o
WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2001

Broadcast distributed shared memory

Philip Ragner Auld
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Auld, Philip Ragner, "Broadcast distributed shared memory" (2001). Dissertations, Theses, and Masters
Projects. William & Mary. Paper 1539623374.

https://dx.doi.org/doi:10.21220/s2-f6tw-th27

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-f6tw-th27
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Broadcast Distributed Shared Memory

A Dissertation
Presented to
The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

by
Philip R. Auld

2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3012228

®

UMI

UMI Microform 3012228

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Mi 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

/ Pﬁ].ip R. Auld

Approved, January 2001

Pﬁﬂ Kearns
Thesis Advisor

/)WL/QT/E/

7 ¥ Xijaodong Zhang

M B

Bill Byfum

AT M

Bob Noonan

Ay

S

Gene a.cy/
Department of Physics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my father. Dr. Louis E. Auld

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments

List of Figures

Abstract

1 Introduction

1.1 Distributed Shared Memory

1.1.1

Improving DSM performance

1.2 Memory Coherence Models

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

Sequential Consistency Lo
Causal Memory - - - - - - . o o ittt e e e e e e
Processor Consistency and PRAM,
Slow Memory . . - L.
Relating generic weak memories
Special Access Weak Models
126.1 Weak Ordering

1.26.2 Release Consistency - -

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

xiii

xiv

1.3 Goals of This Research

1.3.1 Using Broadcast For Communication
1.3.1.1 Strong Reliability
1.3.1.2 Weak Reliability

1.4 Organization e

2 Broadcast Distributed Shared Memory

2.1 BDSM Overview i e e e e e e
2.2 BDSM Memory Model
2.2.1 Definition of BDSM coherence,

2.2.2 Formalism and Definitions -o
2221 Events e e e e

2.2.2.2 Definitionso

2.2.2.3 BDSM Definitiono

2.2.3 BDSM coherence can be at least as strongas SC

2.3 Programming Interfaceo o000 0oL
2.3.1 Initialization and functions

2.3.2 Memory Access Functions o000

2.3.3 Synchronization Functions

2.3.4 Clean-up and Exit Functions

23.5 Conmfiguration File 0oL,

24 Conclusions e e e e e e

3 The Pipelined Broadcast Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

24

26

27

28

29

33

36

37

39

43

16

48

48

49

50

51

3.1

3.2

3.3

3.4

Positive Acknowledgment Protocol
3.1.1 Protocol Presentation
3.1.2 Formalism and Proofs _
3.1.3 Implementationof PBP1
Using Negative Acknowledgments
3.2.1 Protocol Presentation
3.2.2 Formalism for PBP2
3.23 Implementationo o
Applications L L L L. e e e e
3.3.1 Distributed Shared Memory
332 State Machineso oo
Conclusions L e

4 PBP Experimental Results

4.1

42

4.3

4.4

4.6

Experimental Setup . - . - Lo

PBP Compared to Standard Protocols

4.2.1 Throughput Lo

4.2.2 All-to-All Communicationo

423 Latency . . - - - - i o o i e e e e e e e

Comparedto RMP

Effects of Window Size« . . o o e e e e e e e e e e e e e e

Linux Kernel Differences i i i i it e e

Conclusions

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 BDSM Implementation

5.1 Implementation Overview
5.1.1 Synchronizationt
5.1.2 Implementation Details
5.2 Proofof Implementation -o
5.2.1 Barrier COrTeCtNeSS - . . - - - v v o o v e e e e e e e e e e e e
5.2.2 Lock COrrectness - - - v o v ot e e e e e e e e e e e e e e
5.2.3 BDSM Implementation Correctness
53 Conclusionso e e e e e e e e e

6 DSM Experimental Results

6.1 Experimental Setup oL Lo e
6.2 Test suite programs oo ot i e e e e e e e e e e
6.3 Results L e e e e e e e e e e
6.4 Effectsof Window Size oot
6.5 Message Loss Behavioro

6.5.1 Window Size and Message Loss
6.6 Conclusions oL

7 Extensions For BDSM
7.1 Fault-Tolerant Service e
7.1.1 State Machine Model
7.1.2 Pseudo-code. . - Lo e e
7121 TheClient v

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

101

103

106

108

109

111

117

118

119

120

127

129

133

134

7.1.2.2 The Shared Memory Component
7.1.2.3 Request Stability
7.12.4 TheReplicas
713 Proof
7.1.3.1 Proof of Order and Stability . .
7.1.3.2 Proof of Agreement
7.2 Extending Memory
7.2.1 Expanding Memory Usage with Selective .
7.2.2 Improving Scalability
7.2.3 Barrier Marker System
724 Proof
73 Conclusions
8 Conclusions
8.1 Futuredirections
82 Conclusions
A Sample Test Code
A.l BDSM JacobiCode . . -
A2 MPIJacobiCode
Bibliography

viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to thank my advisor. Phil Kearns. for his help. guidance and patience.
Matt and Tracy deserve my thanks for encouraging me to take the first steps toward this
accomplishment. I owe a great deal to my wife Catherine. love and eternal gratitude for
all the encouragement. proof-reading and most of all patience. Thanks to Anna. Joel. and
Felipe for many discussions and letting me bounce ideas around. Finally. thanks to my

mother and father for everything.

1X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Sequential Consistency Example Programs
1.2 Simple Causal Relationship.
1.3 Concurrent Writes. o e e e e e e
1.4 PRAMExample i
1.5 PRAM fails logical synchronization
1.6 Slow memory example -

1.7 Coherence models as execution spaces

2.1 Coherence models as execution spaces. with BDSM
2.2 Coherence of different segments
2.3 Coherence providedisnot causal

2.4 Coherence ensured using synchronization

3.1 Local Data for PBPLl e e e e e e e e e e e e e e e e
3.2 Usercallsto PBP1 @ @ i e e e e e e e e e e e e e
3.3 Message format for PBP1 Lo

3.4 PBP1 Receive ACtions « « v o« c i e e e e e e e e e e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 PBPI Send Actions . . _ Lo
36 PBPl TimerEvent L
3.7 PBPI Design Layers. Lo
3.8 PBP2 Normal State Receive Actions
39 PBP2TimerEvent
3.10 PBP2 Need Resend State

3.11 PBP2 Design Layers. e e e e

4.1 Times for Throughput Experiment for Small Messages.
4.2 Times for Throughput Experiment for Large Messages.
4.3 Effective throughput in MB/s of TCP and both versions of PBP with 16 and

128 windows. Percentages are 95% confidence.
4.4 Effective throughput. Ideal versus PBP and TCP.
4.5 All-to-All for Small Messages.
4.6 All-to-All for Large Messages.
4.7 Latency for Small Messages.
4.8 Latency for Large Messages.
4.9 Time for Throughput Experiment, PBP with Variable Window Size. Small

MeSSages. . . - - . .o i i e e e e e e e e e e e e e e e e e
4.10 Time for Throughput Experiment, PBP with Variable Window Size. Large

MeSSAZeS. i i e e e e e e e e e e e e e e e e
4.11 All-to-All, PBP with Variable Window Size. Small Messages.

4.12 All-to-All, PBP with Variable Window Size. Large Messages.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

90

91

92

93

94

96

97

98

4.13 Raw Number of Lost Messages for All-to-All. PBP2 with Variable Window

Size. Large Messages.o 99
4.14 All-to-All. PBP2 with Variable Window Size. Large Messages. 100
4.15 All-to-All. PBP2 with Variable Window Size. Large Messages. 100
5.1 DSMsystemdesign. L 102
5.2 Pseudo-code for barrier implementation 104
5.3 Exampleusinglockso 105
5.4 System SITUCLUL® -« .t v v e v v it it e e e e e e e e e 107
6.1 Speedups formatmultl 121
6.2 Speedupsformbodyo 122
6.3 Speedups for jacobio 123
6.4 Speedupsforcg. 124
6.5 Speedupsfortsp 125
6.6 Message passing for DSM programs 127
6.7 Window Size and Speedup for jacobi 128
6.8 Window Size and Speedup formatmult. 129
6.9 Message loss forcgand jacobio 130
6.10 Message loss by type (95% confidence intervals shown) 131
6.11 Sample execution timesforcgo 132
6.12 PBP2 messages loss versus window size 133
7.1 Client Operationo oo L oot 141
7.2 Request listsinshared memory 142

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Replicaoperation L

7.4 BDSM using multiple PBP channels. _.....

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

ABSTRACT

Distributed shared memory (DSM) provides the illusion of shared memory processing to
programs running on physically distributed systems. Many of these systems are connected
by a broadcast medium network such as Ethernet. In this thesis. we develop a weakly
coherent model for DSM that takes advantage of hardware-level broadcast. We define the
broadcast DSM model (BDSM) to provide fine-grained sharing of user-defined locations.
Additionally. since extremely weak DSM models are difficult to program. BDSM provides
effective synchronization operations that allow it to function as a stronger memory. We show
speedup results for a test suite of parallel programs and compare them to MPI versions.

To overcome the potential for message loss using broadcast on an Ethernet segment we
have developed a reliable broadcast protocol. called Pipelined Broadcast Protocol (PBP).
This protocol provides the illusion of a series of FIFO pipes among member process. on
top of Ethernet broadcast operations. We discuss two versions of the PBP protocol and
their implementations. Comparisons to TCP show the predicted benefits of using broadcast.
PBP also shows strong throughput results, nearing the maximum of our 10Base-T hardware.

By combining weak DSM and hardware broadcast we developed a system that provides
comparable performance to a common message-passing system. MPI. For our test programs
that have all-to-all communication patterns. we actually see better performance than MPL
We show that using broadcast to perform DSM updates can be a viable alternative to
message passing for parallel and distributed computation on a single Ethernet segment.

Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Broadcast Distributed Shared Memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The use of a network of workstations (NOW) as a computational platform has increased
in recent years as the price and performance of single processor machines and network
hardware has improved. These clusters are being used in two important ways. The first
is as a high performance compute engine. Performing parallel primarily nnumerical compu-
tations on a cluster can provide results approaching those of dedicated parallel machines
at fractions of the cost[11. 16, 23. 25. 33. 42, 81]. The second major application uses the
clustered machines for redundancy, to remove the single point of failure and bottleneck of
single server systems[1, 48, 81]. These networks of workstations are used as reliable. in-
tranet, distributed platforms, for example: network file system (NFS) servers. distributed
databases, and distributed web servers.

The relatively small cost of a cluster of workstations compared to the cost of a high-
performance computing platform, as well as the potentially higher accessibility provided by
multiple semi-autonomous workstations, has lead to substantial work in the area of parallel

computation on a local area network (LAN) of workstations[25. 33]. More people can use

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

the workstations as desk machines allowing the costs to be dispersed. making better use
of the systems. In order to make them useful for parallel computation these systems need
to exhibit performance close to that of the parallel machines they are replacing. The price
and utilization benefits of the NOW model can overcome some of the performance gap
between these systems and dedicated high performance platforms. This can be seen by
the growing use of Beowulf[83. 84] systems. In fact. the cluster model is being applied to
dedicated systems built specifically for such uses. While many of these systems use special
high bandwidth switching hardware as an interconnect. a cluster of processing nodes on a
switched Ethernet[65] segment is a common platform for parallel programming.

Many computing tasks, where performance is not as vital as reliability or availability.
can benefit from the distributed network model as well. For example. a distributed database
might not have the same performance requirements as a parallel numerical computation.
but might be required to survive longer. An important aspect of a distributed platform can
be fault-tolerance. A system of dispersed processors should be less prone to total failure
than a single multiprocessor machine. Again. a database needs to survive a processor failure
and potentially recover its state without restarting.

These platiorms often require either a layer software to manage the distribution of the
computation or changes to the program itself. -The transition from a parallel program
running on a multiprocessor to one running on a LAN is not an easy one. Many multi-
processors provide shared memory. allowing programs to be written in 2 manner similar
to single-processor programs, using accesses to shared memory locations as the principal
means of inter-process communication. A number of cache coherency protocols have been

developed to ensure the correct execution of programs running on tightly coupled multipro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

cessors. Due to the often higher latency and possible inability to snoop. cache coherency
protocols may not adapt well to a truly distributed system. Therefore. most distributed
programs are written using the traditional message-passing model. treating each process
as a node to which explicit messages are sent. This style of programming is not straight-
forward: processes must be coordinated. addresses established and connections made and
maintained. Small changes in the computation algorithm can have major consequences for
the programmer. The programmer spends a great deal of effort on the details of message-
passing. taking time away from the actual algorithm that is the essence of the program.
The apparent difficulty of programming parallel computations on distributed platforms has
lead to the use of Distributed Shared Memory (DSM). Cheriton argues that shared memory
programming is less difficult than message passing[32]. Many other authors take this as
an assumption[5, 27. 40. 49. 67, 72. 87. 92]. DSM is the logical extension of the common.
shared-memory. coherent-cache. multiprocessor paradigm used on many high performance

machines. There has been much work in the area of DSMs in the past 10 years or so.

1.1 Distributed Shared Memory

On a single processor, a process has a well-defined relationship with the memory. This
relationship is sometimes known as the register property. A single register or memory
location can have one bit pattern in it at any one time. All of the bits get set in parallel.
so a change is atomic. Therefore, a load. or read, of this register or location returns one
and only one possible value-the value most recently written. Sequential programming on

a system obeying the register principle is relatively easy. One knows what to expect. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION

n

value of a read can be determined by looking at the most immediate write in program
order, taking into account any compiler optimizations. This model extends to early parallel
processors with shared memory. The hardware forces a serial order on writes and reads from
different processes. Atomic synchronization operations can be used to force a certain global
order. Threaded programming on a single processor obeys this model. with the addition
of synchronization. although there is no truly concurrent execution. However. when the
register property model is extended to a distributed system the notion of ~most recent”
becomes less well-defined. Clock skew. message-passing delay. and different processor speeds
all contribute to the lack of a strict global notion of one event’s happening before another.
We no longer have a single hardware location to enforce a sequential order. It is not always
possible to determine which is the most recent write.

The original proposals of DSM attempted to use the same model of memory as the single
processor. Li and Hudak[62] present a system that mimics virtual memory. except that not
only can pages be on secondary storage they can be on a different machine. Stumm and
Zhou[87] covered a range of algorithms that provide DSM. Their paper describes several
types of systems that implement a readers/writers protocol. using both write-update and
write-invalidate. One such system used pages of shared memory and allowed any number
of copies to be disseminated for reading by the page’s owner or a central managing process.
When a process gains write access, all of the readers must invalidate their copies. They
would then have to request a new, updated copy on the following read fault. These sys-
tems were obvious extensions of virtual memory and cache coherency protocols. Another
implementation was to send out an update of the new locations after a write (or series of

writes). The idea was to keep down the size of messages on the network by not sending the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

entire contents of a memory page. Here also. there was a need for a single process to acquire
write access to the appropriate pages before sending out any updates. In this way. strict
coherence is maintained. There is still only one global view of what is in the memory. Any
one process may not sec the entire contents. but what it does see will be the same as every
other process’ view of that portion of the shared data-space. Maintaining this strict view of
memory is very useful from a programmer’s point of view. Single processor programs can be
distributed and run on a strict DSM with very little modification. However. network latency
exacts a serious toll. Not only do data pages need to get from one processor to another. but
write access requires a distributed mutual exclusion protocol. Whenever a process tries to
write to a page for which it doesn’t have write permission. globally-exclusive access must
be established. Page size also plays a major role in the performance of such systems. While
larger pages require less network communication. they also mean less concurrency as more
processes can be competing for a given page.

As a result of the fact that DSM systems were many times slower than message passing
parallel programs. researchers began to examine the underlying memory model for a way
to increase performance[4. 28. 27. 60. 63. 87]. The following sections describe some of the
models that have been developed in an effort to reduce the overhead of strictly consistent
DSM. while allowing programming ease. Most of these models are designed for scientific

computations and, therefore. strive to provide at least the illusion of a coherent memory.

1.1.1 Improving DSM performance

Early DSM systems enforced a global notion of memory coherence or consistency. This

consistency, while making programming almost as straightforward as sequential processing,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~1

CHAPTER 1. INTRODUCTION

was not without cost. Implementing a readers/writers protocol over the network greatly
reduced concurrency as many processes had to continually wait for access to pages of mem-
ory. In response to this poor performance. several so-called weak memories. which relax the
consistency constraints. were proposed. The consistency constraints of a memory model are
the guarantees provided to the user about how the memory will behave. For example. a
uniprocessor memory has consistency constraints that ensure a sequential order of memory
accesses directly related to the program order of a process running on the memory. A read
is guaranteed to return the last value written to a location. with last defined by program
execution order. These weaker models reduce the consistency constraints on the memory.
allowing executions to become incoherent in an attempt to increase performance. By in-
coherent we mean the memory can be in a state where two reads of the same location by
different processes can yield different values. Or. in other words. processes can see different
executions, something that cannot happen in strictly sequential processing. Again. some
of these weak models are analogues of conventional coherence schemes for shared memory
multiprocessors. Others are derived from the notion of causality inherent in distributed
systems. Section 1.2 presents a summary of the consistency provided by some of the weak
models. One of the problems with these weak memories is that programming is more comi-
plex than it is for the consistent models. Allowing the memory to become incoherent means
different processes can have different views of the shared memory. Most of the more widely
used models of weak DSM impose programming constraints that. if followed. allow the
memory to appear consistent. In other words, the programming model is constrained to
ensure the memory appears coherent to the user program. This allows the performance

benefit of weakening the consistency to coexist with a viable, known programming model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

Most of the work on DSM has focused on page-based systems. Most of these systems
extend the built-in memory paging facilities to include a protocol for distributed operation.
Several of these systems. using weak memory semantics. have achieved acceptable perfor-
mance increases over similar single process programs. In fact. at least one. Treadmarks([9]. is
now commercially available. This and similar systems have the advantage of having trans-
parent memory accesses. However, these page-based systems have several drawbacks. First.
sharing among processors is limited by the page size. Sharing units smaller than a page.
which is often 4KB. can create unacceptable delays as a page containing more than one item
is swapped among processors. Either care needs to be taken to lay out data on separate
pages or extra protocol needs to be added to facilitate the sharing of a single page. Second.
these systems tend to have very complex protocols for ensuring memory coherence. The use
of multiple-writer protocols leads to a further increase in system complexity. Even though
page-based DSM has been explored more thoroughly than update systems. we feel that for
certain hardware and software situations update-based DSM. with its simpler protocol. can
be a viable option.

The Munin[26] shared object system uses the page-based model to implement object
level granularity using release consistency with multiple writers. This system uses multiple
threads and object-level. or location-level. granularity. As it is page-based. it transmits
whole pages using point-to-point communication as its method of propagating writes to
other processes.

Several systems use a form of automatic update to provide weak DSM. The SHRIMP
system[50] uses special hardware to improve the performance of Lazy Release Consistent

(LRC)[55] DSM. Oguchi, Aida and Saito[68] present the design and prototype of a DSM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 9

system that uses multicast on ATM-based WANs. The design of this system is based on
the FIFO order of multicast messages. It uses point-to-point messages to regulate access
permission to memory locations by way of a centralized semaphore server. The implemen-
tation of the ORCA[15. 89] programming language uses broadcast to disseminate updates
to distributed objects. These updates are serialized through a central process to provide a

global order.

1.2 Memory Coherence Models

In order to clarify discussion of memory coherence models. we present an overview of the
basic models of coherence. For this overview we will begin by looking at the most strict
model and move to weaker versions. comparing and contrasting them as needed to further
understanding. There are two classifications of weak DSM models depending on the nature
of reads and writes. Those in which read and writes are all the same type of access we label
“generic read/write” models. Those in which some reads and writes are special accesses
and behave differently we call “special access™ models. The DSM model in our research is
of the first type so we begin looking at the generic models. We then discuss some of the
special models because the coherence in our model is similar to that provided by some of

these.

1.2.1 Sequential Consistency

Modern parallel machines do not follow the atomic. serial model of memory coherence. That
is, the steps of one access can overlap the steps of another. In fact. they can be executed

out of program order. However, they are made to appear to happen in program order to all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

processes. Lamport[59] defines sequentiél consistency (SC) as follows: ~A multiprocessor
is said to be sequentially consistent if the results are the same as if the operations were
executed In some sequential order. and all of the operations from any one process are in
the order specified by that process’s program.” The term operation. in our case. refers to
any access of shared memory. For the examples used in this paper all memory locations
are assumed to have initial values of 0. We use the notation ~z := 17 for assignment. or
a write, of the value 1 to location z. Similarly. “read(z) = 1" is a read of location z that

returns the value 1.

Po P, Py
z = 1: while (z '= 1) skip: while (y '= 2) skip:
T = 1; read(z) = 1: read(z) = 1:
z = 3: read(z) = 3:
y = 2:

Figure 1.1: Sequential Consistency Example Programs

As an example of sequential consistency consider the simple programs in figure 1.1. The
locations z and y are effectively used as synchronization operations. The values read by P,
are the only possible results. In sequential consistency. all processes have the same view of
the order of events in the execution. There is one global view, which is a single interleaving
of events, established by the execution history and shared by all processes. Sequential
consistency is the model most used in modern computing platforms from the programmer’s
point of view. Memory accesses behave most like they do for a single processor. This allows

programmers to use the memory model with which they are most comfortable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

K r(x)?

r(y)l
wy)l
w(x)l ©
Process 0 Process 1

Figure 1.2: Simple Causal Relationship.

1.2.2 Causal Memory

While the SC model grew out of the multiprocessor domain. causal memory takes a different
approach. drawing its power from the causal nature of the communication is a distributed
computation. Lamport{57] formalized the notion of causality in concurrent computations in
the “happens before™ relation (—) on system events. This relation was applied to DSM by
Ahamad. Hutto and John[5]. The causal memory model is defined in terms of what value
can be returned by a read operation. Essentially. a write is analogous to a send operation
and a read is analogous to a receive. Here. however, a single write can have many reads
return its value. When a write is received into a processor's view of memory. further reads

to that location will see that value until it is overwritten.

Definition - A memory system is said to be causal if a read returns the most recent write

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

t(x)?
r(y)l
wi(y)l
w(x)2 ¢
w(x)l @
Process 0 Process | Process 2

Figure 1.3: Concurrent WTites.

as defined by the relation ~..

The relation ~. is then the transitive and irreflexive closure of —+.. where — is a translation

of “happens before™ as follows:

1. If operation o and o' are successive memory operations by the same process. then

o —c.0.

2. If the read operation o, returns the value of write operation o,.. then o, — o,.

3. Additionally. if not 0 =, o' and not o’ —. o then o and o’ are said to be concurrent.

It is possible for the return value of a read to be an element of a set of possible values
made up of the values of all of the writes that are concurrent to the read in question. or are

concurrent to a causally preceding write.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 13

In figure 1.2, the two parallel arrows represent the time-line of each process. We use
“w(y)1” to mean a write to location y of the value 1 and ~7(y)1” to mean a read returning 1.
A *77 is used when a returned value is unspecified. It is easy to see the causal relationship
between w(z)l and r(z)?. shown with the bold arrows. The fact that the previous read
event, r(y), read the value 1. means that process 0 has executed past w(z)l. Therefore.
that value must be available to be read. in the absence of a later write. In figure 1.3. there
is no causal relationship between the writes to location = by processes 0 and 2. They are.
therefore, concurrent writes. In process 1. r(z)? now can return either 1 or 2.

The implementation of causal memory is documented. and a formal programming model
is defined in which synchronization variables are used to force the causal relationship to
follow a prescribed path{6. 51. 52]. That is, synchronization is used to order the reads
and writes of a parallel computation in a strict fashion. thus ensuring each read operation
returns the value it should under the sequential consistency model. Enough synchronization
is used to ensure there are no data races in the program. In this way. a weaker form of
memory is transformed into a sequentially consistent memory. if the programming model is
followed. This result is proven by John and Ahamad[52]. The example used for SC (figure

1.1) will execute the same way on causal memory as it did on SC.

1.2.3 Processor Consistency and PRAM

Processor Consistency (PC) is a weakening of SC that orders events only based on the
program order of the issuing process. PC was introduced by Gharachorloo et al[41]. As
with SC, the operations by any one process must be seen by all processes in program order.

However, unlike SC, the interleaving of operations from all processes need not be the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 14

as seen by all processes. In other words. there is no global ordering shared by all processes.
Different processes can see different orders. within the bounds of program order.
Pipelined RAM. or PRAM. was first introduced by Lipton and Sandberg{63]. PRAM
provides the same coherence model as PC. In this paper. we use the term PRAM for
this model of coherence. PRAM is based on the idea of each processor having a copy of
the shared data and a queue (pipeline) of incoming write updates. These queues receive
write updates from other processors in the order issued by the writing processor. These
updates can arrive in an arbitrarily-interleaved order with respect to write updates from
other processors. as long as the updates of each process appear to all others in the program
order of the writing process. These updates are then serviced. incorporated into the shared
memory. in FIFO order. PRAM allows writes to be arbitrarily delayed. In fact. there is no
guarantee the writes will ever t.—a.ke effect. The idea is to ‘iucorporatc the network latency

involved in propagating write updates into the memory model.

Po P, P,
z = 1: while (z '= 1) skip: while {(y '= 2) skip:
T = 1: read(z) = 1: read(z) = O:
z:=3: read(z) = 3:
y =2

Figure 1.4: PRAM Example

For example, consider the processes shown in figure 1.4. It is possible for each process
to have a distinct view of the shared data space. Process P has clearly seen the value 1 in

z. However, P, might not have, despite there being a “causal” link. The write to y which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 15

allows Pj to continue cannot happen until the write to £ has been seen by P;. Process
P, still sees the value of 3 in z as it should because the writes in P; are seen by all other
processes in the order issued. This example is one possible execution.

In the case of causal memory. synchronization is used to ensure the program sees the
stronger SC consistency that it expects. Since most. if not all. parallel programs require
some form of synchronization anyway. this is not excessively burdensome. With PRAM and
weaker memories causality-based synchronization is no longer possible. It is still possible
to have processes synchronize their executions. but it may not appear that way to other
processes. A slight modification to the original example shows this. In figure 1.5 the
processes are synchronized to execute in sequence. However. P» does not see the results

computed by Pg before the synchronization.

Po P, Ps
z:=1: while (z '= 1) skip: while (y '= 2) skip:
= 1; read(z) = 1: read(x) = 0:
y =2 read(z) = 0:

Figure 1.5: PRAMI fails logical synchronization

1.2.4 Slow Memory

Slow memory presents a very relaxed view of memory. While most of the previous memories
preserve program order as an important aspect of the model, allowing some synchronization
techniques to function as expected, slow memory doesn’t enforce program order on the

memory system. Hutto and Ahamad defire slow memory as a location-relative weakening

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 16

of memory consistency [49]. They include it as an example of a multiversioning memory.
making it suitable for application to distributed objects. Slow memory can be defined in
terms of how a read works. A read on a slow memory location must return some value
previously written to that location. Further. once a value has been read. no earlier write to
that location by the process whose value is returned can be read. Writes by a process are
always seen by that process immediately. This makes for a form of memory much weaker

than all of the previous examples.

Po P, P,
z:=1: while (z '= 1) skip: while (y !'= 2) skip:
r:=1: read(z) = 0: read(r) = 0:
z =3 read(z) = 1:
y =2

Figure 1.6: Slow memory example

Figure 1.6 shows a possible execution of the example programs on slow memory. We see
that not only does P; not see the write to z. as in the PRAM example. it might not see the
second write to z. Under PRAM. P> must see the value 3 in z due to the program order
of P,. With slow memory this is not the case. Synchronization is also a problem for slow
memory. The example fails logical synchronization. Process P, does not see the results of
P;’s computation prior to synchronization.

An interesting aspect of slow memory is illustrated by the solution to the dictionary
problem [38]. The problem is to implement a simple associative table with insert. delete

and lookup operations. Lookup should return all values inserted but not deleted. What

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 17

makes the problem difficult is the requirement to satisfy the following conditions:

1. The view must be consistent. An item is in a process’s view if and only if it has been

inserted and not yet deleted.

2. The system must be space-efficient. using bounded storage.

3. The system must be fault-tolerant. Functioning processes must continue. despite other

processes or communications failing.

4. All views must eventually converge and become cousistent if there are no further

inserts or deletes.

Ahamad and John propose a solution to this problem using slow memory{49}. This solution
demonstrates part of the power of slow memory. We feel that slow memory is an interesting

alternative to the earlier mentioned weak memories.

1.2.5 Relating generic weak memories

The weakness of 2 memory model can be seen as a space of allowable executions. The larger
the space the more concurrency is allowed. at the expense of tighter event ordering. The

generic memories presented above are related by

SC C Causal C PRAM C Slow.

That is, all SC executions are causal, but not all causal executions are SC[49. 73]. All
legal causal executions are-also PRAM, but there are legal PRAM executions that violate

causality. The same relation holds between PRAM and Slow. Our running example shows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 18

these relationships. For example. figure 1.1 is a legal Slow memory execution. while figure

1.6 is not a legal SC execution. This relationship is shown pictorially in figure 1.7.

()

C
PC
S
SC = Sequential consistency
C =Causal
PC = Processor Consistency (PRAM)
S = Slow memory

Figure 1.7: Coherence models as execution spaces

1.2.6 Special Access Weak Models

Special access weak models are those that differentiate between memory accesses. The
earlier models all assume reads and writes are the same. That is. one write is the same
as any other. Special access models have been developed that make a distinction between
types of memory accesses. Some are general and behave as the previous models. Some
have additional impact upon execution. For example, a write access may be part of a
synchronization operation and have tighter ordering restrictions. These models are often

originally hardware based, like Weak Ordering[3] and Release Consistency[41]. Lazy Release

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 19

Consistency[55] is a modification of Release Consistency that is designed for a software DSM

system. In this section we look at the basic operation of these models for completeness.

1.2.6.1 Weak Ordering

Like PC. Weak Ordering (WQ) was derived from hardware-based multiprocessors. In this
case. there are constraints put on the software to be run on the WO system. These con-
straints. if followed. allow the memory to appear sequentially consistent without paying the
full price of a truly SC system. Memory accesses are broken down into two types: accesses
to synchronization variables. and accesses to normal variables. The WO model can be

summed up as follows.
Definition : A system is said to be weakly ordered if:

1. Access to global synchronization variables is strongly ordered (synchronization
obeys SC).

2. No access to a synchronization variable is allowed until all previous shared mem-

ory accesses are globally performed.

3. No access to global variables. synchronization or normal. is allowed until all

previous synchronization accesses are globally performed.

