
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2001

Algorithms for operations on probability distributions in a Algorithms for operations on probability distributions in a

computer algebra system computer algebra system

Diane Lynn Evans
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Evans, Diane Lynn, "Algorithms for operations on probability distributions in a computer algebra system"
(2001). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623382.
https://dx.doi.org/doi:10.21220/s2-bath-8582

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.wm.edu%2Fetd%2F1539623382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.wm.edu%2Fetd%2F1539623382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-bath-8582
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALGORITHMS FOR OPERATIONS ON

PROBABILITY DISTRIBUTIONS

IN A COMPUTER ALGEBRA SYSTEM

A Dissertation

Presented to

The Faculty of the Department of Applied Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Diane Lynn Evans

July 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3026405

Copyright 2001 by
Evans, Diane Lynn

All rights reserved.

___ ®

UMI
UMI Microform 3026405

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is subm itted in partial fulfillment of

the requirements for the Degree of

Doctor of Philosophy

Diane L. Evans, Author

APPROVED, July 2001

u

Lawrence Leemis

* l3 A v M in Am/1Rex Kincaid

^ IS<W)
Dennis Manos

i t ' John Drew

Sidney Lawrence
Mathematics Department

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A cknow ledgem ents v

List o f Tables v i

List o f F igures v ii

A bstract x

1 In troduction 2
1.1 Notation and N o m en cla tu re .. 1 1

1.2 Introductory E x am p les.. 1 2

2 D ata S tructure 17
2.1 Standard Discrete Data Structure F o rm a ts .. 27
2 . 2 The Six Functional R epresen tations... 33
2.3 Algorithms for Fundamental Procedures ... 51

3 Order S ta tistics 56
3.1 Implementation for Discrete P o p u la tio n s ... 58
3.2 E x a m p le s ... 70
3.3 Range S ta tis tic s ... 79
3.4 Eliminating Resampling Error in B o o ts tra p p in g 8 8

4 C onvolutions and P roducts 97
4.1 Conceptual F ram ew ork.. 104
4.2 A lg o rith m ... 117
4.3 Im p lem en ta tio n ... 120
4.4 E x a m p le s .. 123
4.5 Products of Random Variables with Finite S u p p o rts 133

5 Transform ations 145
5.1 T h e o ry ... 146
5.2 Im p lem en ta tio n .. 149
5.3 A pplica tions... 164

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 M inim um s and M axim um s 170
6.1 PDF of the M inim um .. 172
6.2 PDF of the M a x im u m ... 185

7 A lgorithm s for O perations on C ontinuous D istr ib u tion s 195
7.1 Existence Conditions for PD Fs .. 195
7.2 Method of Moments E s tim a tio n .. 200
7.3 Maximum Likelihood Estimation with Right C e n so rin g 207
7.4 Mixture and Truncate P ro c e d u re s ... 212

8 Survival D istribution s Satisfying B enford’s Law 218
8.1 Benford’s L a w ... 218
8 . 2 Parametric Survival D is tr ib u tio n s ... 220
8.3 Conditions for Conformance to Benford’s L a w 222
8.4 Variate G e n e ra tio n ... 230
8.5 C onc lu sio n s.. 232

9 Input M odeling 233
9.1 E x a m p le s ... 234
9.2 Further work ... 245

10 A P P L ication s 247
10.1 Kolmogorov-Smirnov Test Statistic for Estim ated Param eters 247
10.2 O th e r s ... 258

11 Future W ork 271

A A lgorith m for OrderStat 274

B M aple C ode for NextCombination and NextPermutation 277

C D eterm in in g C andidate Sum s for th e H eap 282

D A lgorith m for BruteForceMethod 284

E A lgorith m for MovingHeapMethod 285

F A P P L C ode for Benford 287

B ib liography 288

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement s

I would like to thank:

My committee members: Dr. Drew, Dr. Kincaid, Dr. Manos, and Dr. Lawrence
for their careful reading and suggestions of my dissertation and for being great
instructors, both in and out of the classroom;

Dr. Andrew Glen for allowing me to become part of “APPL” and showing me
the ropes to becoming a Maple programmer;

The Operations Research faculty at The College of William & Mary for out
standing instruction and a strong probability and statistics foundation;

Dr. Frank Carroll for being my mentor, friend, and mathem atical “sounding
board” for many years;

The Clare Boothe Luce foundation for their generous fellowship that allowed
me to continue my education and have the freedom to delve into my research;

Dr. Larry Leemis for being himself: an excellent teacher, researcher, and advisor.
I have spent three of the best years of my life working with him and will always
admire and respect him in many ways. The time he has spent with me will
always be appreciated, and I hope th a t someday I may also make such a positive
impact, m athem atically and otherwise, on another person’s life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1 . 1 Observed horse kick fatalities... 15

2.1 Discrete random variable support categories.. 24
2.2 The six functional representations of a random variable X 34
2.3 Distribution representation relationships.. 35

3.1 Categorization of discrete order statistics with associated examples. . 71
3.2 Rat survival da ta ... 90
3.3 Bootstrap estimates of the standard error of the median........................ 91
3.4 Bootstrap estimates of the standard error of the mean........................... 93

4.1 Comparison of BruteForceM ethod and MovingHeapMethod................... 123
4.2 Probability table for a convolution... 130
4.3 The exact probabilities and normal PD F approximations for Pr(S = s)

for s = 7 ,8 , . . . , 21.. 131

5.1 Categories for computing the PDF of the random variable Y = g(X)
when X is a discrete random variable with support Qx hi a Dot support
form at.. 157

5.2 Life tests on a three-component system.. 168

6.1 Categories for computing the PD F of the minimum of two independent,
non-identically distributed random variables X and Y 171

7.1 Maximum 24-hour precipitation for 36 inland hurricanes (1900-1969). 204

8.1 Conformance to Benford’s law for parametric survival distributions. . 221

9.1 Kolmogorov-Smimov test statistic values for various distributions that
were fit to the ball bearing failure times in APPL via maximum likeli
hood estim ation... 241

10.1 Variance of a truncated standard normal distribution T for increasing
values of the lower truncation point t ... 269

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 APPL tree.. 7
1.2 Actual and estimated PDF for the H o rs e K ic k F a ta lit ie s data. . . . 16

2.1 PD F for Example 2.14.. 36
2.2 CDF for Example 2.22.. 55

3.1 Categorization of discrete order sta tistics.. 59
3.2 ProbStorage array for a sample drawn without replacement from a

distribution with finite support.. 67
3.3 Support values associated with the jo in t distribution of X x and X 2. . 69

4.1 Array A with active cell (1, 1), which contains the entry A XtX — —5. . 110
4.2 Array A after A \t \ has been removed and added to the one-dimensional

sum array s .. I l l
4.3 Six binary trees.. 112
4.4 Heap H containing entries A i j2 = —3 and A2j i = —2............................. 113
4.5 Array A after A i i2 = —3 is removed and appended to s 113
4.6 Array A with active cells (1, 3) and (2, 1).................................... 114
4.7 Heap H containing entries A2)2 = —2 and A l i 3 = 0............................ 114
4.8 Array A after A2 i 2 = —2 is removed... 115
4.9 Array A with active cells (1 , 3), (2 , 2), and (3, 1)...................... 116
4.10 Heap H w ith entries Ai)3 = 0? ^ 2 , 2 = 0 and A i i 3 = 2............................... 116
4.11 Array A with its seventeenth active cell (3, 4)...................................... 117
4.12 Array A split into four quadrants for the product algorithm............ 134
4.13 Product array A for subcase two... 137
4.14 Product array A for subcase three.. 139
4.15 Product arrays A_ and A+ for subcase five... 140
4.16 Dueling product arrays A x- and A2- , and A x+ and A2+ for subcase nine. 144
4.17 The MovingHeapDuelMethod as it progresses simultaneously through

arrays A i- and A2- for subcase nine... 144

5.1 The transform ation Y = g (X) = (X — 2) 2 for X = 0 , 1 , 2 , 3 , 4148

6.1 The PD F of the minimum when a four-sided die is rolled twice. . . . 173
6.2 The minimum values Q.z = { 1 ,4 ,5 ,6 } for X and Y in Example 6.3. . 176

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 The support values for a geometric random variable with support Q x —
{1 , 2 , . . . } and and a negative binomial random variable with support
f i r = { 2 , 3 , . . . } .. 179

6.4 The support values for the random variable X with infinite support
and the random variable Y w ith finite support, where m in{fix} =
m in { fir} ... 181

6.5 The support values for the random variable X with infinite support
and the random variable Y w ith finite support, where m in{fix} >
min{fiy'}... 183

6 . 6 The support values for the random variable X with infinite support
and the random variable Y with finite support, where min{fiA'} <
m in{fiy}... 184

6.7 The maximum values {4, 5, 6 , 7,9} for X and Y in Example 6.10. . . 188
6 . 8 The support values for the random variable X with infinite support

and the random variable Y w ith finite support, where m in{fix} =
m in{fiy}... 190

6.9 The support values for the random variable X with infinite support
and the random variable Y with finite support, where m in{fix} <
m in{fV }... 193

7.1 The graph of f (x) = 3|x| — 1 for — 1 < x < 1... 197
7.2 The graph of f{ x) = 1.0002|r - 1| - 0.0001 for 0.9999 < x < 1.0001. . 200
7.3 Empirical and fitted exponential CDFs for the ball bearing data set. . 206

9.1 Coefficient of variation, 7 , versus skewness, 7 3 , for the gamma, Weibull,
log normal, and log logistic distributions... 235

9.2 Empirical and fitted Weibull CDFs (using the method of moments) for
the ball bearing da ta set... 236

9.3 Empirical and reciprocal exponential fitted CDFs for the ball bearing
failure tim es... 238

9.4 Q -Q plot of ball bearing failure times with fitted (method of moments)
Weibull distribution... 239

9.5 P -P plot of ball bearing failure times with fitted (method of moments)
Weibull distribution... 240

9.6 Product-lim it survivor function estimate and fitted Weibull survivor
function for the 6 -MP treatm ent group.. 242

9.7 Cumulative intensity function estim ate and fitted power law intensity
function for the C a rF a ilu re s d a ta .. 244

10.1 The empirical and fitted exponential distribution for one da ta value 2 7 . 249
10.2 T he empirical and fitted exponential distribution for two da ta values

X(i) and X(2).. 250
10.3 Lengths A, B , C, and D from Figure 10.2 for 0 < y < 1............................. 251
10.4 D 2 = max{A, B , C , D }.. 255

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.5 The empirical CDF of Sample and the theoretical U(0, 1) CDF. . . . 260
10.6 Empirical CDF of 1000 Kolmogorov-Smirnov statistics and the theo

retical Kolmogorov-Smirnov CDF for n = 5... 261
10.7 Power curves for the test statistic Y = X x -h X 2 + X 3 (solid line) and

test statistic X ^ (dashed line) for Example 10.5..267
10.8 Overlaid plots of the standard normal and standard IG(0.8) distributions.270

C .l Array A where x x < x 2 < • • • < x n and yx < y2 < - - • < ym.........................283
C.2 Array A for determining candidate sums for the heap............................. 283

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In mathematics and statistics, the desire to eliminate m athem atical tedium and
facilitate exploration has lead to computer algebra systems. These computer algebra
systems allow students and researchers to perform more of their work at a conceptual
level. The design of generic algorithms for tedious computations allows modelers to
push current modeling boundaries outward more quickly.

Probability theory, with its m any theorems and symbolic manipulations of random
variables is a discipline in which autom ation of certain processes is highly practical,
functional, and efficient. There are many existing statistical software packages, such
as SPSS, SAS, and S-Plus, th a t have numeric tools for statistical applications. There
is a potential for a probability package analogous to these statistical packages for ma
nipulation of random variables. The software package being developed as part of
this dissertation, referred to as “A Probability Programming Language” (APPL) is a
random variable m anipulator and is proposed to fill a technology gap tha t exists in
probability theory.

My research involves developing algorithms for the m anipulation of discrete ran
dom variables. By defining data structures for random variables and writing algo
rithm s for implementing common operations, more interesting and m athematically
intractable probability problems can be solved, including those not attem pted in
undergraduate statistics courses because they were deemed too mechanically ardu
ous. Algorithms for calculating the probability density function of order statistics,
transformations, convolutions, products, and minimi ims/maxi mums of independent
discrete random variables are included in this dissertation.

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALGORITHMS FOR OPERATIONS ON
PROBABILITY DISTRIBUTIONS

IN A COMPUTER ALGEBRA SYSTEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Since the beginning of the human race, man has striven to overcome obstacles and

simplify complexities tha t have faced him in all walks of life. Attempts to solve

difficult problems have produced new inventions throughout history. These inventions

have themselves lead to new discoveries and opened up new paths of learning. In

mathematics and statistics, the desire to eliminate m athem atical tedium and facilitate

exploration has lead to computer algebra systems, such as Maple and Mathematica.

These computer algebra systems allow students and researchers to perform more

of their work a t a conceptual level. The design of generic algorithms for tedious

computations allows modelers to push current modeling boundaries outward more

quickly. Problems once labeled as “intractable” can now be solved.

Upon understanding a certain problem-solving technique with a step-by-step so

lution process, it is natural to want to autom ate the process so as not to replicate the

same steps when returning to the same or similar problems. This is true for concepts

in many, if not all, disciplines of study. Probability theory, with its many theorems

(e.g., the sum of independent normal random variables is normally distributed) and

symbolic manipulations of random variables (e.g. the product of two random vari

ables), is a discipline in which automation of certain processes is highly practical,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functional, and efficient. The only effort to autom ate probability manipulations and

calculations tha t I have found to date is the M athematica-based mathStatica due to

Rose and Smith (2001). This is surprising when one considers the dozens of pack

ages written by computer algebra system users for other m athem atical disciplines,

such as abstract algebra, chaos theory, combinatorics, operations research, and real

analysis, just to name a few. (For examples of packages available in Maple, see

http://w w w .m apleapps .com.)

There are many existing statistical software packages, such as SPSS, SAS, and

S-Plus, tha t have numeric tools for statistical applications. In fact, most computer

algebra systems, such as Maple and Mathematica, contain built-in statistical libraries

with symbolic capabilities for use in statistical computations. Applied statistical

calculations (e.g., calculating the sample mean) are usually numeric manipulations

of data based on known formulas. According to the help menu for Maple Version 6 ,

its statistics package provides various descriptive statistical functions for the analysis

of statistical da ta (e.g., mean, median, standard deviation), the capability to create

various statistical plots (e.g., histogram, scatter plot, box plot), and various tools for

transforming lists of statistical data (e.g., sorting data, computing moving averages).

Also available are subpackages tha t provide

• random variate generation for certain distributions, such as the standard nor

mal, gamma, and beta distributions,

• numerical evaluation of certain statistical distributions [e.g., calculate Pr(X <

4.0) for a standard normal random variable X],

• one-way analysis of variance, and

• a tool for fitting curves to statistical data.

The procedures in the Maple s t a t s package and its subpackages perform numeric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mapleapps

4

computations and provide plots associated with data sets, as indicated in their de

scriptions. Although this is a valuable feature of the Maple software, these procedures

do not define random variables or perform operations on them. For example, although

the Maple statistical procedure skewness can compute the skewness of the data set

{1, 2, 3, 3, 6 , 7}, it cannot determine the skewness of a normal random variable with

mean fi = 2 and standard deviation a = 4. Since the Maple statistical procedures

cannot be applied to probability distribution functions, solving probability problems

with these procedures is impossible.

Further, Karian and Tanis (1999, preface) have developed procedures in Maple

to serve as a supplement for “statistical analysis and also explorations within a rich

m athem atical environment.” Karian and Tanis’s statistics supplement to Maple “con

sists of about 130 procedures written specifically to promote explorations of proba

bilistic and statistical concepts.” Their supplement includes procedures for calcu

lating descriptive statistics (e.g., Mean, Median, and Variance), generating random

samples from distributions, plotting (e.g., BoxWhisker, PlotEmpPDF, and StemLeaf),
working with regression and correlation problems, producing the probability density

function (PDF) and cumulative distribution function (CDF) of some distributions,

finding percentiles of some distributions, producing confidence intervals, perform

ing an analysis of variance, performing goodness-of-fit and nonparam etric tests (e.g.,

QQFit, ChiSquareFit, and KSFit), and com puting the convolution of two random

variables. While Karian and Tanis have focused their efforts on building a mainly

statistical package powered by Maple, there is a potential for a probability package

analogous to this statistical package for m anipulation of random variables.

The notion of probability software is different from the notion of applied statistical

software. An early work by Kendall (1992) m ade a distinction between packages th a t

are able to support investigations and those th a t aim to implement structure “to build

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in elements of theory as a preliminary to research investigations.” The latter is the

type of software th a t is not currently available, except for the forthcoming mathStat

ica, for processing procedures for random variables in probability theory. Although

the text by Hastings (2000), Introduction to Probability with Mathematica, also uses

M athem atica as a tool for studying probability theory, the book’s on-line description

(available at h ttp ://w w w .c rcp re ss .co m /u s) states tha t “its clever use of simula

tion to illustrate concepts and motivate im portant theorems gives it an important

and unique place in the library of probability theory.” The software package being

developed as part of this dissertation, referred to as “A Probability Programming

Language” (APPL), does much more than motivate theorems through simulation. It

is a random variable manipulator and is proposed to fill a technology gap that exists

in probability theory. Although A PPL will more than likely have some similarities

with the forthcoming mathStatica software, its approach to discrete and continuous

random variables is unique in data structure, design, and applications. From a pre

view of Rose and Sm ith’s materials at the Joint Statistical Meetings in August 2000,

the multivariate distribution abilities of their software, which are not currently a part

of APPL, were impressive. But the capabilities th a t APPL possesses (many of which

are new and will be presented in this dissertation) and the simplicity in its use and

data structure are quite distinct from what they have developed. A PPL’s overall

ability matches or surpasses much of what has currently been presented as parts of

mathStatica.

