
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2001

Broadcast distributed shared memory Broadcast distributed shared memory

Philip Ragner Auld
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Auld, Philip Ragner, "Broadcast distributed shared memory" (2001). Dissertations, Theses, and Masters
Projects. William & Mary. Paper 1539623374.
https://dx.doi.org/doi:10.21220/s2-f6tw-th27

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-f6tw-th27
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Broadcast Distributed Shared Memory

A D issertation

Presented to

T he Faculty of the D epartm ent of C om puter Science

T he College of William &: M ary in Virginia

In Partial Fulfillm ent

O f th e Requirements fo r the Degree of

Doctor of Philosophy

by

Philip R. A u ld

2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3012228

___ ®

UMI
UMI Microform 3012228

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

T his d isserta tion is su b m itted in partia l fulfillme n t o f

th e requirem ents for th e degree o f

D octor o f Philosophy

P ln lip R . A uld

Approved, Jan u a ry 2001

P hil K earns
Thesis Advisor

X iaodong Z ia n g

Bill B vnum

AJc
Bob N oonan

Gene T fa c j /
Departmeht obPhysics

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y father. Dr. Louis E. Auld

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of C on ten ts

A ck n ow led gm en ts ix

L ist o f F igu res x iii

A b str a c t x iv

1 In tro d u ctio n 2

1.1 D istributed Shared M e m o ry .. 4

1.1.1 Improving DSM p e rfo rm a n c e .. 6

1.2 Memory Coherence M o d e l s .. 9

1.2.1 Sequential C o n sis ten c y .. 9

1.2.2 Causal M em o ry .. 11

1.2.3 Processor Consistency and P R A M .. 13

1.2.4 Slow M e m o ry ... 15

1.2.5 Relating generic weak memories ... 17

1.2.6 Special Access W eak Models .. 18

1.2.6.1 Weak O rd e r in g ... 19

1.2.6.2 Release C o n s is te n c y ... 20

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Goals of T h is R e se a rc h ... 21

1.3.1 U sing B roadcast For C o m m u n ica tio n ... 23

1.3.1.1 S trong R e l ia b i l i t y ... 24

1.3.1.2 Weak R e lia b i li ty .. 26

1.4 O r g a n iz a t io n .. 27

2 B road cast D is tr ib u te d Shared M e m o r y 28

2.1 BDSM O v e r v ie w ... 29

2.2 BDSM M em ory M o d e l ... 33

2.2.1 D efinition of BDSM coherence ... 34

2.2.2 Form alism and D efin itions.. 35

2.2.2.1 Events .. 35

2.2.2.2 D e f in it io n s ... 36

2.2.2.3 BDSM Definition ... 37

2.2.3 BDSM coherence can be a t least as strong as S C 39

2.3 Program m ing In te rfa c e .. 43

2.3.1 In itialization and f u n c t i o n s .. 45

2.3.2 M em ory Access F u n c tio n s .. 46

2.3.3 Synchronization F u n c tio n s .. 48

2.3.4 C lean-up and Exit F u n c t i o n s ... 48

2.3.5 Configuration F i l e .. 49

2.4 C o n c lu sio n s ... 50

3 T h e P ip e lin ed B ro a d ca st P r o to c o l 51

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Positive Acknowledgment P r o to c o l .. 54

3-1.1 Protocol P r e s e n ta t io n .. 55

3.1.2 Formalism and P r o o f s .. G2

3.1.3 Im plem entation of PBP1 ... G9

3.2 Using Negative A cknow ledgm ents... “ 2

3.2.1 Protocol P r e s e n ta t io n .. 73

3.2.2 Formalism for P B P 2 .. 75

3-2.3 Im p lem en ta tion .. 7G

3.3 A pplications... 78

3.3.1 D istributed Shared M em o ry .. 78

3.3.2 State M a c h in e s .. 78

3.4 C o n clu sions... 79

4 P B P E x p e r im e n ta l R e s u l t s 84

4.1 Experimental Setup ... 85

4.2 PB P Compared to S tandard P ro to c o ls ... 87

4.2.1 T h ro u g h p u t.. 87

4.2.2 All-to-All C o m m u n ica tio n ... 90

4.2.3 L a te n c y .. 91

4.3 Compared to R M P .. 92

4.4 Effects of Window S iz e .. 94

4.5 Linux Kernel D ifferences.. 97

4.6 C onclusions... 98

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 B D S M Im p lem en ta tio n 101

5.1 Im plem entation O v e rv ie w ... 101

5.1.1 Synchronization .. 103

5.1.2 Im plem entation D e t a i l s .. 106

5.2 P ro o f of Im p lem en ta tio n .. 108

5.2.1 Barrier C o rrec tn ess .. 109

5.2.2 Lock C o rre c tn e s s .. I l l

5.2.3 BDSM Im plem entation Correctness .. 113

5.3 C o n c lu s io n s ... 115

6 D S M E x p er im en ta l R e s u lts 117

6.1 Experim ental Setup ... 118

6.2 T est suite programs ... 119

6.3 R esults ... 120

6.4 Effects of Window S iz e .. 127

6.5 Message Loss B e h a v io r.. 129

6.5.1 Window Size and Message L o s s .. 133

6.6 C o n c lu sio n s .. 134

7 E x te n s io n s For B D S M 135

7.1 Fault-Tolerant S e r v ic e .. 136

7.1.1 State Machine M odel............. .. 137

7.1.2 Pseudo-code.. 140

7.1.2.1 T he C l i e n t .. 140

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.2.2 T he Shared M emory C o m p o n e n t.. 141

7.1.2.3 Request S ta b i l i ty ... 142

7.1.2.4 T he R e p l ic a s .. 144

7.1.3 P r o o f .. 147

7.1.3.1 P roof o f O rder and S t a b i l i t y ... 147

7.1.3.2 P roof o f A g r e e m e n t .. 148

7.2 Extending M e m o ry ... 150

7.2.1 Expanding M em ory Usage w ith Selective J o i n ... 151

7.2.2 Improving Scalability ... 152

7.2.3 Barrier M arker S y s te m ... 155

7.2.4 P r o o f .. 157

7.3 C o n c lu sio n s... 159

8 C onclu sion s 160

8.1 Future d ir e c tio n s .. 161

8.2 C o n c lu sio n s... 163

A S a m p le Test C od e 166

A .l BDSM Jacobi Code ... 166

A.2 M PI Jacobi C o d e ... 176

B ib liograp h y 182

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to th an k my advisor. Phil Kearns, for his help, guidance and patience.

M att and Tracy deserve my thanks for encouraging me to take th e first steps toward this

accomplishment. I owe a great deal to my wife Catherine, love and eternal gratitude for

a ll the encouragement, proof-reading and m ost of all patience. T han k s to Anna. Joel, and

Felipe for many discussions and letting me bounce ideas around. Finally, thanks to my

m other and father for everything.

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ist o f F igures

1.1 Sequential Consistency Example P ro g ra m s ... 10

1.2 Simple Causal Relationship... 11

1.3 C oncurrent W rites.. 12

1.4 PRAM E x a m p l e .. 14

1.5 PRAM fails logical synch ron iza tion .. 15

1.6 Slow memory e x a m p le .. 16

1.7 Coherence models as execution s p a c e s ... 18

2.1 Coherence models as execution spaces, w ith B D S M .. 30

2.2 Coherence of different seg m en ts ... 31

2.3 Coherence provided is not c a u s a l ... 32

2.4 Coherence ensured using sy n ch ron iza tion ... 32

3.1 Local D ata for P B P 1 ... 56

3.2 User calls to P B P 1 .. 57

3.3 Message form at for P B P l ... 58

3.4 P B P l Receive A c t io n s .. 59

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 P B P l Send A ctions .. 61

3.6 P B P l T im er E v e n t .. 62

3.7 P B P l Design Layers... 69

3.8 PB P2 N orm al S ta te Receive A c t io n s ... 80

3.9 PB P2 T im er E v e n t ... 81

3.10 PB P2 Need Resend S t a t e ... 82

3.11 PB P2 Design Layers.. 83

4.1 Times for T hroughpu t Experim ent for Small Messages... 88

4.2 Tim es for T hroughput Experim ent for Large Messages... 89

4.3 Effective th roughpu t in M B /s o f T C P and both versions of P B P w ith 16 and

128 windows. Percentages are 95% confidence.. 89

4.4 Effective th roughpu t. Ideal versus PB P and T C P ... 90

4.5 All-to-All for Sm all Messages.. 91

4.6 All-to-All for Large Messages.. 92

4.7 Latency for Small Messages... 93

4.8 Latency for Large Messages... 94

4.9 Tim e for T hroughput Experim ent. PB P with Variable W indow Size. Small

Messages.. 95

4.10 Tim e for T hroughpu t Experim ent, P B P with Variable W indow Size. Large

M essages... 96

4.11 All-to-All. P B P w ith Variable W indow Size. Small Messages............................. 97

4.12 All-to-All. P B P w ith Variable W indow Size. Large Messages............................. 98

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.13 Raw Number of Lost Messages for All-to-All. P B P 2 w ith Variable Window

Size. Large Messages.. 99

4.14 All-to-All. PBP2 with Variable Window Size. Large Messages........................... 100

4.15 All-to-All. PBP2 w ith Variable W indow Size. Large Messages........................... 100

5.1 DSM system d esig n .. 102

5.2 Pseudo-code for barrier im p le m e n ta t io n ... 104

5.3 Exam ple using l o c k s ... 105

5.4 System s t r u c t u r e .. 107

6.1 Speedups for m a t m u l t ... 121

6.2 Speedups for n b o d y ... 122

6.3 Speedups for j a c o b i ... 123

6.4 Speedups for e g ... 124

6.5 Speedups for t s p .. 125

6.6 Message passing for DSM program s .. 127

6.7 W indow Size and Speedup for j a c o b i .. 128

6.8 W indow Size and Speedup for m a tm u lt.. 129

6.9 Message loss for eg and j a c o b i .. 130

6.10 Message loss by type (95% confidence intervals shown) 131

6.11 Sample execution times for e g ... 132

6.12 PB P2 messages loss versus window size ... 133

7.1 C lient O p e r a t io n ... 141

7.2 Request lists in shared m e m o ry .. 142

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1457.3 Replica o p e ra t io n ..

7.4 BDSM using multiple PB P channels..

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

D istributed shared m em ory (DSM) provides the illusion of shared memory processing to
program s running on physically distributed system s. M any of these systems are connected
by a broadcast m edium network such as E th e rn e t. In th is thesis, we develop a weakly
coherent model for DSM th a t takes advantage o f hardware-level broadcast. W e define the
broadcast DSM model (BDSM) to provide fine-grained sharing of user-defined locations.
Additionally, since extrem ely weak DSM m odels are difficult to program. BDSM provides
effective synchronization operations tha t allow it to function as a stronger memory. We show
speedup results for a te st su ite of parallel program s and com pare them to M PI versions.

To overcome the po ten tia l for message loss using broadcast on an E thernet segment we
have developed a reliable broadcast protocol, called Pipelined Broadcast P ro toco l (PBP).
T his protocol provides the illusion of a series o f FIFO pipes among member process, on
top of E thernet broadcast operations. We discuss two versions of the PBP protocol and
the ir im plem entations. Com parisons to T C P show the predicted benefits of using broadcast.
P B P also shows strong th roughpu t results, nearing the m axim um of our lOBase-T hardware.

By combining weak DSM and hardware b roadcast we developed a system th a t provides
com parable perform ance to a common message-passing system . M PI. For our te s t programs
th a t have all-to-all com m unication patterns. wre actually see be tte r performance th an MPI.
We show' th a t using broadcast to perform DSM updates can be a viable alternative to
message passing for parallel and distributed com putation on a single E thernet segment.

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Broadcast Distributed Shared Memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In troduction

T he use of a network of workstations (NOW) as a com putational platform has increased

in recent years as the price and performance of single processor machines and network

hardw are has improved. These clusters are being used in two im portant ways. T he first

is as a high perform ance compute engine. Performing parallel prim arily num erical com pu­

ta tions on a cluster can provide results approaching those of dedicated parallel machines

a t fractions of the c o s t[ll. 16. 23. 25. 33. 42. 81]. The second m ajor application uses the

clustered machines for redundancy, to remove the single point of failure and bottleneck of

single server system sfl, 48, 81]. These networks of w orkstations are used as reliable, in­

trane t, d istributed platforms, for example: network file system (NFS) servers, d istribu ted

databases, and d istributed web servers.

The relatively small cost of a cluster of workstations com pared to th e cost of a high-

performance com puting platform, as well as the potentially higher accessibility provided by

multiple semi-autonomous workstations, has lead to substan tial work in th e area of parallel

com putation on a local area network (LAN) of workstations[25. 33]. More people can use

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 3

the workstations as desk machines allowing th e costs to be dispersed, m aking b e tte r use

o f the systems. In o rder to make them useful for parallel com putation these system s need

to exhibit perform ance close to tha t of the parallel m achines they are replacing. T he price

and utilization benefits of the NOW m odel can overcome some of th e perform ance gap

between these system s and dedicated high perform ance platforms. T h is can be seen by

th e growing use o f Beowulf[83. 84] system s. In fact, the cluster model is being applied to

dedicated system s bu ilt specifically for such uses. W hile many of these system s use special

high bandw idth sw itching hardware as an interconnect, a cluster of processing nodes on a

switched E th e rn e t[65] segment is a com mon platform for parallel program m ing.

Many com puting tasks, where perform ance is not as vital as reliability o r availability,

can benefit from th e d istribu ted network m odel as well. For example, a d is tr ib u ted database

m ight not have the sam e performance requirem ents as a parallel num erical com putation,

b u t might be required to survive longer. An im portan t aspect of a d is trib u ted platform can

be fault-tolerance. A system of dispersed processors should be less prone to to ta l failure

th an a single m ultiprocessor machine. Again, a database needs to survive a processor failure

and potentially recover its s ta te w ithout restarting .

These p latform s often require either a layer software to manage the d istribu tion of the

com putation or changes to the program itself. T he transition from a parallel program

running on a m ultiprocessor to one running on a LAN is not an easy one. M any multi­

processors provide shared memory, allowing program s to be written in a m anner similar

to single-processor program s, using accesses to shared memory locations as the principal

m eans of inter-process communication. A num ber of cache coherency protocols have been

developed to ensure the correct execution of program s running on tightly coupled m ultipro­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 4

cessors. Due to th e often higher latency an d possible inability to snoop, cache coherency

protocols may no t ad ap t well to a tru ly d is trib u ted system. T herefore, m ost distributed

program s are w ritten using the trad itional message-passing m odel, trea tin g each process

as a node to which explicit messages are sen t. This style of program m ing is not straight­

forward: processes m ust be coordinated, addresses established and connections made and

m aintained. Sm all changes in the com putation algorithm can have m a jo r consequences for

the program m er. T he program m er spends a great deal of effort on th e details o f message-

passing. taking tim e away from the actual algorithm that is the essence o f the program.

T he apparent difficulty of program m ing parallel com putations on d is trib u ted platforms has

lead to the use o f D istribu ted Shared M em ory (DSM). Cheriton argues th a t shared memory

program m ing is less difficult th an message passing[32]. Many o ther au thors take this as

an assumption[5, 27. 40. 49. 67. 72. 87. 92]. DSM is the logical extension o f the common,

shared-memory. coherent-cache. m ultiprocessor paradigm used on m any high performance

machines. T here has been much work in th e area o f DSMs in the p as t 10 years or so.

1.1 D istr ib u ted Shared M em ory

On a single processor, a process has a well-defined relationship w ith the memory. This

relationship is som etim es known as the register property. A single register or memory

location can have one bit p a tte rn in it a t any one time. All of the b its get set in parallel,

so a change is atom ic. Therefore, a load, o r read, of this register o r location returns one

and only one possible value-the value m ost recently written. Sequential programming on

a system obeying th e register principle is relatively easy. One knows w hat to expect. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 5

value of a read can be determined by looking a t the m ost immediate write in program

order, taking into account any compiler optim izations. This model extends to early parallel

processors w ith shared memory. The hardw are forces a serial order on writes and reads from

different processes. Atomic synchronization operations can be used to force a certain global

order. T hreaded programm ing on a single processor obeys th is model, w ith the addition

of synchronization, although there is no tru ly concurrent execution. However, when the

register property model is extended to a d istribu ted system the notion of "most recent"

becomes less well-defined. Clock skew, message-passing delay, and different processor speeds

all contribute to the lack of a s tric t global notion of one event's happening before another.

We no longer have a single hardware location to enforce a sequential order. It is not always

possible to determ ine which is the most recent write.

T he original proposals of DSM attem pted to use the same model of memory as the single

processor. Li and Hudak[62] present a system th a t mimics v irtual memory, except th a t not

only can pages be on secondary storage they can be on a different machine. S tum m and

Zhou[87] covered a range of algorithm s th a t provide DSM. T heir paper describes several

types of system s th a t implement a readers/w riters protocol, using both w rite-update and

w rite-invalidate. One such system used pages of shared m emory and allowed any num ber

of copies to be disseminated for reading by the p ages owner or a central managing process.

W hen a process gains write access, all of the readers must invalidate their copies. They

would then have to request a new, updated copy on the following read fault. These sys­

tem s were obvious extensions of v irtual m emory and cache coherency protocols. A nother

im plem entation was to send out an update of the new locations after a write (or series of

w rites). T he idea was to keep down the size of messages on th e network by not sending the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 6

en tire contents of a memory page. Here also, the re was a need for a single process to acquire

w rite access to the appropria te pages before sending out any updates. In th is way. strict

coherence is maintained. T h ere is still only one global view of what is in th e memory. Any

one process may not see th e en tire contents, b u t w hat it does see will be th e sam e as every

o th e r process' view of th a t p o rtio n of th e shared data-space. M aintaining th is s tr ic t view of

m em ory is very useful from a program m er's poin t of view. Single processor program s can be

d is trib u ted and run on a s tr ic t DSM w ith very little modification. However, netw ork latency

exacts a serious toll. Not only do d a ta pages need to get from one processor to another, but

w rite access requires a d is trib u ted m utual exclusion protocol. W henever a process tries to

w rite to a page for which it d o esn 't have w rite permission, globally-exclusive access must

be established. Page size also plays a m a jo r role in the performance of such system s. While

larger pages require less network com m unication, they also mean less concurrency as more

processes can be com peting for a given page.

As a result of the fact th a t DSM system s were many times slower than m essage passing

parallel programs, researchers began to exam ine the underlying memory m odel for a way

to increase performance[4. 28. 27. 60. 63. 87]. T he following sections describe some of the

models th a t have been developed in a n effort to reduce the overhead of s tr ic tly consistent

DSM. while allowing program m ing ease. M ost of these models are designed for scientific

com putations and. therefore, strive to provide a t least the illusion of a coherent memory.

1 .1 .1 Im p r o v in g DSIVE p e r fo r m a n c e

E arly DSM systems enforced a global notion o f memory coherence or consistency. This

consistency, while making p rogram m ing alm ost as straightforward as sequential processing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 7

was not w ithout cost. Implementing a readers/w riters protocol over the network greatly

reduced concurrency as many processes had to continually wait for access to pages of m em ­

ory. In response to this poor performance, several so-called weak memories, which relax the

consistency constrain ts, were proposed. T h e consistency constrain ts of a memory model are

th e guarantees provided to the user abou t how' the m em ory will behave. For exam ple, a

uniprocessor memory has consistency constrain ts tha t ensure a sequential order of m em ory

accesses directly related to the program order o f a process running on the memory. A read

is guaranteed to re tu rn the last value w ritten to a location, w ith last defined by program

execution order. These weaker models reduce the consistency constraints on the memory,

allowing executions to become incoherent in an a ttem p t to increase performance. By in­

coherent we mean the memory can be in a s ta te where two reads of the same location by

different processes can yield different values. Or. in o the r words, processes can see different

executions, som ething th a t cannot happen in strictly sequential processing. Again, some

o f these weak models are analogues of conventional coherence schemes for shared m emory

m ultiprocessors. O thers are derived from the notion o f causality inherent in d istribu ted

system s. Section 1.2 presents a sum m ary o f the consistency provided by some of the weak

m odels. One of the problems w ith these weak memories is th a t programming is more com­

plex th an it is for the consistent models. Allowing the m em ory to become incoherent means

different processes can have different views of the shared memory. Most of the more widely

used models of weak DSM impose program m ing constrain ts tha t, if followed, allow the

m em ory to appear consistent. In o ther words, the program m ing model is constrained to

ensure the memory appears coherent to the user program . This allows the perform ance

benefit of weakening the consistency to coexist w ith a viable, known programming model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 8

Most of the work on DSM has focused on page-based systems. Most o f these systems

ex tend th e built-in memory paging facilities to include a protocol for d istribu ted operation.

Several o f these systems, using weak memory sem antics, have achieved acceptable perfor­

m ance increases over sim ilar single process program s. In fact, at least one. Treadmarks[9]. is

now commercially available. T h is and similar system s have the advantage o f having trans­

paren t memory accesses. However, these page-based system s have several drawbacks. F irst,

sharing among processors is lim ited by the page size. Sharing units sm aller than a page,

which is often 4KB. can create unacceptable delays as a page containing m ore than one item

is swapped among processors. E ith er care needs to be taken to lay out d a ta on separate

pages or ex tra protocol needs to be added to facilitate the sharing of a single page. Second,

these systems tend to have very com plex protocols for ensuring memory coherence. The use

of multiple-writer protocols leads to a further increase in system complexity. Even though

page-based DSM has been explored more thoroughly than update system s, we feel tha t for

certain hardware and software situa tions update-based DSM. with its sim pler protocol, can

be a viable option.

T he Munin[26] shared object system uses th e page-based model to implement object

level granularity using release consistency with m ultiple writers. This system uses multiple

th reads and object-level, or location-level, granularity. As it is page-based, it transm its

whole pages using point-to-point communication as its method of propagating writes to

o ther processes.

Several systems use a form of autom atic update to provide weak DSM. The SHRIMP

system[50] uses special hardw are to improve the perform ance of Lazy Release Consistent

(LRC)[55] DSM. Oguchi, A ida and Saito[68] present the design and pro to type of a DSM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 9

system th a t uses m ulticast on ATM -based WANs. The design of th is system is based on

the FIFO order of m ulticast messages. It uses point-to-point messages to regulate access

perm ission to memory locations by way of a centralized sem aphore server. The im plem en­

ta tio n of the 0RCA[15. 89] program m ing language uses broadcast to disseminate updates

to d istribu ted objects. These updates are serialized through a central process to provide a

global order.

1.2 M em ory C oherence M odels

In o rder to clarify discussion o f memory coherence models, we present an overview o f the

basic models of coherence. For th is overview we will begin by looking at the most s tr ic t

model and move to weaker versions, com paring and contrasting them as needed to fu rther

understanding. There are two classifications of weak DSM models depending on the n a tu re

of reads and writes. Those in which read and writes are all the sam e type of access we label

ugeneric read/w rite" models. Those in which some reads and w rites are special accesses

and behave differently we call “special access" models. The DSM model in our research is

of the first type so we begin looking a t the generic models. We then discuss some o f the

special models because the coherence in our model is similar to th a t provided by some of

these.

1 .2 .1 S e q u e n t ia l C o n s is te n c y

M odern parallel machines do not follow the atomic, serial model of m em ory coherence. T h a t

is, the steps of one access can overlap the steps of another. In fact, they can be executed

out of program order. However, they are made to appear to happen in program order to all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 10

processes. Lamport[59] defines sequential consistency (SC) as follows: “A m ultiprocessor

is said to be sequentially consistent if the results are th e sam e as if the operations were

executed in some sequential o rder, and all of the operations from any one process are in

the o rder specified by th a t process's program." T he term operation, in our case, refers to

any access of shared memory. For the examples used in th is pap er all memory' locations

axe assum ed to have initial values of 0. We use the no ta tion ~z ~ 1“ for assignm ent, or

a w rite, o f the value 1 to location c. Similarly. ~read(z) = 1" is a read of location z that

re tu rn s the value 1.

Po Pi P-2

z ~ 1: w hile (x != 1) skip: while (y != 2) skip:

x 1; read(c) = 1: read(x) = 1:

z := 3: read(x) = 3:

V := 2:

F igure 1.1: Sequential Consistency Example Programs

As an exam ple of sequential consistency consider th e sim ple program s in figure 1.1. The

locations x and y are effectively used as synchronization operations. T he values read by P->

are the only possible results. In sequential consistency, all processes have the sam e view of

the o rder of events in the execution. There is one global view, which is a single interleaving

o f events, established by the execution history and shared by all processes. Sequential

consistency is the model most used in modern com puting platform s from the program m er's

point o f view. Memory accesses behave most like they do for a single processor. T h is allows

program m ers to use the memory m odel with which they are m ost comfortable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 11

r(x)?

w(y)l

w(x)I

Process 0 Process 1

F ig u re 1.2: Simple Causal Relationship.

1 .2 .2 C a u sa l M e m o r y

W hile the SC model grew out o f the m ultiprocessor domain, causal m em ory takes a different

approach, drawing its power from the causal n a tu re of the com m unication is a distributed

com putation. Lamport[57] formalized the notion of causality in concurrent com putations in

the "happens before" relation (—>■) on system events. This relation was applied to DSM by

A ham ad. H utto and John[5]. T he causal memory model is defined in term s of what value

can be returned by a read operation. Essentially, a write is analogous to a send operation

and a read is analogous to a receive. Here, however, a single write can have many reads

re tu rn its value. W hen a w rite is received into a processors view of memory, further reads

to th a t location will see th a t value until it is overwritten.

D efin itio n - A memory system is said to be causal if a read returns th e most recent write

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN TR O D U C TIO N 12

r(x)?

r(y)l
w(y)I

w(x)l

Process 0 Process 1

w(x)2 <>

Process 2

F ig u re 1.3: Concurrent Writes.

as defined by the relation

The relation is then the transitive and irreflexive closure of —rc. where —rc is a translation

of "happens before" as follows:

1. If operation o and o' are successive memory operations by the same process, then

o —y c o' .

2. I f the read operation oT returns the value of write operation ow. then ow —?c or.

3. Additionally, if not o —¥c o' and not o' —*c o then o and o' are said to be concurrent.

It is possible for the return value o f a read to be an element o f a set of possible values

made up of the values of all of the writes th a t axe concurrent to the read in question, or axe

concurrent to a causally preceding write.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 13

In figure 1.2, the two parallel arrows represent the tim e-line o f each process. We use

~w(y) 1“ to mean a w rite to location y of th e value 1 and “r(y)l~ to mean a read retu rn ing 1.

A is used when a returned value is unspecified. It is easy to see the causal relationship

betw een u /(x)l and r(x)? . shown w ith th e bold arrows. T he fact th a t the previous read

event, r (y) , read the value 1. means th a t process 0 has executed past v i(x)l. Therefore,

th a t value m ust be available to be read, in th e absence o f a la ter w rite. In figure 1.3. there

is no causal relationship between the w rites to location x by processes 0 and 2. They cure,

therefore, concurrent writes. In process 1. r (x)? now can re tu rn e ither 1 or 2.

T h e im plem entation of causal memory is docum ented, and a formal program m ing model

is defined in which synchronization variables are used to force the causal relationship to

follow a prescribed path[6. 51. 52]. T h a t is, synchronization is used to order the reads

an d w rites of a parallel com putation in a s tr ic t fashion, thus ensuring each read operation

re tu rn s th e value it should under the sequential consistency model. Enough synchronization

is used to ensure there are no d a ta races in the program . In th is way. a weaker form of

m em ory is transform ed into a sequentially consistent memory, if th e programm ing model is

followed. This result is proven by John and Ahamad[52]. T he exam ple used for SC (figure

1.1) w ill execute the same way on causal memory as it d id on SC.

1 .2 .3 P r o c e s s o r C o n s is te n c y a n d P R A M

P rocessor Consistency (PC) is a weakening of SC th a t orders events only based on the

p rog ram order of the issuing process. P C was introduced by Gharachorloo et al[41]. As

w ith SC , the operations by any one process m ust be seen by all processes in program order.

However, unlike SC, the interleaving of operations from all processes need not be the sam e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 14

as seen by all processes. In o ther words, there is 110 global ordering shared by all processes.

Different processes can see different orders, w ith in the bounds of program order.

P ipelined RAM . or PRA M , was first in troduced by Lipton and Sandberg[63]. PRAM

provides th e sam e coherence model as PC. In th is paper, we use th e term PRAM for

this model of coherence. PRAM is based on th e idea of each processor having a copy of

the shared d a ta and a queue (pipeline) of incom ing w rite updates. T hese queues receive

w rite updates from other processors in the o rder issued by the w riting processor. These

updates can arrive in an arbitrarily-interleaved order with respect to w rite updates from

o ther processors, as long sis the updates of each process appear to all o thers in the program

o rder of th e w riting process. These updates are then serviced, incorporated into the shared

memory, in FIFO order. PRAM allows w rites to be arbitrarily delayed. In fact, there is no

guarantee the w rites will ever take effect. T he idea is to incorporate th e network latency

involved in propagating w rite updates into the memory model.

Po Pi P 2

2 := 1: while (x != 1) skip: while (7/ != 2) skip:

x := 1: read(z) = 1: read(x) = 0 :

z := 3: read(z) = 3:

y ~ 2 :

F igure 1.4: PRAM Example

For exam ple, consider the processes shown in figure 1.4. It is possible for each process

to have a d istinct view of the shared d a ta space. Process P 1 has clearly seen the value 1 in

x . However. P 2 might not have, despite there being a "causal" link. T he w rite to y which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 15

allows P 2 to continue cannot happen until the w rite to x has been seen by P j. Process

P 2 s till sees the value of 3 in z as it should because the writes in P! are seen by all other

processes in the order issued. T his exam ple is one possible execution.

In the case of causal memory, synchronization is used to ensure the program sees the

stronger SC consistency th a t it expects. Since most, if not all. parallel program s require

some form of synchronization anyway, th is is not excessively burdensome. W ith PRA M and

weaker memories causality-based synchronization is no longer possible. It is still possible

to have processes synchronize the ir executions, bu t it may not appear th a t way to other

processes. A slight modification to the original example shows this. In figure 1.5 the

processes are synchronized to execute in sequence. However. P-> does not see the results

com puted by Pq before the synchronization.

Po P i P 2

z := 1; while (1 != 1) skip: while (y 1= 2) skip:

x := 1: read(z) = 1: read(x) = 0:

y := 2: read(z) -- 0:

F ig u re 1.5: PRAM fails logical synchronization

1 .2 .4 S lo w M em ory-

Slow m emory presents a very relaxed view of memory. While most of the previous memories

preserve program order as an im portan t aspect of the model, allowing some synchronization

techniques to function as expected, slow memory doesn!t enforce program order on the

m em ory system. H utto and A ham ad define slow memory as a location-relative weakening

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 16

of m em ory consistency [49]. T hey include it as an exam ple o f a multiversioning memory,

m aking it suitable for ap p lica tion to distributed ob jects. Slow m em ory can be defined in

term s of how' a read w'orks. A read on a slow m em ory location m ust return som e value

previously w ritten to th a t location. Further, once a value has been read, no earlier w rite to

th a t location by the process whose value is re tu rned can be read. W rites by a process are

always seen by tha t process immediately. This m akes for a form of memory much weaker

th a n all o f the previous exam ples.

Po P i P->

2 : = 1:

x := 1:

while (x != 1) skip;

read(z) — 0:

2 := 3:

V '■= 2:

while (?/ != 2) skip:

read(x) = 0;
read(x) = 1:

F ig u re 1.6: Slow memory example

Figure 1.6 shows a possib le execution of the exam ple program s on slow memory. W e see

th a t not only does Po no t see the w rite to x. as in th e PRA M exam ple, it might not see the

second w rite to 2. U nder PR A M . P 2 must see th e value 3 in 2 due to the program order

of P i- W ith slow m em ory th is is not the case. Synchronization is also a problem for slow

memory. T he example fails logical synchronization. Process Po does not see the resu lts of

P f s com putation prior to synchronization.

An interesting aspect o f slow memory is illu stra ted by the solution to the d ic tionary

problem [38]. The problem is to implement a sim ple associative table with insert, delete

and lookup operations. Lookup should return all values inserted b u t not deleted. W hat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 17

makes the problem difficult is th e requirement to satisfy the following conditions:

1. T he view m ust be consistent. An item is in a process's view if and only if it has been

inserted and not yet deleted.

2. T he system must be space-efficient, using bounded storage.

3. T h e system m ust be fault-tolerant. Functioning processes m ust continue, despite other

processes or com m unications failing.

4. All views m ust eventually converge and become consistent if there are no further

inserts or deletes.

A ham ad and John propose a solution to this problem using slow ineinory[49j. T his solution

dem onstrates p art of the power o f slow memory. We feel that slow m em ory is an interesting

alternative to the earlier m entioned weak memories.

1 .2 .5 R e la t in g g en er ic w e a k m e m o r ie s

T he weakness of a memory m odel can be seen as a space of allowable executions. T he larger

the space the more concurrency is allowed, a t the expense of tigh ter event ordering. The

generic memories presented above are related by

S C C Causal C P R A M C Slow.

T h a t is. all SC executions are causal, but not all causal executions are SC[49. 73]. All

legal causal executions axe-also PRAM , but there are legal PRAM executions th a t violate

causality. T he same relation holds between PRAM and Slow. O ur runn ing exam ple shows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 1. IN T R O D U C T IO N 18

these relationships. For example, figure 1.1 is a legal Slow memory execution, while figure

1.6 is not a legal SC execution. T his relationship is shown pictorially in figure 1.7.

1 .2 .6 S p e c ia l A c c e s s W e a k M o d e ls

Special access weak models are those th a t differentiate between m em ory accesses. T he

earlier models all assume reads and w rites axe the same. T hat is. one w rite is the sam e

as any other. Special access models have been developed that make a distinction between

types of m em ory accesses. Some are general and behave as the previous models. Some

have additional im pact upon execution. For exam ple, a write access m ay be part o f a

synchronization operation and have tigh ter ordering restrictions. These models are often

originally hardw are based, like W eak Ordering[3] and Release Consistency[41]. Lazy Release

SC = Sequential consistency
C = Causal
PC = Processor Consistency (PRAM)
S = Slow memory

Figure 1.7: Coherence models as execution spaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I . INTRODUCTION 19

Consistency[55] is a modification of Release Consistency th a t is designed for a software DSM

system . In this section we look at the basic operation o f these models for completeness.

