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ABSTRACT

D istributed shared m em ory (DSM) provides the illusion of shared memory processing to 
program s running on physically distributed system s. M any of these systems are  connected 
by a  broadcast m edium  network such as E th e rn e t. In  th is thesis, we develop a  weakly 
coherent model for DSM th a t takes advantage o f hardware-level broadcast. W e define the 
broadcast DSM model (BDSM) to provide fine-grained sharing of user-defined locations. 
Additionally, since extrem ely weak DSM m odels are difficult to program. BDSM provides 
effective synchronization operations tha t allow it  to  function as a  stronger memory. We show 
speedup results for a  te st su ite of parallel program s and  com pare them to M PI versions.

To overcome the po ten tia l for message loss using broadcast on an E thernet segment we 
have developed a  reliable broadcast protocol, called Pipelined Broadcast P ro toco l (PBP). 
T his protocol provides the illusion of a series o f FIFO  pipes among member process, on 
top of E thernet broadcast operations. We discuss two versions of the PBP protocol and 
the ir im plem entations. Com parisons to T C P  show  the predicted  benefits of using broadcast. 
P B P  also shows strong  th roughpu t results, nearing  the  m axim um  of our lOBase-T hardware.

By combining weak DSM and hardware b roadcast we developed a system th a t  provides 
com parable perform ance to  a  common message-passing system . M PI. For our te s t programs 
th a t have all-to-all com m unication patterns. wre  actually  see be tte r performance th an  MPI. 
We show' th a t using broadcast to perform DSM  updates can be a  viable alternative to 
message passing for parallel and distributed com putation  on a  single E thernet segment.

xiv
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C hapter 1

In troduction

T he use of a  network of workstations (NOW) as a com putational platform  has increased 

in recent years as the  price and performance of single processor machines and  network 

hardw are has improved. These clusters are being used in two im portant ways. T he first 

is as a  high perform ance compute engine. Performing parallel prim arily num erical com pu­

ta tions on a  cluster can provide results approaching those of dedicated parallel machines 

a t fractions of the c o s t[ ll. 16. 23. 25. 33. 42. 81]. The second m ajor application uses the 

clustered machines for redundancy, to remove the single point of failure and  bottleneck of 

single server system sfl, 48, 81]. These networks of w orkstations are used as reliable, in­

trane t, d istributed platforms, for example: network file system  (NFS) servers, d istribu ted  

databases, and d istributed  web servers.

The relatively small cost of a cluster of workstations com pared to th e  cost of a  high- 

performance com puting platform, as well as the  potentially higher accessibility provided by 

multiple semi-autonomous workstations, has lead to substan tial work in th e  area of parallel 

com putation on a  local area network (LAN) of workstations[25. 33]. More people can use

2
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C H A P T E R  1. IN T R O D U C T IO N  3

the  workstations as desk machines allowing th e  costs to be dispersed, m aking b e tte r use 

o f the  systems. In  o rder to make them  useful for parallel com putation these system s need 

to  exhibit perform ance close to tha t of the  parallel m achines they are replacing. T he price 

and  utilization benefits of the NOW m odel can overcome some of th e  perform ance gap 

between these system s and  dedicated high perform ance platforms. T h is  can be seen by 

th e  growing use o f Beowulf[83. 84] system s. In  fact, the cluster model is being applied to 

dedicated system s bu ilt specifically for such uses. W hile many of these system s use special 

high bandw idth sw itching hardware as an  interconnect, a  cluster of processing nodes on a 

switched E th e rn e t[65] segment is a com mon platform  for parallel program m ing.

Many com puting  tasks, where perform ance is not as vital as reliability  o r availability, 

can benefit from th e  d istribu ted  network m odel as well. For example, a  d is tr ib u ted  database 

m ight not have the  sam e performance requirem ents as a  parallel num erical com putation, 

b u t might be required  to survive longer. An im portan t aspect of a d is trib u ted  platform  can 

be fault-tolerance. A system  of dispersed processors should be less prone to  to ta l failure 

th an  a  single m ultiprocessor machine. Again, a  database needs to survive a  processor failure 

and  potentially recover its s ta te  w ithout restarting .

These p latform s often require either a  layer software to manage the d istribu tion  of the 

com putation or changes to  the program  itself. T he transition from a  parallel program  

running  on a  m ultiprocessor to one running  on a  LAN is not an easy one. M any multi­

processors provide shared memory, allowing program s to be written in  a  m anner similar 

to single-processor program s, using accesses to  shared memory locations as the  principal 

m eans of inter-process communication. A num ber of cache coherency protocols have been 

developed to ensure the  correct execution of program s running on tightly  coupled m ultipro­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A P T E R  1. IN T R O D U C T IO N  4

cessors. Due to  th e  often higher latency an d  possible inability to snoop, cache coherency 

protocols may no t ad ap t well to a tru ly  d is trib u ted  system. T herefore, m ost distributed 

program s are w ritten  using the  trad itional message-passing m odel, trea tin g  each process 

as a  node to which explicit messages are sen t. This style of program m ing is not straight­

forward: processes m ust be coordinated, addresses established and  connections made and 

m aintained. Sm all changes in the  com putation algorithm  can have m a jo r consequences for 

the  program m er. T he  program m er spends a  great deal of effort on th e  details o f message- 

passing. taking tim e away from the actual algorithm  that is the  essence o f the program. 

T he apparent difficulty of program m ing parallel com putations on d is trib u ted  platforms has 

lead to  the use o f D istribu ted  Shared M em ory (DSM). Cheriton argues th a t shared memory 

program m ing is less difficult th an  message passing[32]. Many o ther au thors take this as 

an assumption[5, 27. 40. 49. 67. 72. 87. 92]. DSM is the logical extension o f the common, 

shared-memory. coherent-cache. m ultiprocessor paradigm used on m any high performance 

machines. T here has been much work in th e  area o f DSMs in the  p as t 10 years or so.

1.1 D istr ib u ted  Shared M em ory

On a single processor, a  process has a well-defined relationship w ith  the  memory. This 

relationship is som etim es known as the register property. A single register or memory 

location can have one bit p a tte rn  in it a t any one time. All of the b its  get set in parallel, 

so a  change is atom ic. Therefore, a load, o r  read, of this register o r location returns one 

and only one possible value-the value m ost recently written. Sequential programming on 

a  system obeying th e  register principle is relatively easy. One knows w hat to  expect. The
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C H A P T E R  1. IN T R O D U C T IO N  5

value of a  read can be determined by looking a t the m ost immediate write in program  

order, taking into account any compiler optim izations. This model extends to early  parallel 

processors w ith shared memory. The hardw are forces a  serial order on writes and reads from 

different processes. Atomic synchronization operations can be used to force a certain  global 

order. T hreaded programm ing on a single processor obeys th is model, w ith the  addition 

of synchronization, although there is no tru ly  concurrent execution. However, when the 

register property  model is extended to  a  d istribu ted  system  the notion of "most recent" 

becomes less well-defined. Clock skew, message-passing delay, and different processor speeds 

all contribute to  the  lack of a  s tric t global notion of one event's happening before another. 

We no longer have a  single hardware location to enforce a  sequential order. It is not always 

possible to determ ine which is the most recent write.

T he original proposals of DSM attem pted  to use the same model of memory as the  single 

processor. Li and  Hudak[62] present a  system  th a t mimics v irtual memory, except th a t not 

only can pages be on secondary storage they can be on a  different machine. S tum m  and 

Zhou[87] covered a  range of algorithm s th a t provide DSM. T heir paper describes several 

types of system s th a t implement a  readers/w riters protocol, using both w rite-update and 

w rite-invalidate. One such system used pages of shared m emory and allowed any num ber 

of copies to be disseminated for reading by the p ages  owner or a  central managing process. 

W hen a  process gains write access, all of the readers must invalidate their copies. They 

would then have to request a new, updated  copy on the following read fault. These sys­

tem s were obvious extensions of v irtual m emory and cache coherency protocols. A nother 

im plem entation was to  send out an update  of the new locations after a  write (or series of 

w rites). T he idea was to keep down the size of messages on th e  network by not sending the
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C H A P T E R  1. IN T R O D U C T IO N  6

en tire  contents of a  memory page. Here also, the re  was a  need for a  single process to acquire 

w rite  access to the appropria te  pages before sending out any updates. In  th is  way. strict 

coherence is maintained. T h ere  is still only one global view of what is in th e  memory. Any 

one process may not see th e  en tire  contents, b u t w hat it does see will be th e  sam e as every 

o th e r process' view of th a t p o rtio n  of th e  shared data-space. M aintaining th is  s tr ic t view of 

m em ory is very useful from a  program m er's  poin t of view. Single processor program s can be 

d is trib u ted  and run  on a s tr ic t DSM w ith  very little  modification. However, netw ork latency 

exacts a  serious toll. Not only  do d a ta  pages need to get from one processor to  another, but 

w rite access requires a  d is trib u ted  m utual exclusion protocol. W henever a  process tries to 

w rite  to a  page for which it d o esn 't have w rite  permission, globally-exclusive access must 

be established. Page size also plays a  m a jo r role in the  performance of such system s. While 

larger pages require less network com m unication, they also mean less concurrency as more 

processes can be com peting for a  given page.

As a  result of the fact th a t  DSM system s were many times slower than  m essage passing 

parallel programs, researchers began to  exam ine the  underlying memory m odel for a way 

to increase performance[4. 28. 27. 60. 63. 87]. T he following sections describe some of the 

models th a t have been developed in a n  effort to  reduce the overhead of s tr ic tly  consistent 

DSM. while allowing program m ing ease. M ost of these models are designed for scientific 

com putations and. therefore, strive to provide a t  least the illusion of a coherent memory.

1 .1 .1  Im p r o v in g  DSIVE p e r fo r m a n c e

E arly  DSM systems enforced a  global notion o f memory coherence or consistency. This 

consistency, while making p rogram m ing alm ost as straightforward as sequential processing.
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was not w ithout cost. Implementing a readers/w riters protocol over the network greatly  

reduced concurrency as many processes had  to continually wait for access to pages of m em ­

ory. In  response to  this poor performance, several so-called weak memories, which relax the 

consistency constrain ts, were proposed. T h e  consistency constrain ts of a memory model are 

th e  guarantees provided to the user abou t how' the m em ory will behave. For exam ple, a  

uniprocessor memory has consistency constrain ts tha t ensure a sequential order of m em ory 

accesses directly  related  to the program  order o f a process running  on the memory. A read 

is guaranteed  to re tu rn  the last value w ritten  to a location, w ith last defined by program  

execution order. These weaker models reduce the consistency constraints on the memory, 

allowing executions to become incoherent in an  a ttem p t to  increase performance. By in­

coherent we mean the memory can be in a  s ta te  where two reads of the same location by 

different processes can yield different values. Or. in o the r words, processes can see different 

executions, som ething th a t cannot happen in strictly  sequential processing. Again, some 

o f these weak models are analogues of conventional coherence schemes for shared m emory 

m ultiprocessors. O thers are derived from the  notion o f causality inherent in d istribu ted  

system s. Section 1.2 presents a  sum m ary o f the consistency provided by some of the weak 

m odels. One of the problems w ith these weak memories is th a t programming is more com­

plex th an  it is for the consistent models. Allowing the m em ory to become incoherent means 

different processes can have different views of the shared memory. Most of the more widely 

used models of weak DSM impose program m ing constrain ts tha t, if followed, allow the 

m em ory to appear consistent. In o ther words, the program m ing model is constrained to 

ensure the memory appears coherent to the  user program . This allows the perform ance 

benefit of weakening the consistency to coexist w ith a  viable, known programming model.
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Most of the work on DSM has focused on page-based systems. Most o f these systems 

ex tend  th e  built-in memory paging facilities to include a protocol for d istribu ted  operation. 

Several o f these systems, using weak memory sem antics, have achieved acceptable perfor­

m ance increases over sim ilar single process program s. In fact, at least one. Treadmarks[9]. is 

now commercially available. T h is  and  similar system s have the advantage o f having trans­

paren t memory accesses. However, these page-based system s have several drawbacks. F irst, 

sharing  among processors is lim ited  by the page size. Sharing units sm aller than a  page, 

which is often 4KB. can create unacceptable delays as a  page containing m ore than one item 

is swapped among processors. E ith er care needs to  be taken to lay out d a ta  on separate 

pages or ex tra protocol needs to  be added to facilitate the sharing of a  single page. Second, 

these systems tend to have very com plex protocols for ensuring memory coherence. The use 

of multiple-writer protocols leads to  a  further increase in system complexity. Even though 

page-based DSM has been explored more thoroughly than  update system s, we feel tha t for 

certain  hardware and software situa tions update-based DSM. with its sim pler protocol, can 

be a  viable option.

T he Munin[26] shared object system  uses th e  page-based model to implement object 

level granularity using release consistency with m ultiple writers. This system  uses multiple 

th reads and object-level, or location-level, granularity. As it is page-based, it transm its 

whole pages using point-to-point communication as its method of propagating writes to 

o ther processes.

Several systems use a  form of autom atic update  to  provide weak DSM. The SHRIMP 

system[50] uses special hardw are to  improve the perform ance of Lazy Release Consistent 

(LRC)[55] DSM. Oguchi, A ida and  Saito[68] present the design and pro to type of a  DSM
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system  th a t uses m ulticast on ATM -based WANs. The design of th is  system is based on 

the FIFO  order of m ulticast messages. It uses point-to-point messages to regulate access 

perm ission to memory locations by way of a  centralized sem aphore server. The im plem en­

ta tio n  of the 0RCA[15. 89] program m ing language uses broadcast to  disseminate updates 

to d istribu ted  objects. These updates are serialized through a  central process to provide a 

global order.

1.2 M em ory C oherence M odels

In o rder to clarify discussion o f memory coherence models, we present an overview o f the 

basic models of coherence. For th is overview we will begin by looking at the most s tr ic t 

model and move to weaker versions, com paring and contrasting them  as needed to fu rther 

understanding. There are two classifications of weak DSM models depending on the n a tu re  

of reads and writes. Those in which read and writes are all the sam e type of access we label 

ugeneric read/w rite" models. Those in which some reads and w rites are special accesses 

and  behave differently we call “special access" models. The DSM model in our research is 

of the  first type so we begin looking a t the generic models. We then  discuss some o f the 

special models because the coherence in our model is similar to th a t provided by some of 

these.

1 .2 .1  S e q u e n t ia l  C o n s is te n c y

M odern parallel machines do not follow the atomic, serial model of m em ory coherence. T h a t 

is, the  steps of one access can overlap the steps of another. In fact, they can be executed 

out of program  order. However, they are made to appear to happen in program order to  all
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processes. Lamport[59] defines sequential consistency (SC) as follows: “A m ultiprocessor 

is said to  be sequentially consistent if the results are th e  sam e as if the operations were 

executed in some sequential o rder, and  all of the operations from any one process are in 

the  o rder specified by th a t process's program." T he term  operation, in our case, refers to 

any access of shared memory. For the  examples used in  th is pap er all memory' locations 

axe assum ed to have initial values of 0. We use the no ta tion  ~z ~  1“ for assignm ent, or 

a  w rite, o f the  value 1 to location c. Similarly. ~read(z) =  1" is a  read of location z  that 

re tu rn s  the value 1.

Po Pi P-2

z  ~  1: w hile (x != 1) skip: while (y != 2) skip:

x  1; read(c) =  1: read(x) =  1:

z  :=  3: read(x) = 3:

V :=  2:

F igure 1.1: Sequential Consistency Example Programs

As an exam ple of sequential consistency consider th e  sim ple program s in figure 1.1. The 

locations x  and y  are effectively used  as synchronization operations. T he values read by P-> 

are the  only possible results. In sequential consistency, all processes have the sam e view of 

the o rder of events in the execution. There is one global view, which is a  single interleaving 

o f events, established by the execution history and shared by all processes. Sequential 

consistency is the model most used in modern com puting platform s from the program m er's 

point o f view. Memory accesses behave most like they  do for a  single processor. T h is  allows 

program m ers to  use the memory m odel with which they  are m ost comfortable.
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r(x)?

w(y)l

w(x)I

Process 0 Process 1

F ig u re  1.2: Simple Causal Relationship.

1 .2 .2  C a u sa l M e m o r y

W hile the  SC model grew out o f the  m ultiprocessor domain, causal m em ory takes a  different 

approach, drawing its power from the causal n a tu re  of the com m unication is a  distributed 

com putation. Lamport[57] formalized the notion of causality in concurrent com putations in 

the "happens before" relation (—>■) on system events. This relation was applied to DSM by 

A ham ad. H utto  and John[5]. T he causal memory model is defined in term s of what value 

can be returned by a  read operation. Essentially, a  write is analogous to  a  send operation 

and a  read is analogous to a  receive. Here, however, a single write can  have many reads 

re tu rn  its value. W hen a  w rite is received into a  processors view of memory, further reads 

to  th a t location will see th a t value until it is overwritten.

D efin itio n  - A memory system  is said to be causal if a read returns th e  most recent write
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r(x)?

r(y)l
w(y)I

w(x)l

Process 0 Process 1

w(x)2 <>

Process 2

F ig u re  1.3: Concurrent Writes.

as defined by the relation

The relation is then the transitive and irreflexive closure of —rc. where —rc is a  translation 

of "happens before" as follows:

1. If  operation o and o' are successive memory operations by the same process, then 

o —y c o' .

2. I f  the read operation oT returns the value of write operation ow. then ow —?c or.

3. Additionally, if not o —¥c o' and  not o' —*c o then o and o' are said to be concurrent.

It is possible for the return value o f a  read to be an element o f a  set of possible values 

made up of the values of all of the writes th a t axe concurrent to the read in question, or axe 

concurrent to a  causally preceding write.
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In  figure 1.2, the  two parallel arrows represent the tim e-line o f each process. We use 

~w(y) 1“ to  mean a  w rite to location y  of th e  value 1 and “r(y )l~  to mean a read retu rn ing  1. 

A is used when a  returned value is unspecified. It is easy to see the  causal relationship 

betw een u /(x )l and  r(x )? . shown w ith th e  bold arrows. T he fact th a t the previous read  

event, r (y ) ,  read the  value 1. means th a t process 0 has executed past v i(x )l. Therefore, 

th a t value m ust be available to be read, in th e  absence o f a  la ter w rite. In figure 1.3. there  

is no causal relationship between the w rites to  location x  by processes 0 and 2. They cure, 

therefore, concurrent writes. In process 1. r (x )?  now can re tu rn  e ither 1 or 2.

T h e  im plem entation of causal memory is docum ented, and  a  formal program m ing model 

is defined in which synchronization variables are used to  force the  causal relationship to 

follow a  prescribed path[6. 51. 52]. T h a t is, synchronization is used to order the reads 

an d  w rites of a  parallel com putation in a  s tr ic t fashion, thus ensuring each read operation 

re tu rn s  th e  value it should under the sequential consistency model. Enough synchronization 

is used to  ensure there are no d a ta  races in  the program . In th is way. a  weaker form of 

m em ory is transform ed into a sequentially consistent memory, if th e  programm ing model is 

followed. This result is proven by John and  Ahamad[52]. T he exam ple used for SC (figure 

1.1) w ill execute the same way on causal memory as it d id  on SC.

1 .2 .3  P r o c e s s o r  C o n s is te n c y  a n d  P R A M

P rocessor Consistency (PC) is a  weakening of SC th a t orders events only based on the  

p rog ram  order of the  issuing process. P C  was introduced by Gharachorloo et al[41]. As 

w ith  SC , the operations by any one process m ust be seen by all processes in program  order. 

However, unlike SC, the  interleaving of operations from all processes need not be the sam e
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as seen by all processes. In  o ther words, there  is 110 global ordering shared  by all processes. 

Different processes can see different orders, w ith in  the bounds of program  order.

P ipelined RAM . or PRA M , was first in troduced  by Lipton and Sandberg[63]. PRAM 

provides th e  sam e coherence model as PC. In  th is paper, we use th e  term  PRAM for 

this model of coherence. PRAM  is based on th e  idea of each processor having a  copy of 

the  shared d a ta  and  a  queue (pipeline) of incom ing w rite updates. T hese queues receive 

w rite updates from other processors in the o rder issued by the w riting  processor. These 

updates can arrive in an arbitrarily-interleaved order with respect to w rite updates from 

o ther processors, as long sis the updates of each process appear to all o thers  in the program 

o rder of th e  w riting  process. These updates are then  serviced, incorporated into the shared 

memory, in FIFO  order. PRAM  allows w rites to  be arbitrarily  delayed. In fact, there is no 

guarantee the  w rites will ever take effect. T he  idea is to incorporate th e  network latency 

involved in propagating w rite updates into the  memory model.

Po Pi P 2

2 :=  1: while (x  !=  1) skip: while (7/ != 2 ) skip:

x  :=  1: read(z) =  1: read(x) =  0 :

z :=  3: read(z) =  3:

y ~  2 :

F igure 1.4: PRAM Example

For exam ple, consider the processes shown in figure 1.4. It is possible for each process 

to have a  d istinct view of the shared d a ta  space. Process P 1 has clearly seen the value 1 in 

x . However. P 2 might not have, despite there being a  "causal" link. T he  w rite to  y  which
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allows P 2 to  continue cannot happen until the  w rite to x  has been seen by P j. Process 

P 2 s till sees the value of 3 in z as it should because the writes in P! are seen by all other 

processes in  the  order issued. T his exam ple is one possible execution.

In  the case of causal memory, synchronization is used to ensure the program  sees the 

stronger SC consistency th a t it expects. Since most, if not all. parallel program s require 

some form of synchronization anyway, th is is not excessively burdensome. W ith PRA M  and 

weaker memories causality-based synchronization is no longer possible. It is still possible 

to have processes synchronize the ir executions, bu t it may not appear th a t way to  other 

processes. A slight modification to the original example shows this. In figure 1.5 the 

processes are synchronized to  execute in sequence. However. P-> does not see the results 

com puted by Pq before the synchronization.

Po P i P 2

z  :=  1; while (1  !=  1) skip: while (y  1= 2) skip:

x  :=  1: read(z) =  1: read(x) =  0:

y  :=  2: read(z) -- 0:

F ig u re  1.5: PRAM fails logical synchronization

1 .2 .4  S lo w  M em ory-

Slow m emory presents a  very relaxed view of memory. While most of the previous memories 

preserve program  order as an im portan t aspect of the model, allowing some synchronization 

techniques to  function as expected, slow memory doesn!t enforce program  order on the 

m em ory system. H utto and A ham ad define slow memory as a location-relative weakening
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of m em ory consistency [49]. T hey include it as an  exam ple o f a  multiversioning memory, 

m aking it suitable for ap p lica tion  to  distributed ob jects. Slow m em ory can be defined in 

term s of how' a  read w'orks. A read on a slow m em ory location m ust return som e value 

previously w ritten to  th a t  location. Further, once a  value has been read, no earlier w rite  to 

th a t  location by the process whose value is re tu rned  can be read. W rites by a process are 

always seen by tha t process immediately. This m akes for a  form of memory much weaker 

th a n  all o f the previous exam ples.

Po P i P->

2  : =  1: 

x  :=  1:

while (x != 1) skip; 

read(z) — 0:

2  :=  3:

V '■= 2:

while (?/ != 2) skip: 

read(x) =  0; 
read(x) =  1:

F ig u re  1.6: Slow memory example

Figure 1.6 shows a possib le  execution of the exam ple program s on slow memory. W e see 

th a t  not only does Po no t see the w rite to x. as in th e  PRA M  exam ple, it might not see the 

second w rite to 2. U nder PR A M . P 2 must see th e  value 3 in 2 due to the program order 

of P i- W ith  slow m em ory th is  is not the case. Synchronization is also a  problem for slow 

memory. T he example fails logical synchronization. Process Po does not see the resu lts  of 

P f s  com putation prior to  synchronization.

An interesting aspect o f  slow memory is illu stra ted  by the  solution to the d ic tionary  

problem  [38]. The problem  is to implement a  sim ple associative table with insert, delete 

and  lookup operations. Lookup  should return all values inserted b u t not deleted. W hat
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makes the  problem  difficult is th e  requirement to satisfy the following conditions:

1. T he view m ust be consistent. An item is in a  process's view if and  only if it has been 

inserted  and not yet deleted.

2. T he  system  must be space-efficient, using bounded storage.

3. T h e  system  m ust be fault-tolerant. Functioning processes m ust continue, despite other 

processes or com m unications failing.

4. All views m ust eventually converge and become consistent if there  are no further 

inserts or deletes.

A ham ad and  John propose a solution to this problem using slow ineinory[49j. T his solution 

dem onstrates p art of the power o f slow memory. We feel that slow m em ory is an interesting 

alternative to  the earlier m entioned weak memories.

1 .2 .5  R e la t in g  g en er ic  w e a k  m e m o r ie s

T he weakness of a  memory m odel can be seen as a space of allowable executions. T he larger 

the space the more concurrency is allowed, a t the expense of tigh ter event ordering. The 

generic memories presented above are related by

S C  C  Causal C P R A M  C Slow.

T h a t is. all SC executions are causal, but not all causal executions are SC[49. 73]. All 

legal causal executions axe-also PRAM , but there are legal PRAM executions th a t violate 

causality. T he same relation holds between PRAM  and Slow. O ur runn ing  exam ple shows
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these relationships. For example, figure 1.1 is a legal Slow memory execution, while figure 

1.6 is not a  legal SC execution. T his relationship is shown pictorially in figure 1.7.

1 .2 .6  S p e c ia l  A c c e s s  W e a k  M o d e ls

Special access weak models are those th a t differentiate between m em ory accesses. T he 

earlier models all assume reads and w rites axe the  same. T hat is. one w rite is the sam e 

as any other. Special access models have been developed that make a distinction between 

types of m em ory accesses. Some are general and behave as the previous models. Some 

have additional im pact upon execution. For exam ple, a write access m ay be part o f a 

synchronization operation and have tigh ter ordering restrictions. These models are often 

originally hardw are based, like W eak Ordering[3] and  Release Consistency[41]. Lazy Release

SC =  Sequential consistency 
C =  Causal
PC =  Processor Consistency (PRAM ) 
S =  Slow memory

Figure 1.7: Coherence models as execution spaces
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Consistency[55] is a  modification of Release Consistency th a t is designed for a  software DSM 

system . In this section we look at the basic operation o f these models for completeness.

1 .2 .6 .1  W e a k  O rd e r in g

Like PC . Weak O rdering (WO) was derived from hardw are-based multiprocessors. In th is 

case, there are constraints put on the software to be run  on the WO system. These con­

stra in ts . if followed, allow the memory to appear sequentially consistent without paying the  

full price of a  tru ly  SC system. Memory accesses are broken down into two types: accesses 

to  synchronization variables, and accesses to normal variables. The WO model can be 

sum m ed up as follows.

D e f in it io n  : A system  is said to be weakly ordered if:

1. Access to global synchronization variables is strongly ordered (synchronization 

obeys SC).

2. No access to a  synchronization variable is allowed until all previous shared m em­

ory accesses are globally performed.

3. No access to global variables, synchronization or norm al, is allowed until all 

previous synchronization accesses are globally performed.

A nother way to see this is from the software point of view. A memory system is weakly 

ordered if software obeying a  “synchronization model" appears to be running on sequentially 

consistent memory. Adve and Hill[3] present a  num ber of synchronization models for weakly 

ordered systems. T he prim ary model is called Data-Race-Free. In th is model, the notion 

of causality, as codified by Lamport[58], is captured in the  context of memory accesses. A
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d a ta  race is defined as any two operations not s tric tly  ordered by causality, th a t  is to say. 

concurrent operations, where a t most one is a  read. Intuitively, this is what one expects. 

Concurrent read accesses are acceptable, concurrent w rites are not.

1 .2 .6 .2  R e le a s e  C o n s is te n c y

Release Consistency (RC). is sim ilar to  weak ordering. RC is a  slightly more formalized 

m emory m odel often applied to  software DSM system s. RC is based on the observation 

th a t the s tru c tu re  o f parallel program s allows the m em ory to become incoherent for certain 

portions o f the execution, returning to a  coherent s ta te  a t synchronization poin ts, e.g. the 

barrier between iterations, w ithout sacrificing correctness.

Originally presented as part of the DASH rnultiprocessor[41). release consistency gets 

its nam e from the  synchronization operations acquire and  release. These synchronizing (or 

special) operations are analogous to lock and unlock in a  standard  synchronization model. 

RC is defined as follows.

D e f in it io n  - A m emory is release consistent if:

1. Before an ordinary load or s to re  operation is allowed to be performed, all previous 

acquire operations m ust be performed.

2. Before a  release is allowed to b e  performed, all previous load and store operations 

must be performed.

3. Special accesses obey processor consistency w ith respect to each other.

Program m ers on a  release consistent system are required to label memory accesses as 

acquire, release or ordinary. If  the program  is properly labeled, then the memory will appear
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sequentially consistent, and a  correct program  will execute correctly. Properly labeled is 

defined as having enough special accesses labeled e ither acquire or release[41]. Enough 

means th a t for any two memory accesses on different processors, if a t least one is labeled 

ordinary and  one of the two comes before the o ther in a  correct execution, then there is a t 

least one release on one processor and an  acquire on the other, depending on which needs 

to be before the  other[40. 43]. T he idea behind RC is th a t time is only spent ensuring 

sequential ordering among those accesses labeled as special. Because of the  sem antics o f 

critical sections, the writes can happen in any order as long as they are all seen by o ther 

processors before the  release is com pleted. This is also used to reduce com munication. The 

writes can be buffered until the release operation and  then  sent out all a t once. C arter. 

Bennett and  Zwaenepoel[28] provide a  very detailed look a t how these techniques can be 

used to fu rther increase the efficiency of the RC model. In fact, results close to those of 

hand-coded message passing can be achieved using m odern implementations on RC.

A variant of RC is Lazy Release Consistency (LRC)[55]. While RC sends invalidation 

messages to  all o ther processes on a  release. LRC exploits the causal relationship to send 

these invalidations only to the next process th a t acquires the page in question. This sig­

nificantly reduces the  am ount of message-passing overhead. This software extension is the 

basis of th e  T readm arks system[9]

1.3 G oals o f T his R esearch

Extrem ely weak memories, such as PRAM  and Slow, have several benefits th a t make them  

attractive. F irst, there is no causal link between writes from different processes. This
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means th a t there is no global ordering, and write updates can be applied as they are 

received. Therefore, such weak memories should be efficient. Second, they are inherently  

update-based. W hen a  process issues a  w rite it is effective im m ediately on the local copy of 

memory. T hen  the new value for that location is sent as an u p d a te  to  the other processes. 

Thus we have a  system  of fine-grained m em ory accesses. The locations can be of any size. 

Third, having multiple copies of the shared  memory space allows for a  higher degree of 

availability than  page-based systems which may have only one valid copy of a given page.

The weakness th a t allows non-causal memories to perform well is also a hindrance to  

meaningful program m ing on them. In the  case of causal memory, synchronization is used 

to make the  memory model appear stronger than  it is to allow effective programm ing. 

W ith PRAM  and Slow there is no causality  enforced on the o rder of writes so it is not 

possible, using memory locations, to have enough synchronization to make the memory 

appear sequentially consistent. In order to make a similarly weak model usable, some 

method of effective synchronization is required.

