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Mapping the tidal marshes of coastal Virginia: a hierarchical transfer learning 
approach
Zhonghui Lv a,b, Karinna Nunezb, Ethan Brewerc and Dan Runfola a

aDepartment of Applied Science, William & Mary, Williamsburg, VA, USA; bVirginia Institute of Marine Science, William & Mary, Gloucester, VA, 
USA; cDepartment of Computer Science and Engineering, New York University, New York, USA

ABSTRACT
Coastal wetlands, especially tidal marshes, play a crucial role in supporting ecosystems and slowing 
shoreline erosion. Accurate and cost-effective identification and classification of various marsh 
types, such as high and low marshes, are important for effective coastal management and 
conservation endeavors. However, mapping tidal marshes is challenging due to heterogeneous 
coastal vegetation and dynamic tidal influences. In this study, we employ a deep learning 
segmentation model to automate the identification and classification of tidal marsh communities 
in coastal Virginia, USA, using seasonal, publicly available satellite and aerial images. This study 
leverages the combined capabilities of Sentinel-2 and National Agriculture Imagery Program (NAIP) 
imagery and a UNet architecture to accurately classify tidal marsh communities. We illustrate that 
by leveraging features learned from data abundant regions and small quantities of high-quality 
training data collected from the target region, an accuracy as high as 88% can be achieved in the 
classification of marsh types, specifically high marsh and low marsh, at a spatial resolution of 0.6 m. 
This study contributes to the field of marsh mapping by highlighting the potential of combining 
multispectral satellite imagery and deep learning for accurate and efficient marsh type 
classification.

ARTICLE HISTORY 
Received 19 July 2023  
Accepted 20 November 2023 

KEYWORDS 
Deep learning; tidal marsh; 
multi-source remote sensing 
data; semantic segmentation

1. Introduction & literature review

Coastal salt marshes are among the world’s most 
dynamic and productive ecosystems, providing sig
nificant services to humans and the natural environ
ment across the globe (Murray et al. 2019; Slagter 
et al. 2020; Zedler and Kercher 2005). They are found 
between terrestrial and nearshore aquatic environ
ments along sheltered coasts and estuaries and pro
vide a variety of ecological, economic, and societal 
benefits (Barbier et al. 2011; Campbell, Wang, and Wu  
2020). Low marsh, in many areas mostly covered by 
Spartina alterniflora, is found below the mean high 
tide line and is regularly inundated by tides (CCRM  
2019a; Tiner 1987). High marsh, characterized by 
a community of specialized emergent vegetation 
(typically, Spartina patens and Distichlis spicata) that 
tolerates irregular tidal inundation, is mostly located 
above the Mean High Water (MHW) between the low 
marsh and upland (CCRM 2019a; Tiner 1987). Both 
high marsh and low marsh play an important role in 
water purification, coastal hazard reduction, 

protection against coastal erosion and storm surges, 
carbon sequestration, and shoreline stabilization 
(Feagin et al. 2010; Fisher and Acreman 2004; Li 
et al. 2021). Despite the many benefits of tidal 
marshes, they are currently considered one of the 
most stressed ecosystems and are under significant 
threat by natural and anthropogenic pressures such 
as coastal development, sea level rise, pollution, 
storm surge, and climate change (Barbier et al. 2011; 
Campbell and Wang 2019; Miller, Rodriguez, and Bost  
2021; Rodriguez and McKee 2021; Runfola et al. 2013; 
Zedler and Kercher 2005). According to Murray et al. 
(2019), 13; 700km2 of tidal wetlands were lost from 
1999 to 2019 due to these stressors. The ability to 
identify the spatial extent and distribution of tidal 
marshes – and monitor how they change over 
time – can aid our ability to understand how shifts 
in species distribution and abundance may occur, as 
well as to assess changes in the ecological services 
that these ecosystems provide (Kennish 2001). 
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Mapping and monitoring these shifts provide valu
able insights for preservation and restoration plan
ning and for prioritizing adaptation strategies (Carr, 
Guntenspergen, and Kirwan 2020).

Coastal tidal marshes can cover large geographic 
areas, be highly heterogeneous and dynamic, and are 
usually difficult to access (Lamb, Tzortziou, and 
McDonald 2019). These factors limit the ability to 
inventory and monitor them from field data alone. 
There are many publicly available and nationwide 
data sources developed by various agencies in the 
US providing geographic information and conditions 
about wetlands. The most well-known data sources 
are the National Wetland Inventory (NWI) (FWS 2023), 
the National Land Cover Database (NLCD) (Dewitz  
2021), and Coastal Change Analysis Program (C-CAP) 
(NOAA 2023). The NWI, developed by the US Fish and 
Wildlife Service dating back to the 1970s, was estab
lished to provide biologists and other researchers 
with information on the distribution and types of 
wetlands to aid in conservation efforts. The NLCD 
(released by the US Geological Survey (USGS)) and 
C-CAP (released by the National Oceanic 
Atmospheric Administration (NOAA)) also provide 
regional and nationwide data on land cover and are 
widely used to measure land cover changes over time 
(Homer et al. 2020). However, these datasets are 
broad in scope, and come with a number of limita
tions. For example, the NWI is rarely updated and has 
a number of known limitations such as underestima
tion (Gale 2021; Matthews et al. 2016) and exclusion 
of some important wetland habitats (i.e. Southern 
Blue Ridge of Virginia (Stolt and Baker 1995)). While 
NLCD and C-CAP are consistently released (2 to 3  
years for NLCD and every 5 years for C-CAP), both of 
them are derived from the Landsat program, thus 
resulting in 30-m spatial resolution products; they 
also do not provide detailed delineations between 
marsh communities.

The conventional approach to surveying and map
ping tidal marshes or wetlands typically involves 
a GPS field survey to gather coordinates and attribute 
information related to different marsh types, followed 
by manual digitization of marshes from remotely 
sensed data or available digital images (CCRM  
2019b; FWS 2023). These processes are time- 
consuming, resource-intensive, and necessitate 
skilled technicians for accurate execution. Since the 
1970s, satellite-based remote sensing has been 

utilized to monitor and map the distribution of salt 
marshes in US wetlands (Carter 1981). Due to satellite 
sensors’ ability to collect information over large spa
tial areas with high temporal frequency (e.g. Sentinel- 
2 has a revisit time of 5 days at the equator; Landsat 
revisit time is 8 days), they are widely used to observe 
tidal marshes on the ground and monitor changes 
over time. For example, Amani et al. (2022) utilized 
the historical Landsat archives to detect wetlands and 
monitor their changes throughout the entire Great 
Lakes basin in Canada over the past four decades. 
Previous studies have shown the advantages of 
using multispectral imagery in tidal marsh mapping 
as the different spectral bands contain different infor
mation (e.g. infrared and near-infrared), resulting in 
distinct spectral signatures for tidal marshes (Lamb, 
Tzortziou, and McDonald 2019; Slagter et al. 2020). 
However, in the highly heterogeneous coastal envir
onment, it may be challenging to identify a mix of 
marsh vegetation types using moderate resolution 
imagery due to relatively similar spectral signatures 
and co-occurrence of marshland community types 
(Alam and Hossain 2021; Sun et al. 2021; Wang et al.  
2019; Xie, Sha, and Yu 2008). In addition to utilizing 
the spectral properties of each individual image band, 
a diverse range of satellite imagery-based approaches 
have been explored for monitoring different marsh 
habitats. The integration of vegetation indices and 
supplementary environmental data has proven to be 
highly effective in extracting valuable information 
and discerning key properties of marshes and wet
lands (Khanna et al. 2013; Li et al. 2021; Sun, 
Fagherazzi, and Liu 2018). In this context, the ability 
to automatically delineate low marsh and high marsh 
boundaries based on high-resolution imagery can 
help to “fill in the gaps” between in-situ survey efforts, 
as well as provide more temporally explicit informa
tion on the status of tidal marshes.