Another way to see this is from the software point of view. A memory system is weakly
ordered if software obeying a “synchronization model™ appears to be running on sequentially
consistent memory. Adve and Hill[3] present a number of synchronization models for weakly
ordered systems. The primary model is called Data-Race-Free. In this model. the notion

of causality, as codified by Lamport[58]. is captured in the context of memory accesses. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 20

data race is defined as any two operations not strictly ordered by causality. that is to say.
concurrent operations. where at most one is a read. Intuitively. this is what one expects.

Concurrent read accesses are acceptable. concurrent writes are not.

1.2.6.2 Release Consistency

Release Consistency (RC). is similar to weak ordering. RC is a slightly more formalized
memory model often applied to software DSM systems. RC is based on the observation
that the structure of parallel programs allows the memory to become incoherent for certain
portions of the execution. returning to a coherent state at synchronization points. e.g. the
barrier between iterations. without sacrificing correctness.

Originally presented as part of the DASH multiprocessor{41]. release consistency gets
its name from the synchronization operations acquire and release. These synchronizing (or
spectal) operations are’analogous to lock and unlock in a standard synchronization model.

RC is defined as follows.

Definition - A memory is release consistent if:

1. Before an ordinary load or store operation is allowed to be performed. all previous

acquire operations must be performed.

o

Before a release is allowed to be performed. all previous load and store operations

must be performed.

3. Special accesses obey processor consistency with respect to ecach other.

Programmers on a release consistent system are required to label memory accesses as

acquire, release or ordinary. If the program is properly labeled, then the memory will appear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 21

sequentially consistent. and a correct program will execute correctly. Properly labeled is
defined as having enough special accesses labeled either acquire or release[4l]. Enough
means that for any two memory accesses on different processors. if at least one is labeled
ordinary and one of the two comes before the other in a correct execution. then there is at
least one release on one processor and an acquire on the other. depending on which needs
to be before the other{40. 43]. The idea behind RC is that time is only spent ensuring
sequential ordering among those accesses labeled as special. Because of the semantics of
critical sections. the writes can happen in any order as long as they are all seen by other
processors before the release is completed. This is also used to reduce communication. The
writes can be buffered until the release operation and then sent out all at once. Carter.
Bennett and Zwaenepoel[28] provide a very detailed look at how these techniques can be
used to further increase the efficiency of the RC model. In fact. results close to those of
hand-coded message passing can be achieved using modern implementations on RC.

A variant of RC is Lazy Release Consistency (LRC)[55]. While RC sends invalidation
messages to all other processes on a release. LRC exploits the causal relationship to send
these invalidations only to the next process that acquires the page in question. This sig-
nificantly reduces the amount of message-passing overhead. This software extension is the

basis of the Treadmarks system[9]

1.3 Goals of This Research

Extremely weak memories, such as PRAM and Slow, have several benefits that make them

attractive. First, there is no causal link between writes from different processes. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 22

means that there is no global ordering. and write updates can be applied as they are
received. Therefore. such weak memories should be efficient. Second. they are inherently
update-based. When a process issues a write it is effective immediately on the local copy of
memory. Then the new value for that location is sent as an update to the other processes.
Thus we have a system of fine-grained memory accesses. The locations can be of any size.
Third, baving multiple copies of the shared memory space allows for a higher degree of
availability than page-based systems which may have only one valid copy of a given page.

The weakness that allows non-causal memories to perform well is also a hindrance to
meaningful programming on them. In the case of causal memory. synchronization is used
to make the memory model appear stronger than it is to allow effective programming.
With PRAM and Slow there is no causality enforced on the order of writes so it is not
possible. using memory locations. to have enough svnchronization to make the memory
appear sequentially consistent. In order to make a similarly weak model usable. some
method of effective synchronization is required.

Update-based DSM systems can generate a number of communication messages. Each
and every write needs to be passed, usually as a message in an underlying system. to each
other process. However, many cluster computing environments where DSM might be used
are local area networks. Further, many of these networks are Ethernet based. This means
there is the possibility of using hardware-level broadcast to increase the effective bandwidth
of sending updates. We are interested in determining if reliable broadcast can be used to

increase the efficiency of update-based DSM systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 23

1.3.1 Using Broadcast For Communication

Sharing data among processors on a local area network requires communication. Often.
this communication involves sending messages containing the same information to a num-
ber of other processors. This is especially true for systems that replicate data across the
entire set of participating systems. Distributed databases and other systems that provide
high availability. and shared memory or object systems that work on the update model are
examples. This kind of communication is also common in many parallel numerical compu-
tations where each process needs values computed by the other processes to continue. A
comimon communication pattern in many such programs involves each process both sending
and receiving data from each other process. so-called all-to-all communication. Since many
of these systems are on a broadcast medium network such as Ethernet. we feel that by
using hardware broadcast we can perform this data movement more efficiently than with
point-to-point messaging. However. using UDP/IP broadcast on an Ethernet segment can
be subject to faults of omission. Single packets may be lost due to corruption or buffer
overflow, at the receiving or sending process. Most computations will not tolerate this loss
of data. Some mechanism is required to ensure delivery of each packet. One solution for
message-passing systems for parallel programming is to use the connection-oriented TCP
protocol. However. this means the broadcast medium is not being used. An n process
system requires n° point-to-point TCP streams to support all-to-all communication. An-
other solution is to build an acknowledgment scheme into each program as needed. A third
approach is to develop middle-ware for reliably sending broadcast messages.

This aspect of our research is based on this third approach. We have developed a reliabil-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 24

ity protocol for UDP broadcast packets on a single Ethernet segment. We are interested in
a low-level protocol analogous to the (usually unimplemented) reliable datagram protocol.
RDP[70]. We feel there is a need for a protocol that does not have the overhead of a reliable.
atomic. or totally-ordered. broadcast system designed for a general range of networks. The
system we explore is designed for a single network segment so there is no need to handle
routing or to use a software emulation of broadcast. Also. because of the small scale of
the network setup we don’t need to address more complex problems like assuring virtual
synchrony and recovering from network partitioning. Our protocol simply needs to ensure
delivery of distinct datagram packets. In order to allow efficient. correct parallel computing.
we also want the protocol to ensure that messages sent by any process are seen by others
in the order sent. We are not interested in globally ordering messages. either totally or
causally. That is. the order we provide is based solely on the sequence of messages sent
by each process. There is no interdependence among messages sent by different processes.
Globally ordering messages goes beyond the scope of a simple UDP level protocol. One can
think of a collection of FIFO pipelines connecting each process to each other. The proto-
col we have developed is therefore called Pipelined Broadcast Protocol (PBP) to stress its

kinship to UDP and RDP.

1.3.1.1 Strong Reliability

Much of the work in the area of reliable broadcasts uses a strict definition of reliable. There
have been a number of reliable broadcast protocols presented in the literature{30. 22. 2. 20.
35, 66, 18]. However, they are primarily concerned with a stronger definition of reliability.

Most of these systems take reliability to mean an atomic broadcast. despite process failures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 25

One of the motivations for these systems is to provide virtual synchrony among distributed
processes. Each broadcast message is guaranteed to be seen. accurately and in order. by
all non-faulty processes or by no non-faulty process. This is especially useful to distributed
database systems. but is more strict. and time consuming. than is required for many parallel
programs. Most of the protocols also work for general network configurations and often incur
greater overhead than our system because they provide greater service. We briefly discuss
some of the major reliable broadcast systems and point out some of the ways they are
different from PBP below.

Starting with ISIS[18]. researchers have looked at protocols to achieve atomic broadcasts
in the presence of process or network failures including lost messages. The ISIS system
provides for causal or total order and ensures virtual synchrony among the processes. The
notion of virtual synchrony is essentially a form of agreement. Each process will see every
message sent even if a sender fails after sending messages to some process but before sending
to the others. or none will see such a message. The ISIS system is a more general system
that provides more powerful service guarantees. It doesn’t use hardware broadcast as it is
designed to function on more diverse networks that may not have true broadcast capabilities.

The ORCA[15, 89] Reliable broadcast system for shared objects uses a serializing method.
While it does use hardware broadcast, it only uses it to send messages from the serializing
process. It takes at least two messages for each broadcast because each sending process
must send its message to the serializing process, which then broadcasts it to the group.

Chang and Maxemchuck([30] developed a totally ordered protocol explicitly and exclu-
sively for broadcast networks. Their system is somewhat similar to ours in that it was

developed for the same specific network configuration. However. much of the complexity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 26

of their system comes from the requirement to provide total order among messages. The
system uses a rotating token to determine which process will acknowledge each broadcast
message. The token-holding site. in effect. becomes a serializing influence. The other pro-
cesses will deliver messages in the same order they are acknowledged by the token site. This

means all processes deliver messages in the same total order.

1.3.1.2 Weak Reliability

Some work has been done to take advantage of broadcasting messages without providing
all of the guarantees of strong reliability. while still ensuring delivery of all messages. The
PSync|71] system uses piggy-backed acknowledgments and causal knowledge to determine
message order and delivery. The PCODE[22] system is most similar to our approach. It uses
hardware broadcast and doesn’t provide a glob-al. total order. However. it is demand driven
and, in a sense, is synchronous. A receiving process makes requests to be sent messages.
The Transis|8] system provides different levels of order. using multicast groups. The system
provides for causal to total order of message delivery. Totem[66] and RMP[94] are similar
systems that use a rotating token. Totem uses it to determine which process may send.
RMP uses the token to pass information about delivered messages to allow buffer space to
be cleared. They both provide causal or totally ordered message delivery within a multicast
group. Both of these are systems designed for general network topologies. Therefore. they

must resort to point-to-point messages on non-broadcast media.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 27

1.4 Organization

In the following chapters we will present the work we have done to design and implement
a system to provide computing cluster users with a broadcast-based. fine-grained DSM
system. During our work it became clear that the communication layer is interesting and
possibly useful in its own right. This led to the separation of PBP from the DSM system.
allowing the reliable FIFO broadcast to be used for other purposes. Chapter 2 presents
the theoretical model for BDSM. We present the coherence protocol and a programming
interface. We then prove our system model provides the same consistency as PRAM. Before
presenting the actual implementation of BDSM we explore the communication laver that
was developed to support reliable broadcasts. In chapter 3. we present two versions of PBP.
We present the protocol and provide a formalism that shows the systemn works as required.
We have performed a series of networking tests with PBP to help gauge its performance
relative to common network protocols. TCP and UDP. These results are presented in chapter
4. Chapter 5 presents a discussion of the implementation of BDSM on top of PBP. We then
prove that the implementation preserves the theoretical requirements of BDSM presented
in chapter 2. To test the performance of BDSM we have developed a test suite of parallel
computations. We compare their execution times to those of similar programs using MPI
in chapter 6. In chapter 7 we look at two extensions to our BDSM system designed to
address issues of scalability and fault-tolerance. We draw some conclusions based on our
work in chapter 8. To illustrate the programming usage of BDSM we include BDSM and

MPI versions of one of the test programs in appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Broadcast Distributed Shared

Memory

Distributed shared memory (DSM) is an interprocess communication method primarily for
parallel computation. It strives to provide the same programming model for distributed
memory machines as that found on many shared memory parallel systems. In this chapter
we present the Broadcast DSM (BDSM) model we have developed. It is a weakly coherent
model that uses broadcast communication to disseminate updates. It's weak enough to
be efficiently implemented. but has strong enough synchronization that it can be used
for meaningful programs. We show that the model can be made to appear sequentially
consistent to programs that obey a certain programming paradigm. After presenting the

protocol we discuss the interface to our prototype system.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 29

2.1 BDSM Overview

The previous chapter presented some of the goals of our research. We are interested in
developing a weak DSM that takes advantage of the efficiency of non-casual message passing.
We feel there is potential for an update-based system that allows fine-grained access. We
would like to utilize the broadcast capabilities of the underiying communication laver and
hardware. To overcome the weakness of the memory model such a system should provide
for effective synchronization. To achieve these goals we have developed a weak model we
call Broadcast DSM (BDSM). This chapter presents the theoretical model and discusses
its benefits. We show how the BDSM coherence model meets our stated requirements for
a weak memory that is still programmable. Our system provides a model that is between
PRAM and slow memory in coherence. This model has effective synchronization to make
it appear sequentially consistent when needed.

A number of systems have been developed that use the page level of granularity{9. 27.
55. 62, 67. 72, 82, 87, 92|. This page-sized sharing can lead to thrashing. Our system uses
a smaller granularity as defined by the programmer. It provides a fully-replicated shared
memory that is modified by updates. These updates are sent using hardware broadcast
to reduce the number of messages and reduce the cost of updating multiple copies. For
performance reasons we do not enforce a strict coherence model. BDSM provides a form of
PRAM consistency, but it also allows functional synchronization. This makes for a straight-
forward programming model that can be used for parallel numerical computations as well
as fault-tolerant distributed applications.

Programs using the BDSM model define and join shared memory segments. Each seg-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 30

SC = Sequential consistency

C =Causal

PC = Processor Consistency (PRAM)
S =Slow memory

B =BDSM

Figure 2.1: Coherence models as execution spaces. with BDSM
ment is made up of some number of identically sized locations. The updates to any given
segment are in strict program order. Updates to different segments are not so ordered. All
writes are immediately visible to the writing process. In a program with only one declared
DSM segment. BDSM provides coherence identical to that of PRAM. For multiple segments
writes are ordered by process and segment due to independent. per-segment buffers. There-
fore, it is possible for two writes by one process to be applied by other processes in different
orders. In this way, BDSM with multiple segments is weaker than the PRAM model. It
can be though of as a hybrid of PRAM., which is processor relative weakening. and Slow
Memory, which is location relative. The extreme case would be a program where each loca-

tion was on a different segment. This would make the DSM look like Slow Memory to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 31

user program. Figure 2.1 shows the relation of the BDSM system to the other generic weak
memories. Both of these extremely weak memories are considered to be too weak to pro-
gram effectively. They can’t be synchronized. The problem is that. by using shared memory
locations for synchronization. there is not enough control to enforce a needed order. The
memory cannot be made to appear suitably strong to execute meaningful programs. BDSM

overcomes this problem by using the message-passing layer directly for synchronization.

Assume r and y are in different segments.

Po Pl P‘.’
= 1: y =2 dsm_barrier(0):
y = 1: dsm_barrier(0): read(z) = 3:
T = 3: read(y) = 1 or 2:

dsm _barrier(0):

Figure 2.2: Coherence of different segments

By using broadcast-based synchronization we ensure consistency after synchronization
operations. In this respect. our memory model is somewhat similar to release consistency.
However. we do not guarantee that each process sees the same view of memory. just that
all updates have been applied. Updates by different processes to the same location are not
ordered. Therefore. even after a barrier. it is possible for two processes to have different
views of memory. A program that allows unsynchronized access to the same locations by
different processes may not have consistent views of memory across its subprocesses. As with
other forms of weak memory, if this inconsistency cannot be tolerated by the application
then more synchronization should be used. The fact that different segments are buffered

and then updated independently will not effect the power of the synchronization operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 32

When a process crosses a barrier it is confident that all updates from other processes issued
before those processes reached the barrier have been applied. Since no location can be in
more than one segment. the values in the various locations will be the last written in each

case (barring data races).

Po P, P,
z:=1: while (z != 1) skip: while (y '= 2) skip:
T :=1: read(z) = 1: read(x) = O:
y = 2: read(z) = 0:

Figure 2.3: Coherence provided is not causal

Figure 2.2 shows an example of three processes using two segments. We assume locations
z and y are in different segments. Process Py makes two writes to r. Ounly the last one
is guaranteed to be seen after the barrier. as shown in Pu. It would be impossible for P,
to read the value 1 from location z. Additionally. there is a data-race involving location
y. Therefore. its value is not determined. Reading location y after the barrier could return
either value written. In order to remove the data-race. another synchronization operation

would be needed after one write to y and before the other.

Po P, P,
z:=1: dsm_barrier(0): dsm_barrier(0):
dsm_barrier(0): read(z) = 1: dsm_barrier(1):
dsm_barrier(1); z:=3; read(z) = 3:

dsm_barrier(1);

Figure 2.4: Coherence ensured using syvnchronization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 33

It is important to note that the coherence model provided by BDSM is not equivalent
to causal ordering. It is possible to have a write event by one process cause another process
to issue a write which is then seen by a third before the initial write is seen (as shown in
figure 2.3). Assume z. y and z are initially zero. Process P2 can see the write to y without
seeing the writes to £ and z without violating FIFO update ordering. However. there is
clearly a causal link between the write to z and that to y. Synchronization can be used to
ensure causal ordering if required. Figure 2.4 shows the same basic model using barriers to
enforce the required causal order. The while loops. and hence the writes to z and y. become
unnecessary because the barriers serve to indicate a given write is completed. Note that
the causal order is preserved. The write of 1 to = happens before the read in P;. Since the
assignment to z occurs before the barrier it must be visible to Py after it. Similarly. P, is

guaranteed to see the value 3 in location z after crossing both barriers.

2.2 BDSM Memory Model

Processes access a shared memory space consisting of segments of equal sized locations. A
write to a location is sent as an update to each other process in the system. Writes to any
segment by a process are applied by all other processes in the order issued. The read of a
location is a strictly local operation based on the latest value seen by the reading process.
We define seen to mean a BDSM system message, an update or a synchronization message.
has been delivered to and handled by the BDSM system at a given processor. For write
updates this means the update has been applied to the local copy of memory. The meaning

for synchronization operations depends upon the operation. A BDSM system message that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 34

has not yet been handled has not been seen. An updated value can be seen without its

having been actually read by the user process.

2.2.1 Definition of BDSM coherence

Define five operations: read. write. and three synchronization operations. The synchroniza-
tion operations are barrier. lock_acquire and lock_relcase. The read and write operations
provide access to individual memory locations. The synchronization operations do not have
effect on memory other than to provide ordering. The lock_release operation only counts as
a synchronization operation if there is a following acquire. That is. the synchronization is
only meaningful if another process tries to acquire the lock. The relationships among these

operations defines BDSM coherence:

1. Writes by any process to any segment are seen by all processes in the order specified
by the program order of the writing process. Local writes are immediately visible to

the writing process.

2. Synchronization operations are seen by all processes in the program order of the issuing

process.

3. All writes issued by a process before issuing a synchronization operation are seen by
all processes before the synchronization operation completes and all writes issued after

are seen after.

Definition 2.1 BDSM coherence: A DSM system that provides the required operations and

preserves the above relationships is said to be BDSM coherent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 35

In BDSM. a process that crosses a synchronization operation (passes a barrier. or ac-
quires a lock) has seen all writes by other processes before that operation. In the case of a
barrier. since it applies to all processes. all processes have seen all writes before the barrier.
Locks behave differently. Acquiring a lock is a single process operation. All writes by that
process will be seen by all other processes before the acquire completes. And. all writes by
other processes will be seen by the acquiring process by the time it completes its acquire.
There is no assurance that other processes see all writes by each other when the lock is
acquired. Additionally. releasing a lock is a strictly local activity. unless another process
has requested the lock since it was acquired. So. unless this is the case. releasing a lock

does not order BDSM events.

2.2.2 Formalism and Definitions

In this section we present a formalism to model DSM behavior. The model consists of a
collection of events and some useful definitions and relations. The ordering constraints on

these events are supplied by the definition of the memory being modeled.

2.2.2.1 Events

ab.c

Events are generically defined as op;

in - The subscripts and n are the same for all opera-

tions. The first, 7, is the process in whose history this event occurs. This operation is local
to process i. The second, n, is the time-stamp of the event in process i. Events in a given
process are partially ordered by this time-stamp. A logical time-stamp is sufficient. Locally
initiated events are totally ordered. External events that appear locally (updates and lock

operations by other processes) are not so explicitly ordered — the time-stamp only reflects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 36

when the event registered at this process.
The superscripts a.b and ¢ are used for optional information that is dependent on the

value of op. They may be left off if they are irrelevant.

e Basic events:

L. rf,, = read of location by process i at local time n.

2. wi, = write to location z by process i at local time n. The actual value is
immaterial.

3. u‘z‘,{’m = update at process 1 at local time n produced by) -

e Synchronization operations:

1. bf_n = barrier event Ak in process 7 at local time n. There must be corresponding
k v
bJ.mV_/.

2. ak.z,n

jm = acquire event by 7 of lock k£ at ¢'s local time n. If 7 = j then m = n. if

1 # j then this event represents j giving ¢ permission to acquire the lock. If 2

ka.n

o) then there must be corresponding it G £ i

acquires lock & {a J.m

3. Uk.z.n

it = release event by 7 of lock k that was acquired at time n at z's local
time m. These are local events. The importance is the next acquire. not the

release itself. If another process is waiting for the lock then v is followed by the

appropriate a operation.

2.2.2.2 Definitions

e Define < as “ordered before”. If a is ordered before b in a history then a < b. Note,

this is not globally transitive. It is only transitive within a given process’ sub-history.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 37
as noted by the monotonically increasing subscript.
e Define concurrent. ~f|". as =(a < b) A ~(b < a).
e Define £ to be the set of all events in the system.

e Define H to be the history of all events in the system. The history H consists of events

in £, partially ordered by <.

e Define h; to be the sub-history of events as seen by process:. h; = set of all o;nZ'_[r'l'c with & =

e Define s(z) to be the segment on which location z resides.
e Define c(op,) to be the set of events concurrent to op;.

e Define last(r?,,) to be the singleton set consisting of the most immediately preceding
write or update event to location z in h;.

last(rl,) = {opl“:f :(op=wVop=u),a =z.m = maz(k < n)} Each process is

assumed to issue w7 Vz to represent an initial base case.

e Define val(r],) to be the set of w or u events the written value of which r can return.

val(rf,) = last(r],) U {opq’b'c

jom

€c(rf,):a=zNop=w}.

2.2.2.3 BDSM Definition

BDSM can now be defined by a set of axioms that involve events. Most of them provide

ordering constraints.

and op®&!

L,m

a.b.c de,f

a.b.c ’op;éu/\n<m=>0pi_n <O0P;im -

in

Axiom 2.1 given op

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 38

Locally, all non-update events are in prdgram order.

Axiom 2.2 wi, = uJI.':,;"Vj #1 and wl, < u;;‘,;"Vj #1.

Write leads to updates. and a write comes before its updates.

L'.l.mv - LS

Axiom 2.3 w¥, < w,, As(u) = s(v) = uli" < ulTV £

I
Updates for writes to the same segment by the same process are seen in the order written.
Axiom 2.4 bf, = b5 Vj £
Barriers are in all processes.

Axiom 2.5 b, < bl = bk, <b vj#i

Barriers are totally ordered. and all processes see the same order.

Axiom 2.6 w¥, < b5, = ul}" <6k Vi £

Updates for writes before a barrier are seen by all processes before the barrier.
Axiom 2.7 b < wi, = bk, < uj.;;'-"vj' # 1.

Updates for writes after barrier are seen by all processes after the barrier.
Axiom 2.8 afi" = aSiVj # 4.

Lock acquires are seen by all other processes.

Axiom 2.9 o = oS iR Al < oF T

There must be a release for each lock acquired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 39
Axiom 2.10 af‘i’,‘;'" < af_’,j’m = a;‘-'.';'" < af_‘,’,;m A vf_;'" =< afj -
Lock acquires are ordered. and a lock-holder’s release comes before the next acquire.

. T k.i.m T,Jn kam
Axiom 2.11 wj, <a;7" =u;;" <a,,

Earlier updates by other processes must be seen before acquiring a lock.

2.2.3 BDSM coherence can be at least as strong as SC

Programming on weak DSM systems is usually done by making the memory appear stronger
to a running program. This is done by using synchronization operations. A program running
on what appears to be a sequentially consistent memory will behave as the programmer
expects. BDSM can be made to appear at least as coherent as SC. To show that this is so

we use the above formalism.

Definition 2.2 data-race-free in the context of BDSM:
1) Between any writes by different processes there is a global synchronization operation.
2) Between any writes by a single process to locations in different segments there is a

global synchronization operation.

A global synchronization operation is one that effects all processes. In the BDSM case.

there is only one type of global synchronization. a barrier.

Definition 2.3 A global synchronization event e is said to be between two other events u.v

fu<e<vorv<e=<u.

This condition will be true if :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 40
1. u <e <vorv <e < u in the program order of one process.

2. u and v are in different processes and e is a barrier then u < € in one process and

e’ < v in another. where e and e’ are matching barrier events.

To capture the notion of a write being seen by all the processes in the system we use
the term “globally precedes™. If one write globally precedes another then that order is seen
by all processes. That is. if a write and its associated updates come before another write
and all of its associated updates then the first write globally precedes the second. We will
use the < operation to denote this. If all writes are globally ordered then the writes in
a system are totally ordered. Each process sees the same order of write events. Writes in
different processes can only be ordered by this relationship. If they are not so ordered they

are concurrent.

< v, ifand only if ug, " < wllTN Yk £ 4G A

Jjam

Definition 2.4 Globally precedes: w?

.n

r.a.n
3.

¥ y -
u <w; L tFIAW, Wt =]

To prove that BDSM can appear as a sequentially consistent memory we will show that
it can be made to provide a total order of all writes. This is stronger than SC. but is clearly
sufficient to ensure at least sequential consistency. We first show what is required for a set
of writes in an execution to be totally-ordered. We then show that a data-race-free program

on BDSM has totally ordered writes.

Lemma 2.1 If all writes in a program are seen by all processes in total order. and that total
order obeys the program order of each process, then the program appears to be ezecuting on

a memory that is at least SC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 41

This follows from the definition of sequential consistency. A total order of all writes seen
by all processes is an execution that is a legal interleaving of the program-ordered writes of

all processes. Since it is seen by all processes. there is one view of memory.

Lemma 2.2 If an order can be established between any two (different) events in a system

then the events are totally ordered.

By the definition of total order. if Vz and Vy # z.€ H. r is before y or y before z then

the elements of H are totally ordered.
Theorem 2.1 A data-race-free program running on BDSM has totally ordered writes.

Proof: Take any two distinct write events a = wy, .b = w}{m € H. Either ¢« < b or

b ain H.

1. Consider i = j:

o If z = y or s(z) = s(y). then a and b are ordered by the program order of p,.
Since a # b. n # m. Either n > m or m > n. From axioms 2.1 and 2.3 and the
definition of globally precedes, a < b or b « a. The writes are ordered the same

at all processes.

e If r # y and s(z) # s(y) then a and b must have a synchronization operation s

between them (definition 2.2).

Suppose a < b in h;.

— We have a < s < b.

— From axioms 2.6 and 2.7, ui:;'" < spg < up ™ Vk #4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 42

— Since < is transitive locally. uf S < ul T k£
— From the definition of €. ¢ <€ b.

Suppose b < a in h,.
— We have b < s < a.

— From axioms 2.6 and 2.7. uL ™ < sky <upy Wk #E

Since < is transitive locally. uj"?™ < up " . Vk #i

— From definition 2.4. b € a.
2. Consider 7 # j:

e Then a and b must have a global synchronization operation. a barrier. s between

them (definition 2.2). From definition 2.3. either

— h; contains a < s < u¥7"™ and h; contains u’ ;™ < s < b.
i il K

From axioms 2.6 and 2.7 and the definition of <. u; ;™ < up ™ Vp.
Therefore ¢ < b.
— or h; contains /7™ < s < a and h; contains b < s < uIL’ -

From axioms 2.6 and 2.7 and definition of < . up7™ < u " .Vp.

Therefore b K a.

Theorem 2.2 BDSM can provide the appearance of sequentially consistent memory to

data-race-free programs

Proof: The proof of theorem 2.2 follows from theorem 2.1 and lemmas 2.1 and 2.2.
By showing that, in this extreme case. BDSM can appear sequentially consistent to

programs we have shown that anything computable on a sequentially consistent memory is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 43

computable using BDSM. This is a powerful statement of the utility of such a weak system.
In chapter 5 we show that our implementation of BSDM is consistent with these axioms

and therefore provides BDSM coherence as presented above.

2.3 Programming Interface

In this section we present the programming interface for our experimental system. An
example of the usage of this interface can be seen in the BDSM version of the Jacobi
program in appendix A. The actual implementation of the BDSM system is presented in
chapter 5.

Starting a BDSM computation is a two step process. First. it is necessary to have pro-
cesses running on separate machines. Second. they must each call dsm_init. The function
dsm_startup can be used to perform the remote invocations of the program on different
machines. This call is not required. The group members can be started individually. Using
either invocation method. one (and only one) of them should have the s_flag parameter
set to a non-zero value. This process will act as the server during the group registration
protocol. This registration is done using the startup function of the PBP reliable broadcast
protocol, presented in chapter 3. Once all of the processes have registered. execution can
continue.

A single process uses dsm_seg._at to create a shared memory segment with a unique
given key. The flag parameter should be set to DSM_CREATE. Other processes can then use
dsm_seg_at with the flag set to DSM_JOIN and the same key to attach to this segment once it

has been created. The number of locations and the size should be specified by all processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 44

The function dsm_remove deletes the given segment from the local DSM system. It only
effects the single calling process. Others processes can continue to access that segment.
When a process is finished using BDSM completely it calls dsm_exit. This call forces all
writes to be disseminated and removes the calling process from both the BDSM system
and the PBP communication system. If the caller has no active segments. dsm_exit is non-
blocking and does not effect other processes except to remove references to this process.

Since BDSM uses a granularity smaller than a page. it cannot use the memory manage-
ment to make accesses to shared memory transparent. Access to a BDSM memory location
is made through the read and write functions. A process writing to a single location pro-
vides a segment id. a location number within that segment and a pointer to the value to
be written. Making this a function call rather than an assignment is necessary to allow
the BDSM system to see the update and propagate it to other processes. The function
dsm_bulk write can be used for efficiency when a number of contiguous writes are made.
This causes all buffered writes in the segment to be sent and then sends a single update of
all of the data in the range specified. Using this function is ideal for data initialization and
for a number of programs that write data in blocks.

Reading locations in BDSM is done with the dsmread function. If a program has
enough synchronization then it can make reads transparent by requesting a pointer to a
location in a segment. This pointer can then be used with the subscription operation to
access individual locations directly. However, since there is then no control over when a
user process accesses a location it is important that there be no write-write or read-write
data races for that location. We have found that this is common to many parallel numerical

applications. This is not a limitation imposed by BDSM as it is necessary in any shared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 45

memory environment. Barriers and locks are used between writes accesses and reads to

prevent these data races.

2.3.1 Initialization and functions

int dsm_startup(int *argc, char **argv);

The dsm_startup function can be used to start programs on different machines. The
command line arguments following a “--" delimiter are read by the BDSM system.
The actual parameters include the number of processes to start. whether or not to
create remote xterm windows on the local display. and whether to use ssh or rsh to
make the remote connection. Most of these arguments can be specified in a configu-
ration file. This call is designed to make the BDSM system easier to use. However. it
does not have to be used to start the system. Each process may be started by hand.