The APPL software was begun several years ago by my advisor, Dr. Larry Leemis,

and a former William &; Mary Ph.D. student and current Army Lieutenant Colonel,

Dr. Andrew Glen. Dr. Glen’s dissertation focused on writing algorithms in a com

puter algebra system for m anipulating continuous random variables. My research

involves developing similar algorithms, but for discrete random variables. Also, be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.crcpress.com/us

6

fore any algorithms for discrete random variables could be developed for APPL, a

data structure that complimented the data structure for continuous random variables

was created.

As can be attested to by Parlar’s book, Interactive Operations Research with

Maple: Methods and Models (Parlar, 2000), Vivaldi’s discrete mathematics text, Ex

perimental Mathematics vnth Maple (Vivaldi, 2001), Lopez’s book, Advanced Engi

neering Mathematics (Lopez, 2001), and Karian and Tanis’s 2nd edition of Probability

and Statistics: Explorations with Maple (Karian &c Tanis, 1999), other researchers

across the country have incorporated computer algebra systems into m athem atical

fields, especially those with statistical, probabilistic, and combinatorial applications.

By taking advantage of computer algebra systems, software that will derive functions,

as opposed to computing numbers, can be developed. Computer algebra systems can

be exploited to eliminate repetitive and tedious operations (e.g., calculating moments

or finding the distribution of order statistics) associated with random variables. By

defining data structures for random variables and writing algorithms for implement

ing common operations, more interesting and m athem atically intractable probability

problems can be solved, including those not attem pted in undergraduate statistics

courses because they were deemed too mechanically axduous. Instructors, students,

and researchers can take the time they save in m athem atical manipulation and apply

it to problem formulation and analysis.

This dissertation contains descriptions of some of the procedures comprising the

core of APPL. The APPL tree diagram in Figure 1.1 summarizes the existing proce

dures in APPL. My specific contributions to APPL include

• devising a da ta structure for representing the distributions of univariate discrete

random variables. The data structure accommodates distributions defined nu

merically, e.g., f (x) = 1 /4 fora: = 1 and f (x) = 3 /4 for x = 2, and formulaically,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

e.g., f (x) = x / 6 for x = 1,2, 3;

Functional Forms

APPL
Procedures

Procedures on One
Random Variable

Procedures on Two
Random Variables

Statistical Procedures

PDF
CDF
SF
HF
CHF
IDF
Transform
OrderStat/RangeStat
Truncate
ConvolutionllD
ProductIID
ExpectedValue
Convolution
Product
Minimum/Maximum
Mixture
MLE
MOM
MLENHPP
KSTest
QQPlot/PPPlot

Utilities

VerifyPDF
PlotDist
Menu
Display
CleanUp

Mean
Variance
Skewness
Kurtosis
MGF
CF

Histogram
PlotEmpCDF
PlotEmpSF
PlotEmpCIF
PlotEmpVsFittedCDF
PlotEmpVsFittedSF
PlotEmpVsFittedCIF

Figure 1 .1 : APPL tree procedures diagram.

• converting any functional representation of a discrete random variable into any

other functional representation using the devised d a ta structure, i.e., allow

ing conversion amongst the PDF, CDF, survivor function (SF), hazard func

tion (HF), cumulative hazard function (CHF), and inverse distribution function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

(IDF);

• providing straightforward instantiation of well-known discrete distributions, such

as the binomial, Poisson, or geometric, with either numeric or symbolic param

eters;

• providing straightforward instantiation of non-standard discrete distributions,

such as the “matching birthday” or “bingo cover” distribution;

• handling discrete distributions of all types, including those that may have never

been previously created or explored;

• calculating summary characteristics for discrete random variables, such as the

mean, variance, or moment generating function (mgf);

• plotting any of the six functional forms of a discrete distribution with fixed

parameters [e.g., the PDF of a binomial(6 , 0.4) random variable or the CDF of

a Zipf(5) random variable];

• developing algorithms that calculate the PD F of

* the r th order statistic from a sample of n independent and identically dis

tributed (iid) discrete random variables, where sampling can occur either

with or without replacement;

* the sum of independent discrete random variables, i.e., Z — X + Y;

* the product of independent discrete random variables, i.e., Z = X Y :

* a transformation of a discrete random variable, Y = g(X)]

* the minimum and maximum of independent discrete random variables, i.e.,

Z = min {A-, Y } and Z — max {A, y} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

• providing maximum likelihood estimation (MLE) for complete and right-censored

data for continuous and discrete distributions defined on a single interval of sup

port,-

• providing method of moments (MOM) estimation for discrete and continuous

distributions defined on a single interval of support;

• providing maximum likelihood estimation for non-homogeneous Poisson pro

cesses (NHPP);

• verifying a continuous random variable X has a legitimate PDF in the sense

th a t f (x) > 0 for all x and f (x) dx = 1 ;

• calculating the PDF of the range of a random sample of size n drawn from a

continuous population;

• calculating the PD F of the mixture of independent continuous random variables;

• calculating the PD F of a truncated continuous random variable;

• verifying whether a continuous distribution satisfies Benford’s law;

• providing goodness-of-fit testing by calculating the Kolmogorov-Smirnov test

statistic;

• providing plots for testing model adequacy, such as an empirical versus fitted

CDF plot, Q- Q plots, P - P plots, and empirical versus fitted cumulative inten

sity function plots for data th a t can be approximated by the power-law process;

• providing utilities for simplifying functional forms of distributions. For example,

the utility procedure CleanUp puts a random variable in its simplest form before

returning it to the user. If X ~ Normal(0, 1) and Y ~ Uniform(0, 1), for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

example, then the APPL procedure Product returns the PDF of V = X Y as

\ / 2 E i (l , l / 2 v 2)

where E i is an exponential integral defined for Re(x) > 0 by

M o) . . i - T W — - ~ < » < o
Q < v < oo,

fE i(n , x) = I
oc e_xt

dt,
tn

where n is a non-negative integer. The procedure CleanUp puts the identical

pieces of the PD F of V together and returns it as

. . . V 2 E i(l, l / 2 v 2)
f v (v) = -------- -—==------- — oo < v < oo;

4-y/7r

• deriving the distribution of the Kolmogorov-Smirnov test statistic for sampling

from an exponential population with the param eter estimated from data for

n = 1 , 2 ;

• supplementing the structured programming language th a t hosts the software,

in this case Maple, so th a t all of the above bullets may be used in mathematical

and computer programming in Maple.

In addition, I have updated APPL to be compatible with newer versions of Maple,

the latest being Version 6 .

The following chapters highlight my specific contributions to APPL. Chapter 2

outlines the data structure, functional forms, and core procedures for discrete distribu

tions. Chapter 3 presents algorithms for computing the PD F of order statistics drawn

from discrete parent populations, along with an implementation of the algorithms in

a computer algebra system. Some examples illustrate the utility of these algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Chapter 4 introduces algorithms for computing the PD F of the convolution and prod

uct of the PDFs of two independent discrete random variables. Chapter 5 introduces

algorithms for determining the distribution of the transform ation of a discrete random

variable. Chapter 6 presents algorithms for determining the PDF of the minimum

and maximum of random variables. Some of the algorithms in these chapters involved

implementing known results, while others involved the development of original algo

rithms. Chapter 7 overviews several APPL procedures concerning continuous random

variables that have either been extended or newly constructed as separate research

areas of my dissertation. Chapter 8 considers an application in APPL that identifies

certain survival distributions th a t satisfy Benford’s law. Chapter 9 overviews proce

dures w ritten in APPL specifically to perform input modeling. Chapter 10 illustrates

additional applications of the procedures th a t have been developed in APPL. Chapter

1 1 contains suggestions for future work.

1.1 N otation and Nom enclature

The following is a list of comments about the notation, names, abbreviations, and

APPL syntax th a t will be used throughout this dissertation:

• the abbreviations “PD F,” “CDF,” “SF,” “HF,” “CHF,” and “IDF” represent

probability density function f {x) , cumulative distribution function F(x), sur

vivor function S(x), hazard function h(x), cumulative hazard function H(x) ,

and inverse distribution function F~ l (x), respectively;

• the abbreviation “iid” denotes independent and identically distributed;

• parentheses on subscripts denote order statistics, e.g., the r th order statistic

associated with a random sample X±, X 2 , . - -, X n is denoted by X (Ty,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

• “Pr” abbreviates probability. When “Pr” is used in an expression such as

Pr(AT = x), it is read as “probability that X is equal to x;”

• “MLE” and “MOM” abbreviate maximum likelihood estim ation and method of

moments estimation, respectively;

• “NHPP” abbreviates non-homogeneous Poisson process;

• typewriter font is used for APPL statements. The Maple input prompt “>” is

included in the examples;

• in an APPL procedure, the use of square brackets around an argument indicates

th a t the argument is optional. For example, PlotDist (X, flow] , [high]) is

an APPL procedure th a t plots the distribution of X from the value low to

the value high. If these two arguments are not included in the procedure call,

Maple autom atically determines the plot range;

• “MUG” refers to the Maple Users’ Group, which is an on-line Maple newsgroup

th a t provides suggestions and help for Maple related issues;

• “log” is the natural logarithm (log base e);

• in Maple plots, © represents a filled (or solid) circle;

• for clarity, all sentence punctuation has been omitted from APPL statements;

• the pronoun “we” refers to those who have developed APPL.

1.2 Introductory Examples

I close the introduction with three examples th a t display three different APPL proce

dures (OrderStat, ConvolutionllD, and MOM) presented in Figure 1.1 and discussed

in this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

E x a m p le 1 . 1 . (Hogg & Craig, 1995, page 230) A fair die is cast eight times. Find

the PD F of the smallest of the eight numbers obtained, A b

so lu t io n : To compute the numeric PD F by hand, we calculate the value

an-D'w=0 \ / \ /

for x = 1,2, . . . , 6 . (Maple incorrectly calculates 0° as 1. While m athematically

incorrect, it allows the proper calculation.) To determine the probability th a t the

first order statistic assumes the value x = 4, for example, we calculate

f x w (4)
w =0

_ 1

5 0 0 ‘" 0 '
1679616

6305
1679616

= 0.0038.

+ 104976 + 7____ | 7 | 35 |____7___ |___ 7___ i 4
26244 ' 52488 Kc;« 1 ' ~ r104976 6561 6561 1 6561

Similar calculations for x = 1 , 2 , . . . , 6 yield the PD F of the first order statistic as

/*(!) 0*0 = <

1288991
1679616

36121
186624

58975
1679616

6305
1679616

85
559872

1
1679616

X = 1

X = 2

x = 3

x = 4

x — 5

x = 6 .

A uniform discrete random variable X with minimum support a and maximum

support 6 is a pre-defined random variable in APPL. Thus, we can obtain the above

PD F for the first order statistic, Ap), with the statem ents

> X := UniformDiscreteRVCl, 6);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

> OrderStat(X, 8 , 1); □

In the next example, APPL is able to find the convolution of a large num ber (150)

of discrete random variables. While not impossible, computing the actual distribution

by hand is tremendously tedious and time-consuming.

E x a m p le 1 .2 . (Thompson, 2000, page 54) Let 5 = X x -F X 2 4 f- X 150, where

the X{ s are independent, Pr(ATi = —1) = Pr(ATi = 0) = Pr(AT,- = 1) = 1/3, i -

1 . 2 , . . . , 150. Compute Pr(S = 5).

S o lu tio n : Since the mass values of the parent populations are adjacent, P r(5 = 5)

can be computed using a combinatorics approach:

w - « . e e e O (!) ' (!) ' (;) '
{ (P ,« J .r) |p + 9 + r= 1 5 0 ,

0 < p < 150,
0 ? ii? 1 S 0 ,
0 < r < 1 5 0 ,
- P + r = 5>

or equivalently

P r (s = 5) = y ' (150) (i) 150,
^ ; V p , 1 4 5 - 2 p , S + p / V 3 ; ’

yielding the result

p (S _ _ 160709987007649212790999852367465829596098558279031212787052332840770
r(- ~ ’ ~ 4567759074507740406477787437675267212178680251724974985372646979033929’

which is approximately 0.03518.

The APPL statem ents

> X := [[1 / 3, 1 / 3, 1 / 3], [-1, 0, 1], ["Discrete", "PDF"]];
> S := ConvolutionllDCX, 150);
> PDFCS, 5);

yield the exact PD F for S. The statem ent PDFCS, 5) returns the same value com

puted by the combinatorics method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

The true utility of APPL is not dem onstrated in this particular example because

of the adjacent mass values of the parent populations. The APPL approach allows

for unequal mass values and unequally spaced support values. Also, more than three

mass values can be used in the APPL approach. □

E x a m p le 1.3. (Larsen &c Marx, 2001, page 258) During the latter part of the

nineteenth century, Prussian officials gathered information on the hazards tha t horses

posed to cavalry soldiers. A total of 10 cavalry corps were monitored over a period of

20 years (Bortkiewicz, 1898). The number of fatalities due to kicks, X , was recorded

for each year and each corps. Table 1.1 shows the empirical distribution of X for

these 2 0 0 “corps-years.”

Table 1 .1 : Observed horse kick fatalities.
Number of Deaths

X

Observed Number of Corps-Years
in Which x Fatalities Occurred

0 109
1 65
2 2 2

3 3
4 1

2 0 0

Among several other phenomena th a t Bortkiewicz successfully “fit” with the Pois-

son model, the one best remembered is the Prussian cavalry d a ta described above.

The Poisson distribution has PDF

f x(x) = ^ - f - x = 0 , 1 , 2 , . . . ; A > 0 .
x!

Find the method of moments estimate for the param eter A.

Solution: The first APPL statement defines X as a Poisson random variable with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

mean A. The list H o rs e K ic k F a ta litie s is a pre-defined list in APPL containing

the horse kick data in Table 1.1. The statement M0M(X, H o rse K ic k F a ta lit ie s ,

[lam bda]) computes the m ethod of moments estim ate for the parameter A.

> X := PoissonRV(lambda);
> M0M(X, HorseKickFatalities, [lambda]);

The resulting estimate for the parameter is A = ^ , which is the method of mo

ments estim ator 0.61 fatalities per corps-year. Figure 1.2 displays a plot of the actual

and estimated PDF for th e H o rse K ic k F a ta litie s data. □

0.5-

0.4

0.3

PDF

0.2

0 . 1 -

Figure 1.2: Actual and estim ated PD F for the H o rse K ic k F a ta lit ie s data. The
solid lines represent the PD F values of the Poisson (61/100) random variable
a t x = 0 ,1 , . . . ,4 . The dashed lines represent the actual PD F values of the
H o rse K ic k F a ta litie s d a ta a t x = 0 ,1 , . . . , 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Data Structure

APPL was originally written for continuous random variables and algorithmic pro

cedures th a t applied to them. Before adding discrete random variable capabilities, a

data structure th a t paralleled the continuous case needed to be constructed for dis

crete distributions. The data structure for a continuous random variable with PDF

/ (x) is a Maple list consisting of three sublists with the following general format:

[[/(*)], [support], ["Continuous", "XXX"]],

where XXX is either PDF, CDF, SF, HF, CHF, or IDF. The acronyms represent the following

for a random variable X , where extensions for discrete random variables have been

included:

• probability density function (PDF). For discrete random variables, the proba

bility mass function f{pc) = Pr(A” = x) will also be referred to as a probability

density function;

• cumulative distribution function (CDF) F(x) = J200f (w) d w for a continuous

random variable or F i x) = ^2w<xf (w) for a discrete random variable;

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

• survivor function (SF) S (x) = f { w) dw for a continuous random variable or

S(.x) = E ® >i f i w) f°r a discrete random variable;

• hazard function (HF) h(x) = for a continuous or discrete random variable;

• cumulative hazard function (CHF) H(x) = p_c h(w)dw for a continuous ran

dom variable or H(x) = —log(S(x)) for a discrete random variable; and

• inverse distribution function (IDF) F ~ l (x) for a continuous or discrete random

variable.

The common data structure used in this software is referred to as the “list-of-

sublists.” All APPL random variables are input in a list that contains three sub

lists, each with a specific purpose. The first sublist contains either a formula or a

numeric list th a t defines the functional representation of the distribution. For ex

ample, the PD F representation of the Poisson distribution with mean A and support

x = 0 , 1, 2 , . . . has as its first sublist

\ xe~x
x - > ---- — .

x\

The CDF representation of the geometric (^) distribution with support x = 1 , 2 , . . . ,

has as its first sublist

The SF representation (in a numeric Maple list) of the probability of obtaining an x

or higher (where x = 1, 2 , . . . 6) on single roll of a fair 6 -sided die is

‘ 5 2 1 1 1'
’ 6 ’ 3 ’ 2 ’ 3 ’ 6 ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Since the third sublist is less complicated than the second, the third sublist will

representations is used in the first sublist. Again, the choices for this second element

are PDF, CDF, SF, HF, CHF, or IDF. For the Poisson, geometric, and uniform discrete dis

tributions described in the previous paragraphs, their third sublists are ["Discrete",
"PDF"], ["Discrete", "CDF"], and ["Discrete", "SF"], respectively.

The second sublist contains the random variable’s support. For a continuous

random variable, this second sublist contains an ordered list of real numbers th a t

delineate the end points of the intervals for the functions in the first sublist. The end

point of each interval is automatically the start point of the subsequent interval. The

triangular(l, 2, 3) CDF, for example, is defined by a piecewise function in the first

sublist, specifically [x —>• \ x 2 — x 4 - —>■ —%x2 + 3x — |] . Its second sublist, [1 , 2,

3], defines the support interval for each piece of the function. Thus the CDF is

Putting the three sublists together, the following APPL statem ent defines a triangu

lar (1, 2, 3) random variable AT as a list-of-sublists:

> X := [[x -> x ~ 2 / 2 - X + 1 / 2 , x - > - x “ 2 / 2 + 3 * x - 7 / 2] ,

be examined next. The third sublist indicates the distribution form of the function

in the first sublist. The first element of the th ird sublist is either the Maple string

"Continuous" for a continuous random variable or "D isc re te " for a discrete random

variable. The second element of the third sublist indicates which of the six functional

0 x < 1

F{x) = I
2 < x < 3

1 < x < 2

1 x > 3.
V

Cl. 2, 3], ["Continuous", "CDF"]]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Standard continuous and discrete distributions, such as the normal, binomial, and

Poisson distributions, are pre-defined in APPL.