1 .2 .6 .1 W e a k O rd e r in g

Like PC . Weak O rdering (WO) was derived from hardw are-based multiprocessors. In th is

case, there are constraints put on the software to be run on the WO system. These con­

stra in ts . if followed, allow the memory to appear sequentially consistent without paying the

full price of a tru ly SC system. Memory accesses are broken down into two types: accesses

to synchronization variables, and accesses to normal variables. The WO model can be

sum m ed up as follows.

D e f in it io n : A system is said to be weakly ordered if:

1. Access to global synchronization variables is strongly ordered (synchronization

obeys SC).

2. No access to a synchronization variable is allowed until all previous shared m em­

ory accesses are globally performed.

3. No access to global variables, synchronization or norm al, is allowed until all

previous synchronization accesses are globally performed.

A nother way to see this is from the software point of view. A memory system is weakly

ordered if software obeying a “synchronization model" appears to be running on sequentially

consistent memory. Adve and Hill[3] present a num ber of synchronization models for weakly

ordered systems. T he prim ary model is called Data-Race-Free. In th is model, the notion

of causality, as codified by Lamport[58], is captured in the context of memory accesses. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 20

d a ta race is defined as any two operations not s tric tly ordered by causality, th a t is to say.

concurrent operations, where a t most one is a read. Intuitively, this is what one expects.

Concurrent read accesses are acceptable, concurrent w rites are not.

1 .2 .6 .2 R e le a s e C o n s is te n c y

Release Consistency (RC). is sim ilar to weak ordering. RC is a slightly more formalized

m emory m odel often applied to software DSM system s. RC is based on the observation

th a t the s tru c tu re o f parallel program s allows the m em ory to become incoherent for certain

portions o f the execution, returning to a coherent s ta te a t synchronization poin ts, e.g. the

barrier between iterations, w ithout sacrificing correctness.

Originally presented as part of the DASH rnultiprocessor[41). release consistency gets

its nam e from the synchronization operations acquire and release. These synchronizing (or

special) operations are analogous to lock and unlock in a standard synchronization model.

RC is defined as follows.

D e f in it io n - A m emory is release consistent if:

1. Before an ordinary load or s to re operation is allowed to be performed, all previous

acquire operations m ust be performed.

2. Before a release is allowed to b e performed, all previous load and store operations

must be performed.

3. Special accesses obey processor consistency w ith respect to each other.

Program m ers on a release consistent system are required to label memory accesses as

acquire, release or ordinary. If the program is properly labeled, then the memory will appear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 21

sequentially consistent, and a correct program will execute correctly. Properly labeled is

defined as having enough special accesses labeled e ither acquire or release[41]. Enough

means th a t for any two memory accesses on different processors, if a t least one is labeled

ordinary and one of the two comes before the o ther in a correct execution, then there is a t

least one release on one processor and an acquire on the other, depending on which needs

to be before the other[40. 43]. T he idea behind RC is th a t time is only spent ensuring

sequential ordering among those accesses labeled as special. Because of the sem antics o f

critical sections, the writes can happen in any order as long as they are all seen by o ther

processors before the release is com pleted. This is also used to reduce com munication. The

writes can be buffered until the release operation and then sent out all a t once. C arter.

Bennett and Zwaenepoel[28] provide a very detailed look a t how these techniques can be

used to fu rther increase the efficiency of the RC model. In fact, results close to those of

hand-coded message passing can be achieved using m odern implementations on RC.

A variant of RC is Lazy Release Consistency (LRC)[55]. While RC sends invalidation

messages to all o ther processes on a release. LRC exploits the causal relationship to send

these invalidations only to the next process th a t acquires the page in question. This sig­

nificantly reduces the am ount of message-passing overhead. This software extension is the

basis of th e T readm arks system[9]

1.3 G oals o f T his R esearch

Extrem ely weak memories, such as PRAM and Slow, have several benefits th a t make them

attractive. F irst, there is no causal link between writes from different processes. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 1. IN TR O D U C TIO N 22

means th a t there is no global ordering, and write updates can be applied as they are

received. Therefore, such weak memories should be efficient. Second, they are inherently

update-based. W hen a process issues a w rite it is effective im m ediately on the local copy of

memory. T hen the new value for that location is sent as an u p d a te to the other processes.

Thus we have a system of fine-grained m em ory accesses. The locations can be of any size.

Third, having multiple copies of the shared memory space allows for a higher degree of

availability than page-based systems which may have only one valid copy of a given page.

The weakness th a t allows non-causal memories to perform well is also a hindrance to

meaningful program m ing on them. In the case of causal memory, synchronization is used

to make the memory model appear stronger than it is to allow effective programm ing.

W ith PRAM and Slow there is no causality enforced on the o rder of writes so it is not

possible, using memory locations, to have enough synchronization to make the memory

appear sequentially consistent. In order to make a similarly weak model usable, some

method of effective synchronization is required.

U pdate-based DSM systems can generate a number of com m unication messages. Each

and every' w rite needs to be passed, usually as a message in an underlying system, to each

other process. However, many cluster com puting environments where DSM might be used

are local axea networks. Further, many of these networks are E thernet based. This means

there is the possibility of using hardware-level broadcast to increase the effective bandw idth

of sending updates. We are interested in determ ining if reliable broadcast can be used to

increase the efficiency of update-based DSM systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 23

1 .3 .1 U s in g B r o a d c a s t For C o m m u n ic a t io n

Sharing d a ta am ong processors on a local a rea network requires com munication. O ften,

th is com m unication involves sending messages containing th e sam e information to a num ­

b e r of other processors. This is especially tru e for systems th a t replicate d a ta across the

en tire set of p a rtic ipa ting systems. D istribu ted databases an d o ther systems th a t provide

h igh availability, and shared memory o r ob ject systems tha t work on the update model are

exam ples. T h is kind o f communication is also common in m any parallel numerical com pu­

ta tio n s where each process needs values com puted by the o th e r processes to continue. A

com m on com m unication pattern in m any such program s involves each process both sending

a n d receiving d a ta from each other process, so-called all-to-all communication. Since m any

o f these system s are on a broadcast m edium network such as E thernet, we feel th a t by

using hardw are broadcast we can perform th is d a ta movement more efficiently than w ith

point-to-point messaging. However, using U D P /IP broadcast on an Ethernet segment can

b e subject to faults of omission. Single packets may be lost due to corruption or buffer

overflow, at th e receiving or sending process. M ost com putations will not tolerate this loss

o f data. Some mechanism is required to ensure delivery of each packet. One solution for

message-passing system s for parallel program m ing is to use the connection-oriented T C P

protocol. However, this means the broadcast medium is no t being used. An n process

system requires n 2 point-to-point T C P stream s to support all-to-all communication. An­

o th e r solution is to build an acknowledgment scheme into each program as needed. A th ird

approach is to develop middle-ware for reliably sending broadcast messages.

This aspect of our research is based on th is th ird approach. We have developed a reliabil­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R I. IN T R O D U C T IO N 24

ity protocol for UDP broadcast packets on a single E th e rn e t segment. VVe are in terested in

a low-level protocol analogous to the (usually unim plem ented) reliable datagram protocol.

RDP[70]. We feel there is a need for a protocol that does not have the overhead of a reliable,

atom ic, or totally-ordered, broadcast system designed for a general range of networks. T he

system we explore is designed for a single network segm ent so there is no need to handle

rou ting o r to use a softw are em ulation of broadcast. Also, because of the sm all scale of

th e network setup we d o n 't need to address more com plex problems like assuring virtual

synchrony and recovering from network partitioning. O u r protocol simply needs to ensure

delivery o f distinct d a tag ram packets. In order to allow' efficient, correct parallel com puting,

we also w ant the protocol to ensure th a t messages sent by any process are seen by others

in the order sent. We axe not interested in globally ordering messages, either to ta lly or

causally. T hat is. the o rder we provide is based solely on the sequence of messages sent

by each process. T here is no interdependence among m essages sent by different processes.

G lobally ordering messages goes beyond the scope of a sim ple UDP level protocol. O ne can

th in k of a collection o f FIFO pipelines connecting each process to each other. T he proto­

col we have developed is therefore called Pipelined B roadcast Protocol (PBP) to stress its

kinship to UDP and RD P.

1 .3 .1 .1 S trong R e lia b ility

M uch of the work in th e area of reliable broadcasts uses a s tric t definition of reliable. There

have been a number o f reliable broadcast protocols presented in the literature[30. 22. 2. 20.

35, 66, 18]. However, th ey are prim arily concerned w ith a stronger definition of reliability.

M ost of these systems take reliability to mean an atom ic broadcast, despite process failures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 25

O ne of the motivations for these systems is to provide virtual synchrony among distributed

processes. Each broadcast message is guaranteed to be seen, accurately and in order, by

all non-faulty processes o r by no non-faulty process. This is especially useful to distributed

database systems, bu t is m ore s tric t, and time consuming, than is required for many parallel

program s. Most of the protocols also work for general network configurations and often incur

g reater overhead than ou r system because they provide greater service. We briefly discuss

some of the m ajor reliable broadcast systems and point out some of the ways they are

different from PB P below.

S tarting w ith ISIS[18]. researchers have looked a t protocols to achieve atom ic broadcasts

in the presence of process or network failures including lost messages. The ISIS system

provides for causal or to ta l order and ensures v irtual synchrony am ong the processes. The

notion of virtual synchrony is essentially a form of agreement. Each process will see every

message sent even if a sender fails after sending messages to some process but before sending

to the others, or none will see such a message. The ISIS system is a more general system

th a t provides more powerful service guarantees. It doesn 't use hardw are broadcast as it is

designed to function on m ore diverse networks th a t may not have true broadcast capabilities.

The 0RCA[15. 89] Reliable broadcast system for shared objects uses a serializing method.

W hile it does use hardw are broadcast, it only uses it to send messages from the serializing

process. It takes a t least two messages for each broadcast because each sending process

m ust send its message to the serializing process, which then broadcasts it to the group.

Chang and Maxemchuck[30] developed a totally ordered protocol explicitly and exclu­

sively for broadcast networks. Their system is somewhat similar to ours in that it was

developed for the same specific network configuration. However, much of the complexity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 26

o f their system comes from the requirem ent to provide to ta l order among messages. T he

system uses a ro ta tin g token to determ ine which process w ill acknowledge each broadcast

message. T he token-holding site, in effect, becomes a serializing influence. The o ther pro­

cesses will deliver m essages in the sam e order they are acknow ledged by the token site. T his

m eans all processes deliver messages in the sam e total order.

1 .3 .1 .2 W eak R e lia b ility

Som e work has been done to take advantage of broadcasting messages without providing

a ll o f the guarantees o f strong reliability, while still ensuring delivery of all messages. T he

PSync[71] system uses piggv-backed acknowledgments and causal knowledge to determ ine

message order and delivery'. The PCODE[22] system is m ost sim ilar to our approach. It uses

hardw are broadcast a n d doesn't provide a global, total o rder. However, it is dem and driven

an d . in a sense, is synchronous. A receiving process makes requests to be sent messages.

T h e Transis[8] system provides different levels o f order, using m ulticast groups. The system

provides for causal to to ta l order of message delivery. Totem[66] and RMP[9-1] are sim ilar

system s th a t use a ro ta tin g token. Totem uses it to de term ine which process may send.

R M P uses the token to pass information abou t delivered m essages to allow buffer space to

be cleared. They bo th provide causal or to tally ordered m essage delivery within a m ulticast

group. Both of these a re systems designed for general netw ork topologies. Therefore, they

m ust resort to po in t-to-poin t messages on non-broadcast m edia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. IN T R O D U C T IO N 27

1.4 O rganization

In the following chapters we will present the work we have done to design an d implement

a system to provide com puting cluster users w ith a broadcast-based, fine-grained DSM

system . D uring our work it becam e clear th a t th e communication layer is in teresting and

possibly useful in its own righ t. This led to the separation of PBP from the DSM system,

allowing th e reliable FIFO broadcast to be used for o ther purposes. C hap ter 2 presents

th e theoretical model for BDSM . We present th e coherence protocol and a program m ing

interface. We then prove ou r system model provides th e sam e consistency as PR A M . Before

presenting the actual im plem entation of BDSM we explore the com m unication layer that

was developed to support reliable broadcasts. In chap ter 3. we present two versions of PBP.

We present the protocol and provide a formalism th a t shows the system works as required.

We have performed a series o f networking tests w ith P B P to help gauge its perform ance

relative to common network protocols. T C P and UDP. These results are presented in chapter

4. C hap ter 5 presents a discussion of the im plem entation o f BDSM on top of PB P . We then

prove th a t the im plem entation preserves the theoretical requirements of BDSM presented

in chapter 2. To test the perform ance of BDSM we have developed a test su ite of parallel

com putations. We compare th e ir execution tim es to those of similar program s using MPI

in chap ter 6. In chapter 7 we look at two extensions to our BDSM system designed to

address issues of scalability an d fault-tolerance. We draw some conclusions based on our

work in chapter 8. To illu stra te the program m ing usage o f BDSM we include BDSM and

M PI versions of one of the te s t programs in appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

B roadcast D istr ib u ted Shared

M em ory

D istributed shared memory (DSM) is an interprocess com m unication m ethod primarily for

parallel com putation. It strives to provide the same program m ing model for distributed

memory machines as th a t found on many shared memory parallel system s. In this chapter

we present the Broadcast DSM (BDSM) m odel we have developed. It is a weakly coherent

model that uses broadcast com munication to disseminate updates. I t 's weak enough to

be efficiently im plem ented, bu t has strong enough synchronization th a t it can be used

for meaningful program s. We show tha t th e model can be m ade to appear sequentially

consistent to program s th a t obey a certain programm ing paradigm . A fter presenting the

protocol we discuss the interface to our p ro to type system.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D IST R IB U T E D SH A R E D M E M O R Y 29

2.1 B D S M O verview

T he previous chapter presented some of the goals of our research. We are interested in

developing a weak DSM that takes advantage of the efficiency of non-casual message passing.

We feel there is potential for an update-based system th a t allows fine-grained access. We

would like to utilize the broadcast capabilities of the underlying com munication layer and

hardw are. To overcome the weakness of the memory model such a system should provide

for effective synchronization. To achieve these goals we have developed a weak model we

call B roadcast DSM (BDSM). This chap ter presents the theoretical model and discusses

its benefits. We show how the BDSM coherence model m eets our stated requirem ents for

a weak memory th a t is still program m able. Our system provides a model th a t is between

PRAM and slow memory in coherence. This model has effective synchronization to make

it appear sequentially consistent when needed.

A num ber of systems have been developed that use the page level of g ranu la rity [9. 27.

55. 62, 67. 72, 82, 87, 92], This page-sized sharing can lead to thrashing. O ur system uses

a sm aller granularity as defined by th e programmer. I t provides a fully-replicated shared

memory th a t is modified by updates. These updates are sent using hardw are broadcast

to reduce the num ber of messages an d reduce the cost of updating multiple copies. For

perform ance reasons we do not enforce a s tric t coherence model. BDSM provides a form of

PRAM consistency, but it also allows functional synchronization. This makes for a straight­

forward program m ing model th a t can be used for parallel num erical com putations as well

as fault-tolerant distributed applications.

Program s using the BDSM model define and join shared memory segments. Each seg-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH A R E D M E M O R Y 30

SC

PC

SC = Sequential consistency
C = Causal
PC = Processor Consistency CPRAM)
S = Slow memory
B = BDSM

F ig u re 2.1: Coherence models as execution spaces, with BDSM

m ent is made up of some num ber of identically sized locations. T he updates to any given

segm ent are in s tric t program order. U pdates to different segments are not so ordered. All

w rites are immediately visible to the writing process. In a program with only one declared

DSM segment. BDSM provides coherence identical to th a t of PRAM. For m ultiple segments

w rites are ordered by process an d segment due to independent, per-segment buffers. There­

fore. it is possible for two w rites by one process to be applied by other processes in different

orders. In this way, BDSM w ith multiple segm ents is weaker than the PR A M model. It

can be though of as a hybrid of PRAM , w hich is processor relative weakening, and Slow

Memory, which is location relative. The extrem e case would be a program where each loca­

tion was on a different segm ent. This would make the DSM look like Slow Memory to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D ISTR IB U TE D SH A R E D M EM O RY' 31

user program . Figure 2.1 shows the relation of the BDSM system to the other generic weak

mem ories. B oth of these extremely weak memories are considered to be too weak to pro­

g ram effectively. T hey can 't be synchronized. The problem is th a t, by using shared memory

locations for synchronization, there is not enough control to enforce a needed order. T he

m em ory cannot be m ade to appear suitably strong to execute meaningful programs. BDSM

overcomes th is problem by using the message-passing layer d irectly for synchronization.

Assume x and y are in different segments.
Po Pi P>

x 1: V := 2: dsm_barrier(0):

y ~ 1: dsm_barrier(0): read(x) = 3:
x := 3: read(y) = 1 or 2:
dsm _barrier(0):

F igure 2.2: Coherence of different segments

By using broadcast-based synchronization we ensure consistency after synchronization

operations. In th is respect, our memory model is som ew hat sim ilar to release consistency.

However, we do not guarantee that each process sees the same view of memory, ju s t th a t

all updates have been applied. Updates by different processes to the same location are not

ordered. Therefore, even after a barrier, it is possible for two processes to have different

views of memory. A program that allows unsynchronized access to the same locations by

different processes may not have consistent views of memory across its subproccsses. As w ith

o the r forms of weak memory, if this inconsistency cannot be tolerated by the application

th en more synchronization should be used. The fact th a t different segments are buffered

an d then updated independently will not effect the power of the synchronization operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D ISTR IB U TE D SH A R E D M E M O R Y 32

W hen a process crosses a barrier it is confident tha t all updates from other processes issued

before those processes reached th e barrier have been applied. Since no location can be in

more than one segment, the values in the various locations will be the hist w ritten in each

case (barring d a ta races).

Po P i P 2

z := 1: while (x 1= 1) sk ip : while (y != 2) skip:

x := 1: read(z) = 1: read(x) = 0:

V -•= 2: read(z) = 0:

F igu re 2.3: Coherence provided is not causal

Figure 2.2 shows an example of three processes using two segments. We assum e locations

x and y axe in different segments. Process Po makes two writes to x. Only the last one

is guaranteed to be seen after the barrier, as shown in P->. It would be impossible for Pv

to read the value 1 from location x . Additionally, there is a data-race involving location

y. Therefore, its value is not determ ined. Reading location y after the barrier could re tu rn

either value w ritten. In order to remove the data-race. ano ther synchronization operation

would be needed after one write to y and before the o ther.

Po Pi P 2

z := 1: dsm_barrier(0): dsm_barrier(0):
dsm.baxrier(O): read(z) = 1: dsm_barrier(1):

dsm _barrier(l): z := 3; read(z) = 3:

dsm_barrier(l):

F ig u re 2.4: Coherence ensured using synchronization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IST R IB U T E D SH A R E D M EM O RY' 33

It is im portan t to note th a t the coherence model provided by BDSM is not equivalent

to causal ordering. I t is possible to have a w rite event by one process cause another process

to issue a write w hich is then seen by a th ird before the initial w rite is seen (as shown in

figure 2.3). A ssum e x . y and z are initially zero. Process P j can see th e w rite to y w ithout

seeing the w rites to x and z w ithout v io lating FIFO update ordering. However, there is

clearly a causal link between the write to z and th a t to y. Synchronization can be used to

ensure causal ordering if required. Figure 2.4 shows the same basic m odel using barriers to

enforce the required causal order. The while loops, and hence the w rites to x and y. become

unnecessary because th e barriers serve to indicate a given write is com pleted. Note tha t

the causal order is preserved. The w rite of I to z happens before the read in P i- Since the

assignment to z occurs before the barrier it m ust be visible to P i a fte r it. Similarly. Pv is

guaranteed to see th e value 3 in location z after crossing both barriers.

2.2 B D S M M em ory M odel

Processes access a shared memory space consisting of segments of equal sized locations. A

w rite to a location is sent as an update to each other process in the system . Writes to any

segment by a process are applied by all o th e r processes in the order issued. The read of a

location is a s tric tly local operation based on the latest value seen by th e reading process.

We define seen to m ean a BDSM system message, an update or a synchronization message,

has been delivered to and handled by the BDSM system at a given processor. For w rite

updates this m eans the update has been applied to the local copy of memory. The meaning

for synchronization operations depends upon the operation. A BDSM system message th a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH ARED M E M O R Y 34

has not yet been handled has not been seen. An updated value can be seen w ithout its

having been actually read by the user process.

2 .2 .1 D e f in it io n o f B D S M c o h e r e n c e

Define five operations: read, write, and th ree synchronization operations. T he synchroniza­

tion operations are barrier. lock_acquire and lock_release. T h e read and write operations

provide access to individual memory locations. The synchronization operations do not have

effect on memory o ther th an to provide ordering. The lock_release operation only counts as

a synchronization operation if there is a following acquire. T h a t is. the synchronization is

only meaningful if ano ther process tries to acquire the lock. T he relationships among these

operations defines BDSM coherence:

1. W rites by any process to any segm ent are seen by all processes in the order specified

by the program order of the w riting process. Local w rites are immediately visible to

the writing process.

2. Synchronization operations are seen by all processes in the program order of the issuing

process.

3. All writes issued by a process before issuing a synchronization operation are seen by

all processes before th e synchronization operation completes and all writes issued after

are seen after.

D e f in it io n 2.1 B D SM coherence: .4 D S M system that provides the required operations and

preserves the above relationships is said to be BDSM coherent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D IST R IB U T E D SH ARED M E M O R Y 35

In BDSM. a process that crosses a synchronization operation (passes a barrier, or ac­

quires a lock) has seen all writes by o the r processes before th a t operation. In the case of a

barrier, since it applies to all processes, all processes have seen all writes before the barrier.

Locks behave differently. Acquiring a lock is a single process operation. All writes by th a t

process will be seen by all other processes before the acquire completes. And. all writes by

o the r processes will be seen by the acquiring process by the tim e it completes its acquire.

T here is no assurance th a t o ther processes see all writes by each other when the lock is

acquired. Additionally, releasing a lock is a strictly local activity, unless another process

has requested the lock since it was acquired. So. unless th is is the case, releasing a lock

does not order BDSM events.

2 .2 .2 F o r m a l i s m a n d D e f in i t io n s

In this section we present a formalism to model DSM behavior. T he model consists of a

collection of events and some useful definitions and relations. The ordering constraints on

these events are supplied by the definition of the memory being modeled.

2 .2 .2 .1 E ven ts

Events are generically defined as op“’*'c. The subscripts i and n are the same for all opera­

tions. The first, i, is the process in whose history this event occurs. This operation is local

to process i. The second, n, is the tim e-stam p of the event in process z. Events in a given

process are partially ordered by this tim e-stam p. A logical tim e-stam p is sufficient. Locally

in itia ted events axe totally ordered. E xternal events that appear locally (updates and lock

operations by other processes) are not so explicitly ordered - the time-stam p only reflects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH A R E D M E M O R Y 36

when the event reg istered a t th is process.

T he superscripts a.b and c are used for optional inform ation that is dependent on the

value of op. They m ay b e left off if they are irrelevant.

• Basic events:

1. r f n = read of location x by process i at local tim e n .

2. w fn = w rite to location x by process i a t local tim e n. T he actual value is

im m aterial.

3. “ u p d a te a t process i a t local time n p roduced by ? rjrn.

• Synchronization operations:

1. 6*n = barrie r event k in process i a t local tim e n . T here must be corresponding

2. cij'^1 = acqu ire event by z of lock k at z's local tim e ti. If i = j then m = n. if

i j then th is event represents j giving z perm ission to acquire the lock. If z

acquires lock k (a f ’̂ 'n) then there must be corresponding a ^ n. Vj ^ z.

3. = release event by z of lock k th a t was acquired at tim e n a t z's local

tim e m . T hese are local events. The im portance is the next acquire, not the

release itself. I f ano ther process is waiting for th e lock then v is followed by the

appropria te a operation.

2 .2 .2 .2 D efin itio n s

• Define -< as "ordered before". If a is ordered before 6 in a history then a -< 6. Note,

this is not globally transitive. I t is only transitive w ith in a given process' sub-history.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D IS T R IB U T E D SH ARED M E M O R Y 37

as noted by the monotonically increasing subscript.

• Define concurrent. ~||". as -*(a -< 6) A - ’(& X a).

• Define £ to be the set of all events in the system.

• Define T-L to be the history of all events in the system. The history' T-L consists of events

in £ . partially' ordered by' -<.

• Define /t, to be the sub-history of events as seen by process i. h, = set o f all o j with k

i.

• Define s (x) to be the segment on which location x resides.

• Define c(op,) to be the set of events concurrent to opl.

• Define la s t(r fn) to be the singleton set consisting of the m ost im m ediately preceding

w rite or update event to location x in h t.

la s t(r fn) = {op“'^c : (op = w V op = u) .a = x . m = m a x (k < n)} Each process is

assumed to issue w f0Vx to represent an initial base case.

• Define va l(r fn) to be the set of w o r u events the w ritten value o f which r can return.

v a l (r t n) = i a s t (r i . n) U {°Pj ' .m € C(Tf .n) : a = x A Op = U '} .

2 .2 .2 .3 B D S M D efin ition

BDSM can now be defined by a set of axioms th a t involve events. Most o f them provide

ordering constraints.

A x io m 2.1 given op“£ 'c and o p f ^ . op ^ u A n < m => opf„'c -< o p f ^ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH ARED M E M O R Y 38

Locally, all non-update events are in program order.

A x io m 2 .2 w f n => u ^ ^ V j ^ i and w f n -< # z.

W rite leads to updates, and a write com es before its updates.

A x io m 2 .3 w “n -< w\'m A s{u) = s(v) => it“'̂ 'n -< u vJ'l['rn'i j ^ i.

U pdates for writes to the sam e segment by the same process are seen in the order w ritten.

A x io m 2 .4 bkn => bkJTiy j # i.

B arriers are in ail processes.

A x io m 2 .5 bkn -< b[m => bkJ O < blJ pV j # i.

B arriers are to tally ordered, and all processes see the same order.

A x io m 2 .6 w f n -< bk m => uxx'n ■< bk aV j £ i..

U pdates for writes before a barrier axe seen by all processes before the barrier.

A x io m 2 .7 6 fm -< w f n =>■ bk Q -< ux'j-nV j / i..

U pdates for writes after barrie r axe seen by all processes after the barrier.

A x io m 2 .8 a ^ n => # i.

Lock acquires sure seen by all other processes.

• « k . i .n k . i ,n . k ,i .n , k . i .nA x io m 2 .9 ai Tl =» v i m A ai n -< v i m

There m ust be a release for each lock acquired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 2. B R O A D C A S T D IST R IB U T E D SH A R E D M E M O R Y 39

a * __ n -i n h.i .n . k . i .m _ k . i .n . k . j . m A k . i .n . k . j .rnA x io m 2.10 a i-n -< a - / => ; 0 -< A p -< a j

Lock acquires are ordered, and a lock-holder's release comes before the next acquire.

A x io m 2.11 w ln < akj m => « f / n -<

Earlier updates by o the r processes must be seen before acquiring a lock.

2 .2 .3 B D S M c o h e r e n c e c a n b e a t le a s t a s s t r o n g a s SC

Program m ing on weak DSM systems is usually done by m aking the memory appear stronger

to a running program . This is done by using synchronization operations. A program running

on w hat appears to be a sequentially consistent memory will behave as th e programm er

expects. BDSM can be made to appear a t least as coherent as SC. To show th a t this is so

we use the above formalism.

D e fin itio n 2.2 data-race-free in the context o f BDSM :

1J Between any writes by different processes there is a global synchronization operation.

2) Between any writes by a single process to locations in different segments there is a

global synchronization operation.

A global synchronization operation is one th a t effects all processes. In the BDSM case,

there is only one type of global synchronization, a barrier.

D e fin itio n 2.3 A global synchronization event e is said to be between two other events u .v

i f u ~< e < v or v -< e < u.

This condition will be true i f :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH ARED M E M O R Y ' 40

1. u - < e - < i) o r t i - (e - < u i n the program order of one process.

2. u and v are in different processes an d e is a barrier then u -< c in one process and

e' < v in another, w here e and e' a re m atching barrier events.

To capture the notion o f a w rite being seen by all the processes in the system we use

th e term "globally precedes” . If one w rite globally precedes ano ther then th a t order is seen

by all processes. T h a t is. if a w rite and its associated updates com e before another write

an d all of its associated u p d a te s then the first w rite globally precedes the second. We will

use the <SC operation to deno te this. If all writes are globally ordered then the writes in

a system are totally o rdered . Each process sees the same order o f w rite events. W rites in

different processes can only be ordered by th is relationship. If they are not so ordered they

are concurrent.

D e f in it io n 2.4 Globally precedes: w fn <§Z m'j ni i f and only i f < 11 k.o"' - VA: / i . j A

u f] 'n < wy m.i A w fn -< w y] rn. i = j .

To prove that BDSM can appear as a sequentially consistent m em ory we will show tha t

it can be made to provide a to ta l order of all writes. This is stronger th an SC. but is clearly

sufficient to ensure a t least sequential consistency. We first show w hat is required for a set

of writes in an execution to be totally-ordered. We then show th a t a data-race-free program

on BDSM has totally ordered writes.

L e m m a 2.1 I f all writes in a program are seen by all processes in total order, and that total

order obeys tke program order o f each process, then the program appears to be executing on

a m em ory that is at least SC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IST R IB U T E D SH ARED M E M O R Y 41

T his follows from the definition of sequential consistency. A to ta l order of all writes seen

by all processes is an execution that is a legal interleaving of the program -ordered writes of

all processes. Since it is seen by all processes, there is one view' of memory.

L em m a 2 .2 I f an order can be established between any two (different) events in a system

then the events are totally ordered.

By the definition of to ta l order, if Vx and Vy ^ x. E H . x is before y or y before x then

the elem ents of R are totally ordered.

T h eo rem 2.1 A data-race-free program running on B D SM has totally ordered writes.

Proof: Take any two distinct w rite events a = w f n.b = w 'jm ^ E ither a <§C b or

b <g; a in H.

1. Consider i = j:

• If x = y or s(x) = s(y), then a and 6 are ordered by the program order of p t .

Since a ^ b. n ^ m . E ither n > m or m > n . From axioms 2.1 and 2.3 and the

definition of globally precedes, a b or 6 <C a. The w'rites are ordered the same

a t all processes.

• If x 7̂ y and s(x) ^ s(y) then a and b must have a synchronization operation s

between them (definition 2 .2).

Suppose a -< b in hi.

— We have a < s -< b.

— From axioms 2.6 and 2.7. U j‘’n -< s/t,; -< u^'Jf m.V k ^ i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 2. B R O A D C A S T D ISTR IB U TE D SH A R E D M E M O R Y 42

— Since -< is transitive locally. u^'pn -< u^’JoTn .V k i

— From the definition o f <C. a < 6 .

Suppose b -< a in h {.

— We have b -< a -< a.

— From axioms 2.6 and 2.7. u ^ p m -< Sk.i < u^'lf Tl.Vk £ i

— Since -< is transitive locally. u^f™ -< u^'pn.V k / i

— From definition 2.4. b -C a.

2. Consider i ^ j:

• Then a and b m ust have a global synchronization operation, a barrier, .s between

them (definition 2.2). From definition 2.3. either

— hi contains a - < s - < u f/7™ and h3 contains u 1̂ 1 -< .>>■ -< b.

From axioms 2.6 and 2.7 and the definition of -<. up'^n -< Up[i'm.Yp.

Therefore a <§C b.

— or hi contains -< s < a and hj contains b < s < .

From axioms 2.6 and 2.7 and definition of -< . Up'f’m -< up'/.'n .Vp.

Therefore b a.

T h eorem 2.2 B D SM can provide the appearance o f sequentially consistent memory to

data-race-free programs

Proof: The proof of theorem 2.2 follows from theorem 2.1 and lemmas 2.1 and 2.2.

By showing tha t, in this extrem e case. BDSM can appear sequentially consistent to

programs we have shown th a t anything com putable on a sequentially consistent memory is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH A R E D M E M O R Y 43

com putable using BDSM. T his is a powerful statem ent o f th e u tility of such a weak system .

In chapter 5 we show th a t our im plem entation of BSDM is consistent with these axioms

and therefore provides BDSM coherence as presented above.

2.3 Program m ing Interface

In this section we present the program m ing interface for our experim ental system . An

exam ple of the usage of th is interface can be seen in the BDSM version of the Jacobi

program in appendix A. T he actual im plem entation of th e BDSM system is presented in

chapter 5.

S tarting a BDSM com putation is a two step process. F irs t, it is necessary to have pro­

cesses running on separate machines. Second, they must each call d sm _in it. The function

dsm _startup can be used to perform the remote invocations o f the program on different

machines. This call is not required. T he group members can be started individually. Using

either invocation m ethod, one (and only one) of them should have the s_ fla g param eter

set to a non-zero value. T his process will act as the server during the group registration

protocol. This registration is done using th e s ta rtu p function of the P B P reliable broadcast

protocol, presented in chapter 3. Once all of the processes have registered, execution can

continue.

A single process uses dsm _seg_at to c rea te a shared m em ory segm ent w ith a un ique

given key. The flag p a ra m e te r should b e set to DSH.CREATE. O th e r processes can then use

dsm _seg_at w ith the flag se t to DSM.J0IN a n d the sam e key to a tta c h to th is segment once it

has been created. T h e n um ber o f locations a n d the size sh o u ld be specified by all processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IST R IB U T E D SH A R E D M E M O R Y 44

T he function dsm_remove deletes th e given segment from the local DSM system . It only

effects the single calling process. O thers processes can continue to access th a t segment.

W hen a process is finished using BDSM completely it calls dsm _exit. T h is call forces all

w rites to be dissem inated and removes the calling process from both the BDSM system

and the P B P communication system . If the caller has no active segments. dsm _exit is non-

blocking and does not effect o th e r processes except to remove references to th is process.

Since BDSM uses a granularity sm aller than a page, it cannot use the m em ory manage­

m ent to make accesses to shared m em ory transparent. Access to a BDSM m em ory location

is m ade through the read and w rite functions. A process w riting to a single location pro­

vides a segm ent id. a location num ber within th a t segment and a pointer to the value to

be w ritten . M aking this a function call rather than an assignment is necessary to allow

the BDSM system to see the u p d a te and propagate it to o ther processes. T he function

dsm _bulk_w rite can be used for efficiency when a num ber of contiguous w rites are made.