Several works have focused on using supervised 
and unsupervised machine learning algorithms such 
as random forests, support vector machines, and 
neural networks to classify land cover at the pixel 
level in coastal regions (Amani et al. 2022; Carle, 
Wang, and Sasser 2014; Lamb, Tzortziou, and 
McDonald 2019; Slagter et al. 2020). Such approaches 
have taken advantage of high spatial resolution satel
lite data, vegetation indices, and other types of envir
onmental ancillary data. However, mapping the 
heterogeneous coastal environment at high 
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resolution with pixel-based classification is inconsis
tent and usually generates “salt-and-pepper” noise in 
the mapping result (Kelly et al. 2011). Object-based 
image analysis (OBIA) has emerged as a promising 
approach for vegetation mapping by grouping similar 
pixels to delineate objects and subsequently classify
ing them into distinct vegetation types (Campbell and 
Wang 2019). However, the applicability of OBIA tech
niques in large-scale mapping remains constrained 
due to several inherent limitations and to date has 
only achieved satisfactory results in small region stu
dies (Gao and Mas 2008; Liu and Xia 2010; Whiteside, 
Boggs, and Maier 2011).

Since 2012, satellite imagery analysis using deep 
learning (DL) methods, specifically convolutional 
neural networks (CNNs), has grown in popularity 
(Krizhevsky, Sutskever, and Hinton 2012; Xie et al.  
2016), and provides a potential solution to large- 
scope marshland mapping and monitoring. Recent 
examples of the use of CNNs with satellite imagery 
include the detection of shoreline structures (Lv et al.  
2023), roads (Brewer et al. 2021; Narayan et al. 2017), 
marine debris (Kikaki et al. 2022), coastal vegetation 
mapping (Li et al. 2021; Mainali et al. 2023), land use 
mapping (Bhosle and Musande 2019), and other types 
of analysis and applications (Brewer, Lin, and Runfola  
2022; Goodman, BenYishay, and Runfola 2021; 
Runfola et al. 2022; Runfola, Stefanidis, and Baier  
2022). Such applications with overhead imagery 
have driven research into modeling techniques 
geared specifically for such data (Kang et al. 2022; 
Mukherjee and Liu 2021; Runfola 2022; Tian et al.  
2023). Concurrently, various techniques, including 
the application of CNN with transfer learning, have 
been employed to facilitate predictions in regions 
with limited data availability and to improve model 
performance across diverse domains, as corroborated 
by previous research (Brewer et al. 2021; Chaudhuri 
and Mishra 2023; Liu et al. 2021). As an example, the 
utilization of Convolutional Neural Networks (CNN) 
and the transfer learning approach by Chaudhuri 
and Mishra (2023) resulted in an accuracy ranging 
from 88% to 94% in the detection of aquatic invasive 
plants in wetlands.

A selection of recent studies have shown 
a significant improvement in accuracy when using 
convolutional neural networks approaches for tidal 
marsh mapping (Guirado et al. 2017; López-Tapia 
et al. 2021; Mainali et al. 2023; Morgan et al. 2022). 

However, previous work has mainly focused on the 
extraction or mapping of wetland or tidal marshes; to 
date, only one piece (Li et al. 2021) has explored the 
differentiation of high and low marshes using deep 
learning techniques. We build on this work, seeking to 
(1) provide additional evidence as to the external 
validity of these approaches by introducing a new 
domain of study and independent validation dataset; 
(2) explore the capability of these models with higher 
resolution (0.6 m) imagery than has previously been 
tested; and (3) assess the capability of a multi-stage 
approach to fusing sentinel and NAIP information.

This paper is organized as follows: In Section 2, we 
introduce our study area, imagery and annotation data; 
in Section 3, we discuss our methodology and model 
workflow. Next, we present our results in Section 4, and 
in Section 5, we provide a brief discussion of the 
potential of – and challenges to – deep learning 
approaches to tidal marsh community mapping.

2. Data

This section offers an overview of the data employed 
throughout the modeling process. Data preproces
sing – notably, labeling datasets for use in modeling 
stages – is detailed here. Additional information 
regarding the specific methodologies employed 
with the data inputs and outputs can be found in 
the “Methods” section.

2.1. Study area

This study focuses on delineating high and low marsh 
communities within tidal marshes along the coast of 
the State of Virginia, USA. Our specific region of inter
est is defined as a 5-km buffer surrounding the Virginia 
shoreline (NOAA 2021), which is the major area marsh
land located in VA (see Figure 1). The majority of this 
coastal shoreline surrounds the Chesapeake Bay, an 
ecologically significant estuary that contributes to an 
annual economic output exceeding a hundred billion 
US dollars (Najjar et al. 2010; Phillips and McGee 2014).

2.2. Imagery

2.2.1. Sentinel imagery
The Copernicus Sentinel-2 mission, launched in 2015 
by the European Space Agency, provides high- 
resolution, multi-spectral imagery to support land 
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monitoring studies (ESA 2018). Sentinel-2 carries 13 
spectral bands with spatial resolution ranging from 
10 m to 60 m, and the imagery is collected in a 5-day 
revisit cycle throughout the year. The 10 m RGB and 
NIR band (B2, B3, B4, and B8), four 20 m visible and 
near-infrared (VNIR) (B5, B6, B7, and B8a), and two short 
wave infrared bands (B11, B12) are used in this study.1 

To ensure consistent resolution across all bands, all 
bands originally provided at 20 m or 60 m spatial reso
lution were resampled to a 10 m resolution utilizing 
a bilinear resampling algorithm, implemented using 
the rasterio package in Python 3.7. This process was 
applied to each individual band. To account for intra- 
annual variability in the data, a collection of imagery 
was acquired for analysis, spanning different seasons in 
the period of 2017–2018.

