear how
much of the existing wetland complement in the Bay region will be
able to either accrete vertically or migrate horizontally fast enough
to keep pace with the accelerated rate of change (e.g., Kearney et al.,
1994). Extensive wetlands along the mainstem of the Bay, such as
the Blackwater Wildlife Refuge in Maryland and the Guinea
Marshes in Virginia, are already showing decreased areas of vege-
tative cover as a result of inundation and erosion. Extensive oxbow

wetlands at the headwaters of the Bay’s tidal tributaries are also
undergoing changes in vegetative community composition that
seem related to increased inundation frequency, a sign that the
wetland is not keeping pace with rising sea level (Perry and
Hershner, 1999).

Wetlands will also respond to elevated levels of atmospheric CO2,
increasing temperatures, and changing salinity patterns. A Scirpus
olneyi wetland sedge community of the Rhode River (a subestuary of
the Chesapeake Bay) that was exposed to an approximate doubling
of atmospheric CO2 over a 17-year period revealed enhanced shoot
density, shoot biomass, and rates of net CO2 uptake compared to
ambient exposures (Rasse et al., 2005). In contrast, Spartina patens
showed no significant response to CO2 (Erickson et al., 2007). Rasse
et al. (2005) also clearly documented salinity stress on S. olneyi, with
significant anti-correlations at the interannual time scale between
salinity and the three growth measures referred to above. Elevated
CO2-stimulation of plant growth has important implications for
brackish marshes, many of which are dominated by C3 plant species
such as S. olneyi. Indeed, recent results from a Rhode River marsh
(Langley et al., 2009) show that elevated CO2 increases root biomass,
which in turn raises elevation of the tidal marsh soil. The increase in
elevation was 3.9 mm yr�1, similar to the current average rate of
relative sea-level rise in the Chesapeake Bay (Section 2.5). Thus,
elevated CO2 may stimulate marsh accretion and ameliorate marsh
losses projected from accelerated sea-level rise. The combination of
temperature increases and elevated CO2 concentrations may
produce different effects on marshes than elevated CO2 alone, but
we presently know little about these interactions.

The impact of rising sea level is compounded by on-going land-
use and land-cover change and associated shoreline hardening.
Increased shoreline hardening has limited the ability of marshes to
migrate in response to sea-level rise. Land-use projections for some
portions of the Chesapeake Bay shoreline exist (e.g., Dingerson,
2005), but we know of none that simultaneously link to sea-level rise
and shoreline condition. However, it seems likely that the threat of
increased erosion and damage to property from higher sea level,
more intense storms, and a greater tidal range (Section 2.5) will be an
increase in shoreline hardening and stabilization structures. These
structures can reduce the sandy sediment source that is critical to
healthy shoreline habitat (National Research Council, 2007).

Inundation of coastal wetlands by rising sea levels may stress
the systems in ways that enhance the potential for invasion of less
desirable species, such as Phragmites australis (one of six species
identified as causing, or having the potential to cause, significant
degradation of the aquatic ecosystem of the Bay) (U.S. Environ-
mental Protection Agency, 2008a). Reported impacts include
significant loss of plant diversity (e.g., Meyerson et al., 2002),
changes in marsh hydrology with the development of Phragmites
stands (see Marks et al., 1994), and a reduction in insect, avian, and
other animal assemblages (Chambers et al., 1999). Shifts within
native plant communities are also probable, although difficult to
predict with current experimental data (Dukes, 2007). Additionally,
for many marsh systems to persist, a continued input of suspended
sediment from inflowing streams and rivers is required to allow for
soil accretion. Climate change will alter the timing and overall
delivery of sediment from upstream sources, but these conse-
quences remain uncertain (Section 3.1).

7. Fish and shellfish

Species in the Chesapeake Bay food web vary in the relative
importance and specific optimal values of temperature, photope-
riod, salinity, and prey abundances as controls or cues for growth,
reproduction, and migration. As a result, climate change that affects
these variables, or that decouples the current relationships among
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them, may differentially affect species within the food web. The
likely results will include direct effects on the timing and magni-
tude of abundances of individual species as well as changes in the
match between seasonal abundances of some predators and prey.