On success dsm_startup returns zero. On any error it returns a negative value.

int dsm_init(int *numprocs, int s_flag);

This is the primary initialization routine for the BDSM system. Each process in a
computation must call this function. One and only one of these calls should have the
s_flag value non-zero. This one process will be the server for the group registration
routine. The numprocs parameter is set by BDSM to the number of processes in the
group after registration is complete. On success the calling process’ id within the
group is returned, a value between 0 and numprocs - 1. A negative valuc is returned

oI an error.

int dsm_seg_at (int numlocs, int locsize, int dsmkey, int dsm.flag);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 46

Once BDSM had been initialized using dsm_init separate segments of shared memory
are created using dsm_seg.at. The first two parameters numlocs and locsize specify
the number of locations and the size of each location. respectively. that this segment
will have. The dsm_key is used to uniquely identify different segments. Since only one
process creates a segment, other processes need to use the same key as the creator to
join that segment. The final parameter. dsm_flag is used to either create (DSM_CREATE)
a segment using the given geometry values and key or join (DSM_JOIN) an already
created segment with the same key as the one supplied in the call. When joining a
segment the numlocs and locsize should match those given by the segment’s creator.

On success a valid dsm_id descriptor is returned. On error a negative value is returned.

2.3.2 Memory Access Functions

int dsmuwrite(int dsm.id, int location, void *value, int rel_flag);

BDSM processes interact with the shared memory through several routines. The first
is the basic write function dsm_write. This function takes a valid dsm_id descriptor
(as returned by dsm_seg.at). It then writes the value pointed to by value to the
given location in the specified segment. The final argument allows a process to issue
a write that bypasses the reliability protocol for message delivery. If rel _flag is set
to DSM_WRT_REL the normal reliable broadcast will be used for the update associated
with this write. If rel_flag is set to DSM_WRT.UNREL then the associated update will
be sent as a standard UDP datagram. This write will take effect locally. but may or
may not be seenn by all of the other processes. The return value is zero on success.

negative on error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 47

int dsm.bulk_write(int dsm_id, int location, void *value, int num_writes,

int rel_flag);

Since it is often the case that a process. especially when initializing shared data.
writes to a number of contiguous locations. BDSM provides a bulk write function.
This function is similar to dsm_write. However. it writes num_writes locations from
value into the given segment starting at location. These writes will be grouped and
sent as an update that takes advantage of this contiguity. Because less bookkeeping
information is required. more data can be sent in fewer messages. Additionally. the
overhead of multiple function calls is avoided. The return value is the number of

locations written on success. a negative value on error.

void#* dsm_read(int dsm_id,void* value, int location);

Memory locations are accessed for reading using the dsm_read function. This routine
reads the value in location of the given segment into the memory space pointed to

by value. It returns value on success. NULL on error.

void *dsm ptr_read(int dsm_id, int location);

Since, in BDSM, reads are local operations. memory locations can be accessed for
reading directly. This routine returns a pointer to the internal BDSM data space
were location is stored in the given segment. This pointer can then be used as an
array of the appropriate data type. However, it should not appear on the left of an

assignment statement. On error. NULL is returned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 18

2.3.3 Synchronization Functions

int dsm_barrier(int b_id, int *num procs) ;

This function performs a multi-process barrier. Each process must make a call to this
function with the same identifier value. as given by b_id. The parameter *num_procs
specifies the number of other processes required to cross the barrier. If this value is
NULL then the system performs a total barrier. Before blocking for the barrier the
BDSM systemn will flush all of the caller’s buffered updates to ensure they are seen

before the barrier. It returns zero on success and a negative value on error.

int dsm_lock_acquire (int locknum);

There are two functions that deal with locks. The first dsm_lock_acquire is used to
acquire the given lock. locknum. The function returns zero on success and a negative
value on error. The return value should be checked since. on error. mutual exclusion
is not assured. It is considered an error to acquire a second lock without releasing the

first.

int dsm lock._release(int locknum);
This is the complement to the previous function. It releases the previously acquired
lock, locknum. It is considered an error for a process to release a lock that it is not
currently holding. The release routine returns zero on success and a negative value
on error.

2.3.4 Clean-up and Exit Functions

int dsm_remove(int dsm_id) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 49

A process removes a locally attached segment with the function dsm remove. The
segment given by dsm_id is removed from the local memory and no more incoming
updates for this segment will be handled. The descriptor is then invalid for further
BDSM operations. unless returned by a subsequent dsm_seg_at calk. Before returning.
all of the calling processes updates for this segment must be delivered to other group

members. It returns zero on success and a negative value on error .

void dsm_exit();

The function dsm_exit removes the calling process from the BDSM system. It will
first remove any attached segments. and then close the communication channels to

the BDSM group.

2.3.5 Configuration File

Some of the functionality of the BDSM system can be controlled by a comfiguration file that
is read when the system starts. Each process should have access te idemtical copies. This
text file consists of a number of flags that determine the behavior of t he BDSM system.
Most are' used by the dsm_startup function. The location of the file is either the current

directory or the directory defined in the environment variable DSM_WORKENG_DIR.

DSMEXECPATH This should be set to the full directory path to where the binary lives so that

it can be executed remotely.

XTERMCOMMAND This line should be set to the command to run to genera-te a terminal.

MACHLISTFILE This should be the full name of a file listing machines to- start remote jobs

on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BROADCAST DISTRIBUTED SHARED MEMORY 50

USEXTERMS This flag tells the system to start remote terminals on the root machine.

USESSH This flag specifies that ssh should be used instead of rsh to make remote connections.

BUFFERWRITES This flag allows the user to control whether or not the system buffers writes.

If it’s set to zero. the system will send ecach update as the write call is made.

2.4 Conclusions

We have presented a new weak DSM model. This model is based on using broadcast to
supply updates to replicated copies of the shared space. Our model overcomes the problems
of similar. non-causal memories by using message-passing for synchronization operations.
These synchronization operations provide enough order that a program that is correctly
written can see a sequentially-consistent memory model rather than the weaker BDSM
model. We also presented the basic programiming interface for our system. In the next
chapter, we look at the PBP protocol that supplies the program-ordered. reliable broadcast

which forms the basis of our implementation of BDSM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Pipelined Broadcast Protocol

The previous chapter presented a new model for DSM. called BDSM. BDSM is inherently
designed to use broadcast to disseminate updates. Due to the potential for message loss
using UDP on an Ethernet segment. an implementation of BDSM requires some form of
reliable broadcast protocol. Therefore we have developed a reliable broadcast protocol
called Pipelined Broadcast Protocol or PBP. It guarantees that all messages sent are de-
livered and that they are delivered in the order sent. While there have been other reliable
broadcast protocols developed, our system is different from the previous examples in several
ways. First, PBP is designed exclusively to use hardware broadcast. We have designed it
specifically for a common networked environment. Second. we provide only source order.
Messages from any process are delivered in the order sent. There is no global ordering.
Causal or atomic ordering could be implemented on top of PBP, if required. Third. PBP
is a low-level protocol, not a general collection of services. We provide a minimal interface
consisting of send and receive. Fourth, our primary goal is to make the common all-to-all
communication patterns used in many parallel programs as efficient as possible on a net-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 52

work cluster computational platform. We use our system in place of other network-based
message passing systems such as the MPICH[45] implementation of MPI. or a collection of
TCP connections.

The primary function of the PBP system is to ensure the delivery of every message
sent. Since it uses a modified windowing protocol. and thus keeps track of message se-
quence numbers. ensuring process order requires little extra work. Without the possibility
of retransmission. messages cannot be received out of order: they can only be omitted. The
Ethernet acts as a serializing influence. Only one message can be on the wire at a time.
However, messages that are lost will leave gaps in the order. If they are subsequently re-
transmitted. due to a timeout. they will then arrive after messages with higher sequence
numbers. This would be a violation of FIFO delivery order. So each process maintains a
buffer for each other process. Messages received are placed in this buffer and only delivered
to the application when all preceding messages. from the same sender. have been received
and delivered. This allows the system to be seen as a collection of FIFO queues. or pipelines.
at each process. In an n process system there is one outgoing queue and there are n — 1
incoming queues at each process. When the message at the head of any incoming queue has
a sequence number equal to the expected sequence number from the corresponding process.
it is eligible to be removed and placed on a general delivered queue. An application process
can then consume items from this queue as they become available.

For the PBP system we assume all of the processes are known to each other at startup.
This means the processes must know the total number of processes in the group and a com-
mon port number. This is done through a group registration phase as part of initialization.

One process, called the server, which will have process id zero, receives messages on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 33

common port. All other processes send a message to the server and await a confirmation in
return. Once the confirmation is received each process broadcasts a message with sequence
number zero. When this message has been acknowledged by all other processes the protocol
has started. Control is returned to the application process. and it may then begin sending
and receiving messages. Since we are not dynamically making connections to long running
systems we do not need a true three-way handshake to initiate the protocol.

Processes running on networked workstations can fail. The host workstation may go
down. be rebooted or corrupted is some way that destroys the process that is a member of
a given computation. When this occurs, PBP will timeout and take steps to determine if
the process has indeed failed. In order to ensure that the remaining processes can continue
to send messages we need to remove dead process from the acknowledgment protocol. Since
we are using a simple. flat network topology. failure detection is not as complex as it might
be in other domains. There is no way for more than one process to become partitioned
from the rest. A single workstation may become disconnected but that is. in effect. a crash
failure. Our system assumes crashes will be rare. but also behaves in a pessimistic manner
regarding declaring a process dead. Once a process is declared dead it is assumed to always
acknowledge every messages as soon as it is sent. This way the remaining processes will
continue to make progress. We do not handle potential recovery or returning a process to
the group once it has been removed.

We have developed and implemented two versions of PBP. The first uses a positive
acknowledgment protocol where the sender retransmits messages if it has not received ac-
knowledgments in a certain amount of time. The second uses a negative acknowledgment

protocol where receivers request resends of missing messages. In the following sections. we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 24

present a detailed look at each version of PBP.

We chose to use Ethernet broadcast addresses for this implementation. The other option
would be to use IP Multicast{34. 86]. IP Multicast would allow multiple groups within the
PBP system. Each process could join multicast groups it is interested in and in theory only
be interrupted by network packets sent to those groups. It would also allow for systems to be
on different segments if connected by multicast aware routers. Since our goal was specifically
the hardware broadcast we didn’t need this latter benefit. As currently implemented the
system is designed to have a single communication group. In chapter 7. we discuss allowing
smaller divisions of the computation to improve scalability. It is there that IP Multicast
would be most useful. However. the network interfaces we are using. 3Com 3c¢509 cards.
only have binary filtering[44]. Therefore. all processes would still need to have a software
interrupt to handle all packets to determine if they are for multicast groups the local machine
is a member of. The benefits of selectively interrupting only those machines that have joined

a group is lost with this particular hardware.

3.1 Positive Acknowledgment Protocol

The first version of PBP (PBP1). is a positive acknowledgment protocol. Such a protocol
requires some form of response from receiver to sender acknowledging receipt of each mes-
sage. It bases the retransmission of potentially lost messages on a timer expiring at the
sender before this response has been received. PBP1 is an extension of a standard window
protocol with delayed acknowledgments. Rather than a single expected sequence number

from a single connected sender. each process maintains a vector of expected sequence num-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 35

bers. At process i the jth element of this vector corresponds to the expected sequence
number from process j. Processes maintain a vector of incoming acknowledgments as well.
The minimum value across each process” vector is the current base of the window at that
process. All messages with sequence numbers less than this minimum have been received
and acknowledged by all processes and thus no longer need to be buffered at the sender.
Each message sent by process 7 will have a single sequence number. It will also have a vector
of acknowledgments. When process j receives a message from process i. it uses the value
of the ith entry of this vector as an acknowledgment for its messages that have sequence
numbers less than or equal to that value. This potentially increases the minimum value of

7’s acknowledgment vector and allows the window at process j to slide upwards.

3.1.1 Protocol Presentation

Assume a set of n nodes. numbered 0..n — 1 on a broadcast medium network. Each node
runs a user process that requires reliable FIFO broadcast service and a PBP layer that
provides it. The PBP layer is designed to operate as a middle layer between a user process
and the broadcast functions of a network. PBP comrnunicates with a user process by way of
two queues of user message data. The send_q is used when the user calls the send function
to ensure sending a message is non-blocking at the user level. This queue also ensures
that message sending events by the user are handled in FIFO order by the PBP system.
Messages to be consumed by the user process are put in the recv_q by the PBP layer. The
user process can then dequeue this data as it needs to. These two queues obey the usual
semantics. For the discussion of the protocol we are not interested in the specifics of the

user process. We are concerned with getting messages in order and placing them on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 56

recv.q. Once this is done for a message it is bevond the concern of PBP. Therefore. when

we talk about process p; we mean the PBP layer at node 1.

Local data:

int ws: // window size

msg in_buf fers[0..n — 1|{ws] of messages: // to reorder messages

msg out_buf fer[ws]: // Outgoing buffer. sent but not acked

queue send_q. recv_q: // hold user messages

int exp_seqnof0..n — 1]: // ezp_seqnofi] is next seq number to send at i

int window_base[0..n — 1]: // bases of other’s windows

int wb = minj(window base[j]Vj # i): // acks. wb is what can be base of window.
int curr_base: // ezp_seqnofi] - curr_base == number of outstanding messages

bool ack_flag: // initially false

Figure 3.1: Local Data for PBP1

Figure 3.1 lists the state that is used at each process ¢ during normal operation. The
window size is determined at runtime and is stored in ws. For PBPI. this is usually set to
16 messages. Once the protocol starts up. each process will have sent. and acknowledged.
a message with sequence number zero. User messages begin at one. The highest sequence
number for which all acknowledgments have been received is wb which is. at all times. the
minimum value in the vector window_base. excluding the ith element. The base of the local
window is defined by curr_base. Since wb can change based on messages received these
two variables are separate. However. each time the window is adjusted curr_base will be
set to equal the value of wb at that time. The ith element of the vector ezp_seqno holds
the next sequence number to send. The last message sent is ezp_segno[i] - 1. The number
of pending messages is. therefore, ezp_segno[i] - curr_base. These pending messages are

held in a message buffer, out_buffer{ws], which is indexed circularly modulo ws. The next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wn
-~

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL

buffer location to use is ezxp_segnofi] mod ws. To reorder incoming messages. each process
maintains an array of message buffers. in_buffers[0..n — 1][ws]. Message from process j are
placed in the appropriate buffer location of in_buffers[j]. These buffers are indexed in the
same manner as the out_buffer. except they use the sequence number of the arriving message
modulo ws as the determinant. The expected sequence numbers from other processes are
stored in ezp_seqno{0..n — 1]. Each of these numbers serves as both the next sequence
number expected and an acknowledgment for all earlier messages. For example. at process
pi. ezp_seqnolj] is the next message p; should receive from p, and all messages with sequence

number s < ezp_segno[j] have been delivered at p;.

Definition 3.1 Deliwvered: We say a message from some p; that has been received by p,

from the network and enqueued on the local recv.q has been delivered at p,.

User Calls:

send _msg(data) {

enqueue(data.send._q);

s

data recv_msg(){

While (recv_g is empty) nop:
return {dequeue(recv_q)):

Figure 3.2: User calls to PBP1

An application program communicates with PBP, in essence, through two functions,
shown in figure 3.2. To send a PBP message a call is made to the send_msg function. The

application data to be sent is passed as a parameter. The message is simply appended to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 58

the send_q. To receive a message a blocking call is made to recv.msg which returns a data
message when one is available on the recv_qg. The use of these queues ensures messages
to and from the PBP layer are in FIFO order. All messages sent by the application are
handled by the local PBP process in the order they are enqueued. Similarly. all messages

delivered by the PBP layer are handed to the application in FIFO order.

Message m = (t.i.n.e.data) where

t = message type: PLAIN_ACK or ORDINARY

1 = sending process number

n = sequence number of this message

e = vector of acks. highest sequence number delivered for each process at

data = user level message.

Figure 3.3: Message format for PBP1

Each PBP1 message consists five components. as shown in figure 3.3. The message
type. either PLAIN_ACK or ORDINARY. defines how the message will be handled. User
messages are type ORDINARY and will have non-null data. The other type. PLAIN_ACK
is used when the protocol needs to explicitly send an acknowledgment. This occurs when
there are no outgoing messages on which to piggy-back the acknowledgments. In this case.
data will be NULL. The sending process’s process number. i. is included in each message.
Combined with the sequence number. n, this uniquely defines each message. The vector e
is a copy of p;’s local exp_seqno vector. These are the piggy-backed acknowledgmnents.

To define the protocol we will use a form of guarded command notation where cach
guard that is enabled may be executed at any point. The protocol is essentially a forever
loop. performing whichever actions are enabled as possible. All of the instructions in each

guard are executed atomically. In general. they may not be interleaved. This is a little

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 39

more strict than is actually necessary in practice. where access to critical sections cam be
synchronized when using multiple threads of execution. Figures 3.4 and 3.5 show the actdons

for the receiving and sending sides of the protocol. respectively. for process i.

Receiving Actions:

1 receive message m = (t.j,n.e.data) from network do

if (1 == 7) continue:

window_base(j] = max(window_base(j]. efi] — 1):

if (¢ == PLAIN_ACK) continue: // We already got ack info
if (n < exp_segno(j])

set ack timer:
continue:

if (in_buf fers[j][n mod ws] == NULL)
in_buf fers[j][n mod ws] = m:

od:
// Pass in order messages to application through recv_q
2 while (37 # 7 : in_buf fers[j]lezp_seqno[j] mod ws | '= NULL) do

enqueue(in_buf fers(jllezp-seqno[j] mod ws }-> data. recr_g):
in_buf fers{jllexzp-seqno{j] mod ws]= NULL:

exp_seqnolj] ++:

set ack timer

od:

Figure 3.4: PBP1 Receive Actions

The receipt of a message happens with action 1. When a message is available from the
network at p; the message can be handled. The first step is to ignore self-sourced messagzes.
Since this is true broadcast. each process usually receives each message sent. including th=ose
sent by itself. The next statement applies the acknowledgment from p;. The value of e[=] is

the next sequence number p; is expecting from p;. so e[i] — 1 is the last message delive-red

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 60

at p; from p;. All messages with sequence numbers less than or equal to efi] — 1 have been
successfully delivered to p;. If this is a PLAIN_ACK message. p, is done with it once the
acknowledgment has been applied. If n is less than the expected sequence number from p,.
this is a retransmission p; does not need. In this case. p; sets the ack_flag variable so it will
send an acknowledgment in case p; is retransmitting messages due to a lost acknowledgment.
Then, p; is done with the old message. Finally. if this is a new message we place it in the
in_buffers location for process j. based on n modulo ws.

Action 2 is responsible for passing messages to the user level. It is enabled when the
in_buffers location for the base of any other p,’s window has a valid message in it. In this
case. the data from that message m is appended to the recv_q. The buffer location is then
cleared by setting it to NULL. The base of p;s window. exp_seqno[j]. is incremented to
reflect the delivery of message n from p;. Additionally. p; sets the ack_flag so it will send a
PLAIN_ACK message stating this fact if needed. If action 2 is performed each time action
1 is, then it can be simplified to only consider the sender. p,. of the message that triggered
action 1.

In order to reclaim out_buffer spaces and slide the window upwards. p, executes action 3.
If the current base of the window is less than or equal to the minimum value that has been
acknowledged. represented by wb, p; clears the corresponding out_buffer location. Then. it
increments curr_base. This has the effect of lowering the number of outstanding messages
and could therefore enable more messages to be sent. Finally, the resend timer is reset to
prevent it from attempting to retransmit messages if there aren’t any outstanding.

A timeout occurs when one of the timers. either the ack timer or the resend timer.

-

expires. When this happens action 5 is enabled. The resend timer, in PBP1, triggers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 61

Sending Actions:

//Move window base upwards and clear buffer locations if possible

3 while (curr_base <= wb) do

clear out_bu f fer[curr_base mod ws]:
curr_base+-+:
clear resend timer:

od:
//Send messages if there are some and there is buffer space

4 while (lempty(send_q) A exp_seqno[i] - curr_base < ws) do

m = (ORDINARY.i. exp_seqno(i]. ezp_seqno(0..n — 1]. dequeue(send_gq)):
out_buf fer{exp_seqnoli] mod ws] = m:

send m to network:

exp-seqnoli]++:

set resend timer:

clear ack timer :

od:

Figure 3.5: PBP1 Send Actions

the retransmission of all of outstanding messages. The timer gets set whenever there are
any messages outstanding. This is the method by which message loss is overcome. If a
process does not receive the appropriate acknowledgments then the resend timer will expire
and messages will be retransmitted. The second timer is the ack timer. It is set when
new messages are received. Since acknowledgments are delayed. a process must send a
PLAIN_ACK at times. This timer specifies when this happens. It needs to be set less than
the resend timeout so that PLAIN_ACKS will be sent before messages are retransmitted to

reduce extra messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 62

Timer Event:
5 timeout do

if (resend timer expired) {

for cach m = (f.1.n.e.data) in out_buffer
send m = (t.i.n.exp-seqnol0..n — 1].data):

clear ack timer;
reset timer:

}

if (ack timer expired){

send m = (PLAIN_ACK. 1. ezxp_seqnoli].exp_seqno[l..n — 1].NULL):
clear ack timer:

t
od:

Figure 3.6: PBP1 Timer Event

3.1.2 Formalism and Proofs

In order to use PBP for higher level applications. it is important to show that the PBP
protocol provides two important properties. These are that all messages sent are delivered
at all other processes once. and only once. and that these messages are delivered in the
order of the send events in the sending process. We call these PBP Property I{definition

3.2) and PBP Property 2(definition 3.3) respectively.

Definition 3.2 PBP Property I: S¥ — DﬁJ.VI:,j. Each message sent by any process ©

is delivered once and only once at all process j # 1.

Definition 3.3 PBP Property 2: Messages are delivered in the order sent. For any two
distinct messages m and n. sent by p; with sequence numbers h and k. if m is sent before n

then m is delivered before n at all j.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 63

In this section we prove that the protocol provides these two properties. We start by
defining a set of axioms drawn from the protocol.

Throughout, we use the following events:

S'ik = send of message with sequence number & by p,.

. Rf ; = receipt of message with sequence number £ sent by p, at p,.

Dﬁj = delivery (see definition 3.1) of message k sent by p; at p,.

Af ; = acknowledgment. at p;. from p; for message k. If Ak ;-Y7 # 1 then message k&

has been delivered at all processes.

Additionally. we use P to represent the set of all processes. (0..n — 1). when needed. It

is assumed in most cases.
Axiom 3.1 S¥ = Sh.Vh < k.
Messages are sent with sequence numbers in ascending order.
Axiom 3.2 Rf = SE.Vi,j#1.
Messages cannot be received before being sent.
Axiom 3.3 R¥ A D!.Vh <k = Df .

Messages received are delivered if all previous messages from the same sender have been

delivered.

Axiom 3.4 SP ARY; ADQ;.Vi.j #i.

t,J*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 61

Initially. due to the nature of the start up sequence. message number 0 is sent. received

and acknowledged by each process.
Axiom 3.5 ij A R;‘.l A (S;‘ happened after Dik,] became truc } = .—lf_].

A delivered message is acknowledged by later messages sent by the process at which the

message was delivered.
Axiom 3.6 Sf¥ — R{‘:J.Vj € P C (P —1). Note: P' =0 is possible.
Messages sent may be lost.

Definition 3.4 Network Liveness Aziom: We make the assumption that the network has
not completely failed. If p, sends the same message k some finite number times each other
process will receive message k. That is. the probability of a message being lost is low enough
that the probability of not getting a message to each process. given a finitc number of re-

transmissions, approaches zero.

Axiom 3.7 S¥ A 3j.~AF, = RE.

Message that are sent, but not acknowledged will be retransmitted.
Theorem 3.1 PBP is consistent with azioms 3.1-3.7.

Proof: We show this by examining each axiom in turn.

e Axiom 3.1 follows from *m = (ORDINARY .. exp_segno[0..n—1], exp_seqno(i]. dequeue(send_g))”

and “ezp_segnoli]++" in action 4.

e Axiom 3.2 is self-evident.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 65

e Axiom 3.3 follows from the condition for action 2 and the increment of exp_segnolj}.
The reverse holds as well: Df‘:j = Dl"_j.Vh < k. And. similarly. Rf‘:] A -a(Df‘_j.‘v’h <

k) = -Df;
e Axiom 3.4 holds or the protocol has failed to start.

e Axiom 3.5 If a message is delivered at p, and p; subsequently sends a message. which
is received by p;. then p, has acknowledged message k from z. The “happened after”
relation here is well defined because it is local to p; and is based on the program order

of p,.

e Axiom 3.6 Due to the possibility of messages being lost on the network. when p, sends

a message it will be received by some subset of the other processes.

e Axiom 3.7 From the Network Liveness Axiom. definition 3.4. message k will be received
after some finite number of resends. From action 5. messages not acknowledged will

be retransmitted.

Therefore the theorem holds.

We would like to show that PBP1 provides the guarantee that all messages sent by some
process p; are delivered at all other processes. This property is called PBP property 1 (P1).
see definition 3.2. The basis of the proof is lemma 3.2. which shows that messages that are
not acknowledged will be retransmitted. and. because the probability for loss is low enough.

given enough resends each message will be received.

Lemma 3.1 foj ~ lAf,]-

! This is the temporal leads to. Informally, A ~ B means if A then at some finite time later B must also
be true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 66

All messages delivered get acknowledged. eventually. The proof is based on two cases.
If p; sends a message subsequent to Df‘: , axiom 3.5 applies and Ak , follows. Otherwise. a
timeout occurs at p; in action 5 and a PLAIN_ACK is sent. This also acknowledges k. If
either message is lost it will get retransmitted. This happens either due to j not receiving

an acknowledgement to its subsequent message or to j receiving another copy of & from .
Lemma 3.2 Sf = Rf,.Vje P —i.

The proof of lemma 3.2 is based on axiom 3.6. The axiom can be divided into two cases.
These are P' = (P —i) and P’ C (P —1). That is. a given message is sent and it reaches all
other processes. or it fails to reach at least one of the other n — 1 processes.

Slk == Rﬁj.‘v’j € P' C (P —1) from axiom 3.6.
e PP=P—i S —= Rf_j.Vj € P — 1 follows directly from axiom 3.6.
e PPC P—-—i = 3j. ﬂRf_J. For each such j:

1. -RF, = -Df, from axiom 3.3
2. -ﬂij == ﬂAfj from axiom 3.5

3. Sk A3 ﬁAf,j = Rf_J from axiom 3.7 and the Network Liveness Axiom.
Therefore Sf = Rf .Vj € P —1.
Theorem 3.2 PBP Property I holds for PBP1

For the “delivered once™ case we prove by induction on k.

e Base case k = 1:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 67

1. §} = R}_jv_-j € P' C (P — 1) from axiom 3.7.
2. §! = R}_]-Vj since P' = P — ¢ from lemma 3.2.
3. Ril,j A D?,j = Dl‘_]-, from axioms 3.4 and 3.3.

4. 8! = D}J. by substitution.

e Now assume Slk = Df‘] fOl' all L. show Szk?l = le’].[

1. $5+! — RE*vj € P/ C (P ~ i) from axiom 3.7.

2. §8*! — Rf7'Vj since P' = P — i from lemma 3.2.

3. Rf;l ADf; = lejl. from assumption and axiom 3.3.

4. S:‘“ — Df;‘[, by substitution.

To prove ~only once™ we rely on the uniqueness of messages. Each message has a unique
identifier. its sequence number and sender’s id. Once a message is received at p, it will not
be handled again. Consider message m = (t.j.n. e.data). There is only one buffer location
for message m at p;. Once it is filled and all previous messages have been delivered. m is
delivered. The expected sequence number for process p, at p; is set equal to n + 1. At this
point no message numbered < n will be handled. from action 1. If m is received again it
will be ignored. If m is received a second time before it is delivered it will also be discarded
because the buffer space it needs to go is occupied. So it will only be delivered once. In a
practical windowing protocol with finite (and hemnce reused) sequence numbers there must
be at least 2w + 1 different sequence number. where w is the window size[90]. In PBP. we
916

use a 16 bit sequence number, giving — 1 unique sequence numbers. Window sizes used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 68

are in the range of 2* to 2" messages. with 2% being the usual value for PBP1. Recycling
sequence numbers is not a problem.

The second property we would like to establish is that PBP1 provides message delivery
in FIFO order. This means messages sent by some process i are delivered at all j in the
same order they were sent. This is essentially encapsulated in the use of integer sequence
numbers. We show that. based on the axioms derived from the protocol. if messages are

not delivered in the order sent there is a fundamental contradiction.
Theorem 3.3 PBP Property 2 holds for PBP1.

Proof by contradiction:

1. Assume m is sent before n and n is delivered before m at some j.

o

. m is sent before n = h < k. From axiom 3.1.

3. n is delivered before m =—= that at some point n is delivered and m is not. Therefore

k h
Di; A =Dy;.

4. Dﬁj = Df"j.Vh < k. from axiom 3.3.

w

. m#n = h#kand h <k we have a contradiction: Dl"_j A -wa‘J.

Therefore, if m is sent before n. m is delivered before n at all j.
We have shown that the protocol for PBP1 provides the service it claims to. Programs
that use PBP1 can rely on it to deliver all messages. in the order sent, to each process in

the group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 69

3.1.3 Implementation of PBP1

We have implemented the PBP1 system on the GNU/Linux operating system on Ix86
processors. Qur primary lab consists of a 10Mb/s Ethernet network of 120Mhz Pentzium
systems. The PBP1 system is a user-level C library which uses the LinuxThreadss[61]
implementation of the POSIX threads standard[12]. Figure 3.7 shows the inter-relatiors of
the components of PBP1. All of the threads run in the same user address space. The PIBP1
protocol consists of two executing threads and interface functions. One thread hansdles
incoming messages. The other is used as a periodic timer to handle retransmissions and
delayed acknowledgments. The interface consists primarily of send and receive routi.nes.
Messages are delivered to the user thread through a shared message queue. Dequeuirng a

message can be a blocking action or a simple poll as specified in the function call.

User Process

/ User Thread \

e /
‘| Send
| Routine

User Code

PBP Library

[OS and Network interface

Ethernet

Figure 3.7: PBP1 Design Layers.

Our implementation of PBP is designed to provide discrete packets to the user. We=do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 70

not allow packets larger than the maximum transmission unit (MTU) of the Ethernet. 1500
bytes. Because PBP currently resides above the UDP layer this does not affect our protocol.
Larger messages would be fragmented by the UDP layer and only delivered to PBP when
reconstituted. Preventing fragmentation facilitates making a system that bypasses the UDP
layer. which is a potential optimization for PBP. This restriction also allows us to know
that each PBP message is exactly one Ethernet packet on the hardware.