This causes all buffered writes in th e segment to be sent and then sends a single update of

all of the d a ta in the range specified. Using this function is ideal for d a ta initialization and

for a num ber of programs tha t w rite d a ta in blocks.

R eading locations in BDSM is done with the dsm_read function. If a program has

enough synchronization then it can make reads transparen t by requesting a pointer to a

location in a segment. This po in ter can then be used w ith the subscription operation to

access individual locations directly. However, since there is then no control over when a

user process accesses a location it is im portant th a t there be no write-write o r read-write

d a ta races for th a t location. We have found that this is common to many parallel numerical

applications. This is not a lim itation imposed by BDSM as it is necessary in any shared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IST R IB U T E D SH A R E D M E M O R Y 45

memory environm ent. Barriers and locks are used between writes accesses and reads to

prevent these d a ta races.

2 .3 .1 I n it ia l iz a t io n a n d fu n c t io n s

int dsm_startup(int *argc, char **argv) ;

The d sm _ sta rtu p function can be used to s ta rt programs on different machines. The

command line argum ents following a "— ” delim iter are read by the BDSM system.

The actual param eters include the num ber of processes to s ta r t, w hether or not to

create rem ote x te rm windows on the local display, and whether to use ssh or r s h to

make the rem ote connection. Most o f these argum ents can be specified in a configu­

ration file. This call is designed to make the BDSM system easier to use. However, it

does not have to be used to s tart the system. Each process may be started by hand.

On success d sm _ sta rtu p returns zero. On any error it returns a negative value.

int dsm_init (int *numprocs, int s_f lag) ;

This is the prim ary initialization routine for the BDSM system. Each process in a

com putation m ust call this function. One and only one of these calls should have the

s_f la g value non-zero. This one process will be the server for th e group registration

routine. T he numprocs param eter is set by BDSM to the num ber of processes in the

group after registration is complete. On success the calling process' id within the

group is re turned , a value between 0 and numprocs - 1. A negative value is returned

on an error.

int dsm_seg_at (int numlocs, int locsize, int dsm_key, int dsmJlag);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH A R E D M E M O R Y 46

Once BDSM h a d been initialized using d sm _ in it separate segm ents of shared memory

are created u s in g dsm_seg_at. The first two param eters num locs and lo c s iz e specify

the number o f locations and the size o f each location, respectively, that this segment

will have. T he dsm_key is used to uniquely identify different segments. Since only one

process creates a. segment, o ther processes need to use th e sam e key as the creator to

jo in tha t segm ent. The final param eter. dsm_f la g is used to either create (DSM.CREATE)

a segment using the given geom etry values and key o r jo in (DSM.J0IN) an already

created segment w ith the same key as th e one supplied in th e call. When joining a

segment the nu m lo cs and lo c s i z e shou ld m atch those given by the segment's creator.

O n success a v a lid dsm_id descriptor is retu rned . On e rro r a negative value is returned.

2 .3 .2 M e m o r y A c c e s s F u n c tio n s

int dsm_write(int dsm_id, int location, void *value, int rel_flag) ;

BDSM processes interact with the shared memory th rough several routines. The first

is the basic w rite function dsm _w rite. T h is function takes a valid dsm_id descriptor

(as returned by dsm_seg_at). It th en w rites the value pointed to by v a lu e to the

given lo c a t io n in the specified segm ent. T he final argum ent allows a process to issue

a write th a t bypasses the reliability protocol for message delivery. If r e l_ f la g is set

to DSM_WRT_REL th e normal reliable b roadcast will be used for the update associated

w ith this write. I f r e l_ f la g is set to DSM_WRT_UNREL then the associated update will

be sent as a s ta n d a rd UDP datagram . T h is write will take effect locally, bu t may or

may not be seen by all of the o ther processes. The re tu rn value is zero on success,

negative on e rro r.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D IS T R IB U T E D SH A R E D M E M O R Y 47

i n t d sm _ b u lk _ w rite (in t dsm _id, i n t lo c a t io n , v o id * v a lu e , i n t num _w rites ,

i n t r e l _ f l a g) ;

Since it is often the case th a t a process, especially when initializing shared da ta ,

w rites to a number of contiguous locations. BDSM provides a bulk w rite function.

T his function is similar to d sm _ v rite . However, it w rites num_writes locations from

v a lu e into the given segm ent s ta rtin g a t lo c a t io n . These writes will be grouped and

sent as an update th a t takes advantage of this contiguity. Because less bookkeeping

inform ation is required, m ore d a ta can be sent in fewer messages. A dditionally, the

overhead of multiple function calls is avoided. T h e return value is the num ber of

locations w ritten on success, a negative value on error.

v o id * d sm _ read (in t dsm _id ,vo id* v a lu e , in t l o c a t io n) ;

M emory locations are accessed for reading using th e dsm_read function. T h is routine

reads the value in l o c a t io n o f the given segment into the memory space pointed to

by v a lu e . I t returns v a lu e on success. NULL on error.

v o id *dsm _p tr_ read (in t rism i d , i n t lo c a t io n) ;

Since, in BDSM, reads are local operations, m em ory locations can be accessed for

reading directly. This routine re tu rns a pointer to the internal BDSM d a ta space

were lo c a t io n is stored in th e given segment. T h is pointer can then be used as an

array of the appropriate d a ta type. However, it should not appear on th e left of an

assignm ent statem ent. On error, NULL is returned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A ST D ISTR IB U TE D SH A R E D M E M O R Y 48

2 .3 .3 S y n c h r o n iz a t io n F u n c t io n s

int dsm_barrier(int b_id, int *num_procs) ;

T his function performs a m ulti-process barrier. Each process must make a call to this

function with the same identifier value, as given by b_id. The param eter *num_procs

specifies the num ber of o th e r processes required to cross the barrier. If this value is

NULL then the system perform s a total barrier. Before blocking for the barrier the

BDSM system will flush all of the caller's buffered updates to ensure they are seen

before the barrier. It re tu rn s zero on success and a negative value on error.

int dsm_lock_acquire (int locknum) ;

T here are two functions th a t deal with locks. T he first dsm _lock_acquire is used to

acquire the given lock, locknum. The function retu rns zero on success and a negative

value on error. The re tu rn value should be checked since, on error, m utual exclusion

is not assured. It is considered an error to acquire a second lock w ithout releasing the

first.

int dsm_lock_release(int locknum);

This is the complement to the previous function. It releases the previously acquired

lock, locknum. It is considered an error for a process to release a lock tha t it is not

currently holding. The release routine re tu rns zero on success and a negative value

on error.

2 .3 .4 C le a n -u p a n d E x it F u n c t io n s

int dsm_remove(int dsm_id) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IST R IB U T E D SH ARED M E M O R Y 49

A process removes a locally attached segment with the function dsm_remove. The

segment given by dsm_id is removed from the local memory and no more incoming

updates for this segm ent will be handled. The descriptor is th en invalid for fu rther

BDSM operations, unless returned by a subsequent dsm_seg_at c a l l. Before returning,

all of the calling processes updates for th is segment must be delivered to other group

members. It re turns zero on success and a negative value on erro r .

void dsm_exit();

T he function dsm _exit removes the calling process from the B D S M system. It will

first remove any a ttached segments, and then close the com m unica tion channels to

the BDSM group.

2 .3 .5 C o n fig u r a t io n F i le

Some of the functionality o f the BDSM system can be controlled by a configuration file th a t

is read when the system s ta rts . Each process should have access to iden tica l copies. This

tex t file consists of a num ber of flags th a t determ ine the behavior o f t he BDSM system .

Most are used by the d sm _ sta rtu p function. T he location of the file is either the current

directory or the directory defined in the environm ent variable DSM_WORKjING_DIR.

DSMEXECPATH T his shou ld be set to the full d irec to ry path to w here th e b in a r y lives so th a t

it can be executed rem otely.

XTERMCOMMAND T his line shou ld be set to th e com m and to run to genera_te a term inal.

MACHLISTFILE This shou ld be th e full nam e of a file listing m achines to- s ta r t rem ote jobs

on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B R O A D C A S T D IS T R IB U T E D SH ARED M E M O R Y 50

USEXTERMS T his flag tells the system to s ta r t rem ote term inals on the root machine.

USESSH T his flag specifies tha t ssh should be used instead of rsh to make* rem ote connections.

BUFFERWRITES This flag allows the user to control whether o r not the system buffers writes.

I f it 's set to zero, the system will send each update as th e write call is made.

2.4 C onclusions

We have presented a new weak DSM m odel. This model is based on using broadcast to

supply updates to replicated copies of the shared space. O ur m odel overcomes the problem s

of sim ilar, non-causal memories by using message-passing for synchronization operations.

T hese synchronization operations provide enough order th a t a program th a t is correctly

w ritten can see a sequentially-consistent memory model ra th e r than the weaker BDSM

model. We also presented the basic program m ing interface for our system. In the next

chapter, we look a t th e PB P protocol th a t supplies the program -ordered, reliable broadcast

which forms the basis of our im plem entation of BDSM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 3

T h e P ip elin ed B roadcast P rotoco l

T he previous chapter presented a new model for DSM. called BDSM. BDSM is inherently

designed to use broadcast to dissem inate updates. Due to the potential for message loss

using U DP on an Ethernet segm ent, an im plem entation of BDSM requires some form of

reliable broadcast protocol. Therefore we have developed a reliable broadcast protocol

called Pipelined Broadcast Protocol or PBP. It guarantees th a t all messages sent are de­

livered and th a t they axe delivered in the order sent. W hile there have been o ther reliable

broadcast protocols developed, our system is different from the previous exam ples in several

ways. F irst, PB P is designed exclusively to use hardw are broadcast. We have designed it

specifically for a common networked environment. Second, we provide only source order.

Messages from any process are delivered in the order sent. There is no global ordering.

Causal or atom ic ordering could be implemented on top of PBP. if required. Third. PBP

is a low-level protocol, not a general collection of services. We provide a m inim al interface

consisting of send and receive. Fourth, our prim ary goal is to make the com m on all-to-all

com m unication patterns used in many parallel program s as efficient as possible on a net-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. THE P IP E LIN E D B R O A D C A S T PRO TO C O L 52

work cluster com putational platform . We use ou r system in place of o th e r network-based

message passing systems such as the MPICH[45] im plem entation of M PI. or a collection of

T C P connections.

T he prim ary function o f the PB P system is to ensure the delivery o f every message

sent. Since it uses a modified windowing protocol, and thus keeps track o f message se­

quence numbers, ensuring process order requires little extra work. W ithou t the possibility

o f retransm ission, messages cannot be received ou t o f order: they can only be om itted. The

E thernet acts as a serializing influence. Only one message can be on th e wire at a time.

However, messages that axe lost will leave gaps in the order. If they are subsequently re­

transm itted . due to a tim eout, they will then arrive after messages w ith higher sequence

num bers. This would be a violation of FIFO delivery order. So each process maintains a

buffer for each other process. Messages received are placed in this buffer an d only delivered

to the application when all preceding messages, from the same sender, have been received

and delivered. This allows th e system to be seen as a collection of FIFO queues, or pipelines,

a t each process. In an n process system there is one outgoing queue and there are n — 1

incoming queues at each process. W hen the message at the head of any incom ing queue has

a sequence number equal to the expected sequence num ber from the corresponding process,

it is eligible to be removed and placed on a general delivered queue. An application process

can then consume items from this queue as they become available.

For the PB P system we assum e all of the processes are known to each o the r a t startup.

This means the processes m ust know the total num ber of processes in the group and a com­

mon po rt number. This is done through a group registration phase as p a rt o f initialization.

One process, called the server, which will have process id zero, receives messages on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPE LIN ED B R O A D C A S T P R O TO C O L 53

common p o rt. All o ther processes send a message to the server a n d aw ait a confirm ation in

return . Once the confirm ation is received each process broadcasts a message with sequence

num ber zero. W hen th is message has been acknowledged by all o th e r processes the protocol

has s ta r te d . Control is retu rned to the application process, and it m ay then begin sending

and receiving messages. Since we are not dynam ically making connections to long runn ing

system s we do not need a true three-way handshake to initiate th e protocol.

Processes running on networked w orkstations can fail. The host workstation may go

down, b e rebooted or corrupted is some way th a t destroys the process tha t is a m em ber o f

a given com putation . W hen this occurs, P B P will tim eout and tak e steps to determ ine if

the process has indeed failed. In order to ensure th a t the rem aining processes can continue

to send messages we need to remove dead process from the acknowledgment protocol. Since

we are using a sim ple, flat network topology, failure detection is no t as complex as it m ight

be in o th e r dom ains. T here is no way for m ore th an one process to become partitioned

from th e rest. A single workstation may becom e disconnected b u t th a t is. in effect, a crash

failure. O ur system assumes crashes will be rare, b u t also behaves in a pessimistic m anner

regarding declaring a process dead. Once a process is declared dead it is assumed to always

acknowledge every messages as soon as it is sent. This way the rem aining processes will

continue to make progress. We do not handle po ten tial recovery o r returning a process to

the group once it has been removed.

We have developed and implemented two versions of PBP. T h e first uses a positive

acknowledgment protocol where the sender re transm its messages if it has not received ac­

knowledgments in a certain amount of time. T he second uses a negative acknowledgment

protocol w here receivers request resends of m issing messages. In th e following sections, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T P R O TO C O L 54

present a detailed look at each version of PB P.

We chose to use E thernet broadcast addresses for this im plementation. T h e o ther option

would be to use IP Multicast[34. 86]. IP M ulticast would allow multiple groups w ithin the

P B P system . Each process could join m ulticast groups it is interested in and in theory only

be in te rrup ted by network packets sent to those groups. It would also allow for system s to be

on different segments if connected by m ulticast aware routers. Since our goal was specifically

the hardw are broadcast we d idn?t need th is la tte r benefit. As currently im plem ented the

system is designed to have a single com m unication group. In chapter 7. we discuss allowing

sm aller divisions of the com putation to improve scalability. It is there th a t IP M ulticast

would be m ost useful. However, the network interfaces we are using. 3Com 3c509 cards,

only have binary filtering[44]. Therefore, all processes would still need to have a software

in te rrup t to handle all packets to determ ine if they are for m ulticast groups th e local machine

is a m em ber of. T he benefits of selectively in terrup ting only those machines th a t have joined

a group is lost w ith this particular hardw are.

3.1 P o sitiv e A cknow ledgm ent P rotoco l

T he first version of PBP (PB P1). is a positive acknowledgment protocol. Such a protocol

requires some form of response from receiver to sender acknowledging receipt of each mes­

sage. I t bases the retransmission of potentially lost messages on a tim er expiring a t the

sender before th is response has been received. PBP1 is an extension of a s tan d ard window

protocol w ith delayed acknowledgments. R ather th an a single expected sequence num ber

from a single connected sender, each process m aintains a vector of expected sequence num ­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E P IP E L IN E D B R O A D C A S T PR O TO C O L 55

bers. At process i the j t h elem ent of this vector corresponds to the expected sequence

num ber from process j . Processes m aintain a vector of incoming acknowledgments as well.

T he m inimum value across each process' vector is the current base of th e window at tha t

process. All messages w ith sequence numbers less than this minimum have been received

and acknowledged by all processes and thus no longer need to be buffered a t the sender.

Each message sent by process i will have a single sequence number. It will also have a vector

o f acknowledgments. W hen process j receives a message from process i. it uses the value

o f the ith entry of this vector as an acknowledgment for its messages th a t have sequence

num bers less than or equal to th a t value. This potentially increases the minimum value of

j 's acknowledgment vector and allows the window a t process j to slide upwards.

3 .1 .1 P r o to c o l P r e s e n t a t io n

Assume a set of n nodes, num bered 0..n — 1 on a broadcast medium network. Each node

runs a user process th a t requires reliable FIFO broadcast service and a PB P layer that

provides it. The PB P layer is designed to operate as a middle layer between a user process

and the broadcast functions o f a network. P B P communicates with a user process by way of

two queues of user message d a ta . T he send_q is used when the user calls the send function

to ensure sending a message is non-blocking a t the user level. This queue also ensures

th a t message sending events by the user are handled in FIFO order by th e PB P system.

Messages to be consumed by th e user process axe pu t in the recv_q by th e PB P layer. The

user process can then dequeue th is da ta as it needs to. These two queues obey the usual

semantics. For the discussion o f the protocol we are not interested in th e specifics of the

user process. We are concerned w ith getting messages in order and placing them on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPE LIN ED B R O A D C A S T P R O TO C O L 5G

recv_q. Once th is is done for a message it is beyond the concern o f PBP. Therefore, w hen

we ta lk abou t process p, we mean the PB P layer a t node z.

Local data :

in t ws: / / window size

msg in J y u f fe rs[0 ..n — l][u;.s] of messages: / / to reorder messages

m sg o u tJ n i f fer[w s]: / / Outgoing buffer, sen t but not acked

queue se n d jq . recujq: / / hold user messages

in t exp seq n o [0 ..n — 1]: / / expseqnofij is nex t seq number to send at i

in t window -base[0..n — 1]: / / bases o f o ther's windows

in t wb = m inj {window-base[j]Vj ^ i); / / acks. wb is what can be base of window.
int currjbase: / / expscqnofiJ - currjbase = — number o f outstanding messages

bool a c k -fla g : / / initially false

Figure 3.1: Local D ata for PBP1

Figure 3.1 lists the s ta te tha t is used a t each process i during norm al operation. T he

window size is determ ined a t runtime and is s to red in ws. For P B P1. this is usually set to

16 messages. O nce the protocol starts up. each process will have sent, and acknowledged,

a message w ith sequence num ber zero. User messages begin a t one. The highest sequence

num ber for w hich all acknowledgments have been received is wb which is. a t all times, the

m inim um value in the vector window_base. excluding the ith elem ent. The base of the local

window is defined by currJjase. Since wb can change based on messages received these

two variables are separate. However, each tim e th e window is ad justed currjbase will be

set to equal th e value of wb a t that time. T he i th element of th e vector exp.seqno holds

the nex t sequence num ber to send. The last m essage sent is expseqno{i\ - 1. The num ber

of pending messages is. therefore. exp.seqno[i\ - currjbase. These pending messages are

held in a message buffer, out-buffer[ws], which is indexed circularly modulo ws. The nex t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T P R O T O C O L 57

buffer location to use is exp.seqno[i\ m od w s. To reorder incoming messages, eacli process

m aintains an array of message buffers. in_buffers[0..n — 1][u /.s]. Message from process j are

placed in the appropria te buffer location of in^buffers[j\. These buffers are indexed in the

same m anner as the out-buffer. except they use the sequence num ber of the arriv ing message

m odulo w s as the determ inant. The expected sequence num bers from other processes are

stored in exp_seqno[0..n — 1]. Each o f these num bers serves as both the next sequence

num ber expected and an acknowledgment for all earlier messages. For example, a t process

Pi. exp_seqno[j\ is the next message pi should receive from pj and all messages w ith sequence

num ber s < exp.seqno[j] have been delivered a t p,.

D e fin it io n 3.1 Delivered: We say a message from some p3 that has been received by p,

from the network and enqueued on the local recv.q has been delivered at p } .

User Calls:

send_msg(da£a) {

enqueue(dafa.send_g):

>

d a ta recv_msg(){

W hile (recv.q is empty) nop:
re tu rn (dequeue(recu_(7)):

>

Figure 3.2: User calls to PBP1

An application program communicates w ith PB P. in essence, through two functions,

shown in figure 3.2. To send a PBP message a call is made to the send_msg function. The

application d a ta to be sent is passed as a param eter. The message is simply appended to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 3. T H E PIP E LIN E D B R O A D C A S T PR O TO C O L 58

the send_q. To receive a message a blocking call is made to recv_m sg which returns a data

message when one is available on the recv_q . The use of these queues ensures messages

to and from the P B P layer are in FIFO order. All messages sent by the application are

handled by the local P B P process in the o rder they are enqueued. Similarly, all messages

delivered by the P B P layer are handed to the application in FIFO order.

Message m = (t . i .n .e .d a ta) where

t = message type: PLAIN_ACK or ORDINARY

i = sending process number

n = sequence num ber of this message

e = vector o f acks, highest sequence num ber delivered for each process a t i
data = user level message.

F ig u re 3.3: Message format for PBP1

Each PB P I message consists five com ponents, as shown in figure 3.3. The message

type, either PLAIN_ACK or ORDINARY, defines how the message will be handled. User

messages are type ORDINARY and will have non-null data. The o the r type. PLAIN-ACK

is used when the protocol needs to explicitly send an acknowledgment. This occurs when

there are no outgoing messages on which to piggy-back the acknowledgments. In this case.

data will be NULL. T he sending processrs process number, i. is included in each message.

Combined with the sequence number, n , th is uniquely defines each message. The vector e

is a copy of p i s local exp_seqno vector. These axe the piggy-backed acknowledgments.

To define the protocol we will use a form of guarded com m and notation where each

guard that is enabled m ay be executed a t any point. The protocol is essentially a forever

loop, performing whichever actions are enabled as possible. All of the instructions in each

guard are executed atomically. In general, they may not be interleaved. This is a little

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T P R O T O C O L 59

m ore stric t than is actually necessary in practice, where access to critical sections cam be

synchronized when using multiple threads of execution. Figures 3.4 and 3.5 show th e ac tnons

for the receiving and sending sides of the protocol, respectively, for process i.

Receiving Actions:

1 receive message m = { t.j .n .e .d a ta) from network do

if (i = = j) continue:
window.base[j] = max(window_base[j\. e[i\ — 1):
if (t = = PLAIN.ACK) continue: / / We already got ack info
if (n < exp.seqno[j})

set ack tim er:
continue:

if { in J m f f ers\j][n mod u/s] = = NULL)

in J o u ffe rs[j\[n mod trs] = m:

od:

/ / Pass in order messages to application through recv.q

2 while (3 j ^ i : in J ru f f ers[j][expscqn.o[j} mod w s] != NULL) do

enqueue (i n . f f ers[j\[exp_seqno{j\ mod ws]-> data, recvjq):
in jb u f f ers[j][expseqno\j] mod w.s]= NULL:
exp seq n o [j] -t-+:
set ack tim er

F igu re 3.4: PBP1 Receive Actions

T he receipt of a message happens w ith action 1. W hen a message is available from the

network a t pi the message can be handled. T he first step is to ignore self-sourced m essages.

Since this is true broadcast, each process usually receives each message sent, including tiiaose

sent by itself. The next statem ent applies the acknowledgment from p j. The value o f e[aE] is

the next sequence num ber p j is expecting from p t. so e[i] — 1 is the last message delive-red

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E P IP E L IN E D B R O A D C A S T P R O T O C O L 60

a t p j from p t. All m essages w ith sequence num bers less th an o r equal to e[i] — 1 have been

successfully delivered to p} . I f th is is a PLA IN .A C K message, p, is done w ith it once the

acknowledgment has been applied. If n is less th a n th e expected sequence num ber from pj.

this is a retransm ission pi does not need. In th is case, p, sets the ack_flag variable so it will

send an acknowledgment in case p0 is re transm itting messages due to a lost acknowledgment.

Then, pi is done w ith th e old message. Finally, if th is is a new message we place it in the

in_buffers location for process j . based on n m odulo w s.

A ction 2 is responsible for passing messages to the user level. It is enabled when the

in.buffers location for th e base of any other p: s window has a valid message in it. In this

case, the data from th a t message m is appended to the recv.q. The buffer location is then

cleared by setting it to NULL. T he base of p j's window. exp_seqno[/j. is increm ented to

reflect the delivery of m essage n from pr Additionally. p t sets the ack_flag so it will send a

PLA IN .A C K message s ta tin g th is fact if needed. If action 2 is performed each tim e action

I is. then it can be sim plified to only consider th e sender, p j. of the message th a t triggered

action 1.

In order to reclaim out-buffer spaces and slide the window' upwards, p, executes action 3.

I f the current base of th e window' is less than or equal to the minimum value th a t has been

acknowledged, represented by wb, p, clears the corresponding out_buffer location. T hen, it

increm ents currJbase. T h is has the effect of lowering the num ber of ou tstanding messages

and could therefore enable more messages to be sent. Finally, the resend tim er is reset to

prevent it from a ttem p tin g to retransm it messages if there a ren 't any outstanding.

A tim eout occurs w hen one of the timers, either the ack tim er or the resend tim er,

expires. W hen this happens action 5 is enabled. T he resend tim er, in P B P1, triggers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E PIP E LIN E D B R O A D C A S T PRO TO C O L 61

Sending Actions:

/ /M o v e window base upwards and clear buffer locations i f possible

3 while (currJbase < — wb) do

clear outJbuffer[currJbasc mod u/s]:
currJoase+ + :
clear resend tim er:

od:

/ / S e n d messages i f there are some and there is buffer space

4 while (!empty(serccL<7) A expseqno[i] - currJbase < ws) do

m = (ORDINARY, i. exp.seqno[i\. e x p _.segno[0..n — 1]. dequeue(.se7jc/_f/)):
outJbuffer\expjseqno\i\ mod ws] = m : j

send m to network: j

expseqno[i]-1r+ m. ;
set resend tim er: J
clear ack tim er : j

i
od:

F ig u re 3.5: PBP1 Send Actions

the retransm ission of all of outstanding messages. T he timer gets set whenever there are

any messages outstanding. This is the m ethod by which message loss is overcome. If a

process does not receive the appropriate acknowledgments then the resend tim er will expire

and messages will be retransm itted . The second tim er is the ack tim er. It is set when

new messages are received. Since acknowledgments are delayed, a process m ust send a

PLAIN-ACK at times. This tim er specifies w hen this happens. It needs to be set less than

the resend timeout so th a t PLAIN_ACKS will b e sent before messages are re transm itted to

reduce ex tra messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T PRO TO C O L 62

T im er Event:

5 tim eout do

if (resend tim er expired) {

for each m = (t . i .n .e .d a ta) in out.buffer
send 77i = (t. i. ti. expseqno[0 ..n — 1]. data):

clear ack timer:
reset timer:
\

if (ack tim er expired){

send 7Ti = (PLAIN-ACK. i. e x p s e q n o [i \ . e x p s e q n o [l . .T i — lJ.NULL):
clear ack timer:
}

od:

Figure 3.6: PBP1 Timer Event

3 .1 .2 F o r m a lism a n d P r o o fs

In order to use PB P for higher level applications, it is im portan t to show that the PB P

protocol provides two im portant properties. These are that all messages sent are delivered

a t all o ther processes once, and only once, and that these messages are delivered in the

order of the send events in the sending process. We call these P B P Property /(definition

3.2) and P B P Property ^(definition 3.3) respectively.

D e f in it io n 3.2 P B P Property 1: S* = s D f j . V/j. j . Each message sent by any process i

is delivered once and only once at all process j ^ i.

D e fin it io n 3 .3 P B P Property 2: Messages are delivered in the order sent. For any two

distinct messages m and n. sent by pi with sequence numbers h and k. i f m is sent before n

then m is delivered before n at all j.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIP E LIN E D B R O A D C A S T P R O T O C O L 63

In this section we prove th a t the protocol provides these two properties. We s ta r t by

defining a set of axiom s draw n from the protocol.

Throughout, we use the following events:

• S f = send o f message w ith sequence num ber k by p t .

• R ^j = receipt o f message w ith sequence num ber k sent by p, at pj.

• D f j = delivery (see definition 3.1) of message k sent by p, a t p}.

• A ^ j = acknowledgment, a t p,. from p j for message k. If .4* .Vj ^ i then message k

has been delivered a t all processes.

Additionally, we use P to represent the set o f all processes. (0..rt — 1). when needed. It

is assum ed in m ost cases.

A x io m 3.1 S f = > S ^ .V h < k.

Messages are sent w ith sequence num bers in ascending order.

A x io m 3.2 = > S f . Vi, j ^ i .

Messages cannot be received before being sent.

A x io m 3.3 R * j A D ^ . ' i h < k ==> D f j .

Messages received are delivered if all previous messages from the same sender have been

delivered.

A x io m 3 .4 S f A R ° j A ^ i .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T PRO TO C O L 64

Initially, due to the natu re of the s ta rt up sequence, message num ber 0 is sent, received

and acknowledged by each process.

A x io m 3.5 D fj A R j t A (Sj1 happened after D f j became trite) .4 ^ .

A delivered message is acknowledged by la te r messages sent by the process a t which the

message was delivered.

A x io m 3.6 S* = > /?*_,. Vj € P ' C (P - z). Note: P ' = 0 is possible.

Messages sent may be lost.

D efin it io n 3 .4 N etw ork Liveness Axiom: W e make the assumption that the network has

not completely failed. I f p t sends the same message k some finite number tim es each other

process will receive message k. That is. the probability o f a message being lost is low enough

that the probability o f not getting a message to each process, given a fin ite num ber o f re­

transmissions, approaches zero.

A x io m 3 .7 S* A Hj. ==> R ^ j .

Message th a t are sent, bu t not acknowledged will be retransm itted.

T h eo rem 3.1 P B P is consistent with axioms 3.1-3.7.

Proof: We show' this by examining each axiom in turn .

• Axiom 3.1 follows from "m = (ORDINARY.!. exp.seqno\f)..n — l\,exp.seqno[i},deqac\ic{send.q))"

and ~exp.seqno[i\+ + " in action 4.

• Axiom 3.2 is self-evident.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELINED B R O A D C A S T PR O TO C O L 65

• Axiom 3.3 follows from the condition for action 2 and the increm ent of expseqno \j] .

The reverse holds as well: D ^j = > D ^j.V h < k. And. similarly. A <

k) = - - D l j

• Axiom 3.4 holds or the protocol has failed to start.

• Axiom 3.5 If a message is delivered at pj and p} subsequently sends a message, which

is received by p 2. then p] has acknowledged message k from z. T he “happened after"

relation here is well defined because it is local to p3 and is based on the program order

of p j.

• Axiom 3.6 Due to the possibility of messages being lost on the network, when p, sends

a message it will be received by some subset of the other processes.

• Axiom 3.7 From the Network Liveness Axiom, definition 3.4. message k will be received

after some finite number of resends. From action 5. messages not acknowledged will

be retransm itted .

Therefore the theorem holds.

We would like to show that P B P l provides the guarantee th a t all messages sent by some

process p 2 are delivered a t all other processes. This property is called PB P property 1 (PI),

see definition 3.2. The basis of the proof is lem m a 3.2. which shows th a t messages th a t are

not acknowledged will be retransm itted, and. because the probability for loss is low enough,

given enough resends each message will be received.

L em m a 3 .1 L4.f
1 »J L i J

1 T his is the temporal leads to. Informally, .4. B m eans i f .4 then at som e fin ite tim e later B m u st also
be true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E P IP E LIN E D B R O A D C A S T P R O T O C O L 66

All m essages delivered get acknowledged, eventually. T he proof is based on two cases.

If p j sends a message subsequent to D*f } axiom 3.5 applies and A* follows. O therw ise, a

tim eout occurs a t p3 in action 5 and a PLAINAA.CK is sent. This also acknowledges k. If

e ither m essage is lost it will get re transm itted . T h is happens either due to j no t receiving

an acknowledgement to its subsequent message or to j receiving another copy o f k from i.

L e m m a 3 .2 S f = > R ^ j .V j 6 P — i.

T he p ro o f of lemma 3.2 is based on axiom 3.6. T h e axiom can be divided in to two cases.

These are P ' = (P — i) and P ' C (P — i). T hat is. a given message is sent and it reaches all

o th e r processes, or it fails to reach a t least one of th e o the r n — 1 processes.

S f = ^ - R * j ,\ / j £ P ' C (P — i) from axiom 3.6.

• P ' = P — i: S f = > R ^ j .V j £ P — i follows d irec tly from axiom 3.6.

• P ' C P — i => Bj. - 'R i j - For each such j :

1. - 'R i j => ~'Di from axiom 3.3

2. - 'D f j = > - 'A i j from axiom 3.5

3. A 3j . -'A*j = > R i j from axiom 3.7 an d the Network Liveness Axiom.

T herefore S f => R k ^ .V j G P — i.

T h e o r e m 3.2 PB P Property 1 holds for PBP I

For th e "delivered once" case we prove by induction on k.

• Base case k = 1:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 67

1. Si = > R l jV j € P ' C (P — i) from axiom 3.7.

2. Si = > R \ jV j since P ' = P — i from lemma 3.2.

3. R -j A D f j = > D l j . from axiom s 3.4 and 3.3.

4. 5 / = > D \ j . by substitu tion.

• Now assume ==> D^'j for all k. show S ^ -1 = > D ^'J1

1. 5 (fc+1 = > R l j lV j E P r C (P — i) from axiom 3.7.

2. S l~ l = > R*lJlV j since P ' = P — i from lemma 3.2.

3. R ^ 1 A D ^j = > D *ljl . from assum ption and axiom 3.3.

4. 5,fc+1 D ^ J 1, by substitu tion .

To prove “only once" we rely on the uniqueness of messages. Each message has a unique

identifier, its sequence num ber and sender's id. O nce a message is received a t it will not

be handled again. Consider message m = (t . j . n . e.data). There is only one buffer location

for message m a t p,. O nce it is filled and all previous messages have been delivered, m is

delivered. The expected sequence number for process p} a t pi is set equal ton - f -1 . At this

point no message num bered < n will be hand led , from action 1. I f m is received again it

will be ignored. If m is received a second tim e before it is delivered it wdll also be discarded

because the buffer space it needs to go is occupied. So it will only be delivered once. In a

practical windowing protocol w ith finite (and hence reused) sequence num bers there must

be a t least 2w 4- 1 different sequence num ber, w here w is the window size[90]. In PBP. we

use a 16 bit sequence num ber, giving 216 — 1 unique sequence num bers. W indow sizes used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 68

axe in the range of 24 to 2' messages, w ith 2'1 being the usual value for P B P l. Recycling

sequence num bers is not a problem.

The second property we would like to establish is th a t P B P l provides message delivery

in FIFO order. T his means messages sent by some process i are delivered at all j in the

same order they were sent. This is essentially encapsulated in the use of integer sequence

num bers. We show th a t, based on th e axiom s derived from the protocol, if messages are

not delivered in the order sent there is a fundam ental contradiction.

T h e o re m 3 .3 P B P Property 2 holds fo r P B P l.