U pdate-based DSM systems can generate a  number of com m unication messages. Each 

and every' w rite needs to  be passed, usually as a  message in an  underlying system, to each 

other process. However, many cluster com puting environments where DSM might be used 

are local axea networks. Further, many of these networks are E thernet based. This means 

there is the possibility of using hardware-level broadcast to increase the effective bandw idth 

of sending updates. We are interested in determ ining if reliable broadcast can be used to 

increase the efficiency of update-based DSM systems.
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1 .3 .1  U s in g  B r o a d c a s t  For C o m m u n ic a t io n

Sharing  d a ta  am ong processors on a  local a rea  network requires com munication. O ften, 

th is  com m unication involves sending messages containing th e  sam e information to a  num ­

b e r  of other processors. This is especially tru e  for systems th a t replicate d a ta  across the 

en tire  set of p a rtic ipa ting  systems. D istribu ted  databases an d  o ther systems th a t provide 

h igh  availability, and  shared memory o r ob ject systems tha t work on the update model are 

exam ples. T h is kind o f communication is also common in m any parallel numerical com pu­

ta tio n s  where each process needs values com puted by the o th e r processes to continue. A 

com m on com m unication pattern  in m any such program s involves each process both  sending 

a n d  receiving d a ta  from each other process, so-called all-to-all communication. Since m any 

o f  these system s are on a  broadcast m edium  network such as E thernet, we feel th a t by 

using  hardw are broadcast we can perform  th is  d a ta  movement more efficiently than  w ith 

point-to-point messaging. However, using U D P /IP  broadcast on an  Ethernet segment can 

b e  subject to faults of omission. Single packets may be lost due to corruption or buffer 

overflow, at th e  receiving or sending process. M ost com putations will not tolerate this loss 

o f  data. Some mechanism is required to ensure delivery of each packet. One solution for 

message-passing system s for parallel program m ing is to use the  connection-oriented T C P  

protocol. However, this means the broadcast medium is no t being used. An n  process 

system  requires n 2 point-to-point T C P  stream s to  support all-to-all communication. An­

o th e r solution is to build an acknowledgment scheme into each program  as needed. A th ird  

approach is to  develop middle-ware for reliably sending broadcast messages.

This aspect of our research is based on th is th ird  approach. We have developed a  reliabil­
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ity  protocol for UDP broadcast packets on a  single E th e rn e t segment. VVe are in terested  in 

a low-level protocol analogous to the (usually unim plem ented) reliable datagram  protocol. 

RDP[70]. We feel there is a  need for a  protocol that does not have the overhead of a  reliable, 

atom ic, or totally-ordered, broadcast system  designed for a  general range of networks. T he 

system  we explore is designed for a single network segm ent so there is no need to  handle 

rou ting  o r to use a  softw are em ulation of broadcast. Also, because of the sm all scale of 

th e  network setup we d o n 't need to address more com plex problems like assuring virtual 

synchrony and recovering from network partitioning. O u r protocol simply needs to  ensure 

delivery o f distinct d a tag ram  packets. In order to allow' efficient, correct parallel com puting, 

we also w ant the protocol to ensure th a t messages sent by any process are seen by others 

in the order sent. We axe not interested in globally ordering  messages, either to ta lly  or 

causally. T hat is. the o rder we provide is based solely on the sequence of messages sent 

by  each process. T here is no interdependence among m essages sent by different processes. 

G lobally ordering messages goes beyond the scope of a  sim ple UDP level protocol. O ne can 

th in k  of a  collection o f FIFO  pipelines connecting each process to each other. T he  proto­

col we have developed is therefore called Pipelined B roadcast Protocol (PBP) to stress its 

kinship to  UDP and RD P.

1 .3 .1 .1  S trong  R e lia b ility

M uch of the work in th e  area of reliable broadcasts uses a  s tric t definition of reliable. There 

have been a  number o f reliable broadcast protocols presented in the literature[30. 22. 2. 20. 

35, 66, 18]. However, th ey  are prim arily concerned w ith  a  stronger definition of reliability. 

M ost of these systems take  reliability to  mean an atom ic broadcast, despite process failures.
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O ne of the motivations for these systems is to provide virtual synchrony among distributed 

processes. Each broadcast message is guaranteed to be seen, accurately and in order, by 

all non-faulty processes o r by no non-faulty process. This is especially useful to distributed 

database systems, bu t is m ore s tric t, and time consuming, than  is required for many parallel 

program s. Most of the protocols also work for general network configurations and often incur 

g reater overhead than  ou r system  because they provide greater service. We briefly discuss 

some of the m ajor reliable broadcast systems and  point out some of the ways they are 

different from PB P below.

S tarting w ith ISIS[18]. researchers have looked a t protocols to achieve atom ic broadcasts 

in the  presence of process or network failures including lost messages. The ISIS system 

provides for causal or to ta l order and ensures v irtual synchrony am ong the processes. The 

notion of virtual synchrony is essentially a  form of agreement. Each process will see every 

message sent even if a  sender fails after sending messages to some process but before sending 

to  the  others, or none will see such a  message. The ISIS system is a  more general system 

th a t  provides more powerful service guarantees. It doesn 't use hardw are broadcast as it is 

designed to function on m ore diverse networks th a t may not have true broadcast capabilities.

The 0RCA[15. 89] Reliable broadcast system for shared objects uses a  serializing method. 

W hile it does use hardw are broadcast, it only uses it to send messages from the serializing 

process. It takes a t least two messages for each broadcast because each sending process 

m ust send its message to  the  serializing process, which then broadcasts it to the group.

Chang and Maxemchuck[30] developed a  totally  ordered protocol explicitly and exclu­

sively for broadcast networks. Their system is somewhat similar to ours in that it was 

developed for the same specific network configuration. However, much of the complexity
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o f their system  comes from the requirem ent to  provide to ta l  order among messages. T he  

system  uses a  ro ta tin g  token to determ ine which process w ill acknowledge each broadcast 

message. T he token-holding site, in effect, becomes a  serializing influence. The o ther pro­

cesses will deliver m essages in the sam e order they  are acknow ledged by the token site. T his 

m eans all processes deliver messages in the sam e total order.

1 .3 .1 .2  W eak  R e lia b ility

Som e work has been done  to take advantage of broadcasting messages without providing 

a ll o f the  guarantees o f  strong reliability, while still ensuring  delivery of all messages. T he 

PSync[71] system  uses piggv-backed acknowledgments and  causal knowledge to determ ine 

message order and delivery'. The PCODE[22] system  is m ost sim ilar to our approach. It uses 

hardw are broadcast a n d  doesn't provide a  global, total o rder. However, it is dem and driven 

an d . in a  sense, is synchronous. A receiving process makes requests to be sent messages. 

T h e  Transis[8] system  provides different levels o f order, using  m ulticast groups. The system  

provides for causal to  to ta l order of message delivery. Totem[66] and RMP[9-1] are sim ilar 

system s th a t use a ro ta tin g  token. Totem uses it to de term ine  which process may send. 

R M P uses the token to  pass information abou t delivered m essages to allow buffer space to 

be  cleared. They bo th  provide causal or to tally  ordered m essage delivery within a  m ulticast 

group. Both of these a re  systems designed for general netw ork topologies. Therefore, they 

m ust resort to po in t-to-poin t messages on non-broadcast m edia.
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1.4 O rganization

In  the following chapters we will present the work we have done to design an d  implement 

a  system  to  provide com puting cluster users w ith  a  broadcast-based, fine-grained DSM 

system . D uring our work it becam e clear th a t th e  communication layer is in teresting and 

possibly useful in its own righ t. This led to  the  separation  of PBP from the DSM system, 

allowing th e  reliable FIFO broadcast to be used for o ther purposes. C hap ter 2 presents 

th e  theoretical model for BDSM . We present th e  coherence protocol and a program m ing 

interface. We then prove ou r system  model provides th e  sam e consistency as PR A M . Before 

presenting the  actual im plem entation of BDSM we explore the com m unication layer that 

was developed to support reliable broadcasts. In chap ter 3. we present two versions of PBP. 

We present the protocol and  provide a formalism th a t shows the system works as required. 

We have performed a series o f networking tests w ith P B P  to help gauge its perform ance 

relative to common network protocols. T C P  and UDP. These results are presented in chapter

4. C hap ter 5 presents a discussion of the im plem entation o f BDSM on top of PB P . We then 

prove th a t the  im plem entation preserves the theoretical requirements of BDSM presented 

in chapter 2. To test the perform ance of BDSM we have developed a  test su ite  of parallel 

com putations. We compare th e ir execution tim es to those of similar program s using MPI 

in chap ter 6. In chapter 7 we look at two extensions to our BDSM system designed to 

address issues of scalability an d  fault-tolerance. We draw  some conclusions based on our 

work in chapter 8. To illu stra te  the program m ing usage o f BDSM we include BDSM and 

M PI versions of one of the te s t programs in appendix  A.
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C hapter 2

B roadcast D istr ib u ted  Shared  

M em ory

D istributed shared memory (DSM) is an interprocess com m unication m ethod primarily for 

parallel com putation. It strives to provide the same program m ing model for distributed 

memory machines as th a t found on many shared  memory parallel system s. In this chapter 

we present the  Broadcast DSM (BDSM) m odel we have developed. It is a weakly coherent 

model that uses broadcast com munication to disseminate updates. I t 's  weak enough to 

be efficiently im plem ented, bu t has strong  enough synchronization th a t it can be used 

for meaningful program s. We show tha t th e  model can be m ade to appear sequentially 

consistent to  program s th a t obey a certain  programm ing paradigm . A fter presenting the 

protocol we discuss the interface to our p ro to type  system.

28
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2.1 B D S M  O verview

T he previous chapter presented some of the goals of our research. We are interested in 

developing a  weak DSM that takes advantage of the efficiency of non-casual message passing. 

We feel there is potential for an  update-based system th a t allows fine-grained access. We 

would like to utilize the broadcast capabilities of the underlying com munication layer and 

hardw are. To overcome the weakness of the memory model such a  system should provide 

for effective synchronization. To achieve these goals we have developed a  weak model we 

call B roadcast DSM (BDSM). This chap ter presents the theoretical model and  discusses 

its benefits. We show how the BDSM coherence model m eets our stated requirem ents for 

a  weak memory th a t is still program m able. Our system provides a  model th a t is between 

PRAM  and slow memory in coherence. This model has effective synchronization to  make 

it appear sequentially consistent when needed.

A num ber of systems have been developed that use the page level of g ranu la rity [9. 27. 

55. 62, 67. 72, 82, 87, 92], This page-sized sharing can lead to  thrashing. O ur system  uses 

a  sm aller granularity  as defined by th e  programmer. I t provides a  fully-replicated shared 

memory th a t is modified by updates. These updates are sent using hardw are broadcast 

to reduce the num ber of messages an d  reduce the cost of updating  multiple copies. For 

perform ance reasons we do not enforce a  s tric t coherence model. BDSM provides a  form of 

PRAM  consistency, but it also allows functional synchronization. This makes for a  straight­

forward program m ing model th a t can be used for parallel num erical com putations as well 

as fault-tolerant distributed applications.

Program s using the BDSM model define and join shared memory segments. Each seg-
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SC

PC

SC = Sequential consistency 
C = Causal
PC = Processor Consistency CPRAM)
S = Slow memory 
B = BDSM

F ig u re  2.1: Coherence models as execution spaces, with BDSM

m ent is made up of some num ber of identically sized locations. T he updates to any given 

segm ent are in s tric t program  order. U pdates to  different segments are not so ordered. All 

w rites are immediately visible to the  writing process. In a  program with only one declared 

DSM segment. BDSM provides coherence identical to th a t of PRAM. For m ultiple segments 

w rites are ordered by process an d  segment due to  independent, per-segment buffers. There­

fore. it is possible for two w rites by one process to be applied by other processes in different 

orders. In  this way, BDSM w ith  multiple segm ents is weaker than the PR A M  model. It 

can be though of as a  hybrid  of PRAM , w hich is processor relative weakening, and Slow 

Memory, which is location relative. The extrem e case would be a  program  where each loca­

tion was on a different segm ent. This would make the DSM look like Slow Memory to the
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user program . Figure 2.1 shows the relation of the BDSM system  to the other generic weak 

mem ories. B oth of these extremely weak memories are considered to be too weak to  pro­

g ram  effectively. T hey  can 't be synchronized. The problem  is th a t, by using shared memory 

locations for synchronization, there is not enough control to enforce a  needed order. T he 

m em ory cannot be m ade to appear suitably strong to  execute meaningful programs. BDSM 

overcomes th is problem  by using the message-passing layer d irectly  for synchronization.

Assume x  and y  are in different segments.
Po Pi P>

x  1: V :=  2: dsm_barrier(0):

y ~  1: dsm_barrier(0): read(x) =  3:
x  := 3: read(y) =  1 or 2:
dsm _barrier(0):

F igure  2.2: Coherence of different segments

By using broadcast-based synchronization we ensure consistency after synchronization 

operations. In th is respect, our memory model is som ew hat sim ilar to release consistency. 

However, we do not guarantee that each process sees the same view of memory, ju s t th a t 

all updates have been applied. Updates by different processes to the same location are not 

ordered. Therefore, even after a barrier, it is possible for two processes to have different 

views of memory. A program  that allows unsynchronized access to the same locations by 

different processes may not have consistent views of memory across its subproccsses. As w ith 

o the r forms of weak memory, if this inconsistency cannot be tolerated by the application 

th en  more synchronization should be used. The fact th a t different segments are buffered 

an d  then  updated  independently will not effect the power of the synchronization operations.
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W hen a  process crosses a  barrier it is confident tha t all updates from other processes issued 

before those processes reached th e  barrier have been applied. Since no location can be in 

more than  one segment, the values in the various locations will be the hist w ritten  in each 

case (barring d a ta  races).

Po P i P 2

z :=  1: while ( x  1= 1) sk ip : while (y != 2) skip:

x  :=  1: read(z) =  1: read(x) =  0:

V -•= 2: read(z) =  0:

F igu re  2.3: Coherence provided is not causal

Figure 2.2 shows an example of three processes using two segments. We assum e locations 

x  and y  axe in different segments. Process Po makes two writes to x. Only the last one 

is guaranteed to be seen after the barrier, as shown in P->. It would be impossible for Pv 

to read the value 1 from location x .  Additionally, there  is a data-race involving location 

y. Therefore, its value is not determ ined. Reading location y  after the barrier could re tu rn  

either value w ritten. In order to remove the data-race. ano ther synchronization operation 

would be needed after one write to  y  and before the o ther.

Po Pi P 2

z :=  1: dsm_barrier(0): dsm_barrier(0):
dsm.baxrier(O): read(z) =  1: dsm_barrier( 1):

dsm _barrier(l): z :=  3; read(z) =  3:

dsm_barrier(l):

F ig u re  2.4: Coherence ensured using synchronization
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It is im portan t to  note th a t the coherence model provided by BDSM  is not equivalent 

to  causal ordering. I t is possible to have a  w rite event by one process cause another process 

to  issue a  write w hich is then  seen by a  th ird  before the initial w rite is seen (as shown in 

figure 2.3). A ssum e x . y  and  z are initially  zero. Process P j can see th e  w rite  to y  w ithout 

seeing the w rites to  x  and  z w ithout v io lating FIFO  update ordering. However, there is 

clearly a  causal link between the write to  z and  th a t to y. Synchronization can be used to  

ensure causal ordering  if required. Figure 2.4 shows the same basic m odel using barriers to  

enforce the required  causal order. The while loops, and hence the w rites to  x  and y. become 

unnecessary because th e  barriers serve to  indicate a  given write is com pleted. Note tha t 

the causal order is preserved. The w rite of I to z happens before the read in P i- Since the 

assignment to z occurs before the barrier it m ust be visible to P i a fte r it. Similarly. Pv is 

guaranteed to see th e  value 3 in location z after crossing both barriers.

2.2 B D S M  M em ory  M odel

Processes access a  shared memory space consisting of segments of equal sized locations. A 

w rite to a  location is sent as an update to  each other process in the system . Writes to any 

segment by a  process are applied by all o th e r processes in the order issued. The read of a  

location is a  s tric tly  local operation based on the latest value seen by th e  reading process. 

We define seen to  m ean a  BDSM system message, an update  or a  synchronization message, 

has been delivered to  and handled by the  BDSM system  at a given processor. For w rite 

updates this m eans the update  has been applied to  the local copy of memory. The meaning 

for synchronization operations depends upon  the operation. A BDSM system  message th a t
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has not yet been handled has not been seen. An updated value can be seen w ithout its 

having been actually read by the user process.

2 .2 .1  D e f in it io n  o f  B D S M  c o h e r e n c e

Define five operations: read, write, and  th ree  synchronization operations. T he synchroniza­

tion operations are barrier. lock_acquire and  lock_release. T h e  read and write operations 

provide access to individual memory locations. The synchronization operations do not have 

effect on  memory o ther th an  to  provide ordering. The lock_release operation only counts as 

a synchronization operation if there is a  following acquire. T h a t is. the synchronization is 

only meaningful if ano ther process tries to  acquire the lock. T he  relationships among these 

operations defines BDSM coherence:

1. W rites by any process to any segm ent are seen by all processes in the order specified 

by the program  order of the w riting process. Local w rites are immediately visible to 

the  writing process.

2. Synchronization operations are seen by all processes in the program  order of the issuing 

process.

3. All writes issued by a  process before issuing a  synchronization operation are seen by 

all processes before th e  synchronization operation completes and all writes issued after 

are seen after.

D e f in it io n  2.1 B D SM  coherence: .4 D S M  system  that provides the required operations and 

preserves the above relationships is said to be BDSM coherent.
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In  BDSM. a  process that crosses a  synchronization operation (passes a  barrier, or ac­

quires a  lock) has seen all writes by o the r processes before th a t operation. In the case of a 

barrier, since it applies to all processes, all processes have seen all writes before the barrier. 

Locks behave differently. Acquiring a  lock is a  single process operation. All writes by th a t 

process will be seen by all other processes before the acquire completes. And. all writes by 

o the r processes will be seen by the  acquiring process by the tim e it completes its acquire. 

T here is no assurance th a t o ther processes see all writes by each other when the lock is 

acquired. Additionally, releasing a  lock is a  strictly local activity, unless another process 

has requested the lock since it was acquired. So. unless th is is the  case, releasing a  lock 

does not order BDSM events.

2 .2 .2  F o r m a l i s m  a n d  D e f in i t io n s

In  this section we present a formalism to  model DSM behavior. T he model consists of a 

collection of events and some useful definitions and relations. The ordering constraints on 

these events are supplied by the definition of the memory being modeled.

2 .2 .2 .1  E ven ts

Events are generically defined as op“’*'c. The subscripts i and  n are the same for all opera­

tions. The first, i, is the process in whose history this event occurs. This operation is local 

to  process i. The second, n, is the  tim e-stam p of the event in process z. Events in a given 

process are partially  ordered by this tim e-stam p. A logical tim e-stam p is sufficient. Locally 

in itia ted  events axe totally  ordered. E xternal events that appear locally (updates and lock 

operations by other processes) are not so explicitly ordered -  the time-stam p only reflects
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when the event reg istered  a t th is  process.

T he superscripts a.b  and  c are used for optional inform ation that is dependent on the 

value of op. They m ay b e  left off if they  are irrelevant.

•  Basic events:

1. r f n =  read of location x  by process i at local tim e n .

2. w fn =  w rite to  location x  by process i a t local tim e n. T he actual value is 

im m aterial.

3. “  u p d a te  a t process i a t local time n p roduced by ? rjrn.

• Synchronization operations:

1. 6*n =  barrie r event k  in process i  a t local tim e n . T here must be corresponding

2. cij'^1 =  acqu ire  event by z of lock k  at z's local tim e ti. If i =  j  then m  =  n. if 

i j  then  th is  event represents j  giving z perm ission to acquire the lock. If z 

acquires lock k  (a f ’̂ 'n ) then  there must be corresponding a ^ n. Vj ^  z.

3. =  release event by z of lock k th a t was acquired at tim e n  a t z's local 

tim e m . T hese  are local events. The im portance is the next acquire, not the 

release itself. I f  ano ther process is waiting for th e  lock then v is followed by the 

appropria te  a operation.

2 .2 .2 .2  D efin itio n s

• Define -< as "ordered before". If  a is ordered before 6 in a  history then  a -< 6. Note, 

this is not globally transitive. I t is only transitive w ith in  a  given process' sub-history.
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as noted by the monotonically increasing subscript.

•  Define concurrent. ~||". as -*(a -< 6) A - ’(& X a).

• Define £  to be the set of all events in the system.

• Define T-L to be the history of all events in the  system. The history' T-L consists of events

in £ . partially' ordered by' -<.

• Define /t, to be the sub-history  of events as seen by process i. h, =  set o f all o j with k

i.

• Define s (x ) to be the segment on which location x  resides.

•  Define c(op,) to be the set of events concurrent to opl.

•  Define la s t(r fn ) to be the  singleton set consisting of the m ost im m ediately preceding

w rite or update event to location x  in h t.

la s t( r fn) =  {op“'^c : (op = w V op = u ) .a  =  x . m  =  m a x (k  < n)} Each process is

assumed to issue w f0Vx  to  represent an  initial base case.

•  Define va l(r fn) to be the  set of w  o r u  events the w ritten value o f which r  can return.

v a l (r t n )  =  i a s t (r i . n ) U {°Pj ' .m  €  C(Tf .n)  : a  =  x  A Op =  U '} .

2 .2 .2 .3  B D S M  D efin ition

BDSM can now be defined by a  set of axioms th a t involve events. Most o f them  provide

ordering constraints.

A x io m  2.1 given op“£ 'c and o p f ^ .  op ^  u  A n  < m  => opf„'c -< o p f ^ .
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Locally, all non-update events are in program  order.

A x io m  2 .2  w f  n => u ^ ^ V j  ^  i and w f  n -< #  z.

W rite leads to  updates, and  a  write com es before its updates.

A x io m  2 .3  w “n -< w\'m A s{u) = s(v) => it“'̂ 'n -< u vJ'l['rn'i j  ^  i.

U pdates for writes to the sam e segment by the same process are seen in the  order w ritten.

A x io m  2 .4  bkn => bkJTiy j  #  i.

B arriers are in ail processes.

A x io m  2 .5  bkn -< b[ m => bkJ O < blJ pV j #  i.

B arriers are to tally  ordered, and all processes see the same order.

A x io m  2 .6  w f  n -< bk m => uxx'n ■< bk aV j £  i..

U pdates for writes before a  barrier axe seen by all processes before the  barrier.

A x io m  2 .7  6 fm -< w f n =>■ bk Q -< ux'j-nV j  /  i..

U pdates for writes after barrie r axe seen by all processes after the barrier.

A x io m  2 .8  a ^ n => #  i.

Lock acquires sure seen by all other processes.

• «  k . i .n  k . i ,n  .  k ,i .n  , k . i .nA x io m  2 .9  ai Tl =» v i m A ai n -< v i m 

There m ust be a  release for each lock acquired.
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a * __  n  -i n  h.i .n  . k . i .m   _ k . i .n  . k . j . m  A k . i .n  . k . j .rnA x io m  2.10 a i-n -< a - /  => ; 0 -< A p -< a j

Lock acquires are ordered, and  a  lock-holder's release comes before the next acquire. 

A x io m  2.11 w ln < akj m => « f / n -<

Earlier updates by o the r processes must be seen before acquiring a lock.

2 .2 .3  B D S M  c o h e r e n c e  c a n  b e  a t  le a s t  a s  s t r o n g  a s  SC

Program m ing on weak DSM systems is usually done by m aking the memory appear stronger 

to a  running program . This is done by using synchronization operations. A program  running 

on w hat appears to be a sequentially consistent memory will behave as th e  programm er 

expects. BDSM can be made to appear a t least as coherent as SC. To show th a t this is so 

we use the above formalism.

D e fin itio n  2.2 data-race-free in the context o f BDSM :

1J Between any writes by different processes there is a global synchronization operation. 

2) Between any writes by a single process to locations in different segments there is a 

global synchronization operation.

A global synchronization operation is one th a t effects all processes. In the  BDSM case, 

there is only one type of global synchronization, a  barrier.

D e fin itio n  2.3 A global synchronization event e is said to be between two other events u .v  

i f  u  ~< e < v or v -< e < u.

This condition will be true i f :
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1. u - < e - < i ) o r t i - ( e - < u i n  the program  order of one process.

2. u  and v are in different processes an d  e is a  barrier then u  -< c in one process and 

e' < v  in another, w here e and e' a re  m atching barrier events.

To capture the notion o f  a  w rite being seen by all the processes in the system we use 

th e  term  "globally precedes” . If  one w rite globally precedes ano ther then  th a t order is seen 

by all processes. T h a t is. if  a  w rite and its  associated updates com e before another write 

an d  all of its associated u p d a te s  then the first w rite globally precedes the second. We will 

use the <SC operation to deno te  this. If all writes are globally ordered then the writes in 

a  system  are totally o rdered . Each process sees the same order o f w rite events. W rites in 

different processes can only  be ordered by th is  relationship. If they  are not so ordered they 

are concurrent.

D e f in it io n  2.4 Globally precedes: w fn <§Z m'j ni i f  and only i f  < 11 k.o"' - VA: /  i . j  A

u f] 'n < wy m.i  A w fn -< w y] rn. i  = j .

To prove that BDSM can  appear as a  sequentially consistent m em ory we will show tha t 

it can be made to provide a  to ta l order of all writes. This is stronger th an  SC. but is clearly 

sufficient to ensure a t least sequential consistency. We first show w hat is required for a  set 

of writes in an execution to  be totally-ordered. We then show th a t a  data-race-free program  

on BDSM has totally ordered  writes.

L e m m a  2.1 I f  all writes in  a program are seen by all processes in  total order, and that total 

order obeys tke program order o f each process, then the program appears to be executing on 

a m em ory that is at least SC.
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T his follows from the definition of sequential consistency. A to ta l order of all writes seen 

by all processes is an execution that is a  legal interleaving of the  program -ordered writes of 

all processes. Since it is seen by all processes, there is one view' of memory.

L em m a  2 .2  I f  an order can be established between any two (different) events in a system  

then the events are totally ordered.

By the  definition of to ta l order, if Vx and Vy ^  x. E H . x  is before y  or y  before x  then 

the  elem ents of R  are totally  ordered.

T h eo rem  2.1  A data-race-free program running on B D SM  has totally ordered writes.

Proof: Take any two distinct w rite events a =  w f n.b = w 'jm ^  E ither a <§C b or 

b <g; a in H.

1. Consider i =  j:

•  If x =  y or s(x) =  s(y), then  a and 6 are ordered by the program order of p t . 

Since a ^  b. n  ^  m . E ither n  > m  or m >  n . From axioms 2.1 and 2.3 and  the 

definition of globally precedes, a b or 6 <C a. The w'rites are ordered the same 

a t all processes.

•  If x 7̂  y and s(x) ^  s(y) then  a and b must have a  synchronization operation s 

between them  (definition 2 .2 ).

Suppose a -< b in hi.

— We have a < s -< b.

— From axioms 2.6 and 2.7. U j‘’n -< s/t,; -< u^'Jf m.V k  ^  i
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— Since -< is transitive locally. u^'pn -< u^’JoTn .V  k  i

— From the definition o f <C. a < 6 .

Suppose b -< a in h {.

— We have b -< a -< a.

— From axioms 2.6 and  2.7. u ^ p m -< Sk.i <  u^'lf Tl.Vk £  i

— Since -< is transitive locally. u^f™  -< u^'pn.V k  /  i

— From definition 2.4. b -C a.

2. Consider i ^  j:

• Then a and  b m ust have a  global synchronization operation, a barrier, .s between 

them (definition 2.2). From definition 2.3. either

— hi contains a - < s - <  u f/7™ and h3 contains u 1̂ 1 -< .>>■ -< b.

From axioms 2.6 and 2.7 and the  definition of -<. up'^n -< Up[i'm.Yp. 

Therefore a <§C b.

— or hi contains -< s < a and hj contains b < s < .

From axioms 2.6 and 2.7 and definition of -< . Up'f’m -< up'/.'n .Vp.

Therefore b a.

T h eorem  2.2 B D SM  can provide the appearance o f sequentially consistent memory to 

data-race-free programs

Proof: The proof of theorem 2.2 follows from theorem  2.1 and lemmas 2.1 and 2.2.

By showing tha t, in this extrem e case. BDSM can appear sequentially consistent to 

programs we have shown th a t anything com putable on a sequentially consistent memory is
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com putable using BDSM. T his is a  powerful statem ent o f th e  u tility  of such a weak system . 

In chapter 5 we show th a t our im plem entation of BSDM is consistent with these axioms 

and  therefore provides BDSM coherence as presented above.

2.3 Program m ing Interface

In  this section we present the program m ing interface for our experim ental system . An 

exam ple of the usage of th is interface can be seen in the  BDSM version of the Jacobi 

program  in appendix A. T he  actual im plem entation of th e  BDSM system  is presented in 

chapter 5.

S tarting  a BDSM com putation is a  two step process. F irs t, it is necessary to have pro­

cesses running on separate machines. Second, they must each call d sm _in it. The function 

dsm _startup  can be used to  perform the remote invocations o f the program on different 

machines. This call is not required. T he group members can be started  individually. Using 

either invocation m ethod, one (and only one) of them  should  have the s_ fla g  param eter 

set to a  non-zero value. T his process will act as the server during the group registration 

protocol. This registration is done using th e  s ta rtu p  function of the  P B P  reliable broadcast 

protocol, presented in chapter 3. Once all of the processes have registered, execution can 

continue.

A single process uses dsm _seg_at to  c rea te  a  shared  m em ory  segm ent w ith a  un ique  

given key. The flag p a ra m e te r  should  b e  set to DSH.CREATE. O th e r  processes can then  use 

dsm _seg_at w ith  the  flag se t to  DSM.J0IN a n d  the  sam e key to  a tta c h  to  th is  segment once it 

has been  created. T h e  n um ber o f locations a n d  the size sh o u ld  be specified by all processes.
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T he function dsm_remove deletes th e  given segment from the  local DSM system . It only 

effects the  single calling process. O thers processes can continue to access th a t segment. 

W hen a  process is finished using BDSM completely it calls dsm _exit. T h is call forces all 

w rites to  be dissem inated and removes the calling process from both the BDSM system 

and  the  P B P  communication system . If  the caller has no active segments. dsm _exit is non- 

blocking and  does not effect o th e r processes except to remove references to th is process.

Since BDSM uses a  granularity  sm aller than a  page, it cannot use the m em ory manage­

m ent to  make accesses to shared m em ory transparent. Access to a BDSM m em ory location 

is m ade through the read and w rite  functions. A process w riting  to a  single location pro­

vides a  segm ent id. a  location num ber within th a t segment and  a pointer to the value to 

be w ritten . M aking this a function call rather than  an assignment is necessary to allow 

the  BDSM system  to see the u p d a te  and propagate it to  o ther processes. T he function 

dsm _bulk_w rite can be used for efficiency when a  num ber of contiguous w rites are made. 

This causes all buffered writes in th e  segment to be sent and  then sends a  single update of 

all of the  d a ta  in the range specified. Using this function is ideal for d a ta  initialization and 

for a  num ber of programs tha t w rite  d a ta  in blocks.