The PBP system is designed to add little overhead to the UDP laver it is built on. To
this end. we use a zero eztra-copy technique. We take steps to ensure that data is copied
no more than it would be using regular UDP communication. User processes allocate the
space for each message to be sent and the system de-allocates this space when the message
is successfully delivered. The user process can then build its messages in the same data
space that will be used by PBP for the broadcast message. This whole packet is passed by
reference to the send routine. Similarly, a received message is copied into a dynamically
allocated memory region by the UDP recvfrom function within PBP. This message is then
handled by reference, until it has been consumed and the user process de-allocates it. This
helps to reduce the overhead of our system. which is important because it is an added layer
in the protocol stack.

The timer thread handles signals from an interval timer which is set to go off periodically.
When the timer expires, the thread checks the current state of messages that may have been
sent but not acknowledged. If there are un-acknowledged messages that have expired. they
are retransmitted, starting with the base of the window. It is possible that several may be
lost in a row. Therefore, we currently retransmit the entire window of outstanding messages

when a retransmission is required. The timer thread also determines if too much time has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 71

passed since the local process sent a message. thus failing to acknowledge received messages.
If this is the case. a plain acknowledgment message will be sent. As is usual with delayed
acknowledgment protocols, a balance needs to be struck between acknowledgment timeouts
and retransmission timeouts to try to minimize the number unnecessary retransmissions.
We have not implemented a dynamic timeout system for two reasons. First. the notion
of round-trip time. which is the basis of dynamic timeouts. is somewhat ill-defined in a
broadcast paradigm. Also. the simple topology of the networks we use should not be
subject to as wide a variation in latency as a general TCP connection.

PBP1 uses a form of delayed acknowledgment windowing protocol. The aim isto reduce
the number of empty acknowledgment messages. Assume an n process system with window
size w. In a worst case scenario. where there is one sending process and there is a significant
(greater than 200 millisecond) pause between each message. our system requires n — 1
separate acknowledgments. one from each receiver for each message. However. if there is
such a small amount of communication these extra messages should not be a problem. If
there is no pause between messages from the single sender then there are on the order
of n — 1 acknowledgments per w messages. An ideal situation consists of all n processes
continually sending messages. In this case. due to piggy-backing. no extra acknowledgment
is sent. A more normal situation is where all processes are periodicaily sending messages. In
this case, there will be a few acknowledgments needed by any processes that complete their
sends before others. At the least. there will be n — 1 as the other processes acknowledge
the last message in the batch, unless the next communication batch starts before the timer
expires. This is the communication paradigm we are targeting. Many barrier-based. parallel

computations exhibit this behavior. For these programs. PBP1 tends toward. but does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 72

reach. a minimal number of extra acknowledgments.

There are several performance variables that may be changed in the PBP1 implemen-
tation. First. the size of the window might have an impact on the performance of a given
program. Some communication patterns might be handled more efficiently with different
window sizes. Secondly. the timeout for retransmitting or acknowledging messages can be
changed. Currently. we use a timeout of 150 milliseconds for unsent acknowledgments and
twice that for retransmitting messages. This keeps the timer thread from executing too
often. but makes handling lost messages somewhat expensive. With the extremely low loss
rate on modern Ethernets we feel this is justified. Messages are lost on the order of one
per several thousand messages when sent as fast as possible. For messages with some. even
small. amount of time between sends this rate is even lower. Traditional windowing proto-
cols use a dynamic time out that tracks round-trip latency. With broadcast and a collective
acknowledgment protocol, round-trip latency is not as clearly defined. Additionally. since
the topology we are using is flat, the variation in message delivery time should be very

small.

3.2 Using Negative Acknowledgments

Positive acknowledgments require a delay before message loss is detected and messages can
be retransmitted. This is true even though the receiving process likely detects the loss
as soon as the next message from the same sender arrives. The lost message will leave a
gap in the sequence. In this case. it is possible that. rather than waiting for a timeout.

the receiver can explicitly request a resend of the missing message. This is done with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 73

negative acknowledgment. The second version of the PBP protocol is designed to increase

throughput and make recovery from missing messages faster than in PBP1.

3.2.1 Protocol Presentation

The overall structure of PBP2 is similar to PBP1. The user interface and the data locations
are the same as in figures 3.2 and 3.1. Messages have the same format as figure 3.3 with
the addition of NACK as a message type. However. the actions performed are different and
there are several new ones to deal with nacks. The biggest difference is that the receiving
process now has two distinct running states: normal and need_resend. When a process
detects a missing message it enters the need.resend state. In this state. it can only execute
certain actions that cannot lead again to need_resend state. No messages except NACKs.
PLAIN_ACKSs and messages from the process whose message is missing are handled.

First we look at the normal state actions. The sending actions (3 and 4). are the same
as in PBP1 (figure 3.5). There is still 2 window and acknowledgments need to be applied
in order to clear buffer spaces. A process must keep all messages it has sent until they are
acknowledged because there is. until that time. the possibility another process will request
a resend. We use the send timer. which should have a longer timeout than for PBPI. to
ensure processes can continue. It is possible for the last message in a batch to be lost. In
this case, the receiving processes will not see a gap in the sequence numbers because a later
message is not sent. When the resend timer expires, a plain ack is sent to other processes.
with the sequence number set equal to the last message sent. This will allow receivers to
see that a message was missed and send a NACK if needed.

Action 1, receiving and handling messages is necessarily more complicated than in PBP1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 74

Action 1. in figure 3.8. shows how PBP2 receives a message in the normal state. The data
field is used as a list of requested resends. The first element is used for the target process
id. The remaining elements list the sequence numbers needed. While in the need_resend
state. the protocol cannot handle any messages that could potentially trigger a transition to
need_resend, instead these messages are put on a message queue. If there are any messages
in this queue then they are received instead of a message from the network in action 1. Once
a message is received or dequeued. it is handled. If the type is NACK and if it is targeted to
this process. the requested messages are retransmitted. Then the message sequence number
is compared to the sender’s window and expected sequence number. If the message is in the
window and its not the expected message then a NACK message is sent and p, enters the
need_resend state. The message is stored in the reordering buffer for later delivery. Action
2 is the same as in PBP1 (figure 3.4). Messages are delivered from the reordering buffers
in the same manner as PBP1.

The PBP2 system uses three timers: a resend timer. a nack timer and an ack timer. The
resend timer is set whenever there are outstanding messages. Unlike PBP1. when this timer
expires it does not signal a resend of all of these outstanding messages. rather it causes a
PLAIN_ACK message to be sent. This will have the sequence number of the last regular
message sent by this process. This will be seen by other processes and can trigger a NACK
if the last message was lost. Otherwise, it would be possible to lose a message and have
the receivers not see a gap because there was never a later message. The second timer is a
nack timer. It is set when the process enters the need_resend state. It serves to ensure a
process does not remain in this state too long by triggering a resend of the NACK in case

it, or any of the retransmitted messages got lost. The final timer is an ack timer. It serves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL

~
[V

to ensure a plain ack is sent if an ack cannot be piggybacked on an outgoing message in
time. In this way. processes can perform garbage collection and clear buffers during a lull
in message-passing. Figure 3.9 shows the pseudo-code for the timer action in PBP2.

The major difference between the operation of PBP2 and that of PBP1 is in the dual
state mechanism. When a process detects a lost message. either by seeing a gap in the
sequence of regular messages or by getting a PLAIN_ACK with a sequence number higher
than expected. it enters the need_resend state. It does this by sending a NACK requesting
a resend of the missing messages to the sending process. In this state. it handles only those
messages it needs to fill in the gap and any NACK messages from other processes. Other
messages are enqueued and handled after a transition back to normal state. Figure 3.10
shows the pseudo-code for message receipt in the need_resend state. Acknowledgments from
the incoming messages are checked. Then. messages from nack_target are handled if they
are in the range of missing messages. If not. they are enqueued for later inspection. NACK
messages sent by other processes are also handled. Actions 2 and 3. sending messages and

clearing buffer space. occur in both normal and need._resend states.

3.2.2 Formalism for PBP2

The axioms from section 3.1.2 apply to PBP2. The basic functionality of the two protocols
is the same. The difference comes in how message loss is detected and how messages are
retransmitted. Receipt of messages and delivery of messages to the user-level are the same.

PBP2 differs from PBP1 primarily in the triggering message for re-sending messages.
To show that P1 and P2 hold for PBP2, it is necessary t6 show that messages that are lost

are retransmitted. That is, that PBP2 is consistent with axiom 3.7. The other axioms hold

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 76

because the related parts of the protocol did not change. Axiom 3.7 states that messages
that are sent but not acknowledged are resent. Due to axiom 3.5 this means a message was
not received. PBP2 will request a re-send until the message is received and delivered. Due
to the Network Liveness Axiom this request must eventually be received by the original

sender and the message will be resent. Therefore axiom 3.7 holds for PBP2.
Theorem 3.4 PBP Property 1 holds for PBP2

This follows directly from theorem 3.2. since the axioms are valid for PBP2.
Theorem 3.5 PBP Property 2 holds for PBP2

This follows from theorem 3.3. The axioms for ordering messages. those involving se-

quence numbers and delivery. are unchanged for PBP2.

3.2.3 Implementation

The implementation of PBP2 is extended from that of PBP1. We use the same systems
for both libraries. However. there are two major differences. First, since the timeouts
in a negative acknowledgment protocol are based on the receiver they need to be morc
1

tightly coupled with the receiving thread. The separate timer thread is completely removed
from PBP2. The other main difference is that. in order to correctly handle retransmitted
messages, PBP2 needs to have two separate running states. This is in addition to the basic
start up and shutdown states that allow group creation and correct termination.

The timer mechanism in PBP2 is implemented as part of the main thread. rather than
as a separate timer thread. Timeouts are not needed to trigger resends of normal messages.

They are associated with specific events not with specific messages. We implemented the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 1

timer by using a timeout to the select function call that essentially makes the main thread
a periodic timer. When returning from select. either due to a timeout or a valid read
descriptor. the main process issues a gettimeofday call and compares the time to the
various recorded timeout values. If the new time is greater than the recorded time. that
timer has expired and appropriate action is taken. During periods when no timer is set.
the timeout for select is greatly increased to reduce CPU contention. The benefits of this
are that there is now one less thread competing for CPU cycles with the user process(es)
and that this thread will consume fewer cycles during periods of message inactivity than
the regular interval timer used in PBP1.

The need.resend state is important to keep a process from detecting more than one
gap in sequence numbers at a time. There are three wavs a process can be put in this
state. The first is in the normal course of receiving messages. When a gap in the sequence
of messages from a given sender is detected a NACK is sent and the process makes the
transition. The second transition can occur upon the receipt of a PLAIN_ACK message
that has a sequence number higher then the last message received (from the sender of the
PLAIN_ACK) at this process. The third transition occurs on receipt of a shutdown message.
The sequence number of a shutdown message is the same as it would be if it were a normal
message. Therefore. a gap may be detected. Once in need_resend state a process will only
handle NACKSs and those messages it needs to fill in the sequence. Any other message could
trigger another transition to need_resend. This would create bookkeeping difficulties. and
significantly increase the complexity of the system. Due to the low loss rate of an Ethernet

network we feel it is better to prevent a process from having more than one outstanding

NACK request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 78

3.3 Applications

The use of efficient. reliable broadcast on a LAN can have several applications. The ability
to share data within a group of processes without sending multiple messages to each member

of the group can be used to implement a number of distributed applications.

3.3.1 Distributed Shared Memory

The fully-replicated model of Distributed Shared Memory(DSM) can take advantage of
PBP. In such a model. each process maintains a local copy of the shared memory space.
When a read is performed it is performed locally. by reading this copy. When a write is
performed it is broadcast as an update to all the other processes. When an update arrives
it is applied to the local copy of memory. The FIFO order provided by PBP ensures the
writes are ordered by process. Using synchronization. a system can ensure a coherent view
of shared copies of memory. PBP was initially designed to overcome message loss as part

of the BDSM system discussed in chapter 2.

3.3.2 State Machines

Another use of PBP might be as the communication channel for a state machine [78] im-
plementation of a distributed service. This model of fault-tolerance relies on redundant
processing. Using broadcast is an efficient way to disseminate data to multiple backup
processes at the same time. Since PBP will declare a process dead and reorganize itself if

a given process stops participating it is ideal for fail-stop protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 79

3.4 Conclusions

In this chapter we have shown how a common reliability protocol may be multiplexed to
provide FIFO ordered messages to a broadcast medium. This protocol. PBP. provides source
ordered reliable message passing to a group of processes sharing an Ethernet segment. PBP
provides what amounts to a series of pipelines connecting the group members. We have
shown that the protocol provides two important guarantees that can be relied on when
defining higher level programs. We take advantage of these properties by using PBP as
the communications layer for our BDSM system. However. it can be used for other group
communication applications. In chapter 4. we present the performance results of the two

version of the PBP system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 80

Receiving Actions:

1 State : Exp '= resend_state

A receive m = (. j.n.e.data) (from network or queue)

if (i == j) continue:
window _base[j] = max(window _base[j}]. e[i] — 1):
if (t == PLAIN_ACK) do
if (n .= ezp_seqno[j])
send m = (NACK.i.curr_baseli]. exp_seqno[l..n — 1]. (j.exp_seqnolj])):
State : Ezp = need_resend:
nack_target = j:
set nack timer:
continue; // We already got ack info
// Handle a nack message
if (¢t == NACK) then
if (data[0] == i) then
resend message with seqno data[l]:
else continue:
if (n < exp_seqno(j]) then
set ack timer:

else if (n > exp_seqno[j]) then

send m = (NACK. i. curr_base[t]. exp_seqno[l..n — 1]. (j. exp_seqno[j})):
State : Exp = need_resend:
set nack timer:

fi
inbuf fers(j][n mod ws] = m:

od;

Figure 3.8: PBP2 Normal State Receive Actions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL

Timer Event:
5 timeout do

if (resend timer expired) {

send 'n = (PLAIN_ACK.i.ezp_segno[i] — l.exp_seqnol0..n — 1. data):
clear ack timer:
reset resend timer:

}

if (nack timer expired){

send m = (NACK.i.curr_base[i]. exp_seqno(l..n — 1]. (j. exp_segno[jl])):
reset nack timer:
clear ack timer:

}
if (ack timer expired){

send m = (PLAIN_ACK.i.ezp_seqnoli] — 1.ezp_seqno[)..n — 1]. NULL):
clear ack timer:

}
od:

Figure 3.9: PBP2 Timer Event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL

Receiving Actions in resend_state:

6 State : Exzp == resend_state

A receive m = (t, 7, n.e.data) (from network)

if (¢ == j) continue:
window_base[j] = max(window _base[j]. e[i] — 1):
if (7 ! = nack_target At '= NACK)
enqueue (mn):
else if (n in needed range)
in_buf fers[j][n mod ws] = m:
if (got all resends)

State : Exp = Normal:
clear nack timer:

fi
continue: // We already got ack info

else if (7 == nack_target A n not in needed range)
enqueue (m):

fi

else if (t == NACK) then
if (dataf0] == i) then

resend message with seqno data[l]:

Figure 3.10: PBP2 Need Resend State

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL

User Process

User Thread \

User Code
Recv
Queue
Send
Routine »
Recv Thread j PBPZ Library
N [/
)
OS and Network Interface
Ethernet

Figure 3.11: PBP2 Design Lavers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Chapter 4

PBP Experimental Results

The BDSM system is implemented on top of the PBP communication layer. The per-
formance of application-level programs will be effected by this underlyving protocol. The
performance of PBP is. therefore, of interest from the perspective of BDSM. Since PBP can
be used independently of BDSM as a communication layer for a different application. it is
also useful to compare it to other reliable communication protocols. In order to examine
the benefits of using broadcast communication. we performed several comparisons of PBP
to TCP and UDP. While TCP is obviously more feature rich. it is the better comparison
model because it does ensure delivery. Some tests using UDP quickly ran into lost message
problems and are not shown. We also compare the performance of PBP to another reliable

broadcast protocol. RMP[94]. when published data are available.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 85

4.1 Experimental Setup

Data was collected on a 20 node LAN. using P-120 PCs running the Linux 2.0.36 kernel.
The network is a 10Base-T Ethernet. The systems are basically identical. The systems have
common hardware as far as possible. Motherboards. network interface cards and CPUS
are the same. All of the timing measurements were made using small C programs. and the
gettimeofday system call. The timing is based on completion of the benchmark as seen by
a single master process. We use the same lab setup for the BDS)M results shown in chapter
6

We performed three basic timing experiments. The first is a single sender/multiple
receiver setup to measure direct throughput. The time measured is for the first process
to send 500 messages to each receiver and receive a single message in return from each
receiver. In the case of PBP. this is done for all the receivers at the same time using
broadcast. For TCP the messages are sent to each receiver and then the return messages
are consumed. The second test is a multiple-sender/multiple-receiver algorithm. This is
an all-to-all communication pattern where the senders and receivers are the same set of
processes. Each process sends n messages to each other and awaits n messages from each
other process. The time for the all-to-all experiment is measured as seen by one process.
The third test is designed to be a measure of protocol overhead. by measuring latency. The
lead process sends a message to each receiver (either one broadcast message or a secries of
point-to-point messages). It then waits for a reply from each receiver. This measures the
time to get a message to each receiver and back including both protocol overhead and actual

network latency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 86

In all of the experiments. the timing involves messages on already created channels where
appropriate. We do not measure connectiou creation or tear-down time. Before each TCP
experiment is timed. a network of connections is made. This makes the processes totally
connected. For PBP. a group setup routine is called before timing experiments are started.
For the experiments in which UDP was successful. while no connections are involved. all
addresses and ports are resolved and bound before timing is initiated.

We use two message sizes to compare performance. Message sizes stated include all
headers. Large messages are a total of 1104 bytes. while small messages are a total of 84
bytes. We feel that this is a large enough difference to ensure different behaviors. The large
messages are close to the 1500 byte MTU of the Ethernet. which leads to more efficient use
of the hardware. The small messages are small enough to use the hardware less efficiently.
However. they are also small enough to be buffered by TCP so it is necessary to use the
TCPNODELAY protocol option to keep the system from buffering them. Since we want
to account for each message on the wire we need to ensure that TCP sends a message for
each send call. Under Linux 2.0 the TCP_NODELAY flag does not completely disable the
Nagle algorithm. It has been shown that there is a long delay at regular intervals when
using TCP with a number of small messages[64].

In most of the experiments the 95% confidence interval is under 2% of the shown time.
In some of the experiments with 16 processes. despite increasing the number of samples.
this interval is as much as 8% of the total time. As the number of processes increases. the

number of possible delays due to processing time. interruption and message loss increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 87

4.2 PBP Compared to Standard Protocols

TCP is the conventional protocol for reliable messages passing. The other data transfer
protocol in the TCP/IP suite. UDP. requires application code to provide its own reliability
mechanism. For a LAN environment and two or more destination processes. it can be more
efficient to use a broadcast mechanism. This precludes the use of TCP because it is strictly
point-to-point. In this section we look at the way PBP compares to the standard network
protocols.

We compare the results of both versions of PBP using a window size of 16 to TCP and
UDP. The size of the window has an effect on the throughput of the PBP protocols. A PBP
process can send at most a number of messages equal to the window size before queueing
outgoing messages. It then must receive acknowledgments from all the other processes to
slide the window and send more messages. A larger window means more messages before
this acknowledgement is required. In section 4.4 we show the impact of larger windows.
When compared to TCP. the variation caused by differing the PBP window size is not

readily apparent.

4.2.1 Throughput

Throughput is a measure of the amount of data that is moved in a given time. It can be
obtained from a measure of the amount of time it takes to move a certain amount of data.
Figures 4.1 and 4.2 show the average time it takes the timing process to deliver 500 messages
to all of the other processes. In these plots a low. flatter line is closer to ideal and represents a

near linear increase in throughput as the number of processes increases. For small messages,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 88

One-to-all (sm): PBP (window = 16) vs. TCP
6000 T T T Y T Y

5000 | TCP 4
PBP1 ---x---

PBP2 =

Average time per message (500 msgs)

Number of Processes. mduding sender

Figure 4.1: Times for Throughput Experiment for Small Messages.

TCP performs better for the 1 receiver (2 process) system. This is acceptable because it
is the situation that TCP was designed for. As the number of processes increase it is clear
that PBP. by taking advantage of the broadcast. is much faster. On an Ethernct. larger
messages are more efficient than smaller ones. Figure 4.2 shows the one-to-all results with
larger messages (1104 bytes). Here both versions of PBP are almost constant. while TCP
shows a linear increase.

As mentioned above, throughput is commonly expressed in bytes per second. The
10Base-T Ethernet provides a maximum rate of 10 Mb/s. This equates to 1.25MB/s. This is
the ideal maximum hardware throughput on such a network. The term Effective Throughput
is used to describe the amount of data moved when there are multiple receivers. That is. ifa
process sends 1 MB of data to multiple, say 2, receivers in one second it is effectively moving
2 MB of data in that second. Table 4.3 show the effective throughput of each protocol using

large messages. This table is based on the results for both PBP versions with 16 and 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS

25000

20000

15000

10000

Average ime per message (micioseconds)

5000

one-to-all {ig) - PBP window 16 vs. TCP

L]

Y v T 3 T L

TCP
PBP1 --ea---
PEPZ = -

PR

1 L i 2 2 1

4 6 8 10 12 14
Number of Processes. including sender

16

Figure 4.2: Times for Throughput Experiment for Large Messages.

Protocol Number of Receivers

{(window) 1 4 N i 15

TCP 0918 + 448 % | 0.823 = 433 % | 0.697 = 839 % | 0.631 £ 8142 ¥
PBP1 (16) 0977 £0.28 % | 3.32T =448 % | 5.240 £ 249 % | 7924 £ 6.49 %
PBP1 (128) | 0.886 = 1.05 % | 3.062 = 0.67 % | 5.173 = 3.00 % | 10.523 = 7.15 %
PBP2 (16) 0.977T £0.04 % | 3.653 £ 1.25% | 5.568 £ 6.03 % 8.264 = 8.30 %
PBP2 (128) | 1.105 £ 002 % | 4.356 £ 0.87 % | 7492 = 1.13 % | 153512 £ 2. 14 %

89

Figure 4.3: Effective throughput in MB/s of TCP and both versions of PBP with 16 and 128
windows. Percentages are 95% confidence.

message windows.

As expected. TCP shows basically a flat effective throughput because

it is not sending data to multiple recipients at the same time. The PBP results show that

for a large window PBP2 has a real throughput (1.1 MB/s) close to the hardware limit

(1.25 MB/s).

This throughput scales well. providing 15.5MB/s effective throughput to 15

processes. PBP1 is not able to scale as well. The scalability of the protocols is shown best

in figure 4.4. We plot the ideal effective throughput. 1.25MB/s to each receiver compared

to the window 128 PBP data. TCP is included for completeness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 90

Effective Throughput. TCP vs PBP using wincowsize 128
20 T T T T T Y

18

16 -

18}

12 -

10

Throuhput (megabytes/second)

I 2 X i 1

4 6 8 10 12 14 16
Number of Receivers

Figure 4.4: Effective throughput. Ideal versus PBP and TCP.

4.2.2 All-to-All Communication

The second set of results involves an all-to-all communication pattern. The algorithm has
each process send either 500 small messages. or 50 large messages. to each other process.
Here we expect to see a roughly linear increase in PBP times and a quadratic increase in
TCP. This is due to the use of broadcast for PBP and the point-to-point nature of TCP
connections. In a system with p processes sending n messages. the PBP system has to send
pn messages. TCP, on the other hand, has to send p’n —pn messages because ecach message
is point-to-point. Each TCP process has to send n messages to p - 1 other processes. The
time shown is the average total time to complete the exchange as seen by the master process.
The PBP system is again set to a windows size of 16.

The all-to-all performance is show in figures 4.5 and 4.6. Using small messages TCP
performs slightly better than PBP for a small number of processes. It starts to get much

worse for the systems of 8 processes and by 16 processes TCP is an order of magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 91

All-to-all: PBP (window = 16) vs.TCP
2e+Q7 T T T T T T

1.8e+07 | P 4

TCP ——— g
PBP1 +-euee- -
1.6e+07 PBP? -u.-

v

14e+07 | .
12e+07 |- g
1e+07 4

8e+06 | E

Total Time {microseconds)

6e+06 - B

4e+06

2e+06

[¢]

Number of Processes

Figure 4.5: All-to-All for Small Messages.

slower than PBP. PBP shows a slow increase as processes increase. There are no steep

increases. With large messages PBP performs better even for 2 processes.

4.2.3 Latency

Latency is a rough measure of round-trip time. We use it to gauge the efficiency of a
protocol. Since PBP does not have as much state and overhead. it should be faster than
TCP. However, it is built on top of UDP so it cannot be faster than UDP. We anticipate
that the results will be in between the two. PBP also benefits from the use of broadcast.
We show for small messages that TCP is actually faster than PBP2. However. when using
large messages, for which PBP was designed. both versions of PBP are close to UDP in
latency. PBP continues to scale better than TCP. UDP performs better because. while
PBP broadcasts the initial message. it still requires p — 1 acknowledgements. These will

have to be received and ignored by all processes except the timing process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 92

Ali-to-all: PBP vs.TCP

2.5e+07 T T s Y T T
2e+07 TCP / -
PBP1 ---x---
PBP2 ---a--

2y
b=
€
=3

S 1.5e+07 <
[
e
¥
E
<
=

[1e+07 -
=
=]
[

5e+06 | e

cmm——— .'4

[o} = bd L i N L 1
2 4 6 8 10 12 12 16

Number of Processes

Figure 4.6: All-to-All for Large Messages.

4.3 Compared to RMP

Since TCP is not capable of taking advantage of the broadcast nature of the network it is
somewhat unfair to compare it to PBP, a protocol that does. It is expected that PBP will
be much faster than TCP for greater than 2 processes on a LAN. There are few published
results using hardware broadcast reliably. The Reliable Multicast Protocol (RMP) is an
exception{94], although the code is now commercial and is unavailable. RMP provides total
order or process order for all messages. It also provides more service than PBP. as it is not
limited to a single network segment. RMP is based on IP Multicast. which takes advantage
of broadcast hardware when possible. RMP will perform its multicasts across network
boundaries using various tree algorithms. It is important to note that these RMP results
are somewhat dated. The systems used are SPARCstation2 and SPARCstation5 systems.

These typically have speeds in the 50-70MHz range. These systems are slower than the P-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 93

Latency (sm). PBP (window = 16) vs TCP and UDP
8000 T T T T —

Average round-lrip time (microseconds)

Number of Processes. including sender

Figure 4.7: Latency for Small Messages.

120s we are using for our test-bed. However. the network in both cases is 10Base-t Ethernet.
We compare both throughput and all-to-all timings to those of RMP.

RMP has published results for up to 8 receivers on a single Ethernet LAN. similar to the
one used for our PBP experiments. These results show RMP with an effective throughput
of approximately 4100 KB/s (4.00 MB/s) for 4 receivers and 7384KB/s (7.2MB/s) for 8.
We can estimate PBP2's performance at 8.35MB/s for 8 receivers (based on the results for
7 receivers). and compare this and the results (4.3 MB/s) for 4 receivers to the RMP data.
PBP2 uses the network more efficiently and provides greater throughput on a LAN. The
RPM system does provides a total order while PBP2 provides FIFO order by process. This
is called source ordering by the RMP authors. In a system with one sending process. total
order and source order are synonymous. There is only one source. so the service provided
by both systems is comparable.

Another published measure of the efficiency of RMP is the effective throughput using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 94

Latency (ig): PBP (window = 16) vs TCP and UDP
80000 T T : T T

70000

60000

40000

30000

20000

Average round-tnp time (microseconds)

10000

EUURIUREESE S St ettt bt .
JF = 2
o L .
2 3 a s . - |
Number of Processes. including sender

Figure 4.8: Latency for Large Messages.

8 senders and 8 receivers. This is comparable to the all-to-all experiments performed with
PBP. RMP shows a throughput in this case of approximately 6000KB/s (5.8MB/s) for the
8 process all-to-all. For PBP2 with a window of 128 messages we see 6.8 MB/s. Again PBP
show better performance. In this case. the fact that RMP provides total order makes a
difference. All of the processes in the RMP experiments see all of the messages in the same
total order. The PBP system has the possibility of processes secing different orders within

the confines of FIFO by process ordering.

4.4 Effects of Window Size

The disparity between the performance of TCP for these tests and that of PBP made using
larger windows overkill. However, it is interesting to explore the effect of window size on
the performance of PBP. Since PBP2 was designed to allow a larger window to increase

throughput, it is useful to see how PBP performs with a larger window. We use the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 95

window size of 16. a medium window size of 48 and a large window of 125. We then repeated
the experiments from the previous sections, excluding latency as it is unaffected by window

size.

PBP (sm) Time tor Throughput Expenment. vanabie window

1000 T T T T v T
900 PBPt (16) ——— A
PBP1 (48) ---w---
2’8!3?2“28) .
e o
800 |- PBP2 (48) - -® - b
— PBP2 (128} - -0 -
3
s 700} J
(=]
2
S
=]
E 600 |
o
£
(=
-1 S00
k=3
2
]
400 |-
$---
e TR EEET SR S
g ---""" e ™ a .- =
360 L. ... - . - .
200 L L L . :
2 a4 6 8 10 12 i 16

Number ot Processes

Figure 4.9: Time for Throughput Experiment. PBP with Variable Window Size. Small Messages.

Throughput for both PBP systems is much better with larger windows. A larger window
means the sending process can send more messages before having to wait for acknowledge-
ments. It can, therefore, spend more time sending messages and less time waiting for
them. Figures 4.9 and 4.10 show the throughput results. In both versions of PBP. receivers
track the number of messages received by any given sender. When this number reaches
the window size without any piggybacked acknowledgements having been sent. a plain ac-
knowledgement is sent. This happens without a timeout to decrease the response time. The
system still experiences a delay in the sending of messages as these plain acknowledgments
arrive. The larger the window, the less frequent this delay. The sudden increase at seven

processes of PBP2 (48) in figure 4.10 is believed to be an artifact of the Linux kernel. See

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 96

PBP (Ig) Time for Throughput Expenment. vanable window

2000 v v T T T T —
PBP1 (16) aeemT T F
PBP1 (48) ---x--- PP
B PBP1(128) = -
1800 PBP2 (16) o P .
PBP2 (48) - -® - Rl
PBP2(128) - & - .
Z 1600
[~
5]
2
e
o
‘€ 1400
Q
E
=
=
S 1200
1000
800 — ke 1 L. —
2 4 [8 10 12 14 16

Number of Processes

Figure 4.10: Time for Throughput Experiment. PBP with Variable Window Size. Large Messages.

section 4.5.