7.1. Temperature impacts on fish and shellfish

As warming progresses, it should differentially affect the warm-
and cold-temperate fish and shellfish that utilize the Bay either
year round or as seasonal feeding, nursery, and wintering habitat.
Species with more southerly distributions and temperature toler-
ances will likely benefit (Austin, 2002; Wood, 2000), but some cold-
temperate species near the upper limits of thermal tolerances may
reduce use of the Chesapeake Bay and have lower production
within Bay waters. Thermal tolerances of embryos and early larval
stages may be particularly important in determining shifts in
species distributions (Rombough, 1997). Developing embryos of
fishes are generally less able to acclimate and compensate for
changes in temperature and tend to have narrower temperature
tolerances than other life stages.

Northward range expansions and extended seasonal use of Bay
waters by warm-water species may enhance some fisheries. Shrimps
of the genus Farfantepenaeus, which now support important fish-
eries in North Carolina (Hettler, 1992), could increase and support
viable fisheries in the Chesapeake Bay and elsewhere in the mid-
Atlantic Bight. Species with southerly distributions that already
occur in Chesapeake Bay and Virginia coastal waters and would be
expected to increase in abundance or seasonal duration within Bay
waters include southern flounder Paralichthys lethostigma, cobia
Rachycentron canadam, spadefish Chaetodipterus faber, Spanish
mackerel Scomberomorus maculatus, mullet Mugil curema, tarpon
Megalops atlanticus, and pinfish Lagodon rhomboides (Murdy et al.,
1997), as well as sub-tropical drums (Sciaenidae) such as black drum
Pogonias cromis, red drum Sciaenops ocellatus, weakfish Cynoscion
regalis, spotted sea trout C. nebulosus, spot Leiostomus xanthurus, and
Northern Menticirrhus saxatilis and Southern kingfish M. americanus.

Higher water temperatures during winter, in particular, may have
positive effects on some species. Overwintering mortality can be an
important factor contributing to year-class strength (Conover and
Present, 1990). Higher winter temperatures result in higher juvenile
overwintering survival and stronger year classes of Atlantic croaker
Micropogonias undulatus in the mid-Atlantic (Hare and Able, 2007),
and increase overwintering survival of both juvenile (Bauer, 2006)
and adult (Rome et al., 2005) blue crab in the Chesapeake Bay. Milder
winters should also lead to longer growth seasons for species resi-
dent to the Chesapeake Bay such as oysters, blue crab, eels, white
perch Morone americana, and the resident portion of the striped bass
Morone saxatilis population (Hurst and Conover, 1998; Johnson and
Evans, 1996). Longer growth seasons could lead to increased
productivity and yield of commercial fisheries by increasing annual
growth rates and increasing the size or decreasing the age of
reproduction (Puckett et al., 2008). This assumes that warmer
winters coincide with sufficient prey and that warming in other
seasons does not offset longer growth seasons due to increased
incidence of disease or hypoxia (Sections 5.4 and 7.4).

The degree to which the Chesapeake Bay freezes over is already
much reduced in comparison to 50 years ago (Boesch, 2008). Lack
of surface freezing in shoreline habitats could increase opportuni-
ties for oysters and other intertidal species to colonize shorelines
and form emergent reefs. Shoreline and emergent reefs would
increase access to new habitat for restoration and aquaculture.

In contrast to the generally positive effects predicted for
southerly species, higher temperatures may decrease the areal
extent of bioenergetically favorable Bay habitats for cold-temperate
species both directly and in combination with low oxygen (Sections

5.4 and 7.4). Species that are at their southernmost range in the
mid-Atlantic region will be eliminated from the Chesapeake Bay if
water temperatures reach levels that are lethal or that inhibit
successful reproduction. For example, the commercially important
soft clam Mya arenaria in the Chesapeake Bay is near its southern
distribution limit and may be extirpated if temperatures approach
and remain near w32 �C (Kennedy and Mihursky, 1971). Temperate
fish species such as yellow perch Perca fulvescens, white perch,
striped bass, black sea bass Centropomis striata, tautog Tautoga
onitis, summer Paralichthys dentatus and winter flounders Pleuro-
nectes americanus, silver hake Merluccius bilinearis, and scup Sten-
otomus chrysops will likely be stressed by Chesapeake warming
during summer.