A discrete random variable’s support can be input in one of several different

formats. This variation in formats presents greater difficulty th an in the continuous

case for determining a structure for the second sublist. For example, the Poisson

distribution with PDF f (x) = ^ r ~ for x = 0 ,1 ,2 , . . . has as its support the set

of nonnegative integers. This support has a pattern to it; the first value of x at

which the PD F is defined is zero and the rest of the support consists of subsequent

integers. Many discrete random variables do not have a patterned support. When

designing the second sublist structure for discrete random variables, we first had to

distinguish between random variables th a t had some type of p a ttern to their support

versus those th a t did not. For example, let A be a binomial random variable with

param eters n = 5 and p = 0.2, and PD F

The support of the random variable X consists of adjacent integers. For random

variables whose support Q is incremented by one, only the first and last values of the

support are needed to generate the entire support list. This support case is called

the Dot case, since we can write it in Maple’s range (also called type ’..’) format:

x = 0 ,1 , . . . , 5.

Let Y be the random variable with PD F

r

0 . 2 y = 1

f (y) = 0.5

0.3 y = 1 1 .

min{f2} .. max{f2}. Thus, the second sublist for the random variable X is input as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Random variables with supports tha t display no pattern , such as the support of

Y , must be entered as a Maple list, where the list values are separated by commas.

This support case is called the NoDot case. The support values listed in sublist two

correspond to the distribution’s function values in the first sublist. As an example,

we would write the first and second sublists of Y as [0 . 2 , 0 .5 , 0.3] and [1 , 7 / 2 ,

1 1], respectively.

After distinguishing between the Dot and NoDot support cases, there are subcases

of these general two cases to consider. First, in the NoDot case, the function in the

first sublist can be written as a formula or a fist of numeric elements. The random

variable Y with PD F values [0 . 2 , 0 .5 , 0.3] is a Maple list of numeric elements

(separated by commas). On the other hand, the random variable X with PDF

/(*) = ^ re = 1,3, 7,16,

is a valid discrete probability mass function whose PD F can be written as a formula in

Maple’s function notation as x —> x/27. Its first two sublists axe input in Maple as [x
-> x / 27] and [1 , 3, 7, 16]. APPL allows the user to enter a discrete random variable

represented in the NoDot case in either format, numeric or formulaic. Converting

sublists one and two to a “standard” NoDot format (where the first sublist is not

w ritten as a formula) is handled in a procedure called Convert (see Section 2.1.1).

If we enter X as displayed above and apply the Convert procedure to X with the

A PPL statements

> X := [[x -> x / 27], Cl, 3 , 7 , 16], [" D isc re te " , "PDF"]];
> X : = Convert (X) ;

X is returned as [[^ , | , ^ , | |] , [1,3,7,16], [“Discrete” , “PD F”]]. The “standard”

N oD ot and Dot formats, along with the Convert procedure, are discussed in moie

detail in Section 2 .1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

The Dot case also has two general subcases—either the random variable has fi

nite or infinite support. Let Q represent the support of a random variable X . The

“standard” Dot format has the general form:

[min{fi} .. max{f2}, Support incremented by k , Support transformed by g{x)\,

where the default value of k (if not entered) is 1 and the default value of g{x) (if

not entered) is the identity function. If X has infinite support, it is understood that

max{fi} = oo.

To introduce the different variations in format, let X x ~ geometric(1/4) with PDF

/■*.(*) = i (!) 1 = 1, 2,

Let X 2 = 2Y , where Y ~ binomial(5, 0.2). The PDF of X 2 is

/* , M = ((0.2r'2 (0.8)5-*'2 1 = 0 ,2 ,4 , 10.

Let X z be a discrete random variable with PDF

/at3 (z) = x = 1,4,9,16,

and let X 4 be a discrete random variable with PDF

f x 4 (x) = x = 9, 25,49.

The support of each of these random variables has a pattern th a t can be accounted

for in the Dot data structure. AVs support is incremented by ones, while X 2’s

support is incremented by twos. The support of X 3 is not only incremented by

ones, but also is transformed by the function g(x) = x 2. Going a step further,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

X ^ s support is incremented by twos starting with x = 3 and then transformed by

g{x) = x 2. In each of these cases, the minimum and maximum values of the support,

the increment of the support, and the type of transformation applied to the support

is pertinent information. Thus, in the Dot case, the second sublist will consist of

either 1 , 2 , or 3 elements separated by commas containing this information. This

general capability has been included in the data structure to accommodate discrete

algorithmic procedures, such as Transform.

For the random variables X i, X2, X 3, and X4, their supports are input in the

second sublist in the APPL list-of-sublists as

X x : [1 .. oo]

X 2 : [0 .. 10, 2]

X 3 : [1 .. 4, x —> x 2]

X \ : [3 .. 7, 2, x —> x 2].

In summary, if the random variable X is discrete, its support will match one of

the cases displayed in Table 2.1. An example of the APPL list-of-sublists format of

a random variable from each individual category fohows.

1. NoDot SUPPORT FORMAT: The random variable’s support 12 is a Maple numeric

list of elements.

(a) N u m e r i c P D F : The random variable’s PDF is a Maple numeric list of

elements.

E x am p le 2.1. Let X be the random variable with PD F

0 . 6 x = 2.5

II 0.3 x = 3

0 . 1 x = 15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Table 2.1: Discrete random variable support categories.

Support Q Cases Subcases Examples

NoDot Numeric PDF 2 . 1

S7 — [2-1.7 2̂ 27 - - - 7 2 n̂] Formulaic PDF 2 . 2

k = 1
g(x) = x 2.3

Finite Support
g(x) ^ x 2.4

k # 1
g(x) = x 2.5

Dot g{x) ^ x 2 . 6

Q. = [min{f2} .. max{fi},
k — 1

II H 2.7

Incremented by k,
Infinite Support

g{x) / x 2 . 8

Transformed by <7(2;)]
k 7^ 1

g(x) = x 2.9

g{x) ^ x 2 . 1 0

This random variable X is input in APPL as

> X := [[0.6, 0.3, 0.1], [2.5, 3, 15], ["Discrete", "PDF"]];

(b) F o r m u l a i c P D F : T h e r a n d o m v a r ia b le ’s PDF is fo rm u la ic .

E xam p le 2.2. Let X be the random variable with PDF f (x) = x /8 for

x = 1 ,3 ,4 . This random variable X is input in APPL as

> X := [[x -> x / 8], [1, 3, 4] , ["Discrete", "PDF"]];

2. Dot s u p p o r t f o r m a t : The random variable’s support Q is of Maple type

i.e., min{fi} .. max{fi}.

(a) F i n i t e s u p p o r t : The random variable’s support is finite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

i. The random variable’s support is incremented by k = 1 and trans

formed by the identity function, i.e., g(x) = x for all x.

Exam ple 2.3. Let X be a Benford random variable with PDF

f (x) = log10 (1 + 1/x) for x = 1, 2 , . . . , 9. The Benford random vari

able is input in APPL as

> X := [[x -> log [10] (1 + 1 / x)], [1 . . 9] ,
["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k = 1 and trans

formed by a function other than the identity function, i.e., g(x) ^ x

for some or all x.

Exam ple 2.4. Let X be a random variable with PDF f {x) = x/216

for x = 27,64,125. This random variable is input in APPL as

> X := [[x -> x / 216] , [3 . . 5, x -> x ~ 3] ,
["Discrete", "PDF"]];

iii. The random variable’s support is incremented by k ^ 1 and trans

formed by g(x) = x.

E xam ple 2.5. Let Y ~ binomial(5, p), and let X = 2Y. The random

variable X is input in APPL as

> X := [[x -> 120 * p * (x / 2) * (1 - p) ~ (5 - x / 2) /
(C5 - x / 2) * (x / 2)!)],
[0 .. 10, 2], ["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k ^ 1 and trans

formed by g[x) x.

Exam ple 2.6. Let AT be a random variable with PDF f (x) = 1600/489r

for x = 4,25,64. The random variable is input in APPL as

> X := [[x -> (1600 / 489) / x] , [2 . . 8, 3 , x -> x “ 2] ,
["Discrete", "PDF"]];

(b) In fin ite su ppo rt : The random variable’s support is infinite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

i. The random variable’s support is incremented by k = 1 and trans

formed by g(x) = x.

E xam ple 2.7. Let X be a negative binomial random variable with

param eters r — 3 and p = 1/3. The simplified PDF of X is

This random variable is input in APPL as

> X := [[x -> (CCx - 2) * Cx - 1)) / 16) * (2 / 3) * x],
[3 .. infinity], ["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k = 1 and trans

formed by g(x) 7 ̂x.

E xam ple 2.8. Let X be the square of a geometric(^) random vari

able; i.e., f (x) = for x = 1,4, 9 , This random variable is input

in APPL as

> X := [[x -> 2 (-sqrt(x))], [1 .. infinity, x -> x ~ 2] ,

iii. The random variable’s support is incremented by k ^ 1 and trans

formed by g(x) = x.

E xam p le 2.9. Let Y ~ geom etric(|). Let X = 2Y with PDF

in APPL as

> X := [[x -> (1 / 2) “ (x / 2)] , [2 .. infinity, 2],
["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k ^ 1 and trans

formed by g(x) ^ x.

E x a m p le 2.10 Let Z ~ geom etric(|), Y = 2Z, and X = Y 2. The

PD F of X is f (x) = for x = 4,16,36,— This random

x = 3 ,4 ,----

["Discrete", "PDF"]];

f (x) = for x = 2 ,4 ,6 ,— This random variable is input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable is input in APPL as

> X := [[x -> (1 / 2) (sqrt(x) / 2)],
[2 .. infinity, 2, x -> x ~ 2] ,
["Discrete", "PDF"]];

2.1 Standard Discrete Data Structure Formats

Before an operation is performed on a discrete random variable inside an APPL

procedure, the random variable is first converted to its standard form at inside that

procedure. As discussed in the preceding section, there is a standard discrete data

structure format for both the NoDot and Dot cases. The conversion is necessary

since every APPL procedure expects to receive and operate on random variables in

these standard formats.

Let AT, for example, be the random variable discussed earlier in this chapter with

PD F

f (x) = ^ * = 1,3,7,16.

Suppose the random variable X is input in APPL as

> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];

When an APPL procedure, such as Mean, receives the random variable X as an argu

ment, it first determines if X has a Dot or NoDot support format. Since the support

= [1, 3, 7, 16] has a NoDot support format, then the procedure’s formula for com

puting the mean expects that it is receiving the random variable X in its converted

format, which is

J l I -L Hi
27’ 9 ’ 27’ 27

, [1,3,7,16], [“Discrete” , “PD F”]

In this format, the mean of a random variable with mass values x i ,X 2 , . . . with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

NoDot support form at is computed as

l«l
E[X] = £ > - / (* ,)

i - 1

= I>(2][i].X[l][i]

" l ' h + 3 \ + 7 ' h + 1 6 ' ¥ i
35

where X[2] [i] is the ith element in sublist two (X ’s support) and X [l] [i] is the zth

element in sublist one (A ’s probability values).

Again, each A PPL procedure operates on random variables only in the standard

NoDot and Dot formats. Expecting arguments in a pre-defined format allows algo

rithms to be developed th a t exploit these formats. W ithout these standard formats,

an APPL procedure would be forced to diagnose the exact form of each random

variable it was operating on before making any computations. The computations

required in a procedure would then depend on the unique structure of each random

variable, and as indicated in Table 2.1, there are ten acceptable formats for a discrete

random variable in APPL. The Convert procedure provides each APPL procedure

with a standard structural format for a discrete random variable.

Some random variables with finite support, such as the random variable Y with

PDF

f (y) = YE s/ = 3 ’ 5 ’ 7 ’

can be input in A PPL in several different formats, which include both a NoDot and

Dot format. The APPL statements

> Y := [[1 / 5 , 1 / 3, 7 / 15], [3 , 5, 7] , ["D iscrete", "PDF"]];
> Y : = [[y -> y / 15], [3, 5, 7] , ["D iscrete", "PDF"]];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

> Y := [[y -> y / 15], [3 .. 7, 2], ["Discrete", "PDF"]];

define the same random variable Y in A PPL. The first two lines define Y in its

NoDot formats, while the th ird line displays Y in one possible Dot format. Although

a different format of a certain algorithm or formula may be applied to Y in any given

procedure, the outcome will be the same. Conversely, a discrete random variable with

countably infinite support can only be input using a Dot support format. Since it is

impossible to physically list each and every element of a countably infinite set, the

NoDot support form at for this type of random variable cannot be used.

2 .1 .1 C onvert

The Convert procedure acts on discrete random variables in both the Dot and NoDot

cases. It converts a discrete random variable X with a

• Dot support form at to the standard APPL Dot support format. If Q is the

support of X , then the standard Dot support second sublist format is

[min{f2} .. m ax{fi}, Support incremented by k, Support transformed by g(x)\.

• NoDot support form at to the standard APPL NoDot support form at with

corresponding PD F. If f (x) is the PD F and the support is x = xi , x2, . . . , rrn,

then the standard NoD ot support second sublist format and corresponding PDF

first sublist are

[/(* i) , f i x 2) , . . . , / (i„)] , [a?!, x 2, . . . , x n}.

The Convert procedure requires one argument, a discrete random variable X in

its list-of-sublists format. The procedure does the following:

1. Converts X to its PD F representation (if not already in tha t representation)

using the A PPL PDF procedure which is described later in this chapter;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

2 . Checks to see if the random variable X is in the discrete Dot case. It does this

by checking whether the first element in the second sublist is of Maple type

“range.” An expression of type range (also called type has two operands,

the left-hand side expression and the right-hand side expression. For example,

a geometric(1/2) random variable defined in APPL has the structure

[[x -> 1/2X], [1 .. oo], [“Discrete” , “PDF”]].

The first element in the second sublist, 1 .. oo, is of type range, where the

left-hand side expression is 1 and the right-hand side expression is oo.

3. If X with support Q is in the Dot case, then its support sublist contains either

one, two, or three elements. The structure of the support sublist is either:

• [min{f2} ..m ax{0}]. This support relays the following information about

the support of the random variable X :

— The first value of its support is m in{fi},

— The last value of its support is max{f2},

— The support values are incremented by k = 1 , and

— The transform ation on the support values is g{x) = x.

A random variable with this support form at is converted to the standard

Dot format as

[min{fi} .. max{D}, 1 , x —» x\.

• [min{f2} .. max{fl}, g(x)], where g(x) is some function other than the iden

tity function, such as g(x) = x 2. This support relays the following infor

mation about the support of the random variable X :

— The first value of its support is m in{fi},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

— The last value of its support is max{Q},

— The support values are incremented by k = 1, and

— The transformation on the support values is the function g{x), where

g{x) tL x .

A random variable with th is support format is converted to the standard

Dot format as

[min{Q} .. max{fl}, 1 , g{x)].

• [min{f2} ..max{Q}, k], where A; is a positive real number, most likely an

integer. This support relays the following information about the support

of the random variable X :

— The first value of its support is min{fi},

— The last value of its support is max{fl},

— The support values are incremented by k, where k ^ 1, and

— The transformation on the support values is g(x) = x.

A random variable with this support format is converted to the standard

Dot format as

[min{f2} .. max{fi}, A:, x —> x\.

• [min{f2} .. max{f2}, k , <7(2 :)], where A; is a positive real number, most likely

an integer, and g(x) is some function other than g(x) = x. This support

relays the following information about the support of the random variable

X :

— The first value of its support is min{fi},

— The last value of its support is max{f2},

— The support values are incremented by A;, where A: ^ 1, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

— The transformation on the support values is g(x), where g(x) ^ x.

A random variable with this support format is already in the standard Dot

format.

4. If A is in the NoDot case, then determine if its PDF in the first sublist contains

a list of elements or a formula.

• If the PDF is a Maple list of elements, then the random variable is already

in the standard NoDot format. For example, the A PPL random variable

[[0.5,0.3, 0.2], [1,14, 37], [“Discrete”, “PD F”]]

is already in the standard NoDot format.

• If the PD F is a formula, which means that the element in the first sublist

is of type “procedure,” the elements in the second sublist are substituted

into the formula in the first sublist to obtain the probability values that

correspond to the support values. For example, returning to the random

variable X with PD F f (x) = x /2 1 for x = 1 , 3, 7, and 16, the support

values [1, 3, 7, 16] are substituted into the formula x —» x /2 1 to determine

the corresponding probability values [1/27, 1/9, 7/27, 16/27]. Symbolic

(e.g., [a, b, c]) or infinite support values are not perm itted in the NoDot

w ith formulaic PDF case.

5. The converted discrete random variable is returned (to the procedure tha t is

using it) in its standard Dot or NoDot format.

Two examples of the Convert procedure for the NoDot and Dot formats are in

cluded for further clarification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

E x a m p le 2 . 1 1 . Use the APPL Convert procedure to convert a Zipf random variable

with param eter a = 1 to the standard Dot format.

S o lu tio n : The APPL statem ents below define X as the desired Zipf random variable

and convert it to its standard Dot format.

> X := [[x -> 6 / (P i * x) ~ 2] , Cl •• i n f i n i t y] , ["D isc re te " , "PDF"]];
> C onvert(X);

The converted Zipf random variable in the standard APPL Dot format is

6x
(irx)2 _

, [1.. oo, 1 , x —»■ x], [“Discrete” , “PD F”]
□

E x a m p le 2 .1 2 . Use the APPL Convert procedure to convert a Benford random

variable to the standard N oD ot format.