The large window also has an effect on the all-to-all experiments. Figures -1.11 and 4.12
show the results for the all-to-all experiments. PBP1 was designed for a small window. It
would not run consistently for 16 processes for larger windows with large messages (figure
4.12). PBP2 (128) shows consistently good results. both for single sender throughput and
for the all-to-all exchange.

When using larger windows. we see an increase in message loss. Figure 1.13 shows
the raw data from one set of runs of the all-to-all benchmark using PBP2 with the three
window sizes. The master program produces a simple count of messages it sees as lost.
This is only the view of one process, but it provides an illustration of the effects of allowing
more messages to be sent before requiring acknowledgement. The typical network buffer in
the Linux kernel is set at 64K bytes. With a window of 48 messages we are allowing 52K

bytes to be sent by each process before waiting for an acknowledgement. It is possible the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 97

PBP {sm,). vanable window

9e+06 T T T T T T
8e+06 | T
7e+06 | PBP1 (16) —— . b
PBP1 (48) ---x-— .
pPBBPP‘ (128) -~ =-
L 2 (16) © .
6e+06 PBP2 (48) - -® -
PBP2 (128) - -0 - i
56406 |- o : K

4e+06

Tolal Time (imicroseconds)

Je+C6

2e+06

1e+06

Number of Processes

Figure 4.11: All-to-All. PBP with Variable Window Size. Small Messages.

increase in loss is due to the filling of various buffers. Another possibility may be network
congestion. Messages may be dropped due to the exponential back-off algorithm. This
illustrates that the number of lost messages for a window size of 16 is significantly smaller

than for larger windows.

4.5 Linux Kernel Differences

The kernel version plays a roll in the effectiveness of PBP. In figure 4.10 we pointed out
an unexplained. dramatic increase in time for the PBP2 benchmark with window size 48.
Figure 4.14 shows a wider range of window sizes for the same anomalous execution. [t
shows that the PBP protocol is probably interacting badly with some part of the 2.0.36
Linux kernel implementation. To see this is so. we ran the same set of benchmarks on the
2.2 kernel. These results are shown in figure 4.15. The curves are completely different. The

newer kernel version exhibits none of the peaks and valleys that appear for the mid-range

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 98

PBP (Ig). vanable window

1e+06 - . . x ‘
weemeoemorooess 2
900000 + PBP1 (16) —— |]
PBP1 (d48) ------
%BP'((128) ---e- - .
0000 BP2 (16) =] = .]
80 PBP2 (48) --® - -)
PBP2(128) - -o - '-'..
2 700000 |- e |
-]
8 600000 [
2
E
2 500000 -
£
= o
S 400000 -
300000 |
200000 |-
100000 l/_’- L L 1 1 1
2 3 a 5 s 5 .

Number of Processes

Figure 4.12: All-to-All. PBP with Variable Window Size. Large Messages.

window sizes on the earlier kernel. This difference convinced us that the strange curves in

the PBP2 results were not inherent to PBP. but are an artifact of the kernel itself.

4.6 Conclusions

We have presented timing results that show that PBP provides a performance improvement
over other ways to reliably send messages in a LAN environment. We did this by compar-
ing our timing results to the industry standard point-to-point protocol for reliable message
passing, TCP. We also compared our results to the published results for another reliable
broadcast protocol. The above comparisons serve to show that. for application that have a
flat network topology, PBP is an efficient way to make use of broadcast capabilities. Ad-
ditionally, we have compared two methods of implementing the basic PBP services. These
results show that the negative acknowledgement protocol performs better for the majority

of uses. It justifies our use of PBP2 as the communication layer for our implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 99

Raw messages iost tor All-to-All, vanable window size

350 T T T T T —
300 - Window 16
Window 48 —w—
Window 128 —e—
[’
4]
<
a
D
=
pu E
=]
-
0 f L ; L L
2 4 6 8 10 12 14 16

Number of Processes

Figure 4.13: Raw Number of Lost Messages for All-to-All. PBP2 with Variable Window Size.
Large Messages.

of BDSM. By using a reliable broadcast protocol for BDSM we can take advantage of the
increased throughput and should see benefits. especially for all-to-all forms of data sharing.

at the DSM level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 100

pbp2 large message all_to_aone

T T T T T T T

2300 F PBP2 (47) 4
PBP2 (48) ---x---
et o -
. (64) ©
2200 PBP2 (66) - -® - i
PBP2 (68) - -0 -
PBP2 (69) -
_. 2000 PBP2¢128) = B
3
c
=3
@ 1800} .)
g .. < I T
£ 885 8 - -
€ woo} © s .
£ b . .-
- P L4
s
o
[

1400) "‘. / 4
1200 " A / 1

-

800 L

N
&
@
®
-
3
-
~
-
'Y
3

Number of Processes

Figure 4.14: All-to-All. PBP2 with Variable Window Size. Large Messages.

pbp2 targe message alt_to_one

Y T T L T T T

2400 | PBP2 (47) 4
PBP2 (48) ---x---
e i 3
(64) o
2200 PBP2 (68) --® - :

PBP2 (69) - -o -
PBP2 (128) e

. 2000 | J
(2]
-3
<
8
2 1800 p
e
L
E
o 1600 E
E
= <
g o - B
£ 1400 -
L -
s e A e
1200 A - P E
1000 =7 4
800 L L. A, 1 L 1 1
2 4 6 8 10 12 14 16

Number of Processes

Figure 4.15: All-to-All. PBP2 with Variable Window Size. Large Messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

BDSM Implementation

In chapter 2. we presented both the design and theory behind the BDSM model and its user
interface. We then presented the communication laver. PBP. that we will use under the
BDSM system. in chapters 3 and 4. We now discuss the actual implementation of BDSM.
We then prove that the synchronization primitives are correct and ensure BDSMM coherence.
Finally. we show that the implementation provides the services specified in the theoretical

model.

5.1 Implementation Overview

Our system is designed for a common networking environment. We use a network of com-
modity workstations as a platform for the DSM system. Further. we require all of these
workstations to be on the same Ethernet segment. This allows us to use hardware broadcast
and to have a controlled message-passing environment. Each workstation will execute one

user process. In turn, each user process has an associated BDSM sub-system that manages

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 102

the shared memory. There is a complete copy of shared memory on each processor. The
user process can then access its copy of memory locally. with no waiting for reads or writes.
Writes to memory modify the local copy and arrange to broadcast the updated values to all
the other processes. We maintain the memory segment as a contiguous collection of discrete
locations. Reads and writes operate at this level of granularity. The size of a location is de-
fined by the programmer. The memory manager uses hardware broadcast to send updates
to all other processors. It may buffer these updates locally to reduce the number of messages
sent. Figure 5.1 shows the basic system layout. Using broadcast means that each update
in an n process system is one message. rather than n — 1 discrete point-to-point messages.

Chapter 3 discusses the details the layer that actually handles this communication.

Workstanon 1

: (Abstraction)

g
B

Figure 5.1: DS\ system design

User Process

Ethemet

The distributed shared memory system is built on PBP. This provides a communication
layer that both ensures delivery of all messages from non-failed processes and provides a
FIFO order for all messages from each process. Each memory manager handles incoming
messages from this system as they are delivered. Due to the knowledge that messages are

partially ordered, incoming updates are applied immediately to the local copy of memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 103

Similarly. barrier and lock messages (see below) are handled as they arrive. There is no
need to reorder events at the DSM protocol layer.

In order to use PBP and the underlying Ethernet most efficiently. individual updates
are buffered locally until there are enough to justify the sending of a message. Using a large
message made up of a number of updates further reduces the number of messages. The
number of messages that can be buffered depends on the size of the locations in a given
segment. BDSM will buffer as many updates as possible for a given segment. The number
of updates buffered is determined by our need to limit messages to less than 1500 bytes. the
maximum transmission unit of Ethernet. to prevent message fragmentation at the [P layer

and to include necessary control data.

5.1.1 Synchronization

Using message-based protocols at the PBP layer for synchronization allows us to avoid
some of the pitfalls of PRAM. Synchronization under PRAM. where the actual opera-
tions are performed as PRAM memory accesses. does not provide true mutual exclusion
(without a separate exclusion server[49]). For this reason PRAM. although straightforward
to implement, is usually considered too difficult to program to be useful. However. in a
message-passing environment there is no need to limit ourselves to using PRAM memory
accesses to implement synchronization operations. Barriers and locks are implemented by
message passing. the same way DSM writes are. Figure 5.2 shows the basic pseudo-code
for the barrier implementation. In order to pass a barrier. a process must receive a barrier
message from each other process and call dsm_barrier itself. All messages appear in FIFO

order so for each barrier message received all previous writes by the sending process must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 104

have been received. No process gets updates written before the barrier once it has crossed
the barrier. Similarly. once a process reaches the barrier it waits until all other processes
have sent it barrier messages. Therefore. even if one process gets past the barrier much
earlier than the others. any writes it issues after the barrier will not be seen by any other
process until it, too, has passed the barrier. No writes issued after the barrier can be seen by
any process before the barrier. It is necessary to use sequence numbers on barrier messages
(an alternating bit suffices) to ensure that messages are associated with the corresponding

barrier. Figure 2.4 shows the barriers in use.

User calls barrier: Dsm thread receives barrier message:
dsm_barrier(bar_num) { handle_barrier_msg(bar_nuz, sender) {
if(ibarrier_started(bar_num)) if (!'barrier_started(bar_nuz})
start_barrier(bar_num); start_barrier(bar_num);
barrier_arrival(bar_num, my_procnum); barrier_arrival(bar_num, sender);
flush_all_write_buffers(); if(barrier_num_marked(bar_num)==numprocs)
broadcast_barrier_message(); cond_signal(bar_nuzm);
if(barrier_num_marked (bar_num)==pnumprocs) }
return;
else

cond_wvait(bar_num)};

Utility functions:

start_barrier(bar_num){ barrier_started(bar_num) = true; arrivals(bar_num) = 0;}
barrier_started(bar_num){ return(barrier_started(bar_num)); }

barrier_arrival (bar_num, process_id){ arrivals(bar_num) = arrivals(bar_num) U process_id;}
barrier_num_marked (bar_num){ return(iarrivals(bar_num)|):}

Figure 5.2: Pseudo-code for barrier implementation

Locks are implemented as defined by Ricart and Agrawala[74]. There are two minor
changes. The first is that all messages are broadcast. This means that a lock request is
sent once to all processes. This reduces the number of messages per critical section from
2(n—1) to n. The second change is simply to require the BDSM buffers to be flushed before

sending any lock protocol message. This is done exactly as with the barriers. Since there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 105

1s no point-to-point message-passing. all pending writes by all other processes will be seen
by the acquiring process before it is granted the lock.

We present an outline of the lock protocol. A process. say p,. issues a lock request when
it tries to acquire a lock. This message is sent to all other processes. Then p, blocks until
it acquires the lock. Acquiring the lock means receiving a “go ahead™ message from each
other process. When a process. p,. reccives a request message. it is either in contention for
the same lock or not. If p; is in contention for the lock it decides. deterministically. based
on the request sequence number and process id. if it should get the lock first. It then either
replies to p; or defers a reply until it releases the lock. If p, is not in contention for the lock
it replies immediately. In any case. before a process sends a lock protocol message. request

or reply. it flushes all of its segment buffers.

Po Pl P‘.’
dsm_lock_acquire(0): dsm_lock_acquire(0) while (read(z) != 1)
z:=1: read(z) = 1: skip:
dsm _lock_release(0): z:=3: while (read(z) != 3)
' skip:
dsm_lock_release(0): p

Figure 5.3: Example using locks

In figure 5.3 we assume pg acquires the lock first. This is not guaranteed. but serves for
this explanation. What this means is that pg sent a request message to p; and p>. Process
p: also sent a request to pg and p;. Since ps is not in contention for the lock. it simply
replies to any requests. So both pg and p; get a reply from p». The lock protocol arbitrates
among contending processes in a deterministic way and we are assuming it chooses py first.

So pg defers its reply to p;’s request knowing it should get the lock first. On the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 106

hand. p; replies to pg, granting po the lock. Since no writes have been issued no updates are
flushed by these messages. When pg releases the lock. because it deferred a reply. it sends
one now to p;. This flushes the write to z. Process p, now can acquire the lock. having
seen all previous writes. Note that p» considers both acquires to have happened when it
received the request messages. There is no guarantee it will escape either while loop. The
write by po could be overwritten by the write by p, before p> reads the 1. If p» needs to be

sure to see the values written it needs to perform some synchronization itself.

5.1.2 Implementation Details

The BDSM system is a user-level C library which uses the Linuxthreads[61] implementation
of Pthreads(12]. The library maintains a collection of DSM locations for user-level code.
These locations can be of arbitrary size. up to 1276 bytes (the maximum payload of a single
PBP Ethernet packet). All locations in a given DSM segment are the same size. The
locations in any given segment can be read and written by location number. We also allow
reads to be made directly from shared locations through pointers. This allows comparisons
with and assignment from shared data to be transparent. However. writes are made by
explicit library function calls. This is necessary to allow the write updates to be handled by
the system. In this way. a segment may be treated like an array of locations. For example. “x
= dsm_segment [i]” would assign the value of shared location 7 to local. unshared variable
T assuming dsm_segment was set to the address of the base of the dsm segment. Writes
must use the dsm_write library routine because we are not using a page-based system.
So “dsm_write(dsm_id, i, &x)* would write the value in z into the ith location of the

segment dsm._id. If the user makes assignments directly to the shared memory addresses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 107

the values will not be propagated.

User Process

N \
User Shared
Theeaa Memary User Code
OSM DSM OSM Lorary
Funcbons Threag

=
o= o)

Ethemer

Figure 5.4: System structure

Figure 5.4 shows the structure of the complete DSM syvstem as currently implemented.
All of the threads run in the same user address space. The DSM layer consists of a single
thread and a number of interface routines. The DSM thread handles incoming DSM mes-
sages by blocking on a PBP receive call. The DSM interface functions include dsm write.
dsm_read. the various synchronization operations. and the segment creation operations.
The user thread communicates with the DSM interface routines and the shared memory
segment.

As mentioned above. the buffering of writes is done on a per segment basis. This is
primarily an implementation decision. There are two main reasons for this. The first is
that, since different segments can have locations of different sizes, using a single buffer
would require extra bookkeeping overhead. Secondly, it would mean associating a segment
identification number with each updated value rather than with each update message. Using

one buffer per segment we calculate the number of writes each buffer can hold at segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 108

creation time and can keep a simple count to determine when the buffer is full. When a
synchronization operation is called. the buffer for each active segment descriptor is emptied

In turn.

5.2 Proof of Implementation

In this section we prove that the implemented BDSM system provides an accurate realiza-
tion of the BDSM model. To show the implementation is correct we will show it preserves
the axioms that define BDSM. Further. we will show that the synchronization operations
are correct. This means proving safety and liveness. [t also means proving that the syvn-
chronization is properly ordered with respect to other operations. We then use these proofs
to show ithat our implementation preserves the requirements of BDSM.

We make a distinction between the receipt a message and its delivery. Messages are
received from the network by PBP. Messages are then delivered to the BDSM layver. in
order. by way of a receive queue. A given message is not available to the BDSM system
until it has been delivered to this queue.

The functionality of BDSM is based primarily on the FIFO nature of the underlying
PBP layer. In chapter 3. we prove two properties about the PBP system that we rely on

here. We restate them here:

PBP Property 1 (P1) : Each message sent by any process i is delivered once and only

once at all processes j # ¢ (definition 3.2).

PBP Property 2 (P2) : Messages are delivered in the order sent. For any two distinct

messages m and n, sent by p; with sequence numbers h and k. if m is sent before n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 109

then m is delivered before n at all j (definition 3.3).

P1 ensures the delivery of each message. Each message sent will be delivered to all other
running processes. unless the sender fails. Property P2 ensures that each message sent by
a given process is received and passed to the application (the BDSM system in this case)
in the order it was sent by the corresponding application on the sending processor. These
two properties together create essentially a set of FIFO reliable pipes among the BDSM

processes.

5.2.1 Barrier Correctness

To prove the correctness of the synchronization operations we make the assumption that the
program using them is correctly written. This means several things. First. the semantics of
the synchronization operation are obeyved. This means that. for each barrier. all processes
issue calls to the barrier routine. And, similarly. for locks. no process tries to acquire a lock
which it is already holding and locks are nested but not overlapping. The second part of this
assumption is that. for barriers. no calls to the same barrier identifier are adjacent in the
program. Any two barriers that occur in a row have different identifiers. This assumption
is natural. Programmers who don’t follow the conventions of the API cannot expect correct

results.

Theorem 5.1 BDSM barriers are correct synchronization operations for correctly written

programs.

The proof consists of two elements, liveness and safety. Liveness means the program

will not deadlock, with processes failing to cross a barrier. Safety is a term used to describe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 110

the proper functioning of a barrier. Each process reaching a barrier must block until all
processes have reached the same barrier.

Liveness can be shown by P1l. Since we are only concerned with programs that use
barriers correctly. any process that arrives at a barrier will. eventually. cross the barrier.
Consider a program counsisting of n processes. Each process. upon making its call to the
barrier routine. will send a barrier message. And. since the program is correctly written. all
process will make such a call and each will use the right barrier id. These barrier messages
are guaranteed to arrive due to P1. Once a process receives n — 1 other barrier messages it
crosses the barrier and can continue execution.

Safety is ensured. No process can cross a barrier before all other processes have reached
that barrier. Assume that process p;. in an n process program. does cross some barrier b
before all other processes have reached it. This means that either p, has received n — 1
barrier messages for b, one from each p,.j # 7 or it has crossed the barrier having received
less than n — 1 other messages. In the first case, since P1 ensures “only once™ delivery.
some process must have sent a barrier message for b without reaching 6. This would be a
violation of the protocol. Since the user program is correct. it is not possible for this to be
an old message for a different instance of barrier & because there must have been a barrier
b’ since the last use of b. In order for &’ to have been crossed. thus allowing b to be used
again, all of the previous messages for b must have been consumed. For the second case.
process p; must have violated the protocol to cross a barrier with less then n — 1 barrier
messages. This would require a Byzantine failure mode we are not concerned with. Since
it is impossible for any p; to cross b without all the other processes arriving at b, safety is

assured.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 111

Theorem 5.2 BDSAM barriers correctly preserve the BDSAM order requirernents with respect

to updates.

All writes made by process p; before reaching a barrier are sent before the barrier
message is sent. Since each other process must get the barrier message before proceeding.
all of these earlier writes must be received as well. due to P1. This means all other processes
must get all of the writes issued by p; before getting the barrier message from p,. And since
each process behaves this way all writes before the barrier are scen by all processes before
the barrier is crossed.

Conversely. because a process blocks until a barrier is crossed. any writes that are sent
by a process after the barrier will not be seen until this process has also crossed the barrier.
Consider p, and p;. If p, sees an update before barrier & issued by p, after b then p, must
have crossed b. In order for that to have occurred. p, must have received a barrier message
for b from p,. However. since p, has not reached b vet (it is reading values before b). such
a message has not been sent. Therefore. p, cannot have crossed the barrier and p, cannot

have received an update from p; written after p; crossed b.

5.2.2 Lock Correctness

Theorem 5.3 BDSM locks are correct synchronization operations for correctly written pro-

grams.

Ricart and Agrawala proved both liveness and safety for the distributed mutual exclusion
algorithm they designed[74]. Our locks differ only in that they use broadcast rather than

point-to-point messages and that there is buffer flushing done when messages are sent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 112

Neither change effects the validity of the original proofs. Using broadcast messages simply
means some processes get messages they don’t need. These are ignored. Sending update
messages due to buffer flushing has no bearing on the mutual exclusion protocol. Therefore.
we conclude that our lock implementation satisfies the safety and liveness requirements as

well.

Theorem 5.4 BDSAM locks correctly preserve the BDSM order requirements with respect

to updates.

Proving the ordering requirements are met is more complicated. Locks are essentially
global communication similar to barrier. except each process does not block. To see how
this is so. consider that each process must receive a request and reply to it. The receipt
of this message and the reply mark the time in the receiving process’ view that the lock
was acquired. And. since we are using broadcast. all processes in the system will receive a
reply message. Processes that are not in contention for the lock will not wait for the reply.
However. the updates that are flushed by the reply will still be applied at all processes.

Step one is to show that all previous writes are seen before a lock is acquired. Since
a process is required to flush its buffers before sending a lock message all previous writes
will be sent first. Property P2 provides for the order of these sends to be preserved at all
receivers. Because the acquiring process must receive a message from each other process it
must receive all earlier writes from each other process as well. Therefore. in order to acquire
a lock all previous writes must be seen.

The second step is to show that no writes after a lock is acquired by one process are

seen by another before the lock is seen to be acquired. As mentioned above, the notion of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 113

a non-contending processes seeing another process acquire a lock is when it replies to that
acquire request. Once a process issues a request for a lock it blocks. It may not execute
any reads or writes until it acquires the lock. To acquire the lock it must receive a reply
from all other processes. Thercfore. all other processes must have replied to the request

(and seen the acquire) before the requesting process can issue any writes.

5.2.3 BDSM Implementation Correctness

We now prove that the implementation of BDSM using PBP is a correct representation
of the BDSM model. This is done by showing that all of the ordering requirements for
the model a preserved in the implementation. Using theorems 5.2 and 5.1 and the PBP

properties P1 and P2 we show that the ordering requirements are met.
Theorem 5.5 The itmplementation of BDSM correctly realizes the BDSA model.

To prove this we will show that each axiom from section 2.2.2.3 is preserved by the
implementation.
1. Axiom 2.1: Locally. all events are in program order.
This is preserved because processes execute in program order and writes arc applied
immediately to the local copy of memory.
2. Axiom 2.2: Write leads to updates, and a write comes before its updates.

When a process issues a write this information will be sent as an update. either when a
buffer is full. when a synchronization operation requires it. or immediately if buffering
is disabled. Additionally, since the write triggers the updates. the write must come

before the updates, from a global perspective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 114

3. Axiom 2.3: Updates for writes to the same segment by the same process are seen in

the order written.

Writes to the locations of cach segment are buffered in the order issued. These buffered
writes are then sent as updates. On receipt of an update message. a process will apply
these individual writes in the order they appear in the update message. which is the

order buffered. PBP property P2 ensures that these updates arrive in the order sent.

4. Axiom 2.4: Barriers are in all processes.

This is semantically required. If it doesn’t hold. the program (not the implementation)
is incorrect. A process must receive a corresponding barrier message from each other
process. Failure to do so indefinitely blocks the process.

5. Axiom 2.5: Barriers are totally ordered. and all processes see the same order.

On arrival at a barrier. a process sends a barrier message to all other processes. It
then waits for a similar message from each other process. A process performs no local
actions until the barrier is crossed. Therefore only one barrier may be active at a
time. Each process must cross that barrier before arriving at another. Theorem 5.1

shows that the implementation correctly preserves barrier semantics.

6. Axiom 2.6: Updates for writes before a barrier are seen by all processes before the

barrier.

This follows from theorem 5.2.

7. Axiom 2.7: Updates after barrier seen after.

This follows from theorem 5.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 115

8. Axiom 2.8: Lock acquires are seen by all other processes.

In order to acquire a lock. p, must receive permission from each other process. in the
form of a lock message. The sending of a permission message in reply to a lock_request
corresponds to the acquire event in the permission granting process. From the lock
definition there must be such an event in each process or the lock cannot be acquired.
9. Axiom 2.9: There must be a release for each lock acquired.
This is semantically required. A program that fails this is incorrect and deadlock
prone.
10. Axiom 2.10: Lock acquires are ordered. and a lock-holder’s release comes before the

nezt acquire.

This holds due to the implementation of locks. theorem 5.3.

11. Axiom 2.10: Earlier updates by other processes must be seen before acquiring a lock.

This holds due to the implementation of locks. theorem 5.4.

Since the axioms that define BDSM are all preserved by our implementation. the imple-
mentation correctly provides BDSM coherence. We have shown that the implementation
of BDSM. using FIFO broadcast provided by PBP. is a correct realization of the BDSM

coherence model.

5.3 Conclusions

We use the PBP communication system presented in chapter 3 as the basis for an imple-

mentation of a BDSM system. In this chapter we discussed the implementation of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 116

system. Further. we have shown that our system. as implemented. provides an accurate
realization of the BDSM model. In the next chapter. we provide a suite of test applications

using BDSM and explore their performance on BDSM and MPIL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

DSM Experimental Results

In preceding chapters we presented the theoretical model and implementation details of the
weak. broadcast DSM system. BDSM. In this chapter. we look at some of the performance
results we have obtained using this system. We have developed a suite of test programs on
BDSM. We discuss these programs and their communication patterns and compare them
to a message passing alternative on the same hardware setup.

To date, we have focused primarily on parallel. numerical calculations where pure per-
formance gains are desired. We have developed a small test suite of programs. loosely based
on the SPLASH-2[80] suite. Since our primary concern is the operation of the DSM system
and not the overall performance of our test programs. we have used straightforward. often
naive, parallel algorithms. We present comparisons between our system and a message-
passing system. We have chosen to use MPI[39] because it is commonly used for parallel
programs on networks of workstations. We compare our execution times to those of similar
programs using the mpich (v1.1.1)[45] implementation of MPI on the same network. We
also explore some of the ways in which using PBP effects the execution of programs on

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 118

our system. One of the main benefits BDSM has over MPI is that BDSM uses broadcast
communication for its collective communication operations. which essentially they all are.
MPICH uses tree algorithms on top of TCP to perform collective communication opera-
tions. Recent work by Chen. Carrasco and Apon [31] attempts to implement these MPI

operations using [P Multicast.

6.1 Experimental Setup

Experiments are performed on a single Ethernet subnet. The lab we use is a public access
teaching lab. We do not have exclusive access to the systems. Therefore. the programs
have been run in a non-controlled environment. Some of the uncontrollable factors include
users logging in. NFS activity. cron jobs. and system daemons. Because of these potential
outside influences we have made every effort to run our tests late at night and very early
in the morning. The lab consists of up to 20 Pentium 120MHz systems. These systems
run identical installations of Linux. using the 2.0.36 kernel. There is a shared NFS system
where binaries and initialization data reside. Results are stored locally to avoid using NFS
during the actual computations.

We replicated our speedup experiments until a reasonably narrow 95% confidence in-
terval was obtained. In presenting our speedup results. we simply plot the mean of the
replicated experiments. The 95% confidence interval is consistently no more than 2% of the
plotted value.

Since the performance of PBP2 was shown., in chapter 4. to be better than PBP1 in most

cases, PBP2 was used for the BDSM experiments. Additionally. PBP2 should be less CPU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 119

intensive since it removes the interval timer thread and can increase its timeout when the
communication channel is idle. The results were obtained using a window size of 16. This
is the default for both versions of PBP. We also performed the experiments using windows
of 16. 48 and 128 messages. as with the throughput experiments in chapter 4. The results
for all of these are shown in section 6.3. While it is clear from the throughput experiments
in chapter 4 that windows size can effect performance. this effect appears to be minimal for

the larger programs at the BDSM level.

6.2 Test suite programs

To explore the performance of the BDSM svstem we developed a suite of five common

parallel programs. Our suite consists of:
e matmult: matrix multiplication
e nbody: N-body particle simulation
e jacobi: Jacobi linear equation solver
e cg: conjugate gradient
e tsp: traveling salesman problem

We chose not to use the common benchmarks of the SPLASH2 [80] suite because these
programs are designed for completely transparent memory systems. While it would be
possible to port these programs to our system. the programs would be different enough that
the results would not be comparable to other DSM systems. They would not serve as a

true benchmark.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 120

We use a single process version of each program as the basis of our speedup measure-
ments. We also developed MPI versions of each algorithm. We attempted to make the DSM
and MPI programs as similar as possible to ensure there were few algorithmic differences.
When possible we make sure that data are initialized with the same values and that the
actual computations are identical. To some extent. differences are unavoidable because the
sharing patterns of DSM and message-passing algorithms are generally different. For exam-
ple, we did not force the MPI code to use collective communication operations at all timnes.
which the BDSM system. effectively. does. Our goal is to show that the BDSM system’s
performance is comparable to message passing on the same hardware. not that it is better.

The MPICH implementation’s ch_p4 device is used on a network of workstations. The
underlying communication is done using TCP. Collective communication operations are
made up of individual point-to-point messages. The algorithm used depends on the opera-
tion. For example, an MPI broadcast uses a binary tree algorithm and an MPI all-gather
uses a rotation algorithm. Barriers are done using a ring and a token. The token passes to
each node twice. the first to signify arrival at the barrier and the second time. departure.
Our BDSM barriers consist of a single round of messages. Additionally. BDSM uses actual
broadcast for all message traffic, so we expect it to perform better for algorithms that use

primarily collective communication operations.

6.3 Results

The first program in the test suite is a square (m x m) matrix multiplication program

(matmult). The code uses statically initialized operands. We are using a naive row par-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 121

titioning algorithm for simplicity. Each process is responsible for m/n rows of the result
matrix. After completion. a designated process reports the result matrix. The MPI pro-
gram is similar, with a designated master process collecting each other process’ result rows
and reporting the result. The master is also a worker so the number of compute elements
is the same for both MPI and BDSM versions. The communication pattern is. effectively.
a single round of all-to-one message passing in both cases. For verification. each version
of matmult can compute the result matrix at the master process and compare the results

reported by the group computation.

DSM vs. MPI: matmult. 1280 matnces

o
\lL
®

1 2 3 4 5
Number of Processes

Figure 6.1: Speedups for matmult

Figure 6.1 shows the comparative speedup of the two programs for dense 1280 x 1280
integer matrices. Both programs exhibit similar speedups. MPI performs slightly better
than BDSM, primarily due to the fact that our DSM always uses all-to-all communication.
Processes that don’t need the results still must handle all of the messages. The all-to-one

communication pattern is essentially the opposite of broadcast. In a sense. it represents a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 122

worst case communication pattern for our DSM system.

The second program is an N-body particle simulation (nbody). We calculate the forces
and new positions of p particles in 3-space. Initial positions and masses are generated. and
a single large particle is placed centrally in the space. We us a simple O(p?) algorithin
where each of n processes is responsible for calculating the forces on its p/n particles by all
p particles. In each calculation phase the new positions are computed and data is exchanged
among all process. N-body exhibits an all-to-all communication pattern with a significant
amount of computation between each communication round. The original algorithm is from
a Fortran MPI implementation by David Walker{93]. We modified one copy to use BDSM
and the other so the communication patterns are more similar. Initially. the MPI version
used a circular loop of processes and n/2 communications per time-step. Our versions. both
BDSM and MPI. use n rounds per time-step where each process computes the forces on its

particles by each other process’ particles.