Warmer and shorter winter seasons may, nevertheless, allow for
earlier spring immigration and later fall emigration of some coastal
species, including cool-temperate fishes (e.g., see Frank et al., 1990
for the St. Lawrence region). Assuming continued use of Bay waters,
striped bass, shads (Alosa sp.) and other fish that migrate into the
Chesapeake for spring spawning will likely arrive earlier. American
shad now migrate up the Columbia River (where they have been
introduced) 38 days earlier than during the 1950s as water
temperatures have increased as a result of reductions in spring flow
by the Bonneville Dam (Quinn and Adams, 1996).

Physical and ecological factors other than temperature may
preclude a smooth transition to a balanced ecosystem dominated by
warm-water fishery species. Oligohaline-upper mesohaline species
(such as the bivalves Mytilopsis leucophaeata or Ischadium recurvum)
that live only in estuaries may spread northward slowly if theycannot
tolerate the marine conditions that occur between estuaries.
Increasing temperatures, along with other climate-related changes in
the Bay environment, may also facilitate the successful northward
expansion of non-native species (Stachowicz et al., 2002) and path-
ogens (Cook et al.,1998). As recently as 1987, the Chesapeake Bay was
the largest oyster producer on the Atlantic and Gulf of Mexico coasts
(Haven,1987). While overfishing has historically played an important
role in the demise of this fishery, two oyster pathogens, Perkinsus
marinus (Dermo) and Haplosporidium nelsoni (MSX), have contrib-
uted to the long-term decline and have hindered the population’s
recovery despite considerable restoration efforts (Andrews, 1996).
Warmer winters appear to have already increased these diseases in
oyster populations in Atlantic Coast estuaries (e.g., Cook et al., 1998).
The strong temperature dependence of Dermo, inparticular, suggests
that the Chesapeake region could experience increased oyster para-
site stress in subtidal oysters as local water temperatures increase.

Some fish parasites might also benefit from warmer climes.
Weisberg et al. (1986) have documented increases in the interme-
diate host Limnodrilus sp. for the fish redworm Eustrongylides sp.
(pathogenic to avian definitive hosts) in warming eutrophic waters
of the Bay; the fish infected include yellow perch (Muzzall, 1999),
which is common to the Bay. Warmer shelf waters might also lead
to earlier arrivals and later departures of pelagic fishes (e.g., Frank
et al., 1990), favoring transmission of pelagic oriented parasites, as
has been suggested for the St. Lawrence River and Japan, increasing
human illness from pathogen transfer via undercooked fish (Hubert
et al., 1989).

Winter survival of potential pathogens is also hinted at in recent
observations in upper river basins. In the last four years, winter
water temperatures have been substantially higher in the upper
Shenandoah River area than the past, and each spring thereafter,
major smallmouth bass mortalities have been observed. Winter
pathogen survival has been suggested as one explanation for these
recurring events (Chesapeake Bay Foundation, 2007) and, if this
hypothesis is correct, overwintering success and subsequent spring
illnesses or mortalities may become increasingly common as
regional water temperatures rise.
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Finally, warming may also influence pollutant impacts. Higher
temperature-induced-mercury methylation (Booth and Zeller,
2005) has, for example, been suggested as a possible mechanism to
increase mercury uptake in fish and increase potential fetal impacts
(Bambrick and Kjellstrom, 2004; from McMichael et al., 2006); fish
tissue mercury concentrations are already a public health concern
in Chesapeake jurisdictions.

7.2. Salinity impacts on fish and shellfish

The most pronounced effects of altered salinity distributions
(Section 4.2) on fishery species will likely result from changes in the
distribution and abundance of predators, prey, and pathogens. The
two examples considered here, the eastern oyster and gelatinous
zooplankton, illustrate how these factors may play out.

Salinity affects the eastern oyster in at least three ways. First, the
oyster has a physiological salinity range of 5 to 35. Second,
mortality from Perkinsus and Haplosporidium infections is greatest
at salinities above about 12 (Haven, 1987). Third, spatfall success
(recruitment) in the Bay oyster population has been shown to be
positively affected by higher salinity (e.g., Kimmel and Newell,
2007). The net effect of these three factors in the face of salinity
increases, which will very likely occur if precipitation remains
unchanged, may depend on whether the combination of favorable
conditions for recruitment and high parasite stress affect selection
for disease tolerance in infected oysters.