R eading locations in BDSM is done with the dsm_read function. If a  program  has 

enough synchronization then it can  make reads transparen t by requesting a  pointer to a 

location in a  segment. This po in ter can then be used w ith  the subscription operation to 

access individual locations directly. However, since there is then no control over when a 

user process accesses a  location it  is im portant th a t there be no write-write o r read-write 

d a ta  races for th a t location. We have found that this is common to many parallel numerical 

applications. This is not a lim itation  imposed by BDSM as it is necessary in any shared
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memory environm ent. Barriers and locks are used between writes accesses and reads to 

prevent these d a ta  races.

2 .3 .1  I n it ia l iz a t io n  a n d  fu n c t io n s  

int dsm_startup(int *argc, char **argv) ;

The d sm _ sta rtu p  function can be used to s ta rt programs on different machines. The 

command line argum ents following a  "— ” delim iter are read by the  BDSM system. 

The actual param eters include the num ber of processes to s ta r t, w hether or not to 

create rem ote x te rm  windows on the local display, and whether to  use ssh  or r s h  to 

make the rem ote connection. Most o f these argum ents can be specified in a configu­

ration file. This call is designed to make the BDSM system easier to use. However, it 

does not have to  be used to s tart the  system. Each process may be started  by hand. 

On success d sm _ sta rtu p  returns zero. On any error it returns a  negative value.

int dsm_init (int *numprocs, int s_f lag) ;

This is the prim ary initialization routine for the BDSM system. Each process in a 

com putation m ust call this function. One and only one of these calls should have the 

s_f la g  value non-zero. This one process will be the server for th e  group registration 

routine. T he numprocs param eter is set by BDSM to the num ber of processes in the 

group after registration is complete. On success the calling process' id within the 

group is re turned , a  value between 0 and numprocs - 1. A negative value is returned 

on an  error.

int dsm_seg_at (int numlocs, int locsize, int dsm_key, int dsmJlag);
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Once BDSM h a d  been initialized using d sm _ in it separate  segm ents of shared memory 

are created u s in g  dsm_seg_at. The first two param eters num locs and lo c s iz e  specify 

the  number o f locations and the size o f each location, respectively, that this segment 

will have. T he dsm_key is used to uniquely  identify different segments. Since only one 

process creates a. segment, o ther processes need to use th e  sam e key as the creator to  

jo in  tha t segm ent. The final param eter. dsm_f la g  is used to either create (DSM.CREATE) 

a  segment using the given geom etry values and key o r jo in  (DSM.J0IN) an  already 

created segment w ith the same key as th e  one supplied in th e  call. When joining a  

segment the nu m lo cs and lo c s i z e  shou ld  m atch those given by the  segment's creator. 

O n success a  v a lid  dsm_id descriptor is retu rned . On e rro r a  negative value is returned.

2 .3 .2  M e m o r y  A c c e s s  F u n c tio n s  

int dsm_write(int dsm_id, int location, void *value, int rel_flag) ;

BDSM processes interact with the shared  memory th rough  several routines. The first 

is the basic w rite  function dsm _w rite. T h is function takes a  valid dsm_id descriptor 

(as returned by dsm_seg_at). It th en  w rites the value pointed to by v a lu e  to the 

given lo c a t io n  in  the specified segm ent. T he final argum ent allows a process to issue 

a  write th a t bypasses the reliability protocol for message delivery. If r e l_ f  la g  is set 

to  DSM_WRT_REL th e  normal reliable b roadcast will be used for the update associated 

w ith this write. I f  r e l_ f la g  is set to  DSM_WRT_UNREL then  the associated update  will 

be sent as a  s ta n d a rd  UDP datagram . T h is write will take effect locally, bu t may or 

may not be seen  by all of the o ther processes. The re tu rn  value is zero on success, 

negative on e rro r.
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i n t  d sm _ b u lk _ w rite (in t dsm _id, i n t  lo c a t io n ,  v o id  * v a lu e , i n t  num _w rites , 

i n t  r e l _ f l a g ) ;

Since it is often the case th a t a  process, especially when initializing shared  da ta , 

w rites to  a  number of contiguous locations. BDSM provides a  bulk w rite  function. 

T his function is similar to  d sm _ v rite . However, it w rites num_writes locations from 

v a lu e  into the given segm ent s ta rtin g  a t lo c a t io n .  These writes will be  grouped and 

sent as an  update th a t takes advantage of this contiguity. Because less bookkeeping 

inform ation is required, m ore d a ta  can be sent in fewer messages. A dditionally, the 

overhead of multiple function calls is avoided. T h e  return  value is the num ber of 

locations w ritten  on success, a  negative value on error.

v o id *  d sm _ read (in t dsm _id ,vo id*  v a lu e ,  in t  l o c a t io n )  ;

M emory locations are accessed for reading using th e  dsm_read function. T h is routine 

reads the  value in l o c a t io n  o f the  given segment into the memory space pointed to 

by v a lu e . I t returns v a lu e  on success. NULL on error.

v o id  *dsm _p tr_ read (in t rism i d , i n t  lo c a t io n )  ;

Since, in BDSM, reads are local operations, m em ory locations can be accessed for 

reading directly. This routine re tu rns a  pointer to  the internal BDSM d a ta  space 

were lo c a t io n  is stored in th e  given segment. T h is  pointer can then be  used as an 

array  of the appropriate d a ta  type. However, it should  not appear on th e  left of an  

assignm ent statem ent. On error, NULL is returned.
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2 .3 .3  S y n c h r o n iz a t io n  F u n c t io n s

int dsm_barrier(int b_id, int *num_procs) ;

T his function performs a  m ulti-process barrier. Each process must make a  call to this 

function with the same identifier value, as given by b_id. The param eter *num_procs 

specifies the num ber of o th e r processes required to cross the barrier. If this value is 

NULL then the system  perform s a total barrier. Before blocking for the  barrier the 

BDSM system will flush all of the caller's buffered updates to ensure they are seen 

before the barrier. It re tu rn s zero on success and a  negative value on error.

int dsm_lock_acquire (int locknum) ;

T here are two functions th a t deal with locks. T he first dsm _lock_acquire is used to 

acquire the given lock, locknum. The function retu rns zero on success and  a negative 

value on error. The re tu rn  value should be checked since, on error, m utual exclusion 

is not assured. It is considered an  error to acquire a  second lock w ithout releasing the 

first.

int dsm_lock_release(int locknum);

This is the complement to  the previous function. It releases the previously acquired 

lock, locknum. It is considered an error for a process to release a  lock tha t it is not 

currently  holding. The release routine re tu rns zero on success and a  negative value 

on error.

2 .3 .4  C le a n -u p  a n d  E x it  F u n c t io n s  

int dsm_remove(int dsm_id) ;
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A process removes a  locally attached segment with the function dsm_remove. The 

segment given by dsm_id is removed from the local memory and  no more incoming 

updates for this segm ent will be handled. The descriptor is th en  invalid for fu rther 

BDSM operations, unless returned by a  subsequent dsm_seg_at c a l l.  Before returning, 

all of the calling processes updates for th is segment must be delivered  to other group 

members. It re turns zero on success and  a  negative value on erro r .

void dsm_exit();

T he function dsm _exit removes the calling process from the B D S M  system. It will 

first remove any a ttached  segments, and  then close the com m unica tion  channels to 

the BDSM group.

2 .3 .5  C o n fig u r a t io n  F i le

Some of the functionality o f  the BDSM system  can be controlled by a  configuration file th a t 

is read when the system s ta rts . Each process should have access to iden tica l copies. This 

tex t file consists of a  num ber of flags th a t determ ine the behavior o f t  he BDSM system . 

Most are used by the d sm _ sta rtu p  function. T he location of the file is either the current 

directory or the directory defined in the environm ent variable DSM_WORKjING_DIR.

DSMEXECPATH T his shou ld  be  set to the  full d irec to ry  path  to w here th e  b in a r y  lives so th a t  

it can  be executed rem otely.

XTERMCOMMAND T his line shou ld  be set to th e  com m and to  run  to  genera_te a  term inal.

MACHLISTFILE This shou ld  be th e  full nam e of a  file listing m achines to- s ta r t  rem ote jobs 

on.
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USEXTERMS T his flag tells the system  to s ta r t rem ote term inals on the root machine.

USESSH T his flag specifies tha t ssh should be used instead of rsh  to  make* rem ote connections.

BUFFERWRITES This flag allows the  user to  control whether o r  not the system  buffers writes. 

I f  it 's  set to  zero, the system  will send each update as th e  write call is made.

2.4 C onclusions

We have presented a  new weak DSM m odel. This model is based on using broadcast to 

supply  updates to replicated copies of the  shared space. O ur m odel overcomes the problem s 

of sim ilar, non-causal memories by using message-passing for synchronization operations. 

T hese synchronization operations provide enough order th a t  a  program th a t is correctly 

w ritten  can see a sequentially-consistent memory model ra th e r  than the weaker BDSM 

model. We also presented the basic program m ing interface for our system. In the  next 

chapter, we look a t th e  PB P protocol th a t supplies the program -ordered, reliable broadcast 

which forms the basis of our im plem entation of BDSM.
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T h e P ip elin ed  B roadcast P rotoco l

T he previous chapter presented a  new model for DSM. called BDSM. BDSM is inherently 

designed to use broadcast to dissem inate updates. Due to the potential for message loss 

using U DP on an Ethernet segm ent, an im plem entation of BDSM requires some form of 

reliable broadcast protocol. Therefore we have developed a  reliable broadcast protocol 

called Pipelined Broadcast Protocol or PBP. It guarantees th a t all messages sent are de­

livered and th a t they axe delivered in the order sent. W hile there have been o ther reliable 

broadcast protocols developed, our system is different from the  previous exam ples in several 

ways. F irst, PB P  is designed exclusively to use hardw are broadcast. We have designed it 

specifically for a  common networked environment. Second, we provide only source order. 

Messages from any process are delivered in the order sent. There is no global ordering. 

Causal or atom ic ordering could be implemented on top of PBP. if required. Third. PBP 

is a  low-level protocol, not a general collection of services. We provide a m inim al interface 

consisting of send and receive. Fourth, our prim ary goal is to make the com m on all-to-all 

com m unication patterns used in many parallel program s as efficient as possible on a net-

51
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work cluster com putational platform . We use ou r system in place of o th e r network-based 

message passing systems such as the MPICH[45] im plem entation of M PI. or a  collection of 

T C P  connections.

T he prim ary function o f the PB P system is to ensure the delivery o f every message 

sent. Since it uses a  modified windowing protocol, and thus keeps track  o f message se­

quence numbers, ensuring process order requires little  extra work. W ithou t the possibility 

o f retransm ission, messages cannot be received ou t o f order: they can only be om itted. The 

E thernet acts as a serializing influence. Only one message can be on th e  wire at a time. 

However, messages that axe lost will leave gaps in the  order. If they are subsequently re­

transm itted . due to a  tim eout, they will then arrive after messages w ith  higher sequence 

num bers. This would be a  violation of FIFO delivery order. So each process maintains a 

buffer for each other process. Messages received are  placed in this buffer an d  only delivered 

to the  application when all preceding messages, from the same sender, have been received 

and delivered. This allows th e  system to be seen as a collection of FIFO queues, or pipelines, 

a t each process. In an n  process system there is one outgoing queue and  there are n  — 1 

incoming queues at each process. W hen the message at the head of any incom ing queue has 

a  sequence number equal to  the expected sequence num ber from the corresponding process, 

it is eligible to be removed and  placed on a general delivered queue. An application process 

can then  consume items from this queue as they become available.

For the PB P system we assum e all of the processes are known to each o the r a t startup. 

This means the processes m ust know the total num ber of processes in the group and a com­

mon po rt number. This is done through a  group registration phase as p a rt o f initialization. 

One process, called the server, which will have process id zero, receives messages on the
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common p o rt. All o ther processes send a  message to the  server a n d  aw ait a confirm ation in 

return . Once the  confirm ation is received each process broadcasts a  message with sequence 

num ber zero. W hen th is message has been acknowledged by all o th e r  processes the protocol 

has s ta r te d . Control is retu rned  to the application  process, and it m ay then begin sending 

and receiving messages. Since we are not dynam ically  making connections to long runn ing  

system s we do not need a  true  three-way handshake to  initiate th e  protocol.

Processes running  on networked w orkstations can fail. The host workstation may go 

down, b e  rebooted or corrupted is some way th a t destroys the process tha t is a  m em ber o f 

a given com putation . W hen this occurs, P B P  will tim eout and  tak e  steps to determ ine if 

the process has indeed failed. In order to ensure th a t the rem aining processes can continue 

to send messages we need to  remove dead process from the acknowledgment protocol. Since 

we are using a  sim ple, flat network topology, failure detection is no t as complex as it m ight 

be in o th e r dom ains. T here is no way for m ore th an  one process to become partitioned  

from th e  rest. A single workstation may becom e disconnected b u t th a t is. in effect, a  crash  

failure. O ur system  assumes crashes will be rare, b u t also behaves in a  pessimistic m anner 

regarding declaring a  process dead. Once a process is declared dead  it is assumed to always 

acknowledge every messages as soon as it is sent. This way the rem aining processes will 

continue to make progress. We do not handle po ten tial recovery o r  returning a process to  

the group once it has been removed.

We have developed and  implemented two versions of PBP. T h e  first uses a positive 

acknowledgment protocol where the sender re transm its  messages if  it has not received ac­

knowledgments in a  certain  amount of time. T he second uses a  negative acknowledgment 

protocol w here receivers request resends of m issing messages. In  th e  following sections, we
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present a  detailed  look at each version of PB P.

We chose to use E thernet broadcast addresses for this im plementation. T h e  o ther option 

would be to use IP  Multicast[34. 86]. IP  M ulticast would allow multiple groups w ithin the 

P B P  system . Each process could join m ulticast groups it is interested in and  in theory only 

be in te rrup ted  by network packets sent to  those groups. It would also allow for system s to be 

on different segments if connected by m ulticast aware routers. Since our goal was specifically 

the  hardw are broadcast we d idn?t need th is la tte r  benefit. As currently im plem ented the 

system  is designed to have a  single com m unication group. In chapter 7. we discuss allowing 

sm aller divisions of the com putation to  improve scalability. It is there th a t  IP  M ulticast 

would be m ost useful. However, the network interfaces we are using. 3Com  3c509 cards, 

only have binary  filtering[44]. Therefore, all processes would still need to have a  software 

in te rrup t to  handle all packets to  determ ine if they are for m ulticast groups th e  local machine 

is a  m em ber of. T he benefits of selectively in terrup ting  only those machines th a t have joined 

a  group is lost w ith  this particular hardw are.

3.1 P o sitiv e  A cknow ledgm ent P rotoco l

T he first version of PBP (PB P1). is a  positive acknowledgment protocol. Such a  protocol 

requires some form of response from receiver to sender acknowledging receipt of each mes­

sage. I t bases the  retransmission of potentially  lost messages on a tim er expiring a t the 

sender before th is response has been received. PBP1 is an  extension of a  s tan d ard  window 

protocol w ith delayed acknowledgments. R ather th an  a single expected sequence num ber 

from a  single connected sender, each process m aintains a  vector of expected sequence num ­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A P T E R  3. TH E  P IP E L IN E D  B R O A D C A S T  PR O TO C O L  55

bers. At process i the j t h  elem ent of this vector corresponds to the expected sequence 

num ber from process j .  Processes m aintain a  vector of incoming acknowledgments as well. 

T he m inimum value across each process' vector is the  current base of th e  window at tha t 

process. All messages w ith sequence numbers less than  this minimum have been received 

and  acknowledged by all processes and thus no longer need to be buffered a t the sender. 

Each message sent by process i  will have a  single sequence number. It will also have a vector 

o f acknowledgments. W hen process j  receives a  message from process i. it uses the value 

o f the  ith  entry of this vector as an  acknowledgment for its messages th a t  have sequence 

num bers less than or equal to  th a t value. This potentially increases the minimum value of 

j 's  acknowledgment vector and  allows the window a t process j  to slide upwards.

3 .1 .1  P r o to c o l  P r e s e n t a t io n

Assume a set of n nodes, num bered 0..n — 1 on a broadcast medium network. Each node 

runs a  user process th a t requires reliable FIFO  broadcast service and a  PB P layer that 

provides it. The PB P layer is designed to operate as a  middle layer between a user process 

and  the broadcast functions o f a  network. P B P  communicates with a user process by way of 

two queues of user message d a ta . T he send_q is used when the user calls the  send function 

to  ensure sending a  message is non-blocking a t the user level. This queue also ensures 

th a t message sending events by the user are handled in FIFO order by th e  PB P system. 

Messages to  be consumed by th e  user process axe pu t in the recv_q by th e  PB P layer. The 

user process can then dequeue th is da ta  as it needs to. These two queues obey the usual 

semantics. For the discussion o f the protocol we are not interested in th e  specifics of the 

user process. We are concerned w ith  getting messages in order and placing them on the
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recv_q. Once th is is done for a message it is beyond the concern o f PBP. Therefore, w hen

we ta lk  abou t process p, we mean the PB P  layer a t  node z.

Local data :

in t ws: / /  window size

msg in J y u f fe rs[0 ..n  — l][u;.s] of messages: / /  to reorder messages 

m sg o u tJ n i f  fer[w s]: / /  Outgoing buffer, sen t but not acked 

queue se n d jq . recujq: / /  hold user messages

in t exp seq n o [0 ..n  — 1]: / /  expseqnofij is nex t seq number to send at i 

in t window -base[0..n  — 1]: / /  bases o f o ther's windows

in t wb =  m inj  {window-base[j]Vj ^  i); / /  acks. wb is what can be base of window. 
int currjbase:  / /  expscqnofiJ - currjbase = — number o f outstanding messages 

bool a c k -fla g : / /  initially false

Figure 3.1: Local D ata  for PBP1

Figure 3.1 lists the  s ta te  tha t is used a t each process i during norm al operation. T he  

window size is determ ined a t runtime and is s to red  in ws. For P B P1. this is usually set to 

16 messages. O nce the protocol starts up. each process will have sent, and acknowledged, 

a  message w ith  sequence num ber zero. User messages begin a t one. The highest sequence 

num ber for w hich all acknowledgments have been received is wb which is. a t all times, the  

m inim um  value in the  vector window_base. excluding the ith  elem ent. The base of the local 

window is defined by currJjase. Since wb can change based on messages received these 

two variables are separate. However, each tim e th e  window is ad justed  currjbase will be 

set to  equal th e  value of wb a t that time. T he i th  element of th e  vector exp.seqno holds 

the nex t sequence num ber to send. The last m essage sent is expseqno{i\ - 1. The num ber 

of pending messages is. therefore. exp.seqno[i\ - currjbase. These pending messages are  

held in  a  message buffer, out-buffer[ws], which is indexed circularly modulo ws. The nex t
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buffer location to  use is exp.seqno[i\ m od w s. To reorder incoming messages, eacli process 

m aintains an  array  of message buffers. in_buffers[0..n — 1 ][u /.s]. Message from process j  are 

placed in the appropria te  buffer location of in^buffers[j\. These buffers are indexed in the 

same m anner as the  out-buffer. except they  use the sequence num ber of the arriv ing message 

m odulo w s  as the determ inant. The expected sequence num bers from other processes are 

stored in  exp_seqno[0..n — 1]. Each o f these num bers serves as both  the next sequence 

num ber expected and an acknowledgment for all earlier messages. For example, a t  process 

Pi. exp_seqno[j\ is the next message pi should receive from pj and all messages w ith  sequence 

num ber s  < exp.seqno[j] have been delivered a t p,.

D e fin it io n  3.1 Delivered: We say a message from  some p3 that has been received by p, 

from  the network and enqueued on the local recv.q has been delivered at p } .

User Calls:

send_msg(da£a) {

enqueue(dafa.send_g):

>

d a ta  recv_msg(){

W hile (recv.q  is empty ) nop: 
re tu rn  (dequeue(recu_(7)):

>

Figure 3.2: User calls to PBP1

An application program  communicates w ith PB P. in essence, through two functions, 

shown in  figure 3.2. To send a  PBP message a call is made to the send_msg function. The 

application d a ta  to  be sent is passed as a  param eter. The message is simply appended to
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the send_q. To receive a  message a  blocking call is made to recv_m sg which returns a  data 

message when one is available on the recv_q . The use of these queues ensures messages 

to and from the P B P  layer are in FIFO order. All messages sent by the application are 

handled by the local P B P  process in the o rder they are enqueued. Similarly, all messages 

delivered by the P B P  layer are handed to  the  application in FIFO  order.

Message m  = (t . i .n .e .d a ta ) where

t = message type: PLAIN_ACK or ORDINARY 

i = sending process number 

n =  sequence num ber of this message

e =  vector o f acks, highest sequence num ber delivered for each process a t i 
data = user level message.

F ig u re  3.3: Message format for PBP1

Each PB P I message consists five com ponents, as shown in figure 3.3. The message 

type, either PLAIN_ACK or ORDINARY, defines how the message will be handled. User 

messages are type ORDINARY and will have non-null data. The o the r type. PLAIN-ACK 

is used when the protocol needs to explicitly send an acknowledgment. This occurs when 

there are no outgoing messages on which to piggy-back the acknowledgments. In this case. 

data will be NULL. T he sending processrs process number, i. is included in each message. 

Combined with the sequence number, n , th is uniquely defines each message. The vector e 

is a  copy of p i s local exp_seqno vector. These axe the piggy-backed acknowledgments.

To define the protocol we will use a  form of guarded com m and notation where each 

guard that is enabled m ay be executed a t  any point. The protocol is essentially a  forever 

loop, performing whichever actions are enabled as possible. All of the  instructions in each 

guard are executed atomically. In general, they may not be interleaved. This is a  little
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m ore stric t than  is actually  necessary in practice, where access to critical sections cam  be 

synchronized when using multiple threads of execution. Figures 3.4 and 3.5 show th e  ac tnons 

for the  receiving and sending sides of the  protocol, respectively, for process i.

Receiving Actions:

1 receive message m  =  { t.j .n .e .d a ta )  from network do

if (i = =  j  ) continue:
window.base[j] =  max(window_base[j\. e[i\ — 1):
if (t = =  PLAIN.ACK) continue: / /  We already got ack info
if (n <  exp.seqno[j})

set ack tim er: 
continue:

if { in J m f f  ers\j][n  mod u/s] = =  NULL) 

in J o u ffe rs[ j\[n  mod trs] =  m:

od:

/ /  Pass in order messages to application through recv.q

2 while (3 j ^  i  : in J ru f f  ers[j][expscqn.o[j} mod w s  ] != NULL) do

enqueue ( i n . f  f  ers[j\[exp_seqno{j\ mod ws ]-> data, recvjq): 
in jb u f  f  ers[j][expseqno\j] mod w.s]= NULL: 
exp seq n o [j] -t-+: 
set ack tim er

F igu re  3.4: PBP1 Receive Actions

T he receipt of a message happens w ith action 1. W hen a  message is available from the 

network a t pi the message can be handled. T he first step is to  ignore self-sourced m essages. 

Since this is true  broadcast, each process usually receives each message sent, including tiiaose 

sent by itself. The next statem ent applies the acknowledgment from p j. The value o f  e[aE] is 

the  next sequence num ber p j is expecting from p t. so e[i] — 1 is the last message delive-red
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a t p j from p t. All m essages w ith  sequence num bers less th an  o r equal to e[i] — 1 have been 

successfully delivered to  p} . I f  th is is a  PLA IN .A C K  message, p, is done w ith it once the 

acknowledgment has been  applied. If  n is less th a n  th e  expected sequence num ber from pj. 

this is a  retransm ission pi does not need. In th is  case, p, sets the ack_flag variable so it will 

send an acknowledgment in case p0 is re transm itting  messages due to a lost acknowledgment. 

Then, pi is done w ith th e  old message. Finally, if th is is a  new message we place it in the 

in_buffers location for process j .  based on n  m odulo w s.

A ction 2 is responsible for passing messages to the user level. It is enabled when the 

in.buffers location for th e  base of any other p: s window has a valid message in it. In this 

case, the data  from th a t  message m  is appended to the  recv.q. The buffer location is then 

cleared by setting it to  NULL. T he base of p j's  window. exp_seqno[/j. is increm ented to 

reflect the  delivery of m essage n  from pr  Additionally. p t sets the ack_flag so it will send a 

PLA IN .A C K  message s ta tin g  th is fact if needed. If action 2 is performed each tim e  action 

I is. then  it can be sim plified to only consider th e  sender, p j. of the message th a t triggered 

action 1.

In order to reclaim out-buffer spaces and slide the  window' upwards, p, executes action 3. 

I f  the  current base of th e  window' is less than or equal to the minimum value th a t has been 

acknowledged, represented by wb, p, clears the corresponding out_buffer location. T hen, it 

increm ents currJbase. T h is  has the effect of lowering the  num ber of ou tstanding messages 

and could therefore enable more messages to be  sent. Finally, the resend tim er is reset to 

prevent it from a ttem p tin g  to  retransm it messages if there a ren 't any outstanding.

A tim eout occurs w hen one of the timers, either the ack tim er or the resend tim er, 

expires. W hen this happens action 5 is enabled. T he resend tim er, in P B P1, triggers
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Sending Actions:

/ /M o v e  window base upwards and clear buffer locations i f  possible

3 while (currJbase < — wb) do

clear outJbuffer[currJbasc  mod u/s]: 
currJoase+ + : 
clear resend tim er:

od:

/ / S e n d  messages i f  there are some and there is buffer space

4 while (!empty(serccL<7) A expseqno[i] - currJbase  < ws) do

m  =  (ORDINARY, i. exp.seqno[i\. e x p _.segno[0..n — 1]. dequeue(.se7jc/_f/)): 
outJbuffer\expjseqno\i\ mod ws] =  m : j

send m to network: j

expseqno[i]-1r+ m. ;
set resend tim er: J
clear ack tim er : j

i
od:

F ig u re  3.5: PBP1 Send Actions

the retransm ission of all of outstanding messages. T he timer gets set whenever there are 

any messages outstanding. This is the m ethod by which message loss is overcome. If a 

process does not receive the appropriate acknowledgments then the resend tim er will expire 

and messages will be retransm itted . The second tim er is the ack tim er. It is set when 

new messages are received. Since acknowledgments are delayed, a  process m ust send a 

PLAIN-ACK at times. This tim er specifies w hen this happens. It needs to  be set less than 

the resend timeout so th a t PLAIN_ACKS will b e  sent before messages are re transm itted  to 

reduce ex tra  messages.
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T im er Event:

5 tim eout do

if (resend tim er expired) {

for each m =  (t . i .n .e .d a ta ) in out.buffer
send 77i = (t. i. ti. expseqno[0 ..n  — 1]. data):

clear ack timer: 
reset timer:
\

if (ack tim er expired){

send 7Ti =  (PLAIN-ACK. i. e x p s e q n o [ i \ .  e x p s e q n o [ l . .T i  — lJ.NULL): 
clear ack timer:
}

od:

Figure 3.6: PBP1 Timer Event

3 .1 .2  F o r m a lism  a n d  P r o o fs

In order to use PB P for higher level applications, it is im portan t to show that the  PB P 

protocol provides two im portant properties. These are that all messages sent are delivered 

a t all o ther processes once, and only once, and  that these messages are delivered in the 

order of the send events in the sending process. We call these P B P  Property /(definition 

3.2) and P B P  Property ^(definition 3.3) respectively.

D e f in it io n  3.2 P B P  Property 1: S* = s  D f j . V/j. j . Each message sent by any process i 

is delivered once and only once at all process j  ^  i.

D e fin it io n  3 .3  P B P  Property 2: Messages are delivered in the order sent. For any two 

distinct messages m and n. sent by pi with sequence numbers h and  k. i f  m is sent before n 

then m is delivered before n at all j.
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In this section we prove th a t the protocol provides these two properties. We s ta r t by 

defining a  set of axiom s draw n from the protocol.

Throughout, we use the following events:

•  S f  =  send o f message w ith sequence num ber k  by p t .

•  R ^j =  receipt o f message w ith sequence num ber k  sent by p, at pj.

•  D f  j  =  delivery (see definition 3.1) of message k  sent by p, a t p}.

•  A ^ j =  acknowledgment, a t p,. from p j for message k. If  .4* .Vj ^  i then  message k  

has been delivered a t all processes.

Additionally, we use P  to represent the set o f all processes. (0..rt — 1). when needed. It 

is assum ed in m ost cases.

A x io m  3.1 S f  = >  S ^ .V h  < k.

Messages are sent w ith sequence num bers in ascending order.

A x io m  3.2 = >  S f . Vi, j  ^  i .

Messages cannot be received before being sent.

A x io m  3.3 R * j  A  D ^ . ' i h  <  k  ==> D f j .

Messages received are delivered if all previous messages from the same sender have been 

delivered.

A x io m  3 .4  S f  A R ° j  A  ^  i .
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Initially, due to  the natu re  of the s ta rt up sequence, message num ber 0 is sent, received 

and  acknowledged by each process.

A x io m  3.5 D fj  A R j t A (Sj1 happened after D f j  became trite ) .4 ^ .

A delivered message is acknowledged by la te r  messages sent by the process a t which the 

message was delivered.

A x io m  3.6 S* = >  /?*_,. Vj €  P ' C (P  -  z). Note: P ' =  0 is possible.

Messages sent may be lost.

D efin it io n  3 .4  N etw ork Liveness Axiom: W e make the assumption that the network has 

not completely failed. I f  p t sends the same message k some finite number tim es each other 

process will receive message k. That is. the probability o f a message being lost is low enough 

that the probability o f not getting a message to each process, given a fin ite  num ber o f re­

transmissions, approaches zero.

A x io m  3 .7  S* A Hj. ==> R ^ j .

Message th a t are  sent, bu t not acknowledged will be retransm itted.

T h eo rem  3.1 P B P  is consistent with axioms 3.1-3.7.

Proof: We show' this by examining each axiom  in turn .

•  Axiom 3.1 follows from "m =  (ORDINARY.!. exp.seqno\f)..n — l\,exp.seqno[i},deqac\ic{send.q))"  

and ~exp.seqno[i\+ + "  in action 4.

•  Axiom 3.2 is self-evident.
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•  Axiom 3.3 follows from the condition for action 2 and the  increm ent of expseqno \j] . 

The reverse holds as well: D ^j = >  D ^j.V h  < k. And. similarly. A < 

k )  = -  - D l j

•  Axiom 3.4 holds or the protocol has failed to start.

•  Axiom 3.5 If  a  message is delivered at pj and p} subsequently sends a message, which

is received by p 2. then  p] has acknowledged message k  from z. T he “happened after" 

relation here is well defined because it is local to p3 and is based on the program  order 

of p j.

•  Axiom 3.6 Due to the possibility of messages being lost on the network, when p, sends 

a  message it will be received by some subset of the other processes.

•  Axiom 3.7 From the Network Liveness Axiom, definition 3.4. message k will be received

after some finite number of resends. From action 5. messages not acknowledged will 

be retransm itted .

Therefore the theorem  holds.

We would like to  show that P B P l provides the guarantee th a t all messages sent by some 

process p 2 are delivered a t all other processes. This property is called PB P property 1 (PI),  

see definition 3.2. The basis of the proof is lem m a 3.2. which shows th a t messages th a t are 

not acknowledged will be retransm itted, and. because the probability  for loss is low enough, 

given enough resends each message will be received.

L em m a  3 .1  L4.f
1 »J  L i J

1 T his is the temporal leads to. Informally, .4. B  m eans i f  .4 then at som e fin ite  tim e later B  m u st also 
be true.
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All m essages delivered get acknowledged, eventually. T he proof is based on  two cases. 