DSM vs. MPI: nbody. 2048 particles. 30 imesteps

8 T T T T T T
7F DSM —— E
MPI - -om- -
r 3
a ST - h
= -
© e
3
<
[~N I
@, . b
—’x‘..
3+ T .
2t et :
of o
1 L 1 1 i L 3
1 2 3 4 S 6 7 8

Number of Processes

Figure 6.2: Speedups for nbody

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 123

The results shown in figure 6.2 are for 30 time steps of 2048 particles. Here. the benefits
of all-to-all communication using broadcast favor BDSM over MPI. Both programs exhibit
nearly linear speedup. The program will transmit a large amount of data per time-step.
However. it uses relatively few time-step iterations. In the MPI version. each process
swaps its particles around a ring with its neighbors. It then computes the forces of the
newly received particles on its local particles. This takes place in a series of one-to-one
communications. while the BDSM version performs a larger all-to-all exchange once per
time-step. The amount of data that needs to be moved is the same. The same pseudo-
random number seed it used to generate the random particles for each execution of each

version so the computations are the same.

DSM vs. MPI- Jacobr. 1023 vector

Speedup

Number of Processes

Figure 6.3: Speedups for jacobi

The third program is a Jacobi linear equation solver (jacobi). It uses an iterative
approach to solve for z in the system Az = b. Input data for b is generated randomly by

a designated process. Matrix A is a fixed 5-diagonal m X m matrix. We use a seed that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 124

generates a data set that converges in approximately 14000 iterations. The BDSM program
was developed locally. based on pseudo-code in a causal memory paper by Ahamad. Hutto
and John[5]. The MPI version was based on the one in the Pacheco’s book [69]. modified
to make it work the same way as the BDSM version. The communication pattern is a
series of all-to-all data exchanges as each process computes m/n vector elements during
each iteration using the entire vector from the previous iteration. Figure 6.3 shows the
resulting speedup for a 1024 element solution vector. This program consists of a relatively
small amount of computation for each iteration so the efficiency of the BDSM collective

communication operations is seen.

DSM vs. MPI: CG. 1024 vector

6 T T T T T T

Speadup
»

w
T

L 2 L
1 2 3 4 5 6 7 8
Number of Processes

Figure 6.4: Speedups for cg

The conjugate gradient program (cg) is similar in structure to jacobi except there are
three all-to-all exchanges for each iteration. We use the same initialization technique as in
jacobi. Executions are based on 10000 iterations. Both the DSM and MPI programs were

derived from the respective jacobi versions. The DSM version uses a number of different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 125

segments for problem and temporary data. This contrasts with jacobi, which uses two.
one for A and one for both z and 6. This is the most network-intensive of the programs in
our suite, and it is used to explore the message loss patterns. Figure 6.4 shows the speedup
results for a 1024 element vector. MPI performs nearly as well as BDSM until the benefits of
broadcast all-to-all communication dominate. Both cg and jacobi scale poorly. The sheer
number and cost of all-to-all communications. even with BDSM using hardware broadcast.

outweigh the benefits of more computational power for this problem size.

DSM vs MPIU tsp 15 cities. depth 4

Number of Processes

Figure 6.5: Speedups for tsp

The final program in the suite is a simple traveling salesman problem solver (tsp). The
program uses a master/slave structure where a designated master process creates initial,
four-city-deep paths and distributes them to the other n — 1 processes. The master gives a
job to each process in strict rotation, so the work is not necessarily evenly balanced if some

paths can be dropped sooner than others. In order to keep the MPI version from having an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 126

effective barrier, in the form of an MPI_Allreduce. we only track the shortest current path at
each slave. This means the slaves do more work than is needed. This can be an advantage
of the shared memory model. It would not require more communication to allow the DSM
slaves to see each other’s current minimum. The distance matrix for tsp is generated
randomly. Figure 6.5 shows the speedups for a 15-city tour. The results are poor for both
MPI and BDSM. This is mainly due to the inefficiency of the algorithm we are using. The
single process version will not perform extra work since it keeps a global minimmum path
and can drop infeasible paths sooner. Also. as expected with the master/slave structure.
using only one slave is actually slower than the single-process version. The communication
pattern for tsp is basically one-to-one as the master passes each slave a task to work on
in turn. It would be possible for the BDSM version to take advantage of global knowledge
and improve its performance. This is another example of a program for which broadcast
communication is not necessarily ideal. The code for tsp was derived locally. based on
examples seen in course work.

Figure 6.6 shows a comparison of the number of messages sent and the amount of
data transfered by each application for different system sizes. The number of messages
shown includes only sequenced messages. both data updates and synchronization messages.
It doesn’t count retransmissions and non-piggybacked acknowledgments sent by the PBP
layer. Similarly, the total bytes sent counts the number of bytes in the same subset of
messages. We can see that the iterative programs. c¢g and jacobi. transmit large numbers
of messages as each iteration involves at least one all-to-all communication. The matmult
program, due to the size of the data set, requires a large number of messages for its single

communication round. Additionally, these messages are being received and handled by all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 127

processes. even though only the first process cares about the results. The nbody program.
since it only runs 30 time steps. has a smaller number of messages than the other two
repetitive programs. However. the amount of data moved per iteration is much greater.
Each particle is represented by seven double variables. Running for 10.000 time-steps
would transfer on the order of 1.5 GB. The simple tsp program creates few messages.

resulting in a small amount of data transmission.

Procs | Messages Bytes

CG 2 153308 63527492
4 253320 75148816

8 493348 | 104091936

Jacobi 2 133303 61038732
4 213319 70180528

8 413355 91161608

Matmult 2 10249 14296012
4 10257 14296868

8 10273 14298580

N-Body 2 5862 4482104
4 5988 4497368

8 6360 4541816

TSP 2 88 57920
4 104 60248

8 134 64672

Figure 6.6: Message passing for DSM programs

6.4 Effects of Window Size

In chapter 4 we've seen marked differences in the performance of PBP2 for different. specif-
ically larger, windows. The previous results all use the same 16 message window. In this
section we show a comparison for a few test programs of 48 and 128 message windows as

well. Our results show that for some experiments the larger window make little difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 128

For others. larger windows can actually be detrimental.

PBP2. Jacob: 1023 vector. vanable windows
6 T T T T T T

5 DSM(PBP2: 16) —— 4
DSM (PBP2: 48) —w—
OSM (PBP2:128) —=—

1 L) N 2 L
1 2 3 '3 S 6
Number of Processes

~t
@

Figure 6.7: Window Size and Speedup for jacobi

Figure 6.7 shows that the difference in window size has little effect on jacobi. The
results are the same for cg . The different window sizes produce almost identical speedups.
At each iteration, each process sends less than 16 messages so a larger window should have
no effect. The results are different for the programs that have more data movement and
less synchronization. Figure 6.8 shows comparison for matmult. In this program. all of the
processes are sending large amounts of data at roughly the same time. They are sending
more than 16 messages. so the larger windows are allowing more messages to be sent at
once. This increases the contention on the network. Increasing the number of messages also
increases the contention for buffer space on both sender and receiver. This may. in turn.

increase the message loss rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 129

PBP2. Matmult 1280x1280. vanable windows
6 T T T T 1 ¥

S DSM(PBP2:16) ——
OSM (PBP2: 48) -—w—
DSM (PBP2:128) —=—

Speedup

1 2 : L — 1 L
1 2 3 B 5 6 7 8
Number of Processes

Figure 6.8: Window Size and Speedup for matmult

6.5 Message Loss Behavior

In this section. we explore the behavior of the underlying PBP layer and the Ethernet itself
when used for the DSM computations in our test suite. Our focus will be on jacobi and
cg. The other threc programs exhibited no appreciable message loss due to their relatively
light communication needs. The data we present here is meant to illustrate the message loss
rates a.nci provide us with insight into why messages might be lost. However. the very act of
collecting accurate message loss data perturbs the network and the computation. It creates
its own extra-computational messages. It also increases the computation times. This may
serve to reduce the number of messages lost. by slowing the program. thereby reducing
network contention. It may. however, increase the number of lost messages by adding to
the network load due to the message passing required for retransmission. Since the timing

numbers are not precise due to this perturbation. we only repeated the experiments a small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 130

number of times. This leads to a large variance. The results in this section should be seen

as illustrative rather than definitive.

PBP1
Procs Sent | Lost (95% conf interval) Rate
Jacobi 4 213319 15.50 % 16.91 | 0.00727%
8 413355 55.50 £ 21.37 | 0.01343%
CG 4 253320 25.50 + 26.39 | 0.01007%
8 493348 133.250 = 26.13 | 0.02701%

PBP2
Procs Sent | Lost (95% conf interval) Rate
Jacobi 4 213319 16.00 = 14.90 | 0.00750%
8 413355 51.66 %= 27.70 | 0.01250%
CG 4 253320 27.33 £ 18.65 | 0.01079%
8 493348 127.00 £ 26.29 | 0.02574%

Figure 6.9: Message loss for cg and jacobi

We begin with the actual message loss rate. Figure 6.9 shows the rate of message loss.
for cg and jacobi running with 4 and 8 processes for both PBP1 and PBP2. The two-
process versions of these programs lost. on average. less than one message per run and
are. therefore. not very interesting. In the worst case. cg with eight processes. 99.97%
of all messages were successfully delivered without retransmission. As more processes are
added we see a rise in message loss. This is most likely due to the fact that with more
processes there is more competition for receive buffer space and more contention on the
network. A two-fold increase in the number of processes. while creating a proportional
increase in message traffic, causes a 400% rise in lost messages for cg and a 250% rise for
jacobi. One of the potential causes may be the interference of other processes on the
system. As mentioned earlier. we do not have access to a completely isolated network.

With more BDSM processes it is more likely that there is competing activity on one of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 131

workstations. The large confidence interval for these loss numbers. see figure 6.10. may be
partly due to interference from computing activity outside of our experiments. However. it

is most likely due to the low number of repetitions.

PBP1
Procs Total Lost | Lost By 1 Receiver | Lost at Sender
Jacobi 4 15.50 £ 16.91 1.75 £ 1.52 13.75 = 17.83
8 55.50 = 21.37 14.25 &£ 5.72 41.25 £ 19.91
CG 4 25.50 £ 26.39 5.75 £ 2.39 19.75 = 25.54
8 133.25 £ 26.13 31.75 = 4.38 | 101.50 £ 24.12

PBP2
Procs Total Lost | Lost By 1 Receiver | Lost at Sender
Jacobi 4 16.00 = 2.48 1.33 £ 3.79 14.00 = 2.48
8 51.67 £ 27.70 8.67 = 8.72 42.33 £ 25.80
CG 1 27.33 £ 18.65 1.33 = 1.43 22,00 = 17.39
8 127.00 %= 26.29 18.67 £ 13.68 | 107.00 = 31.03

Figure 6.10: Message loss by type (957 confidence intervals shown)

Message loss on a single Etllcrﬂet segment can come from three sources. The first is
buffer overflow on the sending processor’s network interface or too much network contention.
There is no mechanism to ensure adequate buffer space for the outgoing socket using UDP.
When a message is sent by a user process and the buffer is full. the message is not physically
transmitted. With high contention. the exponential back-off algorithm used by the Ethernet
controller may exceed its limits. In this case. the message is simply discarded. Secondly. a
receiving process’ input buffer may be full. This will cause the message to be dropped at the
receiver. Other processes may still receive the broadcast message as their buffers may be in
different states. Finally. packets may be corrupted in transit, causing a checksum failure.
This forces UDP to discard a received packet with no action taken. On a stable network.

however, such corruption is very rare. In our experiments we see message loss in two forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 132

all or one. When the same message is reported as lost by all non-sending processes. this
indicates that either the message was dropped at the sender or the packet was corrupted
in transit. When a message is reported lost by only one process. this means the reporting
process’s receive buffer was full and the message was dropped. In addition. PBP2 showed.
in a few isolated cases. messages that were reported missing by all but 2 receiving processes.
Figure 6.10 shows the breakdown of each type of message loss. We see that roughly three

times as many messages are lost due to sender buffer overflow or corruption.

Procs | Lost | Time (sec.)

4 12 752.88
16 762.36
25 762.60
49 779.31

8 115 658.87
126 - 640.09
139 667.09
153 657.50

Figure 6.11: Sample execution times for cg

Since messages are inevitably going to be lost, we are interested in the cost associated
with detecting and re-sending lost messages. We can informally discuss the effects of loss
on the cg program by comparing the number of lost messages to the execution time. Figure
6.11 shows lost message counts and execution times from several executions of cg with four
and eight processes. While it is possible to see a correlation between the number of lost
messages and execution time for four processes. this correlation is probably coincidental.
At eight processes, we see that there are clearly other factors involved. A higher number of
messages lost does not automatically lead to worse performance. The type of message lost

may be significant. A lost barrier message will likely delay all processes more than a lost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 133

data message. Every process depends on the arrival of the barrier message for continued
execution. This is not the case with a single data message. Although. due to FIFO delivery.

any messages from the same sender are held up until the lost message is received.

6.5.1 Window Size and Message Loss

jacobi | Procs Window 16 Window 48 Window 128
4 16.000000 £ 2.4841 20.666666 = 16.9092 14.333333 = 15.1783
8 51.666668 + 27.6993 61.333332 £ 20.2321 66.333336 = 16.1628
CG Procs Window 16 Window 48 Window 125
4 27.333334 X+ 18.6448 29.666666 = 10.0395 28.333334 £ 16.9092
8 127.000000 £ 26.2896 | 114.666664 = 49.3296 | 111.333336 = 19.9218

Figure 6.12: PBP2 messages loss versus window size

PBP2 uses variable size windows. The increase in window size allows a process to send
more messages at once without requiring any acknowledgments. In some of the bench-
marking experiments in chapter 4. increasing the window size increased the number of lost
messages due to filling buffers faster and increasing network contention. Figure 6.12 shows
PBP2 message loss as a function of window size. While there is some difference among
the three window sizes. most noticeably the steady increase in jacobi with 8 processes.
all of these loss counts fall within each other’s confidence intervals. We feel that there is
little difference in the loss rate for different window sizes for user applications on PBP.
This correlates to the behavior seen using different window sizes in completion time. The

differences can be seen on high-demand benchmarks at the PBP level. see chapter 4. but

are not visible in user-level applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 134

6.6 Conclusions

This chapter presented the experimental results for our BDSM implementation. We dis-
cussed the programs in our test suite and the experimental setup and methods used. We
used these results to show that the test programs” perform as well as similar programs using
MPI. These results illustrate the potential usefulness of BDSM as an alternative parallel
programming environment for cluster computing on a broadcast capable network. We found
that for repetitive programs that had an all-to-all communication pattern BDSM performs
well. The cost of collective communication can be reduced by using hardware broadcast
operations. We discussed the behavior of these test programs in relation to the underlying
network and PBP communication layer.

Comparing the BDSM results to those of the MPI programs we see that collective com-
munication operations that using broadcast can improve performance. In general. compu-
tations that are primarily iterative and require shared data among all processes can exploit
this improvement. In our test suite this computational model is represented primarily by
the cg and jacobi equation solvers and the nbody simulation. The matmult program shares
very little data among all processes since the operands are static. It requires one process to
have access to all the results. but there is no interaction among the other compute nodes.
Additionally. is a one pass program. There is no repetition. This is shown by BDSM's poor

showing next to MPI for this communication pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Extensions For BDSM

We have presented a new DSM model. BDSM and explored its performance compared to
MPI. We also demonstrated its application to several parallel programs. However. there are
other applications it can be used for and improvements that can be made. In this chapter
we will look at two such extensions. The first involves using BDSM for fault-tolerance.
One of our reasons for using fully-replicated weak-memory is fault-tolerance. We explore
the potential for using BDSM by deriving a general. fault-tolerant. state-machine service.
This state machine provides its service to its client in the presence of failed server nodes.
The second part of this chapter addresses the potential scalability issue in two ways. First.
we allow memory bound programs to benefit from BDSM by allowing selective segment
membership. This allows larger problems to be solved. We then look at methods for
allowing more processes by reducing the network traffic. To do this. we ensure updates to
a segment are only sent to each process that has joined that segment. By addressing these
two issues we show that BDSM can be used for a wider range of applications than were
presented earlier.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSAM 136
7.1 Fault-Tolerant Service

Providing a service to client programs is a common use of networking technology. Since
the server processor can fail. replicating a server across a numnber of processors is often
desirable. One method of developing such replicated services is to use the state machine
approach(56. 78]. The state machine model can be used to implement general. fault-tolerant
services. In this section. we present a mapping of one type of state machine service model
to the BDSM environment. A simple version of a state machine service is defined by
Lamport[56]. The state machine is required to respond to client requests in a causal order.
Further, it must ensure that all non-faulty replicas execute requests in the same order
despite failures. The original presentation addresses both fail-stop and Byzantine failure
modes. Schneider (78] refined and classified this approach. He discusses a number of
different techniques that solve the basic problem of ensuring order of requests issued to
state machine replicas by clients.

The fault-tolerance requirements of a state machine service can be summarized by two
elements. The first is order. Each non-faulty replica processes requests in the same relative
order. The second is agreement. Agreement means that all of the functioning replicas see
each valid request. with the same time-stamp. Once replicas agree. they can execute the
“next” request subject to the ordering requirements. The state machine replicas must all
execute the same operations in the same order. thus ensuring the replicated state remains

consistent. The order requirement can be summarized by the following two rules:

e O1: Requests from a single client are processed in the order issued by the client

(program order).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSA! 137

e O2: If one client’s request causes another client to send a request the first client’s

request must be handle before the second (causality).

The order requirements. Ol and O2. mean that state machine cannot simply process re-
quests in the order received. Care must be taken to provide causal order among requests
by different clients. The agreement requirement is satisfied if the following two conditions

hold:

e Al: All non-faulty processors agree on the same value for each request (same request

in same order).
e A2: If the transmitter is non-faulty. then all non-faulty processors use its value.

In this section we develop a state machine model that meets the above criteria using
BDSM locations as the communication medium among replicas. We begin with a presenta-
tion of the model in general terms. We then present the pseudo-code of each element and

discuss the operation of our state machine in detail.

7.1.1 State Machine Model

The service is provided by a system of n replicas. R = {rg,r...rpn—1}. and some clients
C = {cg.c1.¢2....}. The number of clients is unspecified. If the total number of clients
is known, then some optimizations may be made. Clients communicate with the server
replicas by passing messages over some potentially lossy network. Replicas communicate
among themselves using BDSM on an Ethernet LAN. A client ¢; issues a request to any
single replica in the system. It then awaits at least one response. A replica r; receives

requests and arranges to have all the other non-faulty replicas see the request. The replicas

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 138

then agree to act on the requests in the same order. Each replica responds to each request.
In an f-resilient system. ¢; will receive n — f responses for each request that is processed.
Define nf C R to be the set of non-faulty processors. such that [nf| > f at all tines. We
are concerned only with fail-stop failures. Since there is no notion of enforced read-only
segments in BDSM., there seems to be no. non-cryptographic. way to prevent a malicious
program from writing to another replica’s shared memory space. Therefore. Byzantine
faults are not easily tolerated using BDSM.

In order to allow clients to send requests to any non-faulty replica. and not use a single
primary replica to serialize requests. our model is based on real-time clocks. The unique
identifier for each request is the time-stamp of the request combined with either the receiving
replica’s id or the client’s id. Clieuts are assumed to have some unique identifier. We use
¢; for this identifier. Since the clients are not required to be numbered. the actual index
is irrelevant. In practice, we could use something effectively unique to a machine such as
its IP address or MAC address combined with the process identifier of the client process.
The system assumes roughly synchronized clocks. For replica r,. let rc, be its local clock.
Similarly, for client c;. let cc; be the client’s local clock. Let € be the maximum error between
any two process clocks. client or replica. The order that requests are carried out is based on
these synchronized clocks. Additionally. we require a reasonable maximum message delay
between client and replica, f.. Since this is potentially large on extremely lossy networks.
we can make an arbitrary maximum and refuse to honor requests that fail to arrive in time.
A request message that arrives at a replica such that the local time. r¢,. is greater than
ts+e+t. , where ts is the time-stamp of the message, is discarded. The client should timeout

and retransmit the request with a new time-stamp. Schneider shows that using real-time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 139

requires the minimum inter-client communication time to be greater than the clock skew. €.
This is required to ensure that causally connected requests have noticeably different time-
stamps. Since our model requires a client to wait until it gets a reply before proceeding this
requirement is easily met. This stop-and-wait operation also allows a client to retransmit a
request that either gets lost or has the original replica fail before propagating the request
to the group. Among replicas. we define ¢, to be the maximum acceptable delay from the
time a write is issued until it is applied to the local BDSM copy at some other replica. Any
write by r, will be seen by all r; € nf in time less than ¢ . if r, €nf .

For our state machine. we will use the BDSM layer to allow replicas to communicate
among themselves. Replicas communicate by writing request messages into BDSM space.
Therefore. the buffering system of BDSM is not used. We want writes to be propagated
immediately. This also ensures we have PRAM order across all segments. By using BDSM.
and therefore PBP. we have reliable FIFO order between any two replicas. PBP does not
provide atomic broadcast. so it is possible for a failing node to deliver its request (as an
update to a BDSM location) to some set s C nf. This partial broadcast will still take less
than ¢, time. That is. any replicas that are going to receive the update will do so in less
than ¢, time, just as if the sending replica had not failed.

We assume failed processes are detected. This is not difficult. PBP provides for this.
Failed clients have no effect on the system. Clients. since they are not using PBP. must
detect replica failure or lost request messages by a timeout. Since clients are effectively
stop-and-wait systems, this detection is also not difficult. A client that detects a faulty
node, due to a timeout while awaiting a response. simply sends its request to a different

replica, with a new time-stamp. Since the client cannot have taken action that causally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 140

precedes another client’s request. there is no violation of the ordering requirements when a
request is retransmitted. In this case. it is assumed the earlier one simply did not happen.

Messages between client and replica have the following forms. A request message from c;
to any replica is denoted < REQ, id,, ts. op.data >. The fields. other than the type (REQ).
are the client’s unique identifier (¢d.). the time-stamp (ts). the type of operation (op)
and any operands required by the operation (data). Similarly. reply messages are denoted
< REPL.id,.id..op.data >. The replica sends back its identifier (id;). the client’s identifier
(id.). the operation performed (op) and any results produced by the operation (data). We
use structure notation to refer to individual elements of a requests when required. So. for

example. given some request r. r.ts is the time-stamp of the request.

7.1.2 Pseudo-code

There are three main components to our state machine model: the client. the BDSM space

and the replicas. We start by presenting the client.

7.1.2.1 The Client

Clients make requests to any replica. Faulty replicas are detected by a timeout. at which
point another replica may be used. After a request is sent. another cannot be sent until at
least one reply to the first request has been received. Since we are assuming fail-stop errors.
all non-faulty replicas will be sending the same reply (except for the replica number) so the
first to arrive is sufficient. Others can be ignored.

Note that the clock time, cc;, on a retransmitted message is the current time. not the

time of the original request. This ensures that the time-stamp on the request is current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 141

Client,:

send request: send < REQ.c,.cc,.op.data > to r,.j € R then
recvreply < REPL.ry.c,.op.data > from some r,.h € R

Timeout: send < REQ.c,.cc;.op.data > torp.k € R.k #
recvreply < REPL.ry.c,.op.data > from some ri, h € R

Figure 7.1: Client Operation

when received by a non-faulty replica. Once a timeout occurs while sending a request to
;. a client will not send a request to r; again. It can simply choose another element of R

confident that at least n — f are non-faulty.

7.1.2.2 The Shared Memory Component

The actual state of the service. the target of client operations such as an NFS file system.
is stored locally on each machine. not in BDSM. Initially. this secms counter-intuitive since
we have a replicated shared memory space. However. since each process has to decide what
action to take independently and then operate on its copy. having the actual state in BDSM
is overly redundant. Each process would need its own section of DSM space to represent its
copy so the data would be replicated |R| times at each 7,. Alternatively. a system of mutual
exclustion would be needed to ensure one process. only. executed the operation. Failure of
the lock holding process. and a subsequent promotion. would then need to be addressed.
By keeping the actual state strictly local we avoid this and allow more generality. The
service need not act strictly on data that can be stored in memory. but could work on disk
files, physical resources and so on. The BDSM space is used to keep a list of pending and

resolved requests. This allows replicas to share knowledge about pending requests with one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 142

another in a FIFO. reliable manner.

Shared State:

Q[0..n — 1}[AAXREQ)] of (req.id)
D[0..n — 1J[M AXREQ)] of (req.id)

Figure 7.2: Request lists in shared memory

Shared memory is divided into two lists @ and D. The lists are further divided so that
each replica has it’s own section of each list. Replica r, writes only to its section of Q and
D. the locations Q[i][...] and D[¢][...]. Elements in the list Q7] are pending requests as seen
by 7,. Those in D[i] have been performed by r,. Items in any list are in the form (req.id).
where req is a request message and id is the index of the replica which originally received
the request. Empty elements may also be used. They arc denoted (null.nuil). When an
item no longer appears in Q7].Vj. and is in D[z} it may be removed from D[i]. Removal is
done by overwriting a valid entry with the empty entry (null.null). The size of the lists.
MAXREQ. is defined for clarity. but need not be strictly defined. If it is. it needs to be
greater than the maximum number of clients. If this is unknown the DSM space should be

grown dynamically.

7.1.2.3 Request Stability

In order to ensure that each request is applied in the same order at all replicas we need to

ensure that
1. there can be no earlier pending requests from the same client and.

2. there can be no earlier pending request from a different client and.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSA! 143
3. the request has been seen by all non-faulty replicas.

The first condition is straight forward due to the stop-and-wait nature of clients. Client
¢, can only have one outstanding request at a time. The second coundition requires a request
to have the earliest time-stamp of any request in @ and to be time-stamped at least A
earlier than the current time (at the replica). The delay. A. is defined to be ¢ + 2t + e
The final condition ensures that the request is agreed upon by all non-faulty replicas. It is
satisfied when a request is present in Q[Z]Vi € nf. This property is called stability. When a

request 7 is stable at 7, it can be executed on the local state and a reply can be generated.

Definition 7.1 Request r is said to be stable at r, when :

Vi€ nf:(r.k) € Q] A(r.k) ¢ DA

r.ts < 5.tsV(s.7) € (QV) € nf ND])A

r.ts + A < re;.

The comparison (r.ts < r’.ts). for two elements (r.7) and (r'.j). is defined to include

the range € for clock skew. The inequality is true if

(rts+e<r'ts)V(r'ts—e<rits<t'ts+en (i <jVv(i=jArid < r'id)).

Given two request time-stamps, if they are within € then they are ordered arbitrarily by

replica number. If they are from the same replica they are ordered by client identifier. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 144

can be any ordering of the client id as long as all replicas can determine the right order.
The delay. A. ensures that no earlier request is still in transit. The term ¢, is used to
ensure that all potentially earlier message from clients to replicas have arrived. The term
2t, ensures that all potentially earlier requests that have reached replicas have been seen by
all r; e nf. We need to allow time for the original request to be applied to all non-faulty
replicas and for the confirmation copies to be applied. Finally. maximum clock skew. €. is
added to cover differences is clocks.

If the number of clients is known and fixed. a request can be declared stable without
waiting for the A component to become true if there is a later request by each other client
in Q. Since there can only be one outstanding request by cach client. once each client has

a request pending there can be no other requests in transit.

7.1.2.4 The Replicas

Each replica has its own section of each of the lists. Replica r, reads from Qfi].7 # j. but
does not write to it. This avoids the need for some kind of access control for the shared
memory. In a fault-tolerant system where processes fail. we want to avoid having mutual
exclusion if possible. Since reads are strictly local operations. there is no waiting for failed
processes. A failed process will simply no longer update its sections of Q@ and D. Once
a process failure has been detected, non-faulty replicas will ignore those areas in further
processing,.

The basic operation of a replica, r;, is to wait for requests and to handle them as they

become stable. When r; receives a request, 7. from c;. it first determines if the request

is valid. A valid request must have a time-stamp greater than r¢; — t. — € or it has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 145

Replica,:

(] Recvrequest: r =< REQ.c,.t.op.data > then
QiJ[NEXT_FREE] = (r.i):

[j 3(r.k) in some Q[j] € Qfi] A (rc, < r.ts +) then
QEIINEXT_FREE] = (r.k):

[3(r.k) € Q[i] AD[j]V¥j then
delete (r.k) from mathcalQ[i]:

 3(r.k) € Dli]A ¢ Q[j]Vj then
delete (r. k) from D[i]:

[] if 3(r. k) that is stable then

execute r.op :
send < REPL.r,.r.c,.r.op.data >:
put (r. k)inDfi]:
[3(r.k) € Q[z] : re, < r.ts + A A —stable(r. k) then
delete (r. k) from Q[i}:

Figure 7.3: Replica operation

delayed too long and should be ignored. Assuming it’s a valid request. r, then writes (7. 1)
to some free location in Qfi]. This is then seen by all r; € nf in time less than ¢.. To
handle rcquests. r, continually scans the Q locations of other processes for requests it has
not seen. If it finds any valid ones, they are copied into Q[i]. When the request with the
lowest time-stamp. say ('.j). of any request in Q[i] is stable. r, executes r’.op. sends a
reply to client r’.2d and writes (r'.) into a free spot in D[7]. Since all non-faulty replicas
see the writing of all requests in 2¢, time, all of the non-faulty replicas will find the same
lowest request time-stamp and see the same stability conditions. Since the replicas are
deterministic, all replicas will execute operations in the same order. The array D is used to
clean up the request list. Once a request has been seen to be moved into D by all r; € nf

at r;, it is removed from Q[i]. Once a request in D[i] is no longer seen in any Q it is deleted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 146

from D[z].

Note that once a request is delivered to a non-fau Ity node it will be seen by all others
and handled even if the original replica fails having only gotten the write update to one
other node. This is true until the message would have become stable. It is possible to
conceive of a pathological case where a request is seerh by only one non-faulty node which
then fails. having passed the request to one other. which then fails. etc. This could allow a
request to arrive at all non-faulty nodes having taken (n — f)¢. time. This would mean an
old message, which could destabilize a request that has been exccuted. So once a message
passes A in age. and has not become stable it is consi«lered invalid.

Once a request gets to a non-faulty node that reemains non-faulty it will be seen by
all others in the required time. Once a request is se-en by all non-faulty replicas. it will
eventually become stable and be acted upon. This is true because the conditions for stability
will be met. Once 7 is seen by all replicas. cither theere is at least one request earlier or
there is not. If not. then r is stable as soon as A tirme has passed. If there is an earlier
request, then it either becomes stable and gets remove=d. allowing r to become the carliest.
or it fails to become stable (by not being seen in all Q before A time has passed) and is
removed. This also allows r become stable.