2.2.2. Aerial imagery
Imagery from the National Agriculture Imagery 
Program (NAIP) dataset (collected by the United 
States Department of Agriculture (USDA)) was 

acquired in order to explore the value of high- 
resolution imagery for marsh community delinea
tion (OCM-Partners 2022). The NAIP dataset is an 
aerial imagery database that has records starting in 
2003 (temporal frequency of 2–3 years), sponsored 
through a collaboration between the United States 
Geological Survey (USGS) and US state govern
ments (OCM-Partners 2022). Historically, the 
images were captured at 1-m spatial resolution 
with 4-band spectral resolution (red, green, blue, 
and near-infrared) across the continental United 
States during the agricultural growth season. 
Since 2018, the US state of Virginia – covering 
the majority of our study area – additionally 
began providing NAIP imagery with a resolution 
of 0.6 m. In this study, we use both 1-m and 
0.6-m resolution NAIP imagery, spanning from 
2014 to 2018. Of note, NAIP imagery is acquired 
during “leaf-on” time periods, leading to potential 
seasonal biases in acquisitions; we discuss the 

Figure 1. Study area: shoreline (NOAA 2021) buffered with 5km distance along the state of Virginia (Runfola et al. 2020). Grid represent 
2018 NAIP image tiles which intersect with the study area. Two example high-resolution NAIP imagery tiles from the eastern Delmarva 
Peninsula are also presented.
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implications of this on model performance in the 
discussion.

2.2.3. Other ancillary information
Beyond the visual band information, during the train
ing and testing phases, we also incorporated two 
satellite indices – NDVI and NDWI – into the network, 
acknowledging their historical significance in wetland 
classification (Sun, Fagherazzi, and Liu 2018).

2.3. Annotation resources

2.3.1. Tidal marsh inventory (TMI)
To label where marshes are located (i.e. the binary pre
sence or absence of any type of marsh), we use the 
Virginia Tidal Marsh Inventory (TMI) (CCRM 2019b). The 
TMI is a comprehensive inventory of shoreline condi
tions for tidal marsh localities. The inventory relies on 
field workers to manually delineate marsh boundaries 

via a GPS-enabled system. Each marsh boundary is later 
digitized using the latest available high-resolution ima
gery from the Virginia Base Mapping Program.

2.3.2. Marsh habitat zonation map
The Marsh Habitat Zone Map (MHZM) (Correll et al.  
2019; SHARP 2017) is used to label imagery for 
high marsh and low marsh detection (expanding 
on the binary marsh/no marsh identification pro
vided by TMI). The MHZM is a raster layer denoting 
salt marsh communities in the North Atlantic coast 
of the US, from northern Maine to Virginia, at 
a resolution of 3 m. It includes eight types of 
marsh communities: high marsh, low marsh, salt 
pool, terrestrial border, Phragmites australis (reed 
grass), mudflat, open water, and upland. The 
MHZM is subdivided into different ecological 
zones representing various geographic locations. 
For this study, zones that cover the eastern 

Figure 2. Visualization of MHZM data covering the eastern Delmarva Peninsula and the eastern shore of the Chesapeake Bay.
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Delmarva Peninsula and the eastern shore of the 
Chesapeake Bay are selected to initialize a deep 
learning model for high marsh and low marsh 
feature detection (Figure 2).

2.3.3. Chesapeake Bay National Estuarine Research 
Reserve (CBNERR)
One challenge with both TMI and MHZM is the 
relatively coarse granularity of the products (due 
to their relatively broad geographic scopes). In 
order to fine-tune and validate our model using 
high-resolution, locally collected information, we 
leverage landcover maps of two NOAA National 
Estuarine Research Reserves (NERRs) in Virginia, the 
Goodwin islands and Catlett islands (Lerberg 2021). 
Both NERRs include detailed land cover types col
lected from fieldwork and digitized from high- 
resolution imagery by the Chesapeake Bay 
National Estuarine Research Reserve in Virginia 
(CBNERR-VA). The Goodwin islands, located on the 
southern side of the mouth of the York River, are 
a 777-acre archipelago of islands dominated by salt 
marshes, inter-tidal flats, and shallow open estuarine 
waters (Lerberg 2021). The salt marsh vegetation is 
dominated by Spartina alterniflora (low marsh) and 
Spartina patens (high marsh) and estuarine scrub/ 
shrub vegetation in the forested wetland ridges. 
The Catlett Islands encompass 690 acres and display 
a ridge-and-swale geomorphology. The islands con
sist of multiple parallel ridges of forested wetland 
hammocks, forested upland hammocks, emergent 
wetlands, and tidal creeks surrounded by shallow 
sub-tidal areas that once supported beds of sub
merged aquatic vegetation. The smooth cordgrass 
(Spartina alterniflora) prevails over much of the 
marsh area along with salt grass (Distichlis spicata), 
saltmeadow cordgrass (Spartina patens), black nee
dlerush (Juncus roemerianus), and various halophytic 
forbs (Lerberg 2021). In this study, the data from 
Catlett Islands is used for model fine-tuning, while 
the Goodwin Islands’ land cover is used to construct 

a dataset for independent model validation (i.e. 
information from the Goodwin Islands is only used 
for validation, and never used in model training, 
providing a completely external validation dataset).

2.3.4. Validation data acquisition from UAV flight
As an additional source for a fully independent valida
tion of the presented models, two separate 
Unmanned Aerial Vehicle (UAV) surveys were con
ducted over Captain Sinclair and Maryus, Virginia, in 
November of 2022. The target site aerial imagery was 
acquired using DJI phantom-4 Multispectral drones. 
Filming was conducted at a 100 m altitude, primarily 
close to noon to minimize the impact of shadows. The 
orthographic image was generated by mosaicking the 
captured image tiles using Pix4Dmapper software 
(PIX4D 2022). These two sets of aerial drone imagery 
were employed to create an additional validation 
dataset for model predictions.

2.4. Data labeling procedures

The modeling procedures outlined in section 3 
require a number of labeled datasets (see Table 1 for 
an overview of each model and the labeled datasets 
employed and Table 2 for a more detailed description 
of each tuned model):

(1) Data for Marsh/No Marsh identification. We 
construct an independent model to identify the 
location of the marshland before categorizing it 
into high/low marsh; this requires labeled data 
sourced from the Tidal Marsh Inventory (TMI), 
and seasonal multi-band satellite imagery 
sourced from Sentinel-2.

(2) Data for Partial Tuning. We implement an 
initial tuning of a model based on ImageNet 
(Deng et al. 2009) using data labeled with the 
MHZM dataset for high marsh and low marsh 
classification.

Table 1. Data source summary.
Model Name Label Source Label Data Type Imagery Imagery Resolution (meters) Image Patches (counts)

Marsh Binary Tidal Marsh Inventory (TMI) vector polygons Sentinel-2 (10m) 10 2837
Partical Tuning Marsh Habitat Zonation Map (MHZM) raster (3-m) NAIP (1m) 1 10,060
Full Tuning Catlett Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 103
Validation Goodwin Islands (CBNERR) vector polygons NAIP (0.6m) 0.6 106
Validation Captain Sinclair & Maryus (UAV) vector points UAV NA 300
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(3) Data for Full Tuning. We implement 
a secondary tuning using labeled data from 
a local island, Catlett, sourced from CBNERR 
for high marsh and low marsh classification.