Proof by contradiction:

1. Assume m is sent before n and n is delivered before m a t some j .

2. m is sent before n = > h < k. From axiom 3.1.

3. 7i is delivered before m = > tha t a t some point n is delivered and m is not. Therefore

Dt j A^Dtr

4. D fj = > D ^j.V h < k. from axiom 3.3.

5. m ^ n =s> h ^ k and h < k we have a contradiction: D ^j A ~'D^J.

Therefore, if m is sent before n. m is delivered before n a t all j .

We have shown th a t the protocol for P B P l provides th e service it claims to. Program s

th a t use P B P l can rely on it to deliver all messages, in th e order sent, to each process in

the group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 69

3 .1 .3 I m p le m e n t a t io n o f P B P l

We have im plem ented the P B P l system on the GNX7/Linux operating system on Hx8G

processors. O ur prim ary lab consists o f a lOM b/s E thernet network of 120Mhz P e n tiu m

systems. T he P B P l system is a user-level C lib rary which uses the L inuxThreads[61]

im plem entation of the PO SIX threads standard[12]. Figure 3.7 shows the in ter-relatiom s of

the com ponents of P B P l. A ll of the threads run in th e same user address space. T he PEBPl

protocol consists of two executing threads and interface functions. One th read hanxdles

incoming messages. The o the r is used as a periodic tim er to handle retransm issions and

delayed acknowledgments. T he interface consists prim arily of send and receive rou ti nes.

Messages are delivered to the user thread through a shared message queue. Dequeuirrig a

message can be a blocking action or a simple poll as specified in the function call.

User Process

User Thread
User Code

Recv
QueueSend

Routine

Timer
Thread

Recv
Thread

PBP Library

OS and Network Interface

Ethernet

F igu re 3.7: PBPl Design Layers.

O ur im plem entation o f P B P is designed to provide discrete packets to th e user. W et do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 70

not allow packets la rger th a n the maximum transm ission unit (M TU) o f the E thernet. 1500

bytes. Because PB P cu rren tly resides above the U D P layer this does no t affect our protocol.

Larger messages would be fragm ented by th e UDP layer and only delivered to P B P when

reconstituted. P reven ting fragm entation facilitates making a system th a t bypasses the UDP

layer, which is a p o ten tia l optim ization for PB P . This restriction also allows us to know

th a t each PB P m essage is exactly one E therne t packet on the hardw are.

T he PB P system is designed to add little overhead to the UDP layer it is built on. To

th is end. we use a zero extra-copy technique. We take steps to ensure th a t d a ta is copied

no more than it w ould be using regular U D P communication. User processes allocate the

space for each message to be sent and the system de-allocates this space when the message

is successfully delivered. T he user process can then build its messages in the sam e data

space th a t will be used by P B P for the broadcast message. This whole packet is passed by

reference to the send ro u tin e . Similarly, a received message is copied into a dynamically

allocated memory reg ion by the UDP reev fro m function within PBP. T his message is then

handled by reference, u n til it has been consum ed and the user process de-allocates it. This

helps to reduce the overhead of our system, which is im portant because it is an added layer

in the protocol stack.

The timer th read hand les signals from an interval timer which is set to go off periodically.

W hen the tim er expires, the th read checks th e current state of messages th a t may have been

sent bu t not acknowledged. If there are un-acknowledged messages th a t have expired, they

axe retransm itted, s ta r t in g w ith the base o f the window. It is possible th a t several may be

lost in a row. Therefore, we currently retransm it the entire window of ou tstand ing messages

when a retransm ission is required. The tim er th read also determ ines if too much tim e has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 71

passed since the local process sent a message, thus failing to acknowledge received messages.

If th is is the case, a plain acknowledgment message will be sent. As is usual with delayed

acknowledgment protocols, a balance needs to be struck between acknowledgment tim eouts

an d retransm ission tim eouts to try to minim ize the num ber unnecessary retransmissions.

We have not im plem ented a dynamic tim eout system for two reasons. First, the notion

o f round-trip tim e, which is the basis of dynam ic tim eouts, is somewhat ill-defined in a

broadcast paradigm . Also, the simple topology of the networks we use should not be

sub ject to as wide a variation in latency as a general TC P connection.

P B P l uses a form of delayed acknowdedgment windowing protocol. The aim is to reduce

th e num ber of em pty acknowledgment messages. Assume an n process system with window

size w. In a worst case scenario, where there is one sending process and there is a significant

(greater than 200 millisecond) pause between each message, our system requires ti. — 1

separate acknowledgments, one from each receiver for each message. However, if there is

such a sm all am ount of communication these ex tra messages should not be a problem. If

the re is no pause between messages from th e single sender then there are on the order

o f n — 1 acknowledgments per w messages. An ideal situation consists of all n processes

continually sending messages. In this case, due to piggy-backing, no ex tra acknowledgment

is sent. A more norm al situation is where all processes are periodically sending messages. In

th is case, there will be a few acknowledgments needed by any processes tha t complete their

sends before others. At the least, there wdll be n - 1 as th e other processes acknowledge

th e last message in the batch, unless the next communication batch s ta rts before the tim er

expires. This is the communication paradigm we are targeting. Many barrier-based, parallel

com putations exhibit this behavior. For these programs. P B P l tends toward, but does not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E PIPELINED B R O A D C A S T P R O TO C O L 72

reach, a minimal number of ex tra acknowledgments.

There are several performance vaxiables tha t may be changed in the P B P l im plem en­

ta tion . F irst, the size of the window' m ight have an im pact on the perform ance o f a given

program . Some communication p a tte rn s might be handled more efficiently w ith different

window- sizes. Secondly, the tim eout for retransm itting or acknowledging messages can be

changed. Currently, we use a tim eout o f 150 milliseconds for unsent acknowledgm ents and

twice th a t for retransm itting messages. This keeps the tim er thread from executing too

often, bu t makes handling lost messages somewhat expensive. W ith the extrem ely low loss

ra te on m odern Ethernets we feel th is is justified. Messages are lost on the o rder of one

per several thousand messages when sent as fast as possible. For messages w ith some, even

small, am ount of time between sends th is rate is even lower. Traditional windowing proto­

cols use a dynam ic time out th a t tracks round-trip latency. W ith broadcast and a collective

acknowledgment protocol, round-trip latency is not as clearly defined. A dditionally, since

the topology we are using is flat, the variation in message delivery tim e should be very

small.

3.2 U sing N egative A cknow ledgm ents

Positive acknowledgments require a delay before message loss is detected and messages can

be retransm itted . This is true even though the receiving process likely detects the loss

as soon as the next message from th e same sender arrives. T he lost message will leave a

gap in the sequence. In this case, it is possible th a t, ra ther than waiting for a tim eout,

the receiver can explicitly request a resend of the missing message. This is done w ith a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E P IP E L IN E D B R O A D C A ST P R O T O C O L 73

negative acknowledgment. T h e second version of the P B P protocol is designed to increase

th roughput and make recovery from missing messages faster than in P B P l.

3 .2 .1 P r o to c o l P r e s e n t a t io n

T he overall structure o f PB P2 is sim ilar to P B P l. The user interface and th e d a ta locations

are the same as in figures 3.2 and 3.1. Messages have th e sam e format as figure 3.3 with

the addition of NACK as a m essage type. However, the actions performed are different and

there are several new ones to deal w ith nacks. The biggest difference is th a t the receiving

process now has two d istinct running states: normal an d need_resend. W hen a process

detects a missing message it en ters the need_resend s ta te . In this state, it can only execute

certain actions tha t cannot lead again to need_resend s ta te . No messages except NACKs.

PLAIN_ACKs and messages from the process whose message is missing a re handled.

F irst we look a t the norm al s ta te actions. The sending actions (3 and 4). are the same

as in P B P l (figure 3.5). T here is still a window and acknowledgments need to be applied

in order to clear buffer spaces. A process must keep all messages it has sen t until they are

acknowledged because there is. until th a t time, the possibility another process will request

a resend. We use the send tim er, which should have a longer tim eout th a n for P B P l. to

ensure processes can continue. It is possible for the last message in a batch to be lost. In

this case, the receiving processes will not see a gap in the sequence num bers because a later

message is not sent. W hen th e resend tim er expires, a p la in ack is sent to o ther processes,

w ith the sequence num ber set equal to the last message sent. This will allow receivers to

see th a t a message was missed and send a NACK if needed.

Action 1, receiving and handling messages is necessarily more com plicated th an in P B P l.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E P IP E LIN E D B R O A D C A S T P R O T O C O L 74

A ction 1. in figure 3.8, shows how PBP2 receives a message in the norm al state. T he d a ta

field is used as a list of requested resends. T he first elem ent is used for the target process

id. T he rem aining elem ents list the sequence num bers needed. W hile in the need_resend

s ta te , the protocol cannot handle any messages th a t could potentially trigger a transition to

need_resend, in stead these messages are pu t on a message queue. If there are any messages

in this queue then they are received instead of a message from the network in action 1. O nce

a message is received o r dequeued, it is handled. If the type is NACK and if it is targeted to

th is process, the requested messages are re transm itted . T hen the message sequence num ber

is compared to th e se n d e rs window and expected sequence num ber. If the message is in the

window and its no t the expected message then a NACK message is sent and p, enters the

need_resend s ta te . T he message is stored in the reordering buffer for later delivery. A ction

2 is the same as in P B P l (figure 3.4). Messages are delivered from the reordering buffers

in the same m anner as P B P l.

T he PBP2 system uses three timers: a resend tim er, a nack tim er and an ack tim er. T he

resend tim er is set whenever there are outstanding messages. Unlike P B P l. when this tim er

expires it does not signal a resend of all of these outstand ing messages, rather it causes a

PLA IN.ACK message to be sent. This will have the sequence num ber of the last regular

message sent by th is process. This will be seen by o ther processes and can trigger a NACK

if the last message was lost. Otherwise, it would be possible to lose a message and have

the receivers not see a gap because there was never a la ter message. The second tim er is a

nack timer. I t is set when the process enters the need_resend state . It serves to ensure a

process does not rem ain in this s ta te too long by triggering a resend of the NACK in case

it. o r any of the re transm itted messages got lost. T he final tim er is an ack timer. It serves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 3. T H E PIPELINED B R O A D C A S T PR O TO C O L 75

to ensure a plain ack is sent if an ack cannot be piggybacked on an outgoing message in

tim e. In this way. processes can perform garbage collection and clear buffers during a lull

in message-passing. Figure 3.9 shows the pseudo-code for the tim er action in PBP2.

The m ajor difference between the operation of PBP2 and th a t o f P B P l is in the dual

s ta te mechanism. W hen a process detects a lost message, either by seeing a gap in the

sequence of regular messages or by ge tting a PLAIN.ACK w ith a sequence number higher

than expected, it enters the need_resend sta te . It does this by sending a NACK requesting

a resend of the missing messages to th e sending process. In th is state, it handles only those

messages it needs to fill in the gap an d any NACK messages from other processes. O ther

messages are enqueued and handled afte r a transition back to normal state. Figure 3.10

shows the pseudo-code for message receipt in the need_resend state . Acknowledgments from

the incoming messages are checked. T hen , messages from nackJarc/et are handled if they

are in the range of missing messages. If not. they are enqueued for later inspection. NACK

messages sent by o ther processes are also handled. Actions 2 and 3. sending messages and

clearing buffer space, occur in both norm al and need_resend states.

3 .2 .2 F o r m a lism for P B P 2

The axioms from section 3.1.2 apply to PB P2. The basic functionality of the two protocols

is the same. The difference comes in how message loss is detected and how messages are

retransm itted. Receipt of messages an d delivery of messages to the user-level are the same.

PBP2 differs from P B P l prim arily in the triggering message for re-sending messages.

To show that P I and P2 hold for PB P2. it is necessary to show tha t messages th a t are lost

are retransm itted. T h a t is. that PB P2 is consistent with axiom 3.7. T he other axioms hold

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T P R O TO C O L 76

because the rela ted parts of the p ro toco l did not change. Axiom 3.7 states tha t messages

th a t are sent bu t not acknowledged a re resent. Due to axiom 3.5 th is means a message was

not received. P B P 2 will request a re-send until the message is received and delivered. Due

to the Network Liveness Axiom th is request m ust eventually be received by the original

sender and th e message will be resen t. Therefore axiom 3.7 holds for PBP2.

T h e o re m 3 .4 P B P Property 1 holds fo r PBP2

This follows directly from theorem 3.2. since the axioms are valid for PBP2.

T h e o re m 3 .5 P B P Property 2 holds fo r PBP2

This follows from theorem 3.3. T h e axioms for ordering messages, those involving se­

quence num bers and delivery, are unchanged for PBP2.

3 .2 .3 I m p le m e n ta t io n

The im plem entation of PBP2 is ex tended from th a t of P B P l. We use the same system s

for b o th libraries. However, there a re two m ajor differences. F irst, since the tim eouts

in a negative acknowledgment pro tocol are based on the receiver they need to be m ore

tightly coupled w ith the receiving th rea d . T he separate tim er th read is completely removed

from PB P2. The o ther main difference is th a t, in order to correctly handle retransm itted

messages. PB P2 needs to have two sep a ra te running states. T h is is in addition to the basic

s ta rt up and shutdow n states th a t allow group creation and correct term ination.

T he tim er mechanism in PBP2 is im plem ented as part of th e m ain thread, ra ther th an

as a separate tim er thread. T im eouts are not needed to trigger resends of normal messages.

They are associated with specific events not w ith specific messages. We implemented the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E P IP E LIN E D B R O A D C A S T PR O TO C O L 77

tim er by using a tim eout to the s e l e c t function call that essentially makes the main thread

a periodic timer. W hen retu rn ing from s e l e c t , either due to a tim eout o r a valid read

descrip tor, the main process issues a g e ttim e o fd a y call and compares the tim e to the

various recorded tim eout values. I f the new tim e is greater than the recorded time, tha t

tim er has expired and appropria te action is taken. During periods when no tim er is set.

th e tim eout for select is greatly increased to reduce CPU contention. T he benefits of this

are th a t there is now one less thread com peting for CPU cycles w ith the user process(cs)

and th a t th is thread will consume fewer cycles during periods of message inactivity than

th e regular interval tim er used in P B P l.

T he need_resend sta te is im portan t to keep a process from detecting more than one

gap in sequence numbers a t a tim e. T here axe three ways a process can be pur. in this

s ta te . T he first is in the norm al course of receiving messages. W hen a gap in the sequence

of messages from a given sender is detected a MACK is sent and the process makes the

transition . The second transition can occur upon the receipt of a PLAIN_ACK message

th a t has a sequence num ber higher then the last message received (from the sender of the

PLA IN —ACK) at this process. The th ird transition occurs on receipt of a shutdow n message.

T he sequence number of a shutdow n message is the same as it would be if it were a normal

message. Therefore, a gap may be detected. Once in need_resend s ta te a process will only

handle NACKs and those messages it needs to fill in the sequence. Any o ther message could

trigger another transition to need_resend. This would create bookkeeping difficulties, and

significantly increase the com plexity of the system . Due to the low loss ra te o f an E thernet

network we feel it is b e tte r to prevent a process from having more than one outstanding

NACK request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E P W E LIN E D B R O A D C A S T P R O TO C O L 78

3.3 A pplications

T he use of efficient, reliable broadcast on a LAN can have several applications. The ability

to share d a ta w ith in a group of processes w ithou t sending m ultiple messages to each member

of the group can be used to implement a num ber of d istributed applications.

3 .3 .1 D is t r ib u t e d S h a red M e m o r y

T he fully-replicated model of D istribu ted Shared Memory(DSM) can take advantage of

PBP. In such a model, each process m ain ta ins a local copy o f the shared memory space.

W hen a read is performed it is perform ed locally, by reading th is copy. W hen a write is

performed it is broadcast as an up d a te to all the other processes. W hen an update arrives

it is applied to the local copy of memory. T he FIFO order provided by P B P ensures the

writes are ordered by process. Using synchronization, a system can ensure a coherent view

of shared copies of memory. PB P was in itia lly designed to overcome message loss as part

of the BDSM system discussed in chap ter 2.

3 .3 .2 S t a t e M a c h in e s

A nother use o f PB P might be as the com m unication channel for a s ta te machine [78] im­

plementation of a d istributed service. T h is model of fault-tolerance relies on redundant

processing. Using broadcast is an efficient way to disseminate d a ta to m ultiple backup

processes a t the same time. Since P B P will declare a process dead and reorganize itself if

a given process stops participating it is ideal for fail-stop protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPE LIN ED B R O A D C A S T P R O TO C O L 79

3.4 C onclusions

In th is chapter we have shown how a com mon reliability protocol may be multiplexed to

provide FIFO ordered messages to a broadcast m edium . This protocol. PBP. provides source

ordered reliable message passing to a group o f processes sharing an E thernet segment. P B P

provides w hat am ounts to a series of pipelines connecting the group members. We have

shown th a t the protocol provides two im portan t guarantees th a t can be relied on when

defining higher level program s. We take advantage of these properties by using PB P as

the com m unications layer for our BDSM system . However, it can be used for other group

com m unication applications. In chapter 4. we present the perform ance results of the two

version of the P B P system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. THE PIPELINED BROADCAST PROTOCOL 80

Receiving Actions:

1 State : E xp 1= resend_state
A receive m = (t. j . n. c. data) (from network or queue)

if (f = = j) continue:
window-base[j] = max(ivindou:J)ase[j]. e[i] — 1):
if (t == PLAI._ACK) do

if (” 1= expseqno[j])
send 771 = (XACK. i. curr_ba.se[i}. expseqno[\..n — 1], (j. cxp-xrqno[j])):
State : Exp = need_resend:
nackJarget = j :
set nack timer:

continue: / / We already got ack info
/ / Handle a nack message
if (f = = XACK) then

if (dafa[0] = = i) then
resend message with seqno data[1]:

else continue:
if (n < expseqno\j\) then

set ack timer:
else if (n > expseqno\j]) then

send m = (SACK. i.curr-base[i].expseqno[l..n — 1]. (j. cxp-seqno[j]))-.
State : Exp = need_resend:
set nack timer:

fi
inJruf fers{j][n mod irs] = m :

od;

F ig u re 3.8: PBP2 Normal S tate Receive Actions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. TH E P IP E L IN E D B R O A D C A ST P R O TO C O L 81

T im er Event:

5 tim eout do

if (resend tim er expired) {

send m = (PLAIN_ACK.i.exp_seg7io[i] — 1 .exp.seqno[Q..n — 1].data):
clear ack tim er:
reset resend tim er:
}

if (nack tim er expired) {

send 77i = (NACK. i. curr_base[i]. ex p . s e q n o [l . .n — 1 j . (j . e xp . . s c qno[j])):
reset nack tim er:
clear ack tim er:
}

if (ack tim er expired) {

send m = (PLA IN .ACK . i. e x p .seqno[i\ — 1. exp-aeqno[()..Ti — I]. NULL):
clear ack tim er:
}

od:

F ig u re 3.9: PBP2 Tim er Event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 3. T H E PIPELIN ED B R O A D C A S T P R O TO C O L 82

Receiving A ctions in resend_state:

6 S ta te : E x p = = resend_state

A receive m = (t . j . n . e .d a t a) (from netw ork)

if (i = = j) continue:
w indow Jbase\j\ = m ax (windon.’_6 a.se [7]. e[i\ — 1):
if (j ! = nack-target A t 1= NACK)

enqueue (m):

else if (n in needed range)

inJbuf f ers\j][n mod ws] = m:
if (got all resends)

S ta te : E xp = Normal:
clear nack timer:

fi
continue: / / We already got ack info

else if (j = — nackJ.arget A n no t in needed range)

enqueue (m):

fi
else if (t = = NACK) then

if {data[0] = = i) then
resend message w ith seqno data{l\:

fi

fi

Figure 3.10: PBP2 Need Resend State

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. T H E PIPELIN ED B R O A D C A S T PRO TO C O L

User P rocess

User Thread
User Code

Recv
Q ueue

Send
Routine

P 8 P 2 LibraryRecv Thread

OS and Network interface

Ethernet

F igure 3 .11 : PBP2 Design Layers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

P B P E xp erim en ta l R esu lts

T he BDSM system is im plem ented on top of the PB P com m unication layer. T he per­

formance of application-level program s will be effected by this underlying protocol. The

performance of P B P is. therefore, o f interest from the perspective of BDSM. Since P B P can

be used independently o f BDSM as a communication layer for a different application, it is

also useful to com pare it to o ther reliable communication protocols. In order to exam ine

the benefits of using broadcast com m unication, we perform ed several comparisons of PB P

to TCP and UDP. W hile TC P is obviously more feature rich, it is the better com parison

model because it does ensure delivery. Some tests using U D P quickly ran into lost message

problems and are not shown. We also compare the perform ance of PB P to another reliable

broadcast protocol. RMP[94], when published da ta are available.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. P B P E X P E R IM E N TA L R E SU L T S 85

4.1 E xperim en tal Setup

D ata was collected on a 20 node LAN. using P-120 PCs running the Linux 2.0.36 kernel.

The network is a lOBase-T E thernet. The system s are basically identical.The systems have

common hardw are as far as possible. M otherboards, network interface cards and CPUS

are the same. All o f the tim ing measurements were made using small C programs, and the

g e ttim e o fd a y system call. The timing is based on com pletion of the benchm ark as seen by

a single m aster process. We use the same lab setup for the BDSM results shown in chapter

6

We performed three basic timing experim ents. The first is a single sender/m ultiple

receiver setup to m easure direct throughput. T he tim e measured is for the first process

to send 500 messages to each receiver and receive a single message in return from each

receiver. In the case of PBP. this is done for all the receivers at the same time using

broadcast. For T C P the messages are sent to each receiver and then the return messages

are consumed. T he second test is a multiple-sender/m ultiple-receiver algorithm. This is

an all-to-all com m unication pattern where the senders and receivers are the same set of

processes. Each process sends n messages to each o ther and awaits n messages from each

o ther process. T he tim e for the all-to-all experim ent is measured as seen by one process.

The th ird test is designed to be a measure of protocol overhead, by m easuring latency. The

lead process sends a message to each receiver (either one broadcast message or a series of

point-to-point messages). It then waits for a reply from each receiver. This measures the

tim e to get a message to each receiver and back including both protocol overhead and actual

network latency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 4. P B P E X P E R IM E N T A L R E SU LTS 86

In all of the experim ents, the tim in g involves messages on a lready created channels where

appropriate. We do not m easure connection creation or tear-dow n tim e. Before each TC P

experiment is tim ed, a network o f connections is made. T his makes the processes totally

connected. For PB P. a group se tu p routine is called before tim ing experim ents are started .

For the experim ents in which U D P was successful, while no connections are involved, all

addresses and ports are resolved a n d bound before tim ing is in itia ted .

We use two message sizes to com pare performance. Message sizes s ta ted include all

headers. Large messages are a to ta l o f 1104 bytes, while sm all messages are a to ta l of 84

bytes. We feel th a t th is is a large enough difference to ensure different behaviors. T he large

messages axe close to the 1500 b y te M TU of the Ethernet, which leads to more efficient use

of the hardware. T he small m essages are small enough to use th e hardw are less efficiently.

However, they are also small enough to be buffered by T C P so it is necessary to use the

TCP.NODELAY protocol option to keep the system from buffering them. Since we want

to account for each message on th e wire we need to ensure th a t T C P sends a message for

each send call. U nder Linux 2.0 th e TCP-NODELAY flag does not completely disable the

Nagle algorithm . It has been show n th a t there is a long delay a t regular intervals when

using TC P with a num ber of sm all messages[64].

In most of the experim ents th e 95% confidence interval is under 2% of the shown time.

In some of the experim ents w ith 16 processes, despite increasing the number o f samples,

this interval is as much as 8% of th e to tal time. As the num ber o f processes increases, the

number of possible delays due to processing time, interruption an d message loss increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P TE R 4. P B P E X P E R IM E N T A L R E SU LTS 87

4.2 P B P C om pared to Standard P rotoco ls

TCP is the conventional protocol for reliable messages passing. The o th e r d a ta transfer

protocol in the T C P /IP su ite . UDP. requires application code to provide its own reliability

mechanism. For a LAN environm ent and two or m ore destination processes, it can be more

efficient to use a broadcast m echanism . This precludes the use of T C P because it is strictly

point-to-point. In this section we look at the way P B P compares to the stan d ard network

protocols.

We compaxe th e results o f bo th versions of P B P using a window size of 16' to T C P and

UDP. T he size o f the window has an effect on the th roughpu t of the PB P protocols. A PBP

process can send a t most a num ber of messages equal to the window size before queueing

outgoing messages. It then m ust receive acknowledgments from all the o th e r processes to

slide the window and send m ore messages. A larger window means more messages before

this acknowledgement is required. In section 4.4 we show the im pact of larger windows.

When com pared to TCP. th e variation caused by differing the PB P window size is not

readily apparent.

4 .2 .1 T h r o u g h p u t

Throughput is a measure of th e am ount of data th a t is moved in a given tim e. It can be

obtained from a measure of th e am ount of time it takes to move a certain am ount of data.

Figures 4.1 and 4.2 show the average time it takes the tim ing process to deliver 500 messages

to all o f the o th e r processes. In these plots a low. fla tte r line is closer to ideal an d represents a

near linear increase in th roughpu t as the number o f processes increases. For sm all messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. P B P E X P E R IM E N TA L R E S U L T S 88

One-to-all (sm): PBP (window = 1 6) vs. TCP
6000

5000 TCP
P8P1
PBP2

8 4000

3000

<s 2000

1000

2 4 6 8 10 12 1614

Number of Processes, including sender

F ig u re 4.1: Times for Throughput Experiment for Small Messages.

T C P perform s b e tte r for the 1 receiver (2 process) system. This is acceptable because it

is the situa tion th a t T C P was designed for. As th e num ber of processes increase it is clear

th a t PB P. by taking advantage of the broadcast, is much faster. On an E thernet, larger

messages are more efficient than smaller ones. Figure 4.2 shows the one-to-all results w ith

larger messages (1104 bytes). Here both versions o f PB P are almost constant, while T C P

shows a linear increase.

As m entioned above, throughput is com m only expressed in bytes per second. The

lOBase-T E thernet provides a maximum rate of 10 M b/s. This equates to 1.25MB/s. T his is

the ideal m axim um hardware throughput on such a network. The term Effective Throughput

is used to describe the am ount of data moved when there are multiple receivers. T hat is. if a

process sends 1 MB of d a ta to multiple, say 2, receivers in one second it is effectively moving

2 MB of d a ta in th a t second. Table 4.3 show th e effective throughput of each protocol using

large messages. This table is based on the results for both PBP versions w ith 16 and 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. P B P E X P E R IM E N T A L R E SU LTS 89

one-to-all (Ig) PBP window 16 vs TCP

25000

TCP
PBP1
PBP220000

a> 15000

10000

5000

2 64 8 10 12 1614

Number of Processes, including sender

F ig u re 4.2: Times for Throughput Experiment for Large Messages.

Protocol Number of Receivers
(window) 1 4 7 j 15
TCP 0.918 ± 4.48 % 0.823 ± 4.33 7 0.697 = S.39 7c 0.631 ± 8.42 7c
PB Pl (1G) 0.977 ± 0.28 % 3.327 ± 4.48 7c 5.240 ± 2.49 7c 7.924 ± 6.49 7c
PB Pl (128) 0.886 ± 4.05 % 3.062 = 0.67 7c 5.173 ± 3.00 7c 10.523 ± 7.15 7
PBP2 (16) 0.977 ± 0.04 % 3.653 ± 1.25 7c 5.568 ± 6.03 7c S.2G4 ± 8.30 7c
PBP2 (128) 1.105 ± 0.02 % 4.356 ± 0.87 7c 7.492 ± 1.13 % 15.512 ± 2.14 7c

F ig u re 4.3: Effective throughput in M B/s of TC P and both versions of PBP with 1G and 12S
windows. Percentages are 95% confidence.

message windows. As expected. T C P shows basically a flat effective throughput because

it is not sending d a ta to multiple recipients a t the same time. T he PB P results show tha t

for a large window PB P2 has a real throughput (1.1 M B/s) close to the hardw are limit

(1.25 M B/s). This throughput scales well, providing 15.5MB/s effective throughput to 15

processes. PBP1 is not able to scale as well. T he scalability of the protocols is shown best

in figure 4.4. We plo t the ideal effective throughput. 1.25MB/s to each receiver com pared

to the window 128 P B P data. T C P is included for completeness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. P B P E X P E R IM E N T A L R E S U L T S 90

Ettectrve Throughput. TCP vs PBP using wtnbowsize t28
20

Max Bandwith
PBP2
PBPl

TCP
14

20 4 6 8 10 1612 14

Number of Receivers

F ig u re 4.4: Effective throughput. Ideal versus PBP and TC P.

4 .2 .2 A l l - t o - A l l C o m m u n ic a t io n

T he second set o f results involves an all-to-all com m unication pattern . T he algorithm has

each process send e ither 500 small messages, o r 50 large messages, to each o ther process.

Here we expect to see a roughly linear increase in PB P times and a qu ad ra tic increase in

TC P. This is due to the use of broadcast for P B P and the point-to-point nature of TCP

connections. In a system w ith p processes sending n messages, the P B P system has to send

pn messages. T C P . on the o ther hand, has to send p2n —pn messages because each message

is point-to-point. Each T C P process has to send n messages to p - 1 o th e r processes. The

tim e shown is the average to ta l tim e to com plete th e exchange as seen by th e m aster process.

T he P B P system is again set to a windows size o f 16.

T he all-to-all perform ance is show in figures 4.5 and 4.6. Using sm all messages TCP

performs slightly b e tte r th an PB P for a sm all num ber of processes. It s ta r ts to get much

worse for the system s of 8 processes and by 16 processes TC P is an o rder of magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. P B P E X P E R IM E N T A L R E SU L T S 91

AiMo-all: PBP (window = 16) vs.TCP

TCP
PBPl
PBP2

2 4 86 TO 12 1614

Number of Processes

F ig u re 4.5: All-to-All for Small Messages.

slower than PBP. P B P shows a slow increase as processes increase. There are no steep

increases. W ith large messages PBP perform s b e tte r even for 2 processes.

4 .2 .3 L a te n c y

Latency is a rough m easure of round-trip tim e. We use it to gauge the efficiency of a

protocol. Since PB P does not have as much s ta te and overhead, it should be faster than

TC P. However, it is b u ilt on top of UDP so it cannot be faster than UDP. We anticipate

th a t the results will be in between the two. P B P also benefits from th e use of broadcast.

We show for small messages th a t TC P is actually faster than PBP2. However, when using

large messages, for which P B P was designed, bo th versions of PB P are close to UDP in

latency. PBP continues to scale better th an TC P. UDP performs b e tte r because, while

P B P broadcasts the in itia l message, it still requires p — 1 acknowledgements. These will

have to be received and ignored by all processes except the tim ing process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 92

All-to-all: PBP vs.TCP

TCP
PBPl
PBP2

0
2 6 t24 8 10 16

Number of Processes

F ig u re 4.6: AlI-to-All for Large Messages.

4.3 C om pared to R M P

Since T C P is not capable of tak ing advantage of the broadcast nature of the network it is

somewhat unfair to compare it to PBP. a protocol th a t does. It is expected th a t PBP will

be much faster than T C P for g reater than 2 processes on a LAN. There are few published

results using hardw are broadcast reliably. The Reliable M ulticast Protocol (RM P) is an

exception[94]. although the code is now' commercial an d is unavailable. RM P provides total

order or process order for all messages. It also provides more service than PBP. as it is not

limited to a single network segment. RMP is based on IP M ulticast, which takes advantage

of broadcast hardware when possible. RMP will perform its multicasts across network

boundaries using various tree algorithm s. It is im portan t to note that these RM P results

axe somewhat dated. The system s used are SPARCstation2 and SPARCstation5 systems.

These typically have speeds in th e 50-70MHz range. These systems are slower than the P-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 93

Latency (sm). PBP (window = 16) vs TCP and UDP
8000

TCP
PBPl
PBP2
UDP

7000

I 6000
ouVinO

5000u
E
©e 4000
a .

| 3000
©cn
<s
o 2000
<

1000

2 3 5 86 74
Number of Processes, including sender

Figure 4.7: Latency for Small Messages.

120s we are using for our test-bed. However, the network in both cases is lOBase-t Ethernet.

We com pare bo th throughput and all-to-all tim ings to those of RMP.

R M P has published results for up to 8 receivers on a single E thernet LAN', sim ilar to the

one used for our PB P experim ents. T hese results show RMP with an effective throughput

o f approxim ately 4100 K B /s (4.00 M B /s) for 4 receivers and 7384K B/s (7.2M B/s) for 8.

We can estim ate PB P2?s performance a t 8 .5M B /s for 8 receivers (based on the results for

7 receivers), and compare this and the resu lts (4.3 M B/s) for 4 receivers to the RM P data.

PB P 2 uses the network more efficiently and provides greater th roughput on a LAN. The

R PM system does provides a total order while PB P2 provides FIFO order by process. This

is called source ordering by the RMP au tho rs . In a system w ith one sending process, total

o rder and source order are synonymous. T here is only one source, so the service provided

by b o th systems is comparable.

A nother published m easure of the efficiency o f RMP is the effective throughput using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 94

Latency (tg): PBP (window = 16) vs TCP and UOP
80000

70000 TCP
PBP1
PBP2
UDP

f 60000
oa
in
§ 50000e
5 40000Q.
■oc2o
oo>
<5

30000

20000©
><

10000

2 3 6 854
Number of Processes, including sender

F ig u re 4 .8: Latency for Large Messages.

8 senders and 8 receivers. T his is com parable to the all-to-all experim ents performed w ith

PBP. RM P shows a th roughpu t in th is case o f approxim ately 6000K B /s (5.8MB/s) for the

8 process all-to-all. For P B P 2 with a window of 128 messages we see G.8 M B/s. Again P B P

show b e tte r perform ance. In this case, the fact th a t RMP provides to ta l order makes a

difference. All of the processes in the RM P experim ents sec all o f the messages in the sam e

to ta l order. The P B P system has the possibility of processes seeing different orders w ithin

the confines o f FIFO by process ordering.