Solution: The APPL statem ents below define X as a Benford random variable and

convert it to its standard NoD ot format.

> X := CCx -> log[10] (1 + 1 / x)], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[" D is c re te " , "PDF"]];

> C onvert(X);

The converted Benford random variable in the standard A PPL NoDot format is

' ln(2) Mf) ln(f) Mf) Ml) Mg) Ml) Ml) Mtt)1 r
E W Mu>)’ Mu>)’Mu>)’ E oop MU>)’M % ’MW)’ M ^ J ’C1’2’3’4’5’6’7’8-9! ' - p o t "

□

2.2 The Six Functional Representations

For this subsection and the rest of Chapter 2, let X be a discrete random variable with

support Q = { r i , X2 -,. . .}• W here further explanation and examples are necessary, X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

is a random variable with PDF f (x) = x /6 for x = 1,2, 3. Its formulaic CDF, SF,

HF, CHF, and IDF are defined in Table 2.2.

Table 2.2: The six functional representations of the random variable X with PDF
f (x) = x /6 for x = 1 , 2, 3. The IDF is defined for x = 1 / 6 , 1 / 2 , and 1 .

PDF CDF SF

F{x) = S(x) =

2x x 4-12h(x) = H{x) = - log — — -P - \ / l -b 48xx -f 12—x-

HF CHF IDF

The m atrix in Table 2.3 shows how the PDF, CDF, SF, HF, and CHF distribution

representations (given in the columns) can be found if one of the representations (given

by the rows) is known. For example, if the CDF of a distribution is given, then its

CHF can be determined for z,- G fi by

H{x/) = - lo g (S (x j)) = log(l - F f e - i)) ,

where log is the natural logarithm (log base e) and F (x 0) = 0. Some facts used to

compute the entries in the m atrix for X{ 6 Q are (Leemis, 1995, pages 56-57, 73):

• K x i) — (Definition)o (XiJ

• IT(xi) = — log S(xj); (Definition)

• S f a) = (1 — h(xj)); and
j \ X j < X i

• H { X j) = - 5 Z “ h { x j)) -
j [X j < X i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Table 2.3: A 5 x 5 transition matrix for determining / (x z-), F(x,-), S(Xj), /i(x,), or
H (x i) from any of the others for discrete distributions, where F (x 0) = 0, h(x0) = 0,
and when |fi| is finite, S(x|n|+i) = 0 and H (x]ni+i) = 0.

/(*i) F{*i) S(xi) h(xi) H(xi)

/(*) ■ X f (*j)
jlxj<Xi

X
j\Xj>X;

/(*i)
Ujir, >1; / (XJ) - ‘° g (X / ^)]

F(x) Fi xi) - F i x i - i) 1 - F [x i - i)
F{ x i) - F(x i - l)

l - F (x i - i)
-log(l - F(x,-_i))

Six) S{Xi) S(Xj-|_i) 1 — 5(n+i)
S(x i) — S(xi + 1)

S(xf) -IogS(xj)

h(x)
j\Xj<Xi

x - n n - ^)] I I I 1 ~ a(xj)1
jlXj<X{

-X to r ti- fc l- j))

H(x) 1 — e~ H(Xi+i) p - Hi n)
e—W(x.)_e-H(ri+1)

e-H(xi)

Two specific examples of how to derive one distribution representation when an

other is known (using the 5 x 5 matrix in Table 2.3) follow.

E xam ple 2.13. Given h(x) = 1/4 for x = 1 ,2 , . . . , find / (x f) for x,- = i, i € Z+.

Solution: Using the (h(x), /(x ,)) matrix element in Table 2.3,

f (x i) = h(i i) n t 1 - h (x j)] = ^ n
j \ X j < X i j = 1

which is a geometric distribution with p = 1/4. The geometric distribution is the only

-K!
i

Xi = i; i € Z +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

discrete distribution, with a constant hazard function (and memoryless property). □

E xam ple 2.14. Determine the SF (in numeric form) corresponding to the PDF

shown in Figure 2.1.

0.3

0.25

0.2

f(x)

0.15

0.1

0.05 -

1 2 3 x 4 5 6 7

Figure 2.1: PDF for Example 2.14.

Solu tion: The numeric form of the PD F in Figure 2.1 is

/(*) = <

0.15 X\ = 1

0.3 z 2 = 2.5

0 . 1 CO II 03

0.25 II

0 . 2 X5 = 6.5

Using the (f (x), S(xi)) m atrix element in Table 2.3,

S(X 0 = £ / (! ,) = 1, S(x2) = £ / (* ,) = 0.85,
j = 1 3 = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I 37
!

5 5

s (x z) = ^ 2 f (xj) = °-55> 5 ’(x4) = = 0.45, S (x5) = 0.2. □
j - 3 j = 4

The algorithms for the PDF, CDF, SF, HF, and CHF procedures are similar and

utilize the formulas in Table 2.2. When changing the “current representation” of a

random variable to a “new representation,” the algorithm uses the Table 2.2 matrix

element (“current representation” , “new representation”). Section 2.2.1 outlines the

algorithm for just the PDF procedure. Section 2.2.2 briefly discusses some of the

differences encountered in the algorithms for the other procedures, including IDF.

2 .2 .1 PDF

Let Q be the support of the discrete random variable X . The PD F of X is defined

as f (x) = P r(X = x) for all x G fl. The APPL PDF(X, [x]) procedure has two

arguments—the random variable X and an optional real number argument x. (An

optional argument in a procedure is denoted by square brackets, i.e., [x].) The

PDF(X, [x]) procedure returns either the

1 . PD F of the random variable X in its APPL list-of-sublists format if only one
argument is provided in the procedure call; i.e., PDF(X),

2. probability value Pr(X = x) if both arguments are provided in the procedure
call; i.e., PDF(X, x).

For explanation purposes, let X be the random variable with PD F / (x) = x / 6 for

x = 1 ,2 ,3 whose PDF, CDF, SF, HF, CHF, and IDF are in Table 2.2. If we assign

the variable FX to the CDF of X (in its Dot format), then the statem ent PDF(FX)
returns the PD F of X in it APPL list-of-sublists format. The lines

> FX := [[x -> (x “ 2 + x) / 12] , [1 . . 3] , [" D isc re te " , "CDF"]];
> PDF(FX);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

produce the PDF

[jx -► |] , [1.. 3], [“Discrete” , “PD F”]

Conversely, the statem ents

> FX := [[x -> (x “ 2 + x) / 12] , [1 . . 3] , ["Discrete", "CDF"]];
> PDF(FX, 2);

compute P r(X = 2), which is 1/3.

The PDF algorithm first checks a discrete random variable X to determine if it

has a Dot or NoDot support format. Although two distinct branches in the algorithm

have been constructed to process random variables of each format separately, the basic

functional relationships displayed in Table 2.3 are used in each branch. W hether X

has a Dot or NoD ot support format, one of the following bullets will be executed

depending on AT’s distribution representation (and support format in the case of IDF).

W ithout loss of generality, we can assume Q = {x l5 x2, - - where x L < x 2 < - • • -

• If X has a PD F representation, do nothing to X .

• If X has a CDF representation, determine the PD F of X with the (F(x), f { x i))

matrix element in Table 2.3:

f{xi) = F(xi) - F{xi-1) x{ e D,

where £ = 1 ,2 , . . . and F{xo) = 0.

• If X has a SF representation, determine the PD F of X with the (5(x), f{xi))

matrix element in Table 2.3:

f ip'i) = X{ £ 12,

where £ = 1 , 2 , . . . and <S(x|n|+i) = 0 when |f2 | is finite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

If X has a HF representation, determine the PDF of X with the (/i(x), /(x ,))

m atrix element in Table 2.3:

f (x i) = h{xi) [l - h(xj)\ Xi G Q.
j \ X j < X i

where i = 1 , 2 , . . . and h(x0) = 0 .

If X has a CHF representation, determine the PDF of X with the (H {x), /(x ,))

m atrix element in Table 2.3:

/(x,-) = Xi G f2,

where i = 1 , 2 , . . . and ff(x|n|+x) s 0 when |f2 | is finite.

If X has an IDF representation with Dot support, then

1. If there is a ceiling term as part of the inverse function (discussed in more

detail in Section 2.2.2), extract the expression under the ceiling in order

to solve F ~l (x) = y. Referring back to X with PDF /(x) = x / 6 for

x = 1,2,3, the IDF of X (provided in Table 2.2) is

F ~ \ x) = ■ \ + \ y / r + m

for x = 1/6, 1 / 2 , 1 . Rewrite F x(x) as

1 1

F H *) = + 2 V^1 + 4 8 a :

This removal can be done in Maple using the eval command (McCarron,

2001).

2. Solve the equation

F _ 1 (x) = y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

for x, yielding F(y) . For our particular X , solving — | -f- |VT+~48z = y

for x yields F (x) = replacing y with x.

3. Find the appropriate inverse. If there is more than one solution to the

equation F ~ l (x) = y, determine the correct inverse by testing which so

lution F(x) correctly calculates i 7,(i7"_1 (s)) = s for s equal to one of the

following. The choices for s are considered in the bulleted order.

• s = 1 if min{Q} = — oo and max{0 } = oo;

• s = max{Sl}, if max{fl} ^ oo;

• s = min{f2}, if min{J2 } ^ — oo;
 min{f2} -I- max{0 }

• s - 2 '

4. Convert the CDF of X to its PDF representation by the using the {F(x),

f{x i)) m atrix element in Table 2.3.

5. Determine the range of the PDF of X . The minimum support value is

F ~ l (xi) (where x \ is the minimum support value of the IDF here) and the

maximum support value is i r'_ 1 (l). Since the minimum support value of the

IDF for the example random variable X is = 1/6, then F - 1 (l / 6) = 1 .

Also, F - 1 (l) = 3.

• If X has an IDF representation and a NoDot support, then the second sublist

of the APPL list-of-sublists contains the CDF values of X and the first sublist

contains the CDF support values. To compute the PD F of X , the first and

second sublists of the ID F are swapped to form the CDF, and then the PDF is

computed using the (F(x), f (x{)) m atrix element in Table 2.3.

In its numeric form, the IDF of our example random variable X is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

/

3 x = 1.

The APPL list-of-sublists is [[1, 2,3], [±, ±, l] , [“Discrete”, “IDF”]]. The CDF is

found by swapping the first two sublists: [[| , | , l] , [1,2,3], [“Discrete”, “IDF”]].

Lastly, the PD F is

After the PD F has been computed, the algorithm checks the number of arguments

th a t were entered as part of the procedure, either one or two. If only one argument,

AT, is provided with the procedure, i.e., PDF(X), then the PDF of X is returned in

the procedure, then the probability value Pr(Ar = x) is computed. The algorithm

value.

• If X has the Dot support format and we are computing Pr(AT = x), then:

1. If the value r,- ^ Q, then return P r(X = Xi) = 0. (Determining whether

or not X{ G Q is discussed in further detail in Section 2.2.2.)

2. If Xj G then compute and return the probability value f(X{) using the

PD F formula already determined in the earlier part of the procedure.

• If X has the N oDot support format, then:

1 . Loop through the support values of the PD F searching for the value Xi

in the second sublist. If r , is found in position j , then its corresponding

m = i

f (2) = F (2) - F (l)

m = F (3) - F (2)

1
6

3

its list-of-sublists format. Otherwise, if two arguments, X and x, are provided with

distinguishes between the two support formats when determining this probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

probability value is in position j of the first sublist. Return the j th element

in the first sublist. If the value x,- is not found in the second sublist, then

return P r(X = xt-) = 0.

Two examples using the PDF procedure follow. Also, Example 1.2 in the introduc

tion uses the PDF procedure to determine a probability value.

E x am p le 2 .15. R eturn to Example 2.13 and use A PPL to determine /(x) given

h(x) = 1/4 for x = 1, 2 ,__

Solution: T h e s ta t e m e n ts

> X := [[x - > 1 / 4] , [1 .. infinity], ["Discrete", "HF"]];
> PDF(X);

return the PD F f (x) = K f)* 1 for x = 1 ,2 ,. . . , as previously determined. □

E x am p le 2 .16 . (Adapted from Hogg & Craig, 1995, page 37) Cast a die two inde

pendent times and let X equal the absolute value of the difference of the two resulting

values (the numbers on the up sides). The CDF of X is:

Determine the PD F of X .

Solution: Define the A PPL NoDot format of F(x) as the random variable FX. Then

use the PDF procedure to determine X ’s numeric PD F.

> FX := [[1 / 6, 4 / 9, 2 / 3, 5 / 6, 17 / 18, 1], [0, 1, 2, 3, 4, 5],
["Discrete", "CDF"]];

> PDF(FX) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The APPL NoDot format of f (x) is

1 _5_ 2 1 i J_
6 ’ 18’ 9 ’ 6 ’ 9 ’ 18

, [0,1 , 2,3, 4,5], [“Discrete”, “PD F”]

which can be converted by hand to the formulaic PDF:

/(*) =

1

6
6 — x

18

x = 0

x = 1 , 2 , □

2 .2 .2 CDF, SF, HF, CHF, a n d IDF

The CDF, SF, HF, and CHF procedures follow the same algorithmic steps as the PDF
procedure. The main difference between the procedures is the formulas used for

transforming one representation into another from Table 2.3. The PDF procedure

uses column one of Table 2.3, while the CDF, SF, HF, and CHF procedures use columns

two, three, four, and five, respectively.

Another difference is how the PDF and HF procedures handle two arguments, i.e.,

PDF(X, x), compared to how CDF, SF, and CHF handle two arguments. The way a

functional representation procedure (e.g., PDF) treats a two argum ent input stems

from the representation’s m athem atical definition. Returning to the example random

variable X with PD F f (x) = x / 6 for x = 1 ,2 ,3 , its PDF, CDF, SF, and CHF are

f (x) =

x = 1

x = 2

x = 3

F(ar) = <

0

1
6

1
2

X < 1

1 < x < 2

2 < x < 3

x > 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

S(x) = <
5
6

_1
2

0

X < 1

1 < X < 2

2 < x < 3

x > 3

H(x) = < - l o g ®

- l o g ®

X < 1

1 < X < 2

2 < x < 3.

Since the CDF and SF of X are defined for x E 1R and the CHF is defined for x < 3,

they could be formulaically defined more generally in Table 2.2 as

F (x) =

0

[x j2 + \x\
12

x < 1

1 < X < 3

x > 3,

S(x) = < - r x i 2 + M + i 2

12

0

x < 1

1 < x < 3

x > 3,

— fx] 2 -I- [x] + 1 2

12)
x < 1

1 < X < 3.

The CDF, SF, and CHF data structures were developed to display the values of these

functions a t Xi,X2 , . -., hence the term “discrete” da ta structure. Although the CDF,

SF, and CHF representations of X are defined on a continuous interval of values,

their counterparts, PD F and HF, are not. In APPL, discrete random variables are

defined for a discrete set of values. Users of A PPL who are familiar with probability

theory will know that, for example, if F(x) is displayed as

„ , , x x
(X) = 1 2 + 1 2 z = 1>2>3>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

that when 1 < x < 2 , F(x) = F (1) = 1 / 6 . Consistency of form at between all five

functional representations was a priority when the Dot and NoDot da ta structures

and their distribution representations were constructed.

Accuracy and fact are not jeopardized as a consequence of this consistency. Thus,

when a procedure, such as CDF, computes CDF(X, 1.5) (for the example random

variable X) , it returns 1 / 6 . Although the format of the CDF representation of X

does not display its continuous nature, i.e.,

x 2 x
X —̂ ---

12 12
[1,2, 3], [“Discrete”, “CDF”]

the computation CDF(X, 1 .5) yields the correct value of 1/6, not 0 or ^ |- + =

0.3125. In order to have the CDF algorithm compute this value correctly in the pro

cedure call CDF(X, x), [LxJJ, where [_[xjj is defined as the largest support value

less than or equal to x, rather than x, is substituted into the formula for F{x). In

the SF and CHF procedures, [|~x]], where [fx]] is defined as the smallest support

value greater than or equal to x, is substituted into the formulas S(x) and H(x),

respectively, rather than x.

Although the PDF and HF procedures are less complex than CDF, SF, and CHF from

one perspective (since for x,- </ Q, /(x,-) = 0 and h(x,) = 0), checking whether or

not X { E presents its own obstacles. If |f2| is finite, which implies th a t x i and x \q \

are finite, then it is not difficult (albeit time-consuming in some instances) in APPL

procedures to confirm whether or not xt- E D . If |f2| is infinite, then Xi = —oo and/or

X|n[= oo. Although an algorithm for determining whether Xj E in this situation

has not yet been implemented in APPL procedures, the following paragraph describes

one algorithmic method th a t is under consideration.

Suppose the Dot support is [a.. b, k,g{x)\, which means th a t a = min{fl}, b =

max{f2}, and the support is incremented by k and transformed by g(x). In order to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

check if Xj e Q, do the following

1 . Find the inverse function g~l (x) of g{x) (if it exists). If g(x) has more than one

inverse, the "correct” inverse needs to be determined.

2. Compute v = g~ 1 (xi).

3. Determine if v = a (mod A:), where v = a (mod A:) provided k\(v — a). If it is,

then X{ G f2.

Suppose Cl = {27,125, 343 ,...} , for example, and let x,- = 3375. The Dot support

of f2 is [3 ..o o ,2 ,x -> x3]. Since g x(x) = \ f x and \/2>37o = 15 = 3(m od2), then

Xi = 3375 G Cl. Conversely, the value xz- = 2748 ^ Cl since v'/2748 ^ Z [and thus

v2748 ^ 3 (m od 2)] and = 1728 ^ Cl since s/1728 = 12 ^ 3 (m od 2). Unfortu

nately, problems will arise in this algorithm when g(x) either does not have an inverse

or has more than one inverse and the appropriate one cannot be determined.