(4) Data for Validation. Finally, we validate our 
models using two independently labeled data
set from (1) Goodwin Islands, sourced from 
CBNERR, and (2) Captain Sinclair and Maryus, 
Virginia, collected by UAV.

Each of our modeling stages requires independent 
labeled datasets; the rest of this section details how 
these labeled datasets were constructed.

2.4.1. Labeling to support marshland binary 
modeling
The first stage of labeling is designed to provide 
labels to train a model which establishes the bin
ary presence or absence of marshland. To con
struct these labels, we leverage 10-m resolution 
seasonal Sentinel-2 imagery and TMI data for label
ing. The re-sampled 10-m resolution Sentinel-2 
imagery is first cropped into a series of 128� 128 
image patches, each of which has a dimension of 
128� 128� 10 (with 10 representing the number 
of bands). The TMI vector file is then overlapped 
with each image patch to create its corresponding 
labeling mask, with pixels covered by TMI bound
aries labeled with value 1 representing marsh pre
sence, and non-overlapped pixels labeled with 
value 0 representing marsh absence. This process 
results in 2,837 128� 128 � 10 image patches that 
are used to train and test the binary marsh detec
tion model.

2.4.2. Labeling to support partial tuning
The second stage of labeling is implemented with 
1-m resolution NAIP imagery and MHZM data to 
construct a dataset for marsh community classifica
tion (specifically, high and low marshes). To improve 
compatibility with NAIP, the MHZM was first re- 
sampled from 3-m resolution to 1-m resolution 
using the nearest neighbor method. The re- 
sampled MHZM raster layer is then overlapped 
with the 1-m resolution NAIP imagery to generate 
a label mask; community types other than high 
marsh and low marsh are grouped into one back
ground category, thus yielding a raster layer, with Ta
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labels including high marsh, low marsh, and 
“background.”

After creating the labeled mask layer, a series of 
256� 256 image patches are generated from the 
mask labels and the corresponding NAIP imagery. To 
ensure a reasonable number of sampling locations 
representing the two marsh types, we retained 
image patches if the 256� 256 pixel window con
tained at least 25% pixels marked either high marsh 
or low marsh type pixels, resulting in a dataset of 
10,060 4� 256� 256 (4 is the number of image 
bands) tiles covering the eastern shore of the 
Chesapeake Bay and eastern Delmarva peninsula. 
This data is used to construct training datasets for 
the partial tuning model to learn features from high 
marsh, low marsh, and no marsh types.

2.4.3. Labeling to support full tuning
The third stage of labeling leverages 0.6-m resolution 
NAIP imagery from 2018 and high-resolution land 
cover maps from the Catlett Islands in VA. These 
images are used to further fine-tune the model. The 
NAIP tiles that cover the Catlett Islands were first 
retrieved and cropped into a series of 4� 256� 256 
image patches, and then these image patches are 
overlapped with the land cover types from CBNERRs 
to create the paired label patches. Within the label 
patches, all pixels that are not labeled as high marsh 
or low marsh are labeled as background (i.e. non- 
marsh). This process results in 103 256� 256 image 
patch pairs for model fine-tuning, and we refer to 
these image patches generated from Catlett Islands 
as the full-tuning dataset in later sections.

2.4.4. Labeling to support external validation
Finally, to externally validate the model, we leverage 
two independently collected datasets. The first of 
these is a stand-alone dataset from Goodwin Islands 
in VA. The same image processing procedures applied 
to Catlett Islands (our full tuning dataset) are also 
applied to the land cover maps of Goodwin Islands 
and NAIP imagery to generate patch pairs for valida
tion. The validation image patches include 106 
4� 256� 256 tiles covering Goodwin Islands, which 
includes 1,260,771 0.6-m resolution pixels represent
ing high marsh, 1,277,593 pixels representing low 
marsh, and 4,408,452 pixels representing background. 
We refer to these image patches generated from the 

Goodwin Islands as the validation dataset in later 
sections.

The second independent validation dataset we 
employ is generated through visual interpretation of 
UAV imagery collected from Captain Sinclair and 
Maryus, Virginia. Initially, we identified and digitized 
a series of polygons representing land cover cate
gories such as Juncus roemerianus, Spartina alterni
flora, forest, water, and built-up areas. Subsequently, 
we randomly generated points within these digitized 
polygons using the open-source software QGIS (QGIS  
2023). Each point underwent further interpretation to 
ensure data quality and was categorized into one of 
the three classes: high marsh, low marsh, or back
ground. This process yielded a total of 300 points, 
comprising 158 for high marsh, 95 for low marsh, 
and 47 for background points. These points are used 
in conjunction with 106 validation image patches to 
generate model estimates and provide another exter
nal measurement of validity.

3. Methods

This study relies on a common procedure in the deep 
learning literature, transfer learning, which seeks to 
improve the performance of target models within 
specific domains by harnessing knowledge derived 
from distinct yet related source domains. This 
approach mitigates the need for an extensive 
amount of target domain data to construct effective 
target models (Zhuang et al. 2020). In this work, we 
train a U-Net model using a domain which has 
a large amount of information (data from the 
Delmarva Peninsula [MHZM]), and then “transfer” 
the weights learned in that region to our target 
domain by fully-tuning the model using a much 
smaller dataset from the Catlett Island (CBNERR). 
The overall workflow of this study is implemented 
in the following stages:

(1) Leveraging the seasonal Sentinel imagery 
(Section 2.2.1) and digitized labels from the 
TMI, a binary (marsh vs. non-marsh) detection 
model, MA, was trained over the entirety of 
coastal Virginia.

(2) Leveraging NAIP imagery and label data from 
the MHZM, model MB was trained for the detec
tion of high vs. low marsh. This step is referred 
to as partial tuning.

8 Z. LV ET AL.



(3) Initialization with the weights learned from par
tial tuning, MB is further fine-tuned with the in- 
situ high-resolution CBNERR data, generating 
a new model MC . This step is referred to as full 
tuning.

(4) Within areas identified as marshland by model 
MA, model MC is implemented to discriminate 
between low and high marsh. This step is 
referred to as the masked model.

3.1. Models

The primary algorithm used in this analysis is the 
U-Net, which is a well-established, relatively light
weight deep learning algorithm for semantic seg
mentation based on convolutional network 
architectures (Ronneberger, Fischer, and Brox  
2015). The algorithm’s architecture includes two 
parts: down-sampling and up-sampling, also called 
the encoder and decoder. The encoder extracts 
varying resolution feature maps through a series 
of convolutional, rectified linear units (ReLU), and 
max-pooling layers. The decoder stage contains 
and combines (a) each feature map from the 

down-sampling process, and (b) spatial information 
through an up-sampling and concatenation pro
cess (Figure 3). The data flow of down-sampling 
and up-sampling forms a U-shaped architecture, 
and the output layer maintains the same resolution 
as the input layers.