4.4 E ffects o f W indow Size

T he disparity between the perform ance of T C P for these tests and th a t of PB P made using

larger windows overkill. However, it is in teresting to explore the effect of window size on

the perform ance of PBP. Since PBP2 was designed to allow a larger window to increase

th roughput, it is useful to see how PB P perform s w ith a larger window. We use the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PB P EXPERIMENTAL RESULTS 95

window size of 16. a medium window size of 48 and a large window of 128. We then repeated

the experim ents from the previous sections, excluding latency as it is unaffected by window

size.

PBP Ism) Time lor Throughput Experiment, variable window
1000

PBPl (16) — ■—
PBPl (48)
PBP1 (128) •«
PBP2 (16) a
PBP2 (48) - -
PBP2 (128) - -o- -

900

800

IS)•oc
o 700u0)
(S3
o

1 600
oe
>—

500a

400

300

200
2 6 106 12 1614

Number of Processes

F ig u re 4.9: Time for Throughput Experiment. PBP with Variable Window Size. Small Messages.

Throughput for both PB P systems is much be tte r w ith larger windows. A larger window

means the sending process can send m ore messages before having to wait for acknowledge­

ments. It can, therefore, spend m ore tim e sending messages and less time waiting for

them . Figures 4.9 and 4.10 show the th roughput results. In bo th versions of PBP. receivers

track the num ber o f messages received by any given sender. When this number reaches

the window size w ithout any piggybacked acknowledgements having been sent, a plain ac­

knowledgement is sent. This happens w ithout a tim eout to decrease the response tim e. The

system still experiences a delay in the sending of messages as these plain acknowledgments

arrive. The larger the window, the less frequent this delay. T he sudden increase a t seven

processes of P B P 2 (48) in figure 4.10 is believed to be an artifac t of the Linux kernel. See

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 96

PBP (Ig) Time for Throughput Experiment, variable window
2000

PBP1 (16) --------
PBPl (48)

PBP1 (128) «
PBP2 (16) o
PBP2 (48) - -

PBP2 (128) - -o -

1800

1600

o 1200 -

1000 I r -

800
126 10 162 8 144

Number of Processes

F ig u re 4.10: Time for Throughput Experiment. PBP with Variable Window Size. Large Messages,

section 4.5.

T he large window also has an effect on the all-to-all experim ents. Figures 4.11 and 4.12

show the results for the all-to-all experiments. P B P l was designed for a sm all window. It

would not run consistently for 16 processes for larger windows with large m essages (figure

4.12). PB P2 (128) shows consistently good results, b o th for single sender th roughpu t and

for the all-to-all exchange.

W hen using larger windows, we see an increase in message loss. F igure 4.13 shows

th e raw d a ta from one se t o f runs of the all-to-all benchm ark using PBP2 w ith the three

window sizes. The m aster program produces a sim ple count of messages it sees as lost.

T h is is only the view of one process, bu t it provides an illustration of the effects o f allowing

m ore messages to be sent before requiring acknowledgement. The typical netw ork buffer in

th e Linux kernel is set a t 64K bytes. W ith a window of 48 messages we are allowing 52K

bytes to be sent by each process before waiting for an acknowledgement. It is possible the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 97

PBP (smj. variable window

PBP1 (16) ------
PBPl (48) — —

PBP1 (128) •
PBP2 (16) o
PBP2 (48)

P8P2 (128) - -o-ouo

a
EP
tao

2 4 6 12 168 10 1 4

Number of Processes

Figure 4.11: AIl-to-AU. PBP with Variable Window Size. Small Messages.

increase in loss is due to the filling of various buffers. A nother possibility inay be network

congestion. Messages may be dropped due to the exponential back-off algorithm. This

illustrates tha t the num ber of lost messages for a window size of 16 is significantly smaller

than for larger windows.

4.5 Linux K ern el D ifferences

T he kernel version plays a roll in the effectiveness o f PBP. In figure 4.10 we pointed out

an unexplained, d ram atic increase in time for the P B P 2 benchm ark with window size 48.

Figure 4.14 shows a w ider range of window sizes for the same anom alous execution. It

shows th a t the P B P protocol is probably interacting badly with som e part of the 2.0.36

Linux kernel im plem entation. To see this is so. we ran the same set of benchmarks on the

2.2 kernel. These resu lts are shown in figure 4.15. T he curves are com pletely different. T he

newer kernel version exhibits none of the peaks and valleys tha t ap p ea r for the mid-range

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 98

PBP (Ig). vanable window

900000 PBPl (16) ------
PBPl (48) — w-

PBP1 (128) -■■■••
PBP2 (16) e
PBP2 (40)
PBP2 (128) * -o-

600000

■o 700000co
□ 600000
U
E.
® 500000

a
400000ci—

300000

200000

100000* -
2 3 5 74 6 8

Number of Processes

F ig u re 4.12: All-to-All. PBP with Variable Window Size. Large Messages.

window sizes on the earlier kernel. This difference convinced us th a t the strange curves in

the PB P2 results were not inherent to PBP. bu t are an artifact o f the kernel itself.

4.6 C onclusions

We have presented tim ing results th a t shour th a t PB P provides a performance improvement

over other ways to reliably send messages in a LAN environm ent. We did this by compar­

ing our timing results to the industry standard point-to-point protocol for reliable message

passing, TCP. We also compared our results to the published results for another reliable

broadcast protocol. The above com parisons serve to show th a t, for application th a t have a

flat network topology, PB P is an efficient way to make use of broadcast capabilities. A d­

ditionally, we have compared two m ethods of im plem enting the basic PB P services. These

results show th a t the negative acknowledgement protocol perform s better for the m ajority

of uses. It justifies our use of PB P2 as th e communication layer for our implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS 99

Raw messages lost tor All'to-All. variable window size
350

300 Window 16
Window 48

Window 128

250

w 200

150

100

2 1 64 6 106 14

Number ol Processes

F ig u re 4.13: Raw Number of Lost Messages for All-to-All. P B P 2 with Variable Window Size.
Large Messages.

of BDSM. By using a reliable broadcast protocol for BDSM we can take advantage of the

increased throughput and should see benefits, especially for all-to-all forms o f d a ta sharing,

a t the DSM level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PBP EXPERIMENTAL RESULTS

pbp2 large message aJI_to_one

PBP2 (47) ------
PBP2 (48) »-
PBP2 (56) --
PBP2 (64) o
PBP2 (66) - -*
PBP2 (68) - -o>
PBP2 (69) -♦

PBP2 (128)

2400

2200

_ 2000

£ 1800

1600

1400

1200 (r

1000

800
2 64 8 12 1 410

Number ot Processes

F ig u re 4 .14: All-toAlL PBP2 with Variable Window Size. Large Messages.

pbp2 targe message a!i_to_one

PBP2 (47)
PBP2 (48)
PBP2 (56)
PBP2 (64)
PBP2 (68)
PBP2 (69)

PBP2 (128)

2400

2200

2000tfl■Oc
o(J
* 1000
o
u
~ 1600

S 1400oI-
1200

1000

800
6 12 168 1 42 4 10

Number of Processes

F ig u re 4 .15 : All-to-AlI. PBP2 with \ ariable Window Size. Large Messages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

B D S M Im p lem en tation

In chapter 2. we presented bo th the design and theory behind the BDSM model and its user

interface. We then presented the com m unication layer. PB P . th a t we will use under the

BDSM system, in chapters 3 and 4. We now discuss the ac tual implementation of BDSM.

We then prove th a t the synchronization prim itives are correct and ensure BDSM coherence.

Finally, we show th a t the im plem entation provides the services specified in the theoretical

model.

5.1 Im plem entation O verview

O ur system is designed for a common networking environment. We use a network o f com­

m odity workstations as a p latform for the DSM system. Further, we require all o f these

workstations to be on the sam e E thernet segment. This allows us to use hardwaTp broadcast

and to have a controlled message-passing environment. Each workstation will execute one

user process. In tu rn , each user process has an associated BDSM sub-system tha t m anages

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 102

the shared memory. T here is a complete copy of shared memory on each processor. The

user process can then access its copy of memory locally, with 110 w aiting for reads or writes.

Writes to memory modify the local copy and arrange to broadcast th e updated values to all

the other processes. We m aintain the memory segment as a contiguous collection of discrete

locations. Reads and writes operate a t this level of granularity. T he size o f a location is de­

fined by the program m er. T he memory m anager uses hardware broadcast to send updates

to all other processors. It may buffer these updates locally to reduce the num ber of messages

sent. Figure 5.1 shows the basic system layout. Using broadcast m eans tha t each update

in an n process system is one message, ra ther than n — 1 discrete point-to-point messages.

C hapter 3 discusses the details the layer tha t actually handles this com m unication.

W o rk s ta tio n 1

Global Shared Memory
(Abstraction)U s e r P r o c e s s

Local copy of
Snared Memory

w o m s r a ti W o rk s ta tio n 3

M e m o ry
M a n a g e r

E th e r n e t

Figure 5.1: DSM system design

The d istributed shared memory system is built on PBP. This provides a communication

layer that bo th ensures delivery of all messages from non-failed processes and provides a

FIFO order for all messages from each process. Each memory m anager handles incoming

messages from this system as they are delivered. Due to the knowledge tha t messages are

partially ordered, incoming updates are applied immediately to the local copy of memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 103

Similarly, barrier a n d lock messages (see below) are handled as they arrive. There is no

need to reorder events a t the DSM protocol layer.

In order to use P B P and the underlying E thernet most efficiently, individual updates

are buffered locally un til there are enough to ju stify the sending of a message. Using a large

message made up o f a num ber of updates further reduces the num ber of messages. T h e

num ber of messages th a t can be buffered depends on the size o f the locations in a given

segm ent. BDSM w ill buffer as many updates as possible for a given segment. The num ber

of updates buffered is determ ined by our need to lim it messages to less than 1500 bytes, th e

maxim um transm ission un it of E thernet, to prevent message fragm entation at the IP layer

and to include necessary control data.

5 .1 .1 S y n c h r o n iz a t io n

Using message-based protocols a t the PB P layer for synchronization allows us to avoid

some of the p itfalls of PRA M . Synchronization under PRAM , where the actual opera­

tions are perform ed as PRAM memory accesses, docs not provide true mutual exclusion

(w ithout a separa te exclusion server[49]). For this reason PRAM , although straightforw ard

to implement, is usually considered too difficult to program to be useful. However, in a

message-passing environm ent there is no need to lim it ourselves to using PRAM memory

accesses to im plem ent synchronization operations. B arriers and locks are implemented by

message passing, th e same way DSM writes are. F igure 5.2 shows the basic pseudo-code

for the barrier im plem entation. In order to pass a barrier, a process m ust receive a barrie r

message from each o the r process and call d sm _ b a rrie r itself. All messages appear in FIFO

order so for each b a rrie r message received all previous writes by the sending process m ust

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 104

have been received. No process gets updates w ritten before the barrie r once it lias crossed

th e barrier. Similarly, once a process reaches the barrier it waits until all o ther processes

have sent it barrier messages. Therefore, even if one process gets past the b arrie r much

earlier than the others, any w rites it issues after the barrier will not be seen by any o ther

process until it. too. has passed th e barrier. No writes issued after th e barrier can be seen by

any process before the barrie r. It is necessary to use sequence num bers on barrier messages

(an alternating b it suffices) to ensure th a t messages are associated w ith the corresponding

barrier. Figure 2.4 shows th e barriers in use.

User calls barrier: Dsm thread receives barrier message:

dsm.barrier (bar.num) {
if (! barrier_starced(bar_mim))

start_barrier(bar_nun);
barrier.arrivaKbar.num, my.procnun);
f lush_all.write.bxiffersO ;
broadcast.barrier.messageC) ;
if (barrier.nun.narked (bar .nun) =nuinprocs)

return;
else

cond.vait(bar.nun) ;

}

handle.barrier.msgCbar.nun, sender) {
if (ibarrier.started (bar.nus))

start.barrier(bar.nun) ;
barrier.arrivaKbar.nun, sender) ;
if (barrier_num_marked(bar_nun)==numprocs)

cond signal(bar.nun);

i

Utility functions:
start_barrier(bar_num){ barrier_started(bar_num) = true; arrivals(bar_num) =0;}
barrier_started(bar_num) { retum(barrier_startedCbar_num)); }
barrier_arrival (bar_num, process_id){ arrivals(bar_nua) = arrivals(bar_num) u process_id;}
barrier_num_marlced (bar_num){ re t urn (I arrivals (bar_mm) I);}

F ig u re 5.2: Pseudo-code for barrier implementation

Locks axe im plem ented as defined by R icart and Agrawala[74]. There are two m inor

changes. T he first is th a t all messages are broadcast. This m eans th a t a lock request is

sent once to all processes. T his reduces the number of messages p e r critical section from

2(n — 1) to 7i. The second change is sim ply to require the BDSM buffers to be flushed before

sending any lock protocol message. T his is done exactly as w ith th e barriers. Since there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 105

is no point-to-point message-passing, all pending w rites by all o ther processes will be seen

by the acquiring process before it is granted the lock.

We present an ou tline of the lock protocol. A process, say p,. issues a lock request when

it tries to acquire a lock. This message is sent to all o ther processes. Then p, blocks until

it acquires the lock. A cquiring the lock means receiving a "go ahead- message from each

o ther process. W hen a process. p} . receives a request message, it is either in contention for

th e sam e lock or not. If pj is in contention for the lock it decides, deterministically. based

on the request sequence num ber and process id. if it should get the lock first. It then either

replies to p, or defers a reply until it releases the lock. If p3 is not in contention for the lock

it replies immediately. In any case, before a process sends a lock protocol message, request

o r reply, it flushes all o f its segment buffers.

Po Pi Pa

dsm _lock_acqui re (0): dsm Jock_acquire(0) w hile (read(z) != I)

z := 1 : read(z) = 1 : sk ip:

dsm Jock_release(0): 2 := 3:

dsm Jock_relcase(0):

w hile
skip:

(read(c) != 3)

Figure 5.3: Example using locks

In figure 5.3 we assum e po acquires the lock first. This is not guaranteed, but serves for

this explanation. W h at this means is that po sent a request message to pt and po. Process

p i also sent a request to po and p2- Since po is not in contention for the lock, it simply

replies to any requests. So bo th po and p i get a reply from po. The lock protocol arbitrates

among contending processes in a deterministic way and we are assum ing it chooses p0 first.

So po defers its reply to p i ’s request knowing it should get the lock first. On the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 10G

hand, p i replies to po. granting po th e lock. Since no w rites have been issued no updates are

flushed by these messages. W hen po releases the lock, because it deferred a reply, it sends

one now to p \. This flushes the w rite to z. Process p i now can acquire th e lock, having

seen all previous writes. Note th a t po considers b o th acquires to have happened when it

received the request messages. T here is no guarantee it will escape either w hile loop. The

w rite by po could be overw ritten by the w rite by p\ before po reads the 1. I f p-j needs to be

sure to see the values w ritten it needs to perform som e synchronization itself.

5 .1 .2 I m p le m e n ta t io n D e t a i l s

The BDSM system is a user-level C lib rary which uses th e Linuxthreads[6I] im plem entation

of Pthreads[12]. T he library m ain tains a collection o f DSM locations for user-level code.

These locations can be of a rb itra ry size, up to 1276 by tes (the maximum payload of a single

P B P E thernet packet). All locations in a given DSM segment arc the sam e size. The

locations in any given segment can be read and w ritten by location number. We also allow

reads to be made directly from shared locations th rough pointers. This allows com parisons

w ith and assignm ent from shared d a ta to be transparen t. However, w rites are made by

explicit library function calls. T h is is necessary to allow the write updates to be handled by

the system . In this way. a segm ent may be treated like an array of locations. For exam ple, ~x

= dsm_segment [i] :r would assign the value of shared location i to local, unshared variable

x assum ing dsm_segment was se t to the address of th e base of the dsm segm ent. W rites

m ust use the dsm_write lib rary routine because we are not using a page-based system .

So "dsm _write (dsm_id, i , &x)~ would write the value in x into the ith location of the

segment d sm J d . If the user makes assignments d irectly to the shared m em ory addresses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 107

the values will not be propagated.

U ser P ro c e s s

T h re ad
U se r C ode

DSM
T h re ad

OSM UOrary

O S an d Nefwortt In te rfac e

F ig u re 5.4: System structure

Figure 5.4 shows the s tru c tu re of the com plete DSM system as currently implemented.

All of the threads run in the sam e user address space. The DSM layer consists of a single

thread and a num ber of interface routines. The DSM thread handles incoming DSM mes­

sages by blocking on a PB P receive call. The DSM interface functions include dsm _vrite.

dsm_read. the various synchronization operations, and the segment creation operations.

T he user thread com m unicates w ith the DSM interface routines and the shared memory

segment.

As m entioned above, the buffering of writes is done on a per segment basis. This is

prim arily an im plem entation decision. There are two m ain reasons for th is. The first is

th a t, since different segments can have locations o f different sizes, using a single buffer

would require ex tra bookkeeping overhead. Secondly, it would mean associating a segment

identification num ber with each updated value ra th e r th an with each update message. Using

one buffer per segment we calculate the number o f w rites each buffer can hold a t segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 108

creation time and can keep a simple count to determ ine when the buffer is full. W hen a

synchronization operation is called, the buffer for each active segment descriptor is em ptied

in tu rn .

5.2 P roof o f Im p lem entation

In this section we prove th a t the im plem ented BDSM system provides an accurate realiza­

tion of the BDSM model. To show the im plem entation is correct we will show it preserves

the axioms that define BDSM. Further, we will show that the synchronization operations

are correct. This means proving safety and liveness. It also means proving th a t the syn­

chronization is properly ordered with respect to o ther operations. We then use these proofs

to show th a t our im plem entation preserves th e requirements of BDSM.

We make a d istinction between the receipt a message and its delivery. Messages are

received from the network by PBP. Messages are then delivered to the BDSM layer, in

order, by way of a receive queue. A given message is not available to the BDSM system

until it has been delivered to this queue.

T he functionality of BDSM is based prim arily on the FIFO natu re of the underlying

PB P layer. In chapter 3. we prove two properties about the PB P system th a t we rely on

here. We restate them here:

P B P P r o p e r ty 1 (P I) : Each message sen t by any process i is delivered once and only

once at all processes j # i (definition 3.2).

P B P P r o p e r ty 2 (P 2) : Messages are delivered in the order sent. For any two distinct

messages m and n . sent by p; with sequence numbers h and k . if m is sent before n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 109

then 77i is delivered before n at all j (definition 3.3).

P I ensures the delivery of each message. Each message sent will be delivered to all other

running processes, unless the sender fails. P roperty P2 ensures tha t each message sent by

a given process is received and passed to the application (the BDSM system in this case)

in the order it was sent by the corresponding application on the sending processor. These

two properties together create essentially a set of FIFO reliable pipes am ong the BDSM

processes.

5 .2 .1 B a r r ie r C o r r e c tn e s s

To prove the correctness of the synchronization operations we make the assum ption th a t the

program using them is correctly w ritten . T his means several things. First, the sem antics of

the synchronization operation are obeyed. This means th a t, for each barrier, a ll processes

issue calls to the barrier routine. And. similarly, for locks, no process tries to acquire a lock

which it is already holding and locks axe nested but not overlapping. The second p art of this

assum ption is th a t, for barriers, no calls to the same barrier identifier are ad jacent in the

program. Any two barriers tha t occur in a row have different identifiers. This assum ption

is natura l. Program m ers who don 't follow the conventions of the A PI cannot expect correct

results.

T h e o re m 5.1 B D SM barriers are correct synchronization operations for correctly written

programs.

The proof consists of two elements, liveness and safety. Liveness means th e program

will not deadlock, w ith processes failing to cross a barrier. Safety is a term used to describe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. BDSM IMPLEMENTATION 110

the proper functioning of a barrier. Each process reaching a barrier m ust block until all

processes have reached the sam e barrier.

Liveness can be show n by P I . Since we are on ly concerned with program s th a t use

barriers correctly, any process th a t arrives a t a b a rrie r will, eventually, cross the barrier.

Consider a program consisting o f n processes. Each process, upon m aking its call to th e

barrie r routine, will send a barrie r message. And. since the program is correctly w ritten, all

process will make such a call and each will use the rig h t barrier id. These barrier messages

are guaranteed to arrive due to P i . Once a process receives n — 1 other barrie r messages it

crosses the barrier an d can continue execution.

Safety is ensured. No process can cross a barrie r before all other processes have reached

th a t barrier. Assume th a t process p,. in an ti process program, does cross some barrier 6

before all other processes have reached it. This m eans th a t either p, has received n — 1

barrie r messages for 6. one from each p]rj ^ i or it has crossed the barrier having received

less than n — 1 o ther messages. In the first case, since P I ensures "only once" delivery,

some process m ust have sent a barrier message for b w ithout reaching 6. This would be a

violation of the protocol. Since the user program is correct, it is not possible for this to be

an old message for a different instance of barrier b because there must have been a barrier

b' since the last use o f b. In order for b' to have been crossed, thus allowing b to be used

again, all of the previous messages for b m ust have been consumed. For the second case,

process p, must have violated the protocol to cross a barrier with less then n — 1 barrier

messages. This would require a Byzantine failure m ode we are not concerned with. Since

it is impossible for any Pi to cross b w ithout all the o th e r processes arriv ing a t b, safety is

assured.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. BDSM IMPLEMENTATION 111

T h e o re m 5 .2 BDSM barriers correctly preserve the B D SM order requirements with respect

to updates.

All writes made by process pi before reaching a barrier are sent before the barrier

message is sent. Since each o ther process must get the barrier message before proceeding,

all o f these earlier writes m ust be received as well, due to P I . This means all o th e r processes

m ust get all of the writes issued by p t before getting the barrier message from p,. And since

each process behaves this way all w rites before the barrier are seen by all processes before

the barrier is crossed.

Conversely, because a process blocks until a barrier is crossed, any w rites th a t are sent

by a process after the barrier will not be seen until this process has also crossed the barrier.

Consider p t and p} . If p, sees an u p d a te before barrier 6 issued by pj after b then p3 must

have crossed b. In order for th a t to have occurred. p} must have received a barrie r message

for b from p,. However, since p, has no t reached b yet (it is reading values before b). such

a message has not been sent. Therefore, pj cannot have crossed the barrier and p, cannot

have received an update from p} w ritten after pj crossed b.

5 .2 .2 L o ck C o r r e c tn e ss

T h e o re m 5.3 BDSM locks are correct synchronization operations for correctly written pro­

grams.

R icart and Agrawala proved both liveness and safety for the distributed m utual exclusion

algorithm they designed[74]. O ur locks differ only in th a t they use broadcast ra ther than

point-to-point messages and th a t there is buffer flushing done when messages are sent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 112

N either change effects the validity of the original proofs. Using broadcast messages simply

means some processes get messages they donrt need. These are ignored. Sending update

messages due to buffer flushing has no bearing on the mutual exclusion protocol. Therefore,

we conclude tha t our lock implem entation satisfies the safety and liveness requirements as

well.

T h eorem 5.4 BD SM locks correctly preserve the BD SM order requirements with respect

to updates.

Proving the ordering requirements are m et is more complicated. Locks are essentially

global communication sim ilar to barrier, except each process does not block. To see how

this is so. consider tha t each process must receive a request and reply to it. The receipt

of this message and the reply mark the tim e in the receiving process' view tha t the lock

was acquired. And. since we are using broadcast, all processes in the system will receive a

reply message. Processes th a t are not in contention for the lock will not wait for the reply.

However, the updates th a t are flushed by the reply will still be applied a t all processes.

Step one is to show th a t all previous w rites are seen before a lock is acquired. Since

a process is required to flush its buffers before sending a lock message all previous writes

will be sent first. P roperty P2 provides for th e order of these sends to be preserved at all

receivers. Because the acquiring process must receive a message from each other process it

m ust receive all earlier w rites from each other process as well. Therefore, in order to acquire

a lock all previous writes m ust be seen.

The second step is to show tha t no writes after a lock is acquired by one process are

seen by another before the lock is seen to be acquired. As m entioned above, the notion of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. BDSM IMPLEMENTATION 113

a non-contending processes seeing ano ther process acquire a lock is when it replies to th a t

acquire request. Once a process issues a request for a lock it blocks. It may not execute

any reads or w rites until it acquires the lock. To acquire the lock it must receive a reply

from all other processes. Therefore, all o th e r processes must have replied to the request

(and seen the acquire) before the requesting process can issue any writes.

5 .2 .3 B D S M I m p le m e n ta t io n C o r r e c tn e s s

We now prove th a t the im plem entation o f BDSM using PBP is a correct representation

of the BDSM model. This is done by show ing th a t all of the ordering requirements for

the model a preserved in the im plem entation. Using theorems 5.2 and 5.-1 and the P B P

properties P i an d P2 we show tha t the ordering requirements a re met.

T h e o re m 5.5 The implementation o f B D S M correctly realizes the BD SM model.

To prove th is we will show th a t each axiom from section 2.2.2.3 is preserved by tin:

im plem entation.

1. Axiom 2.1: Locally, all events are in program order.

This is preserved because processes execute in program order and writes are applied

im m ediately to the local copy of memory.

2. Axiom 2.2: Write leads to updates, and a write comes before its updates.

W hen a process issues a write th is inform ation will be sent as an update, either when a

buffer is full, when a synchronization operation requires it. o r immediately if buffering

is disabled. Additionally, since the w rite triggers the updates, the write m ust come

before th e updates, from a global perspective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. BDSM IMPLEMENTATION 114

3. Axiom 2.3: Updates fo r writes to the same segm ent by the same process are seen in

the order written.

W rites to the locations of each segm ent are buffered in the order issued. These buffered

w rites are then sent as updates. O n receipt o f an up d a te message, a process will apply

these individual writes in the o rder they ap p ea r in the update message, which is the

order buffered. PBP property P 2 ensures th a t these updates arrive in the order sent.

4. Axiom 2.4: Barriers are in all processes.

This is semantically required. I f it doesn 't hold, the program (not the im plem entation)

is incorrect. A process m ust receive a corresponding barrier message from each other

process. Failure to do so indefinitely blocks th e process.

5. Axiom 2.5: Barriers are totally ordered, and all processes see the sam e order.

O n arrival a t a barrier, a process sends a barrie r message to all o th e r processes. It

then waits for a similar message from each o the r process. A process performs no local

actions until the barrier is crossed. Therefore only one barrier m ay be active at a

time. Each process m ust cross th a t barrier before arriving at another. Theorem 5.1

shows tha t the im plem entation correctly preserves barrier semantics.

6. Axiom 2.6: Updates fo r writes before a barrier are seen by all processes before the

barrier.

This follows from theorem 5.2.

7. Axiom 2.7: Updates after barrier seen after.

This follows from theorem 5.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. BDSM IMPLEMENTATION 115

8. Axiom 2.8: Lock acquires arc seen by all other processes.

In order to acquire a lock, p, must receive perm ission from each o th e r process, in the

form of a lock message. T he sending of a perm ission message in reply to a lock_request

corresponds to th e acquire event in th e perm ission granting process. From the lock

definition there m ust be such an event in each process or the lock cannot be acquired.

9. Axiom 2.9: There m ust be a release fo r each lock acquired.

T his is sem antically required. A program th a t fails this is incorrect and deadlock

prone.

10. Axiom 2.10: Lock acquires are ordered, and a lock-holder's release comes before the

next acquire.

This holds due to the implem entation o f locks, theorem 5.3.

11. Axiom 2.10: Earlier updates by other processes m ust be seen before acquiring a lock.

This holds due to the implem entation o f locks, theorem 5.4.

Since the axioms th a t define BDSM are all preserved by our im plem entation, the imple­

m entation correctly provides BDSM coherence. We have shown that the implementation

of BDSM. using FIFO broadcast provided by PB P. is a correct realization of the BDSM

coherence model.

5.3 C onclusions

We use the PBP com m unication system presented in chapter 3 as the basis for an imple­

m entation of a BDSM system . In this chapter we discussed the im plem entation of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTERS. BDSM IMPLEMENTATION 116

system . Further, we have shown tha t our system , as implem ented, provides an accurate

realization o f the BDSM m odel. In the next chap ter, we provide a su ite of test applications

using BDSM and explore th e ir performance on BDSM and MPI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 6

D S M E xp erim en ta l R esu lts

In preceding chapters we presented the theoretical m odel and im plem entation details of the

weak, b roadcast DSM system. BDSM. In th is chapter, we look a t some of the perform ance

results we have obtained using this system. We have developed a suite of test program s 011

BDSM. We discuss these programs and the ir com m unication patterns and com pare them

to a message passing alternative on the same hardw are setup.

To d a te , we have focused prim arily on parallel, numerical calculations where pure per­

formance gains are desired. We have developed a sm all test su ite of programs, loosely based

on the SPLASH-2[80] suite. Since our prim ary concern is the operation of the DSM system

and not th e overall performance of our test program s, we have used straightforward, often

naive, parallel algorithm s. We present comparisons between our system and a message-

passing system . We have chosen to use MPI[39] because it is commonly used for parallel

program s on networks of workstations. We com pare our execution times to those of sim ilar

program s using the mpich (v l.l.l)[45] im plem entation of M PI on the same network. We

also explore some of the ways in which using P B P effects the execution of program s on

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 118

our system. One of the m ain benefits BDSM has over MPI is th a t BDSM uses broadcast

com m unication for its collective com m unication operations, which essentially they all are.

M PICH uses tree algorithm s on top o f T C P to perform collective com m unication opera­

tions. Recent work by Chen. Carrasco and Apon [31] attem pts to im plem ent these MPI

operations using IP M ulticast.

6.1 E xperim ental Setup

Experim ents are perform ed on a single E thernet subnet. The lab we use is a public access

teaching lab. We do not have exclusive access to the systems. Therefore, the programs

have been run in a non-controlled environm ent. Some of the uncontrollable factors include

users logging in. NFS activity, cron jobs, and system daemons. Because o f these potential

outside influences we have made every effort to run our tests late a t night and very early

in the morning. T he lab consists of up to 20 Pentium 120MHz system s. These systems

run identical installations of Linux, using the 2.0.36 kernel. There is a shared NFS system

where binaries and initialization data reside. Results are stored locally to avoid using NFS

during the actual com putations.

We replicated our speedup experim ents un til a reasonably narrow 95% confidence in­

terval was obtained. In presenting our speedup results, we simply plot the mean of the

replicated experiments. The 95% confidence interval is consistently no more th an 2% of the

p lo tted value.

Since the performance of PBP2 was shown, in chapter 4. to be b e tte r th an PBP1 in most

cases. PBP2 was used for the BDSM experim ents. Additionally. PB P2 should be less CPU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. DSM EXPERIMENTAL RESULTS 119

intensive since it removes the interval tim er th read and can increase its timeout when th e

communication channel is idle. The results were obtained using a window size of 1G. T h is

is the default for bo th versions of PBP. We also perform ed the experim ents using windows

of 16. 48 and 128 messages, as w ith the th roughput experiments in chapter 4. The results

for all of these are shown in section 6.3. W hile it is clear from the th roughpu t experim ents

in chapter 4 th a t windows size can effect perform ance, this effect appears to be minimal for

the laxger program s a t the BDSM level.

6.2 T est su ite program s

To explore the perform ance of the BDSM system we developed a su ite of five common

parallel program s. O ur suite consists of:

• m atm ult: m atrix m ultiplication

• nbody: N -body particle simulation

• ja c o b i: Jacobi linear equation solver

• eg: conjugate gradient

• ts p : traveling salesm an problem

We chose not to use the common benchmarks o f the SPLASH2 [80] suite because these

programs are designed for completely transparen t memory systems. W hile it would be

possible to po rt these program s to our system, the program s would be different enough th a t

the results would not be comparable to o ther DSM systems. They would not serve as a

true benchm ark.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 120

We use a single process version o f each program as th e basis of ou r speedup m easure­

ments. We also developed MPI versions o f each algorithm. W e a ttem p ted to make the DSM

and M PI program s as similar as possible to ensure there were few algorithm ic differences.

When possible we make sure th a t d a ta are initialized w ith th e sam e values and th a t the

actual com putations are identical. To some extent, differences are unavoidable because the

sharing p a tte rn s of DSM and m essage-passing algorithms are generally different. For exam ­

ple. we did not force the MPI code to use collective com m unication operations a t all tim es,

which the BDSM system , effectively, does. O ur goal is to show th a t the BDSM system 's

performance is com parable to message passing on the same hardw are, not that it is b e tte r .

The M PIC H im plem entations ch_p4 device is used on a network of workstations. T h e

underlying com m unication is done using TC P. Collective com m unication operations are

made up of individual point-to-point messages. The algorithm used depends on the o p era ­

tion. For exam ple, an MPI broadcast uses a binary tree algorithm and an MPI a ll-gather

uses a ro ta tion algorithm . Barriers are done using a ring and a token. The token passes to

each node twice, the first to signify arrival a t the barrier an d the second time, d epartu re .

Our BDSM barriers consist of a single round of messages. A dditionally. BDSM uses ac tu a l

broadcast for all message traffic, so we expect it to perform b e tte r for algorithms th a t use

primarily collective communication operations.

6.3 R esu lts

The first program in the test suite is a square (m x vn) m a trix m ultiplication program

(matmult). T he code uses statically initialized operands. W e are using a naive row p a r­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 121

titioning algorithm for simplicity. Each process is responsible for rri/n rows of the result

m atrix. After com pletion, a designated process reports the result m atrix . T he M PI pro­

gram is similar, w ith a designated m aster process collecting each o the r process' result rows

and reporting th e result. T he m aster is also a worker so the num ber o f com pute elements

is the same for b o th M PI and BDSM versions. The communication p a tte rn is. effectively,

a single round of all-to-one message passing in both cases. For verification, each version

of m atm ult can com pute the result m atrix a t the m aster process and com pare the results

reported by the group com putation.

DSM vs. MPI: matmult. 1280 matrices
6

DSM
MPI

5

4
a.3

T3

cn
3

2

32 5 86 71 4

Number of Processes

Figure 6.1: Speedups for matmult

Figure 6.1 shows the comparative speedup of the two programs for dense 1280 x 1280

integer matrices. Both program s exhibit sim ilar speedups. MPI perform s slightly better

than BDSM, prim arily due to the fact th a t our DSM always uses all-to-all communication.

Processes th a t don :t need the results still m ust handle all of the messages. T he all-to-one

communication p a tte rn is essentially the opposite o f broadcast. In a sense, it represents a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 122

worst case com m unication pattern for our DSM system.