The second example involves the two dominant gelatinous
zooplankton species within the Bay, the ctenophore Mnemiopsis
leidyi and its scyphomedusan predator Chrysaora quinquecirrha
(the sea nettle) (Purcell and Arai, 2000). Both of these species feed
directly on fish eggs and larvae (e.g., Cowan and Houde, 1993;
Monteleone and Duguay, 2003) as well as on zooplankton that are
important prey for adult forage fish and other fish species in early
life stages (e.g., Burrell and Van Engel, 1976; Purcell, 1992). Mne-
miopsis leidyi has a greater ability to deplete its prey than does
C. quinquecirrha, and also feeds on oyster larvae. Interannual
variability in salinity and flow strongly affect the timing of peak sea
nettle abundances, with abundances peaking earlier in years of
above-average salinity (Breitburg and Fulford, 2006). Conse-
quently, climate change may ultimately influence the timing and
magnitude of direct effects of sea nettle consumption of icthyo-
plankton and other zooplankton, as well as indirect effects medi-
ated through the control sea nettles exert over their ctenophore,
M. leidyi, prey.

7.3. Prey production impacts on fish and shellfish

The predicted combination of increases in both temperatures and
winter flows could decouple the combination of environmental
factors historically associated with favoring particular Bay species
and high total fisheries production of Chesapeake Bay waters. Anal-
ysis of Chesapeake assemblages show that low temperatures and
high flows in winter are associated with high summer-fall abun-
dances of juvenile Atlantic silversides Menidia menidia (an important
forage fish), striped bass, white perch, and Atlantic needlefish
Strongylura marina (Kaushal et al., in press). Species associated with
the converse, low winter flows and high winter temperatures,
include bluefish Pomatomus saltatrix, spot, bay anchovy Anchoa
mitchilli, and northern puffer Sphoeroides maculatus. Shifts between
these two juvenile assemblages occurred between average winters
that differed by w1 �Cdwell within the range of warming expected
in the next 50 years (Section 2.2)dbut effects of higher temperatures
combined with higher flows is difficult to predict.

Similarly, the predicted earlier and stronger spring freshet
(Section 2.4) on Chesapeake Bay fisheries is not clear. Fisheries

production in the Bay, as in most mid-latitude temperate systems, is
strongly tied to the progression of annual production that is initi-
ated by high early-spring streamflow (Section 5.1) (e.g., Silvert,
1993). The timing and magnitude of the spring zooplankton bloom
that provides food for young-of-the-year of spring spawning fishes
and forage fish species that actively feed in the Bay in early spring is
influenced by winter weather and spring streamflow (Kimmel et al.,
2006). A change in the timing of the spring freshet could alter
fishery production, but specific effects are better known for reduced
and later freshets (Wood and Austin, 2009) than for changes in the
direction predicted.

Warmer summers may also affect predation mortality of early life
stages of summer breeding fish and shellfish. Lethal temperature for
the lobate ctenophore, M. leidyi, collected from the Chesapeake Bay is
approximately 30 �C in laboratory experiments (Breitburg, 2002).
Both latitudinal variation and shifts in the timing of peak ctenophore
abundances with increasing temperatures in Narragannsett Bay
(Sullivan et al., 2001) indicate the potential for temperature increases
to alter the temporal overlap between these predators and the early
life stages of fish and shellfish on which they prey.

7.4. Dissolved oxygen impacts on fish and shellfish

Low dissolved oxygen affects growth, mortality, distributions,
and food web interactions of a wide range of organisms in the
Chesapeake Bay (e.g., Breitburg et al., 2003; Kemp et al., 2005).
Seasonal hypoxia results in mortality of benthic animals in the
deeper parts of the Bay, such that deep benthic macrofauna are
essentially absent in the summer and depauperate during other
times of the year (e.g., Sagasti et al., 2001). Mortality of animals can
also occur in shallow water environments with episodic advection
of hypoxic or anoxic bottom water shoreward (Breitburg, 1990) and
where warm, calm conditions result in diel hypoxic events in
shallow waters (Tyler and Targett, 2007).