3.1.1. Binary marsh modeling
In the binary marsh modeling MA stage, an U-Net 
model architecture with a Resnet-34 convolutional 
model is implemented to handle the encoding and 
decoding tasks. The model is initialized with weights 
pretrained with ImageNet (Deng et al. 2009). It takes 
70% of the 2837 12� 128� 128 (10 spectral bands, 
NDVI and NDWI) image patches from Sentinel-2, and 
generates two types of pixel-level outputs: marsh and 
non-marsh. 30% of the image patches are later used 
to validate the model prediction accuracy (Abdi 2020; 
Campos-Taberner et al. 2020).

3.1.2. Partial tuning modeling
Once the location of the marshland is identified using 
model MA, we seek to further classify the marsh as 
either “high” or “low”; the model presented in this 
subsection (MB) provides the baseline for this step. 

Figure 3. The U-Net architecture (example of a 3-band input image with 256� 256 pixel-size) (Lv et al. 2023). The boxes indicate the 
feature maps at each layer, and the number on the top of each feature map shows the depth of feature map (channel). Numbers on 
the right side of each feature map are image/feature maps dimension.
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Model MB is comprised of a separate U-Net model 
with Resnet-34 as backbone.2 Network MB is then 
trained with 70% of the image patches from NAIP 
and MHZM (7042 patches). In this application, the 
model classifies each pixel as one of three types: 
high marsh, low marsh, and background (non- 
marsh).

3.1.3. Full tuning modeling
In the full tuning (MC) model, a Resnet-34 U-Net is 
initialized using the optimal weights found in 
model MB, and further trained with imagery col
lected from ground-truth by CBNERR (Catlett 
Islands). As in model MB, each pixel is classified 
as high marsh, low marsh, or background. In this 
stage, all 103 6� 256� 256 image patches from 
CBNERR are used to train the model. The best 
performing model is saved for further investigation 
and validation.

3.1.4. Masked modeling
The masked modeling stage is a combination of the 
binary marsh detection model MA and the full tuning 
model MC results. In this stage, the MA is first leveraged 
to extract locations where the marshland has been 
detected. Within the areas identified as marshland, 
the MC is then leveraged to further classify the high- 
resolution NAIP imagery into different marsh types.

3.2. Data augmentation

In each training stage, we employ data augmentation 
techniques to enhance the standardization of the model 
input and augment the variability of the data observed 
by the model. To achieve standardization, we normal
ized the multispectral band within each image patch by 
dividing each band value by the maximum band value, 
resulting in a range between 0 and 1 for each band. As 
part of the data augmentation process, we generated 
the NDVI and NDWI bands for each image patch prior to 
inputting them into the model. Consequently, a total of 
six bands were used as inputs for model training, valida
tion, and testing when employing NAIP imagery. In 
order to introduce greater diversity within the training 
images, we also applied morphological augmentation 
by randomly rotating the training images and their 
corresponding labels by 0, 90, 180, or 270 degrees.

3.3. Optimization & loss

In this study, we implement a multi-class cross- 
entropy loss function to evaluate the algorithm per
formance for each model described in section 3. The 
loss function is defined as: 

loss ¼ �
XN

c¼1

yo;c logðpo;cÞ (1) 

where N is the total number of mapping objects (N = 2 
in the model MA detecting marsh from Sentinel ima
gery, and N = 3 in MB and MC with high and low marsh 
detection) and y is the binary indicator (0 or 1) if class 
label c is the correct classification for observation, o. p 
is the predicted probability observation o is of class c. 
Due to the imbalance of our pixel-level data distribu
tion, a weighting scheme is used in the training pro
cess, in which classes are weighted according to their 
representation in the labeled data (Kikaki et al. 2022; 
Paszke et al. 2016): 

Wclass ¼
1

lnðc þ pclassÞ
(2) 

where Wclass is a multiplicative weight applied to the 
loss function for observations of a given class, c is 
a hyper-parameter set to 1.03 (following past litera
ture; see Kikaki et al. (2022)), and 

pclass ¼
Npixels of class

Ntotal pixels
(3) 

where Ntotal pixels includes background pixels. During 
the training process, the Adam optimization is used to 
minimize the cross-entropy loss with an initial learn
ing rate of 0.001. The learning rate is reduced by 
a factor of 10 when the models do not show any 
progress in validation performance for five consecu
tive epochs. To help avoid over-fitting, we use the 
best-scoring model after early stopping conditioned 
on no improvement in validation accuracy for 10 
consecutive epochs. The overall workflow of the 
model process can be seen in Figure 4.

3.4. Accuracy assessment

We implement a wide range of validation metrics to 
assess pixel-level semantic segmentation perfor
mance. First and foremost, we present overall accu
racy (Equation (4)) to give guidance on the overall 
performance a user might expect. In addition, we 
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evaluate the precision (Equation (5)) and recall 
(Equation (6)) at the pixel level for each class and 
the overall F1 score (Congalton and Green 2019; 
Rwanga and Ndambuki 2017). 

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
(4) 

Precision ¼
TP

TP þ FP
(5) 

Recall ¼
TP

TP þ FN
(6) 

F1 ¼
2 � Precision � Recall

Precisionþ Recall
(7) 

In Equations (4), (5), (6) and (7), TP (true positive) 
represents the number of pixels in which the model 
correctly predicts ground truth, TN (true negative) 
represents outcomes in which the model correctly 
predicts cases that are different than ground truth, 
FP (false positive) is predictions to a class that do 
actually not belong to that class, and FN (false 

negative) are the number of predictions belonging 
to a class but were predicted to be in a different 
class (Rwanga and Ndambuki 2017). The F1 score is 

a harmonic mean between precision and recall. 

Finally, a cross-validation matrix (Congalton and 

Green 2019) for each model is additionally generated 

to compare the prediction accuracy for each type of 

marsh class.

4. Results & analysis

The results of binary detection of tidal marshes with 
Sentinel imagery are presented in Table 3; the results 
of the classification of the marsh community (high 
marsh vs. low marsh) are presented in Table 5. We 
further explain each result in the following sections.

4.1. Model performance of sentinel marsh 
detection

Table 3 provides a pixel-level accuracy assess
ment, based on a randomized 30% split of 

Figure 4. The workflow of the mapping process.

Table 3. Accuracy assessment of binary marsh detection with Sentinel imagery and TMI 
(pixel-level).

Prediction Classes

Ac
tu

al
 C

la
ss

es

Non-marsh Marsh Sum Recall (%)

Non-marsh 11,664,832 541,468 12,206,300 0.96
Marsh 203,882 1,548,986 1,752,868 0.88
Sum 11,868,714 2,090,454
Precision 0.98 0.74

Overall Accuracy 0.95 Overall F1 0.89
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Sentinel data withheld for validation. Out of the 
2,090,454 pixels predicted as marsh by the model, 
1,548,986 pixels are marsh according to the vali
dation data. This accounts for 74% of the pixels 
labeled as marsh. Out of the total 1,752,868 pixels 
labeled as marsh in the ground truth data, the 
model correctly identifies 1,548,986 of them as 
marsh, which corresponds to 88%. The model 

achieves an overall accuracy of 95% and an over
all F1 score of 0.89.