The second program is an N-body particle sim ulation (nbody). We calculate the forces

and new' positions of p particles in 3-space. In itia l positions a n d masses are generated, and

a single large particle is placed centrally in the space. We us a sim ple 0 (p 2) algorithm

where each of n processes is responsible for calculating the forces on its p /n particles by all

p particles. In each calculation phase the new positions axe com puted and data is exchanged

among all process. N-bodv exhibits an all-to-all com m unication p a tte rn with a significant

amount of com putation between each com munication round. T h e original algorithm is from

a Fortran M PI im plem entation by David Walker[93j. We m odified one copy to use BDSM

and the o ther so the communication patterns are more sim ilar. Initially, the MPI version

used a circular loop of processes and n /2 communications per tim e-step. O ur versions, both

BDSM and M PI. use n rounds per time-step where each process com putes the forces on its

particles by each other process' particles.

DSM vs. MPI: nbody. 204a particles. 30 timesteps
8

DSM
MPI

7

6

o. 5
3

"O

4

3

2

i
7 82 5 631

Number of Processes

Figure 6.2: Speedups for nbody

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

CHAPTER 6. DSM EXPERIMENTAL RESULTS 123

T he results shown in figure 6.2 are for 30 tim e steps of 2048 particles. Here, the benefits

of all-to-all communication using broadcast favor BDSM over MPI. Both program s exhibit

nearly linear speedup. The program will transm it a large am ount of d a ta per time-step.

However, it uses relatively few tim e-step iterations. In the MPI version, each process

swaps its particles around a ring w ith its neighbors. It then computes the forces of the

newly received particles on its local particles. T h is takes place in a series o f one-to-one

com m unications, while the BDSM version perform s a larger all-to-all exchange once per

tim e-step . T he amount of d a ta th a t needs to be moved is the same. The sam e pseudo­

random num ber seed it used to generate the random particles for each execution of each

version so the com putations are the same.

DSM vs. MPI' Jacobi. 1024 vector
6

5 DSM
MPI

4

o
©

3

2

1
5 63 7 81 2 4

Number of Processes

F igu re 6.3: Speedups for jacob i

T he th ird program is a Jacobi linear equation solver (ja c o b i) . It uses an iterative

approach to solve for x in the system A x = b. In p u t d a ta for b is generated random ly by

a designated process. M atrix A is a fixed 5-diagonal m x m matrix. We use a seed that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 124

generates a data set th a t converges in approx im ately 14000 iterations. T he BDSM program

was developed locally, based on pseudo-code in a causal memory pap er by A ham ad. Hutto

and John[5]. The M PI version was based on the one in the Pacheco's book [69]. modified

to make it work the sam e way as the BDSM version. The com m unication pattern is a

series of all-to-all d a ta exchanges as each process computes m /n vector elem ents during

each iteration using th e en tire vector from the previous iteration. F igure 6.3 shows the

resu lting speedup for a 1024 element so lu tion vector. This program consists o f a relatively

sm all am ount of com putation for each ite ra tio n so the efficiency of th e BDSM collective

com m unication operations is seen.

DSM vs. MPI: CG. 1024 vector
6

S BDSM
MPI

4
o.
co
CL<n

3

2

t
83 5 6 741 2

Number of Processes

Figure 6.4: Speedups for eg

The conjugate gradient program (eg) is sim ilar in structure to j a c o b i except there are

three all-to-all exchanges for each iteration . We use the same initialization technique as in

ja c o b i . Executions are based on 10000 itera tions. Both the DSM and M PI program s were

derived from the respective j a c o b i versions. T he DSM version uses a num ber of different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 125

segments for problem and tem porary data . This contrasts w ith ja c o b i . which uses two.

one for A and one for b o th x and b. This is the m ost network-intensive of the programs in

our suite, and it is used to explore the message loss patterns. F igure 6.4 shows the speedup

results for a 1024 elem ent vector. M PI perform s nearly as well as BDSM until the benefits of

broadcast all-to-all communication dom inate. B oth eg and j a c o b i scale poorly. The sheer

num ber and cost o f all-to-all communications, even with BDSM using hardware broadcast,

outweigh the benefits o f more com putational power for this problem size.

DSM vs MPt tsp 15 cities, depth 4
6

DSM
MPI

5

4

CL3
T3

3
c j
CL

CO

2

1

0
5 82 6 731

Number of Processes

Figure 6.5: Speedups for tsp

The final program in the suite is a simple traveling salesman problem solver (tsp). T he

program uses a m aster/slave structure where a designated m aster process creates initial,

four-city-deep p a th s and distributes them to the other n — 1 processes. The master gives a

job to each process in s tric t rotation, so the work is not necessarily evenly balanced if some

paths can be d ropped sooner than others. In order to keep the M PI version from having an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 126

effective barrier, in the form of an MPI_Allrednce. w e only track the shortest curren t p a th a t

each slave. T his means th e slaves do more work th a n is needed. This can be an advantage

o f th e shared memory model. I t would not requ ire more communication to allow the DSM

slaves to see each o ther’s cu rren t minimum. T h e distance m atrix for t s p is generated

random ly. Figure 6.5 shows th e speedups for a 15-citv tour. T he results are poor for bo th

M P I and BDSM. This is m ain ly due to the inefficiency of the algorithm we are using. T he

single process version will no t perform extra w ork since it keeps a global m inim um path

an d can drop infeasible p a th s sooner. Also, as expected w ith the m aster/slave s truc tu re ,

using only one slave is ac tually slower than the single-process version. The com m unication

p a tte rn for t s p is basically one-to-one as the m a ste r passes each slave a task to work on

in tu rn . I t would be possible for the BDSM version to take advantage of global knowledge

an d improve its performance. T h is is another exam ple of a program for which broadcast

com m unication is not necessarily ideal. The code for t s p was derived locally, based on

exam ples seen in course work.

Figure 6.6 shows a com parison of the num ber of messages sent and the am ount of

d a ta transfered by each app lication for different system sizes. The num ber o f messages

shown includes only sequenced messages, both d a ta updates and synchronization messages.

I t doesn 't count retransm issions and non-piggybacked acknowledgments sent by th e PB P

layer. Similarly, the to tal bytes sent counts th e num ber of bytes in the sam e subset of

messages. We can see th a t the iterative program s, eg and ja c o b i . transm it large num bers

o f messages as each iteration involves at least one all-to-all communication. T he m atm ult

program , due to the size o f the d a ta set, requires a large num ber of messages for its single

com m unication round. A dditionally, these messages are being received and handled by all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 127

processes, even though only the first process cares ab o u t the results. The nbody program,

since it only runs 30 tim e steps, has a smaller num ber of messages than the other two

repetitive programs. However, th e am ount of d a ta moved per iteration is much greater.

Each particle is represented by seven double variables. Running for 10.000 time-steps

would transfer on the order o f 1.5 GB. The simple t s p program creates few messages,

resu lting in a small am ount of d a ta transm ission.

Procs Messages Bytes
CG 2 153308 63527492

4 253320 75448816
8 493348 104091936

Jacobi 2 133303 61038732
4 213319 70480528
8 413355 94164608

M atinult 2 10249 14296012
4 10257 14296868
8 10273 14298580

N-Bodv 2 5862 4482104
4 5988 4497368
8 6360 4541816

TSP 2 88 57920
4 104 60248
8 134 64672

F igure 6.6: Message passing for DSM programs

6.4 Effects of W in d ow Size

In chapter 4 we've seen m arked differences in the perform ance of PBP2 for different, specif­

ically larger, windows. The previous results all use th e same 16 message window. In this

section we show a comparison for a few test program s o f 48 and 128 message windows as

well. O ur results show th a t for som e experiments the larger window make little difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 128

For others, larger windows can actually be detrim ental.

PBP2. Jacobi 1024 vector, variable windows
6

DSM (PBP2: 16) --------
DSM (PBP2: 48) -«

DSM (PBP2:128) — ■—

5

4
Q.3

CO

3

2

1
2 5 6 ei 3 4

Number of Processes

F ig u re 6.7: Window Size and Speedup for ja c o b i

Figure 6.7 shows tha t the difference in window size has little effect on ja c o b i. T he

results are the same for eg . The different window sizes produce alm ost identical speedups.

At each iteration, each process sends less than 16 messages so a larger window should have

no effect. T he results are different for the program s th a t have more data movement and

less synchronization. Figure 6.8 shows com parison for m atinult. In this program, all o f the

processes are sending large amounts of d a ta a t roughly the sam e time. They are sending

more than 16 messages, so the larger windows are allowing m ore messages to be sent at

once. This increases the contention on the network. Increasing the number of messages also

increases the contention for buffer space on bo th sender and receiver. This may. in tu rn ,

increase the message loss rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 129

PBP2. Matmult 1280x1280. variable windows
6

DSM(PBP2: 16) --------
DSM (PBP2: 48) —
DSM (P8P2:128) — ■—

5

4
o .3

*oO
®
Q .cn

3

2

1
1 2 3 5 64 7 6

Number ol Processes

Figure 6.8: Window Size and Speedup for matmult

6.5 M essage Loss B ehavior

In th is section, we explore the behavior of the underlying PB P layer and the E thernet itself

when used for the DSM com putations in our test suite. Our focus will be on ja c o b i and

eg. The other three programs exhibited no appreciable message loss due to the ir relatively

light communication needs. The d a ta we present here is meant to illustrate the message loss

rates and provide us with insight into why messages might be lost. However, the very act of

collecting accurate message loss d a ta pertu rbs the network and the com putation. It creates

its own extra-com putational messages. It also increases the computation times. This may

serve to reduce the number of messages lost, by slowing the program, thereby reducing

network contention. It may. however, increase the num ber of lost messages by adding to

the network load due to the message passing required for retransmission. Since the tim ing

num bers are not precise due to th is pertu rba tion , we only repeated the experim ents a small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 130

num ber of times. This leads to a large variance. T he results in this section should be seen

as illustrative rather than definitive.

PB P1
Procs Sent Lost (95% conf interval) R ate

Jacobi 4 213319 15.50 ± 16.91 0.00727%
8 413355 55.50 ± 21.37 0.01343%

CG 4 253320 25.50 ± 26.39 0.01007%
8 493348 133.250 ± 26.13 0.02701%,

PB P2
Procs Sent Lost (95% conf interval) R ate

Jacobi 4 213319 16.00 ± 14.90 0.00750%
8 413355 51.66 ± 27.70 0.01250%

CG 4 253320 27.33 ± 18.65 0.01079%
8 493348 127.00 ± 26.29 0.02574%

F ig u re 6.9: Message loss for eg and jacob i

We begin with the ac tu a l message loss rate . Figure G.9 shows the ra te of message loss,

for eg and ja c o b i running w ith 4 and 8 processes for both PBP1 and PB P2. T he two-

process versions of these p rogram s lost, on average, less than one m essage per run and

are. therefore, not very in teresting. In the w orst case, eg with eight processes. 99.97%

of all messages were successfully delivered w ithou t retransm ission. As m ore processes are

added we see a rise in m essage loss. This is m ost likely due to the fact th a t w ith more

processes there is more com petition for receive buffer space and more contention on the

network. A two-fold increase in the num ber o f processes, while creating a proportional

increase in message traffic, causes a 400% rise in lost messages for eg an d a 250% rise for

j a c o b i . One of the po ten tia l causes may be the interference of o the r processes on the

system . As mentioned earlier, we do not have access to a com pletely isolated network.

W ith more BDSM processes it is m ore likely th a t there is com peting activ ity on one of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 131

w orkstations. T he large confidence inter%'al for these loss num bers, see figure C.10. m ay be

p a rtly due to interference from computing activ ity outside of o u r experiments. However, it

is m ost likely due to the low number of repetitions.

PBP1
Procs Total Lost Lost By 1 Receiver Lost a t Sender

Jacobi 4 15.50 ± 16.91 1.75 ± 1.52 13.75 ± 17.83
8 55.50 ± 21.37 14.25 ± 5.72 41.25 ± 19.91

CG 4 25.50 ± 26.39 5.75 ± 2.39 19.75 i 25.54
8 133.25 ± 26.13 31.75 ± 4.38 101.50 ± 24.12

^>BP2
Procs Total Lost Lost Bv 1 Receiver Lost a t Sender

Jacobi 4 16.00 ± 2.48 1.33 ± 3.79 14.00 ± 2.48
8 51.67 ± 27.70 8.67 ± 8.72 42.33 ± 28.80

CG 4 27.33 ± 18.65 1.33 ± 1.43 22.00 ± 17.39
8 127.00 ± 26.29 18.67 ± 13.68 107.00 ± 31.03 |

F ig u re 6.10: Message loss by type (95% confidence intervals shown)

Message loss on a single Ethernet segment can come from th ree sources. T he first is

buffer overflow on the sending processor’s network interface or too much network contention.

T here is no m echanism to ensure adequate buffer space for the outgoing socket using UDP.

W hen a message is sent by a user process and th e buffer is full, the message is not physically

transm itted . W ith high contention, the exponential back-off algorithm used by the E thernet

controller may exceed its limits. In this case, th e message is sim ply discarded. Secondly, a

receiving process' inpu t buffer may be full. This will cause the message to be dropped a t the

receiver. O ther processes may still receive the broadcast message as the ir buffers may be in

different sta tes. Finally, packets may be corrupted in transit, causing a checksum failure.

T h is forces UDP to discard a received packet w ith no action taken. On a stable network,

however, such corruption is very rare. In our experim ents we see message loss in two forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 132

all or one. W hen the sam e message is reported as lost by all non-sending processes, this

indicates th a t either the message was dropped a t the sender or the packet was corrupted

in transit. W hen a message is reported lost by only one process, this means the reporting

process's receive buffer was full and the message was dropped. In addition. P B P 2 showed,

in a few isolated cases, messages th a t were reported missing by all but 2 receiving processes.

F igure 6.10 shows the breakdown of each type o f message loss. We see th a t roughly three

tim es as many messages are lost due to sender buffer overflow or corruption.

Procs Lost T im e (sec.)
4 12 752.88

16 762.36
25 762.60
49 779.31

8 115 658.87
126 • 640.09
139 667.09
153 657.50

F igure 6.11: Sample execution times for eg

Since messages are inevitably going to be lost, we are interested in the cost associated

w ith detecting and re-sending lost messages. We can informally discuss the effects of loss

on the eg program by com paring the number o f lost messages to the execution tim e. Figure

6.11 shows lost message counts and execution tim es from several executions o f eg with four

and eight processes. W hile it is possible to see a correlation between the num ber of lost

messages and execution tim e for four processes, this correlation is probably coincidental.

At eight processes, we see th a t there are clearly o ther factors involved. A higher num ber of

messages lost does not autom atically lead to worse performance. The type of message lost

may be significant. A lost barrier message will likely delay all processes more than a lost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 133

d a ta message. Every process depends on the arrival of the b arrie r message for continued

execution. This is not th e case w ith a single d a ta message. A lthough, due to FIFO delivery,

any messages from th e sam e sender are held up until the lost m essage is received.

6 .5 .1 W in d o w S iz e a n d M e ssa g e L o ss

jacobi Procs W indow 16 W indow 48 W indow 128
4 16.000000 ± 2.4841 20.666666 ± 16.9092 14.333333 ± 15.1783
8 51.666668 ± 27.6993 61.333332 ± 20.2321 66.333336 ± 16.1628

CG Procs W indow 16 W indow 48 W indow 128
4 27.333334 ± 18.6448 29.666666 ± 10.0395 28.333334 ± 16.9092
8 127.000000 ± 26.2896 114.666664 ± 49.3296 111.333336 ± 19.9248

F ig u re 6.12: PBP2 messages loss versus window size

PBP2 uses variable size windows. The increase in window size allows a process to send

more messages a t once w ithout requiring any acknowledgments. In some of the bench­

m arking experim ents in chap ter 4. increasing the window size increased the number of lost

messages due to filling buffers faster and increasing network contention. Figure O'. 12 shows

PB P2 message loss as a function of window size. While there is some difference among

the three window sizes, most noticeably the steady increase in j a c o b i w ith 8 processes,

all of these loss counts fall w ithin each other's confidence intervals. We feel that there is

little difference in the loss ra te for different window sizes for user applications on PBP.

T his correlates to the behavior seen using different window sizes in com pletion time. The

differences can be seen on high-demand benchm arks at the P B P level, see chapter 4. but

axe not visible in user-level applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. DSM EXPERIMENTAL RESULTS 134

6.6 C onclusions

T his chap ter presented the experim ental resu lts for our BDSM im plem entation. We dis­

cussed the program s in our test suite and th e experim ental setup and m ethods used. We

used these results to show that the test p rogram s' perform as well as similar program s using

M PI. These results illustrate the po ten tia l usefulness o f BDSM as an alternative parallel

program m ing environm ent for cluster com puting on a b roadcast capable network. We found

th a t for repetitive programs th a t had an all-to-all com m unication pattern BDSM perforins

well. T he cost o f collective com m unication can be reduced by using hardw are broadcast

operations. We discussed the behavior o f these test program s in relation to the underlying

network and P B P communication layer.

C om paring th e BDSM results to those o f the MPI program s we see th a t collective com­

m unication operations tha t using broadcast can improve performance. In general, com pu­

ta tions th a t are prim arily iterative and require shared d a ta am ong all processes can exploit

th is im provem ent. In our test suite this com putational m odel is represented prim arily by

the eg and ja c o b i equation solvers and th e nbody sim ulation. The m atmult program shares

very little d a ta am ong all processes since th e operands are sta tic . It requires one process to

have access to all the results, bu t there is no interaction am ong the other com pute nodes.

Additionally, is a one pass program. T here is no repetition. This is shown by BD SM 's poor

showing next to M PI for this com m unication pattern .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7

E xten sion s For B D S M

We have presented a new DSM model. BDSM and explored its perform ance compared to

M PI. We also dem onstrated its application to several parallel programs. However, there are

o ther applications it can be used for and improvements tha t can be made. In this chapter

we will look at two such extensions. T he first involves using BDSM for fault-tolcrance.

One of our reasons for using fully-replicated weak-memory is fault-tolerance. We explore

the potential for using BDSM by deriving a general, fault-tolerant, state-m achine service.

This s ta te machine provides its service to its client in the presence of failed server nodes.

T he second part of th is chap ter addresses th e potential scalability issue in two ways. First,

we allow memory bound program s to benefit from BDSM by allowing selective segment

membership. This allows larger problems to be solved. We then look a t methods for

allowing more processes by reducing the network traffic. To do this, we ensure updates to

a segment are only sent to each process th a t has joined th a t segment. By addressing these

two issues we show th a t BDSM can be used for a wider range of applications than were

presented earlier.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 13G

7.1 Fault-T olerant Service

Providing a service to client program s is a common use o f networking technology. Since

the server processor can fail, replicating a server across a num ber of processors is often

desirable. One m ethod of developing such replicated serv ices is to use the s tate m achine

approach[56‘. 78]. The sta te m achine model can be used to im plem ent general, fault-tolerant

services. In th is section, we present a m apping of one ty p e o f s ta te machine service model

to the BDSM environm ent. A simple version of a s ta te m achine service is defined by

L am port[56]. T he state m achine is required to respond to client requests in a causal order.

Further, it m ust ensure th a t all non-faulty replicas execu te requests in the sam e order

despite failures. The original presentation addresses b o th fail-stop and Byzantine failure

modes. Schneider [78] refined and classified this app roach . He discusses a num ber of

different techniques th a t solve the basic problem of en su rin g order of requests issued to

s ta te machine replicas by clients.

T he fault-tolerance requirem ents of a s ta te machine serv ice can be summarized by two

elements. The first is order. Each non-faulty replica processes requests in the same relative

order. The second is agreem ent. Agreement means th a t a ll o f the functioning replicas see

each valid request, with the sam e tim e-stam p. Once rep licas agree, they can execute the

"next" request subject to the ordering requirements. T h e s ta te machine replicas must all

execute the sam e operations in the same order, thus en su rin g the replicated state rem ains

consistent. T he order requirem ent can be summarized by th e following two rules:

• O l: Requests from a single client are processed in th e order issued by the client

(program order).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 137

• 0 2 : If one client's request causes another client to send a request th e first client's

request m ust be handle before the second (causality).

T he o rder requirem ents. 01 and 0 2 . m ean tha t s ta te machine cannot sim ply process re­

quests in the order received. Care m ust be taken to provide causal o rder am ong requests

by different clients. T he agreement requirem ent is satisfied if the following two conditions

hold:

• A l : All non-faulty processors agree on the sam e value for each request (sam e request

in sam e order).

• A 2 : If the transm itter is non-faulty. then all non-faulty processors use its value.

In th is section we develop a s ta te machine model th a t meets the above criteria using

BDSM locations as the communication medium am ong replicas. We begin w ith a presenta­

tion o f the model in general term s. We then present the pseudo-code of each element and

discuss the operation of our s ta te m achine in detail.

7 .1 .1 S t a t e M a c h in e M o d e l

T he service is provided by a system of n replicas. 7Z = {r0.r i . . .r n_ i }. and some clients

C = {co.ci,C2 }• The num ber o f clients is unspecified. If the total num ber of clients

is known, then some optimizations may be made. C lients communicate w ith the server

replicas by passing messages over some potentially lossy network. Replicas com m unicate

am ong themselves using BDSM on an E thernet LAN. A client c, issues a request to any

single replica in the system. It then awaits a t least one response. A replica r j receives

requests and arranges to have all the o ther non-faulty replicas see the request. T he replicas

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 138

then agree to act on the requests in th e sam e order. Each replica responds to each request.

In an /-resilien t system , c, will receive n — f responses for each request th a t is processed.

Define n f C 1Z to be the set of non-faulty processors, such tha t j n / | > f a t all times. We

are concerned only w ith fail-stop failures. Since there is no notion o f enforced read-only

segments in BDSM, there seems to be no. non-cryptographic, way to prevent a malicious

program from w riting to another replica 's shared memory space. Therefore. Byzantine

faults are not easily tolerated using BDSM.

In order to allow clients to send requests to any non-faulty replica, and not use a single

primary- replica to serialize requests, our model is based on real-tim e clocks. The unique

identifier for each request is the tim e-stam p of the request combined w ith either the receiving

replica's id o r the client's id. Clients are assumed to have some unique identifier. We use

Cj for this identifier. Since the clients are not required to be num bered, the actual index

is irrelevant. In practice, we could use som ething effectively unique to a machine such as

its IP address or MAC address combined w ith the process identifier o f the client process.

The system assumes roughly synchronized clocks. For replica Tj. let rc} be its local clock.

Similarly, for client ct . let cci be the client's local clock. Let e be the m axim um error between

any two process clocks, client or replica. T he order th a t requests are carried out is based on

these synchronized clocks. Additionally, we require a reasonable m axim um message delay

between client and replica, tc. Since th is is potentially large on extrem ely lossy networks,

we can make an arb itra ry maximum and refuse to honor requests th a t fail to arrive in time.

A request message th a t arrives a t a replica such th a t the local tim e. rc ,. is greater than

ts+ e+ tc , where ts is the tim e-stam p of the message, is discarded. T he client should timeout

and retransm it the request with a new tim e-stam p. Schneider shows th a t using real-time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 139

requires the minim um inter-client com m unication tim e to be greater than the clock skew. e.

T h is is required to ensure that causally connected requests have noticeably different tim e­

stam ps. Since our model requires a client to wait until it gets a reply before proceeding this

requirem ent is easily met. This stop-and-w ait operation also allows a client to re tran sm it a

request th a t either gets lost or has the original replica fail before propagating the request

to the group. Among replicas, we define t r to be the m axim um acceptable delay from the

tim e a w rite is issued until it is applied to the local BDSM copy at some other replica. Any

w rite by r, will be seen by all r3 £ n f in tim e less than t r . if r, £ n f .

For our s ta te machine, we will use the BDSM layer to allow replicas to com m unicate

am ong themselves. Replicas com m unicate by writing request messages into BDSM space.

Therefore, the buffering system of BDSM is not used. We want writes to be propagated

im mediately. This also ensures we have PRAM order across all segments. By using BDSM.

and therefore PBP. wre have reliable FIFO order between any two replicas. PBP does not

provide atom ic broadcast, so it is possible for a failing node to deliver its request (as an

update to a BDSM location) to som e set s C n f . This partia l broadcast will still take less

th an tT tim e. T hat is. any replicas th a t are going to receive the update will do so in less

th an tr tim e, ju s t as if the sending replica had not failed.

We assum e failed processes are detected. This is not difficult. PB P provides for this.

Failed clients have no effect on the system . Clients, since they are not using PB P. m ust

detect replica failure or lost request messages by a tim eout. Since clients are effectively

stop-and-w ait systems, this detection is also not difficult. A client th a t detects a faulty

node, due to a tim eout while aw aiting a response, sim ply sends its request to a different

replica, w ith a new time-stamp. Since the client cannot have taken action th a t causally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 140

precedes another client's request, there is no violation o f the ordering requirem ents when a

request is re transm itted . In this case, it is assumed the earlier one simply d id not happen.

Messages between client and replica have the following forms. A request m essage from ct

to any replica is denoted < R E Q . id c, ts .o p .d a ta >. T he fields, other than th e type (R E Q).

are the client's unique identifier (idc). th e tim e-stam p (£.s). the type of operation (op)

and any operands required by the operation (data). Similarly, reply messages are denoted

< R E P L . idr . idc. op. data >. T he replica sends back its identifier (idr). the c lien t's identifier

(idc). the operation performed (op) and any results produced by the operation (data). We

use s truc tu re nota tion to refer to individual elements of a requests when required . So. for

exam ple, given some request r, r .ts is th e tim e-stam p of the request.

7 .1 .2 P s e u d o - c o d e

T here cure three m ain components to our s ta te machine model: the client, th e BDSM space

and the replicas. We s ta rt by presenting the client.

7 .1 .2 .1 T h e C lien t

Clients make requests to any replica. Faulty replicas are detected by a tim eout, a t which

point another replica may be used. A fter a request is sent, another cannot b e sent until at

least one reply to the first request has been received. Since we are assuming fail-stop errors,

all non-faulty replicas will be sending th e same reply (except for the replica num ber) so the

first to arrive is sufficient. O thers can be ignored.

Note th a t the clock time. cc,. on a re transm itted message is the current tim e, not the

tim e of the original request. This ensures th a t the tim e-stam p on the request is current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 141

Client,:

send_request: send < REQ.c, cc,. op. data > to Tj.j £ 7v the n
recv_reply < RE P L .rh.c .op. data > from some rh. h £ n

Timeout: send < REQ.c,.cct. op. data > to r*,. k £7Z . k ^ j
recvjreply < REPL.rh.c .op.data > from some o ,. h £ R

Figure 7.1: Client Operation

when received by a non-faulty replica. Once a tim eout occurs while sending a request to

f j . a client will not send a request to again. I t can simply choose ano ther element of R

confident th a t at least n — / are non-faulty.

7 .1 .2 .2 T h e S h ared M em o ry C om pon en t

T he actual state of th e service, the target of client operations such as an NFS file system,

is stored locally on each machine, not in BDSM. Initially, this seems counter-intuitive since

we have a replicated shared memory space. However, since each process has to decide what

action to take independently and then operate on its copy, having the actual s ta te in BDSM

is overly redundant. Each process would need its own section of DSM space to represent its

copy so the da ta would be replicated |7£| times a t each r ,. Alternatively, a system of mutual

exclusion would be needed to ensure one process, only, executed the operation. Failure of

the lock holding process, and a subsequent prom otion, would then need to be addressed.

By keeping the actual s ta te strictly local we avoid this and allow more generality. The

service need not act s tr ic tly on da ta that can be stored in memory, but could work on disk

files, physical resources and so on. The BDSM space is used to keep a list of pending and

resolved requests. This allows replicas to share knowledge about pending requests with one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 7. E X TE N SIO N S FO R BD SM

ano ther in a FIFO, reliable manner.

142

Shared State:

Q[0..n — 1][A/.4A'IZ£'Q] of (req.id)
P[0..n — 1][.\/.4A"REQ] of (req.id)

Figure 7.2: Request lists in shared memory

Shared memory is divided into two lists Q and P . T he lists are further divided so that

each replica has it's own section of each list. Replica r, writes only to its section o f Q and

P . the locations Q[i][—] and P[i][...]. Elements in the list Q[i] are pending requests as seen

by r , . Those in P[z] have been performed by r ,. Item s in any list are in the form (req.id).

w here req is a request message and id is the index of the replica which originally received

the request. Em pty elements may also be used. They are denoted (nidi. null). W hen an

item no longer appears in Q[j}. V j. and is in P[z} it may be removed from P[fj. Removal is

done by overwriting a valid entry with the em pty entry (null .nu ll) . The size of th e lists.

M AXREQ. is defined for clarity, bu t need not be stric tly defined. If it is. it needs to be

greater th an the maximum number of clients. If th is is unknown the DSM space should be

grown dynamically.

7 .1 .2 .3 R eq u est S tab ility

In order to ensure th a t each request is applied in the same order a t all replicas we need to

ensure th a t

1. there can be no earlier pending requests from the same client and.

2. there can be no earlier pending request from a different client and.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 143

3. the request has been seen by all non-faulty replicas.

T he first condition is straight forw ard due to the stop-and-w ait nature of clients. Client

Ct can only have one outstanding request a t a time. T h e second condition requires a request

to have the earliest tim e-stam p o f any request in Q and to be time-stam ped a t least A

earlier th an the current time (at the replica). The delay. A . is defined to be tr 4- 2t r 4- e.

T he final condition ensures th a t the request is agreed upon by all non-faulty replicas. It is

satisfied when a request is present in Q[f]Vz E n f . T h is property is called stability. W hen a

request r is stable a t r , it can be executed on the local s ta te and a reply can be gent:rated.

D e fin it io n 7.1 Request r is said to be s tab le at r t when :

Vj € n / : (r. k) 6 Q[j] A (r. k) £ T>[i]/\

r.ts < s . t s V (s . j) E (QVj E t i J C\'D{i\) A

r .ts -t- A < r c i .

T he com parison (r.ts < r '.ts) . for two elements (r . i) and (r ' . j) . is defined to include

the range e for clock skew. The inequality is true if

(r.ts + e < r '.ts) V (r'.ts — e < r .ts < r '.ts + e A (i < j V (i = j A r.id < r .id)).

Given two request time-stam ps. if they are within e then they are ordered arb itrarily by

replica num ber. If they are from the sam e replica they a re ordered by client identifier. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 144

can be any ordering of the client id as long as all replicas can determ ine the right order.

The delay. A . ensures th a t no earlier request is still in transit. The te rm tc is used to

ensure th a t all po ten tially earlier message from clients to replicas have arrived. The te rm

2tr ensures th a t all potentially earlier requests th a t have reached replicas have been seen by

all r-j 6 n f . W e need to allow time for th e original request to be applied to all non-faulty

replicas and for th e confirmation copies to be applied. Finally, m axim um clock skew. e. is

added to cover differences is clocks.

If the num ber o f clients is known an d fixed, a request can be declared stable w ithou t

waiting for the A com ponent to become tru e if there is a later request by each other client

in Q. Since there can only be one ou tstand ing request by each client, once each client has

a request pending there can be no o ther requests in transit.

7 .1 .2 .4 T h e R e p lic a s

Each replica has its own section of each of the lists. Replica t} reads from Q\i\.i == j . bu t

does not w rite to it. This avoids the need for some kind of access control for the shared

memory. In a fau lt-to leran t system w here processes fail, we want to avoid having m utual

exclusion if possible. Since reads are s tr ic tly local operations, there is no waiting for failed

processes. A failed process will simply no longer update its sections of Q and T>. Once

a process failure has been detected, non-faulty replicas will ignore those areas in fu rther

processing.

The basic operation of a replica, r t , is to wait for requests and to handle them as they

become stable. W hen r* receives a request, r. from cy. it first determ ines if the request

is valid. A valid request must have a tim e-stam p greater than re, — tc — e or it has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 145

Replica,:

0 Recv_request: r = < R E Q . C j . t . o p . d a t u > then
Q[i][A'EA'r T R E E] = (r . i) :

[j 3(r.fc) in some Q[j] £ Off] a (rc, < r . t s -+- A) then
Q[i][A'EAT-F/JEE] = (r . k) :

[] 3(r. k) £ Q[z] ND[j]Vj then
delete (r . k) from m a t h c a l Q [i]:

[] 3 (r . k) £ 2ty’]A $ Q[/]V/ then
delete (r . k) from T>[i\:

[] if 3 (r . k) that is stable then
execute r .op :
send < R E P L . r t . r .C j . r.op. d a t a >:
put (r. k) inV[i]:

P 3(r . k) £ Q[f] : rc, < r . t s + A A - ' s tab le (r . k) then
delete (r . k) from Q[z]:

F ig u re 7.3: Replica operation

delayed too long and should be ignored. Assuming it 's a valid request, r, then writes (r .i)

to some free location in Q[i\. This is then seen by all r} £ n f in tim e less than t r . To

handle requests, r, continually scans the Q locations of other processes for requests it has

no t seen. If it finds any valid ones, they are copied into Q[i]. W hen the request with the

lowest tim e-stam p. say (r ’. j). of any request in Q[i] is stable, r, executes r'.oj>. sends a

reply to client r'.id and writes (r ’. j) into a free spot in "D\i\. Since all non-faulty replicas

see the w riting of all requests in 2tT time, all of the non-faulty replicas will find the sam e

lowest request tim e-stam p and see the sam e stability conditions. Since the replicas are

determ inistic, all replicas will execute operations in the same order. The array T> is used to

clean up the request list. Once a request has been seen to be moved into T> by all Tj £ n f

a t T{. it is removed from Q[i]. Once a request in D[i] is no longer seen in any Q it is deleted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 146

from D[i\.

Note th a t once a request is delivered to a non-fau ltv node it will be seen by all others

and handled even if the original replica fails having o n ly gotten the w rite u p d a te to one

o ther node. This is true until th e message would h a v e become stable. It is possible to

conceive of a pathological case where a request is seem by only one non-faulty node which

then fails, having passed the request to one other. whLch then fails, etc. This could allow a

request to arrive at all non-faulty nodes having taken (n — f) t r time. This would m ean an

old message, which could destabilize a request th a t h a s been executed. So once a message

passes A in age. and has not become stable it is considered invalid.