In addition to increasing mortality directly, hypoxia may have
strong effects on the ecosystem and its fisheries through behav-
ioral and physiological responses of organisms that alter trophic
interactions over broad time and space scales (Breitburg et al.,
2001). For example, increases in summer temperatures and
increased anoxia or hypoxia may exclude species such as striped
bass and Atlantic sturgeon (Acipenser oxyrhynchus) from benthic
feeding grounds and bioenergetically favorable cool deep-water
environments (Coutant, 1985; Secor and Gunderson, 1998). In
a simulation on the combined effects of hypoxia and temperature,
Niklitschek and Secor (2005) observed that even a small overall
warming (1 �C) during summer months could virtually eliminate
suitable habitats for juvenile sturgeons (Fig. 11). Low dissolved
oxygen can also alter trophic interactions that support fishery
species by inhibiting production of ecologically important
zooplankton grazers (Roman et al., 1993), increasing some species’
susceptibility to predation (e.g., Breitburg et al., 1997), and
providing predatory refuge to others (Sagasti et al., 2001).
Repeated exposure of deeper subtidal oyster populations off Cal-
vert Cliffs, Maryland to low-oxygen bottom water resulted in
depressed growth rates relative to rates noted for oysters in shal-
lower depths where exposure to low-oxygen water was less
frequent (Osman and Abbe, 1994).

Warming will increase the extent and severity of effects of
hypoxia on macrofauna by affecting dissolved O2 concentrations as
discussed in Section 5.4, but also by increasing the oxygen
requirements of fishes (e.g., Shimps et al., 2005). The combined
effect is very likely to be a further reduction in the quality and
spatial extent of suitable habitat in the Chesapeake Bay system for
a wide range of aerobic organisms.
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7.5. Other impacts on fish and shellfish

Among the greatest concerns about climate change effects on
fish and shellfish is the consequence of sea-level rise on tidal
wetlands (Section 6.2). Reductions in tidal marsh and submersed
vegetation directly affect the Bay’s fisheries because many fishes
and crustaceans utilize these habitats as nursery areas and foraging
grounds (e.g., Boesch and Turner, 1984; Kneib and Wagner, 1994).
Ecologically and economically important species that utilize these
habitats include forage fishes such as mummichog (Fundulus het-
eroclitus), eastern mosquitofish (Gambusia holbrooki), and preda-
tory nekton such as summer flounder, spotted seatrout, striped
bass, and blue crabs. Because many of these species spend much of
their life spans in the coastal Atlantic, significant loss or degrada-
tion of these habitats could also affect the larger-scale Northeast
U.S. continental shelf large marine ecosystem.

There is an indication that intense storms in the Chesapeake Bay
region may increase in the future (Section 2.6) and the impacts on
fisheries could be dramatic. For example, strong winds associated
with storms influence how larval fish and crabs move into and out of
the Chesapeake Bay. Summer and fall tropical storms favor the
dispersal of larval Atlantic croaker into the Chesapeake Bay resulting
in higher juvenile counts during the subsequent winter and
summer (Houde et al., 2005; Montane and Austin, 2005). Blue crabs
spawn in coastal waters adjacent to the mouth of the Chesapeake,
and depend upon northward and westward winds to transport their
offspring back into the Chesapeake (Olmi, 1995). Such transport can
be aided or curtailed by tropical storm activity. For similar reasons,
winter storm activity can influence dispersal into the Chesapeake
and subsequent nursery habitat use by coastal spawning fish such as
menhaden and spot (Epifanio and Garvine, 2001).

Bivalves, as well as a number of other organisms such as fora-
minifera, rely on pH-sensitive processes to build calcium carbonate
shells and other structures. Therefore CO2 increases could
dramatically alter calcification in these animals (Gazeau et al.,
2007). Consistent with this pattern, Miller et al. (2009) found that
Chesapeake Bay eastern oyster larvae reared in experimental

aquaria under atmospheric CO2 levels that could be reached this
century (560 ppm and 800 ppm, Fig. 2b) grew and calcified more
slowly than under ambient atmospheric conditions when
temperature, salinity, light level, day/night cycle, and food quality/
quantity were held constant.

8. Discussion and summary

The overall picture that emerges from the above review is that
climate variability has influenced a multitude of physical, chemical,
and biological processes in the Chesapeake Bay and that future
changes in climate will profoundly influence the Bay. Uncertainty
varies dramatically, however, among the various potential impacts
because (1) the uncertainty in future climate forcing of the Ches-
apeake Bay region varies dramatically among the proximate forcing
agents (atmospheric CO2, water temperature, sea level, and
streamflow) and (2) the uncertainty in the sensitivity of Bay system
components to climate varies dramatically among the forcing
agents and the components. In the remainder of this section, we
summarize projections of climate change in the Bay region and
their impacts on the Bay, emphasizing the degree of certainty and
thus prioritizing future research needs.