If  p j  sends a message subsequent to D*f } axiom 3.5 applies and A* follows. O therw ise, a 

tim eout occurs a t p3 in action  5 and  a  PLAINAA.CK is sent. This also acknowledges k. If 

e ither m essage is lost it will get re transm itted . T h is  happens either due to j  no t receiving 

an  acknowledgement to its subsequent message or to  j  receiving another copy o f  k  from i.

L e m m a  3 .2  S f  = >  R ^ j .V j  6 P  — i.

T he p ro o f of lemma 3.2 is based on axiom 3.6. T h e  axiom  can be divided in to  two cases. 

These are P '  =  (P  — i ) and  P '  C (P  — i). T hat is. a  given message is sent and  it reaches all 

o th e r processes, or it fails to  reach a t least one of th e  o the r n  — 1 processes.

S f = ^ -  R * j ,\ / j  £ P ' C  (P  — i) from axiom 3.6.

• P ' =  P  — i: S f  = >  R ^ j .V j  £ P  — i follows d irec tly  from axiom 3.6.

• P ' C P  — i => Bj. - 'R i j  - For each such j :

1. - 'R i j  =>  ~'Di from axiom 3.3

2. - 'D f j  = >  - 'A i j  from axiom 3.5

3. A 3j .  -'A*j = >  R i j  from axiom 3.7 an d  the Network Liveness Axiom. 

T herefore S f => R k ^ .V j  G P  — i.

T h e o r e m  3.2 PB P  Property 1 holds for PBP I

For th e  "delivered once" case we prove by induction on k.

•  Base case k  =  1:
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1. Si = >  R l jV j  €  P '  C (P  — i) from  axiom  3.7.

2. Si = >  R \ jV j  since P ' =  P  — i from lemma 3.2.

3. R -j A D f j  = >  D l j .  from axiom s 3.4 and 3.3.

4. 5 / = >  D \ j .  by substitu tion.

•  Now assume ==> D^'j for all k. show S ^ -1 = >  D ^'J1

1. 5 (fc+1 = >  R l j lV j  E P r C (P — i) from  axiom 3.7.

2. S l~ l = >  R*lJlV j  since P ' = P  — i  from  lemma 3.2.

3. R ^ 1 A D ^j = >  D *ljl . from assum ption  and axiom 3.3.

4. 5,fc+1 D ^ J 1, by substitu tion .

To prove “only once" we rely on the uniqueness of messages. Each message has a unique

identifier, its sequence num ber and sender's id. O nce a message is received a t it will not

be handled again. Consider message m =  (t . j . n . e.data). There is only one buffer location 

for message m  a t p,. O nce it is filled and all previous messages have been delivered, m  is 

delivered. The expected sequence number for process p} a t pi is set equal ton - f -1 .  At this 

point no message num bered <  n  will be hand led , from action 1. I f  m  is received again it 

will be ignored. If m  is received a  second tim e before it is delivered it wdll also be discarded 

because the buffer space it needs to go is occupied. So it will only be  delivered once. In a 

practical windowing protocol w ith finite (and  hence reused) sequence num bers there must 

be a t least 2w 4- 1 different sequence num ber, w here w is the  window size[90]. In PBP. we

use a  16 bit sequence num ber, giving 216 — 1 unique sequence num bers. W indow sizes used
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axe in the  range of 24 to 2' messages, w ith  2'1 being the usual value for P B P l. Recycling 

sequence num bers is not a problem.

The second property  we would like to  establish is th a t P B P l provides message delivery 

in FIFO order. T his means messages sent by some process i are delivered at all j  in the 

same order they were sent. This is essentially encapsulated in the use of integer sequence 

num bers. We show th a t, based on th e  axiom s derived from  the  protocol, if messages are 

not delivered in the order sent there is a  fundam ental contradiction.

T h e o re m  3 .3  P B P  Property 2 holds fo r  P B P l.

Proof by contradiction:

1. Assume m  is sent before n  and n  is delivered before m  a t some j .

2. m  is sent before n  = >  h < k. From axiom 3.1.

3. 7i is delivered before m = >  tha t a t some point n is delivered and m is not. Therefore

Dt j A^Dtr

4. D fj  = >  D ^j.V h  < k. from axiom 3.3.

5. m  ^  n  =s> h  ^  k  and h < k  we have a  contradiction: D ^j A ~'D^J.

Therefore, if m  is sent before n. m  is delivered before n  a t  all j .

We have shown th a t the protocol for P B P l provides th e  service it claims to. Program s 

th a t use P B P l can rely on it to deliver all messages, in th e  order sent, to each process in 

the group.
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3 .1 .3  I m p le m e n t a t io n  o f  P B P l

We have im plem ented the  P B P l system  on the GNX7/Linux operating system  on Hx8G 

processors. O ur prim ary lab consists o f a lOM b/s E thernet network of 120Mhz P e n tiu m  

systems. T he P B P l system  is a  user-level C lib rary  which uses the L inuxThreads[61] 

im plem entation of the PO SIX  threads standard[12]. Figure 3.7 shows the in ter-relatiom s of 

the com ponents of P B P l. A ll of the threads run in th e  same user address space. T he PEBPl 

protocol consists of two executing threads and interface functions. One th read  hanxdles 

incoming messages. The o the r is used as a  periodic tim er to handle retransm issions and 

delayed acknowledgments. T he interface consists prim arily of send and receive rou ti nes. 

Messages are delivered to the  user thread  through a  shared message queue. Dequeuirrig a 

message can be a blocking action or a simple poll as specified in the function call.

User Process

User Thread
User Code

Recv
QueueSend

Routine

Timer
Thread

Recv
Thread

PBP  Library

OS and Network Interface

Ethernet

F igu re  3.7: PBPl Design Layers.

O ur im plem entation o f P B P  is designed to provide discrete packets to th e  user. W et do
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not allow packets la rger th a n  the  maximum transm ission unit (M TU) o f the  E thernet. 1500 

bytes. Because PB P  cu rren tly  resides above the  U D P layer this does no t affect our protocol. 

Larger messages would be fragm ented by th e  UDP layer and only delivered to P B P  when 

reconstituted. P reven ting  fragm entation facilitates making a system  th a t  bypasses the UDP 

layer, which is a  p o ten tia l optim ization for PB P . This restriction also allows us to know 

th a t each PB P m essage is exactly  one E therne t packet on the hardw are.

T he PB P system  is designed to add little  overhead to the UDP layer it is built on. To 

th is end. we use a zero extra-copy technique. We take steps to ensure th a t d a ta  is copied 

no more than it w ould be  using regular U D P communication. User processes allocate the 

space for each message to  be  sent and the system  de-allocates this space when the  message 

is successfully delivered. T he  user process can then  build its messages in the sam e data 

space th a t will be used by P B P  for the broadcast message. This whole packet is passed by 

reference to the send ro u tin e . Similarly, a  received message is copied into a  dynamically 

allocated memory reg ion  by the  UDP reev fro m  function within PBP. T his message is then 

handled by reference, u n til it has been consum ed and the user process de-allocates it. This 

helps to reduce the overhead of our system, which is im portant because it is an added layer 

in the protocol stack.

The timer th read  hand les signals from an  interval timer which is set to  go off periodically. 

W hen the tim er expires, the  th read  checks th e  current state of messages th a t may have been 

sent bu t not acknowledged. If  there are un-acknowledged messages th a t  have expired, they 

axe retransm itted, s ta r t in g  w ith the base o f the  window. It is possible th a t several may be 

lost in a  row. Therefore, we currently retransm it the entire window of ou tstand ing  messages 

when a  retransm ission is required. The tim er th read  also determ ines if too much tim e has
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passed since the  local process sent a  message, thus failing to acknowledge received messages. 

If  th is  is the  case, a  plain acknowledgment message will be sent. As is usual with delayed 

acknowledgment protocols, a  balance needs to  be struck between acknowledgment tim eouts 

an d  retransm ission tim eouts to try  to minim ize the num ber unnecessary retransmissions. 

We have not im plem ented a  dynamic tim eout system for two reasons. First, the notion 

o f  round-trip  tim e, which is the basis of dynam ic tim eouts, is somewhat ill-defined in a  

broadcast paradigm . Also, the simple topology of the networks we use should not be 

sub ject to as wide a variation in latency as a  general TC P connection.

P B P l uses a form of delayed acknowdedgment windowing protocol. The aim is to reduce 

th e  num ber of em pty acknowledgment messages. Assume an n  process system with window 

size w. In  a  worst case scenario, where there is one sending process and there is a significant 

(greater than  200 millisecond) pause between each message, our system requires ti. —  1 

separate  acknowledgments, one from each receiver for each message. However, if there  is 

such a  sm all am ount of communication these ex tra messages should not be a problem. If 

the re  is no pause between messages from th e  single sender then there are on the order 

o f n  — 1 acknowledgments per w messages. An ideal situation  consists of all n processes 

continually sending messages. In this case, due  to piggy-backing, no ex tra  acknowledgment 

is sent. A more norm al situation is where all processes are periodically sending messages. In 

th is  case, there will be a  few acknowledgments needed by any processes tha t complete their 

sends before others. At the least, there wdll be n -  1 as th e  other processes acknowledge 

th e  last message in the batch, unless the  next communication batch s ta rts  before the tim er 

expires. This is the communication paradigm  we are targeting. Many barrier-based, parallel 

com putations exhibit this behavior. For these programs. P B P l tends toward, but does not
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reach, a  minimal number of ex tra  acknowledgments.

There are several performance vaxiables tha t may be changed in the P B P l im plem en­

ta tion . F irst, the size of the  window' m ight have an  im pact on the perform ance o f a  given 

program . Some communication p a tte rn s  might be handled more efficiently w ith  different 

window- sizes. Secondly, the tim eout for retransm itting  or acknowledging messages can be 

changed. Currently, we use a  tim eout o f 150 milliseconds for unsent acknowledgm ents and 

twice th a t for retransm itting messages. This keeps the tim er thread from executing too 

often, bu t makes handling lost messages somewhat expensive. W ith the extrem ely low loss 

ra te  on m odern Ethernets we feel th is  is justified. Messages are lost on the o rder of one 

per several thousand messages when sent as fast as possible. For messages w ith some, even 

small, am ount of time between sends th is rate is even lower. Traditional windowing proto­

cols use a  dynam ic time out th a t tracks round-trip latency. W ith  broadcast and a  collective 

acknowledgment protocol, round-trip  latency is not as clearly defined. A dditionally, since 

the topology we are using is flat, the  variation in message delivery tim e should be very 

small.

3.2 U sing  N egative A cknow ledgm ents

Positive acknowledgments require a  delay before message loss is detected and messages can 

be retransm itted . This is true even though the receiving process likely detects the  loss 

as soon as the next message from th e  same sender arrives. T he lost message will leave a 

gap in the sequence. In this case, it  is possible th a t, ra ther than waiting for a  tim eout, 

the receiver can explicitly request a  resend of the  missing message. This is done w ith a
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negative acknowledgment. T h e  second version of the P B P  protocol is designed to increase 

th roughput and make recovery from missing messages faster than  in P B P l.

3 .2 .1  P r o to c o l  P r e s e n t a t io n

T he overall structure o f PB P2 is sim ilar to P B P l. The user interface and th e  d a ta  locations 

are the same as in figures 3.2 and  3.1. Messages have th e  sam e format as figure 3.3 with 

the addition of NACK as a  m essage type. However, the actions performed are  different and 

there are several new ones to  deal w ith nacks. The biggest difference is th a t the  receiving 

process now has two d istinct running  states: normal an d  need_resend. W hen a  process 

detects a  missing message it en ters the need_resend s ta te . In this state, it can only execute 

certain  actions tha t cannot lead again to need_resend s ta te . No messages except NACKs. 

PLAIN_ACKs and messages from  the process whose message is missing a re  handled.

F irst we look a t the norm al s ta te  actions. The sending actions (3 and 4). are the same 

as in P B P l (figure 3.5). T here  is still a  window and acknowledgments need to be applied 

in order to clear buffer spaces. A process must keep all messages it has sen t until they are 

acknowledged because there is. until th a t time, the possibility another process will request 

a  resend. We use the send tim er, which should have a  longer tim eout th a n  for P B P l. to 

ensure processes can continue. It is possible for the last message in a batch  to be lost. In 

this case, the receiving processes will not see a gap in the  sequence num bers because a later 

message is not sent. W hen th e  resend tim er expires, a  p la in  ack is sent to o ther processes, 

w ith the sequence num ber set equal to the last message sent. This will allow receivers to 

see th a t a  message was missed and  send a  NACK if needed.

Action 1, receiving and  handling  messages is necessarily more com plicated th an  in P B P l.
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A ction 1. in figure 3.8, shows how PBP2 receives a  message in the norm al state. T he d a ta  

field is used as a  list of requested resends. T he first elem ent is used for the target process 

id. T he rem aining elem ents list the  sequence num bers needed. W hile in the need_resend 

s ta te , the protocol cannot handle any messages th a t could potentially  trigger a  transition  to 

need_resend, in stead  these messages are pu t on a  message queue. If there are any messages 

in this queue then  they  are received instead of a  message from the network in action 1. O nce 

a  message is received o r dequeued, it is handled. If  the type is NACK and if it is targeted to  

th is process, the  requested  messages are re transm itted . T hen  the message sequence num ber 

is compared to th e  se n d e rs  window and expected sequence num ber. If  the message is in the  

window and its no t the  expected message then  a  NACK message is sent and p, enters the 

need_resend s ta te . T he  message is stored in the  reordering buffer for later delivery. A ction 

2 is the same as in P B P l (figure 3.4). Messages are delivered from the reordering buffers 

in the same m anner as P B P l.

T he PBP2 system  uses three timers: a resend tim er, a  nack tim er and an ack tim er. T he  

resend tim er is set whenever there are outstanding messages. Unlike P B P l. when this tim er 

expires it does not signal a  resend of all of these outstand ing  messages, rather it causes a 

PLA IN.ACK  message to be sent. This will have the sequence num ber of the last regular 

message sent by th is process. This will be seen by o ther processes and can trigger a NACK 

if the last message was lost. Otherwise, it would be possible to lose a  message and have 

the  receivers not see a  gap because there was never a  la ter message. The second tim er is a 

nack timer. I t is set when the process enters the need_resend state . It serves to ensure a 

process does not rem ain in this s ta te  too long by triggering a resend of the NACK in case 

it. o r any of the  re transm itted  messages got lost. T he final tim er is an  ack timer. It serves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A P TE R  3. T H E  PIPELINED  B R O A D C A S T  PR O TO C O L  75

to ensure a plain ack is sent if an ack cannot be piggybacked on an outgoing message in 

tim e. In this way. processes can perform  garbage collection and  clear buffers during a  lull 

in message-passing. Figure 3.9 shows the  pseudo-code for the tim er action in PBP2.

The m ajor difference between the  operation of PBP2 and th a t o f P B P l is in the dual 

s ta te  mechanism. W hen a process detects a  lost message, either by seeing a gap in the 

sequence of regular messages or by ge tting  a PLAIN.ACK w ith a  sequence number higher 

than  expected, it enters the need_resend sta te . It does this by sending a NACK requesting 

a  resend of the missing messages to th e  sending process. In th is state, it handles only those 

messages it needs to fill in the gap an d  any NACK messages from other processes. O ther 

messages are enqueued and handled afte r a  transition back to normal state. Figure 3.10 

shows the pseudo-code for message receipt in the need_resend state . Acknowledgments from 

the incoming messages are checked. T hen , messages from nackJarc/et are handled if they 

are in the range of missing messages. If not. they are enqueued for later inspection. NACK 

messages sent by o ther processes are also handled. Actions 2 and 3. sending messages and 

clearing buffer space, occur in both norm al and need_resend states.

3 .2 .2  F o r m a lism  for  P B P 2

The axioms from section 3.1.2 apply to  PB P2. The basic functionality of the two protocols 

is the same. The difference comes in how message loss is detected and  how messages are 

retransm itted. Receipt of messages an d  delivery of messages to  the user-level are the same.

PBP2 differs from P B P l prim arily  in the triggering message for re-sending messages. 

To show that P I  and  P2 hold for PB P2. it is necessary to show tha t messages th a t are lost 

are retransm itted. T h a t is. that PB P2 is consistent with axiom 3.7. T he other axioms hold
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because the  rela ted  parts  of the p ro toco l did not change. Axiom  3.7 states tha t messages 

th a t are  sent bu t not acknowledged a re  resent. Due to axiom 3.5 th is means a message was 

not received. P B P 2 will request a re-send until the message is received and delivered. Due 

to the  Network Liveness Axiom th is  request m ust eventually be  received by the original 

sender and  th e  message will be resen t. Therefore axiom 3.7 holds for PBP2.

T h e o re m  3 .4  P B P  Property 1 holds fo r  PBP2

This follows directly from theorem  3.2. since the axioms are  valid for PBP2.

T h e o re m  3 .5  P B P  Property 2 holds fo r  PBP2

This follows from theorem 3.3. T h e  axioms for ordering messages, those involving se­

quence num bers and  delivery, are unchanged for PBP2.

3 .2 .3  I m p le m e n ta t io n

The im plem entation of PBP2 is ex tended  from th a t of P B P l. We use the same system s 

for b o th  libraries. However, there a re  two m ajor differences. F irst, since the tim eouts 

in a  negative acknowledgment pro tocol are based on the receiver they need to be m ore 

tightly coupled w ith  the receiving th rea d . T he separate tim er th read  is completely removed 

from PB P2. The o ther main difference is th a t, in order to correctly  handle retransm itted  

messages. PB P2 needs to have two sep a ra te  running states. T h is  is in addition to the basic 

s ta rt up and  shutdow n states th a t allow  group creation and correct term ination.

T he tim er mechanism in PBP2 is im plem ented as part of th e  m ain thread, ra ther th an  

as a  separate  tim er thread. T im eouts are not needed to trigger resends of normal messages. 

They are  associated with specific events not w ith specific messages. We implemented the
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tim er by using a  tim eout to the s e l e c t  function call that essentially makes the  main thread 

a  periodic timer. W hen retu rn ing  from s e l e c t ,  either due to a tim eout o r a  valid read 

descrip tor, the main process issues a  g e ttim e o fd a y  call and  compares the  tim e to the 

various recorded tim eout values. I f  the new tim e is greater than  the recorded time, tha t 

tim er has expired and appropria te  action is taken. During periods when no tim er is set. 

th e  tim eout for select is greatly  increased to reduce CPU contention. T he benefits of this 

are th a t  there is now one less thread com peting for CPU cycles w ith the user process(cs) 

and  th a t th is thread will consume fewer cycles during periods of message inactivity than  

th e  regular interval tim er used in P B P l.

T he  need_resend sta te  is im portan t to keep a  process from detecting more than  one 

gap in  sequence numbers a t a  tim e. T here axe three ways a process can be pur. in this 

s ta te . T he first is in the norm al course of receiving messages. W hen a gap in the sequence 

of messages from a given sender is detected a  MACK is sent and the process makes the 

transition . The second transition  can occur upon the receipt of a  PLAIN_ACK message 

th a t has a  sequence num ber higher then the last message received (from the  sender of the 

PLA IN —ACK) at this process. The th ird  transition  occurs on receipt of a shutdow n message. 

T he sequence number of a shutdow n message is the same as it would be if it were a normal 

message. Therefore, a  gap may be detected. Once in need_resend s ta te  a  process will only 

handle NACKs and those messages it needs to fill in the sequence. Any o ther message could 

trigger another transition to need_resend. This would create bookkeeping difficulties, and 

significantly increase the com plexity of the  system . Due to the low loss ra te  o f an E thernet 

network we feel it is b e tte r to  prevent a  process from having more than  one outstanding 

NACK request.
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3.3 A pplications

T he use of efficient, reliable broadcast on a  LAN can have several applications. The ability 

to share d a ta  w ith in  a  group of processes w ithou t sending m ultiple messages to each member 

of the  group can be used to implement a  num ber of d istributed applications.

3 .3 .1  D is t r ib u t e d  S h a red  M e m o r y

T he fully-replicated model of D istribu ted  Shared Memory(DSM) can take advantage of 

PBP. In such a  model, each process m ain ta ins a local copy o f the  shared memory space. 

W hen a  read is performed it is perform ed locally, by reading th is copy. W hen a  write is 

performed it is broadcast as an up d a te  to  all the other processes. W hen an update  arrives 

it is applied to  the local copy of memory. T he FIFO order provided by P B P  ensures the 

writes are ordered by process. Using synchronization, a  system can ensure a coherent view 

of shared copies of memory. PB P was in itia lly  designed to overcome message loss as part 

of the BDSM system  discussed in chap ter 2.

3 .3 .2  S t a t e  M a c h in e s

A nother use o f PB P  might be as the com m unication channel for a  s ta te  machine [78] im­

plementation of a d istributed service. T h is  model of fault-tolerance relies on redundant 

processing. Using broadcast is an  efficient way to disseminate d a ta  to m ultiple backup 

processes a t the  same time. Since P B P  will declare a process dead and reorganize itself if 

a  given process stops participating it is ideal for fail-stop protocols.
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3.4 C onclusions

In th is chapter we have shown how a  com mon reliability protocol may be multiplexed to  

provide FIFO  ordered messages to a broadcast m edium . This protocol. PBP. provides source 

ordered reliable message passing to a group o f processes sharing an  E thernet segment. P B P  

provides w hat am ounts to a  series of pipelines connecting the group members. We have 

shown th a t the protocol provides two im portan t guarantees th a t can be relied on when 

defining higher level program s. We take advantage of these properties by using PB P as 

the com m unications layer for our BDSM system . However, it can be used for other group 

com m unication applications. In chapter 4. we present the perform ance results of the two 

version of the P B P  system.
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Receiving Actions:

1 State : E xp  1= resend_state
A receive m = (t. j .  n. c. data) (from network or queue) 

if (f = =  j  ) continue:
window-base[j] =  max(ivindou:J)ase[j]. e[i] — 1): 
if (t ==  PLAI.\_ACK) do 

if (”  1= expseqno[j])
send 771 =  (XACK. i. curr_ba.se[i}. expseqno[\..n — 1], (j. cxp-xrqno[j])): 
State : Exp = need_resend: 
nackJarget = j : 
set nack timer: 

continue: / /  We already got ack info 
/ /  Handle a nack message 
if (f = =  XACK) then

if (dafa[0] = =  i) then
resend message with seqno data[ 1]: 

else continue: 
if (n <  expseqno\j\) then 

set ack timer: 
else if (n > expseqno\j]) then

send m = (SACK. i.curr-base[i].expseqno[l..n — 1]. (j. cxp-seqno[j]))-. 
State  : Exp  =  need_resend: 
set nack timer:

fi
inJruf fers{j][n mod irs] = m :

od;

F ig u re  3.8: PBP2 Normal S tate Receive Actions
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T im er Event:

5 tim eout do

if (resend tim er expired) {

send m  =  (PLAIN_ACK.i.exp_seg7io[i] — 1 .exp.seqno[Q..n — 1].data): 
clear ack tim er: 
reset resend tim er:
}

if (nack tim er expired) {

send 77i =  (NACK. i. curr_base[i].  ex p . s e q n o [ l . .n  — 1 j . (j .  e xp . . s c qno[ j ] )):  
reset nack tim er: 
clear ack tim er:
}

if (ack tim er expired) {

send m  =  (PLA IN .ACK . i. e x p .seqno[i\ — 1. exp-aeqno[()..Ti — I]. NULL): 
clear ack tim er:
}

od:

F ig u re  3.9: PBP2 Tim er Event
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Receiving A ctions in resend_state:

6  S ta te  : E x p  = =  resend_state 

A receive m  =  (t . j . n . e .d a t a ) (from  netw ork)

if (i = =  j  ) continue:
w indow  Jbase\j\ =  m ax ( windon.’_6 a.se [7 ]. e[i\ — 1): 
if  ( j  ! =  nack-target  A t 1= NACK) 

enqueue (m ): 

else if (n  in needed range )

inJbuf f  ers\j][n mod ws] = m: 
if (got all resends)

S ta te  : E xp  =  Normal: 
clear nack timer:

fi
continue: / /  We already got ack info 

else if ( j  = — nackJ.arget A n  no t in  needed range) 

enqueue (m):

fi
else if (t = =  NACK) then 

if {data[0] = =  i) then
resend  message w ith seqno data{l\:

fi

fi

Figure 3.10: PBP2 Need Resend State
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F igure  3 .11 : PBP2 Design Layers.
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C hapter 4

P B P  E xp erim en ta l R esu lts

T he BDSM system  is im plem ented on top of the PB P com m unication layer. T he per­

formance of application-level program s will be effected by this underlying protocol. The 

performance of P B P  is. therefore, o f  interest from the perspective of BDSM. Since P B P  can 

be used independently  o f BDSM as a  communication layer for a  different application, it is 

also useful to com pare it to o ther reliable communication protocols. In order to exam ine 

the benefits of using broadcast com m unication, we perform ed several comparisons of PB P 

to TCP and UDP. W hile TC P is obviously more feature rich, it is the better com parison 

model because it does ensure delivery. Some tests using U D P quickly ran  into lost message 

problems and are not shown. We also compare the perform ance of PB P  to another reliable 

broadcast protocol. RMP[94], when published da ta  are available.

84
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4.1 E xperim en tal Setup

D ata was collected on a  20 node LAN. using P-120 PCs running the Linux 2.0.36 kernel. 

The network is a  lOBase-T E thernet. The system s are basically identical.The systems have 

common hardw are as far as possible. M otherboards, network interface cards and CPUS 

are the same. All o f the tim ing measurements were made using small C programs, and the 

g e ttim e o fd a y  system  call. The timing is based on com pletion of the benchm ark as seen by 

a  single m aster process. We use the same lab setup  for the BDSM results shown in chapter 

6

We performed three basic timing experim ents. The first is a single sender/m ultiple 

receiver setup to m easure direct throughput. T he tim e measured is for the first process 

to send 500 messages to each receiver and receive a  single message in return  from each 

receiver. In the case of PBP. this is done for all the receivers at the same time using 

broadcast. For T C P  the messages are sent to each receiver and then the return messages 

are consumed. T he  second test is a multiple-sender/m ultiple-receiver algorithm. This is 

an all-to-all com m unication pattern  where the senders and receivers are the same set of 

processes. Each process sends n  messages to each o ther and awaits n messages from each 

o ther process. T he  tim e for the all-to-all experim ent is measured as seen by one process. 

The th ird  test is designed to be a  measure of protocol overhead, by m easuring latency. The 

lead process sends a  message to each receiver (either one broadcast message or a series of 

point-to-point messages). It then waits for a  reply from each receiver. This measures the 

tim e to get a  message to  each receiver and back including both  protocol overhead and actual 

network latency.
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In all of the experim ents, the tim in g  involves messages on a lready  created channels where 

appropriate. We do not m easure connection creation or tear-dow n tim e. Before each TC P 

experiment is tim ed, a  network o f  connections is made. T his makes the processes totally 

connected. For PB P. a group se tu p  routine is called before tim ing  experim ents are started . 

For the experim ents in which U D P  was successful, while no connections are involved, all 

addresses and  ports are resolved a n d  bound before tim ing is in itia ted .

We use two message sizes to  com pare performance. Message sizes s ta ted  include all 

headers. Large messages are a  to ta l  o f 1104 bytes, while sm all messages are a  to ta l of 84 

bytes. We feel th a t th is  is a  large enough difference to ensure different behaviors. T he large 

messages axe close to  the 1500 b y te  M TU of the Ethernet, which leads to more efficient use 

of the hardware. T he small m essages are small enough to use th e  hardw are less efficiently. 

However, they are also small enough to be buffered by T C P  so it is necessary to use the 

TCP.NODELAY protocol option to  keep the system from buffering them. Since we want 

to account for each message on th e  wire we need to ensure th a t T C P  sends a  message for 

each send call. U nder Linux 2.0 th e  TCP-NODELAY flag does not completely disable the 

Nagle algorithm . It has been show n th a t there is a long delay a t regular intervals when 

using TC P with a  num ber of sm all messages[64].

In most of the experim ents th e  95% confidence interval is under 2% of the shown time. 

In some of the experim ents w ith 16 processes, despite increasing the  number o f samples, 

this interval is as much as 8% of th e  to tal time. As the num ber o f processes increases, the 

number of possible delays due to processing time, interruption an d  message loss increases.
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4.2 P B P  C om pared  to  Standard P rotoco ls

TCP is the conventional protocol for reliable messages passing. The o th e r d a ta  transfer 

protocol in the  T C P /IP  su ite . UDP. requires application  code to provide its own reliability 

mechanism. For a  LAN environm ent and two or m ore destination processes, it can be more 

efficient to use a  broadcast m echanism . This precludes the use of T C P  because it is strictly  

point-to-point. In  this section we look at the way P B P  compares to the stan d ard  network 

protocols.

We compaxe th e  results o f bo th  versions of P B P  using a  window size of 16' to T C P  and 

UDP. T he size o f the  window has an effect on the th roughpu t of the PB P protocols. A PBP 

process can send a t most a  num ber of messages equal to the window size before queueing 

outgoing messages. It then m ust receive acknowledgments from all the o th e r processes to 

slide the  window and send m ore messages. A larger window means more messages before 

this acknowledgement is required. In section 4.4 we show the im pact of larger windows. 

When com pared to  TCP. th e  variation caused by differing the PB P window size is not 

readily apparent.

4 .2 .1  T h r o u g h p u t

Throughput is a  measure of th e  am ount of data th a t  is moved in a given tim e. It can be 

obtained from a  measure of th e  am ount of time it takes to move a  certain am ount of data. 

Figures 4.1 and  4.2 show the average time it takes the  tim ing process to deliver 500 messages 

to all o f the o th e r processes. In  these plots a low. fla tte r line is closer to ideal an d  represents a 

near linear increase in th roughpu t as the number o f processes increases. For sm all messages.
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One-to-all (sm): PBP (window = 1 6 ) vs. TCP
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Number of Processes, including sender

F ig u re  4.1: Times for Throughput Experiment for Small Messages.

T C P perform s b e tte r for the 1 receiver (2 process) system. This is acceptable because it 

is the situa tion  th a t T C P  was designed for. As th e  num ber of processes increase it is clear 

th a t PB P. by taking advantage of the broadcast, is much faster. On an E thernet, larger 

messages are more efficient than  smaller ones. Figure 4.2 shows the one-to-all results w ith  

larger messages (1104 bytes). Here both versions o f PB P are almost constant, while T C P  

shows a linear increase.

As m entioned above, throughput is com m only expressed in bytes per second. The 

lOBase-T E thernet provides a  maximum rate of 10 M b/s. This equates to 1.25MB/s. T his is 

the ideal m axim um  hardware throughput on such a  network. The term Effective Throughput 

is used to  describe the am ount of data moved when there are multiple receivers. T hat is. if a  

process sends 1 MB of d a ta  to multiple, say 2, receivers in one second it is effectively moving 

2 MB of d a ta  in th a t second. Table 4.3 show th e  effective throughput of each protocol using 

large messages. This table is based on the results for both  PBP versions w ith 16 and 128
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one-to-all (Ig) PBP window 16 vs TCP
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PBP220000
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Number of Processes, including sender

F ig u re  4.2: Times for Throughput Experiment for Large Messages.