Because row one of Table 2.3, (/(x) , “newrepresentation”), relies on Maple’s sum

procedure, this is another area where CDF, SF, HF, and CHF experience some difficulties.

A probable candidate for a fractious transform ation to a new functional representation

is the Poisson random variable. Since the Poisson random variable is a pre-defined

random variable in APPL, we can assign the variable X as a Poisson random variable

with a mean of A with the statement

> X := PoissonRV(lambda);

APPL returns the random variable in its list-of-sublists PDF representation as

Axe -A'
x! , [0.. oo], [“Discrete” , “PDF”]

Changing X to its CDF representation in A PPL with the statement

> CDF(X);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

yields

[0.. oo], [“Discrete” , “CD F”] .

The SF, HF, and CHF procedures produce results containing the gamma and incomplete

gamma functions also.

In Maple, the gamma function is defined for 9?(z) > 0 by r(z) = / 0°° e - i £z _ 1 dt,

and is extended to the rest of the complex plane, less the non-positive integers, by

analytic continuation. The incomplete gamma function is defined as T(a, z) = T(a) —
za
— l F l (a , l 4 - a, —z) where 1F1 is the confluent hypergeometric function. In Maple

notation, lF l (a , 1 + a , — z) = hypergeom([a], [1 -Fa], —z). For 3fi(a) > 0, we also have

the integral representation T(a, z) = e~Ha~l dt.

Although this is not a tractable representation for the CDF of a Poisson random

variable, cumulative probabilities can still be easily computed, as shown in the next

example.

E xam ple 2.17. (Ross, 1998, page 155) Consider an experiment th a t consists of

counting the number of a-particles given off in an one-second interval by one gram

of a radioactive material. If we know from past experience that, on the average, 3.2

such a-particles are given off, what is a good approximation to the probability tha t

no more than three a-particles will appear?

Solution: If we think of the gram of radioactive m aterial as consisting of a large

number n of atoms, each of which has probability 3.2 j n of disintegrating and sending

off an a-particle during the second considered, then we see that, to a very close

approximation, the number of a-particles given off will be a Poisson random variable

with parameter A = 3.2. In order to compute the desired probability, we use the

A PPL statements

r (x -(-1, A)
r(x + i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

> X := PoissonRV(3.2);
> CDFCX, 3);

which yield the approximate probability 0.6025. □

Before discussing the IDF procedure, one last example of transform ing from one

representation to another is presented in Example 2.18.

E x am p le 2 .18. Let n be a positive integer. Let X be a random variable with HF

h{x) defined as

Determine the SF of X for Xi = 1 , 2 , . . . , n.

S o lu tion : Using the (h(x), S(xi)) m atrix element in Table 2.3, S(xi) is

s ix i) = I I C 1 ~ K xi)) x i = *; * = 1 , 2 , . . . , n.

Letting x { — x, we can simplify S(x) in the following manner:

X—1

y-r (n — t)(n + t) + (n — t)
(n - t){n + t) + (n + 1)

C laim :

(2.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

for x = 1 , 2 , . . . ,n.

P ro o f o f C la im : The claim can be proved by induction on x. Since the left

hand side of equation (2.1) is an empty product for x = 1 , it follows th a t S (l) =

n?=i (n+0 fr£ £ i j = 1• The right hand side of e(4uation (2 -1) for x = 1 is ^ ^ " +l) =

1 . Thus, equation (2 .1) is true for x = 1 .

Now suppose equation (2.1) holds for a certain integer x such th a t 1 < x < n — 1 .

Then using this assumption and starting with the left hand side of equation (2.1)

with x replaced by x + 1 , we find:

t t {fi — t) (n + t + 1) -i—r (n — t) (ri + £ + 1) (7i — x) (n + x + 1)
(n + t)(n — t + 1) (n + t) (n — t + 1) (n + x) (n - x + l)

(n — x + l) (n + x) (n — x)(n + x + 1)
= i i jn + i j (^ + I)(n - I +1) by assumPtion
_ (n — x)(n + x + l)

n(n + 1)

The result is the right hand side of equation (2.1) with x + 1 replacing x. Hence, by

induction, equation (2 .1) holds for x = 1 , 2 , . . . ,n.

Using the claim, we can write S(x) as:

o f „ \ (ji + x) (n — x + i) _ i oS{x) x — 1,2 , . . . , n .
(n + l) n

In APPL, the statem ents

> u n a s s ig n (, n ,);
> hX := [[x - > 2 * x / (n “ 2 + n - x ~ 2 + x)] , [1 . . n] ,

["Discrete", "HF"]];
> SX := SF(hX);

produce the desired SF th a t we previously computed by hand. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

C o m p u tin g th e IDF in th e Dot fo rm a t

Let X have a CDF F x in which Fx{y) = x. For x €E [0,1], the inverse distribution

function (IDF) F ^ l (x) performs the inverse mapping of x to y, i.e., F ~ l (x) = y. Like

the PDF, CDF, SF, HF, and CHF procedures, the IDF (X, [x]) procedure returns either

the

1. IDF of the random variable X in the APPL list-of-sublists format if only the

argument X is provided in the procedure call, i.e., IDF(X);

2. quantile value y such that P r(A < y) = x if both arguments are provided in

the procedure call, i.e., IDF(X, x).

Unlike the CDF, SF, and CHF procedures, the IDF functional representation in

sublist one is displayed as a continuous function. The IDF of a random variable X is

defined for all real numbers x € [0,1]. For the example random variable X with PDF

f (x) — x / 6 for x = 1 ,2 ,3 , its APPL IDF in Dot format is

- j + 5 x /T + 4 8 i , [l - 3 ,
x z + x

12
, [“Discrete” , “IDF”]

where the second sublist |^1.. 3, x —> indicates IDF support values at | , and

1 . Although the first support value is Zi = 1/6, APPL understands the IDF is still

defined for 0 < x < 1 / 6 . When another functional representation procedure, such

as PDF, receives an IDF with a ceiling expression, it only takes one additional line in

th a t procedure to remove the ceiling from the expression before computing an inverse.

In the case of IDF, the ceiling definition was believed to be the appropriate way to

define this function in its first sublist.

In a much easier scenario, if a “non-IDF” functional representation of X is reported

to ID F in its N oD ot format, such as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

> X := [[1 / 6, 1 / 3 , 1 / 2] , [1 , 2, 3] , ["Discrete", "PDF]];
> IDF(X);

then the IDF algorithm simply computes the CDF of X and then switches the first

two sublists to form the IDF.

2.3 Algorithms for Fundamental Procedures

Before attem pting algorithm construction for non-standard discrete random variable

processes (e.g., O rderS tat), some of the straightforward algorithms were written

to handle fundamental random variable manipulation (e.g., computing the mean of

a random variable). The several procedures discussed in this section had already

been written for continuous distributions. All APPL procedures th a t handle discrete

random variables are equipped to process random variables in both the Dot and

N oD ot formats.

2 .3 .1 V erify ing th e V a lid ity o f a P D F

Let X be a discrete random variable with support Q = {xi, x2, - -.}. A discrete

probability density (mass) function (PDF) must satisfy the following two conditions:

• P r(X = x,-) > 0 for each xx- € D;

• Pr(AT = Xi) = 1.
a l l X i 6 Cl

The APPL V erif yPDF procedure has one argument, a random variable X, and the

procedure’s purpose is to verify th a t X satisfies these two conditions. When making

the procedure call VerifyPDF(X), either a message is returned stating tha t X has a

valid PD F or th a t it does not. The following example illustrates the usage of this

procedure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

E x a m p le 2.19. (Karian & Tanis, 1999, page 62) Verify tha t the probabilities of a

geometric random variable with parameter p sum to 1 .

S o lu tio n : X can defined as a geometric random variable with parameter p using the

pre-defined APPL random variable GeometricRV Cp). When the GeometricRV proce

dure receives a symbolic argument (parameter), it uses the Maple assume command

to correctly assume th a t the symbolic parameter is inclusively between 0 and 1 . Thus,

the statements

> X := GeometricRV(p);
> VerifyPDF(X);

indicate th a t X has a valid PD F. □

2 .3 .2 C alcu latin g S u m m ary C h aracteristics

Moments describe certain behaviors of random variables. Measures of central ten

dency, for example, such as the mean or median, refer to the “average” or “central”

values of a random variable. Measures of dispersion, such as the standard devia

tion, are used to measure the spread of a random variable’s distribution. Skewness

quantifies a random variable’s symmetry about its mean, while kurtosis measures the

flatness (or “peakedness”) of a random variable.

If X is a discrete random variable with support = {x i ,X 2 , ■ ■ -} and PDF / (r) ,

then the mean (or expected value) of X is defined by

E[X\ = » = Y , x ‘ - f t e) -
a l i i , G fi

More generally, if g(X) is any function of X , such as g (X) = X 2, then

£ [< K *)]= Y 9 (* i)- / (* .) -
all X i G f2

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

53

The ExpectedValue procedure requires one argument, a random variable X, and

can be given an additional argument, the function g(X). When only one argument is

provided for the ExpectedValue procedure, i.e., ExpectedValue (X), the mean of the

random variable X is returned. By default, the procedure assumes g(X) = X when no

second argument is given. The Mean, V ariance, K u rto s is , and Skewness procedures

all make use of the ExpectedValue procedure. This is efficient since variance, the

coefficient of skewness, 7 1 , and the coefficient of kurtosis, 7 2 , for a random variable

X can be calculated as

Two examples of the usage of the ExpectedValue procedure follow. In the second

example, Example 2.21, notice that g(x) is non-linear.

E x a m p le 2.20. (Ross, 1998, page 167) Find the expected value and the variance of

times.

S o lu tio n : Since the random variable of interest is a negative binomial with parame

ters r = 4 and p = 1/6, then the statements

> r := 4;
> p := 1 / 6;
> X := NegativeBinomialRVCr, p);
> ExpectedValue(X);
> V ariance(X);

Var(X) = E[(X - p)2] = E [X 2} - p2,

E [X 3] - 3y E [X 2] + 2p :

E[X 4] - 4p E [X 3] + 6 p 2 E [X 2] - 3p4

[Var(X)] 2

the number of times one must throw a die until the outcome one has occurred four

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

54

yield the correct results: E [X] = 24 and Var(X) = 120. □

E x a m p le 2 .21. (Ross, 1998, page 185) Let X be a binomial random variable with

param eters n and p. Show that

E X + l
1 ~ (1 ~ P)

(n + l)p

n+1

S o lu tio n : Since we want to compute E [^ y] , let g(X) = 1 / (X + 1). The APPL

statements

> X := BinomialRV(n, p);
> ExpectedValue(X, x -> 1 / (x + 1));

produce the desired expected value. □

2.3 .3 D iscrete P lo tt in g F unctions

Especially for newcomers to probability theory, plots of the various representations of

a random variable can provide much insight into the definition and structure of that

random variable. The PlotDist procedure requires only one argument, a random

variable X, but two additional arguments can be provided to indicate the plotting

range, low and high. The procedure can plot a random variable in any of its six

functional representations. The algorithm employed by the PlotDist procedure uti

lizes the list-of-sublists data structure to glean the necessary information for a plot.

Graphs for C D F’s, SF’s, CHF’s, and ID F’s, for instance, are plots of step functions

with jum ps a t the support values specified in sublist two. Open and closed circles at

the ends of the steps indicate exclusion and inclusion, respectively, of support values.

One example of a CDF plot follows.

E x a m p le 2 .22. (Karian & Tanis, 1999, page 40) Let f (x) = (5 — a;)/10 for x =

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

55

1 ,2 ,3 ,4 be a PD F of the discrete random variable X . Use P lo tD is t to depict the

CDF of X .

S o lu tio n : Instead of first converting X ’s PD F representation into a CDF repre

sentation, one can directly define the PDF and compose the CDF conversion with

P lo tD is t . The plot of the desired CDF can be executed with the statem ents

> X := [[x -> (5 - x) / 10], [1 . . 4] , ["Discrete", "PDF"]];
> PlotDist(CDF(X));

The corresponding plot is displayed in Figure 2 .2 .

-H--

0 . 8 -

0 . 6 -

CDF

0.4-

0 .2 -

Figure 2.2: CDF for Example 2.22.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 3

Order Statistics

As evidenced by over six hundred references cited in the book “Order Statistics” by

David (1970), the theory and applications of order statistics appear in many areas of

statistical theory and practice. Most authors of introductory textbooks only address

order statistics drawn from continuous parent populations due to the m athem atical

intractability in the discrete case. Results for order statistics drawn from discrete

parent populations are sparse and usually specialized to fit one particular discrete

population. The purpose of this chapter is to present algorithms for determining

distributions of order statistics drawn from standard (e.g., binomial, geometric) and

non-standard discrete parent populations. The algorithms handle discrete parent pop

ulations w ith finite or infinite support, and sampling with or without replacement.

Computer algebra systems make it feasible to derive (or compute) distributions of or

der statistics from parent populations w ith formulaic (e.g., f{x) = |j-, x = 1, 2 , . . . , 6)

or numeric (e.g., / (I) = | , /(3) = | , / (7) = |) PD F representations. The devel

opment of these algorithms provides the general scientific co m m u n it y easy access to

many discrete order statistic distributions.

Let X i , X 2, - - -, X n be n independent and identically distributed (iid) random

variables defined on 11, each with CDF F{x) and PD F f i x) . Let AT(i) < X(2) < • • • <

56

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

57

X(n) denote these random variables rearranged in non-descending order of magnitude.

Thus, X(r) is the r th smallest order statistic of the sample, r = 1 , 2 , . . . , n. Since the

order statistics are random variables, it is possible to compute the probabilities th a t

they take on various values in their support.

When the population is continuous, the PDF of the r th order statistic can be

expressed easily since the probability that any two ’s are the same is 0. As is well

known (e.g., Casella Sz Berger, 1990, page 232), the PD F of X (r) is

f x ^ {x) = [F{x)]r~ l [1 ~ F { x)] n ~ r x e n

for r = 1, 2 , . . . , n. Two examples of order statistics with continuous parent popula

tions follow.

E x am p le 3.1. (Adapted from Feller, 1971, pages 20-21) Let X i , AT2, . . . , X n be iid

exponential random variables w ith rate parameter A. Find the PD F of X(r)-

S o lu tion : Using the above equation, the PDF of the r th order statistic is

!) ! („ _ r) , ■ • (! - ■ (e - 1* ' " -)) X > o

for r = 1 , 2 , . . . ,n . □

E x a m p le 3 .2 . (Adapted from Ross, 1998, pages 278-279) Consider a sample of size

n = 5 from a beta distribution with parameters a = | and /3 = 2 . Compute the

probability th a t the median is in the interval (0 , |) .

S o lu tion : Again, using the above equation, the PD F of the m edian r = 3 is

_ 4 5 (- |x 3 /2 + \ y / x) 2(l + | r 3 /2 - \ y /x) 2 (1 — x)
2 y/x

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

58

Thus

Pr(0 < X m < i) = f 0l / i f X m (x)dx
_ /___3_2;15/2 _j_ 4 5 ^ 1 3 /2 _ 15^ .6 _ 135x U /2 , 4 5 ^ 5 , 3 9 5 ^ 9 /2 _ 4 0 5 ^ 4

\ 16 16 16 8 4 8 8
1/4

1035 7 /2 , 4 0 5 -3 , 1 8 9 - 5 /2 1 2 1 5 -2 , 1 3 5 _ 3 /2 \
~ 16 X 4 X + T & X 16~ + ~ X)

0
_ 429913
— 524288

^ 0.81999. □

If X i , X 2, . . . , X n is a random sample from a discrete population, then the PD F

of the r th order statistic cannot always be expressed as a single formula, as displayed

in the continuous case examples. When working with discrete random variables,

the computation of the PD F of the r th order statistic will fall into one of several

categories, depending on the sampling convention (with or without replacement), the

random variable’s PD F representation (formulaic or numeric), the random variable’s

support (finite or infinite), and the random variable’s distribution (equally likely or

non-equally likely). A taxonomy of these categories appears in Figure 3.1.

3.1 Implementation for Discrete Populations

This section presents an algorithm, O rderS tat, for com puting the PDF of order sta tis

tics sampled from discrete parent populations. Additionally, the algorithm computes

the PDF of order statistics from continuous populations, as in the examples provided

previously. The algorithm, included in Appendix A, is implemented in Maple.

After a discrete random variable X is defined in its list-of-sublists format, the

O rderS tat algorithm computes the PDF of the r th order statistic given th a t n item s

are sampled either with or without replacement from the discrete parent population.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

59

Discrete Population

Sampling
with replacement

(Section 3.1.1)

Sampling
without replacement

(Section 3.1.2)

Numeric Formulaic Finite Infinite
PD F PD F Support Support

Equally Non-Equally
Likely Likely

Distribution Distribution

Figure 3.1: Categorization of discrete order statistics by sampling convention, PDF
representation, support type, and population probability distribution.

without replacement, the ConvertToNumeric procedure modifies the first two sublists

of the random variable to the standard N oD ot format. For example, if the first two

sublists of the random variable are entered in the Dot format as [x —► , [1.. 7,2]

(where k = 2 is the increment value for the range), then ConvertToNumeric rewrites

the sublists in the standard N oD ot form at as [^ , , [l, 3, 5, 7]. The conver

sion is necessary since the without replacement part of the algorithm requires a list

of support values for the construction of permutations and combinations. The im

plementation steps of the O rd erS ta t algorithm are explained in more detail in the

“Sampling W ith Replacement” and “Sampling W ithout Replacement” subsections.

3.1 .1 S am p lin g W ith R ep la cem en t

If only three arguments, X, n, and r , are provided as O rderS ta t arguments, then the

items are assumed to be sampled from the population with replacement by default.