The replicas operate on requests and clean up used locations by the following rules:

1. A request is not acted upon until it is stable. Thi&s means it is the oldest valid request
and that it has been seen by all non-faulty replicas. It is copied to D[i] by each 7; as

executed.

2. Once acted upon a request is not removed from -Q until it is seen to have been acted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 147

upon by all non-faulty by appearing in D.

3. Once removed from Q. a request is only totally removed from the system when all

non-faulty replicas see that it is removed. by being seeing it in all D but not in any

Q.

7.1.3 Proof
7.1.3.1 Proof of Order and Stability

Schneider showed that the ordering of requests by client time-stamp is effective and satisfies
the requirement to have a unique identifier for each request on which to base request order.

This is unchanged for us. Roughly synchronized clocks satisfy Ol and O2 if
e No client can issue requests faster than the resolution of the clock can distinguish and
e the clock skew € is smaller than the minimum transmission timme between clients.

Our system preserves this order because clients operate in a stop-and-wait fashion. A
client cannot have more than one outstanding request. The second condition ensures that
causally related events have time-stamps that reflect the causality between them. This is
preserved because of the stop-and-wait client semantics as well. A client cannot causally
effect another client’s request until it has received a reply to its previous request. The
time-stamp on the second client’s request must then be greater than the first request’s
time-stamp.

To prove that a stable request is the only one to execute. we define A such that once a

local clock reaches ts; + A. no earlier request can arrive. We know that no earlier request

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 148

can be at another non-faulty node because it would be seen by all non-faulty nodes before
ts; + t. + t, + €. and be stable itself in another ¢, time units.
If the request reached a replica that failed it is possible for it to take more time than A

to reach all non-faulty replicas. in which case it will be ignored as being old.

7.1.3.2 Proof of Agreement

We need to show that our model satisfies the agreement properties Al and A2.

We start with the following lemmas:

Lemma 7.1 All writes to BDSM locations by any r; € nf are seen by all other v, € nf in

the order issued.

This follows from the definition BDSM.

Lemma 7.2 Ifr; € nf then any write issued at ttme t = rc; is seen by all T, € nf such

that rc; <t +tr +e.

This follows from definition of t.. the use of BDSM (and hence PBP) and roughly

synchronized clocks (with the difference between any two clocks bounded by €).

Lemma 7.3 If r; becornes faulty while it is writing to BDSM. either some v, € nf see the

write in less than t; or none do.

Since we are assuming only fail-stop failures. in order for this to occur it must happen
while the writes are being sent. Either they are received by any other processes before the
processor crashes or not. PBP does not guarantee atomic broadcast so the set of receivers

is a subset of nf.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 149

Lemma 7.4 Any valid request v seen by some 1, € nf is written to Q[i] and is then seen

by all other r; € nf at most t. time later.

Proof follows from the operation of the replicas. When a request is rececived by r; € nf

or seen by r; € nf in some Q[j] and the time is still valid it is written to Q[7].

Lemma 7.5 Any unstable request v with r.ts < rc, + A is considered invalid by v, € nf.

Requests that could violate the stability of another request are ignored. Those that
prevent the stability of another are removed allowing the later request to becomne stable.

This is designed into the replicas.

Theorem 7.1 Al holds for our state machine on BDSAM

Proof: Assume a valid request r arrives at r;. There are two cases. cither r, € nf and
remains so. or r; € nf and fails shortly after receipt. We don’t comsider r, € nf as the

request will never enter the system and the client must timeout and resend it.

1. If r; remains non-faulty. then Al holds because of lemmas 1.2. and 4. All 7, € nf will
see (r.1) as written by r, in at most ¢, + € time. So all non-faulty processes agree on

the same value for r.

2. If r; becomes faulty while transmitting. then. from lemma 3. we have two cases: no

process sees the update or at least one r; € nf sees the update.

(a) No other non-faulty process sees r. In this case r is a null operation. The client

will need to resend the request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 150

(b) At least one r; € nf sees 7 in time t.. If 7 is still valid at r; it will be written to
Q[j] and seen by all r; € nf at most ¢, time later. At which point. if still valid. it
will be copied into each Q[7} and then become stable. If this extra communication
round causes the request to become stale it will be removed. If not it will become

stable and be executed.
Theorem 7.2 A2 holds for state machine on BDSM

Since we are not concerned with Byzantine failure A2 follows directly from Al. If all
non-faulty processes get the value transmitted then they will agree on that value.

We have demonstrated a technique that allows a state machine service to be implemented
on the BDSM system. By using such a general technique we illustrate that BDSM can be
used for a wide range of highly available service applications. such as a replicated web-
server. We feel this serves to show that BDSM is a usable system with potential real-world

applications.

7.2 Extending Memory

As designed and implemented our system is fully-replicated. The entire address space is
resident at every processor. While this is useful for fault-tolerance and has been effective
for the compute bound test programs in chapter 6. it is not always desirable. Some parallel
programs require more memory than is available on a given workstation. As a potential
extension of BDSM. we would like to address this issue. There are two issues involved:
extending memory usage and increasing scalability. The first issue can be addressed by

allowing only those processes that need a segment to join it. Processes that don’t join a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 151

segment would not allocate local memory space for it. The second issue is to reduce the
communication overhead. Once we allow selective segment membership. we would like to
avoid the overhead of reliable message passing for updates to processes that have not joined
a given segment. While all messages are broadcast. requiring reliable. FIFO delivery of
messages. and therefore acknowledgments of some kind. is wasteful for processes that will

ignore the message.

7.2.1 Expanding Memory Usage with Selective Join

By allowing segments to be created yet not joined by all processes. memory can be par-
titioned. Only processes that actually join a given segment would allocate space for that
segment. In this way. only processes that need access to those memory locations would
use real memory storing them. Other subsets of the processes could join other segments
and thereby extend the amount of memory seen by the whole program. This first step
addresses the issue of memory bound computations. It permits only those processes that
need a segment to join it. Processes that don’t join a segment would not allocate local
memory space to it. As currently implemented. when a process receives a create segment
message it allocates the space then so that it can begin processing any updates that arrive
after creation but before the local process joins the segment. Reversing the semantics would
mean a barrier or some form of consistency check would be needed when a process joins
a segment. This synchronization would be needed to ensure that no writes can be made
until every process joins a given segment. A barrier placed after segment creation and join
suffices to address this issue.

This modification is simple and requires little change to the existing implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 152

It allows a computation to have. not only. the illusion of shared memory. but also. that
of more physical memory than is present on any one processor. Normally. when fully-
replicated, BDSM provides physical memory equal to the minimum physical memory of
any processor used. Issues of different memory capabilities on a heterogeneous network
can be addressed. Processors with more physical memory can be assigned processes that
need access to more segments. Those processors with more limited physical memory can be

assigned processes that join fewer segments.

7.2.2 Improving Scalability

Extending memory by allowing selective join increases the scalability of the BDSM system.
It allows for larger programs that would not fit in the physical memory of any one processor.
However, since we use hardware broadcast for each update. we still have updates being sent
to all processes. A process that receives an update for a segment it has not joined simply
ignores it. The problem is that these ignored messages are sent by PBP. so are sent reliably
to processes that don’t need them. Additionally. the message has to be delivered to the
BDSM implementation before being ignored. When used on a system with a large number
of processes, the cost of broadcast reliability for messages that only need to reach a subset
will become higher. A broadcast on an Ethernet segment is effectively the same as a point-
to-point message. However. requiring acknowledgements for messages that are to be ignored
does use more network bandwidth. We would like to spend resources ensuring the delivery
and order of updates only to those processes that need the update. Since we are using
broadcast, each message sent is still seen by all processes. Messages that aren’t important

to a given process could be ignored at a lower level and will not need to be acknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 153

To make the system perform in this fashion we will use an instance of PBP for each
segment. The creation and joining of a segment will contain the group membership protocol
of PBP initialization. Since PBP is a stand-alone system we simply need to start PBP with
each process that joins a segment. Each instance of PBP will use a different port number
so the messages that a process can ignore will be dropped at the kernel level. Each process
will then perform inputs on any PBP queue that has messages available. Some form of PBP
delivery multiplexing can be used to determine which incoming queues have messages.

An alternative implementation method would be to redesign PBP to use IP Multicast.
Each segment would have a multicast group associated with it. The PBP system would then
provide FIFO service among members of each group. In this case. there would effectively be
an instance of the PBP protocol for each multicast group. With hardware that effectively
filtered IP multicast packets. non-members would be only minimally effected by messages
exchanged among members of a given group.

This system needs to preserve the BDSM requirements from chapter 2. These require-

ments are
1. Writes by a process to a given segment appear in program order.
2. Synchronization operations issued by any process appear in program order.

3. Synchronization operations appear in program order with respect to all writes issued

by a process. Writes before the synchronization appear before and those after. after.

To satisfy the first requirement we rely on PBP. Each segment will have an instance of

PBP for group communication among all joined processes. Since updates to each segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 154

use this FIFO channel provided by PBP. the requirement that writes to a given segment be
in program order is preserved. This does not require any changes.

Ensuring order for synchronization operations requires an additional communication
channel. While the basic system of using a PBP instance per segment is straightforward.
its effects on the synchronization coherence model are not. In order to ensure that we
maintain BDSM coherence. we require synchronization operations to be in program order.
To this end we will use one global instance of PBP for all processes. This main PBP
instance will be used for synchronization operations. This will satisfv the BDSM condition
that synchronization operations be in program order with respect to other synchronization
operations. Additionally. since all synchronization in BDSM is global. either barriers or
broadcast locks. each process needs to be able to communicate with each other regardless of
segment membership. A single channel for all processes allows this global message passing
to take place.

The last requirement for the BDSM model is that updates by a given process to all
segments it has joined be seen in FIFO order relative to each synchronization operation
sent by that process. When the BDSM layer of a process performs a barrier. it will send a
message with the barrier number down each of its PBP connections. Then. it will send the
barrier message on the global PBP channel. This effectively makes a checkpoint on each
of its PBP channels at the point in the program order that the barrier was called. Other
processes will only consume messages from a given process up to an not beyond a barrier
marker in a segment PBP queue until the consuming process has reached the barrier marker
for that process on each input queue and crossed the barrier. In this way. a process will not

see any writes made by another process after a barrier before crossing it and vice-versa. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 155

call this the barrier marker system. These messages are similar to the 2-way flush messages
in flush channel communication[7. 24]. We have defined this model to work for barriers
because they have clear simple semantics. Using this for the distributed locks in BDSM
would require a similar protocol for each lock message. those responding to lock requests as

well acquire requests.

7.2.3 Barrier Marker System

A barrier in BDSM. as seen by one process. consists of receiving n — 1 barrier messages
and issuing a barrier message itself. These barrier messages consist of (bar.b.i). where b is
the barrier number and 7 is the process sending the barrier message. The barrier number is
used to differentiate among barriers. For this extension. the protocol is similar. but more
involved. Now. a process sends a message. in this case called a barrier marker and denoted
(bm. b. 7)., down the channel for each segment it has joined. Then. it sends the regular
barrier message down the global channel. To cross the barrier it must still receive a barrier
message from each other process. It must also receive a barrier marker from each segment for
each other process that has joined that segment. Definition 7.2 shows the barrier condition.
BC. which must be satisfied for a process to cross a barrier. Additionally. once a barrier
marker from some process has been received for a given segment. no other messages from
that process for that segment may be consumed until the receiving process satisfies BC.
They must be queued locally and handled after the the barrier is crossed. This condition
is called WC, see definition 7.3.

Joining a segment, s;, provides a communication channel. ¢;, that delivers messages to

all processes that have joined s; in the order sent by each sending process. This is provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 156

by the use of PBP as the communication layer for ecach segment. There is no order guaarantee

between messages sent on different channels.
process pg process gl process gz

=) (= =) (=)

Y

— y A — ' r —

3 3 N A [§ , R . 4 4
channel c1 zhannel <2

Glerzal Symchrzonizaticn channel oy

Figure 7.4: BDSM! using multiple PBP channels.

Consider three processes pg. p; and p.. shown in figure 7.4. Each is a memaber of
the global PBP communication channel. ¢,. Additionally. two processes have each joined
segments s; and s», which have PBP channels ¢; and c,. respectively. Process p; has joined
both memory segments. When p; reaches a barrier. say bg. it sends a barrier marker mezssage.
(bm, bg.t). down each memory segment channel and then a normal barrier message.-. (bar.
bg.1). down the global channel. Process p; will not cross the barrier until it has recesived a
message (bar. bg.0) and (bar. bg.2) from cg. Additionally. it must receive (bm. by.07) from
c; and (bm, bg.2) from ca. Once (bm.by.0) is received by p; from c;. no other messagee from
pg may be handled from ¢; until the barrier is crossed. Similarly. once p; has receivecd (bmn.
b.0) from p2 on cp it will not handle any other messages from p; on ¢;. When pg reeaches
the barrier. it needs to wait for a barrier message from each other process on ¢, and a
marker on ¢ from p,. It doesn’t need anything other than the barrier message on cg from

p2 because pg and ps do not share segment membership.

Definition 7.2 Barrier Condition (BC): A process p; may complete a barrier ope-ration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 157
when it has

1. reached the barrier itself.

2. receiwved a matching barrier message from each process in the system on c,. and

3. recewved a matching barrier marker for each segment s from each other member of s

for each s; of which p; is a member.

Definition 7.3 Wait condition (WC): A process p, may not receive a reqular message for
any segment s from some p; if p, has received a barrier marker from p, for s and has not

satisfied BC for that barrier.

7.2.4 Proof

In this section., we prove the barrier marker system is effective. This requires proving
liveness and safety of the barriers themselves and that the ordering requirements of BDSM
are preserved. Liveness and safety were shown for barriers in theorem 5.1. This form of
barrier. with barrier markers. behaves the same way with respect to safety and liveness. A
process cannot cross a barrier until it satisfies BC. which includes receiving an appropriate
barrier message from each other process. Livgncss is also assured because each process must
send its barrier marker messages and P1 ensures they will all be delivered.

The first of the BDSM requirements. from chapter 2, is that all writes by one process
to a given segment be see by all others in program order. The barrier marker protocol has

no effect on the order of writes. Therefore. this requirement is met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 158

The second requirement is that synchronization operations occur in the program order
of each process. Since there is a single PBP channel shared by all processes and this channel
is used for all barrier messages. these messages will be in program order.

To prove the third BDSM order requirement we will break it into two parts.

1. No write update messages sent by p; after a barrier can be seen by any p, before p,

crosses the barrier.

Assume the opposite. Some message m. sent after a barrier b in p, is seen by some p,
before p; crosses b. In order for it to have been seen it must have been delivered. And
in order to be delivered it must have been received on some ¢i.. Since p, has reached
b it has sent a barrier message on ¢, and a barrier marker message on each ¢ it has
joined. Also. since m has been sent after all the messages for b. the barrier marker
message must have been sent on ¢; before m. From Pl. it must also be delivered
before m. Since p; has not satisfied BC. or it would also have crossed the barrier. it
cannot have seen any messages from p; on c¢; after seeing the barrier marker. from

WC. Therefore it cannot have seen m.

2. All messages sent by p; before the barrier will be seen by each p, before p; crosses the

barrier.

Assume the opposite. Some message ™ sent by p; before b is not seen by some p; after
it crosses the barrier. Since m must have been sent on ¢; before the barrier marker
for b by p;, it must have been delivered after it in order to have not been seen by p;
when it satisfied BC. This is a clear violation of P1. Therefore m must have been seen

before p; satisfied BC and crossed the barrier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 159

The barrier marker system will preserve the ordering requirements of BDSM. It allows
a program to be more selective in its us of memory thus allowing more flexibility. This
extension addresses issues of scalability by making BDSM more efficient for larger numbers

of processes by reducing network utilization.

7.3 Conclusions

In this chapter we presented two different ways that the BDSM system can be extended
to make it more useful to many applications. The first is to use BDSM for fault-tolerant
services. The general state machine model allows any client/server applications to be de-
signed for BDSM. The second is deals with scalability. By addressing some of the scalability
issues of BDSM we show that is can be used for larger problems. Many applications are
implemented in parallel to acquire more physical memory than is on a single processor.
The extension presented here allow this to be done by programs using BDSA as well. The
barrier marker system allows programs to make use of more processes by making the overall
system more efficient. These two results serve to illustrate the potential utility of a DS

system designed for the use of broadcast on a common clustered computational platform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

Distributed shared memory provides the illusion of a shared address space to processes on

systems with no shared memory. Software DSM systems provide this service to processes

on separate workstations connected by a network. For efficiency. manv of these systems

provide weak memory semantics. While it has been argued that these weak memories

should not be used on hardware multiprocessor systems[46]. the performance gains arc

often still necessary on a cluster computing system. There is a significant amount of work

being done to improve software DSM systems{49, 55. 26. 76. 28. 17. 75. 10. 54]. The need for

simpler implementations that still provide good performance has been expressed[88]. We

have developed a system that relies on a simple protocol to provide weak DSM to processes

sharing an Ethernet segment.

In this chapter we present some of the conclusions we have drawn from this work. We

start by looking at a few potential directions for future work. This addresses some of the

issues and weaknesses of the system. We then summarize the results we presented. And

discuss how we have attained the goals we laid out in the introduction.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 161

8.1 Future directions

We are pleased with the results our BDSM system has shown to date. However. there is
room for improvement. Some issues to address in the future are write detection. using TCP.
and implementation of the extensions in chapter 7. There are also several refinements of
PBP we would like to explore. We discuss each in this section.

Write detection is of major concern because without it the system cannot be made truly
transparent{96]. Currently. writes must be a function call that lets the BDSM thread per-
form the update. Using some intermediate laver that catches writes without this overhead
and propagates an update would be helpful. Systems like SHRIMP [50] use modified hard-
ware that automatically sends writes to the network. similar to a write-through cache. It
may also be possible to use the memory management structures to protect memory location
on a fine granularity. The Region-Trap library {21] would facilitate this. A handler function
would still be called for each write so there may be little performance gain. However. it
would complete the illusion of a shared address space by providing true transparency at the
user-level.

The BDSM system is not required to use broadcast. It would be possible to implement
a set of TCP connections among processes and make the operations send to each connec-
tion. The system would still need to send each message to each other process to preserve
the semantics of BDSM. but this would allow the system to work on wider networks. It
would also allow us to make a real measure of the benefits of using hardware broadcast. by
comparing the two versions. Implementing PBP using IP Multicast would have a similar

effect, and still allow the use of hardware broadcast where available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 162

To improve scalability we would like to implement the extension to allow multiple PBP
instances. This will give the BDSM system wider utility by allowing larger problems.
Additionally. since we are also interested in fault-tolerance. a prototype state machine
implementation would server to better illustrate the potential for highly-available computing
using BDSM.

In the future we would like to explore some issues regarding PBP as well. It Would
be interesting to allow PBP to have dynamic timeouts. The notion of a round-trip time
(RTT). used by protocols like TCP to change various timeout values. is less well-defined
for a broadcast system. We can imagine a form of RTT that is similar to that used for
point-to-point protocols. The time would be based on when an outgouing message buffer
was reclaimed after being allocated. With such a system. we may be able to improve the
performance of PBP further by more accurately timing events.

Another possible improvement to PBP would be to allow dynamic connections. Cur-
rently, the system is limited to those processes that participate in the group registration
process at startup. Processes can be removed due to failure or voluntary exiting. This
change in membership is currently one way only. Processes can be removed but not added.
Allowing the group membership to grow would allow failed processes to be replaced with-
out restarting the entire group. This would make PBP more applicable to fault-tolerant

computing by allowing process recovery.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 163

8.2 Conclusions

We have developed a weak form of DSM tailored to be efficient in a common networking
situation. Many clustered or networked computing environments use some form of Ether-
net as a communication medium. Our system uses the inherent broadcast ability of this
hardware to perform efficient all-to-all communications. Writes in BDSM are distributed
as broadcast updates. We allow a weak enough model that there is no need to have global.
or even causally. ordered message-passing. This means no need for extra messages or the
serialization of broadcasts.

We have overcome some of the problems of using non-causal memories. Many such
systems are too weak to be programmed effectively. PRAM and Slow memory are examples
of such weak. non-causal memories. Synchronization operations based on memory locations
do not have enough power. We solve this by using synchronization at a lower. message-
passing level. OQur synchronization operations are broadcast by the communication layer
rather than being DSM level writes to memory locations.

We have developed a test suite of common parallel computations. These programs are
used as comparisons to MPI. a common message-passing alternative. We show that BDSM
can be a viable alternative to message-passing on a LAN because our test program perfor-
mance is comparable to that of their MPI counterparts. We found that for true collective
communication operations, such as are required for iterative methods. the use of broadcast
scaled better than MPICH. The MPI implementation uses TCP conncctions on a network
of workstations. Our system shows better results because the all-to-all communication is

cheaper with broadcast operations. This leads us to the conclusion that for programs with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 164

significant numbers of collective communication operations. a broadcast DSM system is a
viable alternative to message-passing.

In the course of our work. we have developed a FIFO. reliable broadcast system and
implemented it as a library. This PBP system provides efficient use of the normally lossy
UDP broadcast on a single Ethernet segment. Additionally. we have tested the performance
of PBP versus TCP for throughput. These results show the expected increase in effective
throughput for more then 2 processes. We have also compared these throughput results
to published results of a different reliability protocol that can take advantage of hardware
Ethernet broadcast. RMP. PBP compares favorably at the expense of total order. However.
even for a one sender situation. where sender order is total order. PBP performance is closer
to the hardware limits than RMP.

In chapter 7. we presented two extensions to the BDSM system. The first is an appli-
cation of BDSM to a fault-tolerant server model. We show that BDSM can be a general
service provider that provides high availability in the presence of message loss and failed
processes. A second extension was presented that addressed some issues of scalability in
BDSM. We show how BDSM can allow for larger. memory bound computations by not
fully-replicating memory. Further. we have shown a scheme to reduce the PBP commu-
nication traffic to only those processes that need each update. These two proposals show
that a broadcast DSM system can be applied to a larger range of applications than we have
actually implemented.

We have developed a weak DSM model that does not require global. or causal ordering of
the updates. This system can be used effectively. due to strong synchronization operations.

Using Ethernet broadcast capabilities can reduce the cost of all-to-all communication. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 165

have demonstrated how this can be done in a reliable fashion to implement a weak update
based DSM system. Through experimentation we have shown that broadcasting updates
can be a competitive method of interprocess communication on a LAN for programs with

appropriate communication patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Sample Test Code

In this appendix we present shortened versions of the jacobi code from the test suite. We

show both the BDSM version and the MPI version for comparison.

A.1 BDSM Jacobi Code

/= FILE: jacobi.c

= Written by :

= Philip R. Auld

* Dept. of Computer Science

* College of William and Mary

*

* Jacobi linear equation solver for dsm

* Solves for x in Ax = b

*

= Creation Date: 7/3/98

= Last Modification Date: 10/27/98

*x

* Changed to use shared mem for all data.
*

*
**/
#include <stdio.h>

#include <stdlib.h>

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 167

#include <unistd.h>
#include <strings.h>
#include <math.h>
#include <sys/time.h>

#include "dsm.h"

[* dsm info =/

int d_id_data:

int d_id_res:

int proc_num:

/+ these will be starting location in dsm segment of each matrix =/
int vector.x. vector_d:

/= Pointers for direct DSM access */

float * x_ptr:

float = d_ptr:

int debug = 0:

int doprint =0 :

int test_result = 0:
int use_file = 0:

int rand_seed = (:
int max_iter = 1000:
int matsize = 4 :
int numproc = 1:
int done_loc:

[+ target conversion bound =/
float epsilon = 0.001:

/* these will hold problem constants A and b =/
int mat_a:
int *a_ptr;
int vec.b:
int xb_ptr:

/+ count interations */
int num_iterations = 0;

/* which barrier, will alternate between 1 and 0. */
int current_barrier ;

/* test the done value. Returns < 1. (hopefully 0) if false

* 1 or > if done is true
*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 168

*********************************x******x*****x**********/
float
read_done()
{
float val:
dsm_read(d.id_res, &val. done_loc):
return val;

}

void
show _solution()

{

/* print solution. including current x values =/

}

void test_solution()

{

/* if we are right then Ax should be pretty close to the original bx/

}

void
show _problem()
{

/* prints problem values and “x[n]” for each x value */

}

[+ we use a strongly three or five diagonal matrix to help ensure convergence =/
int
get_diag_data(int * a. int *b, int size)

{

/= generate0.-1.-1.4.-1.-1.0.... type matrix =/

}

[+ Initialize all constant data. Generate diagonal matrix and random b
Or read input from file if given */
void init_matrix()
{
int i:
int num-_to_send:
int * matrix_a,x vector_b;
FILE * input_data;

matrix_a = (int *) malloc ((matsizexmatsize+ matsize)=*sizeof(int)):

vector_b = &matrix_ajmatsizexmatsize|:
get_diag_data(matrix_a, vector.b, 5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 169

num_to_send = (matsize * matsize) + matsize:

/= for large number of adjacent writes this is much more efficient */
dsm_bulk_write (d_id_data.mat_a. &matrix_a[0] . num_to_send. DSM_WRT_REL):
free (matrix_a):

}

[+ Setup actual pointer into the dsm segemt for reading directly =/
void
get_pointers()
{
if ((x-ptr = (float*) dsm_ptr.read(d-id_res. vector_x)) == NULL){
/*ERROR «/
dsm_exit():
return:
}
if ((d-ptr = (float *)dsm_ptrread(d-id_res. vector.d)) == NULL){
/«*ERROR =/
dsm_exit():
return:

}

if ((a-ptr = (int *)dsm_ptr_read(d.id-data. mat_a)) == NULL){
/*ERROR «/
dsm_exit():
return:

}
if ((b_ptr = (int*)dsm_ptr_read(d.id_data. vec.b)) == NULL){

/* ERROR x/
dsm_exit();
return:
}
}

/* given i this returns the new value for x[i] based on the current

* values and matrix A and vector b
*******************#**************t***x******x********x********xx/
float calculate_value(int i)

int j;

int k;

float partial_solution;

float lower_sum = 0.0:

float upper_sum= 0.0;
int row = 1 * matsize;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 170

[* we read the values directly from the dsm segment using pointers =/
partial_solution = b_ptr{i]:
for (j=0:j<i:j++){
lower_sum += x_ptr{j] * a_ptr{row +jj:
}
for (k = i+1 : k < matsize: k ++){
upper.sum += x_ptr{k]* a_ptr{row+k]:
}
partial_solution —= lower_sum:
partial_solution —= upper_sum:
partial_solution / (float) a_ptr{row + ij:

return partial_solution:

}

/* test for convergence. Finds max dfi] and compares it to

* the desired epsilon convergence bound.
2**!******/
int converged()
{

int x:

float curr_max =0.0:

for(x = 0 : x < numproc: x ++){
curr_max = max(d_-ptr[x]. curr_max):
t
if (curr_max < epsilon)
return 1:
return O:

}

[+ runs the jacobi algorithm */
int
solve_problem ()
{
int x.k:
int retval = 1:
int global start:
int num_to_compute:
float = temp_values;
float current_max;
int count;
int currloc;
float temp_done;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 171

num-_to_compute = matsize / numproc:
k = matsize % numproc:
if (k > proc_num)

num_to_compute -+-;

temp_values = (float =) malloc (sizeof(float)* num_to_compute):
if (temp_values == NULL){

dsm_exit():

exit (—1);

}

[rRErrsrkrkder e kxeeereerrer BARRIER L L L LT 2
dsm_barrier(current_barrier. &numproc):
current_barrier = !current_barrier:

global_start = proc_num * num_to_compute:
while (read_done() < 1){

/* calculate phase. no dsm writes =/
current_.max = 0.0:

for (count = 0 : count < num_to_compute: count ++ }{
currloc = global_start + count:
temp_values[count] = calculate_value(curr_oc):
current_max = max(current_max.
((Roat) fabs((float)(temp_values{count]— x_ptricurrloc])))):
}

/****x****************x**** BARRIER *******t************x**x*/
dsm_barrier(current _barrier, &numproc):
current_barrier = !current_barrier:

/* write back phase, reads are unsafe here */
dsm_write (d_id_res. vector_d + proc_num. ¤t_max. DSM_WRT_REL):
for (x = 0: x < num-_to_compute: x++){

curr_loc = global start + x;

dsm_write (d-idres, currloc, &temp_values[x]. DSM_WRT _REL):

}

[errrskrrrerreerkrreerrerereers BARRIER *xksssxsekensksesrrerrrrrrens/
dsm_barrier(current_barrier, &numproc):
current_barrier = !current_barrier:

if (proc.num == 0){

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N

APPENDIX A. SAMPLE TEST CODE 17

if (num_iterations > max_iter){
temp.done = 1;
retval = 0:
}
else
temp.done = (float)converged():
dsm_write (d.id res. done_loc. &temp_done, DSM_WRT_REL):

}

[exrkrkrxrtorrekrrrroonrrenrrtrrs BARRIER €% %%k nn sk nmsnsnnrxkntxe]
dsm_barrier(current_barrier, &numproc):
current_barrier = lcurrent_barrier:

num_iterations ++:
}/* while not done */

if(proc.num == Q)
printf("%d ". num_iterations):
return retval:

}

/* main function sets up dsm. attaches to a dsm segment and then calls other
* functions to actually solve the problem.