Protocol Number of Receivers
(window) 1 4 7 j 15
TCP 0.918 ±  4.48 % 0.823 ±  4.33 7 0.697 = S.39 7c 0.631 ±  8.42 7c
PB Pl (1G) 0.977 ±  0.28 % 3.327 ±  4.48 7c 5.240 ±  2.49 7c 7.924 ±  6.49 7c
PB Pl (128) 0.886 ±  4.05 % 3.062 =  0.67 7c 5.173 ±  3.00 7c 10.523 ±  7.15 7
PBP2 (16) 0.977 ±  0.04 % 3.653 ±  1.25 7c 5.568 ±  6.03 7c S.2G4 ± 8.30 7c
PBP2 (128) 1.105 ±  0.02 % 4.356 ±  0.87 7c 7.492 ±  1.13 % 15.512 ±  2.14 7c

F ig u re  4.3: Effective throughput in M B/s of TC P and both versions of PBP with 1G and 12S 
windows. Percentages are 95% confidence.

message windows. As expected. T C P  shows basically a flat effective throughput because 

it is not sending d a ta  to multiple recipients a t the same time. T he  PB P  results show tha t 

for a large window PB P2 has a  real throughput (1.1 M B/s) close to  the hardw are limit 

(1.25 M B/s). This throughput scales well, providing 15.5MB/s effective throughput to 15 

processes. PBP1 is not able to scale as well. T he scalability of the  protocols is shown best 

in figure 4.4. We plo t the ideal effective throughput. 1.25MB/s to  each receiver com pared 

to the window 128 P B P  data. T C P  is included for completeness.
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Ettectrve Throughput. TCP vs PBP using wtnbowsize t28
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TCP
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F ig u re  4.4: Effective throughput. Ideal versus PBP and TC P.

4 .2 .2  A l l - t o - A l l  C o m m u n ic a t io n

T he second set o f results involves an all-to-all com m unication pattern . T he algorithm  has 

each process send e ither 500 small messages, o r 50 large messages, to each o ther process. 

Here we expect to  see a  roughly linear increase in PB P  times and a qu ad ra tic  increase in 

TC P. This is due to  the  use of broadcast for P B P  and the point-to-point nature of TCP 

connections. In a  system  w ith p  processes sending  n  messages, the P B P  system  has to send 

pn  messages. T C P . on the o ther hand, has to  send  p2n —pn  messages because each message 

is point-to-point. Each T C P  process has to send  n  messages to p -  1 o th e r processes. The 

tim e shown is the  average to ta l tim e to com plete th e  exchange as seen by th e  m aster process. 

T he P B P  system is again set to a  windows size o f 16.

T he all-to-all perform ance is show in figures 4.5 and  4.6. Using sm all messages TCP 

performs slightly b e tte r  th an  PB P for a sm all num ber of processes. It s ta r ts  to get much 

worse for the system s of 8 processes and by 16 processes TC P is an o rder of magnitude
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AiMo-all: PBP (window = 16) vs.TCP
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F ig u re  4.5: All-to-All for Small Messages.

slower than  PBP. P B P  shows a slow increase as processes increase. There are no steep 

increases. W ith large messages PBP perform s b e tte r even for 2 processes.

4 .2 .3  L a te n c y

Latency is a rough m easure of round-trip tim e. We use it to gauge the efficiency of a 

protocol. Since PB P does not have as much s ta te  and overhead, it should be faster than  

TC P. However, it is b u ilt on top of UDP so it cannot be faster than UDP. We anticipate 

th a t the results will be in between the two. P B P  also benefits from th e  use of broadcast. 

We show for small messages th a t TC P is actually  faster than PBP2. However, when using 

large messages, for which P B P  was designed, bo th  versions of PB P are close to UDP in 

latency. PBP continues to scale better th an  TC P. UDP performs b e tte r  because, while 

P B P  broadcasts the in itia l message, it still requires p  — 1 acknowledgements. These will 

have to be received and  ignored by all processes except the tim ing process.
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All-to-all: PBP vs.TCP

TCP
PBPl
PBP2

0
2 6 t24 8 10 16

Number of Processes

F ig u re  4.6: AlI-to-All for Large Messages.

4.3 C om pared to R M P

Since T C P  is not capable of tak ing  advantage of the  broadcast nature of the network it is 

somewhat unfair to compare it to  PBP. a protocol th a t does. It is expected th a t PBP will 

be much faster than  T C P for g reater than 2 processes on a  LAN. There are few published 

results using hardw are broadcast reliably. The Reliable M ulticast Protocol (RM P) is an 

exception[94]. although the code is now' commercial an d  is unavailable. RM P provides total 

order or process order for all messages. It also provides more service than  PBP. as it is not 

limited to a single network segment. RMP is based on IP  M ulticast, which takes advantage 

of broadcast hardware when possible. RMP will perform  its multicasts across network 

boundaries using various tree algorithm s. It is im portan t to  note that these RM P results 

axe somewhat dated. The system s used are SPARCstation2 and SPARCstation5 systems. 

These typically have speeds in th e  50-70MHz range. These systems are slower than  the P-
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Latency (sm). PBP (window = 16) vs TCP and UDP
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Figure 4.7: Latency for Small Messages.

120s we are using for our test-bed. However, the  network in both  cases is lOBase-t Ethernet. 

We com pare bo th  throughput and all-to-all tim ings to those of RMP.

R M P has published results for up to  8 receivers on a single E thernet LAN', sim ilar to the 

one used for our PB P experim ents. T hese results show RMP with an  effective throughput 

o f approxim ately 4100 K B /s  (4.00 M B /s) for 4 receivers and 7384K B/s (7.2M B/s) for 8. 

We can estim ate PB P2?s performance a t 8 .5M B /s for 8 receivers (based on the results for 

7 receivers), and compare this and the resu lts (4.3 M B/s) for 4 receivers to the RM P data. 

PB P 2 uses the network more efficiently and  provides greater th roughput on a LAN. The 

R PM  system does provides a  total order while PB P2 provides FIFO order by process. This 

is called source ordering by the RMP au tho rs . In  a  system w ith one sending process, total 

o rder and source order are synonymous. T here is only one source, so the service provided 

by b o th  systems is comparable.

A nother published m easure of the efficiency o f RMP is the effective throughput using
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Latency (tg): PBP (window = 16) vs TCP and UOP
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F ig u re  4 .8: Latency for Large Messages.

8 senders and 8 receivers. T his is com parable to the all-to-all experim ents performed w ith 

PBP. RM P shows a  th roughpu t in th is case o f approxim ately 6000K B /s (5.8MB/s) for the 

8 process all-to-all. For P B P 2  with a  window of 128 messages we see G.8 M B/s. Again P B P  

show b e tte r  perform ance. In this case, the fact th a t RMP provides to ta l order makes a 

difference. All of the  processes in the RM P experim ents sec all o f the  messages in the sam e 

to ta l order. The P B P  system  has the possibility of processes seeing different orders w ithin 

the confines o f FIFO  by process ordering.

4.4 E ffects o f W indow  Size

T he disparity  between the  perform ance of T C P  for these tests and  th a t of PB P made using 

larger windows overkill. However, it is in teresting to explore the effect of window size on 

the  perform ance of PBP. Since PBP2 was designed to allow a  larger window to increase 

th roughput, it is useful to see how PB P  perform s w ith a  larger window. We use the original
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window size of 16. a  medium window size of 48 and a  large window of 128. We then repeated 

the experim ents from the previous sections, excluding latency as it is unaffected by window 

size.

PBP Ism) Time lor Throughput Experiment, variable window
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PBPl (48) ..........
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PBP2 (48) - -
PBP2 (128) - -o- -

900

800

IS)•oc
o 700u0)
(S3
o

1 600
oe
>—

500a

400

300

200
2 6 106 12 1614

Number of Processes

F ig u re  4.9: Time for Throughput Experiment. PBP with Variable Window Size. Small Messages.

Throughput for both PB P systems is much be tte r w ith larger windows. A larger window 

means the sending process can send m ore messages before having to wait for acknowledge­

ments. It can, therefore, spend m ore tim e sending messages and less time waiting for 

them . Figures 4.9 and 4.10 show the th roughput results. In bo th  versions of PBP. receivers 

track the num ber o f messages received by any given sender. When this number reaches 

the window size w ithout any piggybacked acknowledgements having been sent, a  plain ac­

knowledgement is sent. This happens w ithout a  tim eout to decrease the response tim e. The 

system  still experiences a delay in the  sending of messages as these plain acknowledgments 

arrive. The larger the window, the less frequent this delay. T he sudden increase a t seven 

processes of P B P 2  (48) in figure 4.10 is believed to be an artifac t of the Linux kernel. See
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PBP (Ig) Time for Throughput Experiment, variable window
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F ig u re  4.10: Time for Throughput Experiment. PBP with Variable Window Size. Large Messages, 

section 4.5.

T he large window also has an effect on the all-to-all experim ents. Figures 4.11 and 4.12 

show the  results for the all-to-all experiments. P B P l was designed for a  sm all window. It 

would not run consistently for 16 processes for larger windows with large m essages (figure 

4.12). PB P2 (128) shows consistently good results, b o th  for single sender th roughpu t and 

for the  all-to-all exchange.

W hen using larger windows, we see an increase in message loss. F igure 4.13 shows 

th e  raw d a ta  from one se t o f  runs of the all-to-all benchm ark using PBP2 w ith  the  three 

window sizes. The m aster program  produces a  sim ple count of messages it sees as lost. 

T h is  is only the view of one process, bu t it provides an  illustration of the effects o f allowing 

m ore messages to be sent before requiring acknowledgement. The typical netw ork buffer in 

th e  Linux kernel is set a t  64K bytes. W ith a  window of 48 messages we are allowing 52K 

bytes to  be sent by each process before waiting for an  acknowledgement. It is possible the
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PBP (smj. variable window
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Figure 4.11: AIl-to-AU. PBP with Variable Window Size. Small Messages.

increase in loss is due to  the filling of various buffers. A nother possibility inay be network 

congestion. Messages may be dropped due to the exponential back-off algorithm. This 

illustrates tha t the num ber of lost messages for a window size of 16 is significantly smaller 

than  for larger windows.

4.5 Linux K ern el D ifferences

T he kernel version plays a  roll in the effectiveness o f  PBP. In figure 4.10 we pointed out 

an unexplained, d ram atic  increase in time for the P B P 2  benchm ark with window size 48. 

Figure 4.14 shows a  w ider range of window sizes for the  same anom alous execution. It 

shows th a t the P B P  protocol is probably interacting badly with som e part of the 2.0.36 

Linux kernel im plem entation. To see this is so. we ran  the  same set of benchmarks on the

2.2 kernel. These resu lts are shown in figure 4.15. T he  curves are com pletely different. T he 

newer kernel version exhibits none of the peaks and valleys tha t ap p ea r for the mid-range
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PBP (Ig). vanable window
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F ig u re  4.12: All-to-All. PBP with Variable Window Size. Large Messages.

window sizes on the earlier kernel. This difference convinced us th a t the strange curves in 

the PB P2 results were not inherent to PBP. bu t are an artifact o f the kernel itself.

4.6 C onclusions

We have presented tim ing results th a t shour th a t PB P  provides a performance improvement 

over other ways to reliably send messages in a  LAN environm ent. We did this by compar­

ing our timing results to the industry  standard  point-to-point protocol for reliable message 

passing, TCP. We also compared our results to  the published results for another reliable 

broadcast protocol. The above com parisons serve to show th a t, for application th a t have a 

flat network topology, PB P is an efficient way to  make use of broadcast capabilities. A d­

ditionally, we have compared two m ethods of im plem enting the  basic PB P services. These 

results show th a t the negative acknowledgement protocol perform s better for the m ajority 

of uses. It justifies our use of PB P2 as th e  communication layer for our implementation
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Raw messages lost tor All'to-All. variable window size
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F ig u re  4.13: Raw Number of Lost Messages for All-to-All. P B P 2  with Variable Window Size. 
Large Messages.

of BDSM. By using a  reliable broadcast protocol for BDSM  we can take advantage of the 

increased throughput and should see benefits, especially for all-to-all forms o f d a ta  sharing, 

a t the DSM level.
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F ig u re  4 .14: All-toAlL PBP2 with Variable Window Size. Large Messages.
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C hapter 5

B D S M  Im p lem en tation

In chapter 2. we presented bo th  the design and theory behind the BDSM model and its  user 

interface. We then presented the com m unication layer. PB P . th a t we will use under the 

BDSM system, in chapters 3 and  4. We now discuss the ac tual implementation of BDSM. 

We then prove th a t the synchronization prim itives are correct and  ensure BDSM coherence. 

Finally, we show th a t the im plem entation provides the services specified in the theoretical 

model.

5.1 Im plem entation  O verview

O ur system is designed for a  common networking environment. We use a network o f com­

m odity workstations as a p latform  for the DSM system. Further, we require all o f these 

workstations to be on the sam e E thernet segment. This allows us to use hardwaTp broadcast 

and to have a  controlled message-passing environment. Each workstation will execute one 

user process. In tu rn , each user process has an associated BDSM sub-system tha t m anages

101
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the shared memory. T here is a complete copy of shared memory on each processor. The 

user process can then  access its copy of memory locally, with 110 w aiting for reads or writes. 

Writes to memory modify the local copy and arrange to broadcast th e  updated  values to all 

the other processes. We m aintain the memory segment as a contiguous collection of discrete 

locations. Reads and writes operate a t this level of granularity. T he size o f a  location is de­

fined by the program m er. T he memory m anager uses hardware broadcast to send updates 

to all other processors. It may buffer these updates locally to reduce the  num ber of messages 

sent. Figure 5.1 shows the basic system layout. Using broadcast m eans tha t each update 

in an n  process system  is one message, ra ther than  n — 1 discrete point-to-point messages. 

C hapter 3 discusses the details the layer tha t actually handles this com m unication.

W o rk s ta tio n  1

Global Shared Memory 
(Abstraction)U s e r  P r o c e s s

Local copy of 
Snared Memory

w o m s r a ti W o rk s ta tio n  3

M e m o ry
M a n a g e r

E th e r n e t

Figure 5.1: DSM system design

The d istributed shared memory system is built on PBP. This provides a  communication 

layer that bo th  ensures delivery of all messages from non-failed processes and provides a 

FIFO order for all messages from each process. Each memory m anager handles incoming 

messages from this system  as they are delivered. Due to the knowledge tha t messages are 

partially ordered, incoming updates are applied immediately to the local copy of memory.
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Similarly, barrier a n d  lock messages (see below) are  handled as they arrive. There is no 

need to reorder events a t the DSM protocol layer.

In order to use P B P  and the underlying E thernet most efficiently, individual updates 

are buffered locally un til there  are enough to ju stify  the  sending of a  message. Using a  large 

message made up  o f  a  num ber of updates further reduces the num ber of messages. T h e  

num ber of messages th a t can be buffered depends on the size o f the  locations in a  given 

segm ent. BDSM w ill buffer as many updates as possible for a  given segment. The num ber 

of updates buffered is determ ined by our need to lim it messages to less than  1500 bytes, th e  

maxim um  transm ission  un it of E thernet, to prevent message fragm entation at the IP layer 

and  to include necessary control data.

5 .1 .1  S y n c h r o n iz a t io n

Using message-based protocols a t the PB P layer for synchronization allows us to avoid 

some of the p itfalls  of PRA M . Synchronization under PRAM , where the actual opera­

tions are perform ed as PRAM  memory accesses, docs not provide true  mutual exclusion 

(w ithout a separa te  exclusion server[49]). For this reason PRAM , although straightforw ard 

to implement, is usually  considered too difficult to  program  to be useful. However, in a  

message-passing environm ent there is no need to lim it ourselves to using PRAM memory 

accesses to im plem ent synchronization operations. B arriers and  locks are implemented by 

message passing, th e  same way DSM writes are. F igure 5.2 shows the basic pseudo-code 

for the barrier im plem entation. In order to pass a  barrier, a  process m ust receive a barrie r 

message from each o the r process and  call d sm _ b a rrie r  itself. All messages appear in FIFO  

order so for each b a rrie r message received all previous writes by the sending process m ust
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have been received. No process gets updates w ritten before the barrie r once it lias crossed 

th e  barrier. Similarly, once a  process reaches the barrier it waits until all o ther processes 

have sent it barrier messages. Therefore, even if one process gets past the b arrie r much 

earlier than  the others, any  w rites it issues after the barrier will not be seen by any  o ther 

process until it. too. has passed th e  barrier. No writes issued after th e  barrier can be  seen by 

any process before the barrie r. It is necessary to use sequence num bers on barrier messages 

(an alternating b it suffices) to  ensure th a t messages are associated w ith  the corresponding 

barrier. Figure 2.4 shows th e  barriers in use.

User calls barrier: Dsm thread receives barrier message:

dsm.barrier (bar.num) {
if  (! barrier_starced(bar_mim) ) 

start_barrier(bar_nun); 
barrier.arrivaKbar.num, my.procnun); 
f lush_all.write.bxiffersO  ; 
broadcast.barrier.messageC) ; 
if  (barrier.nun.narked (bar .nun) =nuinprocs) 

return; 
else

cond.vait(bar.nun) ;

}

handle.barrier.msgCbar.nun, sender) { 
if ( ibarrier.started  (bar.nus) ) 

start.barrier(bar.nun) ; 
barrier.arrivaKbar.nun, sender) ; 
if (barrier_num_marked(bar_nun)==numprocs) 

cond signal(bar.nun);

i

Utility functions:
start_barrier(bar_num){ barrier_started(bar_num) = true; arrivals(bar_num) =0;} 
barrier_started(bar_num) { retum(barrier_startedCbar_num)); }
barrier_arrival (bar_num, process_id){ arrivals(bar_nua) = arrivals(bar_num) u process_id;} 
barrier_num_marlced (bar_num){ re t urn ( I arrivals (bar_mm) I);}

F ig u re  5.2: Pseudo-code for barrier implementation

Locks axe im plem ented as defined by R icart and Agrawala[74]. There are two m inor 

changes. T he first is th a t all messages are broadcast. This m eans th a t a lock request is 

sent once to all processes. T his reduces the  number of messages p e r  critical section from 

2(n — 1) to 7i. The second change is sim ply to require the BDSM buffers to be flushed before 

sending any lock protocol message. T his is done exactly as w ith th e  barriers. Since there
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is no point-to-point message-passing, all pending w rites by all o ther processes will be seen 

by the acquiring process before it is granted the lock.

We present an ou tline  of the lock protocol. A process, say p,. issues a  lock request when 

it tries to acquire a  lock. This message is sent to all o ther processes. Then p, blocks until 

it acquires the lock. A cquiring the lock means receiving a "go ahead-  message from each 

o ther process. W hen a  process. p} . receives a  request message, it is either in contention for 

th e  sam e lock or not. If  pj is in contention for the lock it decides, deterministically. based 

on the request sequence num ber and process id. if it should get the lock first. It then either 

replies to p, or defers a  reply until it releases the lock. If p3 is not in contention for the lock 

it replies immediately. In any case, before a process sends a lock protocol message, request 

o r reply, it flushes all o f its segment buffers.

Po Pi Pa

dsm  _lock_acqui re (0 ): dsm Jock_acquire(0 ) w hile (read(z) != I)

z  :=  1 : read(z) =  1 : sk ip:

dsm  Jock_release(0 ): 2  :=  3:

dsm Jock_relcase(0 ):

w hile
skip:

(read(c) != 3)

Figure 5.3: Example using locks

In figure 5.3 we assum e po acquires the lock first. This is not guaranteed, but serves for 

this explanation. W h at this means is that po sent a  request message to pt and po. Process 

p i also sent a request to po and p2- Since po is not in contention for the lock, it simply 

replies to any requests. So bo th  po and p i get a  reply from po. The lock protocol arbitrates 

among contending processes in a deterministic way and  we are assum ing it chooses p0 first. 

So po defers its reply to  p i ’s request knowing it should get the lock first. On the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. BDSM IMPLEMENTATION  10G

hand, p i replies to  po. granting po th e  lock. Since no w rites have been issued no updates are 

flushed by these messages. W hen po releases the lock, because it deferred a  reply, it sends 

one now to p \.  This flushes the  w rite to z. Process p i now can acquire th e  lock, having 

seen all previous writes. Note th a t po considers b o th  acquires to have happened  when it 

received the  request messages. T here  is no guarantee it will escape either w hile loop. The 

w rite by po could be overw ritten by the  w rite by p\ before po reads the 1. I f  p-j needs to be 

sure to see the values w ritten it  needs to perform som e synchronization itself.

5 .1 .2  I m p le m e n ta t io n  D e t a i l s

The BDSM system  is a  user-level C lib rary  which uses th e  Linuxthreads[6I] im plem entation 

of Pthreads[12]. T he library m ain tains a  collection o f  DSM locations for user-level code. 

These locations can be of a rb itra ry  size, up to 1276 by tes (the maximum payload of a  single 

P B P  E thernet packet). All locations in a  given DSM  segment arc the sam e size. The 

locations in any given segment can  be read and w ritten  by location number. We also allow 

reads to be made directly from shared  locations th rough pointers. This allows com parisons 

w ith and assignm ent from  shared  d a ta  to be transparen t. However, w rites are  made by 

explicit library function calls. T h is  is necessary to allow  the write updates to be  handled by 

the system . In this way. a segm ent may be treated like an  array of locations. For exam ple, ~x 

= dsm_segment [ i ] :r would assign the  value of shared location i to local, unshared  variable 

x  assum ing dsm_segment was se t to  the  address of th e  base of the dsm segm ent. W rites 

m ust use the  dsm_write lib rary  routine because we are  not using a  page-based system . 

So "dsm _write (dsm_id, i ,  &x)~ would write the value in x  into the ith  location of the 

segment d sm J d .  If  the user makes assignments d irectly  to the shared m em ory addresses
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the values will not be propagated.

U ser P ro c e s s

T h re ad
U se r C ode

DSM
T h re ad

OSM  UOrary

O S  an d  Nefwortt In te rfac e

F ig u re  5.4: System structure

Figure 5.4 shows the s tru c tu re  of the com plete DSM system as currently  implemented. 

All of the threads run in the sam e user address space. The DSM layer consists of a  single 

thread and  a  num ber of interface routines. The DSM thread handles incoming DSM mes­

sages by blocking on a PB P receive call. The DSM interface functions include dsm _vrite. 

dsm_read. the various synchronization operations, and  the segment creation operations. 

T he user thread  com m unicates w ith the DSM interface routines and the shared memory 

segment.

As m entioned above, the  buffering of writes is done on a per segment basis. This is 

prim arily an  im plem entation decision. There are two m ain reasons for th is. The first is 

th a t, since different segments can have locations o f different sizes, using a single buffer 

would require ex tra  bookkeeping overhead. Secondly, it would mean associating a  segment 

identification num ber with each updated value ra th e r  th an  with each update  message. Using 

one buffer per segment we calculate the number o f w rites each buffer can hold a t segment
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creation time and can keep a  simple count to  determ ine when the buffer is full. W hen a  

synchronization operation is called, the buffer for each active segment descriptor is em ptied 

in tu rn .

5.2 P roof o f Im p lem entation

In this section we prove th a t the im plem ented BDSM system provides an accurate realiza­

tion of the BDSM model. To show the im plem entation is correct we will show it preserves 

the axioms that define BDSM. Further, we will show that the synchronization operations 

are correct. This means proving safety and  liveness. It also means proving th a t the syn­

chronization is properly ordered with respect to  o ther operations. We then use these proofs 

to show th a t our im plem entation preserves th e  requirements of BDSM.

We make a d istinction between the receipt a  message and its delivery. Messages are 

received from the network by PBP. Messages are then delivered to  the BDSM layer, in 

order, by way of a receive queue. A given message is not available to the BDSM system 

until it has been delivered to this queue.

T he functionality of BDSM is based prim arily  on the FIFO natu re  of the  underlying 

PB P  layer. In chapter 3. we prove two properties about the PB P system  th a t we rely on 

here. We restate them here:

P B P  P r o p e r ty  1 ( P I )  : Each message sen t by any process i is delivered once and only 

once at all processes j  #  i (definition 3.2).

P B P  P r o p e r ty  2 (P 2 )  : Messages are delivered in the order sent. For any two distinct 

messages m  and n . sent by p; with sequence numbers h and k .  if m  is sent before n
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then 77i is delivered before n  at all j  (definition 3.3).

P I  ensures the delivery of each message. Each message sent will be delivered to all other 

running processes, unless the sender fails. P roperty  P2 ensures tha t each message sent by 

a given process is received and passed to  the  application (the BDSM system  in this case) 

in the order it was sent by the corresponding application on the sending processor. These 

two properties together create essentially a  set of FIFO  reliable pipes am ong the  BDSM 

processes.

5 .2 .1  B a r r ie r  C o r r e c tn e s s

To prove the correctness of the synchronization operations we make the assum ption th a t the 

program  using them  is correctly w ritten . T his means several things. First, the sem antics of 

the synchronization operation are obeyed. This means th a t, for each barrier, a ll processes 

issue calls to the barrier routine. And. similarly, for locks, no process tries to acquire a  lock 

which it is already holding and locks axe nested but not overlapping. The second p art of this 

assum ption is th a t, for barriers, no calls to the same barrier identifier are ad jacent in the 

program. Any two barriers tha t occur in a  row have different identifiers. This assum ption 

is natura l. Program m ers who don 't follow the conventions of the A PI cannot expect correct 

results.

T h e o re m  5.1 B D SM  barriers are correct synchronization operations for correctly written  

programs.

The proof consists of two elements, liveness and safety. Liveness means th e  program 

will not deadlock, w ith processes failing to  cross a  barrier. Safety is a  term used to  describe
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the  proper functioning of a  barrier. Each process reaching a barrier m ust block until all 

processes have reached the sam e barrier.

Liveness can be show n by P I .  Since we are on ly  concerned with program s th a t use 

barriers correctly, any process th a t arrives a t a b a rrie r will, eventually, cross the barrier. 

Consider a program  consisting o f n processes. Each process, upon m aking its call to th e  

barrie r routine, will send  a  barrie r message. And. since the  program is correctly  w ritten, all 

process will make such a  call and each will use the rig h t barrier id. These barrier messages 

are guaranteed to  arrive  due to  P i .  Once a  process receives n — 1 other barrie r messages it 

crosses the barrier an d  can continue execution.

Safety is ensured. No process can cross a  barrie r before all other processes have reached 

th a t barrier. Assume th a t process p,. in an ti process program, does cross some barrier 6 

before all other processes have reached it. This m eans th a t either p, has received n — 1 

barrie r messages for 6. one from each p]rj  ^  i  or it has crossed the barrier having received 

less than  n — 1 o ther messages. In the first case, since P I  ensures "only once" delivery, 

some process m ust have sent a  barrier message for b w ithout reaching 6. This would be a  

violation of the protocol. Since the  user program  is correct, it is not possible for this to be 

an  old message for a  different instance of barrier b because there must have been a barrier 

b' since the last use o f  b. In order for b' to have been  crossed, thus allowing b to be used 

again, all of the previous messages for b m ust have been  consumed. For the  second case, 

process p, must have violated the protocol to  cross a  barrier with less then  n — 1 barrier 

messages. This would require a Byzantine failure m ode we are not concerned with. Since 

it is impossible for any  Pi to cross b w ithout all the  o th e r processes arriv ing a t b, safety is 

assured.
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T h e o re m  5 .2  BDSM  barriers correctly preserve the B D SM  order requirements with respect 

to updates.

All writes made by process pi before reaching a  barrier are sent before the barrier 

message is sent. Since each o ther process must get the  barrier message before proceeding, 

all o f these earlier writes m ust be received as well, due to P I . This means all o th e r processes 

m ust get all of the writes issued by p t before getting  the  barrier message from p,. And since 

each process behaves this way all w rites before the barrier are seen by all processes before 

the  barrier is crossed.

Conversely, because a process blocks until a  barrier is crossed, any w rites th a t are sent 

by a  process after the barrier will not be seen until this process has also crossed the barrier. 

Consider p t and p} . If p, sees an u p d a te  before barrier 6 issued by pj after b then  p3 must 

have crossed b. In order for th a t to have occurred. p} must have received a  barrie r message 

for b from p,. However, since p, has no t reached b yet (it is reading values before b). such 

a  message has not been sent. Therefore, pj cannot have crossed the barrier and  p, cannot 

have received an update from p} w ritten  after pj crossed b.

5 .2 .2  L o ck  C o r r e c tn e ss

T h e o re m  5.3 BDSM  locks are correct synchronization operations for correctly written pro­

grams.

R icart and Agrawala proved both  liveness and safety for the distributed m utual exclusion 

algorithm  they designed[74]. O ur locks differ only in th a t they use broadcast ra ther than 

point-to-point messages and th a t there  is buffer flushing done when messages are sent.
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N either change effects the validity of the original proofs. Using broadcast messages simply 

means some processes get messages they donrt need. These are ignored. Sending update 

messages due to buffer flushing has no bearing on the mutual exclusion protocol. Therefore, 

we conclude tha t our lock implem entation satisfies the  safety and liveness requirements as 

well.

T h eorem  5.4 BD SM  locks correctly preserve the BD SM  order requirements with respect 

to updates.

Proving the ordering requirements are m et is more complicated. Locks are essentially 

global communication sim ilar to barrier, except each process does not block. To see how 

this is so. consider tha t each process must receive a  request and reply to it. The receipt 

of this message and the reply mark the tim e in the receiving process' view tha t the lock 

was acquired. And. since we are using broadcast, all processes in the system  will receive a 

reply message. Processes th a t are not in contention for the lock will not wait for the reply. 

However, the updates th a t are flushed by the reply will still be applied a t all processes.

Step one is to show th a t all previous w rites are seen before a  lock is acquired. Since 

a  process is required to flush its buffers before sending a lock message all previous writes 

will be sent first. P roperty  P2 provides for th e  order of these sends to  be preserved at all 

receivers. Because the acquiring process must receive a  message from each other process it 

m ust receive all earlier w rites from each other process as well. Therefore, in order to acquire 

a  lock all previous writes m ust be seen.

The second step is to  show tha t no writes after a  lock is acquired by one process are 

seen by another before the  lock is seen to be acquired. As m entioned above, the notion of
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a  non-contending processes seeing ano ther process acquire a lock is when it replies to th a t 

acquire request. Once a  process issues a  request for a lock it blocks. It may not execute 

any reads or w rites until it acquires the lock. To acquire the lock it must receive a reply 

from all other processes. Therefore, all o th e r processes must have replied to the request 

(and seen the acquire) before the requesting process can issue any  writes.

5 .2 .3  B D S M  I m p le m e n ta t io n  C o r r e c tn e s s

We now prove th a t the im plem entation o f BDSM using PBP is a  correct representation 

of the  BDSM model. This is done by show ing th a t all of the ordering requirements for 

the model a  preserved in the im plem entation. Using theorems 5.2 and 5.-1 and the P B P  

properties P i  an d  P2 we show tha t the  ordering requirements a re  met.

T h e o re m  5.5 The implementation o f B D S M  correctly realizes the BD SM  model.

To prove th is  we will show th a t each axiom  from section 2.2.2.3 is preserved by tin: 

im plem entation.

1. Axiom 2.1: Locally, all events are in  program order.

This is preserved because processes execute in program order and writes are applied 

im m ediately to the local copy of memory.