Once a request gets to a non-faulty node tha t resmains non-faulty it w ill be seen by

all others in the required time. Once a request is se-en by all non-faulty replicas, it will

eventually become stable and be acted upon. This is t r u e because the conditions for stability

will be m et. Once r is seen by all replicas, cither th e r e is a t least one request earlier or

there is not. If not. then r is stab le as soon as A t im e has passed. If there is an earlier

request, then it either becomes stab le and gets rem oved, allowing r to become the earliest,

or it fails to become stable (by not being seen in all Q before A tim e has passed) and is

removed. This also allows r become stable.

The replicas operate on requests and clean up usecd locations by the following rules:

1. A request is not acted upon un til it is stable. T h i s m eans it is the oldest valid request

and th a t it has been seen by all non-faulty rep licas . It is copied to 'D[i] by each as

executed.

2. Once acted upon a request is not removed from *•Q until it is seen to have been acted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 147

upon by all non-faulty by appearing in V .

3. Once removed from Q. a request is only to tally removed from the system when all

non-faulty replicas see that it is removed, by being seeing it in all D bu t not in any

Q -

7 .1 .3 P r o o f

7 .1 .3 .1 P r o o f o f O rder and S ta b ility

Schneider showed th a t the ordering of requests by client tim e-stam p is effective* and satisfies

th e requirem ent to have a unique identifier for each request on which to base request order.

T h is is unchanged for us. Roughly synchronized clocks satisfy O l and 0 2 if

• No client can issue requests faster th a n the resolution of the clock can distinguish and

• the clock skew e is smaller than the m inim um transmission tim e between clients.

O ur system preserves this order because clients operate in a stop-and-w ait fashion. A

client cannot have more than one o u tstand ing request. The second condition ensures th a t

causally related events have time-stam ps th a t reflect the causality between them. This is

preserved because o f the stop-and-wait client semantics as well. A client cannot causally

effect ano ther client’s request until it has received a reply to its previous request. T he

tim e-stam p on the second clients request m ust then be greater th a n the first request's

tim e-stam p.

To prove th a t a stable request is the only one to execute, we define A such tha t once a

local clock reaches tsi + A. no earlier request can arrive. We know th a t no earlier request

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 148

can be a t another non-faulty node because it would be seen by all non-faulty nodes before

tsi + tc + tr + e. and be stable itse lf in another t r tim e units.

I f the request reached a replica th a t failed it is possible for it to take m ore tim e than A

to reach all non-faulty replicas, in which case it will be ignored as being old.

7 .1 .3 .2 P r o o f o f A g re e m e n t

We need to show that our model satisfies the agreem ent properties A1 and A2.

We s ta r t w ith the following lemmas:

L e m m a 7.1 All writes to B D S M locations by any r , 6 n f are seen by all other r j € n f in

the order issued.

This follows from the definition BDSM.

L e m m a 7.2 I f r, € n f then any write issued at time t = rcl is seen by all r j £ n f such

that rcj < t + t r + e.

T his follows from definition o f tr . the use of BDSM (and hence P B P) and roughly

synchronized clocks (with the difference between any two clocks bounded by e).

L e m m a 7 .3 I f r* becomes faulty while it is writing to BDSM. either some r} € n f see the

write in less than tT or none do.

Since we are assuming only fail-stop failures, in o rder for this to occur it m ust happen

while the writes are being sent. E ith er they are received by any other processes before the

processor crashes or not. PB P does not guarantee atom ic broadcast so the se t of receivers

is a subset of n f .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 149

L e m m a 7.4 A ny valid request r seen by some r t G n f is written to Q \}\ and is then seen

by all other r j G n f at most tT time later.

Proof follows from the operation of th e replicas. W hen a request is received by r, € n f

or seen by r, 6 n f in some Q\j\ and the tim e is still valid it is w ritte n to Q\i\.

L e m m a 7.5 Any unstable request r with r.ts < rc, -+- A is considered invalid by r t G n f .

Requests th a t could violate the s tab ility of another request a re ignored. Those tha t

prevent the stability of another are removed allowing the la ter request to become stable.

This is designed into th e replicas.

T h e o re m 7.1 A l holds fo r our state machine on B D SM

Proof: Assume a valid request r arrives a t r,. There are two cases, cither r, G n f and

remains so. or r , G n f and fails shortly after receipt. We d o n 't consider r, £ n f as the

request will never en ter the system and th e client must tim eout and resend it.

1. If r, remains non-faulty, then Al holds because of lemmas 1.2. a n d 4. All rj G n f will

see (r, i) as w ritten by r, in at m ost tr + e time. So all non-fau lty processes agree on

the same value for r.

2. If ri becomes faulty while transm itting , then, from lemma 3. we have two cases: no

process sees the up d a te or at least one r3 G n f sees the u p d a te .

(a) No other non-faulty process sees r . In this case r is a null operation. T he client

will need to resend the request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 150

(b) A t least one r3 £ n f sees r in tim e tr . If r is still valid a t r j it will be w ritten to

Q[j\ and seen by all r, £ n f a t most tr tim e later. At which point, if s till valid, it

w ill be copied into each Q[i] and then become stab le . If this ex tra com m unication

round causes the request to become stale it will be removed. If not it will become

stab le and be executed.

T h e o re m 7 .2 A 2 holds for state m achine on B D SM

Since we are not concerned w ith Byzantine failure A2 follows directly from A l. If all

non-faulty processes get the value tran sm itted then they will agree on that value.

We have dem onstrated a technique th a t allows a s ta te m achine service to be im plem ented

on the BDSM system . By using such a general technique we illustrate that BDSM can be

used for a wide range of highly available service applications, such as a replicated W e b ­

server. We feel th is serves to show th a t BDSM is a usable system with potential real-world

applications.

7.2 E x ten d in g M em ory

As designed and implemented our system is fully-replicated. T he entire address space is

resident a t every processor. While th is is useful for fault-tolerance and has been effective

for the com pute bound test programs in chapter 6. it is not always desirable. Some parallel

programs require more memory th a n is available on a given w orkstation. As a potential

extension o f BDSM. we would like to address this issue. T here are two issues involved:

extending m em ory usage and increasing scalability. The first issue can be addressed by

allowing only those processes tha t need a segment to jo in it. Processes tha t d o n 't jo in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 151

segm ent would not allocate local memory space for it. T he second issue is to reduce the

com m unication overhead. Once we allow selective segm ent membership, we would like to

avoid th e overhead of reliable message passing for u pdates to processes th a t have not joined

a given segment. While all messages are broadcast, requiring reliable. FIFO delivery of

messages, and therefore acknowledgments of some k ind, is wasteful for processes th a t will

ignore the message.

7 .2 .1 E x p a n d in g M e m o r y U s a g e w ith S e le c t iv e J o in

By allowing segments to be created yet not joined by all processes, memory can be par­

titioned . Only processes th a t actually join a given segm ent would allocate space for that

segm ent. In this way. only processes that need access to those memory locations would

use real memory storing them . O ther subsets of the processes could join o ther segments

an d thereby extend the am ount of memory seen by the whole program. T his first step

addresses the issue of memory bound computations. It perm its only those processes that

need a segment to join it. Processes that don 't jo in a segment would not allocate local

m em ory space to it. As cu rren tly implemented, when a process receives a create segment

m essage it allocates the space then so that it can begin processing any updates th a t arrive

afte r creation bu t before the local process joins the segm ent. Reversing the sem antics would

m ean a barrier or some form of consistency check would be needed when a process joins

a segm ent. This synchronization would be needed to ensure tha t no writes can be made

un til every process joins a given segment. A barrier placed afte r segment creation and join

suffices to address this issue.

T his modification is sim ple and requires little change to the existing im plem entation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 152

It allows a com putation to have, not only, the illusion of shared memory, but also, tha t

o f more physical memory th an is present 011 any one processor. Normally, when fully-

replicated, BDSM provides physical memory equal to the m inim um physical memory of

any processor used. Issues of different memory capabilities on a heterogeneous network

can be addressed. Processors w ith more physical memory can be assigned processes that

need access to more segments. Those processors w'ith more limited physical memory can be

assigned processes th a t jo in fewer segments.

7 .2 .2 Im p r o v in g S ca la b ility -

Extending memory by allowing selective join increases the scalability of the BDSM system.

It allows for larger program s th a t would not fit in the physical memory of any one processor.

However, since we use hardw are broadcast for each update , we still have updates being sent

to all processes. A process th a t receives an update for a segment it has not joined simply

ignores it. The problem is th a t these ignored messages are sent by PB P. so are sent reliably

to processes that don 't need them . Additionally, the message has to be delivered to the

BDSM im plem entation before being ignored. W hen used on a system with a large number

of processes, the cost of broadcast reliability for messages that only need to reach a subset

will become higher. A broadcast on an Ethernet segment is effectively the same as a point-

to-point message. However, requiring acknowledgements for messages th a t are to be ignored

does use more network bandw idth . We would like to spend resources ensuring the delivery

and order of updates only to those processes th a t need the update. Since we are using

broadcast, each message sent is still seen by all processes. Messages th a t a ren 't important

to a given process could be ignored a t a lower level and will not need to be acknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 153

To make the system perform in th is fashion we will use an instance of P B P for each

segm ent. The creation and jo in ing of a segment will contain th e group membership protocol

o f P B P initialization. Since P B P is a stand-alone system we sim ply need to s ta rt PB P with

each process th a t joins a segm ent. Each instance of PB P will use a different po rt number

so the messages th a t a process can ignore will be dropped a t the kernel level. Each process

will then perform inputs on any PB P queue tha t has messages available. Some form of PBP

delivery m ultiplexing can be used to determ ine which incom ing queues have messages.

An alternative im plem entation m ethod w'ould be to redesign PB P to use IP M ulticast.

Each segm ent would have a m ulticast group associated w ith it. T he PB P system would then

provide FIFO service among m em bers o f each group. In this case, there would effectively be

an instance of the PB P protocol for each multicast group. W ith hardware th a t effectively

filtered IP m ulticast packets, non-m em bers would be only m inim ally effected by messages

exchanged am ong members o f a given group.

T his system needs to preserve the BDSM requirements from chapter 2. These require­

m ents are

1. W rites by a process to a given segm ent appear in program order.

2. Synchronization operations issued by any process appear in program order.

3. Synchronization operations appear in program order w ith respect to all w rites issued

by a process. Writes before the synchronization appear before and those after, after.

To satisfy the first requirem ent we rely on PBP. Each segm ent will have an instance of

P B P for group com munication am ong all joined processes. Since updates to each segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 154

use th is FIFO channel provided by PBP. the requirem ent that writes to a given segment be

in program order is preserved. T h is does not require any changes.

E nsuring order for synchronization operations requires an add itional communication

channel. W hile the basic system of using a PB P instance per segm ent is straightforw ard,

its effects on the synchronization coherence m odel are not. In order to ensure that we

m ain tain BDSM coherence, we require synchronization operations to be in program order.

To th is end we will use one global instance o f P B P for all processes. T his main PB P

instance will be used for synchronization operations. This will satisfy th e BDSM condition

th a t synchronization operations be in program order w ith respect to o th e r synchronization

operations. Additionally, since all synchronization in BDSM is global, e ither barriers or

broadcast locks, each process needs to be able to com municate w ith each o th e r regardless of

segm ent membership. A single channel for all processes allows this global message passing

to take place.

T h e last requirement for th e BDSM model is th a t updates by a given process to all

segments it has joined be seen in FIFO order relative to each synchronization operation

sent by th a t process. W hen th e BDSM layer of a process performs a barrier, it will send a

message w ith the barrier num ber down each of its P B P connections. T hen , it will send the

barrier message on the global P B P channel. T his effectively makes a checkpoint on each

of its PB P channels a t the po in t in the program order th a t the barrie r was called. O ther

processes will only consume messages from a given process up to an not beyond a barrier

m arker in a segment PB P queue un til the consuming process has reached the barrier marker

for th a t process on each inpu t queue and crossed th e barrier. In this way. a process will not

see any writes made by ano ther process after a barrie r before crossing it and vice-versa. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 155

call th is the barrier m arker system. These messages are sim ilar to the 2-way flush messages

in flush channel com munication[7. 24]. We have defined th is model to work for harriers

because they have clear sim ple semantics. Using this for the d istribu ted locks in BDSM

would require a sim ilar protocol for each lock message, those responding to lock requests as

well acquire requests.

7 .2 .3 B a r r ie r M a r k e r S y s te m

A barrier in BDSM. as seen by one process, consists of receiving n — 1 barrier messages

and issuing a barrier message itself. These barrier messages consist of (bar.b.i). where b is

the barrier number and i is the process sending the barrier message. The barrier num ber is

used to differentiate am ong barriers. For this extension, the protocol is similar, b u t more

involved. Now. a process sends a message, in this case called a barrier marker and denoted

(bm . 6. i). down the channel for each segment it has joined. Then, it sends the regular

barrier message down the global channel. To cross the barrier it m ust still receive a barrie r

message from each o ther process. I t m ust also receive a barrier m arker from each segment for

each other process th a t has joined th a t segment. Definition 7.2 shows the barrier condition.

BC. which must be satisfied for a process to cross a barrier. Additionally, once a barrie r

m arker from some process has been received for a given segm ent, no other messages from

th a t process for th a t segm ent may be consumed until the receiving process satisfies BC.

T hey m ust be queued locally and handled after the the barrier is crossed. This condition

is called WC, see definition 7.3.

Joining a segment, Sj, provides a communication channel, c,. th a t delivers messages to

all processes tha t have jo ined s, in the order sent by each sending process. This is provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 156

by th e use o f P B P as th e com m unication layer for each segm ent. T h ere is no o rd er guaB rantee

betw een m essages sent on different channels.

process po process pi process p2

GLccal Synch.rcnioa.cior. channel Cg

F ig u re 7.4: BDSM using multiple PBP channels.

Consider three processes po- pi and P2. shown in figure 7.4. Each is a m em aber of

the global PB P communication channel. ca. Additionally, two processes have each joined

segm ents s i and s->. which have PB P channels ci and ct. respectively. Process p\ has joined

b o th m em ory segments. W hen pi reaches a barrier, say bo- it sends a barrier marker m e ssag e .

(bm . bo. i). down each memory segment channel and then a norm al barrier message.-, (bar.

bo-i). down the global channel. Process p t will not cross the barrier until it has recesived a

message (bar. bo-0) and (bar. bo-2) from cg. Additionally, it m ust receive (bm. bu.OrJ from

ci and (bm. bo-2) from C2- Once (bm.bo-O) is received by pi from ci. no other messagae from

po may be handled from ci until the barrier is crossed. Similarly, once pi has receivecd (bm.

f>o,0) from p2 on C2 it will not handle any o ther messages from p2 on C2- When po reeaches

the barrier. it needs to wait for a barrier message from each o ther process on cg and a

m arker on ci from p i . It doesn’t need anything other than the barrier message on from

P2 because po and po do not share segment membership.

D e f in it io n 7.2 Barrier Condition (BC): A process p, may complete a barrier ope-.ration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 157

when it has

1. reached the barrier itself.

2. received a matching barrier message from each process in the system on cCJ. and

3. received a matching barrier marker fo r each segment s from each other m ember of s

fo r each s t of which pi is a member.

D e f in it io n 7.3 Wait condition (W C): .4 process p, may not receive a regular message for

any segment s from some Pj i f p, has received a barrier marker from p3 fo r s and has not

satisfied B C fo r that barrier.

7 .2 .4 P r o o f

In this section, we prove th e barrier marker system is effective. This requires proving

liveness and safety of the barrie rs themselves an d th a t the ordering requirem ents of BDSM

are preserved. Liveness an d safety were shown for barriers in theorem 5.1. T h is form of

barrier, w ith barrier m arkers, behaves the sam e way w ith respect to safety and Iiveness. A

process cannot cross a b a rrie r until it satisfies B C . which includes receiving an appropriate

barrie r message from each o th e r process. Liveness is also assured because each process must

send its barrier marker m essages and P I ensures they will all be delivered.

The first o f the BDSM requirem ents, from chapter 2, is th a t all writes by one process

to a given segment be see by all others in program order. The barrier m arker protocol has

no effect on the order of w rites. Therefore, this requirem ent is met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 158

T he second requirem ent is tha t synchronization operations occur in the program order

of each process. Since there is a single P B P channel shared by all processes and th is channel

is used for all b arrie r messages, these messages will be in program order.

To prove the th ird BDSM order requirem ent we will break it into two parts.

1. No write u p d a te messages sent by p, a fte r a barrier can be seen by any pj before pj

crosses the barrier.

Assume the opposite. Some message m . sent after a barrier b in p, is seen by some p}

before p3 crosses b. In order for it to have been seen it must have been delivered. And

in order to be delivered it must have been received on some c^. Since p, has reached

b it has sent a barrier message on cg and a barrier marker message on each c*.- it lias

joined. Also, since m has been sent after all the messages for b. the barrier m arker

message m ust have been sent on c* before m. From P I . it must also be delivered

before m . Since pg has not satisfied BC. or it would also have crossed the barrier, it

cannot have seen any messages from p, on ĉ - after seeing the barrier m arker, from

WC. Therefore it cannot have seen m .

2. All messages sent by p, before the b arrie r will be seen by each p_, before Pj crosses the

barrier.

Assume the opposite. Some message m sent by p, before b is not seen by some p3 after

it crosses th e barrier. Since m m ust have been sent on before the barrier m arker

for b by pi, it m ust have been delivered after it in order to have not been seen by pj

when it satisfied BC. This is a clear violation of P I . Therefore m m ust have been seen

before pj satisfied BC and crossed th e barrier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. EXTENSIONS FOR BDSM 159

The barrier m arker system will preserve the ordering requirem ents of BDSM. It allows

a program to be more selective in its us o f memory thus allowing more flexibility. This

extension addresses issues of scalability by m aking BDSM more efficient for larger num bers

of processes by reducing network utilization.

7.3 C onclusions

In this chapter we presented two different ways that the BDSM system can be extended

to make it m ore useful to many applications. The first is to use BDSM for fault-tolerant

services. The general s ta te machine model allows any client/server applications to be de­

signed for BDSM. The second is deals w ith scalability. By addressing some of the- scalability

issues of BDSM we show tha t is can be used for larger problems. Many applications are

implemented in parallel to acquire more physical memory than is on a single processor.

The extension presented here allow this to be done by programs using BDSM as well. The

barrier marker system allows programs to m ake use of more processes by making the overall

system more efficient. These two results serve to illustrate the potential utility of a DSM

system designed for the use of broadcast on a common clustered com putational platform .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 8

C onclusions

D istributed shared memory provides the illusion o f a shared address space- to processes on

systems w ith no shared memory. Software DSM system s provide this service to processes

on separate w orkstations connected by a network. For efficiency, many of these system s

provide weak memory semantics. W hile it has been argued th a t these weak m emories

should not be used on hardw are m ultiprocessor svstems[46]. the performance gains are

often still necessary on a cluster com puting system . T here is a significant am ount of work

being done to improve software DSM systems[49, 55. 26. 76. 28. 17. 75. 10. 54]. The need for

simpler im plem entations th a t still provide good perform ance has been expressed[88]. We

have developed a system th a t relies on a simple protocol to provide weak DSM to processes

sharing an E thernet segment.

In this chap ter we present some of the conclusions we have drawn from this work. We

s ta rt by looking a t a few potential directions for fu tu re work. This addresses some o f the

issues and weaknesses of the system . We then sum m arize the results we presented. And

discuss how we have attained the goals we laid ou t in the introduction.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 101

8.1 Future d irections

We are pleased with the results our BDSM system has shown to date. However, th e re is

room for improvement. Some issues to address in the future are w rite detection, using T C P.

and im plem entation of th e extensions in chap ter 7. There are also several refinements of

P B P we would like to explore. We discuss each in this section.

W rite detection is of m ajor concern because w ithout it the system cannot be made? tru ly

transparent[96]. Currently, writes must be a function call th a t lets the BDSM thread per­

form the update . Using some interm ediate layer that catches writes w ithout this overhead

and propagates an update would be helpful. Systems like SHRIM P [50] use modified hard­

ware th a t autom atically sends writes to the network, sim ilar to a write-through cache. It

may also be possible to use the memory m anagem ent structures to protect memory location

on a fine granularity. T he Region-Trap library [21] would facilitate this. A handler function

would still be called for each write so there m ay be little perform ance gain. However, it

would com plete the illusion of a shared address space by providing true transparency a t the

user-level.

T he BDSM system is not required to use broadcast. It would be possible to im plem ent

a set o f T C P connections among processes and make the operations send to each connec­

tion. T he system would still need to send each message to each o ther process to preserve

the sem antics of BDSM. bu t this would allow the system to work on wider networks. It

would also allow us to make a real measure of the benefits of using hardware broadcast, by

com paring the two versions. Implementing PB P using IP M ulticast would have a sim ilar

effect, and still allow the use of hardware broadcast where available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 162

To improve scalability we would like to implement the extension to allow m ultiple PBP

instances. This will give the BDSM system wider utility by allowing larger problems.

Additionally, since we are also interested in fault-tolerance. a prototype sta te machine

im plem entation would server to b e tte r illustrate the poten tial for highlv-available computing

using BDSM.

In the future we would like to explore some issues regarding PB P as well. It Would

be interesting to allow P B P to have dynamic tim eouts. T he notion of a round-trip time

(R TT), used by protocols like T C P to change various tim eout values, is less well-defined

for a broadcast system . We can imagine a form o f RTT tha t is sim ilar to tha t used for

point-to-point protocols. T he tim e would be based on when an outgoing message buffer

was reclaimed after being allocated. W ith such a system , we may be able to improve the

performance of PB P further by more accurately tim ing events.

Another possible improvement to PBP would be to allow dynamic connections. Cur­

rently, the system is lim ited to those processes th a t participate in the group registration

process a t startup . Processes can be removed due to failure or voluntary exiting. This

change in membership is currently one way only. Processes can be removed but not added.

Allowing the group m em bership to grow would allow failed processes to be replaced with­

out restarting the entire group. This would make P B P more applicable to fault-tolerant

com puting by allowing process recovery.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. CONCLUSIONS 103

8.2 C onclusions

We have developed a weak form of DSM tailored to be efficient in a common netw orking

situa tion . Many clustered o r networked com puting environments use some form of E th e r­

net as a communication m edium. O ur system uses the inherent broadcast ability o f th is

hardw are to perform efficient all-to-all com m unications. W rites in BDSM are d istribu ted

as broadcast updates. We allow a weak enough model that there is no need to have global,

o r even causally, ordered message-passing. T h is means no need for e x tra messages o r the

serialization of broadcasts.

We have overcome som e of the problem s of using non-causal memories. Many such

system s are too weak to be program m ed effectively. PRAM and Slow memory are exam ples

o f such weak, non-causal memories. Synchronization operations based on memory locations

do not have enough power. We solve th is by using synchronization a t a lower, message-

passing level. O ur synchronization operations are broadcast by the communication layer

ra th e r th an being DSM level writes to m em ory locations.

We have developed a te st suite of com m on parallel com putations. These programs are

used as comparisons to M PI. a common message-passing alternative. We show that BDSM

can be a viable alternative to message-passing on a LAN because ou r test program perfor­

mance is comparable to th a t of their M PI counterparts. We found th a t for true collective

communication operations, such as are required for iterative m ethods, the use of broadcast

scaled be tte r than M PICH. The M PI im plem entation uses T C P connections on a network

of workstations. O ur system shows b e tte r resu lts because the all-to-all com munication is

cheaper w ith broadcast operations. T h is leads us to the conclusion th a t for programs w'ith

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 164

significant num bers of collective com munication operations, a broadcast DSM system is a

viable alternative to message-passing.

In the course of our work, we have developed a FIFO , reliable broadcast system and

im plem ented it as a library. T h is PB P system provides efficient use of the norm ally lossy

UDP broadcast on a single E th e rn e t segment. Additionally, we have tested the performance

o f P B P versus T C P for th roughpu t. These results show the expected increase in effective

th roughput for more then 2 processes. We have also com pared these th roughpu t results

to published results of a different reliability protocol th a t can take advantage o f hardware

E thernet broadcast. RMP. P B P com pares favorably a t the expense of to ta l order. However,

even for a one sender situation, w here sender order is to tal order. P B P perform ance is closer

to the hardw are limits than R M P.

In chapter 7. we presented two extensions to the BDSM system . T he first is an appli­

cation of BDSM to a fault-to lerant server model. We show th a t BDSM can be a general

service provider th a t provides h igh availability in the presence of message loss and failed

processes. A second extension was presented th a t addressed some issues of scalability in

BDSM. We show' how BDSM can allow for larger, memory bound com putations by not

fully-replicating memory. F urther, we have shown a scheme to reduce the PB P commu­

nication traffic to only those processes tha t need each update. These two proposals show

th a t a broadcast DSM system can be applied to a larger range of applications than we have

actually implemented.

We have developed a weak DSM model that does not require global, or causal ordering of

the updates. This system can b e used effectively, due to strong synchronization operations.

Using E thernet broadcast capabilities can reduce the cost of all-to-all com munication. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS 165

have dem onstrated how this can be done in a reliable fashion to im plem ent a weak update

based DSM system. Through experim entation we have shown that broadcasting updates

can be a competitive m ethod o f interprocess com m unication on a LAN for programs with

appropria te communication patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix A

Sam ple Test C od e

In this appendix we present shortened versions of the jacobi code from the test su ite . We

show both the BDSM version and th e M PI version for comparison.

A . l B D S M Jacobi C ode

/* FILE: jacobi.c
* W ritten by :
* Philip R. Auld
* Dept, o f C om puter Science
* College o f William and Mary
*

* Jacobi linear equation solver for dsm
* Solves for x in A x = b
*
* Creation Date: 7 /3 /98
* Last Modification Date: 10/27/98
*
* Changed to use shared mem for all data.
*

*

#inciude < std io .h>
#include < std lib .h >

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 167

^ in c lu d e
in c lu d e
in c lu d e
^ in c lu d e

in c lu d e

< u n is td .h >
<strings.h>
< m ath .h >

< sy s/tim e .h >

"dsm.h"

/* dsm info */
int d_id_data:
int dJd_res:
int proc_num:
/* these will be starting location in dsm segm ent o f each m atrix */
int vector_x. vectored:
/* Pointers for direct D SM access */
float * x_ptr:
float * d_ptr:

int debug = 0:
int doprin t =0 :
int test_result = 0:
int use_file = 0:
int rand_seed = 0:
int m a x Jte r = 1000:
int m atsize = 4 :
int num proc = 1:
int doneJoc:

/* target conversion bound */
float epsilon = 0.001:

/* these will hold problem constants A and h *f
int mat_a:
int *a_ptr:
int vec_b:
int *b_ptr:

/* count interations */
int num Jterations = 0;

/* which barrier, will a lterna te between 1 and 0. */
int current .barrier :

/* test the done value. R e tu rn s < 1. (hopefully 0) i f false
* 1 or > i f done is true
*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

I**********:*****:**********:*************:*:*******:**:**:*:******/
float
read_done()
{

float val:
dsm _read(dJd_res, &:val. doneJoc):
re tu rn val:

}

void
show_solution()
{

/* prin t solution, including current x values */
}

void test_solution()
{
/* i f we are right then A x should be p re ttv close to the original b*f

}

void
show_problem()
{
/* prin ts problem values and "x[nj" for each x value */
}

/* we use a strongly three or five diagonal m atrix to help ensure convergence ■*/
int
get_diag_data(int * a. int *b. int size)
{

/* generate type m atrix */
}

/* initialize all constant data. Generate diagonal m a tr ix and random b
Or read in p u t from file i f given */

void init_m atrix()
{

int i:
int num_to_send:
int * m atrix_aT* vector.b;
FILE * input_data;

m atrix_a = (int *) malloc ((m atsize*m atsize+ matsize)*sizeof(int)):
vector.b = &matrix_a[matsize*matsize]:
get_diag_data(matrix_a, vector_b, 5):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A . SAMPLE TEST CODE 169

num_to_send = (m atsize * matsize) -+- matsizc:
/* for large num ber o f adjacent writes this is much m ore efficient */
dsm_bulk_write (dJd_data.m at_a. &:matrix_a[0] . num_to_send. DSM_WRT_REL):
free (matrix_a):

}

/* Setup actual po in ter into the dsm segemt for reading d irectly */
void
get_pointers()
{

if ((x_ptr = (float*) dsm_ptr_read(dJd_res. vector_x)) = = NULL){
/*E R R O R */
dsm_exit():
return:
}

if ((d_ptr = (float *)dsm_ptr_read(dJd_res. vector_d)) = = NULL){
/*E RRO R */
dsm_exit():
return:

}
if ((a_ptr = (int *)dsm_ptr_read(dJd_data. mat_a)) = = NULL){

/*E R R O R */
dsm_exit():
return:

}
if ((b .p tr = (int*)dsm _ptr_read(dJd_data. vec.b)) = = NULL){

/* E R R O R */
dsm_exit():
return:

}
}

/* given i this returns the new value for x[i] based on the current
* values and m atrix A and vector b
*^c^^c^e**ic*i(c****<c»:***»********************** *************** *♦****»:*/

float calculate_value(int i)
{

int j:
int k:

float partial-solution:
float lowerjsum = 0.0:
float upper_sum= 0.0:
int row = i * matsize;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 170

/* we read the values d irectly from the dsm segm ent using po in ters */
partial_solution = b_ptr[i]:
for (j = 0 : j < i: j -F+){

lower_suni += x_ptr[j] * a_ptr[row 4-j]:
}
for (k = i+1 : k < m atsize; k + +){

upper_sum + = x_ptr[k]* a_ptr[row-r-kj:
}
partialjsolution — = lower _sum:
partial_solution —= upper_sum:
partial_solution / (float) a_ptr[row -i- i];

re tu rn partiaLsolution:
}

/* test for convergence. F inds m ax d[i] and compares it to
* the desired epsilon convergence bound.

int converged ()
{

int x:
float curr_max =0.0:

for(x = 0 : x < num proc: x 4-+){
curr_max — max(d_ptr[x]. curr_max):

}
if (curr_max < epsilon)

re tu rn 1:
re tu rn 0:

}

/* runs the jacobi algorithm */
int
solve.problem ()
{

int x.k:
int ret val = 1:
int global_start:
int num_to_compute:
float * temp.values:
float current_max:
int count:
int curr Joe:
float temp.done;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

num _to_com pute = m ats ize / num proc:
k = m atsize % num proc :
if (k > proc_num)

num _to_com pute 4-4-:

tem p .values = (float *) m alloc (sizeof(float)* num _to_com pute):
if (tem p.values = = N U LL){

dsm _exit():
ex it (—1):

}
/**************«****:*****:**** B A R R IE R ***********»*************/
dsm _barrier(cu rren t_barrier. & :num proc):
cu rre n t .b a rr ie r = [cu rren t .barrier:

g lo b a l-sta rt = p ro c j iu m * n u m .to .co m p u te :

w hile (read_done() < 1){

/* calculate phase, no dsm writes */
c u r re n tjn a x - 0 .0 :

for (count = 0 : co u n t < n u m .to .co m p u te : count 4-4-){
c u rrJ o c = g lo b aL sta rt 4- count:
tem p_values[count] = ca lcu la te .v a lu e (cu rrJo c):
c u rre n tjn a x = m ax (cu rren t .m ax.