************************************t**xt**x*xx**xtxxxxxxx**x*x*x*****x*/

int

main(int arge. char =argv{])

{
int s_flag:
int numlocs_x, numlocs_data:
int c;
struct timeval start_time, end_time:
long temp_time_sec, temp_time_usec:
extern char * optarg;

if (gettimeofday(&start_time , NULL) <0){
perror ("gettimeofday"):
exit(1);

}

[+ start program different machinesx/

if ((s_flag = dsm_startup(&argc.argv)) <0){
dsm_perror("startup");
exit (—1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 173

}
strncpy(data_file. DATAFILE. 128):

while ((¢ = getopt(argc. argv. "s:p:i:m:f:e:o0lthd")) # —1) {
[+ Process arguments */
}
if (rand_seed == 0)
rand seed = getpid():

/xSetup number of location we will need. Point some integers into the DSM space to mark
location of different arravs =/

numlocs_x = matsize + numproc + 1:

vector.d = matsize:

vector x = 0:

done_loc = numlocs x —1:

numlocs_data = matsizexmatsize + matsize:

mat.a = 0:

vec_b = matsizexmatsize:

current_barrier = 0:

/= actually start DSM =/

if ((proccnum = dsm_init(&numproc.s flag)) < 0){
dsm_perror(*BADNESS\n"):
exit(—1):}

[create 2 DSM segments . one of ints and one of floats =/
if (proc_num == 0){
d.id res = dsm_seg_at (numlocs_x.sizeof(float).1234.DSM_CREATE):
if (d-id_res <0){
dsm_perror(“seg_at!"):
exit {(—1):
'
dsm_sleep(5):
did_data = dsm_seg_at (numlocs_data.sizeof(int).41321.DSM_CREATE):
if (d_id_data <0){
dsm_perror("seg_at!"):
exit (—1);
}
}

else {
[+ attach to the 2 segments greated by process 0 =/
while((d_id res = dsm_seg_at (numlocs_x.sizeof(foat).1234.DSM_JOIN)) <0)
dsm_sleep(2);
if (d-idres <0){
dsm_perror("“seg_at!");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

exit (—1):

}

while({d_id_data = dsm_seg_at (numlocs_data.sizeof(int).4321.DSM_JOIN)) <0)
dsm_sleep(2):

if (d-id_data <0){
dsm_perror("seg_at!"):
exit (—1):

}

}

get_pointers():
if(debug){
printf(“got pointers,calling barrier %d \n". current_barrier):
fHush(stdout):
[+« makse sure every one has started before we start writting initialization data =/
dsm_barrier{current_barrier. &numproc):
current_barrier = lcurrent_barrier:

if (proc.num == 0)
{
fprintf (stderr."done with sys_init\n"):
if (gettimeofday(&end_time . NULL) <0){
perror ("gettimeofday"):
exit(1):
}
temp_time_sec = end_time.tv_sec — start_time.tv_sec:
temp_time_usec = end_time.tv_usec — start_time.tv_usec:
printf ("%1d ", temp_time_secx1000000+ temp_time_usec):
init_matrix();
fprintf (stderr."done with init\n"):
if (gettimeofday(&start_time ., NULL) <0){
perror ("gettimeofday"):
exit(1):
}
temp._time_sec = start_time.tv_sec — end._time.tv_sec:
temp_time_usec = start_time.tv_usec — end_time.tv_usec:
printf ("%1d ", temp_time_sec*1000000+ temp_-time_usec):

}

if (solve_problem() == 1)
fprintf(stderr,"Solved\n");

else
fprintf (stderr."max iterations reached\n"}):

if (proc.num == 0) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

if (gettimeofday(&end_time . NULL) <0){
perror ("gettimeofday"):
exit(1):

}

temp-time_sec = end_time.tv_sec — start_time.tv_sec :
temp.time_usec = end_time.tv_usec — start_time.tv_usec :
printf ("%1d\n ", temp_time_sec*1000000+ temp_time_usec):

}

dsm_remove(d_id_data):
dsm_remove(d_id_res):

dsm_exit():
dsm_bcast_stats(proc_num. stdout):

return 0:

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~1

w

APPENDIX A. SAMPLE TEST CODE

A.2 MPI Jacobi Code

/* File: jac_.mpi.c

*

* Original version from “Parallel Programming with MPI".
* by P. Pacheco. Morgan Kaufmann Publishers,

* Los Altos. CA 94022, USA. 1997.

*

* Modifed by Philip R. Auld

x*****x*******x***x**xx*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include <strings.h>
#include <math.h>

#include “mpi.h"

#define SWAP(x.y) {float* temp: temp = x: x = y: y = temp:}
#define MAX_DIM 1024

int rand _seed = 1:

int max_iter = 1000:

int matsize = 4:

/*x target conversion bound x/
float epsilon = 0.001;

typedef int MATRIX_T[MAX_DIM][MAX_DIM]:

int
parallel_jacobi(MATRIX_T A _local.float xlocalf].float b_localf]. int n.
float tol. int max_iter, int p. int my_rank):

void read_matrix(MATRIX_T A_local, int n,
int my_rank, int p):

void read._vector(float xlocalf], int n, int my_rank,
int p);

void Print_matrix(chars title, MATRIX_T A local, int n. int my_rank, int p)

{

/+ print A_local to stdout */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

}

void Print_vector(char= title. float x_localf]. int n.int my_rank. int p)

{

/* print X to stdout */

}

void get_diag_mat(MATRIX_T a. int n. int size){
[+ initialize a with0.-1.-1.4.-1.-1.0.... type diagonal matrix =/

}

void get_rand_vec(float =b. int size)

{

/* initializa b with random values */

}

void
show_problem(MATRIX_T a. float = b. int n):

void
show _solution(MATRIX_T a. float * x_loc.float = b. int n):

void test_solution(MATRIX_T a. float *b. float #x. int n):

[+ data in data segment to avoid stack overflow */
MATRIX.T A_local:

void

main(int argc. char= argv(}) {
int P:
int c:
int my _rank:

float x_localMAX_DIM];

float b_local[MAX_DIM]:

int converged:

struct timeval start_time, end_time:
double temp_time_sec, temp_time_usec;

if (gettimeofday(&start_time , NULL) <0){
perror ("gettimeofday");
exit(1);

}

MPI Init(&argc, &argv):
MPI_Comm _size(MPI_.COMM_WORLD, &p):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 178

MPI_ Comm _rank(MPI_COMM_WORLD. &my _rank):

if (my.rank == 0) {
while ({c = getopt(argc. argv. "s:m:e:i:othd")) # —1) {
[* process arguments */
}
}

MPI_Bcast(&matsize. 1. MPIINT. 0. MPI_.COMM_WORLD):
MPI_Bcast(&epsilon. 1. MPI_FLOAT. 0. MPI.COMM_WORLD):
MPI _Bcast(&max_iter. 1. MPIINT. 0. MPI.COMM_WORLD):

if (my_rank == 0)

{
fprintf (stderr."done with sys_init\n"):
if { gettimeofday(&end_time . NULL) <0){

perror ("gettimeofday"):

exit(1l);
}
temp_time_sec = (double)(end_time.tv_sec — start_time.tv_sec):
temp_time_usec = (double)(end_time.tv_usec — start_time.tv_usec):
printf ("%10.0f ". temp_-time_secx*1000000+ temp_time_usec):

fllush(stdout):

}

read_matrix(A _local. matsize. my_rank. p):
read_vector(b_local.matsize. my._rank. p):

if (my_rank == 0){
fprintf (stderr."done with init\n"):
if (gettimeofday(&start_time . NULL) <0){
perror ("gettimeofday"):
exit(1l):
}
temp.-time_sec = (double)(start_time.tv_sec — end_time.tv_sec):
temp_time_usec = (double)(start_time.tv_usec — end_time.tv_usec):
printf ("%11.0f ", temp_-time_sec+*1000000+ temp_time_usec):
fHush(stdout):
c}:onverged = parallel_jacobi{A_local. xocal, blocal. matsize.
epsilon, max_iter. p, my_rank):
if (converged){
if(doprint)
Print_vector("The solution is", x_local. matsize. my_rank. p):
if (test_result)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 179

test_solution(A _local. blocal. x_local. matsize):
}
else
if (my rank == 0)
fprintf(stderr."Failed to converge in %d iterations\n". max_iter):
if(my _rank ==0){
if (gettimeofday(&end-_time , NULL) <0){
perror ("gettimeofday"):
exit(1):
}
temp_time_sec = (double)(end_time.tv_sec — start_time.tv_sec) :
temp_time.usec = (double)(end_time.tv_usec — start_time.tv_usec) :
printf ("%12.0f\n". temp_time_secx1000000+ temp_time_usec):
}
MPI_Finalize():
} /< main %/

/*******************************x*x******x********xxxxxxxx*xxx**xxxxxx/
/= Return 1 if iteration converged. 0 otherwise =/
/+ MATRIX_T is a 2-dimensional array */
int
parallel_jacobi(MATRIX_.T A _local.float x_local].float blocalf]. int n.
float tol. int max_iter. int p. int my_rank)
{

int ilocal. i_global. j.k:

int n.bar:

int iter_num:

float x_templ[MAX_DIM]:

float x_temp2[MAX_DIM]:

float* x_old:

float* x_new:

float max_diff, diff local;

int x. done = 0;

float upper_sum. lower_sum. partial solution:

n_bar = n/p:
/* Initialize x +/
MPI_Allgather(b local. n_bar, MPI_LFLOAT, x_templ,
n_bar, MPI.FLOAT, MPI.COMM_WORLD):
x_new = x_templ;
xold = x_temp?2:
iternum = 0;
do {
iter num-++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 180

diff local = 10000.0:
[+ Interchange x_old and x_new =/
SWAP(x_old, x_new):
for (idocal = 0: idocal < n_bar: i_local++){
i_global = ilocal + my_rank+n_bar:
upper_sum = lower_sum = 0.0:
partial solution = b_localfi_locall:
for (j =0:j < iglobal: j ++){
lower_sum += x_old[j] * A_localfilocal][j]:
}
for (k = iglobal+1 : k < n: k ++){
upper_sum += x-old[k]* A_locallilocal]{k]:

partial_solution —= lower_sum:
partial solution —= upper_sum;

partial_solution / (float) A_localfilocal]{ilocal]:
xlocal[i-local] = partial_solution:
diff local = max (diff local. fabs(xlocal{ilocal] — x_old[i_global})):
}
MPI_Allgather(x local. n_bar. MPI_FLOAT. x_new.
n_bar. MPI.FLOAT., MPI_.COMM_WORLD):
max_diff = 0.0;
for (x = 0 : x < matsize: x ++){
max._diff = max (max_diff. fabs(x_new([x] — x_old[x]}):
}
if (max_diff < tol) done = 1:
} while ((iter_num < max_iter) && (!done)):

return done;
} /* Jacobi */

MATRIX_T temp_mat;:

/******************************#***********#**************************/

void read_matrix(MATRIX_T A_local.int n.int my_rank.int p) {

int i, J:
int n_bar:
n_bar = n/p:

/* Fill dummy entries in temp with zeroes */
for (i = 0; i < n; i++)
for (j = n; j < MAX_DIM; j++)
temp_mat(i][j] = 0;
if (my_rank == 0) {
get_diag_mat(temp.mat, n, 5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 181

}
MPI Scatter(temp_mat. n_bar*MAX_DIM. MPIINT. A _local.

n_bar«MAX_DIM. MPI_INT. 0. MPI.COMM_WORLD):
} /+ Read_matrix */

/*******************************x********************z**xx******x***x*/
void read_vector(float x_localf]. int n.int my_rank. int p) {

int 1:

float temp{MAX_DIM]:

int n_bar:

n_bar = n/p:
if (my_rank == 0) {
get_rand_vect(temp.n):
}
MPI Scatter(temp. n.bar. MPI_FLOAT. x_ocal. n_.bar. MPI_FLOAT.
0. MPI.COMM_WORLD):
} /* Read_vector +/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

(1] The High-availability Linux Project. 2000. http://www.linux-ha.org.

[2] A. AcHARYA AND B. R. BADRINATH. An efficient protocol for ordering broadcast
messages in distributed systems. In Third IEEE Symposium on Parallel and Distributed
Systems, 1991. http://paul.rutgers.edu/ acharya/publications.html.

[3] S. V. ApvE AND M. D. HILL. A unified formalization of four shared-memory models.
IEEE Transactions on Parallel and Distributed Systems. 4(6):613-624. June 1993.

[4] D. AGrawaL, M. CHOY, H.-V. LEONG. AND A. K. SINGH. Mixed Consistency: A
Model for Parallel Programming. In Proc. of the 13th ACM Symp. on Principles of
Distributed Computing (PODC 94}, August 1994.

[3] M. AxamaDp. P. W. HuTTo., AND R. JOHN. Implementing and programining causal
distributed shared memory. In Proceedings of the 11th International Conference on
Distributed Computing Systems (ICDCS), pages 274-281. Arlington. TX USA. 1991.
IEEE Computer Society , Washington, DC.

[6] M. AHAMAD. G. NEIGER, P. KoHL1, J. E. BURNS, AND P. W. HuTTO. Casual Mem-

ory: Definitions. Implementation and Programming. Distributed Computing. 9:37-49.
1995.

[7] M. AHUJA. Flush primitives for asynchronous distributed systems. IPL: Information
Processing Letters, 34. 1990.

[8] Y. AMmir, D. DoLEV, S. KRAMER, AND D. MALKI. Transis: A communication
sub-system for high availability. In 22nd International Symposium on Fault-Tolcrant
Computing, pages 76-84. IEEE, July 1992.

[9] C. Amza, A. L. Cox, S. DWARKADAS. P. KELEHER, H. Lu. R. RajaMoxy. W. Yu.
AND W. ZWAENEPOEL. Treadmarks: Shared memory computing on networks of work-
stations. JEEE Computer, 2(29):18-28, Feb 1996.

[10] C. Amza, A. L. CoX, S. DWARKADAS, AND W. ZWAENEPOEL. Software DSM
Protocols that Adapt between Single Writer and M-ltiple Wr iter. In Proc. of the 3rd
IEEE Symp. on High-Performance Computer Architecture (HPCA-3). pages 261-271.
February 1997.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux-ha.org
http://paul.rutgers.edu/'acharya/publications.html

BIBLIOGRAPHY ‘ 183

[11] T. E. ANDERSON. D. E. CULLER. AND D. A. PATTERSON. A case for NOW (Networks
of Workstations). [EEE Micro. 15(1):54-64. February 1995.

[12] IEEE STANDARDS AssocCIATION. IEEE/ANSI Std 1003.1. 1996 Edition: Information
Technology-Portable Operating System Interface (POSIX)-Part 1: System Applica-
tion: Program Interface (API) {C Language]. 1996.

[13] P. AuLD AND P. KEARNS. PBP: A Pipelined Broadcast Protocol for Ethernet.
In Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems. PDCS °99. pages 845-850. Anaheim. CA. November 1999.
IASTED/ACTA Press.

[14] P. AuLD AND P. KEARNS. “broadcast distributed shared memory”™. In Proceedings
of the ICSA 13th International Conference on Parallel and Distributed Computing
Systems. pages 225-230. ICSA. 2000.

[15] H. E. BAL. M. F. KAASHOEK. AND A. S. TANENBAUM. Orca: A language for parallel

programming of distributed systems. [EEE Transactions on Software Engineering.
18(3):180-205, March 1992.

[16] A. BARAK AND O. LA’ADAN. Performance of the MOSIX parallel system for a cluster
of PC’s. Lecture Notes in Computer Science. 1225:624-77. 1997.

[17] R. BIANCHINI. L. I. KONTOTHANASSIS. R. PINTO. M. DE MARIA. M. ABUD. AND
C. L. AMORIM. Hiding Communication Latency and Coherence Overhead in Software
DSMs. In Proc. of the 7th Symp. on Architectural Support for Progrumming Languages
and Operating Systems (ASPLOS-VTI). pages 198-209. October 1996.

[18] K. P. BIRMAN AND T. A. JOSEPH. Reliable communication in the presence of failures.
ACM Transactions on Computer Systerns. 5(1):47-76. February 1987.

{19] G. BRACHA. Asynchronous Byzantine agreement protocols. Information and Compu-
tation. 75(2):130-143. November 1987.

[20] G. BrACHA AND S. TOUEG. Asynchronous consensus and broadcast protocols. Journal
of the ACM. 32(4):824-840, October 1985.

[21] T. BRECHT AND H. SANDHU. The region trap library: Handling traps on application-
defined regions of memory. In Useniz Annual Technical Conference. pages 85-99. 1999.

[22] J. Bruck. D. DoLEv, C. Ho. R. ORNI, AND R. STRONG. PCODE: An efficient and
reliable collective communication protocol for unreliable broadcast domains. In IPPS:
9th International Parallel Processing Symposium. pages 130-139. IEEE Computer So-
ciety Press, 1995.

(23] Rajkumar Buyya. editor. High Performance Cluster Computing. Volume I: Architec-
ture and Systems. Prentice-Hall PTR, Upper Saddle River. NJ 07458. USA. 1999.

[24] T. Camp, P. KEARNS, AND M. AHUJA. Proof rules for flush channels. [EEE Trans-
actions on Software Engineering., 19(4):366-378, April 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 184

[25] C. Cap aND V. STUMPEN. Efficient parallel computing in distributed workstation
environments. Parallel Computing. 19:1221-1234. 1993.

[26] J. B. CARTER. Design of the Munin distributed shared memory system. .Journal of
Parallel and Distributed Computing, 29(2):219-227. September 1995.

[27] J. B. CARTER. J. K. BENNETT. AND W. ZWAENEPOEL. Implementation and per-
formance of Munin. In Proceedings of 13th ACM Symposium on Operating Systems
Principles. pages 152-64. Association for Computing Machinery SIGOPS. October
1991.

[28] J. B. CARTER. J. K. BENNETT. AND W. ZWAENEPOEL. Techniques for Reducing
Consistency-Related Communication in Distributed Shared Memory Systems. ACAM
Transactions on Computer Systems. 13(3):205-243. August 1995.

[29] J. B. CARTER. D. KHANDEKAR. AND L. KaMB. Distributed shared memory: Where
we are and where we should be headed? In Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V). pages 119-122. May 1995.

[30] J. CHANG AND N. F. MAXEMCHUK. Reliable Broadcast Protocols. ACAl Trans.
Comp. Systems.. 2. 3:251-273. August 1984.

[31] H. A. CHEN. Y. O. CARRASCO. AND A. W. APON. Mpi collective operations over ip
multicast. In IPDPS 2000 Workshops. J. Rolim et Al.. editor. pages 51-60. Springer-
Verlag. 2000.

{32] D. R. CHERITON. Preliminary thoughts on problem-oriented shared memory: A de-
centralized approach to distributed systems. Operating Systems Review. 19(4):26-33.
October 1985.

[33] A. CuEUNG AND A. REEVES. High performance computing on a cluster of worksta-
tions. In Proc. First Int. Symp. on High-Performance Distributed Computing. pages
152-160, 1992.

[34] S. E. DEERING. Host Extensions for IP Multicasting. RFC 1112. Aug. 1989.

[35] D. DoLEv AND D. MALKI. The design of the Transis system. Lecture Notes in
Computer Science. 938:83-77. 1995.

[36] L. TORVALDS ET ALIA. The Linux Kernel source tree. 1991+. http://www.kernel.org.

[37] M. FIscHER, N. LYNCH, AND M. PATERSON. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32:374-382. 1985.

[38] M. J. FISCHER AND A. MICHAEL. Sacrificing serializability to attain high availability.
In ACM SIGACT-SIGMOD Symp. on Principles of Database Systems 1. Aho(ed).
ACM, March 1982.

[39] MESSAGE PASSING INTERFACE FORUM. MPI: a Message-Passing Interface Standard.
http://www.mpi-forum.org, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.kernel.org
http://www.mpi-forum.org

BIBLIOGRAPHY 185

[40] K. GHARACHORLOO, S. ADVE. A. GUPTA. J. L. HENNESSY. AND M. D. HiLL. Pro-
gramming for different memory consistency models. Journal of Parallel and Distributed
Computing. 15(4):399-407. August 1992,

[41] K. GHARACHORLOO. D. LENOSKI. .J. LAUDON. P. GIBBONS. A. GUPTA. AND J. L.
HENEsSsY. Memory consistency and event ordering in scalable shared-memory multipro-
cessors. In Proc. 17th Annual Int’l Symp. on Computer Architecturc. ACM SIGARCH
Computer Architecture News. page 15. June 1990. Published as Proc. 17th Annual Int’l
Symp. on Computer Architecture. ACM SIGARCH Computer Architecture News. vol-
ume 18. number 2.

[42] D. P. GHORMLEY. D. PETROU. S. H. RODRIGUES. A. M. VAHDAT. axD T. E.
ANDERSON. GLUnix: A Global Layer Unix for a network of workstations. Software
Practice and Ezperience. 28(9):929-961. July 1998.

[(43] P. B. GiBBONS. M. MERRITT, AND K. GHARACHORLOO. Proving Sequential Con-
sistency of High-Performance Shared Memories (Extended Abstract). In Proc. of the
3rd ACM Symp. on Parallel Algorithms and Architectures (SPAA 91). pages 292-303.
July 1991.

[44] P. GORTMAKER. Linux Ethernet-Howto. http://www-.linuxdoc.org/HOWTO/Ethernect-
HOWTO.html, May 1999.

[45] W. Gropp. E. Lusk. N. Doss. AND A. SKJELLUM. A high-performance. portable

implementation of the MPI message passing interface standard. Parallel Computing.
22(6):789-828. September 1996.

[46] M. D. HiLL. Multiprocessors should support simple memory consistency protocols.
IEEE Computer. 31(8). August 1998.

[47] W. Hu, W. SHI, AND Z. TANG. Reducing system overheads in home-based software
DSMs. In Proc. of the Second Merged Symp. IPPS/SPDP 1999). pages 167-173. April
1999.

[48] G. HuGHES-FENCHEL. A flexible clustered approach to high availability. In Proceedings
of The Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing
(FTCS’97). pages 314-319. Washington - Brussels - Tokyo. June 1997. IEEE.

[49] P. W. HuTTO AND M. AHAMAD. Slow memory: Weakening consistency to enhance
concurrency in distributed shared memories. In Proc. of the 10th Int’l Conf. on Dis-
tributed Computing Systems (ICDCS-10). pages 302-311, May 1990.

[50] L. IFTope, C. DusNIickI, E. FELTEN. AND K. LI. Improving release-consistent
shared virtual memory using automatic update. In Proceedings of the Second Inter-
national Symposium on High-Performance Computer Architecture. pages 14-25. San
Jose, California, February 3-7. 1996. IEEE Computer Society TCCA.

[51] R. JouN AND M. AHAMAD. Casual Memory: Implementation, Programming Support
and Experiences. Technical Report GIT-CC-93-10. Geogia Institute of Technology.
1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linuxdoc.org/HOWTO/Ethernct-

BIBLIOGRAPHY 186

[52] R. JoHN AND M. AHAMAD. Evaluation of Casual Distributed Shared Memory for
Data-race-free Programs. Technical Report GIT-CC-94-34. Georgia Institute of Tech-
nology, 1994.

[53] MicHAEL K. JOHNSON AND ERIK W. TROAN. Linuz Application Development. Ad-
dison-Wesley, Reading, MA. USA. 1998.

[534] H. KARL. Bridging the gap between distributed shared memory and message pass-
ing. In Proc. of the ACM 1998 Workshop on Java for High-Performance Network
Computing. March 1998.

[55] P. KELEHER. A. L. Cox. AND W. ZWAENEPOEL. Lazy release consistency for software

distributed shared memory. In Proc. 19th Int. Symposium on Comp. Architecture. pages
13-21. Gold Coast (Australia). May 1992.

[56] L. LAMPORT. Implementation of reliable distributed multiprocess systems. Computer
Networks: The International Journal of Distributed Informatique. 2(2):95-114. May
1978.

[57] L. LAMPORT. Time, clocks. and the ordering of events in a distributed system. Com-
munications of the ACM. 21(7):558-565. 1978.

[538] L. LaMpPORT. Time. Clocks. and the Ordering of Events in a Distributed System.
Communications of the ACM. 21(7):558-565. July 1978.

[59] L. LaMPORT. How to make a multiprocessor that correctly executes multiprocess
programs. IEEE Trans. on Computers. C-28(9):690-691. September 1979.

[60] D. Lenoski. J. LAubpoN. K. GHARACHORLOO. W. D. WEBER. A. GUPTA.
J. HENESSY. M. HorowrTz. AND M. S. LaM. The stanford dash multiprocessor.
IEEE Computer. 25(3):63. March 1992.

[61] X. LEROY. Linuxthreads - POSIX 1003.1c kernel threads for Linux. Software Library.
1997. http://pauillac.inria.fr/ "xleroy /linuxthreads.

[62] K. L1 AND P. HuDAK. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems, 7(4):321-359. 1986.

[63] R. J. LipTOoN AND J. S. SANDBERG. PRAM: A scalable shared memory. Technical
Report CS-TR-180-88. Princeton University, September 1988.

[64] J. Loncaric. Linux 2.0.36 TCP Performance Fix for Short Messages. 1999.
http://www.icase.edu/coral/LinuxTCP.html.

[65] R. M. METCALF AND D. R. BoGGs. Ethernet: Distributed Packet Switching for
Local Computer Networks. Communications of the ACM, 19(7):395-404. July 1976.

(66] L. E. MOSER, P. M. MELLIAR-SMITH. D. A. AGARWAL. R. K. BUDHIA, AND C. A.
LINGLEY-PAPADOPOULOS. Totem: A Fault-Tolerant Multicast Group Communication
System. Communications of the ACM, 39(4):54-63. April 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://pauillac.inria.fr/~xleroy/linuxthreads
http://ww%e2%80%99w.icase.edu/coral/LinuxTCP.html

BIBLIOGRAPHY 187

[67] B. NITZBERG AND V. Lo. Distributed shared memory: A survey of issues and algo-
rithms. Computer. pages 52-60. August 1991.

[68] M. OGucHI. H. AIDA. AND T. SAITO. A proposal for a DSM architecture suitable for
a widely distributed environment and its evaluation. In Proc. of the Fourth IEEE Int'l
Symp. on High Performance Distributed Computing (HPDC-4). pages 32-39. August
1995.

[69] P. PACHECO. Parallel programming with MPI. Morgan Kaufmann Publishers. Los
Altos. CA 94022, USA. 1997.

[70] C. PARTRIDGE AND R. HINDEN. Version 2 of the Reliable Datagram Protocol (RDP).
RFC 1151. April 1990. 4 Pages.

[71] L. L. PETERSON. N. C. BUCHHOLZ. AND R. D. SCHLICHTING. Preserving and Using
Context Information in Interprocess Communication. 4 CA Transactions on Computer
Systems. 7(3):217-246. August 1989.

[72] U. RAMACHANDRAN AND M. Y. A. KHALIDI. An implementation of distributed
shared memory. Software. Practice and Ezperience. 21(5):443-1464. [5] 1991.

[73] M. RAYNAL AND A. ScHIPER. From Casual Consistency to Scquential Consistency in
Shared Memory Systems. Technical Report 926. IRISA. France. May 1995.

[T4] G. RICART AND A. AGRAWAL. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM. 24(1):9-17. Jan 1981.

[75] D. J. ScALES AND K. GHARACHORLOO. Towards Transparent and Efficient Software
Distributed Shared Memory. In Proc. of the 16th ACAL Symp. on Operating Systems
Principles (SOSP-16). October 1997.

[76] D. J. ScaLEs. K. GHARACHORLOO. AND C. A. THEKKATH. Shasta: A Low Overhead.
Software-Only Approach for Supporting Fine-Grain Sha red Memory. In Proc. of the
7th Symp. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VII). pages 174-185. October 1996.

[77] F. B. SCHNEIDER. Synchronization in Distributed Programs. ACAM Transactions on
Programming Languages and Systems. 4(2):125-148, April 1982.

[78] F. B. SCHNEIDER. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299-319. December 1990.

[79] T. SEIDMANN. Multicast-based runtime system for highly efficient causally consistent
software-only DSM. Lecture Notes in Computer Science, 1586:547-77. 1999.

[80] J. P. SINGH, W. WEBER, AND A. GUPTA. SPLASH: Stanford parallel applications
for shared-memory. Computer Architecture News. 20(1):5-44. 1995.

[81] IEEE CoMPUTER SoOCIETY. IEEE CS Task Force on Cluster Computing. 2000.
http://www.ieeetfcc.org/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ieeetfcc.org/

BIBLIOGRAPHY 188

[82] E. SPEIGHT AND J. K. BENNETT. Brazos: A Third Generation DSM System. In Proc.
of the USENIX Windows NT Workshop. August 1997.

(83] T. STERLING, D. BECKER. AND MORE. The Beowulf Project at CESDIS.
http://beowulf.gsfc.nasa.gov/.

[84] T. STERLING. D. SAVARESE. D. J. BECKER. J. E. DORBAND. U. A. RANAWAKE.
AND C. V. PACKER. BEOWULF : A parallel workstation for scientific computation.
In International Conference on Parallel Processing. Vol.1: Architecture. pages 11-14.
Boca Raton, USA. August 1995. CRC Press.

[85] W. R. STEVENS. TCP/IP Illustrated- The Protocols. Addison-Wesley. Reading. MA.
USA. 1994.

[86] W. R. STEVENS. UNIX network programming: Networking APls: sockets and XTI.
volume 1. Prentice-Hall PTR. Upper Saddle River. NJ 07458. USA. second edition.
1998.

[87] M. STUMM AND S. ZHOU. Algorithms implementing distributed shared memory. IEEE
Computer. 23(5):54—64. [5] 1990.

{88] M. SwaNsON, L. STROLLER. AND J. B. CARTER. Making distributed shared memory
simple, yet efficient. In Proc. of the 3rd Int’l Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS'98). pages 2-13. March 1998.

[89] A. S. TANENBAUM. M. F. KaAAsHOEK. AND H. E. BAL. Using broadcasting to
implement distributed shared memory efficiently. In Readings in Distributed Computing
Systems, T. L. Casavant and M. Singhal. editors. pages 387-408. IEEE Computer
Society Press, 1994.

[90] ANDREW S. TANENBAUM. Computer Networks. Prentice Hall. 2. edition. 1989.

[91] S. TouEG. K. J. PERRY, AND T. K. SRIKANTH. Fast distributed agreement. In Pro-
ceedings of the 4th Annual ACM Symposium on Principles of Distributed Computing.
Ray Strong, editor, pages 87-101, Minaki, ON, Canada. August 1985. ACM Press.

[92] E. UpFAL AND A. WIGDERSON. How to share memory in a distributed system. Journal
of the Association for Computing Machinery, 34(1):116-127. [1] 1987.

[93] D. WALKER. Long-range n-body code. Web Page. 1995.
http://www.epm.ornl.gov/ walker/OLD_ORNL_WEB_PAGE/mpi/examples
/nbody.html.

[94] B. WHETTEN, T. MONTGOMERY, AND S. KAPLAN. A High Performance Totally
Ordered Multicast Protocol. Lecture Notes in Computer Science. 938:33-55, 1995.

[95] G. WRIGHT AND W. R. STEVENS. TCP/IP Illustrated- The Implementation. Addi-
son-Wesley, Reading. MA. USA, 1995.

[96] M. J. ZEKAUSKAS. W. A. SAWDON, AND B. N. BERSHAD. Software write detection

for a distributed shared memory. In Proc. of the Ist Symp. on Operating Systems
Design and Implementation (OSDI’94). pages 87-100, November 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://beowulf.gsfc.nasa.gov/
http://www.epm.ornl.gov/~walker/OLD_ORNL_WEB_PAGE/mpi/exampIes

VITA

Born in Northampton, Massachusetts. Philip was raised in the Research Triangle Park area
of N.C. After resettling in Connecticut. he did his undergraduate work at Hunter College
in New York City. He started graduate school in 1993 and completed a Master’s degree in
1995. Married in June of 2000. he now lives in Newton. Mass with his wife Catherine. He

is currently doing kernel engineering and product development for Egenera Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Broadcast distributed shared memory
	Recommended Citation

	tmp.1539734415.pdf.o84r9