With regard to climate forcing agents, much greater certainty
exists for projected trends in atmospheric CO2, water temperature
and sea level (all virtually certain to increase) than for storminess
(likely to increase) and annual streamflow (about as likely to
increase as not). However, it does appear likely that winter and
spring streamflow will increase. Further, heat waves and precipi-
tation intensity are likely to increase, which will likely result in
greater extremes (high and low) of streamflow. The greatest
research needs are thus for improved precipitation and streamflow
projections and for robust error bounds on these and other
projections (e.g., Tebaldi et al., 2005). A better understanding is also
required of the causes of 20th-century changes in precipitation and
temperature in the Bay watershed.

With regard to the biogeochemistry of the Bay watershed,
a fundamental problem is the lack of a mechanistic understanding
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of nutrient cycling on the watershed scale, which is demonstrated
by the current controversy about temperature vs. precipitation
impacts on nutrient fluxes averaged over many years (Howarth
et al., 2006; Schaefer and Alber, 2007). It is likely that nutrient and
sediment loading during winter and spring will increase because
flow will likely increase during this time. Also, given no change in
the annual flow regime, it is likely that phosphorus and sediment
loading will increase as a result of the more intense and potentially
less frequent rain events. However, a quantitative relationship
between particle loading and precipitation intensity remains to be
established. Over a longer time period, changes in the land use and
land cover across the Bay watershed (caused, in part, by climate
change) may dominate the change in flux. Research is needed to
better quantify current material budgets (such as reducing uncer-
tainty in atmospheric N deposition estimates) and to develop
robust mechanistic and quantitative models of large-scale water-
shed nutrient and sediment cycling (with some species-specific
representation) that can be applied over a variety of time scales
(daily to decadal). Of particular importance is an improved under-
standing of the combined impacts of climate and land-use and
land-cover change, including climate impacts on human infra-
structure (e.g., storm water management systems or, more specu-
latively, concentrated animal feeding operations).

Despite all of the research on the physical oceanography of the
Chesapeake Bay, little is known about its seasonal and interannual
characteristics, the time scales most relevant for climate change.
Summertime stratification and landward advection below the
pycnocline are likely to increase in response to increases in winter-
spring streamflow, but other circulation responses to climate, such
as those due to changes in winds and sea level, are poorly known
because of the uncertainty in the climate change itself as well as the
lack of research on the response of estuarine physics to climate
change. Salinity will very likely increase in response to sea-level
rise and warming alone (due to increased evapotranspiration and
thus decreased streamflow), but the lack of consensus in annual
precipitation changes makes the overall direction of salinity change
highly uncertain. Increases in salinity variability are possible on the
seasonal time scale (if summers do not get wetter) and are likely on
the interannual time scale (due to droughts). The relationship of
sediment loading to flow is well constrained on annual time scales
but not for extreme events. The connection between other sedi-
ment sources and climate is poorly known. Predictive modeling of
extreme temperature events, which are important for SAV and
likely other organisms, is lacking, as is predictive modeling of wind
patterns, directions and strengths, which are important for holo-
and meroplankton advection but also summer productivity
maxima. A dedicated research program combining observations
and models is needed for a better understanding of these complex
estuarine physical processes under the changing conditions antic-
ipated for the next century.

Current research suggests that climate-induced increases in
winter and spring nutrient loading to the Bay will likely result in
increasing phytoplankton production. Combined with higher
temperatures that promote decreased oxygen solubility and greater
heterotrophy, this increase in phytoplankton production will likely
lead to more intense and more frequent episodes of hypoxia. Higher
temperatures and CO2 levels appear likely to select for increases in
harmful algal blooms. Though the direction of many trends is fairly
certain, quantitative relationships are few, particularly for
temperature impacts, which, at interannual time scales, have been
overwhelmed in many cases by streamflow impacts. Thus, we have
very few whole-system views of the response of Bay biogeo-
chemistry to temperature. This is unfortunate because estuarine
biogeochemical processes are complex and highly non-linear, and
efforts to untangle the biogeochemical impacts of multiple climate

forcings (temperature, CO2, streamflow, sea level) from each other
and from other forcing agents (e.g., land-use and land cover
change) will require long-term attention and dedicated resources.