To test whether spatial resolution would improve 
or impede the model performance in marsh detec
tion, we construct another dataset with the 
0.6-m resolution NAIP and TMI labels. The results 
(based on a withheld subset of 30% of the data) are 
presented in Table 4. The prediction accuracy for the 

Table 4. Accuracy assessment of binary marsh detection with NAIP imagery and TMI 
(pixel-level).

Prediction Classes

Ac
tu

al
 C

la
ss

es

Non-marsh Marsh Sum Recall (%)

No-marsh 54,909,848 3,996,778 58,906,626 0.93
Marsh 2,025,841 9,977,485 12,003,326 0.83
Sum 56,935,689 13,974,263
Precision 0.96 0.71

Overall Accuracy 0.92 Overall F1 0.86

Table 5. Accuracy assessment results tested using all data from the Goodwin Islands. Four prediction results are presented: baseline 
model, direct prediction from partial tuning, full tuning, and masked modeling. Each tested class is presented with two statistics: 
precision and recall. Each model is presented with overall accuracy and F1 score.

Background High Marsh Low Marsh Overall Accuracy F1

Baseline Precision 0.99 0.31 0.5 0.63 0.52
Recall 0.77 0.98 0.15

Partial Tuning Precision 0.98 0.34 0.47 0.66 0.48
Recall 0.88 0.95 0.01

Full Tuning Precision 0.99 0.71 0.66 0.85 0.81
Recall 0.84 0.91 0.82

Masked Modeling Precision 0.96 0.77 0.74 0.88 0.83
Recall 0.91 0.85 0.79

Figure 5. The distribution of data used in full-tuning and validation. The blue bars are the number of pixels counts calculated from the 
full-tuning dataset, and the orange bars are pixel counts from the validation dataset (in Section 2.3).
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marsh and non-marsh detections is 71% and 96%, 
respectively. The recalls for the two classes – marsh 
and non-marsh – are 83% and 93%. Using high spatial 
resolution NAIP imagery, the model achieves 92% 
overall accuracy and an overall F1 score of 0.86 (a 
small decrease from the sentinel models presented 
in Table 3).

4.2. Model performance and accuracy of marsh 
community mapping

Here, we present the results of our models designed 
to distinguish between high and low marsh (as 
described in sections 3.1.2, 3.1.3 and 3.1.4).

The models are each initially tested using a stand- 
alone testing dataset representing the Goodwin Islands 
(an area intentionally omitted from any training stage; 
see section 2.3); later in this section we provide results 
from an additional, independent UAV survey. Results 
from the Goodwin Islands are summarized in Table 5.3

The first model presented in Table 5 (the “Baseline 
Model”) provides a baseline as to the accuracy that 
might be expected if a researcher only used one 

locally collected dataset (Catlett Islands) to tune the 
model. As anticipated, this approach has poor perfor
mance in predicting both high marsh and low marsh, 
with 31% and 50% precision, respectively. Although 
the prediction accuracy for the non-marsh type (back
ground) is 99%, the recall is only 77%, meaning 23% 
of the background pixels in the ground truth are mis- 
classified as marsh (i.e. overestimating the amount of 
marshland in the prediction). Considering that the 
number of background pixels in the testing dataset 
make up more than 50% of the entire testing set (see 
Figure 5), this is a large discrepancy at the pixel level. 
This baseline method achieves 63% overall accuracy 
and an overall F1 score of 0.52.

The second model presented in Table 5 - the “Partial 
Tuning” model – is also tested using the stand-alone 
validation dataset. In this model, we are training based 
on the relatively coarse-resolution, but data rich Marsh 
Habitation Zonation Map (MHZM), but without any 
further training with in-situ collected data. Similar to 
the baseline model, partial tuning results in relatively 
poor performance in predicting all three categories, 
with a 66% overall accuracy and a F1 score of 0.48.

Figure 6. A visualization of model prediction in a selected area in the validation region (Goodwin Islands). A) the raw NAIP imagery 
(0.6-m spatial resolution); B) ground truth label; C) prediction output of full tuning model; D) prediction output of masked model.

GISCIENCE & REMOTE SENSING 13



The next model presented in Table 5 - the “full 
tuning” model – sought to establish the improvement 
in accuracy that may be possible given the in-situ 
collection of small amounts of high-quality data. The 
full tuning model improves the model performance 
dramatically, with 22% and 29% improvement in 
overall accuracy and F1 score, respectively. The pre
diction accuracy of high marsh and low marsh 
increased from 0.31 to 0.71, and from 0.50 to 0.66, 
respectively. Although there is a slight decrease in 
recall in high marsh prediction (from 0.98 to 0.91), 
the recall of low marsh is increased from 0.15 to 
0.82. The recall value for the background increased 
7% (from 77% to 84%). This leads to a significant 

improvement in the model’s overall performance on 
each land cover category.

In the final model implementation (“masked 
model”), we first leverage the binary marsh model to 
mask regions for consideration, and then apply the 
full tuning model for high and low marsh identifica
tion to the resultant area. This model improves the 
overall accuracy by 3% and F1 score by 2%. The model 
precision in predicting high marsh and low marsh 
increased by 6% and 8%, respectively.

Overall, there is a 25% improvement in overall 
accuracy and 31% improvement in F1 score between 
the baseline model and the final masked model 
(with full tuning and marsh presence detection). 

Table 6. A summary of the accuracy assessment results obtained from the 
masked modeling approach using UAV-interpreted data collected in 
Captain Sinclair and Maryus, Virginia.

Precision Recall F1 Total

Background 0.98 0.89 0.93 47
High Marsh 0.73 0.98 0.84 158
Low Marsh 0.93 0.43 0.59 95
Overall Accuracy 0.79

Figure 7. Prediction error of each patch (Goodwin Islands).
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The difference in precision is 46% and 24% for high 
marsh and low marsh, respectively. No particular 
class correlates closely with overall performance. 
Figure 6 shows the comparison of different predic
tion results, compared with ground truth labeling.

To validate the robustness of the model predic
tions, Table 6 summarizes the results for data inter
preted from UAV imagery using the masked 
modeling technique. The model exhibits an overall 
accuracy of 79% in predicting these samples. The 
model achieves a prediction accuracy of 73% and 
93% for high marsh and low marsh, respectively. 
Notably, the recall value of high marsh is 98%, 
while the recall value of low marsh is 43%.

4.3. Error distribution across space

To explore the potential bias in the spatial distri
bution of errors (and thus provide a better under
standing of which features may correlate with 
accuracy or inaccuracy), we generated a spatially 
gridded metric of error, which is presented in 
Figure 7. Each grid cell in this figure shows the 
overall percentage of misclassified pixels in the 
underlying validation dataset. As this figure illus
trates, in regions with more complex land cover 
mixtures, the prediction error tends to be higher 
compared to regions with more homogeneous or 
distinct land cover types. We also find 
a relationship between an increased percentage 
of non-marsh in image patches and the total 
amount of error; broadly, as non-marsh areas 

increase, error tends to decrease, as shown in 
Figure 8.