The APPL CDF and SF procedures determine the cumulative distribution function,

If the random variable X has finite support in the Dot case and sampling is to occur

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

F(x) = P r(X < x), and survivor function, S(x) = Pr(JA > x), respectively, of X

in the list-of-sublists format. A branch in the with replacement portion of the code

then occurs based on the form of the population’s PDF, numeric or formulaic. The

“Numeric PD F” and “Formulaic PD F” subsections detail the subsequent steps for

each PD F representation. A random variable with a Dot support format always has

a formulaic PDF. A random variable with a N oD ot support format, although it may

initially have a formulaic PD F representation, is converted to the standard NoDot

form at with a numeric PD F at the onset of the O rd e rS ta t procedure.

N u m eric P D F

If the random variable X (in its APPL list-of-sublists) has a NoD ot format, then

its PDF is given as or converted to a Maple numeric list. For example, the random

variable X with PD F

i X = 5

II i X = 6

 ̂ } x = 1 0 ,

is entered as a random variable in APPL as

> X := [[1 / 4, 1 / 2 , 1/4], [5, 6, 10], ["Discrete", "PDF"]];

If X has a N oD ot format, then its support, fl, must be finite. For this particular ex

ample, Q, = {5,6 ,10}. Assuming (without loss of generality) tha t O = { 1 ,2 ,. . . , A-},

the PD F of X(r) when n items are sampled with replacement is given by:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

61

fx.r) (*) = <

E f ") t / a i r ” [5(2)1”
tr=0 ' '

| E (a , - n r w *) r ” i* « + D i-

E Q i m - i j n / f i v)] " - "
<* u= 0 ' '

X = 1

x = N .

The formula above is not valid in the special case when the discrete population consists

of only one item, i.e., N = 1 . The PD F of the r th order statistic with N = 1 is simply

/*<„(i) = i-

The formula for calculating the PD F of X(r) is a direct result of the following

observation. In order for the r th order statistic to take on the value x , the r — 1

order statistics preceding the r th index position must be less than or equal to x and

the n — r order statistics following the r th index position must be greater than or

equal to x. More specifically, there m ust be between 0 and r — 1 values less than x,

and between 0 and n — r values greater than x, with all other values equal to x. The

general formula for x = 2 ,3 , . . . , N — 1 is obtained by using the CDF, F{x — 1), to

determine the probability of obtaining a value less than or equal to x — 1, the PDF,

f (x) , to determine the probability of obtaining x , and the SF, S (x + 1), to determine

the probability of obtaining a value greater than or equal to x + 1 . T he multinomial

coefficient calculates the number of combinations th a t yield a specific ordering.

As a brief illustration of this formula, let X be a discrete random variable tha t

can assume N = 4 values with PD F

f{x) = <

0 . 2 x = 1

0.4 x = 2

0.3 x — 3

0 . 1 x = 4.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

62

Then the CDF and SF of X , respectively, are

F{x) =

0 x < 1 1 x < 1

0 . 2 1 < x < 2 0 . 8 1 < x < 2

0 . 6 2 < x < 3 S{x) = < 0.4 2 < x < 3

0.9 3 < x < 4 0 . 1 3 < x < 4

1 x > 4 0 x > 4.

Sample n = 3 values with replacement from the population. In order to calculate

/ x (2) (3), i.e., the probability th a t the second order statistic (the median, r = 2) takes

on the value x = 3, simplify the sum

- t t (Ui 3 [f (2) n / (3) r « - » [5 (4) r .
u=Q w =0

The first term in the summation

(o ,3 ,o) ' <°-6)° ' (°-3)3 - (0 1)° = °-33,

is the probability of drawing all threes. The second term

(o, 2, l) ■ (0'6)° ' (0'3)2 ' (01)1 = 3 ' (0'3)2 ' 0 1 ’

is the probability of drawing two threes and a value greater than or equal to four

(which can only be the value four in this example). This sample can be drawn three

different ways: 3-3-4, 3-4-3, or 4-3-3. The third term

(l , 2,o) ' (°-6)1 ’ (0'3)2 ' (a i) ° = 3 ' °'6 ' (°'3)2'

is the probability of drawing two threes and one value less than or equal to two.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

63

Letting L represent the value one or two, the three orderings are: L - 3-3, 3-T-3,

3-3-L . Finally, the fourth term is the probability of drawing one three, one value less

than or equal to two, and one value greater than or equal to four. This fourth term

is

Using the previous notation, the six orderings are: L - 3-4, L - 4-3, 3-L-4, 3-4-L, 4-

L - 3, 4-3 -L. Thus, f X(V(3) = 0.33 +3-(0 .3)2 -0.1-f-3-0.6-(0.3)2 +6-0.6-0.3-0.1 = 0.324.

Form ulaic P D F

If the support of X is countably infinite, i.e., |f2| = {x,-1 i = 1, 2 ,3 ,. . .} , then the PDF

resentation. For example, if X ~ Poisson(4) with PD F f (x) = 43̂ , 4, x = 0 ,1, 2 , . . . ,

then X is defined in APPL with the statem ent

> X := Ux -> ((4 ~ x) * exp(-4)) / x!], [0 . . i n f i n i t y] ,
["Discrete", "PDF"]];

It is impossible to write a PD F with infinite support in the APPL standard NoDot

format. Even if a random variable does not have infinite support, it may still have

a formulaic PD F in the APPL list-of-sublists format. A binomial(5, 1/2) random

variable with PD F f (x) = 25' (5-x)i x\ ’ x = 0 ,1 , . . . , 5, can be defined in APPL with

the statem ent

> X := [[x -> 120 / (2 ** 5 * (5 - x) ! * x !)] , [0 .. 5],

The calculation of the PDF of X(r) in the formulaic case, whether the support is

finite or infinite, is similar to the calculation in the numeric PD F case. The main
exception is th a t the formula used in the numeric PDF case can be used for values of

of X must be entered in its APPL list-of-sublists format with a formulaic PDF rep-

["Discrete", "PDF"]];

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

64

x arbitrarily large:

f x lr) (x) = <
E(2) V W n~WlS (2)]“’ti'= 0

X = 1

x = 2 .3 , -----

Since the formula assumes that the support of X is D = {1 , 2 , . . . , N } or f2 =

{1 , 2 , . . .} , the implementation accepts distributions with finite supports or infinite

in a similar manner. The APPL code presently issues an error message from the

O rd e rS ta t procedure when there is an infinite left-hand tail.

complicated symbolic expressions. Maple finds and simplifies (in symbolic terms) the

double summation of a multinomial coefficient times the product of the CDF, PDF,

and SF raised to various powers (see Example 3.2).

3 .1 .2 S am pling W ith ou t R ep la cem en t

Providing the string “wo” as the optional fourth argument indicates that items are

sampled from the discrete population w ithout replacement. The algorithm first de

termines whether the random variable has finite or infinite support. The following

two subsections explain the steps followed after this determination is made.

F in ite Support

If the population distribution has finite support, again denote the population size

by N . In order to specify the support of the order statistic in a compact form,

right-hand tails. Discrete distributions with infinite left-hand tails could be handled

Since it is impossible to execute the above formula for infinitely many values of

x if the random variable X has infinite support, a general expression for f x (r) (z) (in

terms of x) is obtained by taking advantage of Maple’s ability to sum and simplify

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

65

additionally assume (without loss of generality) th a t the population support is the

ordered set Q = { 1 ,2 ,. . . , Ar}. For example, if

then N = 3, and the support is assumed to be {1, 2 ,3), instead of {7,11,15}.

If the population has equally likely PD F values, e.g., f (x) = 1 for x = 1 , 2 , . . . , 6 ,

then by combinatorial analysis (Wilks 1962, page 243):

If X has finite support and non-equally likely PD F values, there are three cases

for calculating the PD F of the r th order statistic:

1. If n = 1, i.e., only one item is sampled, then the PD F of the rth order statistic

is the same as the population PDF.

2. If n = N, i.e., the entire population is sampled, then the PD F of the r th order

3. If n = 2 ,3 , . . . , N — 1, then an n-by-N array, ProbStorage , is defined that

eventually contains the PD F values for all order statistics, i.e., f x (r) (a:) for

x = 1,2, ...,1V and r = 1,2, . . . , n . The rows denote the r order statistic

sume. The array is initialized to contain all zeros. The algorithm’s imple

mentation requires the use of two combinatorial procedures, Next Combination

/
0.5 x = 7

/(*) = 0 . 2 x = 1 1

0.3 x = 15,
V.

x = r, r + 1 , . . . , r -1- N — n.

statistic is
1 x = r

f x (r)(x) = <
0 otherwise.

values and the columns denote the x values th a t the order statistic may as-

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

66

and N extPerm utation, whose Maple codes are contained in Appendix B. The

following steps axe implemented.

(a) The first lexicographical combination of n items sampled from the sequence

of integers 1 to N is formed. This first combination is the unordered set

{ 1 , 2 , . . . , n } .

(b) Given a combination consisting of n distinct integers, the algorithm gen

erates all corresponding permutations. It generates the first permutation

by arranging the integers in increasing order. The probability for the per

m utation is calculated by substituting the permuted values into the PDF

of X . Since the PD F has already been converted to a list of probabilities

values in the first sublist of X , the probability of a perm utation is com

puted by selecting the probability values in the first sublist that occupy

the positions of the permuted values. For example, let f (x) = A for

x = 1, 2 , . . . , 5. Then the first two sublists of the PD F of X are (or have

been converted to) [^ , | , | , , [1 , 2 ,3 ,4 , 5], Suppose the permutation

th a t the algorithm is currently processing is [5, 3, 2]. Then the probability

of this permutation is

m m m

or
i 3 1
A 8 _______ 4_______ __ _}_

1 6 ' l - i ' l - (i + |) SO’

(c) After the perm utation’s probability is computed, the perm utation is rear

ranged in increasing order. The perm utation above, for example, becomes

[2 , 3, 5]. The algorithm then adds the computed probability value to the

appropriate cells in the ProbStorage array. The (r, x) cell accumulates the

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

67

probabilities of the various ways that the r th order statistic takes on the

value x. For example, the final value of the (1,2) cell represents the prob

ability that the first order statistic assumes the value two. In the example

illustrated above, the ProbStorage array cells (1 , 2), (2, 3), and (3, 5) are

incremented by the perm utation [5, 3, 2]’s probability <k. See Figure 3.2.

Xr 1 2 3 4 5

1 £ (1 , 1) E (l , 2) + & £(1 ,3) — —

2 — £ (2 , 2) E (2 ,3) + i £(2 ,4) —

3 — — £(3,3) £(3,4) £(3 ,5) + ^

Figure 3.2: ProbStorage array for X with PD F f {x) = jq for x = 1 , 2 , . . . , 5, in
which n = 3 items are sampled without replacement. Given the perm utation [5, 3,
2], its probability ^ is added to the current probability sums £ (r, x) in cells [1 , 2],
[2, 3], and [3, 5]. Dashes denote impossible values.

(d) After the appropriate cells are incremented, the next perm utation in lex

icographical order is found using the N extPerm utation procedure. The

perm utation’s probability is then computed and placed in the appropriate

ProbStorage cells, as discussed above in steps (b) and (c).

(e) After all n! permutations of a given combination are exhausted, the proce

dure NextCombination finds the next lexicographical combination. Given

this new combination, the algorithm repeats steps (b) through (d). This

process iterates (^) times, since this is the number of combinations of size

n chosen from a population of size N .

In fin ite Support

If X has infinite support, then the pattern established for finding the PD F of the

r th order statistic in the finite support case does not work because the loops will

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

68

be endless. At this time, the O rderS tat procedure cannot calculate the distribution

of order statistics in the without replacement case when the discrete population has

infinite support and n > 3 or r > 3. Future work w ith O rd erS ta t wall begin to incor

porate the algorithmic pattern (already identified for n = 2 in the next paragraphs)

for values of n > 3.

Assume tha t n items are sampled without replacement from the support fi =

{1, 2 , . . The PDF of AT̂) when n — 1 item is sampled without replacement from

Q is identical to the population PDF f {x) .

W hen n = 2, let X x be the first variate sampled and X 2 be the second variate

sampled. Also, let AT^ = min{A\, X 2} and AT(2) = max{ATi, Af2}. Figure 3.3 shows

the support values associated with the joint distribution X x and X 2 along with the

appropriate mass values to sum over in order to calculate f x M {x) = Pr(AT(i) = x)

(indicated by the dashed rectangles of infinite length) and f x m {x) = Pr(AT(2) = x)

(indicated by the solid rectangles). If the population PD F is given by f (x) , the

marginal PDF of X i is

f x w (®i) = f (x i) X! = 1 , 2 ,

The conditional PD F of X 2 given X i = x x is

r / \

f x 2\Xi(x2\xi) = - _ ~ = 1, 2, . . . ; x 2 = 1, 2, # x2.

Thus the joint distribution of X x and AT2 is

f x i,x*{xux2) = f x 2\ X i (x 2 \ x l) f x l (x i) = Xi = 1 ,2 ,...; x2 = 1,2,...; x x x2-
1 — f i x l)

Summing as indicated in Figure 3.3 yields the PD Fs for X (X) and X(2) as

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

69

x2

x1

Figure 3.3: Support values associated with the joint distribution of X x and along
with the appropriate mass values to sum over to calculate f x w {x) (indicated by
dashed rectangles of infinite length) and / x (2) (x) (indicated by solid rectangles).

and

f x w (x) = Pr(X (1} = x)
OO CO

= £ f x x,X2{x l , x) + f x uX2{x , x2)
X l = X + l X 2 = X - f l

f / (* i) f ' f { x) n r)
~ ^ 1 - f { x x) ' ^ ^ 1 - f (x) ' 2)

X 1 = X + 1 A U X 2 = X + 1 j K ’

£t \ f (Xi) , f (X) CV | 1 \
= / (I) , ? + 1 W W + W W ' S (I + ’’XI —«c« “I- J.

f x m ix) = P r(X (2) = x)
X — 1 x — 1

= f x i ,X 2 (x lj®) + f x i , x 2 ix ->x 2)
X l = l X 2 = l

X — 1 \ X — 1
/ (* i) \ , / (*)

S w w ' / w + £ i - / w

1 - 1 / (* i) , /(*)

/(* 2)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

70

Thus, the PDF of and X(2) when n — 2 items are sampled without replace

ment from = {1 , 2 , . . .} are

f x w (x) = f (x) f i x)S { x + 1)

1 - w ' 1 - /(*)

and

f x m ix) = f{x)
F j x - 1) /(x)
1 - f i x) ^ 1 - f i x)

X i = 1 , 2 ,

x i = 1, 2 ,

3.2 Examples

Returning to the continuous exercises discussed in the introduction of this chapter, the

O rd erS ta t algorithm can be used to determine their solutions. In the first example,

define X to be an exponential(A) random variable (pre-defined in APPL). Then the

O rd e rS ta t algorithm (for continuous random variables) is used to determine the PD F

of its r th order statistic. The following statem ents

> X := ExponentialRV(lambda) ;
> OrderStat(X, n, r);

returns the PD F in its APPL list-of-sublists as

n! ■ Xe Xx
(r — l)!(n — r)!

(1 - e~kxy ~l . (,3—Ax(n—r) , [0.. oo], [“Continuous” , “PD F”]

For the second example, define AT as a b e ta (|, 2) random variable (also pre-defined

in APPL) and Y as the PDF of the median order statistic r = 3 associated with a

sample of size n = 5. The CDF for the median order statistic, Y, at the value 1/4 is

computed with the APPL statements

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

71

> X := BetaRVCl / 2, 2);
> Y := O rderS tat(X , 5 , 3) ;
> CDF(Y, 1 / 4) ;

yielding the exact solution of gff§g§.

The following two subsections use the algorithm described in the implementation

section to determine the PD F of r th order statistic for discrete populations. Examples

for each branch of the tree in Figure 3.1 are provided to illustrate the algorithms used

to generate the PDF of the order statistic. Table 3.1 displays the type of sampling

and the example associated with it.

Table 3.1: Categorization of discrete order statistics with associated examples.

Sampling
convention

PDF
representation

Support
type

Probability
distribution Examples

W ith Numeric PD F — — 3.3
replacement Formulaic PDF — — 3.4, 3.5

Finite
Equally likely 3.6

W ithout Non-equally likely 3.7

replacement
Infinite — 3.8

3.2 .1 S am p lin g W ith R ep lacem en t

E x a m p le 3 .3 . (Miller & Miller, 1999, page 296) Find the sampling distribution

of X(i) for random samples of size n = 2 taken with replacement from the finite

population tha t consists of the first five positive integers. {Hint: Enumerate all

possibilities.)

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

72

S olu tion : Using the hint, there are twenty-five possible samples of size n = 2 when

sampling with replacement from the first five positive integers. They are

(1 , 1) (2 . 1) (3,1) (4,1) (5,1)

(1 , 2) (2 , 2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5, 3)

(1,4) (2,4) (3,4) (4,4) (5,4)

(1,5) (2,5) (3,5) (4, 5) (5, 5)

the possibilities, it is not hard to determine tha t the

9
25 x = 1

r
25 x = 2

f x m (x) = < 1
5 x = 3
3

25 x = 4
1

I 25 x = 5

“(i)

This PDF is computed in APPL with the statements

> X := U niform D iscreteR V (l, 5);
> O rderS tat(X , 2, 1);

Although examples of this type can be done by enumeration, the benefit of APPL

is demonstrated for large populations and/or when sampling more than just n = 2

items. □

The next example illustrates a case in which a formulaic PD F representation of

the population must be used since it has an infinite support.

E x am p le 3-4. (Sampling with replacement; Formulaic rD F) Define a geometric

random variable X w ith param eter p (0 < p < 1) to be the number of trials up to

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

73

and including the first success, i.e., f x { x) = P - <7X_1, where q = 1 — p for x = 1 ,2 ,__

Margolin and Winokur (1967, pages 924-925) have tabulated values for the mean and

variance of the rth order statistic of a geometric distribution in a sample of size n for

77. = 1,5,10,15,20, r = 1 ,2 , . . . , 5,10,15, 20, (where r < n), and p = 0.25,0.5,0.75.