Field observations and experiments have illustrated the high
sensitivity of Bay vascular plants to temperature, salinity, light, CO2,
and sea level, and the complexity of the interactions among these
forcing agents is just beginning to be understood. For example, it is
clear that eelgrass is likely to respond positively to the direct effects
of higher atmospheric CO2 levels, but not if water clarity is unim-
proved or is further degraded by the likely increases in precipita-
tion intensity. Similar to SAV, estuarine wetlands will respond
positively to higher CO2 levels, but this response may be over-
whelmed by inundation due to sea-level rise and changes in land
use and land cover. In summary, research is needed to capture the
implications of multiple interacting stressors that will influence the
distribution and abundance of Bay vascular plants in the future.

While some consequences of climate change on fish and shellfish
may be positive (such as increases in species with more southerly
distributions), it appears that most impacts (such as increased
hypoxia and CO2) will be negative. However, there is great uncer-
tainty in the response of higher trophic levels in the Bay to climate
change because of the accumulated uncertainty in projected changes
in climate, watershed hydrology and biogeochemistry, lower trophic
levels, and pathogens. Further compounding this uncertainty is the
high non-linearity inherent in trophic interactions and faunal life
cycles. As with other Bay living resources, whole-system approaches
involving monitoring, process studies, and numerical modeling will
be required to develop a quantitative understanding of the impacts
of climate change on fish and shellfish.

Climate change in the Chesapeake Bay region has the potential
to create cultural and socio-economic impacts on a wide range of
stakeholders, including commercial watermen, farmers, property
owners, and municipal and county governments. To date, no
systematic research has been undertaken to investigate how
climate change will impact cultural and socio-economic processes,
and vice versa across the Bay region. The hydrologic, biogeochem-
ical, physical, and living resources impacts described in this review
present a number of areas where livelihoods may be affected and
there is the potential for a wide range of social and economic
impacts, particularly on weather-dependent industries and entities
subject to air or water quality regulation.

An important component of any social science research agenda
on climate change will be the assessment of local knowledge and
perceptions of climate change. This is because local knowledge may
be able to identify impacts that are occurring long before these
impacts are noticed by the scientific community, and local knowl-
edge can be used to extend the reach of scientific inquiry into
analysis of impacts on livelihoods, communities, and land use
practices. Also, local populations will have cultural perceptions of
climate change that may not match well with the models of climate
change and impacts deployed by scientists and policymakers, thus
raising the possibility that information produced by science and
policy may not be effective in changing behaviors or alleviating
impacts related to climate change goals.

In summary, the Chesapeake Bay system has shown a high
sensitivity to climate variability and is thus likely, given current
climate projections, to behave very differently in the future, even if
other important influences (e.g., land use change and fisheries)
remain unchanged. The majority of climate change impacts are
negative, and thus climate change presents a serious challenge to
current efforts to restore the Chesapeake Bay. However, there is
a wide divergence in possible climate futures (perhaps even wider
than shown in Fig. 2), and thus we emphasize that, although it is
very likely that climate change impacts will occur, it is also clear
that the severity of these impacts are directly under human control.
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Efforts to reduce CO2 emissions now will thus reduce future climate
change impacts on the Chesapeake Bay and other estuaries.

We recommend a common strategy for addressing the gaps in
understanding about Bay physical processes, biogeochemistry, living
resources, and human systems: a coordinated program of long-term
research based on a whole-system approach linking monitoring,
process studies, and numerical modeling. Such a program can and
should be designed around specific near- and long-term research
objectives and designed to yield fundamental improvements in
understanding of these systems. The scope of the issues facing the
Chesapeake Bay requires that the recommended program reflect
a diverse, interdisciplinary, multi-institution approach with a foun-
dation of new, dedicated resources and strong institutional rela-
tionships between Bay managers and decision makers.