5. Discussion

The overall results of this study illustrate that lever
aging features learned from locations where data are 
abundant, the classification accuracy of marsh types – 
high marsh, low marsh, and non-marsh – can reach 
approximately 85% in the Virginia study area. The 
combination of data from multiple sources with var
ious spatial resolutions – Sentinel and NAIP – can 
improve the overall accuracy of marsh community 
classification to 88%. Notably, this accuracy is a pixel- 
level metric, i.e. the number of approximately 60-cm 
pixels that are classified correctly. In this section, we 
explore model performance and highlight a number 
of directions for future research.

5.1. Discrepancies across data sources

One significant issue in the approach we present in this 
paper is the temporal mismatch between the image 
and annotation data for marsh detection. The binary 
marsh label data (TMI) were manually collected from 
high-resolution images between 2010 and 2018, vary
ing across different sites. In contrast, the input imagery 
consists of data from 2017 to 2018 (Sentinel with dif
ferent seasonal coverages) and 2018 (NAIP collected 
during leaf-on periods). Consequently, in some cases, 
the model attempts to correlate the state of marshland 
at one point in time with images from another time. 
This temporal mismatch can have a negative effect on 
model performance due to changes wetlands undergo 
over time, due to both natural and human-driven pro
cesses (Mainali et al. 2023). This is illustrated in Figure 9, 
where column (B) displays tidal marsh labels from TMI; 
as can be seen, these labels do not precisely align with 
the ground truth shown in the imagery in column (A). 
Given this discrepancy, it is possible that our validation 
understates the overall accuracy of the model’s perfor
mance because the validation and calibration data 
itself contain apparent errors, thus influencing the 
overall model performance reported earlier. 
Interestingly, models such as those presented in this 
piece could potentially be employed to retrospectively 
improve long-term records such as those provided 
by TMI.

Figure 8. The relationship between prediction error and the 
percentage of no marsh type of images patches in the validation 
data.
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A separate, but interrelated challenge is that the 
extent of marshland inundation exhibits regular tem
poral variability attributable to natural hydrological 
processes. The tidal wetland area is subject to notable 
alterations during storm events, as well as gradual 
shifts resulting from phenomena such as sea level 
rise and land subsidence. Unfortunately, the NAIP 
imagery, which serves as our primary data source for 
mapping the marsh communities, is collected specifi
cally during the leaf-on season. As a result, the influ
ence of tidal dynamics on model performance, 
particularly for accurately mapping low marsh areas, 
is neglected. To address this limitation, future endea
vors could involve employing alternative high- 
resolution imagery sources with higher temporal fre
quency. However, we note that the model perfor
mance we present here is very promising, 
suggesting that – despite this limitation – NAIP- 
based modeling approaches may still be a strong 
pathway forward for modeling efforts focused on 
the United States. This is notable, as NAIP is a public 
good which managers or analysts can retrieve free of 
cost; similar products from commercial companies 

can easily cost tens to hundreds-of-thousands of dol
lars depending on the scope of data required.

5.2. Comparison of results from different sources

In the context of binary marsh detection, the opti
mal model achieves an overall accuracy of 95% 
when utilizing the multispectral seasonal imagery 
acquired from Sentinel-2. By employing the four- 
band high-resolution imagery obtained from NAIP, 
the model achieves an overall accuracy of 92%. 
The observed 3% increase in overall accuracy, 
attained through the utilization of Sentinel-2 ima
gery, can likely be attributed to the information 
captured by the additional spectral bands that are 
not available in NAIP imagery. While there is 
a disparity in image patch sizes between 
Sentinel-2 (128� 128) and NAIP (256� 256) during 
the training phase, potentially resulting in varia
tions in model performance, the effect of image 
size on classification accuracy is unknown and an 
avenue for future research.

Figure 9. A visualization of samples of images with the corresponding ground truth labels using high-resolution NAIP imagery. A) the 
raw NAIP imagery; B) annotations from TMI; C) model prediction of marsh presence (yellow pixels are marsh).
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However, it is important to note that the NAIP 
dataset offers a high-resolution data source that 
enables the measurement of the more detailed dis
tribution of marsh communities within the study area. 
This provides valuable information that cannot be 
obtained from Sentinel-2 imagery alone. The combi
nation of both resources for marsh community map
ping allows for leveraging the benefits of both data 
sources, enhancing the accuracy and detail of the 
mapping results.

In the context of marsh community mapping, 
employing partial tuning on the testing dataset results 
in relatively poor performance, with an overall accuracy 
of 66% and an F1 score of 0.48. This lower performance 
can be attributed to the disparity in spatial resolution 
between the images used for model training and test
ing. Specifically, the model is trained using a series of 
1-m resolution NAIP imagery, while evaluation is car
ried out on 0.6-m resolution imagery obtained from the 
study area. Notably, recent research conducted by 
Thambawita et al. (2021) underscores the impact of 
image resolution on model performance, highlighting 

the tendency for decreased performance when gener
alizing to spatial resolutions outside the scope of the 
training dataset.

To address this limitation, conducting full tuning 
using 0.6-m data collected from the study area leads 
to a significant improvement in performance, boost
ing the overall accuracy from 66% to 85%. This obser
vation may help guide future efforts: while using off- 
the-shelf models is not a suitable solution today, col
lecting relatively small amounts of local data to fine- 
tune existing models to different locales is an effec
tive pathway forward, even in the context of image 
resolution differences between the source and target 
modeling domains.

5.3. Feature importance – model interpretation

A frequent criticism of deep learning models high
lights the difficulty of interpreting the relative impor
tance of features in estimation. To explore the 
mechanisms driving the presented models, we apply 

Figure 10. Three random correctly classified test images are in the first column. The second, third, and fourth columns show the pixels/ 
features that contributed for and against classification into each of the three classes. For example, the upper-left image is a low marsh 
image that was predicted by the model most likely to be a low marsh, then background, then high marsh. Blue pixels represent areas 
that contribute against classification to a given class and red pixels represent areas that contribute toward. In this case, the Resnet-34 
based network for image classification was investigated.
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a SHAP visualization (SHapley Additive exPlanations 
visualization technique (Lundberg and Lee 2017)) to 
explore what factors contribute to the model’s cap
ability to distinguish different marsh types. Figure 10 
provides an illustrative example of the factors influen
cing the accurate classification of three images within 
the ResNet-34-based network. In Figure 10, example 
images are in the first column, while the second, third, 
and fourth columns show pixel-level features that 
either contribute positively (highlighted in red) or 
negatively (highlighted in blue) to classification into 
the respective categories indicated above each.