(The table values provided by Margolin and Winokur are given to two decimal places.)

If X ~ geom etric(|), then determine the exact values of the mean and variance of

the third order statistic when n = 5 items are sampled with replacement.

S o lu tio n : The formulas Margolin and Winokur (1967, page 921) use to compute the

first and second moments of the r th order statistic of a geometric distribution (with

param eter p = 1 — q) when n items are sampled are

E \ v 1 = r , (n ~ (j)

\ r — 1 J " {n — r + j + 1) (1 — qn~- r + j + l \
j = 0 v" v- i)

and
(—I) 3 (T- /) (1 + ? "-’-+3+1)

r + j + 1) (1 — g"-'-+i+l)2'

Using the O rderS tat procedure, the exact value of any of the rounded figures

given in their tables can be produced. If X ~ geom etric(|), then the exact values

of the mean and variance of the third (r = 3) order statistic when n = 5 items are

sampled (with replacement) can be found with the statements

> X := GeometricRVCl / 4);
> Y := OrderStat(X, 5, 3);
> Mean(Y);
> Variance(Y);

which yields f§fg§ S 3.22 and S ™ 756- S* 2.67, respectively. □

The O rderS ta t procedure is able to accept a much larger range of arguments than

just the numeric values for p , n, and r given in Example 3.4. Further, the procedures

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

74

can also accept random variables with symbolic parameters. If Y ~ geometric (p), for

example, then the variance of the minimum order statistic (r = 1) when n = 6 items

> Variance(OrderStat(GeometricRV(p), 6, 1));

O ther measures, such as the median of this distribution, can be found with the

use of additional APPL procedures. The median of the maximum order statistic

when n = 15 items are sampled with replacement from a geometric distribution with

param eter p = | can be found with the statements

> X := GeometricRV(2 / 5) ;
> Y := OrderStat(X, 15, 15);
> IDF(Y, 0.5);

which returns the median of this distribution as 7.

E x a m p le 3.5. (Sampling with replacement; Formulaic PDF) Let X ~ Poisson(A).

Draw n = 3 items with replacement from this population and determine the PD F of

the largest order statistic.

Solution: In order to find a formula for the PD F of -AT(3), where / (z) = for

x = 0 , 1 , 2 , . . . , simplify the following general expressions (in terms of x) to obtain

are sampled is y i§p*-2o%*+i5p- 6) > which is determined with the statem ent

f x (3){0) = [/ (0)] 3 = e 3A and

(* 0 3 YU yl J (* !) 2 \U yl J x !
A3xe~3A T(x, A) A2xe - 2A (r (a :,A))2 A*e~A

(z !)3 ^ T(x) ' (z !)2 (r (z)) 2 ' x\
e~x (A3xe _2A + 3A2xe ~ Ar (z , A)z + 3AX (r (z , A))2 z 2)

(z !) 3

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

75

where T(a,z) = f ^°e lta idt is the incomplete gamma function. The APPL state

ments

> X := PoissonRV(lambda) ;
> OrderStat(X, 3 , 3);

yield the above PD F as a single function

e~x (3XX (r (r , A))2 x 2 -I- 3A2 le _Ar (r , X)x + X3xe~2X)
/*»<*> = --------------------------------

for x = 0,1, — APPL procedures, such as O rderS ta t, are written so as to con

vert expressions involving gamma functions and incomplete gamma functions to their

simplest form, which may include rewriting gamma terms as factorials, whenever

possible. Especially in the case of problems w ith Poisson random variables, the user

should see the PD F in its well-known form f { x) = rather than f (x) = r(x+i)

for x = 0 , 1 , __ □

3 .2 .2 S am p lin g W ith o u t R ep la cem en t

E x a m p le 3.6. (Sampling without replacement; Finite support; Equally likely dis

tribution) (Hogg & Craig, 1995, page 231) Draw 15 cards a t random and without

replacement from a deck of 25 cards numbered 1 ,2 , . . . , 25. Find the probability th a t

the card numbered 1 0 is the median of the cards selected.

S o lu tio n : Let f (x) = ^ for x = 1, 2 , . . . , 25. The population size is N = 25, the size

of the sample drawn is n = 15, and the order statistic being considered is r = 8 . To

calculate the probability that the median order statistic is x = 1 0 , compute

Pr(X <8) = 10) =

_ 1053
14858

S 0.0709,

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

76

since X has finite support and equally likely probability values.

The APPL statements to solve this problem are

> X := UniformDiscreteRVCl, 25);
> Y : = OrderStatCX, 15, 8, "wo"); # sampling without ("wo") replacement
> PDF(Y, 10);

which yield the exact solution . □

Of greater significance, the random variable Y computed in Example 3.6 contains

more than just the PDF value a t y = 10—it contains the distribution of the median,

ranging from 8 to 18. The PD F of Y as returned in Example 3.6 is

Y ~ IT 13 208 1053 936 1287 7128 1287 936 1053 208 13 1
1 L2185 ’ 7429’ 14858’ 7429’ 7429 ’ 37145’ 7429 ’ 7429’ 14858’ 742 9 ’ 2185 J ’

[8,9,10,11,12,13,14,15,16,17,18], [“Discrete”, “PD F”]].

Furthermore, APPL can return the formulaic PDF for the r th order statistic of

Example 3.6 when n = 15 items are drawn from the population without replacement.

The statements

> X := UniformDiscreteRVCl, 25);
> Y := OrderStat(X, 15, r, "wo");

produce the correct PDF

Y := 326^760 (r — l) (l 5 — r)] ’ (x = r ” 1 0 + 'I- [“Discrete” , “PD F”]

E x a m p le 3.7. (Sampling without replacement; Finite support; Non-equally likely

distribution) Let X be a random variable with PDF

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

77

/(x) = <

P i

P2

P 3

P 4

X = 1

x = 1 0

X = 100

x = 1 0 0 0 ,

where Pi + p 2 + P 3 + P 4 = 1 and p,- > 0,z = 1,2, 3,4. Find the distribution of the

median order statistic r = 2 when n = 3 items are sampled without replacement from

the population.

S o lu tio n : The PDF for the median order statistic r = 2 when n = 3 items are

sampled is

fX(2) (*) =

r
P4 P2 P i

+
P4 P 2 P i

+
P4 P2 P I

+
P4 P 2 P i ,

(1 - P 4) (1 ~ P 2 - P 4) 1 - P 4) (1 ~ P 1 - P 4) 1 - P 2) (1 - P 2 - P 4) 1 - P 2) (l - P l - P 2) '

P 4 P2 P i
+

P4 P 2 P i
+

P 3 P 2 P I
+

P3 P 2 P i |
(l - p i) (l - p i - p 4) 1 - P l) (l - P l - P 2) 1 - P 3) (1 - P 2 — P 3) l - P 3) (l ~ P l - P 3)

P3 P2 P i
+

P 3 P 2 P i
+

P 3 P 2 P I
+

P3 P2 P i
(1 - P 2) (1 - P 2 ~ P 3) 1 - P 2) (l - P l - P 2) l - P l) (l - P l ~ P 3) 1 - P l) (l - P l - P 2)

P4 P 3 P2
+

P4 P 3 P2
+

P 4 P 3 P2
+

P4 P 3 P2 |
(1 _ P 4) (1 - - P 4 - P 3) 1 - P 4) (1 - P 2 - P 4) 1 - P 3) (1 - P 4 - P 3 > 1 - P 3) (1 - P 2 - P 3) '

P4 P 3 VI
+

P 4 P 3 P2
+

P4 P 3 P I P4 P 3 P i 1

(1 - P 2) (1 ~ P 2 - P 4) 1 — P 2) (l — P 2 - P 3) 1 P 4) (1 P 4 P 3) l - P 4) (l ~ P l - P 4)

P4 P 3 P i
+

P4 P 3 P i
+

P 4 P 3 P i
+

P4 P 3 P i
. (1 - P 3) (1 ~ P 4 - P 3) 1 —P 3) (l —P 1 - P 3) l - P l) (l - P l ~ P 4) l - P l) (l - P l ~ P 3)

x = 1 0

x = 1 0 0 ,

which is found in APPL using the statements

> X := [[p i , p2, p3, p4] , [1 , 10, 100, 1000], ["D isc re te " , "PDF"]];
> OrderStatCX, 3, 2, "wo"); □

E x am p le 3.8. (Sampling without replacement; Infinite support) Let X ~ geom etric(|).

Find the probability that the maximum order statistic r = 2 is five when n = 2 items

are drawn without replacement from the population.

S o lu tio n : Let X ~ geometric (p) parameterized as

f (x) = p (l - p) X—1 x = 1 , 2 ,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

78

The SF is

S (x) = Pr(AT > x)
OO

= ^ Z f (w)
VJ—X
oo

= E p ^ - p) ” ' 1
w = x

= (1 - p) * - 1 x = l , 2 , . . .

by summing the geometric series. Also, since F(x) + S(x) — f (x) = 1 for x = 1 , 2 , . .

the CDF is

F(x) = 1 - (1 - p) - 1 + p (l - p) * - 1

= 1 - (1 - p) 1 1 = 1, 2,

Thus, the PD Fs of ATp) and AT^) when n = 2 items are sampled w ithout replacement

are

— n f l —

/**(.) - +

xi =1 + 1

for x = 1 , 2 , . . and

x 1 p(l — p)Xl 1 p (l — p)x 1

/,„,(*> = Pd - P) - E , + Tf f r l V * • t1 - P - r t - 1]

= »2a - o i1- 1 V (i - p) 11-1 p (i - p)1 ' 1 - p (i - p)2x~2
i — p (i — p) x i _ 1 l — p (i — p) x - 1Xl —1

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

79

As a result, the PD F of the maximum order statistic X(2) for p = 1 /2 is

x+l x-1
©

X i - l

E \2 J_____
1 - (^ Xlx i = l

+
21

(i) 1 - a:
i - a r

, 2 x — l

x = 1 , 2 ,

and so

fX(2) (5) - G) '
4

E \21
i - (M

x i = 1 \ 2 /

xi

681
8680

, a) 5 - ») !

i - (i) 5

This probability value is computed in APPL with the statements

> X := GeometricRVCl / 2);
> Y := OrderStatCX, 2, 2, "wo");
> PDF(Y, 5); □

3.3 Range Statistics

One natural extension of the O rd e rS ta t procedure is RangeStat, a procedure which

determines the PDF of the range of a sample of n items drawn from a discrete

population, either with or without replacement. Since R angeStat had not been coded

in APPL for continuous distributions, the procedure was also extended to cover these

distributions for use in Section 3.4, the bootstrap section.

3.3 .1 D iscre te D istr ib u tio n s

Let AT be a discrete random variable with PD F f (x) and support x x, x2, ■ ■ ■, x # € Z + ,

where x x < x 2 < • • • < x ^ . Also, let f { x i) = pi for i = 1 , 2 , . . . , N . Suppose n items

are sampled with replacement (which implies th a t the n draws are independent) from

the discrete population. The probability th a t the maximum value drawn is Xj and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

80

the minimum value drawn is Xi for i < j , or th a t the range is |Xj — Xi\, for those n

draws is computed using the formula (Stockmeyer, 2001):

P r (x (n) = Xj,xa)=x̂ = - Y {Pk)n - Y ^ n + Y (p̂ n
k=i fc= i+ l k=i k = i + l

for i = 1 ,2 , . . . , IV, j = i, i 1 , . . . , N . The term]Ci=z(Pfc)n is the probability that

all sampled items lie between Xi and Xj inclusive. The term removes

the probability that the sampled items do not include x i: since this would result in a

range which is less than \ x j — £ ;| . The term (Pk)n removes the probability that

the sampled items do not include Xj, since this would also result in a range which is

also less than |Xj — Xi\. The term Y2k=i+i(P*)” adds back in the probabilities that

were removed twice (by the second and th ird term s)—specifically, the probabilities of

obtaining samples that included neither Xi nor Xj.

To demonstrate how this formula is used in the RangeStat procedure, let A- be a

discrete random variable with PDF

f i x) = <

0.5 x — 1

0.3 x = 5

0.2 x = 9.

If n = 3 values are sampled (with replacement) from the population, then the 33

possible outcomes can be written as the ten ordered sets {1, 1, 1}, {5, 5, 5}, {9, 9,

9}, {1, 1, 5}, { 1 , 1 , 9}, {1 , 5, 5}, {1 , 9, 9}, {1, 5, 9}, {5, 5, 9}, and {5, 9, 9}. The

possible range values are 0, 4, and 8 . The range statistic algorithm does the following:

1 . Two arrays, R S and R P , are built, where R S contains the range support values

and R P contains the corresponding range probability mass values. The arrays

are initialized to contain all zeros. Given tha t the support is x x < x^ < • • • < x N,

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

81

there are 2 ~ possible non-zero range support values, some of

which may be identical, and one support value of zero. Thus, the arrays are

initialized to be of size + 1 . For the example random variable X , the

initial R S and R P arrays are

RS:

RP:

0 0 0 0

o

0 0
o

2 . Fill the first element of R P with YliLi f i x i)Ni the probability tha t the range is

zero. For the example random variable X , the arrays are

RS:

RP:

0 0 0 0

0.16 0 0 0

since (0.5) 3 + (0.3) 3 + (0.2) 3 = 0.16.

3. For i = 1, 2 , . . . , N , j = i-f-1, z-f-2,. . . , IV, the difference Xj — Xi is computed and

placed in R S array cell k , where k = 2 ,3 , . . . , _|_ i . The corresponding

probability, Pr(X (n) = j , X (i) = z), is computed by the formula discussed on

the previous page and placed in the R P array cell k. The updated R S and R P

arrays in the example axe

RS:

RP:

0 4 8 4

0.16 0.36 0.39 0.09

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

82

4. The APPL In s e r tio n S o r t procedure uses an insertion sort algorithm to sort

the array R S and to make the appropriate updates to the R P array. The R S

and R P arrays after sorting for the example are

RS:

RP:

0 4 4 8

0.16 0.36 0.09 0.39

5. The identical values in the range support array are combined and the appro

priate updates are made to the probability mass value array. Zeros at the end

of the R S array reflect the number of identical range values th a t are combined.

For the example, since two range values of four are combined, one array cell

containing zero appears at the end of the R S (and R P) array.

RS:

RP:

0 4 8 0

0.16 0.45 0.39 0

6 . The extraneous zeros axe removed from the range support and probability mass

value arrays. The zeros (if any) a t the end of the R P array are not probability

values. The zeros exist because of the redundant values in R S . Use the R P

array to determine how many extraneous zeros exist, and reconstruct the R S

and R P arrays so the extra zeros are not included as part of the arrays. The

final R S and R P arrays for the example are

RS:

RP:

0 4 8

0.16 0.45 0.39

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

83

E x am p le 3.9. When giving a multiple choice pre-calculus test, I have noticed that

the probability tha t a student earns a certain score X on the test has the following

PDF:

f x (x) = <

0 . 0 1 x = 40

0.06

oinII
0 . 1 2 x = 60

0.28

okIIH
0.37

o00IIH

0.14 x = 90

0 . 0 2 x = 1 0 0 .

After scoring a test, I give students summary statistics about how they did as a

class on the test. One of these statistics includes reporting the range score to them,

i.e., the difference between the highest and lowest test scores. At The Ohio State

University, I had 200 students taking a particular test, while at Virginia Wesleyan

College I had only 20 students who would take th a t same test. Ohio State students

complained more than Virginia Wesleyan students about the test being too hard after

looking a t the range score. W hy is this so?

S o lu tio n : APPL can be used to quantify this phenomena. Let X be the discrete

random variable representing the typical scores of students on these tests. Assign Y

as the range statistic of the scores at Ohio State, and assign Z as the range statistic

of the scores a t Virginia Wesleyan. The statem ents

> X := [[0 .0 1 , 0 .0 6 , 0 .1 2 , 0 .28 , 0 .3 7 , 0 .1 4 , 0 .0 2] ,
[40, 50, 60, 70, 80, 90, 100], [" D isc re te " , "PDF"]];

> Y := R angeStat(X , 200);
> Z := R angeStat(X , 20);

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

84

produce the rounded PD Fs for the ranges as

and

f v (y) = <

f z { z) = <

0.4369 - 10- 86 II O

0.3825 - 10~ 37 y = io

0.3373 - 10~ 20 II N
5

O

0.6431 • 10- 8 *3 II CO O

0.2262 - 1 0 ~ 2 II o

0.1470 y = 50

0.8507 y = 60,

0.2321 - 10~ 8 z = 0

0.1827-10~3 oII

0.0140 • 10- 1 z = 20

0.1620 z = 30

0.4567 II o
0.3088 z = 50

0.0583

otoII

As can be seen from the PD F of Y , there is more than a 99% chance at Ohio

State that a range of 50 or more is reported on a test. In fact, with a probability of

approximately 0.85, the range is 60. The high range score leads students to focus on

the fact that very low scores, e.g., 40 and 50, are obtained and the test must be too

hard. On the other hand, a t Virginia Wesleyan the range is 40 approximately 45%

of the time. In students’ minds, a range of 40 means there is not a large discrepancy

between high and low scores (as in the Ohio State classes). A large range indicates a

large variation in grades. Although this can be a good for some students because it

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

85

suggests there axe those who scored on the high end, most students focus on the fact

th a t a high range indicates th a t low scores are obtained. □

If the RangeStat procedure is given three arguments, X, n, and "wo", then it

returns the PD F of the range of the discrete random variable X when n items are

sampled from the random variable’s population without replacement. In the without

replacement case, assume, w ithout loss of generality, that the support of X is Q =

{1 , 2 , . . . , N }, where N e Z + .

In the without replacement case, the R angeStat algorithm basically follows the

same steps as the O rd e rS ta t algorithm, including the use of the NextCombination

and N extPerm utation procedures. If n = N , i.e., the entire population is sampled,

then the PDF of the range, which is called Y here, is

f (v) = <

f

1 y — N — 1

0 otherwise.