2. Axiom 2.2: Write leads to updates, and a write comes before its updates.

W hen a process issues a  write th is inform ation will be sent as an  update, either when a  

buffer is full, when a  synchronization operation  requires it. o r immediately if buffering 

is disabled. Additionally, since the w rite  triggers the updates, the write m ust come 

before th e  updates, from a global perspective.
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3. Axiom 2.3: Updates fo r  writes to the same segm ent by the same process are seen in 

the order written.

W rites to the locations of each segm ent are buffered in the order issued. These buffered 

w rites are then  sent as updates. O n receipt o f an  up d a te  message, a  process will apply 

these individual writes in the o rder they ap p ea r in  the  update message, which is the 

order buffered. PBP property  P 2  ensures th a t these updates arrive in the order sent.

4. Axiom 2.4: Barriers are in all processes.

This is semantically required. I f  it doesn 't hold, the program  (not the  im plem entation) 

is incorrect. A process m ust receive a  corresponding barrier message from each other 

process. Failure to do so indefinitely blocks th e  process.

5. Axiom 2.5: Barriers are totally ordered, and all processes see the sam e order.

O n arrival a t a barrier, a  process sends a  barrie r message to all o th e r processes. It 

then waits for a  similar message from each o the r process. A process performs no local 

actions until the barrier is crossed. Therefore only one barrier m ay be active at a 

time. Each process m ust cross th a t barrier before arriving at another. Theorem 5.1 

shows tha t the  im plem entation correctly preserves barrier semantics.

6. Axiom 2.6: Updates fo r  writes before a barrier are seen by all processes before the 

barrier.

This follows from theorem  5.2.

7. Axiom 2.7: Updates after barrier seen after.

This follows from theorem  5.2.
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8. Axiom 2.8: Lock acquires arc seen by all other processes.

In order to acquire a  lock, p, must receive perm ission from each o th e r process, in the 

form of a lock message. T he sending of a  perm ission message in reply to  a lock_request 

corresponds to th e  acquire event in th e  perm ission granting process. From the lock 

definition there m ust be such an event in each process or the lock cannot be acquired.

9. Axiom 2.9: There m ust be a release fo r  each lock acquired.

T his is sem antically required. A program  th a t fails this is incorrect and deadlock 

prone.

10. Axiom 2.10: Lock acquires are ordered, and a lock-holder's release comes before the 

next acquire.

This holds due to  the implem entation o f locks, theorem 5.3.

11. Axiom 2.10: Earlier updates by other processes m ust be seen before acquiring a lock. 

This holds due to  the implem entation o f locks, theorem 5.4.

Since the axioms th a t define BDSM are all preserved by our im plem entation, the imple­

m entation correctly provides BDSM coherence. We have shown that the  implementation 

of BDSM. using FIFO  broadcast provided by PB P. is a  correct realization of the BDSM 

coherence model.

5.3 C onclusions

We use the PBP com m unication system presented in chapter 3 as the basis for an imple­

m entation of a BDSM system . In this chapter we discussed the im plem entation of this
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system . Further, we have shown tha t our system , as implem ented, provides an accurate 

realization o f the BDSM m odel. In the next chap ter, we provide a  su ite  of test applications 

using BDSM  and  explore th e ir  performance on  BDSM and MPI.
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D S M  E xp erim en ta l R esu lts

In preceding chapters we presented the theoretical m odel and im plem entation details of the 

weak, b roadcast DSM system. BDSM. In th is chapter, we look a t some of the perform ance 

results we have obtained using this system. We have developed a  suite of test program s 011 

BDSM. We discuss these programs and the ir com m unication patterns and com pare them 

to a message passing alternative on the same hardw are setup.

To d a te , we have focused prim arily on parallel, numerical calculations where pure per­

formance gains are desired. We have developed a  sm all test su ite of programs, loosely based 

on the SPLASH-2[80] suite. Since our prim ary concern is the operation of the DSM system 

and not th e  overall performance of our test program s, we have used straightforward, often 

naive, parallel algorithm s. We present comparisons between our system and a  message- 

passing system . We have chosen to use MPI[39] because it is commonly used for parallel 

program s on networks of workstations. We com pare our execution times to those of sim ilar 

program s using the  mpich (v l.l.l)[45] im plem entation of M PI on the same network. We 

also explore some of the ways in which using P B P  effects the execution of program s on

117
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our system. One of the m ain benefits BDSM has over MPI is th a t BDSM uses broadcast 

com m unication for its  collective com m unication operations, which essentially they all are. 

M PICH  uses tree algorithm s on top o f T C P  to perform collective com m unication opera­

tions. Recent work by Chen. Carrasco and  Apon [31] attem pts to  im plem ent these MPI 

operations using IP M ulticast.

6.1 E xperim ental Setup

Experim ents are perform ed on a single E thernet subnet. The lab we use is a  public access 

teaching lab. We do not have exclusive access to the systems. Therefore, the programs 

have been run in a  non-controlled environm ent. Some of the uncontrollable factors include 

users logging in. NFS activity, cron jobs, and  system  daemons. Because o f these potential 

outside influences we have made every effort to run our tests late a t night and  very early 

in the  morning. T he lab consists of up to  20 Pentium  120MHz system s. These systems 

run  identical installations of Linux, using the  2.0.36 kernel. There is a  shared NFS system 

where binaries and initialization data reside. Results are stored locally to avoid using NFS 

during  the actual com putations.

We replicated our speedup experim ents un til a  reasonably narrow  95% confidence in­

terval was obtained. In presenting our speedup results, we simply plot the  mean of the 

replicated experiments. The 95% confidence interval is consistently no more th an  2% of the 

p lo tted  value.

Since the performance of PBP2 was shown, in chapter 4. to be b e tte r  th an  PBP1 in most 

cases. PBP2 was used for the  BDSM experim ents. Additionally. PB P2 should be less CPU
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intensive since it removes the interval tim er th read  and  can increase its timeout when th e  

communication channel is idle. The results were obtained using a window size of 1G. T h is  

is the default for bo th  versions of PBP. We also perform ed the experim ents using windows 

of 16. 48 and 128 messages, as w ith the th roughput experiments in chapter 4. The results 

for all of these are shown in section 6.3. W hile it is clear from the th roughpu t experim ents 

in chapter 4 th a t windows size can effect perform ance, this effect appears to be minimal for 

the laxger program s a t the BDSM level.

6.2 T est su ite  program s

To explore the  perform ance of the BDSM system  we developed a  su ite of five common 

parallel program s. O ur suite consists of:

• m atm ult: m atrix  m ultiplication

• nbody: N -body particle simulation

• ja c o b i:  Jacobi linear equation solver

• eg: conjugate gradient

• ts p : traveling salesm an problem

We chose not to use the  common benchmarks o f the SPLASH2 [80] suite because these 

programs are designed for completely transparen t memory systems. W hile it would be 

possible to po rt these program s to our system, the  program s would be  different enough th a t 

the results would not be comparable to o ther DSM systems. They would not serve as a  

true benchm ark.
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We use a  single process version o f each program as th e  basis of ou r speedup m easure­

ments. We also developed MPI versions o f each algorithm. W e a ttem p ted  to make the DSM 

and M PI program s as similar as possible to ensure there were few algorithm ic differences. 

When possible we make sure th a t d a ta  are initialized w ith  th e  sam e values and th a t  the  

actual com putations are identical. To some extent, differences are unavoidable because the 

sharing p a tte rn s  of DSM and m essage-passing algorithms are  generally different. For exam ­

ple. we did not force the  MPI code to  use collective com m unication operations a t all tim es, 

which the BDSM system , effectively, does. O ur goal is to show th a t the BDSM system 's  

performance is com parable to message passing on the same hardw are, not that it is b e tte r .

The M PIC H  im plem entations ch_p4 device is used on a  network of workstations. T h e  

underlying com m unication is done using TC P. Collective com m unication operations are 

made up of individual point-to-point messages. The algorithm  used depends on the o p era ­

tion. For exam ple, an  MPI broadcast uses a  binary tree algorithm  and  an MPI a ll-gather 

uses a ro ta tion  algorithm . Barriers are  done using a ring and  a  token. The token passes to 

each node twice, the  first to signify arrival a t the barrier an d  the second time, d epartu re . 

Our BDSM barriers consist of a  single round of messages. A dditionally. BDSM uses ac tu a l 

broadcast for all message traffic, so we expect it to perform b e tte r for algorithms th a t use 

primarily collective communication operations.

6.3 R esu lts

The first program  in the  test suite is a  square (m  x vn) m a trix  m ultiplication program  

(matmult). T he  code uses statically initialized operands. W e are using a naive row p a r­
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titioning algorithm  for simplicity. Each process is responsible for rri/n  rows of the result 

m atrix. After com pletion, a  designated process reports the result m atrix . T he M PI pro­

gram  is similar, w ith  a designated m aster process collecting each o the r process' result rows 

and reporting th e  result. T he m aster is also a  worker so the num ber o f com pute elements 

is the same for b o th  M PI and BDSM versions. The communication p a tte rn  is. effectively, 

a  single round of all-to-one message passing in both  cases. For verification, each version 

of m atm ult can com pute the result m atrix  a t the m aster process and  com pare the results 

reported by the group com putation.

DSM vs. MPI: matmult. 1280 matrices
6
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MPI

5

4
a.3

T3
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Figure 6.1: Speedups for matmult

Figure 6.1 shows the comparative speedup of the two programs for dense 1280 x 1280 

integer matrices. Both program s exhibit sim ilar speedups. MPI perform s slightly better 

than  BDSM, prim arily  due to the fact th a t our DSM always uses all-to-all communication. 

Processes th a t don :t need the  results still m ust handle all of the messages. T he all-to-one 

communication p a tte rn  is essentially the opposite o f broadcast. In a  sense, it represents a
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worst case com m unication pattern  for our DSM system.

The second program  is an  N-body particle sim ulation (nbody). We calculate the forces 

and new' positions of p particles in 3-space. In itia l positions a n d  masses are generated, and 

a single large particle is placed centrally in the  space. We us a  sim ple 0 (p 2) algorithm  

where each of n processes is responsible for calculating the forces on its p /n  particles by all 

p particles. In each calculation phase the new positions axe com puted  and data  is exchanged 

among all process. N-bodv exhibits an all-to-all com m unication p a tte rn  with a significant 

amount of com putation between each com munication round. T h e  original algorithm is from 

a Fortran  M PI im plem entation by David Walker[93j. We m odified one copy to use BDSM 

and the o ther so the  communication patterns are more sim ilar. Initially, the MPI version 

used a  circular loop of processes and n /2  communications per tim e-step. O ur versions, both  

BDSM and M PI. use n  rounds per time-step where each process com putes the forces on its 

particles by each other process' particles.

DSM vs. MPI: nbody. 204a particles. 30 timesteps
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Figure 6.2: Speedups for nbody
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T he results shown in figure 6.2 are for 30 tim e steps of 2048 particles. Here, the  benefits 

of all-to-all communication using broadcast favor BDSM over MPI. Both program s exhibit 

nearly linear speedup. The program  will transm it a  large am ount of d a ta  per time-step. 

However, it uses relatively few tim e-step iterations. In  the MPI version, each process 

swaps its particles around a  ring w ith  its neighbors. It then computes the forces of the 

newly received particles on its local particles. T h is takes place in a series o f one-to-one 

com m unications, while the BDSM version perform s a  larger all-to-all exchange once per 

tim e-step . T he amount of d a ta  th a t needs to be moved is the same. The sam e pseudo­

random  num ber seed it used to  generate the  random  particles for each execution of each 

version so the com putations are the same.

DSM vs. MPI' Jacobi. 1024 vector
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F igu re  6.3: Speedups for jacob i

T he th ird  program is a  Jacobi linear equation solver ( ja c o b i) . It uses an  iterative 

approach to  solve for x  in the system  A x  =  b. In p u t d a ta  for b is generated random ly by 

a  designated process. M atrix A is a  fixed 5-diagonal m  x m  matrix. We use a  seed that
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generates a  data set th a t converges in approx im ately  14000 iterations. T he BDSM program 

was developed locally, based on pseudo-code in a  causal memory pap er by A ham ad. Hutto 

and  John[5]. The M PI version was based on the  one in the Pacheco's book [69]. modified 

to  make it work the sam e way as the BDSM  version. The com m unication pattern  is a 

series of all-to-all d a ta  exchanges as each process computes m /n  vector elem ents during 

each iteration  using th e  en tire  vector from  the  previous iteration. F igure 6.3 shows the 

resu lting  speedup for a  1024 element so lu tion  vector. This program consists o f a relatively 

sm all am ount of com putation  for each ite ra tio n  so the efficiency of th e  BDSM collective 

com m unication operations is seen.

DSM vs. MPI: CG. 1024 vector
6

S BDSM
MPI

4
o.
co
CL<n

3

2

t
83 5 6 741 2

Number of Processes

Figure 6.4: Speedups for eg

The conjugate gradient program  (eg) is sim ilar in structure to j a c o b i  except there are 

three all-to-all exchanges for each iteration . We use the same initialization technique as in 

ja c o b i .  Executions are based on 10000 itera tions. Both the DSM and M PI program s were 

derived from the respective j  a c o b i versions. T he DSM version uses a  num ber of different
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segments for problem  and  tem porary data . This contrasts w ith  ja c o b i .  which uses two. 

one for A  and  one for b o th  x  and b. This is the m ost network-intensive of the programs in 

our suite, and  it is used to explore the message loss patterns. F igure 6.4 shows the speedup 

results for a  1024 elem ent vector. M PI perform s nearly as well as BDSM until the benefits of 

broadcast all-to-all communication dom inate. B oth eg and j a c o b i  scale poorly. The sheer 

num ber and cost o f  all-to-all communications, even with BDSM using hardware broadcast, 

outweigh the benefits o f more com putational power for this problem  size.

DSM vs MPt tsp 15 cities, depth 4
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Figure 6.5: Speedups for tsp

The final program  in the suite is a simple traveling salesman problem  solver ( tsp ). T he 

program uses a  m aster/slave structure where a  designated m aster process creates initial, 

four-city-deep p a th s  and distributes them to the  other n  — 1 processes. The master gives a 

job to each process in s tric t rotation, so the work is not necessarily evenly balanced if some 

paths can be d ropped  sooner than others. In  order to keep the M PI version from having an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. DSM EXPERIMENTAL RESULTS  126

effective barrier, in the form of an  MPI_Allrednce. w e only track the shortest curren t p a th  a t 

each slave. T his means th e  slaves do more work th a n  is needed. This can be an  advantage 

o f th e  shared memory model. I t would not requ ire  more communication to allow the  DSM 

slaves to  see each o ther’s cu rren t minimum. T h e  distance m atrix for t s p  is generated 

random ly. Figure 6.5 shows th e  speedups for a  15-citv tour. T he results are poor for bo th  

M P I and  BDSM. This is m ain ly  due to the inefficiency of the  algorithm we are using. T he 

single process version will no t perform  extra w ork since it keeps a global m inim um  path  

an d  can drop infeasible p a th s  sooner. Also, as expected  w ith  the m aster/slave s truc tu re , 

using only one slave is ac tually  slower than the single-process version. The com m unication 

p a tte rn  for t s p  is basically one-to-one as the m a ste r  passes each slave a  task to  work on 

in tu rn . I t would be possible for the BDSM version to  take advantage of global knowledge 

an d  improve its performance. T h is is another exam ple  of a  program for which broadcast 

com m unication is not necessarily ideal. The code  for t s p  was derived locally, based on 

exam ples seen in course work.

Figure 6.6 shows a com parison of the num ber of messages sent and the am ount of 

d a ta  transfered by each app lication  for different system  sizes. The num ber o f messages 

shown includes only sequenced messages, both d a ta  updates and synchronization messages. 

I t doesn 't count retransm issions and non-piggybacked acknowledgments sent by th e  PB P 

layer. Similarly, the to tal bytes sent counts th e  num ber of bytes in the sam e subset of 

messages. We can see th a t the  iterative program s, eg  and ja c o b i .  transm it large num bers 

o f messages as each iteration  involves at least one all-to-all communication. T he  m atm ult 

program , due to  the size o f  the  d a ta  set, requires a  large num ber of messages for its  single 

com m unication round. A dditionally, these messages are being received and handled  by all
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processes, even though only the  first process cares ab o u t the results. The nbody program, 

since it only runs 30 tim e steps, has a  smaller num ber of messages than  the other two 

repetitive programs. However, th e  am ount of d a ta  moved per iteration is much greater. 

Each particle is represented by seven double variables. Running for 10.000 time-steps 

would transfer on the order o f  1.5 GB. The simple t s p  program  creates few messages, 

resu lting  in a  small am ount of d a ta  transm ission.

Procs Messages Bytes
CG 2 153308 63527492

4 253320 75448816
8 493348 104091936

Jacobi 2 133303 61038732
4 213319 70480528
8 413355 94164608

M atinult 2 10249 14296012
4 10257 14296868
8 10273 14298580

N-Bodv 2 5862 4482104
4 5988 4497368
8 6360 4541816

TSP 2 88 57920
4 104 60248
8 134 64672

F igure 6.6: Message passing for DSM programs

6.4  Effects of W in d ow  Size

In  chapter 4 we've seen m arked differences in the perform ance of PBP2 for different, specif­

ically larger, windows. The previous results all use th e  same 16 message window. In this 

section we show a comparison for a  few test program s o f 48 and 128 message windows as 

well. O ur results show th a t for som e experiments the larger window make little  difference.
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For others, larger windows can actually be detrim ental.

PBP2. Jacobi 1024 vector, variable windows
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F ig u re  6.7: Window Size and Speedup for ja c o b i

Figure 6.7 shows tha t the difference in window size has little  effect on ja c o b i.  T he 

results are the  same for eg . The different window sizes produce alm ost identical speedups. 

At each iteration, each process sends less than  16 messages so a  larger window should have 

no effect. T he results are different for the program s th a t have more data movement and 

less synchronization. Figure 6.8 shows com parison for m atinult. In  this program, all o f the 

processes are sending large amounts of d a ta  a t roughly the sam e time. They are sending 

more than 16 messages, so the larger windows are  allowing m ore messages to be sent at 

once. This increases the contention on the network. Increasing the  number of messages also 

increases the contention for buffer space on bo th  sender and receiver. This may. in tu rn , 

increase the message loss rate.
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PBP2. Matmult 1280x1280. variable windows
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Figure 6.8: Window Size and Speedup for matmult

6.5 M essage Loss B ehavior

In  th is section, we explore the behavior of the underlying PB P layer and the E thernet itself 

when used for the DSM com putations in our test suite. Our focus will be on ja c o b i  and 

eg. The other three programs exhibited no appreciable message loss due to the ir relatively 

light communication needs. The d a ta  we present here is meant to illustrate the message loss 

rates and  provide us with insight into why messages might be lost. However, the very act of 

collecting accurate message loss d a ta  pertu rbs the  network and the com putation. It creates 

its own extra-com putational messages. It also increases the computation times. This may 

serve to reduce the number of messages lost, by slowing the program, thereby reducing 

network contention. It may. however, increase the  num ber of lost messages by adding to 

the network load due to the message passing required for retransmission. Since the tim ing 

num bers are not precise due to th is pertu rba tion , we only repeated the experim ents a  small
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num ber of times. This leads to a  large variance. T he  results in this section  should be seen 

as illustrative rather than  definitive.

PB P1
Procs Sent Lost (95% conf interval) R ate

Jacobi 4 213319 15.50 ±  16.91 0.00727%
8 413355 55.50 ±  21.37 0.01343%

CG 4 253320 25.50 ±  26.39 0.01007%
8 493348 133.250 ±  26.13 0.02701%,

PB P2
Procs Sent Lost (95% conf interval) R ate

Jacobi 4 213319 16.00 ±  14.90 0.00750%
8 413355 51.66 ±  27.70 0.01250%

CG 4 253320 27.33 ±  18.65 0.01079%
8 493348 127.00 ±  26.29 0.02574%

F ig u re  6.9: Message loss for eg and jacob i

We begin with the ac tu a l message loss rate . Figure G.9 shows the ra te  of message loss, 

for eg  and ja c o b i running  w ith  4 and 8 processes for both PBP1 and  PB P2. T he two- 

process versions of these p rogram s lost, on average, less than one m essage per run and 

are. therefore, not very in teresting. In the w orst case, eg with eight processes. 99.97% 

of all messages were successfully delivered w ithou t retransm ission. As m ore processes are 

added we see a rise in m essage loss. This is m ost likely due to the fact th a t w ith more 

processes there is more com petition  for receive buffer space and more contention on the 

network. A two-fold increase in the num ber o f processes, while creating  a  proportional 

increase in message traffic, causes a  400% rise in  lost messages for eg an d  a  250% rise for 

j a c o b i .  One of the po ten tia l causes may be the  interference of o the r processes on the 

system . As mentioned earlier, we do not have access to a com pletely isolated network. 

W ith  more BDSM processes it is m ore likely th a t  there is com peting activ ity  on one of the
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w orkstations. T he large confidence inter%'al for these loss num bers, see figure C.10. m ay be 

p a rtly  due to interference from computing activ ity  outside of o u r experiments. However, it 

is m ost likely due to the  low number of repetitions.

PBP1
Procs Total Lost Lost By 1 Receiver Lost a t Sender

Jacobi 4 15.50 ±  16.91 1.75 ±  1.52 13.75 ±  17.83
8 55.50 ±  21.37 14.25 ±  5.72 41.25 ±  19.91

CG 4 25.50 ±  26.39 5.75 ±  2.39 19.75 i  25.54
8 133.25 ±  26.13 31.75 ±  4.38 101.50 ±  24.12

^>BP2
Procs Total Lost Lost Bv 1 Receiver Lost a t Sender

Jacobi 4 16.00 ±  2.48 1.33 ±  3.79 14.00 ±  2.48
8 51.67 ±  27.70 8.67 ±  8.72 42.33 ±  28.80

CG 4 27.33 ±  18.65 1.33 ±  1.43 22.00 ±  17.39
8 127.00 ±  26.29 18.67 ±  13.68 107.00 ±  31.03 |

F ig u re  6.10: Message loss by type (95% confidence intervals shown)

Message loss on a  single Ethernet segment can come from th ree  sources. T he first is 

buffer overflow on the sending processor’s network interface or too much network contention. 

T here is no m echanism  to ensure adequate buffer space for the outgoing socket using UDP. 

W hen a  message is sent by a  user process and th e  buffer is full, the  message is not physically 

transm itted . W ith  high contention, the exponential back-off algorithm  used by the E thernet 

controller may exceed its limits. In this case, th e  message is sim ply discarded. Secondly, a 

receiving process' inpu t buffer may be full. This will cause the message to be dropped a t the 

receiver. O ther processes may still receive the broadcast message as the ir buffers may be in 

different sta tes. Finally, packets may be corrupted  in transit, causing a  checksum failure. 

T h is forces UDP to discard a  received packet w ith  no action taken. On a stable network, 

however, such corruption is very rare. In our experim ents we see message loss in two forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. DSM EXPERIMENTAL RESULTS 132

all or one. W hen the sam e message is reported as lost by all non-sending processes, this 

indicates th a t either the message was dropped a t the sender or the packet was corrupted 

in transit. W hen a message is reported lost by only one process, this means the  reporting 

process's receive buffer was full and the message was dropped. In addition. P B P 2  showed, 

in a  few isolated cases, messages th a t were reported  missing by all but 2 receiving processes. 

F igure 6.10 shows the breakdown of each type o f message loss. We see th a t roughly three 

tim es as many messages are lost due to sender buffer overflow or corruption.

Procs Lost T im e (sec.)
4 12 752.88

16 762.36
25 762.60
49 779.31

8 115 658.87
126 • 640.09
139 667.09
153 657.50

F igure 6.11: Sample execution times for eg

Since messages are inevitably going to be lost, we are interested in the cost associated 

w ith  detecting and re-sending lost messages. We can informally discuss the effects of loss 

on the eg  program by com paring the number o f lost messages to the execution tim e. Figure 

6.11 shows lost message counts and execution tim es from several executions o f eg with four 

and  eight processes. W hile it is possible to see a  correlation between the num ber of lost 

messages and execution tim e for four processes, this correlation is probably coincidental. 

At eight processes, we see th a t there are clearly o ther factors involved. A higher num ber of 

messages lost does not autom atically lead to worse performance. The type of message lost 

may be significant. A lost barrier message will likely delay all processes more than  a  lost
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d a ta  message. Every process depends on the arrival of the b arrie r message for continued 

execution. This is not th e  case w ith a single d a ta  message. A lthough, due to  FIFO delivery, 

any messages from th e  sam e sender are held up until the lost m essage is received.

6 .5 .1  W in d o w  S iz e  a n d  M e ssa g e  L o ss

jacobi Procs W indow 16 W indow  48 W indow 128
4 16.000000 ±  2.4841 20.666666 ±  16.9092 14.333333 ± 15.1783
8 51.666668 ±  27.6993 61.333332 ±  20.2321 66.333336 ± 16.1628

CG Procs W indow 16 W indow 48 W indow 128
4 27.333334 ±  18.6448 29.666666 ±  10.0395 28.333334 ± 16.9092
8 127.000000 ±  26.2896 114.666664 ±  49.3296 111.333336 ± 19.9248

F ig u re  6.12: PBP2 messages loss versus window size

PBP2 uses variable size windows. The increase in window size allows a  process to send 

more messages a t once w ithout requiring any acknowledgments. In some of the bench­

m arking experim ents in  chap ter 4. increasing the window size increased the number of lost 

messages due to filling buffers faster and increasing network contention. Figure O'. 12 shows 

PB P2 message loss as a  function of window size. While there is some difference among 

the  three window sizes, most noticeably the steady  increase in j a c o b i  w ith 8 processes, 

all of these loss counts fall w ithin each other's confidence intervals. We feel that there is 

little  difference in the  loss ra te  for different window sizes for user applications on PBP. 

T his correlates to the behavior seen using different window sizes in com pletion time. The 

differences can be seen on high-demand benchm arks at the P B P  level, see chapter 4. but 

axe not visible in user-level applications.
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6.6 C onclusions

T his chap ter presented the experim ental resu lts for our BDSM im plem entation. We dis­

cussed the  program s in our test suite and  th e  experim ental setup and m ethods used. We 

used these results to show that the test p rogram s' perform as well as similar program s using 

M PI. These results illustrate the po ten tia l usefulness o f BDSM as an alternative parallel 

program m ing environm ent for cluster com puting  on a b roadcast capable network. We found 

th a t for repetitive programs th a t had an  all-to-all com m unication pattern  BDSM perforins 

well. T he cost o f collective com m unication can be reduced by using hardw are broadcast 

operations. We discussed the behavior o f  these test program s in relation to the underlying 

network and  P B P  communication layer.

C om paring th e  BDSM results to those o f the  MPI program s we see th a t collective com­

m unication operations tha t using broadcast can improve performance. In general, com pu­

ta tions th a t are prim arily iterative and require shared d a ta  am ong all processes can exploit 

th is im provem ent. In our test suite this com putational m odel is represented prim arily  by 

the eg  and ja c o b i  equation solvers and th e  nbody sim ulation. The m atmult program  shares 

very little d a ta  am ong all processes since th e  operands are sta tic . It requires one process to 

have access to  all the results, bu t there is no interaction am ong the other com pute nodes. 

Additionally, is a  one pass program. T here is no repetition. This is shown by BD SM 's poor 

showing next to  M PI for this com m unication pattern .
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E xten sion s For B D S M

We have presented a new DSM model. BDSM and explored its perform ance compared to 

M PI. We also dem onstrated its application to  several parallel programs. However, there are 

o ther applications it can be used for and improvements tha t can be made. In this chapter 

we will look at two such extensions. T he first involves using BDSM for fault-tolcrance. 

One of our reasons for using fully-replicated weak-memory is fault-tolerance. We explore 

the potential for using BDSM by deriving a  general, fault-tolerant, state-m achine service. 

This s ta te  machine provides its service to its client in the presence of failed server nodes. 

T he second part of th is chap ter addresses th e  potential scalability issue in two ways. First, 

we allow memory bound program s to benefit from BDSM by allowing selective segment 

membership. This allows larger problems to be solved. We then look a t methods for 

allowing more processes by reducing the network traffic. To do this, we ensure updates to 

a  segment are only sent to each process th a t has joined th a t segment. By addressing these 

two issues we show th a t BDSM can be used for a wider range of applications than were 

presented earlier.

135
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7.1 Fault-T olerant Service

Providing a  service to client program s is a  common use o f  networking technology. Since 

the  server processor can fail, replicating a  server across a  num ber of processors is often 

desirable. One m ethod of developing such replicated serv ices is to use the s tate  m achine 

approach[56‘. 78]. The sta te  m achine model can be used to  im plem ent general, fault-tolerant 

services. In  th is section, we present a  m apping of one ty p e  o f s ta te  machine service model 

to  the BDSM environm ent. A simple version of a s ta te  m achine service is defined by 

L am port[56]. T he state m achine is required to respond to  client requests in a causal order. 

Further, it m ust ensure th a t all non-faulty replicas execu te  requests in the sam e order 

despite failures. The original presentation addresses b o th  fail-stop and Byzantine failure 

modes. Schneider [78] refined and classified this app roach . He discusses a num ber of 

different techniques th a t solve the basic problem of en su rin g  order of requests issued to  

s ta te  machine replicas by clients.

T he fault-tolerance requirem ents of a  s ta te  machine serv ice can be summarized by two 

elements. The first is order. Each non-faulty replica processes requests in the same relative 

order. The second is agreem ent. Agreement means th a t a ll o f the functioning replicas see 

each valid request, with the sam e tim e-stam p. Once rep licas agree, they can execute the 

"next" request subject to the  ordering requirements. T h e  s ta te  machine replicas must all 

execute the  sam e operations in the same order, thus en su rin g  the replicated state  rem ains 

consistent. T he order requirem ent can be summarized by th e  following two rules:

• O l: Requests from a  single client are processed in  th e  order issued by the client 

(program  order).
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•  0 2 :  If one client's request causes another client to  send a request th e  first client's 

request m ust be handle before the second (causality).

T he o rder requirem ents. 01 and  0 2 . m ean tha t s ta te  machine cannot sim ply process re­

quests in the  order received. Care m ust be taken to  provide causal o rder am ong requests 

by different clients. T he agreement requirem ent is satisfied if the following two conditions 

hold:

•  A l :  All non-faulty processors agree on the sam e value for each request (sam e request 

in sam e order).

•  A 2 : If  the transm itter is non-faulty. then all non-faulty processors use its value.

In  th is section we develop a s ta te  machine model th a t meets the above criteria  using 

BDSM locations as the communication medium am ong replicas. We begin w ith  a presenta­

tion o f the model in general term s. We then present the pseudo-code of each element and 

discuss the  operation of our s ta te  m achine in detail.

7 .1 .1  S t a t e  M a c h in e  M o d e l

T he service is provided by a  system  of n  replicas. 7Z = {r0.r i . . .r n_ i }. and  some clients

C =  {co.ci,C2  }• The num ber o f clients is unspecified. If the total num ber of clients

is known, then  some optimizations may be made. C lients communicate w ith  the  server 

replicas by passing messages over some potentially lossy network. Replicas com m unicate 

am ong themselves using BDSM on an E thernet LAN. A client c, issues a  request to any 

single replica in the system. It then  awaits a t least one response. A replica r j  receives 

requests and arranges to have all the o ther non-faulty replicas see the request. T he replicas
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then agree to  act on the requests in th e  sam e order. Each replica responds to each request. 