((float) fabs((float)(tem p.values[coun tj— x_p tr[cu rrJoe])))):
}

/************************** B A R R IE R *************************/
dsm _barrier (cu rren t .b a rr ie r . & num proc):
cu rre n t.b a rrie r = [cu rren t .barrier:

/* write back phase, reads are unsafe here */
dsm .w rite (dJd_res. v e c to r.d -f- proc_num . ^ c u r re n tjn a x . DSM .W RTJR.EL):
for (x = 0: x < n u m .to .co m p u te : x4-4-){

c u rrJ o e = g lo b aL sta rt 4- x:
dsm _write (dJd_res. c u rrJo c . &:temp_values[x]. D SM .W R TJR EL):

}

B A R R IE R ****************************/
dsm _barrier(curren t_barrier. & num proc):
c u rren t.b a rrie r = [cu rren t.b a rrie r:

if (p rocm um = = 0){

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 172

if (num Jterations > m ax Jte r){
tem p.done = 1:
retval = 0:

}
else

temp_done = (float)converged():
dsm_write (dJd_res. done Jo e . &:temp_done. D SM .W R T JIE L):

}

/******************************** BARRIER********* ****** *:****X****::K***/
dsm_barr ier (current .ba rrie r, fcnumproc):
current.barrier = [curren t.barrier:

num Jterations -M-:
} /* while not done */

if(proc_num = = 0)
printf("7,d ". n um Jte ra tions):

re tu rn retval:
}

/* main function sets up dsm . attaches to a dsm segment and then calls other
* functions to actually solve the problem.
** * /

int
m ain(int argc. char *argvQ)
{

int s Jlag:
int numlocsoc. num locs.data:
int c:
struct timeval s ta r t.tim e . end-tim e:
long tem p.tim e^ec, tem p.tim e.usec:
extern char * optarg:

if (gettim eofday(& start_tim e , NULL) <0){
perror ("g e ttim eo fd a y "):
ex it(l):

}

/* start program different machines*/
if ((s_flag = dsm_startup(&:argc.argv)) <0){

dsm_perror(" s tc ir tu p ");
exit (—1):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 173

}
strncpy(data_file. DATAFILE. 128):

while ((c = getopt(argc. argv. " s : p : i : m : f : e :o l t h d ")) # —1) {
/* Process argum ents */

}
if (rand_seed = = 0)

rand-seed = getp id():

/*Setup num ber o f location we will need. Point some integers into the DSM space to m ark
location o f different arrays */

numIocs_x = m atsize -+- num proc + 1:
vector_d = m atsize:
vector_x = 0:
done Jo e = numlocs_x —1:
numlocs_data = matsize* m atsize -t- matsize:
mat_a = 0:
vec_b = m atsize*m atsize:
curren t.barrier = 0:

/* actually start D SM */
if ((proc_num = d sm Jn it(& num proc .sJiag)) < 0){

dsm_perror("BADNESS\n"):
exit (— 1):}

/* create 2 D SM segm ents . one o f ints and one o f floa ts */
if (proe.num = = 0){

dJd_res = dsm_seg.at (numlocs_x.sizeof(float).1234.DSM_CREATE):
if (dJd_res <0){

dsm _perror(" s e g _ a t ! "):
exit (— 1):

}
dsm_sleep(5):
d J d .d a ta = dsm_seg_at (numlocs.data.sizeof(int).4321.DSM _CREATE):
if (d Jd -d a ta <0){

dsm _perror(" s e g _ a t ! "):
exit (— 1):

}
}
else {

/* attach to the 2 segments greater/ by process 0 */
w hile((dJdjres = dsm_seg_at (numlocs_x.sizeof(float).1234.DSM_JOIN)) <0)

dsm_sleep(2):
if (dJd_res <0){

d sm _ p erro r(" se g _ a t! ");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE T E ST CODE 174

exit (— 1):
}
while((d_id_data = dsm_seg_at (numIocs_data.sizeof(in t).4321.DSM .J O IN)) <0)

dsm_sleep(2):
if (d Jd_data <0){

dsm _perror(" s e g . a t !"):
exit (— 1):

}
}
get_pointers():
if(debug) {

p rin tf("g o t p o i n t e r s , c a l l i n g b a r r i e r */,d \n " . current.barrier):
fflush(stdout):

}
/* m akse sure every one has sta rted before we s ta r t w rit ting initialization data */
dsm_barrier(current-barrier. &tnumproc):
cu rren t.barrie r = [current .ba rrie r:

if (procjnum = = 0)
{

fp rin tf (stderr."done w ith s y s _ i n i t \ n "):
if (gettimeofday(&:end_time . NULL) <0){

perror ("g e ttim eo fd a y "):
ex it(l):

}
tem p.tim ejsec - end_time.tv_sec — start_time.tv_sec:
tem p.tim e.usec = end .tim e.tv .usec — start_tirne.tv.usec:
p rin tf ("'/.Id ", temp_time_sec*1000000-f- tem p.tim e.usec):
init jn a tr ix () ;
fp rin tf (stderr."done w ith i n i t \ n ") :
if (gettimeofday(&:start_time . NULL) <0){

perror ("g e ttim eo fd a y "):
ex it(l):

}
temp_time_sec = s ta r t .tim e .tv ^ e c — end_time.tv_sec:
tem p.tim e.usec = s ta rt.tim e .tv .u sec — end.tim e.tv .usec:
p rin tf ("'/.Id ", temp_time_sec*1000000-f- tem p.tim e.usec):

}

if (solve.problemQ = = 1)
fp rin tf(stderr," S o lv ed \n “):

else
fprintf (stderr."maLX iterations reachedW):

if (procmum = = 0) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 175

if (gettimeofday(&:end_tirne . NULL) <0){
perror ("g e ttim e o fd a y ") :
ex it(l):

}
temp_time_sec = end_time.tv_sec — start_time.tv_sec: :
tem p.tim e.usec = end .tim e.tv .u sec — start_tim e.tv .usec :
p rin tf ("7 ,ld \n temp.time_.sec* 1000000+ tem p.tim e.usec):

}

dsm_remove(d_id_data):
d sm jem ovefd J d .re s):

dsm .cxit():
dsm_bcast_stats(proc_num. s td o u t):

re tu rn 0:
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 17 6

A .2 M P I Jacobi C od e

/* File: Jackin pi. c
*
* Original version from "Parallel Programming with M PI".
* by P. Pacheco. Morgan K aufm ann Publishers.
* Los A ltos. CA 94022. U SA, 1997.
*
* M odi fed by Philip R . A u ld

#include < std io .h>
#include < std lib .h>
#include < u n is td .h >
#include < sy s/tim e .h >
inc lude <strings.h>
#include < m ath .h >

#inc lude "m pi.h"

#define SW AP(x.y) {float* tem p: tem p = x: x = y: y = temp:}
#define MAX-DIM 1024

int rand_seed = 1:
int m ax-iter = 1000:
int matsize = 4:
/* target conversion bound */
float epsilon = 0.001:

typedef int MATRIX_T[MAX_DIM][MAX-DIM]:

int
parallel_jacobi(MATRIX_T A Jocal.float xJocalQ.float b_local[|. int n.

float tol. int m a x Jte r. int p. int my .rank):

void read_matrix(M ATRIX_T A Jocal. int n,
in t my_rank. int p);

void read_vector(float xJocalfj. in t n, int my-rank,
in t p):

void Print_m atrix(char* title, M ATRIX-T AJocal. int n. int my_rank. int p)
{
/* print A Joca l to stdout */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 177

}

void Print_vector(char* title, float x Joca lj]. int n.int mv_rank. int p)
{
/* print X to s td o u t */
}

void get_diag_mat(MATRIX_T a. int n . int size){
/* initialize a w ith tv p e diagonal m a trix */
}

void get_rand_vec(float *b. int size)
{
/* initializa h w ith random values */
}

void
show_problem(M ATRIX_T a. float * b. int n):

void
show_solution(MATRIX_T a. float * x Joc .floa t * b. int n):

void test_solution(M ATRIX_T a. float *b. float *x. int n):

/* data in data segm ent to avoid stack overflow */
M ATRIX.T A Jocal:

void
m ain(int argc. char* argvj]) {

int p:
int c:
int my_rank:
float xJocal[MAX_DIM];
float bJocal[M AX-DIM]:
int converged:
s tru c t timeval start_tim e, end.tim e:
double temp_time-sec. temp_time_usec:

if (gettim eofday(& start_tim e . NULL) <0){
perror (" g e ttim e o fd a y ") ;
ex it(l);

}

M P IJn it(& argc, &argv):
M PI-Com mjsize(M PI_COM M _W ORLD? &p):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TE ST CODE 178

MPI_Comm_rank(M PI_COM M_W ORLD. &my_rank):

if (my_rank = = 0) {
while ((c = getopt(argc. argv. " s :m :e : i :o thd")) ^ —1) {

/* process arguments */
}

}

M PI_Bcast(&m atsize. 1. M P IJN T . 0. M PI.COM M .W ORLD):
M PI-Bcast(& epsilon. 1. M PIJFLO A T. 0. M PI.COM M -W ORLD):
MPI_B cast (&max J ter. 1. M P IJN T . 0. M PLCOM M .W ORLD):

if (m y.rank = = 0)
{

fprin tf (stderr."done w ith s y s _ i n i t \ n ") :
if (gettim eofday (&end_time . NULL) <0){

perro r ("g e ttim eo fd a y "):
ex it(l) :

}
temp_time_sec = (double) (end_time.tv_sec — start_time.tv_sec):
temp_time_usec = (double) (end-tim e.tv .usec — start-tim e, tv .user) :
p rin tf ("7,10.Of ". temp_time_sec* 1000000+ temp_time_usec):

fflush(stdout):
}

read_m atrix(A Jocal. matsize. my .rank , p):
read_vector(bJocal.m atsize. my_rank. p):

if (m y.rank = = 0){
fp rin tf (stderr."done w ith i n i t \ n ") :
if (gettimeofdav(&:start_time . NULL) <0){

perror ("g e ttim eo fd a y "):
ex it(l):

}
temp_time-sec = (double) (start_tim e.tv_sec — end_tiine.tv-sec):
temp_time_usec = (double) (start_tim e.tv_usec — end_time.tv_usec):
p rin tf ("7.11-Of ", temp_time_sec* 1000000+ temp_time_usec):

fflush(stdout):
}
converged = parallel_jacobi(AJocal. xJocal, bJocal. matsize.

epsilon, m a x Jte r. p, my .rank):
if (converged) {

if(doprint)
Print_vector("The s o lu t io n i s " . xJocal, matsize, my_rank, p):

if (test_result)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE 179

test_solution(A Jocal. b Jocal. xJocal. m atsize):
}
else

if (my_rank = = 0)
fp rin tf(s td e rr ."F a iled to converge in 7,d i t e r a t i o n s \ n " . m a x Jte r):

if(my_rank ==0){
if (gettimeofday(&end_time , NULL) <0){

perror ("g e ttim e o fd a y "):
ex it(l):

}
temp_time_sec = (double) (end_time.tv.sec — start_time.tv_sec) :
tem p.tim e.usec = (double) (end.tim e.tv.usec — start_tim e.tv.usec) :
p rin tf ("7,12.Of \n " . tem p.tim e.sec* 1000000+ tem p.tim e.usec):

}
MPI_Finalize():

} /* main */

/♦********^C*******<C*^=***»*******1C*»#!^*********=|C***»»»***»***»;*****>'***/
/* Return 1 i f iteration converged. 0 otherwise */
/* M A T R IX -T is a 2-dimensional array */
int
parallel_jacobi(MATRIX_T A Jocal.float xJocalj].float bJocal[|. int n.

float tol. int m axJter. int p. int mv.raiik)
{

int iJocal. i.global. j.k :
int n.bax:
int iter_num:
float x_templ[MAX_DIM]:
float x_temp2[M AX-DIM]:
float* x_old:
float* xjiew :
float max.diff, diffJocal:
int x. done = 0:
float upper_suin. lower_sum. partial_solution:

n .bar = n /p ;
/* Initialize x */
M PI_Allgather(bJocal. n_bar. MPIJFLOAT. x_tem pl,

n.bar, M PIJFLOAT, M PI.COM M .W ORLD):
x_new = x .tem pl;
x_old = x_temp2:
iter_num = 0:
do {

iter_num ++:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE T E ST CODE 180

diffJocal = 10000.0:
/* Interchange x.old and x_new */
SW AP(x_old. x_new):
for (iJo ca l = 0: iJocal < n .b a r : iJocal-f—i-){

Lglobal = iJocal + m y_rank*n.bar:
upper_sum = lower_sum = 0.0:
p a rt ial_solut ion = b Jocal[i Jo ca l] :
for (j = 0 : j < Lglobal: j + +){

low er^um + = x_old(j] * A Jocal[iJocal][j]:
}
for (k = i.global-f-1 : k < n: k + +){

upper_sum + = x_old[k]* A Jocal[iJocal][k]:
}
p a rt ial-solut ion —= lower_sum:
partiaL solu tion —= upper_sum:
p a rt ial_solut ion / (float) A Jocal[i Jocal] [iJocal]:
xJocal[iJocal] = partial .so lution:
d iffJocal = max (diffJocal. fabs(xJocal[iJocal] — x_old[i.g!obal])):

}
M PI_A llgather(xJocal. n_bar. M PI.FLO A T. x_new.

n .bar. M PIJFLOAT, M PI.C O M M .W O R LD):
max_diff = 0.0:
for (x = 0 : x < matsize: x + +){

m ax.d iff = max (max_diff. fabs(x_new[x] — x_old[x])):
}
if (max_diff < tol) done = 1:

} while ((iter_num < m ax Jte r) &&: (Idone)):

re tu rn done:
} /* Jacobi */

M A T R IX .T temp_mat:

void read_matrix(M ATRIX_T A Jocal.in t n.int my_rank.int p) {
in t i. j:
in t n .bar:

n_bar = n /p :
/* Fill d u m m y entries in tem p w ith zeroes */
for (i = 0: i < n: i+ +)

for 0 = n; j < MAXJDIM: j+ +)
temp_mat[i][i] = 0;

if (my .ra n k = = 0) {
get_diag_mat(temp_mat, n, 5):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. SAMPLE TEST CODE

}
M PI_Scatter(tem p_niat. n_bar*MAX_DIM. M P IJN T . A Jocal.

n_bar*MAX_DIM. M P IJN T . 0. M PI.COM M .W ORLD):
} /* Read-m atrix */

/******:** **********************:***************** ******* ******* ********/
void read_vector(float x Jo c a l []. int n .in t my .rank, int p) {

in t i:
float temp[MAX_DIM]:
in t n .bar:

n .b a r = n /p :
if (m y.rank = = 0) {

get _rand_vect(temp.n):
}
M PI_Scatter(tem p. n .bar. M PI.FL O A T . xJocal. n .bar. M PI.FLO A T.

0. M PI.CO M M .W O R LD):
} /* Read ̂ vector */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ibliography

[1] T he H igh-availability Linux Project. 2000. h ttp ://w w w .linux-ha.org .

[2] A . A c h a r y a AND B. R. B a d r i n a t h . An efficient protocol for ordering broadcast
messages in d is tribu ted systems. In Third. IE E E Symposium on Parallel and Distributed
System s, 1991. h ttp ://p au l.ru tg e rs .ed u /'ach a ry a /p u b lica tio n s.h tm l.

[3] S . V . A d v e a n d M . D . H i l l . A u n ified fo rm a liza tio n o f fo u r sh a red -m em o ry m odels.
IE E E Transactions on Parallel and Distributed Systems. 4(6):613-624. J u n e 1993.

[4] D . A g r a w a l . M . C h o y . H.-V. L e o n g . a n d A. K . S in g h . Mixed Consistency: A
Model for Parallel Programming. In Proc. o f the 13th A C M Symp. on Principles o f
Distributed Computing (PO D C r9 f), A ugust 1994.

[5] M. A h a m a d . P . W . H u t t o , a n d R. J o h n . Im plem enting and programming causal
d istributed shared memory. In Proceedings o f the 11th International Conference on
Distributed Computing Systems (ICD CS), pages 274-281. A rlington. TX USA. 1991.
IEEE C om puter Society . W ashington. DC.

[6] M . A h a m a d . G . N e i g e r . P . K o h l i . J . E . B u r n s , a n d P . W . H u t t o . Casual Mem­
ory: Definitions. Implementation and Program m ing. Distributed Computing. 9:37-49.
1995.

[7] M. AHUJA. F lush primitives for asynchronous distributed system s. IPL: Information
Processing Letters. 34. 1990.

[8] Y . A m ir , D . D o l e v , s . K r a m e r , AND D. M a l k i . Transis: A communication
sub-system for high availability. In 22nd International Symposium on Fault-Tolerant
Computing, pages 76-84. IEEE, Ju ly 1992.

[9] C. A m z a , A. L. C o x , S. D w a r k a d a s , P . K e l e h e r , H. L u. R. R a j a m o n y . W . Y u.
AND W . Z w a e n e p o e l . Treadmaxks: Shared memory com puting on networks o f work­
stations. IE E E Computer, 2(29):18-28, Feb 1996.

[10] C . A m z a , A . L. C o x , S. D w a r k a d a s , a n d W . Z w a e n e p o e l . Software DSM
Protocols th a t A dapt between Single W riter and M-ltiple W r iter. In Proc. of the 3rd
IEEE Symp. on High-Performance Computer Architecture (H PCA-3). pages 261-271.
February 1997.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux-ha.org
http://paul.rutgers.edu/'acharya/publications.html

BIBLIOGRAPHY 183

11] T . E . A n d e r s o n . D. E . C u l l e r , a n d D . A . P a t t e r s o n . A case for NOW (Networks
o f W orkstations). IEEE M icro . 15(1):54-G4. February 1995.

12] IE E E S t a n d a r d s A s s o c i a t i o n . IE E E /A N SI Std 1003.1. 1990 Edition: Inform ation
Technology-Portable O pera tin g System Interface (P O S IX)-P a rt 1: System A pplica­
tion: P rogram Interface (A P I) [C Language], 1990.

13] P . A u ld a n d P . K e a r n s . P B P : A Pipelined B roadcast Protocol for E therne t.
In Proceedings o f the IA S T E D International Conference on Parallel and D istributed
Com puting and Systems. P D C S 799. pages 845-850. A naheim . CA. November 1999.
IA ST ED /A C TA Press.

14] P . AULD AND P . K e a r n s , "b ro a d c a s t d istrib u ted sh a re d m em ory". In Proceedings
o f the IC SA 13th International Conference on Parallel and Distributed Com puting
System s, pages 225-230. IC SA . 2000.

15] H . E . B a l . M . F . KAASHOEK. a n d A . S . T a n e n b a u m . Orca: A language for parallel
program m ing of d istribu ted system s. IE E E Transactions on Software Engineering.
1 8 (3):1 8 0 -2 0 5 . March 1992 .

10] A . B.ARAK a n d O. L a 7ADAN. Perform ance of the MOSIX parallel system for a c luster
of P C 's . Lecture Notes in C om puter Science. 1225:624-??. 1997.

17] R . B i a n c h i n i . L. I. K o n t o t h a n a s s i s . R . P i n t o . M . D e M a r i a . .VI. A b u d . a n d
C . L . AMORIM . Hiding C om m unication Latency and Coherence Overhead in Software
DSMs. In Proc. of the 7th Sym p. on Architectural Support fo r Programming Languages
and Operating Systems (A S P L O S -V II). pages 1 9 8 -2 0 9 . O ctober 1996.

18] K . P . B ir m a n a n d T . A . J o s e p h . Reliable com munication in the presence of failures.
A C M Transactions on C om puter System s. 5(l):47-76. February 1987.

19] G . BRACHA. A synchronous B y zan tin e agreem ent p ro toco ls. Inform ation and C om pu­
tation. 75(2):130-143. N ovem ber 1987.

20] G . BRACHA AND S. T o u e g . A synchronous consensus and broadcast protocols. .Journal
o f the ACM . 32(4):824-840, O ctober 1985.

21] T . B r e c h t AND H. S a n d h u . The region trap library: H andling traps on application-
defined regions of memory. In Usenix A nnual Technical Conference, pages 85-99. 1999.

22] J . BRUCK. D. D o l e v . C- H o . R . O r n i . AND R. S t r o n g . PCO D E: An efficient and
reliable collective com m unication protocol for unreliable broadcast domains. In IP P S:
9th International Parallel Processing Symposium, pages 130-139. IEEE C om puter So­
ciety Press, 1995.

[23] R ajkum ar Buyya, editor. High Perform ance Cluster Computing. Volume 1: Architec­
ture and Systems. P rentice-H all P T R , U pper Saddle River, NJ 07458. USA. 1999.

[24] T . C AM P, P . KEARNS, AND M . A h u j a . Proof rules for flush channels. IEEE Trans­
actions on Software Engineering. 19(4):366-378, April 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 184

[25] C. C a p AND V . S T U M P E N . Efficient parallel com puting in d istribu ted workstation
environm ents. Parallel Computing. 19:1221-1234. 1993.

[26] J . B . C a r t e r . Design o f the M unin distributed shared memory system . Journal o f
Parallel and D istributed Computing, 29(2):219-227. Septem ber 1995.

[27] J . B. C a r t e r . J . K . B e n n e t t , a n d W . Z w a e n e p o e l . Im plem entation and per­
formance of M unin. In Proceedings of 13th A C M Sym posium on Operating Systems
Principles, pages 152-64. Association for C om puting M achinery SIG O PS. October
1991.

[28] J . B . C a r t e r . J . K . B e n n e t t , a n d W . Z w a e n e p o e l . Techniques for Reducing
Consistency-Related C om m unication in D istributed Shared Memory Systems. ACM
Transactions on C om puter Systems. 13(3):205-243. A ugust 1995.

[29] J . B. C a r t e r . D . K h a n d e k a r . AND L. K a m b . D istribu ted shared memory: Where
we are and where we should be headed? In Fifth Workshop on Hot Topics in Operating
System s (H otO S-V). pages 119-122. May 1995.

[30] J . C h a n g AND N . F . M a x e m c h u k . Reliable B roadcast Protocols. A C M Trans.
Comp. Systems.. 2. 3:251-273. August 1984.

[31] H . A. C h e n . Y . O . C a r r a s c o , a n d A. W . A p o n . M pi collective operations over ip
m ulticast. In IP D P S 2000 Workshops. J. Rolim et A l.. editor, pages 51-60. Springer-
Verlag. 2000.

[32] D . R . CHERITON. Prelim inary thoughts on problem -oriented shared memory: A de­
centralized approach to d is tribu ted systems. Operating System s Review. 19(4):26-33.
O ctober 1985.

[33] A . C h e u n g AND A . R e e v e s . High performance com puting on a cluster of worksta­
tions. In Proc. F irst In t. Sym p. on High-Performance Distributed Computing, pages
152-160.1992.

[34] S. E . DEERING. Host Extensions for IP M ulticasting. RFC 1112. Aug. 1989.

[35] D . D o l e v AND D . M a l k i . The design of the T ransis system. Lecture Notes in
Computer Science. 938:83-??. 1995.

[36] L. TORVALDS e t a l i a . T he Linux Kernel source tree. 1991-K http://w w w .kernel.org.

[37] M . F i s c h e r . N . L y n c h , a n d M. P a t e r s o n . Im possibility of d istribu ted consensus
w ith one faulty process. Journal of the ACM, 32:374-382, 1985.

[38] M . J . FlSCHER a n d A . M i c h a e l . Sacrificing serializability to a tta in high availability.
In A C M SIG A C T -SIG M O D Symp. on Principles o f Database System s 1. Aho(ed),
ACM , March 1982.

[39] MESSAGE P a s s i n g I n t e r f a c e F o r u m . MPI: a M essage-Passing Interface Standard.
h ttp ://w w w .m pi-forum .org . 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.kernel.org
http://www.mpi-forum.org

BIBLIOGRAPHY 185

[40] K . G h a r a c h o r l o o , S. A d v e . A . G u p t a . .1. L. H e n n e s s y . a n d M. D. H i l l . Pro­
gramming for different memory consistency models. Journal o f Parallel and Distributed
Computing. 15(4):399-407. August 1992.

[41] K . G h a r a c h o r l o o . D . L e n o s k i . J . L a u d o n . P . G ib b o n s . A. G u p t a , a n d J . L .
HENESSY. Memory consistency and event ordering in scalable shared-memory m ultip ro­
cessors. In Proc. 17th A nnual I n t rl Sym p. on Com puter Architecture. A C M S IG A R C H
Computer Architecture News, page 15. June 1990. Published as Proc. 17th Annual In t'l
Symp. on C om puter A rchitecture. ACM SIGARCH C om puter A rchitecture News, vol­
ume 18. num ber 2.

[42] D . P . G h o r m l e y . D . P e t r o u . S . H . R o d r i g u e s . A . M . V a h d a t . a n d T . E .
A n d e r s o n . GLUnix: A Global Layer Unix for a network of workstations. Software
Practice and Experience. 2 8 (9):9 2 9 -9 6 1 . July 1998.

[43] P . B. G ib b o n s . M . M e r r i t t , a n d K . G h a r a c h o r l o o . Proving Sequential Con­
sistency of High-Perform ance Shared Memories (Extended Abstract). In Proc. o f the
3rd AC M Symp. on Parallel Algorithm s and Architectures (SPAA '91). pages 292-303.
Ju ly 1991.

[44] P . GORTMAKER. Linux Ethernet-H ow to. h ttp ://w w w .linuxdoc.o rg /H O W T O /E thernct-
H OW TO.htm l. May 1999.

[45] W . GROPP, E . LUSK. N . D o s s , a n d A . SKJELLUM. A high-perform ance, p o r ta b le
im plem entation o f th e M PI m essage passing in terface s ta n d a rd . Parallel Computing.
22(6):789-828. S ep tem ber 1996.

[46] M . D . H i l l . M ultiprocessors should support sim ple memory consistency protocols.
IE E E Computer. 31(8). August 1998.

[47] W . Hu, W . S h i, AND Z. T a n g . Reducing system overheads in home-based software
DSMs. In Proc. o f the Second Merged Symp. IP P S /S P D P 1999). pages 167-173. A pril
1999.

[48] G . H U G H E S -F E N C H E L . A flexible clustered approach to high availability. In Proceedings
o f The Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing
(F T C S’97). pages 314-319. W ashington - Brussels - Tokyo. June 1997. IEEE.

[49] P . W . HUTTO AND M . A h a m a d . Slow memory: W eakening consistency to enhance
concurrency in d istribu ted shared memories. In Proc. o f the 10th I n t i Conf. on D is­
tributed Computing System s (ICD CS-10). pages 302-311, May 1990.

[50] L. IFTODE, C . DUBNICKI, E . F e l t e n . AND K. Li. Improving release-consistent
shared v irtual memory using autom atic update. In Proceedings of the Second In ter­
national Sym posium on High-Performance Computer Architecture, pages 14-25. San
Jose, California, February 3-7 , 1996. IEEE C om puter Society TCCA.

[51] R . J o h n a n d M . A h a m a d . Casual Memory: Im plem entation. Programming S upport
and Experiences. Technical R eport GIT-CC-93-10. Geogia Institute of Technology,
1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linuxdoc.org/HOWTO/Ethernct-

B IB L IO G R A P H Y 18G

[52] R . JOHN AND M. A h a m a d . Evaluation of Casual D istributed Shared Memory for
Data-race-free Program s. Technical R eport GIT-CC-94-34. G eorgia Institu te of Tech­
no log}'. 1994.

[53] M i c h a e l K . J o h n s o n a n d E r ik W . T r o a n . Linux Application Development. Ad-
dison-Wesley, Reading. MA. USA. 1998.

[54] H. K a r l . Bridging th e gap between d istribu ted shared m em ory and message pass­
ing. In Proc. o f the A C M 1998 Workshop on Java for H igh-Performance Network
Computing. March 1998.

[55] P . KELEHER. A. L. C o x . AND W . Z w a e n e p o e l . Lazy release consistency for software
distributed shared memory. In Proc. 19th Int. Symposium on Comp. Architecture, pages
13-21. Gold Coast (A ustralia). May 1992.

[56] L . LAMPORT. Im plem entation of reliable d istributed multiprocess system s. Computer
Networks: The In ternational Journal o f Distributed Informatique. 2(2):95-114. May
1978.

[57] L. L a m p o r t . Time, clocks, and the ordering of events in a d is tribu ted system. Com­
munications o f the AC M . 21(7):558-565. 1978.

[58] L . LAMPORT. Time. Clocks, and the O rdering of Events in a D istributed System.
Communications o f the AC M . 21(7):558-565. July 1978.

[59] L . L a m p o r t . How' to m ak e a m u ltip ro cesso r th a t correctly e x e c u te s m u ltip rocess
program s. IE E E Trans, on Computers. C -2 8 (9):6 9 0 -6 9 1 . S ep te m b e r 1979.

[60] D. L e n o s k i . J . L a u d o n . K. G h a r a c h o r l o o . W . D. W e b e r . A. G u p t a .
J . HENESSY. M . H o r o w i t z , a n d M . S . L am . T h e Stanford d a sh m u ltip rocessor .
IE E E Computer. 25(3):63. M arch 1992.

[61] X . LEROY. Linuxthreads - POSIX 1003.1c kernel threads for Linux. Software Library.
1997. h ttp ://pau illac .in ria .fr/~x leroy /linux threads.

[62] K . Li AND P . H u d a k . Memory coherence in shared virtual m em ory systems. A C M
Transactions on Computer Systems. 7(4) :321-359. 1986.

[63] R . J . LlPTON AND J . S . SANDBERG. PRAM : A scalable shared memory. Technical
Report CS-TR-180-88. P rinceton University, Septem ber 1988.

[64] J . LONCARIC. Linux 2.0.36 T C P Performance Fix for S hort Messages. 1999.
http://w w ’w.icase.edu/coral/L inuxT C P.htm l.

[65] R . M . METCALF AND D. R . B o g g s . Ethernet: D istributed Packet Switching for
Local Computer Networks. Communications o f the ACM. 19(7):395-404, July 1976.

[66] L . E . M o s e r , P . M . M e l l i a r - S m i t h . D . A . A g a r w a l . R . K . B u d h ia , a n d C . A .
L i n g l e y - P a p a d o p o u l o s . Totem: A Fault-Tolerant M ulticast G roup Communication
System. Communications o f the ACM . 39(4):54-63, April 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://pauillac.inria.fr/~xleroy/linuxthreads
http://ww%e2%80%99w.icase.edu/coral/LinuxTCP.html

BIBLIOGRAPHY 187

[67] B . NlTZBERG AND V. Lo. D istribu ted shared m em ory: A survey of issues and algo­
rithm s. Computer, pages 52-60. A ugust 1991.

[68] M . OGUCHI. H . A id a . AND T . S a it o . A proposal fo r a DSM arch itec tu re su ita b le for
a w idely d is tr ib u te d environm ent a n d i ts evaluation . In Proc. o f the Fourth IE E E Int'l
Sym p. on High Performance D istributed Computing (HPDC-4)- pages 32-39. August
1995.

[69] P . PACHECO. Parallel programming with MPI. M organ Kaufmann P ublishers. Los
A ltos. CA 94022. USA. 1997.

[70] C . P a r t r i d g e AND R. H in d e n . Version 2 of the R eliable Datagram Protocol (RDP).
R FC 1151. A pril 1990. 4 Pages.

[71] L. L. P e t e r s o n . N. C. B u c h h o l z . a n d R . D. S c h l i c h t i n g . Preserving and Using
C ontext Inform ation in Interprocess C om m unication. .4 CM Transactions on Computer
System s. 7(3):217-246. August 1989.

[72] U . RAMACHANDRAN a n d M. Y . A . K h a l i d i . A n im plem entation of d istributed
shared memory. Software. Practice and Experience. 21(5):443-464. [5] 1991.

[73] M . RAYNAL AND A. S c h ip e r . From C asual Consistency to Sequential C onsistency in
Shared M emory Systems. Technical R epo rt 926. IR ISA . France. May 1995.

[74] G . RlCART AND A . A g r a w a l . An o p tim al algorithm for m utual exclusion in com puter
networks. Communications o f the A C M . 24(1):9-17. Jan 1981.

[75] D. J . S c a l e s AND K . G h a r a c h o r l o o . Towards T ransparen t and Efficient Software
D istribu ted Shared Memory. In Proc. o f the 16th A C M Sym p. on Operating System s
Principles (SO SP-16). October 1997.

[76] D . J . S c a l e s . K . G h a r a c h o r l o o . a n d C. A. T h e k k a t h . Shasta: A Low Overhead.
Software-Only Approach for Supporting Fine-Grain Sha red Memory. In Proc. o f the
7th Sym p. on Architectural Support fo r Programming Languages and Operating Systems
(A SP L O S -V II). pages 174-185. O ctober 1996.

[77] F . B . SCHNEIDER. Synchronization in D istributed Program s. ACM Transactions on
Programming Languages and System s. 4(2):125-148, A pril 1982.

[78] F . B . SCHNEIDER. Implementing fault-to lerant services using the state m achine ap­
proach: A tu to ria l. AC M Computing Surveys, 22(4):299-319. December 1990.

[79] T . SEIDMANN. M ulticast-based run tim e system for highly efficient causally consistent
software-only DSM. Lecture Notes in Computer Science, 1586:547-??. 1999.

[80] J . P . S in g h , W . W e b e r , a n d A. G u p t a . SPLASH: Stanford parallel applications
for shared-m em ory. Computer Architecture News. 20 (l):5 -44 . 1995.

[81] IE E E C o m p u t e r S o c i e t y . IE E E CS Task Force on Cluster C om puting. 2000.
h ttp ://w w w .ieeetfcc.o rg /.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ieeetfcc.org/

BIBLIOGRAPHY 188

[82] E . SPEIGHT AND J- K . B e n n e t t . Brazos: A T hird Generation DSM System . In Proc.
o f the USENIX W indows N T Worksho-p. A ugust 1997.

[83] T . S t e r l i n g . D . B e c k e r , a n d M o r e . The Beowulf P ro ject a t CESDIS.
h ttp ://beow ulf.gsfc.nasa.gov/.

[84] T . S t e r l i n g . D . S a v a r e s e . D. J . B e c k e r . J . E . D o r b a n d . U. A . R a n a w a k e .
AND C. V. P a c k e r . BEOW U LF : A parallel workstation for scientific com putation.
In International Conference on Parallel Processing. Vol.l: Architecture, pages 11-14.
Boca Raton, USA. A ugust 1995. CRC Press.

[85] W . R . S t e v e n s . T C P /IP Illustrated- The Protocols. Addison-Wesley. Reading. MA.
USA, 1994.

[86] W . R . STEVENS. U N IX network programming: Networking A P Is: sockets and XTI.
volume 1. Prentice-H all P T R . Upper Saddle River. NJ 07458. USA. second edition.
1998.

[87] M . S tu m m AND S. Z h o u . Algorithms im plem enting distributed shared memory. IEEE
Computer, 23(5):54-64. [5] 1990.

[88] M . S w a n s o n , L. S t r o l l e r , a n d J . B. C a r t e r . Making d istribu ted shared memory
simple, yet efficient. In Proc. of the tird I n t i Workshop on High-Level Parallel Pro­
gramming Models and Supportive Environm ents (HIPS'98). pages 2-13. March 1998.

[89] A . S. T a n e n b a u m . M . F . K a a s h o e k . a n d H. E. B a l . Using broadcasting to
implement d istribu ted shared memory efficiently. In Readings in D istributed Computing
System s, T. L. C asavant and M. Singhal. editors, pages 387-408. IE E E Computer
Society Press, 1994.

[90] ANDREW S. T a n e n b a u m . Computer Networks. Prentice Hall. 2. edition. 1989.

[91] S. T o u e g , K. J . P e r r y , a n d T . K. S r i k a n t h . Fast distributed agreem ent. In Pro­
ceedings of the 4th A nnua l A C M Symposium on Principles o f D istributed Computing.
Ray Strong, editor, pages 87-101, Minaki, O N . Canada. August 1985. ACM Press.

[92] E . UPFAL an d A . WlGDERSON. How to share memory in a distributed system . Journal
o f the Association fo r Computing Machinery, 34(1): 116—127. [1] 1987.

[93] D . W a l k e r . Long-range n-body code. Web Page. 1995.
http://www .epm .ornl.gov/~walker/OLD_ORN L_W EB_PAG E/m pi/exam pIes
/nbody.htm l.

[94] B . W h e t t e n , T . M o n t g o m e r y , a n d S. K a p la n . A High Perform ance Totally
O rdered Multicast P rotocol. Lecture Notes in Computer Science. 938:33-55, 1995.

[95] G . W r i g h t AND W . R . S t e v e n s . T C P /IP Illustrated- The Im plem entation. Addi-
son-Wesley, Reading, MA. USA, 1995.

[96] M . J . Z e k a u s k a s , W . A. S a w d o n , a n d B . N. B e r s h a d . Software wurite detection
for a distributed shared memory. In Proc. o f the 1st Symp. on Operating Systems
Design and Im plem entation (O SD I’94). pages 87-100, November 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://beowulf.gsfc.nasa.gov/
http://www.epm.ornl.gov/~walker/OLD_ORNL_WEB_PAGE/mpi/exampIes

VITA

Born in N ortham pton. M assachusetts. Philip was raised in the Research Triangle Park area

of N.C. A fter resettling in Connecticut, he did his undergraduate work at H unter College

in New York City. He started graduate school in 1993 and com pleted a M aster's degree in

1995. M arried in June of 2000. he now lives in Newton. Mass w ith his wife Catherine. He

is currently doing kernel engineering and product development for Egenera Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Broadcast distributed shared memory
	Recommended Citation

	tmp.1539734415.pdf.o84r9