The visual examination of the SHAP examples, as 
illustrated in Figure 10, highlights the discernible 
influence of specific geographic characteristics on 
model classification. Notably, in Figures 10A,B, which 
pertain to the low marsh category, the boundary 
between water and land (i.e. marsh bank) exhibits 
a relatively high contribution compared to other sur
face areas in identifying low marsh regions. This con
tribution is represented by the presence of red- 
colored pixels along the shorelines. Relatedly, the 
final columns of the top two rows demonstrate that 
indicators along the shoreline exert a negative influ
ence on the classification of high marsh. A more com
plex example is shown in Figure 10C, in which the true 
class (high marsh) is identified, but the information 
used for distinguishing between high marsh and low 
marsh shows a more diffuse pattern, i.e. contextual 
information is being leveraged, rather than only pixels 
proximate to the shoreline.

In the SHAP evaluation, because the underlying 
images are not themselves segmented, the SHAP 
values are constructed on a pixel-by-pixel basis, and 
thus do not inherently have semantic meanings. This 
study would benefit from more robust explainability 
techniques that identify (e.g. through natural lan
guage or generative interpretation) the most influen
tial features affecting marsh classification.

5.4. Advantages as contrasted to alternative 
techniques for marsh monitoring in Virginia

Traditional tidal marsh mapping involves resource- 
intensive GPS field surveys and manual digitization 
from remotely sensed data. For instance, the most 
recent Tidal Marsh Inventory (TMI) for Virginia 
spanned a nine-year period from 2011 to 2019 
(CCRM 2019b). While the TMI provides 

a comprehensive inventory of tidal marsh locations, 
it lacks detailed information about the specific spatial 
distribution of marsh types, such as distinguishing 
between high marsh and low marsh. In contrast, this 
study explores the application of deep learning tech
niques using high-resolution imagery. By leveraging 
these methods, we not only accurately map the 
marshland but also detect and differentiate marsh 
types, providing more detailed and comprehensive 
information compared to traditional approaches at 
significantly lower labor costs.

The proposed method in this study achieves an 
overall accuracy of 95% in binary marsh detection 
and 88% in marsh type classification for the Virginia 
region. The training process leverages an NVIDIA 
GPU Quadro RTX 6000 with 24 GB memory. After 
training, individual tiles (i.e. a 128� 128 Sentinel-2 
image patch covering roughly 1,638,400m2) can be 
processed with estimates provided in less than 
a second. If these techniques can be made to gen
eralize without local training information, the pro
cessing time for an entire study area could be 
decreased from years to hours.

5.5. Limitations in the use of high-resolution 
imagery

5.5.1. Seasonality
Tidal marshes demonstrate unique spectral attributes 
across diverse seasons and tidal conditions. Moreover, 
the spectral signatures and attributes of identical marsh 
types can undergo variations as a result of the influence 
of tidal inundation. Researchers conducting similar stu
dies typically adhere to specific guidelines when dealing 
with tidal influences for analysis. For instance, some opt 
for images captured during low tide periods (Alam and 
Hossain 2021), while others have developed specialized 
filtering techniques to isolate the tidal influence in marsh 
classification studies (Sun et al. 2021).

One of the notable strengths of the U-Net architecture 
is its capability to learn and represent a wide range of 
image features that are correlated with phenomena of 
interest, a characteristic that proves especially advanta
geous in the context of regularly inundated coastal areas 
(Li et al. 2021). However, in the work presented in this 
paper, limitations arise from the utilization of publicly 
available high-resolution imagery, specifically NAIP, 
which lacks a high temporal coverage and repetitive 
data acquisition schedule. Consequently, the 
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classification of high marsh and low marsh from such 
imagery may not fully capture the nuances of seasonal 
variations and tidal influences. It is important to acknowl
edge that this limitation is inherent to the use of publicly 
accessible high-resolution image sources today and can
not be entirely circumvented using open-source infor
mation. Although commercial high-resolution satellite 
imagery that also has temporal regularity is available 
from some private providers, not every government 
agency or environmental protection agency has the 
resources to make such purchases. Thus, we note that 
despite the inherent limitations of NAIP, the work pre
sented in this study suggests that its use remains a viable 
pathway for mapping and modeling marsh types in 
fiscally constrained environments.

5.5.2. Shadows
Shadows stemming from cloud cover or tree canopies 
constitute an additional factor impacting the accurate 
classification of high-resolution imagery. Shaded 
regions frequently exhibit spectral characteristics 
that closely resemble those of water, primarily due 
to the influence of shadows cast by tree canopies, and 
can thus introduce significant errors into wetland 
detection algorithms. As the U-Net model is adept at 
identifying multiple features that may correlate with 
a feature of interest, one way to address this chal
lenge is through the incorporation of images cap
tured at different seasons or times.

However, in this study, we leverage NAIP, which 
provides only one image during a leaf-on period, 
suggesting that shadows may be a significant source 
of errors. In future studies, we suggest the integration 
of shadow-detection algorithms (i.e. Liasis and 
Stavrou (2016); Shi, Fang, and Zhao (2023)) into sup
plementary pre-processing stages. More generally, 
a fruitful avenue for future inquiry could be the inte
gration of such shadow detection and removal stra
tegies into the U-Net model itself.

6. Conclusion

Efforts to map tidal marshes play a crucial role in 
coastal resource management, offering valuable 
insights into the trends and overall health of essential 
vegetation. These data serve as a valuable resource 
for scientists, coastal planners, and managers, helping 
them identify specific areas where resources can be 
allocated, facilitating the implementation of 

monitoring, protection, and restoration initiatives 
aimed at enhancing the resilience of these habitats.

Despite the importance of these data, current prac
tices of tidal marsh inventory mapping face several lim
itations, including the necessity for on-site data 
collection, manual image digitization, and restricted 
access to remote areas. These challenges can result in 
data products that are rarely – if ever – updated, 
a particularly detrimental factor in the context of 
dynamic processes like sea level rise. In this paper, our 
objective is to explore the capability of overhead ima
gery and deep learning-based segmentation models to 
identify marsh types – specifically, the degree to 
which it is possible to distinguish between high 
marsh and low marsh when using mixed- 
resolution imagery. To achieve this, we leverage 
multispectral Sentinel-2 imagery and high spatial 
resolution NAIP imagery for the classification of 
marsh plant communities. This study presents 
a benchmark accuracy of 88% for deep learning- 
based marsh community classification in coastal 
Virginia, achieved at a spatial resolution of 60 cm. 
Limitations arise when using static high-resolution 
NAIP imagery, including challenges related to tidal 
inundation and the influence of shadows (see sec
tion 5.5). The findings, proposed workflow, and 
methodology presented in this study offer 
a novel approach for regional governments to gen
erate high-resolution tidal marsh inventories using 
only open-access imagery.

Notes

1. The B1, B9, and B10 bands were not leveraged, as they 
are mainly used for atmospheric correction.

2. Pretrained weights from ImageNet are used for 
initialization.

3. Results from a baseline model are also included by 
training a U-Net model with only the 103 image 
patches from Catlett Islands in Virginia, in order to 
establish the value of the more complex training pro
cedure outlined in this piece; results from the UAV 
survey are presented in Table 6
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