In an /-resilien t system , c, will receive n  — f  responses for each request th a t is processed. 

Define n f  C 1Z to be the set of non-faulty processors, such tha t j n / |  > f  a t all times. We 

are concerned only w ith  fail-stop failures. Since there is no notion o f enforced read-only 

segments in BDSM, there  seems to be no. non-cryptographic, way to  prevent a  malicious 

program from w riting to another replica 's shared memory space. Therefore. Byzantine 

faults are not easily tolerated using BDSM.

In order to  allow clients to send requests to any non-faulty replica, and not use a single 

primary- replica to  serialize requests, our model is based on real-tim e clocks. The unique 

identifier for each request is the tim e-stam p of the  request combined w ith  either the receiving 

replica's id o r the  client's id. Clients are assumed to have some unique identifier. We use 

Cj for this identifier. Since the clients are not required to be num bered, the actual index 

is irrelevant. In practice, we could use som ething effectively unique to  a  machine such as 

its IP address or MAC address combined w ith  the process identifier o f the client process. 

The system assumes roughly synchronized clocks. For replica Tj. let rc} be its local clock. 

Similarly, for client ct . let cci be the client's local clock. Let e be the m axim um  error between 

any two process clocks, client or replica. T he order th a t requests are carried out is based on 

these synchronized clocks. Additionally, we require a  reasonable m axim um  message delay 

between client and replica, tc. Since th is is potentially large on extrem ely lossy networks, 

we can make an arb itra ry  maximum and  refuse to honor requests th a t fail to arrive in time. 

A request message th a t arrives a t a  replica such th a t the local tim e. rc ,. is greater than 

ts+ e+ tc , where ts  is the tim e-stam p of the message, is discarded. T he  client should timeout 

and retransm it the request with a  new tim e-stam p. Schneider shows th a t using real-time
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requires the minim um  inter-client com m unication tim e to  be greater than  the clock skew. e. 

T h is is required to ensure that causally  connected requests have noticeably different tim e­

stam ps. Since our model requires a  client to wait until it gets a  reply before proceeding this 

requirem ent is easily met. This stop-and-w ait operation also allows a  client to re tran sm it a 

request th a t either gets lost or has the  original replica fail before propagating the request 

to  the  group. Among replicas, we define t r to be the m axim um  acceptable delay from  the 

tim e a  w rite is issued until it is applied  to the local BDSM copy at some other replica. Any 

w rite by r, will be seen by all r3 £  n f  in tim e less than t r . if r, £ n f  .

For our s ta te  machine, we will use the BDSM layer to allow replicas to com m unicate 

am ong themselves. Replicas com m unicate by writing request messages into BDSM space. 

Therefore, the buffering system of BDSM is not used. We want writes to be propagated  

im mediately. This also ensures we have PRAM  order across all segments. By using BDSM. 

and  therefore PBP. wre have reliable FIFO  order between any two replicas. PBP does not 

provide atom ic broadcast, so it is possible for a failing node to deliver its request (as an 

update  to  a  BDSM location) to som e set s C n f .  This partia l broadcast will still take less 

th an  tT tim e. T hat is. any replicas th a t are going to receive the update  will do so in less 

th an  tr tim e, ju s t as if the sending replica had not failed.

We assum e failed processes are detected. This is not difficult. PB P  provides for this. 

Failed clients have no effect on the  system . Clients, since they are not using PB P. m ust 

detect replica failure or lost request messages by a tim eout. Since clients are effectively 

stop-and-w ait systems, this detection is also not difficult. A client th a t detects a  faulty 

node, due to  a tim eout while aw aiting a response, sim ply sends its request to a  different 

replica, w ith a  new time-stamp. Since the client cannot have taken action th a t causally
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precedes another client's request, there  is no violation o f the ordering requirem ents when a 

request is re transm itted . In this case, it is assumed the  earlier one simply d id  not happen.

Messages between client and replica have the following forms. A request m essage from ct 

to any replica is denoted <  R E Q . id c, ts .o p .d a ta  >. T he fields, other than  th e  type (R E Q ). 

are the  client's unique identifier (idc). th e  tim e-stam p (£.s). the type of operation  (op) 

and  any operands required by the  operation  (data). Similarly, reply messages are denoted 

<  R E P L . idr . idc. op. data >. T he replica sends back its identifier (idr ). the c lien t's  identifier 

(idc). the  operation performed (op) and  any results produced by the operation  (data). We 

use s truc tu re  nota tion  to refer to individual elements of a  requests when required . So. for 

exam ple, given some request r, r .ts  is th e  tim e-stam p of the  request.

7 .1 .2  P s e u d o - c o d e

T here cure three m ain components to our s ta te  machine model: the client, th e  BDSM space 

and the  replicas. We s ta rt by presenting the client.

7 .1 .2 .1  T h e  C lien t

Clients make requests to any replica. Faulty replicas are detected by a  tim eout, a t which 

point another replica may be used. A fter a  request is sent, another cannot b e  sent until at 

least one reply to the first request has been received. Since we are assuming fail-stop errors, 

all non-faulty replicas will be sending th e  same reply (except for the replica num ber) so the 

first to  arrive is sufficient. O thers can be ignored.

Note th a t the clock time. cc,. on a  re transm itted  message is the current tim e, not the 

tim e of the original request. This ensures th a t the tim e-stam p on the request is current
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Client,:

send_request: send < REQ.c, cc,. op. data > to Tj.j £ 7v the n
recv_reply <  RE P L .rh.c .op. data > from some rh. h £ n

Timeout: send <  REQ.c,.cct. op. data > to r*,. k  £7Z . k ^  j
recvjreply <  REPL.rh.c .op.data > from some o ,. h £ R

Figure 7.1: Client Operation

when received by a  non-faulty  replica. Once a  tim eout occurs while sending a  request to 

f j .  a  client will not send a  request to again. I t can simply choose ano ther element of R  

confident th a t at least n  — /  are non-faulty.

7 .1 .2 .2  T h e S h ared  M em o ry  C om pon en t

T he actual state of th e  service, the target of client operations such as an NFS file system, 

is stored locally on each machine, not in BDSM. Initially, this seems counter-intuitive since 

we have a  replicated shared  memory space. However, since each process has to decide what 

action to take independently and then operate on its copy, having the actual s ta te  in BDSM 

is overly redundant. Each process would need its  own section of DSM space to represent its 

copy so the da ta  would be  replicated |7£| times a t each r ,.  Alternatively, a  system  of mutual 

exclusion would be needed to ensure one process, only, executed the operation. Failure of 

the lock holding process, and  a  subsequent prom otion, would then need to be addressed. 

By keeping the actual s ta te  strictly  local we avoid this and allow more generality. The 

service need not act s tr ic tly  on da ta  that can be stored in memory, but could work on disk 

files, physical resources and  so on. The BDSM space is used to keep a list of pending and 

resolved requests. This allows replicas to share knowledge about pending requests with one
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ano ther in a  FIFO, reliable manner.

142

Shared State:

Q[0..n — 1][A/.4A'IZ£'Q] of (req.id)
P[0..n — 1][.\/.4A"REQ] of (req.id)

Figure 7.2: Request lists in shared memory

Shared memory is divided into two lists Q and P .  T he lists are further divided so that 

each replica has it's own section of each list. Replica r, writes only to its section o f  Q and 

P .  the locations Q[i][—] and P[i][...]. Elements in the list Q[i] are pending requests as seen 

by r , .  Those in P[z] have been performed by r ,. Item s in any list are in the form (req.id). 

w here req  is a  request message and id  is the index of the replica which originally received 

the  request. Em pty elements may also be used. They are denoted (nidi. null). W hen an 

item  no longer appears in Q[j}. V j. and is in P[z} it may be removed from P[fj. Removal is 

done by overwriting a valid entry with the em pty entry (null .nu ll) .  The size of th e  lists. 

M AXREQ. is defined for clarity, bu t need not be stric tly  defined. If it is. it needs to be 

greater th an  the maximum number of clients. If th is is unknown the DSM space should be 

grown dynamically.

7 .1 .2 .3  R eq u est S tab ility

In  order to  ensure th a t each request is applied in the same order a t all replicas we need to 

ensure th a t

1. there can be no earlier pending requests from the same client and.

2. there can be no earlier pending request from a different client and.
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3. the  request has been seen by all non-faulty  replicas.

T he first condition is straight forw ard due to the stop-and-w ait nature of clients. Client 

Ct can only have one outstanding request a t  a  time. T h e  second condition requires a  request 

to  have the  earliest tim e-stam p o f any request in Q and  to be time-stam ped a t least A 

earlier th an  the current time (at the replica). The delay. A . is defined to be tr 4- 2t r 4- e. 

T he final condition ensures th a t the  request is agreed upon by all non-faulty replicas. It is 

satisfied when a  request is present in Q[f]Vz E n f .  T h is  property is called stability. W hen a 

request r  is stable a t r , it can be executed on the local s ta te  and a reply can be gent:rated.

D e fin it io n  7.1 Request r is said to be s tab le  at r t when :

Vj € n /  : (r. k) 6 Q[j] A (r. k) £ T>[i]/\

r.ts <  s . t s V ( s . j )  E (QVj E t i J  C\'D{i\) A

r .ts  -t- A  <  r c i .

T he com parison (r.ts < r '.ts ) .  for two elements ( r . i) and (r ' . j ) .  is defined to include 

the  range e for clock skew. The inequality  is true if

(r.ts  + e < r '.ts)  V (r'.ts  — e <  r .ts  <  r '.ts  + e A (i < j  V (i =  j  A r.id  < r  .id)).

Given two request time-stam ps. if they are within e then  they are ordered arb itrarily  by 

replica num ber. If  they are from the  sam e replica they a re  ordered by client identifier. This
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can be any ordering  of the client id  as long as all replicas can determ ine the right order. 

The delay. A . ensures th a t no earlier request is still in transit. The te rm  tc is used to 

ensure th a t all po ten tially  earlier message from clients to replicas have arrived. The te rm  

2tr ensures th a t all potentially  earlier requests th a t have reached replicas have been seen by 

all r-j 6 n f .  W e need to  allow time for th e  original request to be applied to all non-faulty 

replicas and for th e  confirmation copies to  be applied. Finally, m axim um  clock skew. e. is 

added to cover differences is clocks.

If the num ber o f clients is known an d  fixed, a  request can be declared stable w ithou t 

waiting for the A  com ponent to become tru e  if there is a later request by each other client 

in Q. Since there  can only be one ou tstand ing  request by each client, once each client has 

a  request pending  there can be no o ther requests in transit.

7 .1 .2 .4  T h e  R e p lic a s

Each replica has its own section of each of the  lists. Replica t} reads from Q\i\.i == j .  bu t 

does not w rite to  it. This avoids the need for some kind of access control for the shared 

memory. In a  fau lt-to leran t system w here processes fail, we want to avoid having m utual 

exclusion if possible. Since reads are s tr ic tly  local operations, there is no waiting for failed 

processes. A failed process will simply no longer update  its sections of Q and T>. Once 

a process failure has been detected, non-faulty  replicas will ignore those areas in fu rther 

processing.

The basic operation  of a  replica, r t , is to  wait for requests and to handle them as they  

become stable. W hen r* receives a request, r.  from cy. it first determ ines if the request 

is valid. A valid request must have a  tim e-stam p greater than re, — tc — e or it has been
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Replica,:

0 Recv_request: r = <  R E Q . C j . t . o p . d a t u  > then 
Q[i][A'EA'r T R E E ]  =  ( r . i ) :

[j 3(r.fc) in some Q[j] £ Off] a  (rc, < r . t s  -+- A) then 
Q[i][A'EAT-F/JEE] =  ( r . k ) :

[] 3(r. k )  £ Q[z] ND[j]Vj then
delete ( r . k )  from m a t h c a l Q [ i ]:

[] 3 ( r . k )  £ 2ty’]A $ Q[/]V/ then 
delete ( r . k )  from T>[i\:

[] if 3 ( r . k )  that is stable then 
execute r .op :
send <  R E P L . r t . r .C j .  r.op.  d a t a  >:  
put (r.  k) inV[i ]:

P 3( r . k )  £  Q[f] : rc, <  r . t s  + A A - ' s tab le ( r .  k )  then 
delete ( r . k )  from Q[z]:

F ig u re  7.3: Replica operation

delayed too long and  should be ignored. Assuming it 's  a  valid request, r, then writes (r .i)  

to  some free location in Q[i\. This is then  seen by all r} £ n f  in tim e less than t r . To 

handle requests, r, continually scans the Q locations of other processes for requests it has 

no t seen. If it finds any valid ones, they are copied into Q[i]. W hen the request with the 

lowest tim e-stam p. say (r ’. j ). of any request in Q[i] is stable, r, executes r'.oj>. sends a 

reply to client r'.id  and writes (r ’. j ) into a free spot in "D\i\. Since all non-faulty replicas 

see the  w riting of all requests in 2tT time, all of the non-faulty replicas will find the sam e 

lowest request tim e-stam p and see the sam e stability conditions. Since the replicas are 

determ inistic, all replicas will execute operations in the same order. The array T> is used to 

clean up the request list. Once a  request has been seen to be moved into T> by all Tj £ n f  

a t  T{. it is removed from Q[i]. Once a  request in D[i] is no longer seen in any Q it is deleted
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from D[i\.

Note th a t once a request is delivered to a non-fau ltv  node it will be seen by all others 

and handled even if the original replica fails having o n ly  gotten the w rite u p d a te  to one 

o ther node. This is true until th e  message would h a v e  become stable. It is possible to 

conceive of a pathological case where a  request is seem by only one non-faulty  node which 

then  fails, having passed the request to  one other. whLch then fails, etc. This could allow a 

request to arrive at all non-faulty nodes having taken (n  — f ) t r time. This would m ean an 

old message, which could destabilize a  request th a t h a s  been executed. So once a  message 

passes A  in age. and has not become stable it is considered  invalid.

Once a  request gets to a  non-faulty node tha t resmains non-faulty it w ill be seen by 

all others in the required time. Once a  request is se-en by all non-faulty replicas, it will 

eventually become stable and be acted upon. This is t r u e  because the conditions for stability  

will be m et. Once r  is seen by all replicas, cither th e r e  is a t least one request earlier or 

there is not. If not. then r  is stab le as soon as A t im e  has passed. If there is an earlier 

request, then it either becomes stab le and gets rem oved, allowing r  to become the earliest, 

or it fails to become stable (by not being seen in all Q before A tim e has passed) and is 

removed. This also allows r  become stable.

The replicas operate on requests and  clean up usecd locations by the following rules:

1. A request is not acted upon un til it is stable. T h i s  m eans it is the oldest valid request 

and th a t it has been seen by all non-faulty rep licas . It is copied to 'D[i] by each as 

executed.

2. Once acted upon a request is not removed from *•Q until it is seen to have been acted
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upon by all non-faulty by appearing in  V .

3. Once removed from Q. a request is only to tally  removed from the  system when all 

non-faulty replicas see that it is removed, by being seeing it in all D  bu t not in any

Q -

7 .1 .3  P r o o f

7 .1 .3 .1  P r o o f  o f  O rder and S ta b ility

Schneider showed th a t the ordering of requests by client tim e-stam p is effective* and satisfies 

th e  requirem ent to have a  unique identifier for each request on which to  base request order. 

T h is  is unchanged for us. Roughly synchronized clocks satisfy O l and  0 2  if

•  No client can issue requests faster th a n  the resolution of the clock can distinguish and

•  the clock skew e is smaller than the m inim um  transmission tim e between clients.

O ur system  preserves this order because clients operate in a  stop-and-w ait fashion. A 

client cannot have more than  one o u tstand ing  request. The second condition ensures th a t 

causally related  events have time-stam ps th a t reflect the causality between them. This is 

preserved because o f the stop-and-wait client semantics as well. A client cannot causally 

effect ano ther client’s request until it has received a  reply to its previous request. T he 

tim e-stam p on the second clients request m ust then be greater th a n  the first request's 

tim e-stam p.

To prove th a t a  stable request is the only  one to execute, we define A  such tha t once a 

local clock reaches tsi +  A. no earlier request can arrive. We know th a t  no earlier request
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can be a t another non-faulty node because it would be seen by all non-faulty nodes before

tsi +  tc + tr + e. and be stable itse lf in another t r tim e units.

I f  the request reached a  replica th a t failed it is possible for it to take m ore tim e than  A

to  reach all non-faulty replicas, in which case it will be ignored as being old.

7 .1 .3 .2  P r o o f  o f  A g re e m e n t

We need to show that our model satisfies the agreem ent properties A1 and  A2.

We s ta r t w ith the following lemmas:

L e m m a  7.1 All writes to B D S M  locations by any r , 6  n f  are seen by all other r j €  n f  in 

the order issued.

This follows from the definition BDSM.

L e m m a  7.2 I f  r, € n f  then any write issued at time t =  rcl is seen by all r j £ n f  such 

that rcj < t + t r + e.

T his follows from definition o f  tr . the use of BDSM (and hence P B P ) and roughly 

synchronized clocks (with the difference between any two clocks bounded by e).

L e m m a  7 .3  I f  r* becomes faulty while it is writing to BDSM. either some r} €  n f  see the 

write in less than tT or none do.

Since we are assuming only fail-stop failures, in o rder for this to occur it m ust happen 

while the  writes are being sent. E ith er they are received by any other processes before the 

processor crashes or not. PB P  does not guarantee atom ic broadcast so the  se t of receivers 

is a subset of n f .
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L e m m a  7.4 A ny valid request r  seen by some r t G n f  is written to  Q \}\ and is then seen 

by all other r j G n f  at most tT time later.

Proof follows from the  operation of th e  replicas. W hen a  request is received by r, € n f  

or seen by r, 6 n f  in some Q\j\ and the tim e is still valid it is w ritte n  to Q\i\.

L e m m a  7.5 Any unstable request r  with r.ts  <  rc, -+- A  is considered invalid by r t G n f .

Requests th a t could violate the s tab ility  of another request a re  ignored. Those tha t 

prevent the stability  of another are removed allowing the la ter request to become stable. 

This is designed into th e  replicas.

T h e o re m  7.1 A l  holds fo r  our state machine on B D SM

Proof: Assume a  valid request r  arrives a t r,. There are two cases, cither r, G n f  and 

remains so. or r , G n f  and fails shortly after receipt. We d o n 't consider r, £ n f  as the 

request will never en ter the system and th e  client must tim eout and  resend it.

1. If r, remains non-faulty, then Al holds because of lemmas 1.2. a n d  4. All rj G n f  will 

see (r, i) as w ritten  by r, in at m ost tr + e time. So all non-fau lty  processes agree on 

the same value for r.

2. If ri becomes faulty while transm itting , then, from lemma 3. we have two cases: no 

process sees the up d a te  or at least one r3 G n f  sees the u p d a te .

(a) No other non-faulty process sees r . In this case r  is a  null operation. T he client 

will need to  resend the request.
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(b) A t least one r3 £ n f  sees r  in  tim e tr . If r  is still valid a t r j  it will be w ritten  to 

Q[j\ and  seen by all r, £  n f  a t  most tr tim e later. At which point, if s till valid, it 

w ill be copied into each Q[i] and  then become stab le . If this ex tra com m unication 

round  causes the request to  become stale it will be removed. If not it will become 

stab le  and be executed.

T h e o re m  7 .2  A 2  holds for  state m achine on B D SM

Since we are not concerned w ith  Byzantine failure A2 follows directly from A l. If all 

non-faulty processes get the value tran sm itted  then they will agree on that value.

We have dem onstrated  a  technique th a t allows a s ta te  m achine service to be im plem ented 

on the BDSM  system . By using such a  general technique we illustrate  that BDSM  can be 

used for a  wide range of highly available service applications, such as a replicated  W e b ­

server. We feel th is serves to show th a t  BDSM is a usable system  with potential real-world 

applications.

7.2 E x ten d in g  M em ory

As designed and  implemented our system  is fully-replicated. T he entire address space is 

resident a t every processor. While th is  is useful for fault-tolerance and has been effective 

for the com pute bound test programs in chapter 6. it is not always desirable. Some parallel 

programs require more memory th a n  is available on a  given w orkstation. As a  potential 

extension o f BDSM. we would like to  address this issue. T here  are two issues involved: 

extending m em ory usage and increasing scalability. The first issue can be addressed by 

allowing only  those processes tha t need a segment to jo in  it. Processes tha t d o n 't jo in a
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segm ent would not allocate local memory space for it. T he second issue is to reduce the 

com m unication overhead. Once we allow selective segm ent membership, we would like to 

avoid th e  overhead of reliable message passing for u pdates  to  processes th a t have not joined 

a  given segment. While all messages are broadcast, requiring reliable. FIFO  delivery of 

messages, and  therefore acknowledgments of some k ind, is wasteful for processes th a t will 

ignore the  message.

7 .2 .1  E x p a n d in g  M e m o r y  U s a g e  w ith  S e le c t iv e  J o in

By allowing segments to be created  yet not joined by all processes, memory can  be par­

titioned . Only processes th a t actually  join a given segm ent would allocate space for that 

segm ent. In this way. only processes that need access to those memory locations would 

use real memory storing them . O ther subsets of the  processes could join o ther segments 

an d  thereby extend the am ount of memory seen by the  whole program. T his first step 

addresses the issue of memory bound computations. It perm its only those processes that 

need a  segment to join it. Processes that don 't jo in  a  segment would not allocate local 

m em ory space to it. As cu rren tly  implemented, when a  process receives a  create segment 

m essage it allocates the space then  so that it can begin processing any updates th a t arrive 

afte r creation bu t before the local process joins the segm ent. Reversing the sem antics would 

m ean a  barrier or some form of consistency check would be  needed when a  process joins 

a  segm ent. This synchronization would be needed to  ensure tha t no writes can be made 

un til every process joins a given segment. A barrier placed afte r segment creation and  join 

suffices to  address this issue.

T his modification is sim ple and  requires little change to  the existing im plem entation.
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It allows a  com putation to have, not only, the illusion of shared memory, but also, tha t 

o f more physical memory th an  is present 011 any one processor. Normally, when fully- 

replicated, BDSM provides physical memory equal to the m inim um  physical memory of 

any processor used. Issues of different memory capabilities on a  heterogeneous network 

can be addressed. Processors w ith more physical memory can be assigned processes that 

need access to more segments. Those processors w'ith more limited physical memory can be 

assigned processes th a t jo in  fewer segments.

7 .2 .2  Im p r o v in g  S ca la b ility -

Extending  memory by allowing selective join increases the scalability of the BDSM system. 

It allows for larger program s th a t would not fit in the  physical memory of any one processor. 

However, since we use hardw are broadcast for each update , we still have updates being sent 

to  all processes. A process th a t receives an update for a  segment it has not joined simply 

ignores it. The problem is th a t these ignored messages are sent by PB P. so are sent reliably 

to  processes that don 't need them . Additionally, the  message has to be delivered to the 

BDSM im plem entation before being ignored. W hen used on a system  with a  large number 

of processes, the cost of broadcast reliability for messages that only need to reach a subset 

will become higher. A broadcast on an Ethernet segment is effectively the same as a point- 

to-point message. However, requiring acknowledgements for messages th a t are to be ignored 

does use more network bandw idth . We would like to  spend resources ensuring the delivery 

and order of updates only to those processes th a t need the update. Since we are using 

broadcast, each message sent is still seen by all processes. Messages th a t a ren 't important 

to a  given process could be ignored a t a lower level and  will not need to be acknowledged.
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To make the system perform  in th is fashion we will use an  instance of P B P  for each 

segm ent. The creation and jo in ing  of a  segment will contain th e  group membership protocol 

o f P B P  initialization. Since P B P  is a  stand-alone system  we sim ply need to s ta rt PB P  with 

each process th a t joins a segm ent. Each instance of PB P  will use a  different po rt number 

so the  messages th a t a  process can ignore will be dropped a t the kernel level. Each process 

will then  perform  inputs on any  PB P  queue tha t has messages available. Some form of PBP 

delivery m ultiplexing can be used to  determ ine which incom ing queues have messages.

An alternative im plem entation m ethod w'ould be to  redesign PB P to use IP  M ulticast. 

Each segm ent would have a  m ulticast group associated w ith it. T he PB P system would then 

provide FIFO  service among m em bers o f each group. In this case, there would effectively be 

an  instance of the  PB P protocol for each multicast group. W ith  hardware th a t effectively 

filtered IP  m ulticast packets, non-m em bers would be only m inim ally effected by messages 

exchanged am ong members o f  a  given group.

T his system  needs to preserve the  BDSM requirements from chapter 2. These require­

m ents are

1. W rites by a  process to a  given segm ent appear in program  order.

2. Synchronization operations issued by any process appear in program  order.

3. Synchronization operations appear in program order w ith  respect to all w rites issued 

by a  process. Writes before the  synchronization appear before and those after, after.

To satisfy the first requirem ent we rely on PBP. Each segm ent will have an instance of 

P B P  for group com munication am ong all joined processes. Since updates to each segment
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use th is FIFO  channel provided by PBP. the requirem ent that writes to  a  given segment be 

in program  order is preserved. T h is  does not require any changes.

E nsuring order for synchronization operations requires an add itional communication 

channel. W hile the basic system  of using a  PB P  instance per segm ent is straightforw ard, 

its effects on the synchronization coherence m odel are not. In order to  ensure that we 

m ain tain  BDSM coherence, we require synchronization operations to be in program  order. 

To th is end we will use one global instance o f P B P  for all processes. T his main PB P 

instance will be used for synchronization operations. This will satisfy th e  BDSM condition 

th a t synchronization operations be in program  order w ith respect to o th e r synchronization 

operations. Additionally, since all synchronization in BDSM is global, e ither barriers or 

broadcast locks, each process needs to  be able to com municate w ith each o th e r regardless of 

segm ent membership. A single channel for all processes allows this global message passing 

to  take place.

T h e  last requirement for th e  BDSM model is th a t updates by a given process to all 

segments it has joined be seen in FIFO  order relative to each synchronization operation 

sent by th a t process. W hen th e  BDSM layer of a  process performs a  barrier, it will send a 

message w ith  the barrier num ber down each of its  P B P  connections. T hen , it will send the 

barrier message on the global P B P  channel. T his effectively makes a  checkpoint on each 

of its PB P  channels a t the  po in t in the program  order th a t the barrie r was called. O ther 

processes will only consume messages from a  given process up to an not beyond a barrier 

m arker in a  segment PB P queue un til the consuming process has reached the  barrier marker 

for th a t process on each inpu t queue and  crossed th e  barrier. In this way. a process will not 

see any writes made by ano ther process after a barrie r before crossing it and  vice-versa. We
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call th is the barrier m arker  system. These messages are sim ilar to the 2-way flush messages 

in flush channel com munication[7. 24]. We have defined th is model to work for harriers 

because they have clear sim ple semantics. Using this for the  d istribu ted  locks in BDSM 

would require a sim ilar protocol for each lock message, those responding to lock requests as 

well acquire requests.

7 .2 .3  B a r r ie r  M a r k e r  S y s te m

A barrier in BDSM. as seen by one process, consists of receiving n — 1 barrier messages 

and  issuing a barrier message itself. These barrier messages consist of (bar.b.i). where b is 

the  barrier number and  i is the process sending the barrier message. The barrier num ber is 

used to differentiate am ong barriers. For this extension, the protocol is similar, b u t more 

involved. Now. a  process sends a message, in this case called a  barrier marker and denoted 

(bm . 6. i). down the channel for each segment it has joined. Then, it sends the regular 

barrier message down the  global channel. To cross the barrier it m ust still receive a  barrie r 

message from each o ther process. I t  m ust also receive a barrier m arker from each segment for 

each other process th a t has joined th a t segment. Definition 7.2 shows the barrier condition. 

BC. which must be satisfied for a  process to  cross a barrier. Additionally, once a barrie r 

m arker from some process has been received for a  given segm ent, no other messages from 

th a t process for th a t segm ent may be consumed until the receiving process satisfies BC. 

T hey m ust be queued locally and handled after the the barrier is crossed. This condition 

is called WC, see definition 7.3.

Joining a  segment, Sj, provides a  communication channel, c,. th a t delivers messages to 

all processes tha t have jo ined s, in the order sent by each sending process. This is provided
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by th e  use o f  P B P  as th e  com m unication  layer for each segm ent. T h ere  is no o rd er guaB rantee 

betw een m essages sent on different channels.

process po process pi process p2

GLccal Synch.rcnioa.cior. channel Cg

F ig u re  7.4: BDSM using multiple PBP channels.

Consider three processes po- pi and  P2. shown in figure 7.4. Each is a m em aber of 

the  global PB P communication channel. ca. Additionally, two processes have each joined 

segm ents s i and s->. which have PB P channels ci and ct. respectively. Process p\ has joined 

b o th  m em ory segments. W hen pi reaches a  barrier, say bo- it sends a barrier marker m e ssag e . 

(bm . bo. i). down each memory segment channel and then a  norm al barrier message.-, (bar. 

bo-i). down the global channel. Process p t will not cross the barrier until it has recesived a 

message (bar. bo-0) and (bar. bo-2) from cg. Additionally, it m ust receive (bm. bu.OrJ  from 

ci and  (bm. bo-2) from C2- Once (bm.bo-O) is received by pi from ci. no other messagae from 

po may be handled from ci until the barrier is crossed. Similarly, once pi has receivecd (bm. 

f>o,0) from p2 on C2 it will not handle any o ther messages from p2 on C2- When po reeaches 

the  barrier. it needs to  wait for a  barrier message from each o ther process on cg and a 

m arker on ci from p i . It doesn’t need anything other than the  barrier message on from 

P2 because po and po do not share segment membership.

D e f in it io n  7.2 Barrier Condition (BC): A process p, may complete a barrier ope-.ration
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when it has

1. reached the barrier itself.

2. received a matching barrier message from each process in the system on cCJ. and

3. received a matching barrier marker fo r  each segment s from each other m ember of s 

fo r  each s t of which pi is a member.

D e f in it io n  7.3 Wait condition (W C):  .4 process p, may not receive a regular message for  

any segment s from some Pj i f  p, has received a barrier marker from p3 fo r  s and has not 

satisfied B C  fo r  that barrier.

7 .2 .4  P r o o f

In  this section, we prove th e  barrier marker system  is effective. This requires proving 

liveness and  safety of the  barrie rs themselves an d  th a t the ordering requirem ents of BDSM 

are preserved. Liveness an d  safety were shown for barriers in theorem 5.1. T h is  form of 

barrier, w ith barrier m arkers, behaves the sam e way w ith respect to safety and Iiveness. A 

process cannot cross a  b a rrie r until it satisfies B C . which includes receiving an appropriate 

barrie r message from each o th e r process. Liveness is also assured because each process must 

send its barrier marker m essages and P I ensures they will all be delivered.

The first o f the BDSM requirem ents, from chapter 2, is th a t all writes by one process 

to a  given segment be see by all others in program  order. The barrier m arker protocol has 

no effect on the order of w rites. Therefore, this requirem ent is met.
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T he second requirem ent is tha t synchronization operations occur in the program  order 

of each process. Since there is a single P B P  channel shared by all processes and th is channel 

is used for all b arrie r messages, these messages will be in program  order.

To prove the th ird  BDSM order requirem ent we will break it into two parts.

1. No write u p d a te  messages sent by p, a fte r a  barrier can be seen by any pj before pj 

crosses the barrier.