Other estuaries will respond differently to climate change than
the Chesapeake Bay, and so our findings cannot be directly applied
to other systems. There are three main reasons for this. First,
estuaries themselves have a tremendous variety in their physical,
chemical, and biological characteristics; these characteristics range,
for example, from well mixed to stratified, from light-limited to
nutrient limited, and from well oxygenated to seasonally anoxic.
Second, estuaries vary dramatically in the ways and degree to
which they have been influenced by human activity, such as
nutrient over-enrichment, changes in sediment loading, shoreline
hardening, and overfishing. These two factors characterize the
current state of an estuary and, given the highly non-linear way in
which estuaries respond to external forcing (Kemp et al., 2005;
Kemp and Goldman, 2008), their response to climate change will
very likely depend strongly on their initial state. A dramatic
example of this is comparison of the partially stratified, nutrient-
limited Chesapeake with its neighbor to the north, the Delaware
Bay, which is well mixed and light-limited. Whereas projected
winter–spring streamflow increases into the Chesapeake would
likely lead to a stronger spring phytoplankton bloom and greater
summertime anoxia, we might expect that such a streamflow
change would decrease phytoplankton production and have little
or no effect on oxygen levels in the Delaware Bay.

The third reason that other estuaries will respond differently to
climate change than the Chesapeake Bay will is that the climate
change itself will differ, though with differing degrees among the
forcing agents. For example, while all estuaries will experience
essentially the same higher levels of atmospheric CO2 in the future,
the degree of warming and sea-level rise will vary regionally and
seasonally. More importantly, however, streamflow changes will
vary dramatically with region in terms of magnitude and timing.
Subtropical estuaries will very likely see decreases in annual
streamflow due to the combined impact of decreased precipitation
and higher evapotranspiration. Subpolar estuaries will see reduc-
tions in spring streamflow as a result of decreases in snowfall and
earlier melting of snow on land.

The main aspect of the current study can be generalized to other
estuaries is the approach, which may be the most novel feature of our
work. There is a diverse body of research on the impacts of climate
change on estuaries, but very little of itdincluding aspects related to
climate change itself and implications for watershed processes,
estuarine circulation, biogeochemistry, vascular plants, and fish-
eriesdhas been synthesized for one system to create a holistic
picture of the impacts and place them in the context of other stressors
(e.g., land-use change) and restoration efforts. This work was made
possible by bringing together scientists with regional expertise in
a wide diversity of environmental sciences, including climate,
forestry, hydrology, biogeochemistry, wetland ecology, hydrody-
namics, plankton ecology, fisheries, and human/environment inter-
actions. Efforts such as this in other estuaries, followed by cross-

comparisons among these estuaries, may be the most fruitful path to
a generalized theory of the impacts of climate change on estuaries.
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Mouriño-Pérez, R.R., Worden, A.Z., Azam, F., 2003. Growth of Vibrio cholerae O1 in
red tide waters off California. Applied and Environmental Microbiology 69,
6923–6931.

Mulholland, M.R., Morse, R.E., Boneillo, G., Bernhardt, P.W., Filippino, K.C.,
Procise, L.A., Blanco-Garcia, J., Marshall, H.G., Egerton, T.A., Hunley, W.S.,
Moore, K.A., Berry, D.L., Gobler, C.J., 2009. Understanding causes and impacts of
the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay.
Estuaries and Coasts 32, 734–747.

Murdy, E.O., Birdsong, R.S., Musick, J.A., 1997. Fishes of the Chesapeake Bay.
Smithsonian Institution Press, Washington, DC, 324 pp.

Muzzall, P.M., 1999. Nematode parasites of yellow perch, Perca flavescens, from the
Laurentian Great Lakes. Journal of the Helminthological Society of Washington
66, 115–122.

Najjar, R.G., 1999. The water balance of the Susquehanna River Basin and its
response to climate change. Journal of Hydrology 219, 7–19.

Najjar, R.G., 2009. Personal communication.
Najjar, R.G., Patterson, L., Graham, S., 2009. Climate simulations of major estuarine

watersheds in the Mid-Atlantic region of the United States. Climatic Change 95,
139–168.

Najjar, R.G., Walker, H.A., Anderson, P.J., Barron, E.J., Bord, R.J., Gibson, J.R.,
Kennedy, V.S., Knight, C.G., Megonigal, J.P., O’Connor, R.E., Polsky, C.D.,
Psuty, N.P., Richards, B.A., Sorenson, L.G., Steele, E.M., Swanson, R.S., 2000. The
potential impacts of climate change on the mid-Atlantic coastal region. Climate
Research 14, 219–233.
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