Assume the opposite. Some message m .  sent after a barrier b in p, is seen by some p} 

before p3 crosses b. In order for it to have been seen it must have been delivered. And 

in order to be  delivered it must have been received on some c^. Since p, has reached 

b it has sent a  barrier message on cg and  a  barrier marker message on each c*.- it lias 

joined. Also, since m  has been sent after all the messages for b. the barrier m arker 

message m ust have been sent on c* before m. From P I . it must also be delivered 

before m .  Since pg has not satisfied BC. or it would also have crossed the barrier, it 

cannot have seen any messages from p, on ĉ - after seeing the barrier m arker, from 

WC. Therefore it cannot have seen m .

2. All messages sent by p, before the b arrie r will be seen by each p_, before Pj crosses the 

barrier.

Assume the opposite. Some message m  sent by p, before b is not seen by some p3 after 

it crosses th e  barrier. Since m  m ust have been sent on before the barrier m arker 

for b by pi, it  m ust have been delivered after it in order to have not been seen by pj 

when it satisfied BC. This is a  clear violation of P I . Therefore m  m ust have been seen 

before pj satisfied BC and crossed th e  barrier.
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The barrier m arker system  will preserve the ordering requirem ents of BDSM. It allows 

a  program to be more selective in its us o f memory thus allowing more flexibility. This 

extension addresses issues of scalability by m aking BDSM more efficient for larger num bers 

of processes by reducing network utilization.

7.3 C onclusions

In this chapter we presented two different ways that the BDSM system  can be extended 

to  make it m ore useful to many applications. The first is to use BDSM for fault-tolerant 

services. The general s ta te  machine model allows any client/server applications to be  de­

signed for BDSM. The second is deals w ith  scalability. By addressing some of the- scalability 

issues of BDSM we show tha t is can be used for larger problems. Many applications are 

implemented in parallel to acquire more physical memory than  is on a single processor. 

The extension presented here allow this to be done by programs using BDSM as well. The 

barrier marker system  allows programs to m ake use of more processes by making the overall 

system more efficient. These two results serve to illustrate the potential utility of a  DSM 

system designed for the use of broadcast on  a  common clustered com putational platform .
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C onclusions

D istributed shared  memory provides the  illusion o f a  shared address space- to processes on 

systems w ith  no shared memory. Software DSM system s provide this service to processes 

on separate w orkstations connected by a  network. For efficiency, many of these system s 

provide weak memory semantics. W hile it has been argued th a t these weak m emories 

should not be used on hardw are m ultiprocessor svstems[46]. the performance gains are 

often still necessary on a cluster com puting system . T here is a  significant am ount of work 

being done to  improve software DSM systems[49, 55. 26. 76. 28. 17. 75. 10. 54]. The need for 

simpler im plem entations th a t still provide good perform ance has been expressed[88]. We 

have developed a  system th a t relies on a  simple protocol to provide weak DSM to processes 

sharing an  E thernet segment.

In this chap ter we present some of the conclusions we have drawn from this work. We 

s ta rt by looking a t a  few potential directions for fu tu re  work. This addresses some o f the 

issues and weaknesses of the system . We then sum m arize the results we presented. And 

discuss how we have attained the goals we laid ou t in the introduction.

160
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8.1 Future d irections

We are pleased with the results our BDSM system  has shown to date. However, th e re  is 

room  for improvement. Some issues to address in the future are w rite detection, using T C P. 

and  im plem entation of th e  extensions in chap ter 7. There are also several refinements of 

P B P  we would like to explore. We discuss each in this section.

W rite detection is of m ajor concern because w ithout it the  system  cannot be made? tru ly  

transparent[96]. Currently, writes must be a  function call th a t lets the BDSM thread  per­

form the  update . Using some interm ediate layer that catches writes w ithout this overhead 

and  propagates an update  would be helpful. Systems like SHRIM P [50] use modified hard­

ware th a t autom atically sends writes to the network, sim ilar to a  write-through cache. It 

may also be possible to use the memory m anagem ent structures to protect memory location 

on a  fine granularity. T he  Region-Trap library [21] would facilitate this. A handler function 

would still be called for each write so there m ay be little perform ance gain. However, it 

would com plete the illusion of a shared address space by providing true transparency a t  the 

user-level.

T he  BDSM system is not required to use broadcast. It would be possible to im plem ent 

a  set o f T C P  connections among processes and  make the operations send to each connec­

tion. T he system would still need to send each message to each o ther process to preserve 

the  sem antics of BDSM. bu t this would allow the system to work on wider networks. It 

would also allow us to make a real measure of the  benefits of using hardware broadcast, by 

com paring the two versions. Implementing PB P  using IP M ulticast would have a  sim ilar 

effect, and  still allow the  use of hardware broadcast where available.
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To improve scalability we would like to implement the extension to allow m ultiple PBP 

instances. This will give the  BDSM system wider utility  by allowing larger problems. 

Additionally, since we are also interested in fault-tolerance. a  prototype sta te  machine 

im plem entation would server to b e tte r  illustrate the poten tial for highlv-available computing 

using BDSM.

In the future we would like to explore some issues regarding PB P as well. It Would 

be interesting to allow P B P  to have dynamic tim eouts. T he notion of a  round-trip  time 

(R TT), used by protocols like T C P  to change various tim eout values, is less well-defined 

for a  broadcast system . We can imagine a form o f RTT tha t is sim ilar to tha t used for 

point-to-point protocols. T he tim e would be based on when an outgoing message buffer 

was reclaimed after being allocated. W ith such a  system , we may be able to improve the 

performance of PB P further by more accurately tim ing events.

Another possible improvement to PBP would be to allow dynamic connections. Cur­

rently, the system is lim ited to those processes th a t participate in the group registration 

process a t startup . Processes can be removed due to failure or voluntary exiting. This 

change in membership is currently  one way only. Processes can be removed but not added. 

Allowing the group m em bership to  grow would allow failed processes to be replaced with­

out restarting the entire group. This would make P B P  more applicable to fault-tolerant 

com puting by allowing process recovery.
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8.2 C onclusions

We have developed a  weak form of DSM tailored to be efficient in a  common netw orking 

situa tion . Many clustered o r networked com puting  environments use some form of E th e r­

net as a  communication m edium. O ur system  uses the inherent broadcast ability o f th is  

hardw are to perform efficient all-to-all com m unications. W rites in BDSM are d istribu ted  

as broadcast updates. We allow a weak enough model that there is no need to have global, 

o r even causally, ordered message-passing. T h is means no need for e x tra  messages o r the 

serialization of broadcasts.

We have overcome som e of the problem s of using non-causal memories. Many such 

system s are too weak to be program m ed effectively. PRAM and Slow memory are exam ples 

o f such weak, non-causal memories. Synchronization operations based on memory locations 

do not have enough power. We solve th is by using synchronization a t a  lower, message- 

passing level. O ur synchronization operations are broadcast by the communication layer 

ra th e r  th an  being DSM level writes to  m em ory locations.

We have developed a  te st suite of com m on parallel com putations. These programs are 

used as comparisons to M PI. a  common message-passing alternative. We show that BDSM 

can be a viable alternative to message-passing on a  LAN because ou r test program perfor­

mance is comparable to th a t of their M PI counterparts. We found th a t for true collective 

communication operations, such as are required  for iterative m ethods, the  use of broadcast 

scaled be tte r than  M PICH. The M PI im plem entation uses T C P  connections on a  network 

of workstations. O ur system  shows b e tte r  resu lts because the  all-to-all com munication is 

cheaper w ith broadcast operations. T h is  leads us to  the conclusion th a t for programs w'ith
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significant num bers of collective com munication operations, a broadcast DSM system is a 

viable alternative to message-passing.

In the course of our work, we have developed a FIFO , reliable broadcast system and 

im plem ented it as a  library. T h is  PB P  system provides efficient use of the norm ally lossy 

UDP broadcast on a  single E th e rn e t segment. Additionally, we have tested  the  performance 

o f  P B P  versus T C P  for th roughpu t. These results show the  expected increase in effective 

th roughput for more then 2 processes. We have also com pared these th roughpu t results 

to  published results of a different reliability protocol th a t can take advantage o f hardware 

E thernet broadcast. RMP. P B P  com pares favorably a t the expense of to ta l order. However, 

even for a  one sender situation, w here sender order is to tal order. P B P  perform ance is closer 

to  the  hardw are limits than R M P.

In chapter 7. we presented two extensions to the BDSM system . T he first is an appli­

cation of BDSM to a fault-to lerant server model. We show th a t BDSM can be a  general 

service provider th a t provides h igh  availability in the presence of message loss and failed 

processes. A second extension was presented th a t addressed some issues of scalability in 

BDSM. We show' how BDSM can  allow for larger, memory bound com putations by not 

fully-replicating memory. F urther, we have shown a  scheme to reduce the PB P  commu­

nication traffic to only those processes tha t need each update. These two proposals show 

th a t a  broadcast DSM system can  be applied to a  larger range of applications than  we have 

actually  implemented.

We have developed a weak DSM  model that does not require global, or causal ordering of 

the  updates. This system can b e  used effectively, due to strong  synchronization operations. 

Using E thernet broadcast capabilities can reduce the cost of all-to-all com munication. We
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have dem onstrated how this can  be done in a reliable fashion to im plem ent a weak update 

based DSM system. Through experim entation we have shown that broadcasting updates 

can be a  competitive m ethod o f interprocess com m unication on a LAN for programs with 

appropria te  communication patterns.
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A p p en d ix  A

Sam ple Test C od e

In  this appendix we present shortened versions of the jacobi code from the test su ite . We 

show both the BDSM version and th e  M PI version for comparison.

A . l  B D S M  Jacobi C ode

/* FILE: jacobi.c
* W ritten by :
* Philip R. Auld
* Dept, o f  C om puter Science
* College o f  William and Mary
*

* Jacobi linear equation solver for dsm
* Solves for x  in A x  =  b
*
* Creation Date: 7 /3 /98
* Last Modification Date: 10/27/98
*
* Changed to use shared mem for all data.
*

*

#inciude < std io .h>
#include < std lib .h >

166
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^ in c lu d e
# in c lu d e
# in c lu d e
^ in c lu d e

# in c lu d e

< u n is td .h >
<strings.h>
< m ath .h >

< sy s/tim e .h >

"dsm.h"

/* dsm  info */ 
int d_id_data: 
int dJd_res: 
int proc_num:
/* these will be starting  location in dsm segm ent o f  each m atrix  */ 
int vector_x. vectored:
/* Pointers for direct D SM  access */ 
float * x_ptr: 
float * d_ptr:

int debug =  0: 
int doprin t =0 : 
int test_result =  0: 
int use_file =  0: 
int rand_seed =  0: 
int m a x Jte r  =  1000: 
int m atsize =  4 : 
int num proc =  1: 
int doneJoc:

/* target conversion bound  */ 
float epsilon =  0.001:

/* these will hold problem  constants  A and h *f
int mat_a:
int *a_ptr:
int vec_b:
int *b_ptr:

/* count interations */ 
int num Jterations =  0;

/* which barrier, will a lterna te between 1 and  0. */ 
int current .barrier :

/* test the done value. R e tu rn s  < 1. (hopefully 0) i f  false
* 1 or > i f  done is true
*
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I**********:*****:**********:*************:*:*******:**:**:*:******/
float
read_done()
{

float val:
dsm _read(dJd_res, &:val. doneJoc): 
re tu rn  val:

}

void
show_solution()
{

/* prin t solution, including current x  values */
}

void test_solution()
{
/* i f  we are right then A x  should be p re ttv  close to the original b*f 

}

void
show_problem()
{
/* prin ts  problem  values and "x[nj" for each x  value */
}

/* we use a strongly three or five diagonal m atrix to help ensure convergence ■*/ 
int
get_diag_data(int * a. int *b. int size)
{

/* generate type m atrix  */
}

/* initialize all constant data. Generate diagonal m a tr ix  and random b 
Or read in p u t from file i f  given */ 

void init_m atrix()
{

int i:
int num_to_send:
int * m atrix_aT* vector.b;
FILE * input_data;

m atrix_a =  (int *) malloc ( (m atsize*m atsize+ matsize)*sizeof(int)): 
vector.b  =  &matrix_a[matsize*matsize]: 
get_diag_data(matrix_a, vector_b, 5):
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num_to_send =  (m atsize * matsize) -+- matsizc:
/* for large num ber o f  adjacent writes this is much m ore  efficient */ 
dsm_bulk_write (dJd_data.m at_a. &:matrix_a[0] . num_to_send. DSM_WRT_REL): 
free (matrix_a):

}

/* Setup actual po in ter into the dsm  segemt for reading d irectly  */ 
void
get_pointers()
{

if ((x_ptr =  (float*) dsm_ptr_read(dJd_res. vector_x)) = =  NULL){
/*E R R O R  */
dsm_exit():
return:
}

if ((d_ptr =  (float *)dsm_ptr_read(dJd_res. vector_d)) = =  NULL){
/*E RRO R  */
dsm_exit():
return:

}
if ((a_ptr =  (int *)dsm_ptr_read(dJd_data. mat_a)) = =  NULL){

/*E R R O R  */
dsm_exit():
return:

}
if ((b .p tr =  (int*)dsm _ptr_read(dJd_data. vec.b)) = =  NULL){

/* E R R O R  */
dsm_exit():
return:

}
}

/* given i this returns the new  value for x[i] based on the current 
* values and m atrix  A  and vector b
*^c^^c^e**ic*i(c****<c»:***»********************** *************** *♦****»:*/

float calculate_value(int i)
{

int j: 
int k:

float partial-solution: 
float lowerjsum =  0.0: 
float upper_sum= 0.0: 
int row =  i * matsize;
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/* we read the values d irectly  from the  dsm  segm ent using po in ters  */ 
partial_solution =  b_ptr[i]: 
for ( j =  0 : j  <  i: j  -F+){ 

lower_suni +=  x_ptr[j] * a_ptr[row 4-j]:
}
for ( k =  i+1 : k <  m atsize; k + + ){  

upper_sum + =  x_ptr[k]* a_ptr[row-r-kj:
}
partialjsolution — =  lower _sum: 
partial_solution —=  upper_sum: 
partial_solution /  (float) a_ptr[row -i- i];

re tu rn  partiaLsolution:
}

/* test for convergence. F inds  m ax d[i] and  compares it to  
* the desired epsilon convergence bound.

int converged ()
{

int x:
float curr_max =0.0:

for( x =  0 : x <  num proc: x 4-+){ 
curr_max — max(d_ptr[x]. curr_max):

}
if ( curr_max < epsilon) 

re tu rn  1: 
re tu rn  0:

}

/* runs the jacobi algorithm  */ 
int
solve.problem ( )
{

int x.k: 
int ret val =  1: 
int global_start: 
int num_to_compute: 
float * temp.values: 
float current_max: 
int count: 
int curr Joe: 
float temp.done;
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num _to_com pute =  m ats ize  /  num proc: 
k =  m atsize % num proc : 
if  ( k >  proc_num) 

num _to_com pute 4-4-:

tem p .values =  (float * ) m alloc ( sizeof(float)* num _to_com pute): 
if  (tem p.values = =  N U LL){ 

dsm _exit(): 
ex it (—1 ):

}
/**************«****:*****:**** B A R R IE R  ***********»*************/ 
dsm _barrier(cu rren t_barrier. & :num proc): 
cu rre n t .b a rr ie r  =  [cu rren t .barrier:

g lo b a l-sta rt =  p ro c j iu m  * n u m .to .co m p u te :

w hile (read_done() <  1 ){

/* calculate phase, no dsm  writes */ 
c u r re n tjn a x  -  0 .0 :

for (count =  0 : co u n t <  n u m .to .co m p u te : count 4-4- ){ 
c u rrJ o c  =  g lo b aL sta rt 4- count: 
tem p_values[count] =  ca lcu la te .v a lu e (cu rrJo c): 
c u rre n tjn a x  =  m ax  (cu rren t .m ax.

((float) fabs((float)(tem p.values[coun tj— x_p tr[cu rrJoe])))):
}

/************************** B A R R IE R  *************************/ 
dsm _barrier (cu rren t .b a rr ie r . & num proc): 
cu rre n t.b a rrie r  =  [cu rren t .barrier:

/* write back phase, reads are unsafe here */
dsm .w rite  (dJd_res. v e c to r.d  -f- proc_num . ^ c u r re n tjn a x . DSM .W RTJR.EL): 
for (x =  0: x  <  n u m .to .co m p u te : x4-4-){ 

c u rrJ o e  =  g lo b aL sta rt 4- x:
dsm _write (dJd_res. c u rrJo c . &:temp_values[x]. D SM .W R TJR EL):

}

B A R R IE R  ****************************/ 
dsm _barrier(curren t_barrier. & num proc): 
c u rren t.b a rrie r  =  [cu rren t.b a rrie r:

if  ( p rocm um  = =  0 ){
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if (num Jterations >  m ax Jte r){  
tem p.done =  1: 
retval =  0:

}
else

temp_done =  (float)converged(): 
dsm_write (dJd_res. done Jo e . &:temp_done. D SM .W R T JIE L ):

}

/******************************** BARRIER********* ****** *:****X****::K***/ 
dsm_barr ier (current .ba rrie r, fcnumproc): 
current.barrier =  [curren t.barrier:

num Jterations -M-:
} /* while not done */

if(proc_num = =  0) 
printf("7,d ". n um Jte ra tions): 

re tu rn  retval:
}

/* main function sets up dsm . attaches to a dsm segment and then calls other  
* functions to actually solve the problem. 
************************************************** * * * * * * * * * * * * * * * * * * * * * * /

int
m ain(int argc. char *argvQ)
{

int s Jlag:
int numlocsoc. num locs.data: 
int c:
struct timeval s ta r t.tim e . end-tim e: 
long tem p.tim e^ec, tem p.tim e.usec: 
extern char * optarg:

if ( gettim eofday(& start_tim e , NULL) <0){ 
perror ("g e ttim eo fd a y "): 
ex it(l):

}

/* start program different machines*/ 
if ((s_flag =  dsm_startup(&:argc.argv)) <0){ 

dsm_perror(" s tc ir tu p  " ); 
exit (—1):
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}
strncpy(data_file. DATAFILE. 128):

while ((c =  getopt(argc. argv. " s  : p : i : m : f : e :o l t h d " )) #  —1) {
/* Process argum ents  */

}
if (rand_seed = =  0) 

rand-seed =  getp id():

/*Setup num ber o f  location we will need. Point some integers into the DSM space to m ark  
location o f  different arrays */ 

numIocs_x =  m atsize -+- num proc +  1: 
vector_d =  m atsize: 
vector_x =  0:
done Jo e  =  numlocs_x —1:
numlocs_data =  matsize* m atsize -t- matsize:
mat_a =  0:
vec_b =  m atsize*m atsize: 
curren t.barrier =  0:

/* actually start D SM  */
if ((proc_num =  d sm Jn it(& num proc .sJiag )) <  0 ){ 

dsm_perror("BADNESS\n"): 
exit (— 1):}

/* create 2 D SM  segm ents . one o f  ints and one o f  floa ts */ 
if (proe.num  = =  0){ 

dJd_res =  dsm_seg.at (numlocs_x.sizeof(float).1234.DSM_CREATE): 
if (dJd_res <0){ 

dsm _perror(" s e g _ a t ! "): 
exit ( — 1):

}
dsm_sleep(5):
d J d .d a ta  =  dsm_seg_at (numlocs.data.sizeof(int).4321.DSM _CREATE): 
if (d Jd -d a ta  <0){  

dsm _perror(" s e g _ a t ! "): 
exit ( — 1):

}
}
else {

/* attach to the  2 segments greater/ by process 0 */
w hile((dJdjres =  dsm_seg_at (numlocs_x.sizeof(float).1234.DSM_JOIN)) <0) 

dsm_sleep(2): 
if (dJd_res <0){ 

d sm _ p erro r(" se g _ a t! ");
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exit ( — 1):
}
while((d_id_data =  dsm_seg_at (numIocs_data.sizeof( in t).4321.DSM .J O IN )) <0) 

dsm_sleep(2): 
if (d Jd_data  <0){ 

dsm _perror(" s e g . a t !"): 
exit ( — 1):

}
}
get_pointers(): 
if( debug) {

p rin tf("g o t p o i n t e r s , c a l l i n g  b a r r i e r  */,d \n " .  current.barrier): 
fflush(stdout):

}
/* m akse sure every one has sta rted  before we s ta r t w rit ting initialization data  */ 
dsm_barrier( current-barrier. &tnumproc): 
cu rren t.barrie r =  [current .ba rrie r:

if (procjnum  = =  0)
{

fp rin tf (stderr."done w ith  s y s _ i n i t \ n " ): 
if ( gettimeofday(&:end_time . NULL) <0){ 

perror ("g e ttim eo fd a y "): 
ex it(l):

}
tem p.tim ejsec -  end_time.tv_sec — start_time.tv_sec: 
tem p.tim e.usec =  end .tim e.tv .usec  — start_tirne.tv.usec: 
p rin tf ("'/.Id ", temp_time_sec*1000000-f- tem p.tim e.usec): 
init jn a tr ix () ;
fp rin tf (stderr."done w ith  i n i t \ n " ) :  
if ( gettimeofday(&:start_time . NULL) <0){ 

perror ("g e ttim eo fd a y "): 
ex it(l):

}
temp_time_sec =  s ta r t .tim e .tv ^ e c  — end_time.tv_sec: 
tem p.tim e.usec =  s ta rt.tim e .tv .u sec  — end.tim e.tv .usec: 
p rin tf ("'/.Id ", temp_time_sec*1000000-f- tem p.tim e.usec):

}

if (solve.problemQ = =  1) 
fp rin tf(stderr," S o lv ed \n “ ): 

else
fprintf (stderr."maLX iterations reachedW): 

if (procmum = =  0) {
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if ( gettimeofday(&:end_tirne . NULL) <0){ 
perror ("g e ttim e o fd a y ") : 
ex it(l):

}
temp_time_sec =  end_time.tv_sec — start_time.tv_sec: : 
tem p.tim e.usec =  end .tim e.tv .u sec  — start_tim e.tv .usec : 
p rin tf ("7 ,ld \n  temp.time_.sec* 1000000+ tem p.tim e.usec):

}

dsm_remove(d_id_data): 
d sm jem ovefd  J d  .re s):

dsm .cxit():
dsm_bcast_stats(proc_num. s td o u t ): 

re tu rn  0:
}
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A .2 M P I Jacobi C od e

/* File: Jackin pi. c 
*
* Original version from "Parallel Programming with M PI".
* by P. Pacheco. Morgan K aufm ann Publishers.
* Los A ltos. CA 94022. U SA, 1997.
*
* M odi fed  by Philip R . A u ld

#include < std io .h>
#include < std lib .h>
#include < u n is td .h >
#include < sy s/tim e .h >
# inc lude <strings.h>
#include < m ath .h >

#inc lude "m pi.h"

#define SW AP(x.y) {float* tem p: tem p =  x: x =  y: y =  temp:}
#define MAX-DIM 1024

int rand_seed =  1: 
int m ax-iter =  1000: 
int matsize =  4:
/* target conversion bound  */ 
float epsilon =  0.001:

typedef int MATRIX_T[MAX_DIM][MAX-DIM]: 

int
parallel_jacobi(MATRIX_T A Jocal.float xJocalQ.float b_local[|. int n. 

float tol. int m a x Jte r. int p. int my .rank):

void read_matrix(M ATRIX_T A Jocal. int n, 
in t my_rank. int p);

void read_vector(float xJocalfj. in t n, int my-rank, 
in t p):

void Print_m atrix(char* title, M ATRIX-T AJocal. int n. int my_rank. int p) 
{
/* print A Joca l to stdout */
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}

void Print_vector(char* title, float x Joca lj]. int n.int mv_rank. int p) 
{
/* print X  to s td o u t  */
}

void get_diag_mat(MATRIX_T a. int n . int size){
/* initialize a w ith  tv p e  diagonal m a trix  */
}

void get_rand_vec(float *b. int size)
{
/* initializa h w ith  random  values */
}

void
show_problem(M ATRIX_T a. float * b. int n): 

void
show_solution(MATRIX_T a. float * x Joc .floa t * b. int n):

void test_solution(M ATRIX_T a. float *b. float *x. int n):

/* data in data  segm ent to avoid stack overflow */
M ATRIX.T A Jocal:

void
m ain(int argc. char* argvj]) { 

int p:
int c:
int my_rank:
float xJocal[MAX_DIM]; 
float bJocal[M  AX-DIM]:
int converged:
s tru c t timeval start_tim e, end.tim e: 
double temp_time-sec. temp_time_usec:

if ( gettim eofday(& start_tim e . NULL) <0){ 
perror (" g e ttim e o fd a y ") ; 
ex it(l);

}

M P IJn it(& argc, &argv):
M PI-Com mjsize(M PI_COM M _W ORLD? &p):
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MPI_Comm_rank(M PI_COM M_W ORLD. &my_rank):

if (my_rank = =  0) { 
while ((c =  getopt(argc. argv. " s  :m :e : i  :o thd")) ^  —1) {

/* process arguments */
}

}

M PI_Bcast(&m atsize. 1. M P IJN T . 0. M PI.COM M .W ORLD): 
M PI-Bcast(& epsilon. 1. M PIJFLO A T. 0. M PI.COM M -W ORLD): 
MPI_B cast (&max J  ter. 1. M P IJN T . 0. M PLCOM M .W ORLD):

if (m y.rank  = =  0)
{

fprin tf (stderr."done w ith  s y s _ i n i t \ n " ) :  
if ( gettim eofday (&end_time . NULL) <0){ 

perro r ("g e ttim eo fd a y "): 
ex it( l) :

}
temp_time_sec =  (double) (end_time.tv_sec — start_time.tv_sec): 
temp_time_usec =  (double) (end-tim e.tv .usec — start-tim e, tv .user) : 
p rin tf ("7,10.Of ". temp_time_sec* 1000000+ temp_time_usec): 

fflush(stdout):
}

read_m atrix( A Jocal. matsize. my .rank , p): 
read_vector(bJocal.m atsize. my_rank. p):

if (m y.rank = =  0){ 
fp rin tf (stderr."done w ith  i n i t \ n " ) :  
if ( gettimeofdav(&:start_time . NULL) <0){ 

perror ("g e ttim eo fd a y "): 
ex it(l):

}
temp_time-sec =  (double) (start_tim e.tv_sec — end_tiine.tv-sec): 
temp_time_usec =  (double) (start_tim e.tv_usec — end_time.tv_usec): 
p rin tf  ("7.11-Of ", temp_time_sec* 1000000+ temp_time_usec): 

fflush(stdout):
}
converged =  parallel_jacobi(AJocal. xJocal, bJocal. matsize.

epsilon, m a x Jte r. p, my .rank):
if (converged) { 

if(doprint)
Print_vector("The s o lu t io n  i s " .  xJocal, matsize, my_rank, p): 

if (test_result)
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test_solution(A Jocal. b Jocal. xJocal. m atsize):
}
else

if (my_rank = =  0) 
fp rin tf(s td e rr ."F a iled  to  converge in  7,d i t e r a t i o n s \ n " .  m a x Jte r): 

if(my_rank ==0){ 
if ( gettimeofday(&end_time , NULL) <0){ 

perror ("g e ttim e o fd a y "): 
ex it(l):

}
temp_time_sec =  (double) (end_time.tv.sec — start_time.tv_sec) : 
tem p.tim e.usec =  (double) (end.tim e.tv.usec — start_tim e.tv.usec) : 
p rin tf ("7,12.Of \n " .  tem p.tim e.sec* 1000000+ tem p.tim e.usec):

}
MPI_Finalize():

} /* main */

/♦********^C*******<C*^=***»*******1C*»#!^*********=|C***»»»***»***»;*****>'***/
/* Return 1 i f  iteration converged. 0 otherwise */
/* M A T R IX -T  is a 2-dimensional array */
int
parallel_jacobi(MATRIX_T A Jocal.float xJocalj].float bJocal[|. int n. 

float tol. int m axJter. int p. int mv.raiik)
{

int iJocal. i.global. j.k :
int n.bax:
int iter_num:
float x_templ[MAX_DIM]:
float x_temp2[M AX-DIM]:
float* x_old:
float* xjiew :
float max.diff, diffJocal:
int x. done =  0:
float upper_suin. lower_sum. partial_solution:

n .bar =  n /p ;
/* Initialize x  */
M PI_Allgather(bJocal. n_bar. MPIJFLOAT. x_tem pl,

n.bar, M PIJFLOAT, M PI.COM M .W ORLD): 
x_new =  x .tem pl; 
x_old =  x_temp2: 
iter_num =  0: 
do { 

iter_num ++:
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diffJocal =  10000.0:
/* Interchange x.old and  x_new */
SW AP(x_old. x_new):
for (iJo ca l =  0: iJocal <  n .b a r : iJocal-f—i-){

Lglobal =  iJocal +  m y_rank*n.bar: 
upper_sum  = lower_sum =  0.0: 
p a rt ial_solut ion =  b Jocal[i Jo ca l] : 
for ( j  =  0 : j  <  Lglobal: j  + + ){  

low er^um  + =  x_old(j] * A Jocal[iJocal][j]:
}
for ( k =  i.global-f-1 : k <  n: k + + ){  

upper_sum + =  x_old[k]* A Jocal[iJocal][k]:
}
p a rt ial-solut ion —=  lower_sum: 
partiaL solu tion  —=  upper_sum: 
p a rt ial_solut ion /  (float) A Jocal[i Jocal] [iJocal]: 
xJocal[iJocal] =  partial .so lution:
d iffJocal =  max (diffJocal. fabs(xJocal[iJocal] — x_old[i.g!obal])):

}
M PI_A llgather(xJocal. n_bar. M PI.FLO A T. x_new.

n .bar. M PIJFLOAT, M PI.C O M M .W O R LD ): 
max_diff =  0.0:
for ( x =  0 : x <  matsize: x + + ){  

m ax.d iff =  max ( max_diff. fabs(x_new[x] — x_old[x])):
}
if ( max_diff <  tol) done =  1:

} while ((iter_num < m ax Jte r)  &&: (Idone)):

re tu rn  done:
} /* Jacobi */

M A T R IX .T  temp_mat:

void read_matrix(M ATRIX_T A Jocal.in t n.int my_rank.int p) { 
in t i. j:
in t n .bar:

n_bar =  n /p :
/* Fill d u m m y entries in tem p w ith  zeroes */ 
for (i =  0: i <  n: i+ + ) 

for 0  =  n; j <  MAXJDIM: j+ + )  
temp_mat[i][i] =  0; 

if  (my .ra n k  = =  0) { 
get_diag_mat(temp_mat, n, 5):
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}
M PI_Scatter(tem p_niat. n_bar*MAX_DIM. M P IJN T . A Jocal.

n_bar*MAX_DIM. M P IJN T . 0. M PI.COM M .W ORLD):
} /* Read-m atrix */

/******:** **********************:***************** ******* ******* ********/ 
void read_vector( float x Jo c a l []. int n .in t my .rank, int p) { 

in t i:
float temp[MAX_DIM]: 
in t n .bar:

n .b a r  =  n /p : 
if  (m y.rank = =  0) { 

get _rand_vect( temp.n):
}
M PI_Scatter(tem p. n .bar. M PI.FL O A T . xJocal. n .bar. M PI.FLO A T.

0. M PI.CO M M .W O R LD ):
} /* Read ̂ vector */
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