If n = 2, 3 , . . . , N — 1 in the without replacement case, then a single-dimensional

array of length N — n + 1 is defined to contain the PD F range values y = n —

l , n , . . . , iV — 1. A sin the O rd e rS ta t procedure, the first lexicographical combination

of n items sampled from the sequence of integers 1 to TV is formed. Given a combi

nation, the algorithm generates all corresponding perm utations. The probability for

each perm utation is calculated (as described in the Section 3.1.2), and then the max

imum and minimum values of th a t perm utation is determined. The perm utation’s

range, i.e., the difference of its maximum and minimum values, is computed and then

the appropriate array cell is incremented by th a t perm utation’s probability.

For example, let f (x) = for x = 1,2, . . . , 5 . Suppose the perm utation

th a t the algorithm is currently processing is [5, 3, 2]. Then the probability of this

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

86

permutation is ^ (as computed in Section 3.1.2). The maximum and m i n i m u m values

of the perm utation are 5 and 2 , respectively, which means the range is 3. The PD F

range cell y = 3 is incremented by

To demonstrate this algorithm, let X be the discrete random variable with PD F

/(*) =

x = 1

x = 2

x = 3.

If n = 2 values are sampled (without replacement) from the population, then the

possible outcomes are the ordered sets {1 , 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, and {3,

2}. The possible range values are one and two. To calculate the PDF of the range, the

six permutations and their probabilities axe computed and added to the appropriate

range array cells. The array cell that represents the probability that the range is one

is computed as

Pr(F = 1) = Pr(Xx = 1, X 2 = 2) + P r ^ = 2, X 2 = 1) + PrpG = 2, X 2 = 3) + P r ^ = 3, X 2 = 2)

= i + i + i15 12 4 3

 U .
1 5 '

Thus, array cell one holds the value ^ while array cell two holds the value T , which

is computed in a similar manner. The APPL statem ents

> X := [[1 / 6 , 1 / 3 , 1 / 2] , [1, 2 , 3] , [" D is c re te " , "PDF"]];
> RangeStat(X , 2 , "wo");

produce the range PD F

f (y) =
ii
15

4
15

y = l
y = 2.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

87

3.3 .2 C ontinuous D istr ib u tio n s

Let X be a continuous random variable with support Q. and PD F f x (x) and CDF

Fx {x). For n > 2, the jo in t PD F of and X (n) is (Hogg & Craig, 1995, pages

199-200)

f x w ,xw (x(l), x (n)) = n - (re - 1) [Fx(3:(n)) - Fx (x (1))] n _ 2 • f x (xw) - f x {xw)

for min{Q} < < X(n) < max{fi}.

The goal is to determine the PD F of the range X ^ — . Using the transforma

tion technique, let Yi = X (n) — X^) and define the dummy transform ation Y2 = X (n).

Consider the one-to-one transform ations yi = X(n) — X(i) and y2 = X(n), and their in

verses X(x) = y2 — yi and X(„) = y2, so th a t the corresponding Jacobian of the inverse

transformation is

d x (1)

d y i

d x (1)

d V 2
- 1 1

d x (n)
d y i

d x (n)

d y 2
0 1

The joint PDF of Yx and Y2 is

fYUY2(yu sfe) = | - i | ■ n • (n - \)[Fx {y2) — Fx (y2 - yx)]n~2 ■ f x (y 2 - yi) ■ f x { y 2)

for min{f2} < yx < y 2 < m ax{fi}. Hence, the PDF of the range Yi = X(n) — X(i) is

J/ - m a x { Q }

n ■ (n - l)[Fx (y2) - Fx (y2 - y i)] n ~ 2 • f x (2/2 — Vi) ■ f x (y 2) dy2
yi

for 0 < yi < max{fi}.

E x am p le 3.10. (Parzen, 1960, page 328) Find the probability th a t in a random

sample of size n of a random variable uniformly distributed on the interval [0 , l] the

range will exceed 0 .8 .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

88

S o lu tio n : Assume tha t n > 2 since a range is being determined and a t least two

values are necessary. Thus, the following APPL statements

> assume(n >= 2) ;
> X := UniformRVCO, 1);
> Y := RangeStatCX, n) ;
> SFCY, 0 .8) ;

determine the probability as 1 — n (0 .8) ra_1 + (n — l) (0 .8)n. □

E x a m p le 3.11. (Bain & Engelhart, 1992, pages 219-220) Consider a random sample

of size n = 2 from a distribution with PDF f (x) = 2x for 0 < x < 1. Find the PD F

of the range.

S o lu tio n : Define X to be the random variable of interest in APPL. The statem ents

> X := [[x -> 2 * x] , [0, 1] , ["C ontinuous", "PDF"]];
> Y := RangeStatCX, 2) ;

produce the PDF of the range Y , which is

8 4vz
f (y) = ^ + - - 4 y 0 < y < l .6 6 □

3.4 Eliminating Resampling Error in Bootstrap

ping

Bootstrapping procedures require tha t B bootstrap samples be generated in order to

perform some statistical inference concerning a d a ta set. Although the requirements

for the magnitude of B are typically modest, a practitioner would prefer to avoid the

resampling error introduced by choosing a finite B , if possible. This section shows how

APPL can be used to perform exact bootstrapping analysis in certain applications,

eliminating the need for resampling in the analysis of a da ta set.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

89

3 .4 .1 In trod u ction

Using Efron and Tibshirani’s (1993) notation, consider the elimination of the genera

tion of B bootstrap samples when performing a bootstrap analysis by calculating the

exact distribution of the statistic of interest. There are several reasons for considering

this approach:

• A bootstrapping novice can easily confuse the sample size n and number of

bootstrap samples B. Eliminating the resampling of the data set B times

simplifies the conceptualization of the bootstrapping process.

• In many situations, computer time is saved using the exact approach.

• A practitioner does not need to be concerned about problem-specific require

ments for B , e.g., “B in the range of 50 to 200 usually makes seb00t a good

standard error estimator, even for estimators like the median” (Efron and Tib-

shirani, 1993, page 14) or “B should be > 500 or 1000 in order to make the

variability of acceptably low” for estimating 95th percentiles (Efron and Tib-

shirani, 1993, page 275).

• Exact values are always preferred to approximations. One should not add re

sampling error to sampling error unnecessarily.

By way of example, this section shows how APPL can be used to perform exact

bootstrap analysis. The use of APPL eliminates the resampling variability that is

present in a bootstrap procedure. The application area tha t is presented here is the

estimation of standard errors.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

90

3 .4 .2 E s t im a t io n o f S ta n d a r d E rro rs

The standard error of the sample mean, s/y /n , is useful when comparing means, but

standard errors for comparing other quantities (e.g., fractiles) are often intractable.

This section considers the estimation of standard errors associated with the rat sur

vival da ta given in Table 3.2 (Efron and Tibshirani, 1993, page 11). Seven rats are

given a treatm ent and their survival times, given in days, are shown in the first row

of the table. Nine other rats constitute a control group, and their survival times are

shown in the second row of the table.

Table 3.2: R at survival data.

Group D ata n Median Mean Range

Treatment 16, 23, 38, 94, 99, 141, 197 7 94 8 6 . 8 6 181

Control 10, 27, 30, 40, 46, 51, 52, 104, 146 9 46 56.22 136

E x a m p le 3.12. (Comparing medians.) Consider first the estimation of the standard

error of the difference between the medians of the two samples. The standard boot

strapping approach to estimating the standard error of the median for the treatm ent

group is to generate B bootstrap samples, each of which consists of seven samples

drawn with replacement from 16, 23, 38, 94, 99, 141, and 197. The sample standard

deviation of the medians of these B bootstrap samples is an estim ate of the standard

error of the median. Using the Splus commands

s e t . s e e d (l)
x <- c(16 , 23, 38, 94, 99, 141, 197)
medn <- fu n c tio n (x){ q u a n ti le (x , 0 .50)}
b o o ts tra p (x , medn, B = 50)

yields an estimated standard error of 41.18 for the treatm ent da ta with B — 50

bootstrap replicates. With the s e t . s e e d function used to call a stream number

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

I

91

corresponding to the associated column, Table 3.3 shows the estimated standard errors

for several B values, where the B = + 0 0 column will be calculated subsequently.

Table 3.3: Bootstrap estimates of the standard error of the median.

B = 50 B = 100 B = 250 B = 500 B = 1000 B = - (- 0 0

Treatment

Control

41.18

20.30

37.63

1 2 . 6 8

36.88

9.538

37.90

13.10

38.98

13.82

37.83

13.08

There is considerable resampling error introduced for smaller values of B. The

B = + 0 0 column of Table 3.3 corresponds to the ideal bootstrap estimate of the

standard error of 0 , or sej=.(0 *) = lima-^+oo sea, to use the terminology and notation

in Efron and Tibshirani (1993, page 46).

The APPL statem ents below eliminate the resampling error (i.e., B = +oc):

> tre a tm e n t := [16, 23, 38, 94, 99, 141, 197];
> X : = B o o ts trap R V (trea tm en t);
> Y := O rderS tat(X , 7 , 4) ;
> s q r t(V a r ia n c e (Y)) ;

The BootstrapRV procedure creates a discrete random variable X that can as

sume the values 16, 23, 38, 94, 99, 141, and 197, each with probability The call

O rd e rS ta t (X, 7 , 4) determines the distribution of the fourth order statistic in seven

draws with replacement from the population associated with X , i.e., the distribution

of the median. This call returns the distribution of the random variable Y as

f (y) = <

8359
823543

80809
823543

196519
823543

252169
823543

196519
823543

80809
823543

8359
823543

y = 16

y = 23

y = 38

y = 94

y — 99

y = 141

y = 197.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

92

Finally, s q r t (V ariance (Y)) returns the standard error as §23543 \/242712738519382

which can be approximated using Maple’s e v a lf procedure as 37.83467. In a simi

lar fashion, the ideal bootstrap estimate of the standard error of the median can be

calculated in the control case with the APPL statements

> control := [10, 27, 30, 40, 46, 51, 52, 104, 146]
> X := BootstrapRV(control);
> Y := OrderStat(X, 9, 5);
> sqrt(Variance(Y));

which yields \/25662937134123797402 ^ 13.07587. Finally, although the

difference between the two sample medians (94 — 46 = 48) seems large, it is only

4 8 /\/37.832 + 13.082 = 1.19 standard deviation units away from zero, indicating that

the observed difference in the medians is not statistically significant. Had the stan

dard bootstrapping procedure been applied with B = 50 bootstrap replications, Table

3.3 indicates tha t the number of standard deviation units would have been estimated

to be 48/\/41.182 + 20.302 = 1.05. Although the conclusion in this case is the same,

the difference between using B = 50 and B = + 0 0 could result in different conclu

sions for the same data set. □

E x a m p le 3-13- (Comparing means.) Although the standard error of the mean can

be expressed in closed-form, the previous analysis and attem pt to compare the sample

means to illustrate how to adapt APPL for comparing means is continued. Splus can

be used to create bootstrap estimates given in Table 3.4 with the commands

s e t . s e e d (l)
x <- c (1 6 , 23, 38, 94, 99, 141, 197)
b o o ts tr a p (x , mean, B = 50)

producing the upper-left-hand entry.

The APPL statements required to produce the B = + 0 0 column associated with

the treatm ent case of Table 3.4 are

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

93

Table 3.4: Bootstrap estimates of the standard error of the mean.

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +oo

Treatment

Control

23.89

17.07

24.29

13.83

23.16

13.40

24.36

13.13

23.75

13.55

23.36

13.35

> n := 7;
> data := [16, 23, 38, 94, 99, 141, 197];
> X := BootstrapRV(data);
> Y := ConvolutionIID(X, n);
> Y := Transform(Y, [[x -> x / n], [-infinity, infinity]]);
> sqrt(Variance(Y));

which yield the PD F of the mean Y as

1/7 7 = 1/823543 y = 16

Q / 7 7 = 1/117649 y = 17

Q / 7 7 = 3/117649

00rHII

Q / 7 7 = 5/117649 y = 19

Q / 7 7 = 1/117649 y = 134/7

Q / 7 7 = 5/117649 y = 2 0

1/7 7 = 1/823543 y = 197

and the standard error as

|v ' 3 2 7 6 4 9 ,

or approximately 23.36352. This is, of course, equal to \ J ^ where

s is the standard deviation of the treatm ent survival times. This fact is the fortunate

consequence of the mathem atical tractability of the standard eiror for means. Other,

less fortunate, situations can be handled in a similar manner.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

94

Similar APPL statem ents for the control case yield an estimated standard error

in the B = + 0 0 case of

^v/129902,

or approximately 13.34886.

To complete the analysis of the difference of the means between the treatm ent and

control group (86.86—56.22 = 30.64), this difference is only 30.64/\/23.362 + 13.352 =

1.14 standard deviation units away from zero, indicating that the observed difference

in the medians is also not statistically significant. □

E x a m p le 3.14. (Comparing ranges.) The previous two examples have estim ated the

standard errors of measures of central tendency (e.g., the median and mean). The

estim ation of the standard error of a measure of dispersion, the sample range R, will

now be considered.

The APPL statements required to produce the standard error of the range R for

the treatm ent case are

> n := 7;
> d a ta := [16, 23, 38, 94, 99, 141, 197];
> X := B oo tstrapR V (data);
> R := R angeStat(X , n) ;
> sq r t(V a r ia n c e (R)) ;

which yield

1 6 ^ 8 8 7 8 1 5 0 9 9 8 3 ,

or approximately 35.45692. Similar APPL statem ents for the control case yield an

estim ated standard error for the range as

4785969^5666287777334555,

or approximately 31.4762.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

95

To complete the analysis of the difference of the ranges between the treatment and

control group (181 — 136 = 45), we observe th a t the difference is 45/>/35.462 -r 31.482

= 0.95 standard deviations away from zero, indicating that the observed difference in

the range is not statistically significant. □

E x a m p le 3.15. (Confidence interval for range.) The previous three examples esti

m ated the standard errors of measures of central tendency and a measure of disper

sion. This example constructs a confidence interval for the sample range of the rat

treatm ent group.

Let R be the range of the n = 7 observations. The APPL statem ents

> n := 7;
> d a ta := [16, 23, 38, 94, 99, 141, 197];
> X := B oo tstrapR V (data);
> R := RangeStatCX, n)
> IDF(R, 0 .025);
> IDF(R, 0 .975);

result in a 95% confidence interval of 76 < R < 181. This confidence interval has the

unappealing property tha t the point estim ator, R = 181, is also the upper limit of

the confidence interval.

Trosset (2001) suggested an alternative m ethod for computing a confidence inter

val for the range R , which involves param etric bootstrapping. F irst, an exponential

distribution with mean 1/9 is fit to the treatm ent da ta using the A PPL MLE (maximum

likelihood estimator) procedure. The procedure identifies the param eter estimate for

the distribution as 9 = The (continuous) distribution of the sample range of

n = 7 observations drawn from an exponential population with param eter 9 = ^ is

then computed. The confidence interval is determined with the CDF procedure.

The following APPL statem ents yield a 95% confidence interval for the range R

for n = 7 samples as 6 8 < R < 475.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

96

> d a ta := [16, 23, 38, 94, 99, 141, 197];
> X := E xponentialR V (theta) ;
> th e ta h a t := op(MLE(X, tre a tm e n t, [t h e ta])) ;
> Y := E xponen tia lR V (thetahat) ;
> Z := RangeStat(Y , 7) ;
> IDF(Z, 0 .025);
> IDF(Z, 0 .975);

The last two statements fail since IDF is currently designed to analytically (instead

of numerically) determine quantiles. Thus the following two APPL statem ents are

required to return the endpoints of the 95% confidence interval.

> lo := fsolve(CDF(Z, a) = 0 .025 , a = 0 . . 100);
> h i := fsolve(CDF(Z, a) = 0 .975 , a = lo . . 500); □

3 .4 .3 C onclusion

For moderate sample sizes and test statistics having distributions that APPL can

determine, the exact approach to bootstrapping can reduce computation time and

eliminate resampling error.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 4

Convolutions and Products

An im portant operation in probability theory is to calculate the distribution of the

convolution of two independent random variables X and Y . Applications of con

volutions appear in many areas of m athem atics, probability theory, physics, and

engineering. Most texts devote the m ajority of their attention to convolutions of con

tinuous random variables, rather than discrete random variables. The distribution of

Z = X + Y , where X and Y are continuous and independent, can be obtained as

F z(z) = Fx +y (z)

= P r {X + Y < z)

= J J f x { x) f Y {y)dxdy

= [[f x (x) f Y {y)dxdy
J — oo */ — oo

= f f f x { x) d x f Y {y)dy
J —oo J —oo

/ oo
Fx {z - y) f Y (y) dy.

■OO

By differentiating Fz{ z) , we obtain the PD F f z (z) of Z = X + Y , which is the

97

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

98

convolution of the PDFs f x (x) and f y (y) of the random variables X and Y. The

convolution formula for f z {z) is

The following example illustrates the use of this formula.

E x a m p le 4.1. (Hogg & Craig, 1995, page 179) Determine the PDF of Z = X + Y,

where X and Y are iid random variables with PD Fs fx{%) = e_ I, 0 < x < oo, zero

elsewhere and f y { y) = e~y, 0 < y < oo, zero elsewhere.

S o lu tio n : The PD F f z {z) is

We now turn to the case in which X and Y are discrete random variables. W ithout

loss of generality, assume th a t the supports of X and Y are integer valued. For

computing the PD F of Z = X 4 - Y in the discrete case, there axe several approaches.

The event { X + Y = z}, z € Z, can be written as the union of the disjoint events

= C, y = z — C}, { X = C + 1, Y = z — (C + 1)}, { X = z — C, Y = £}, where

C is the minimum of the union of the support values of X and Y. The PDF f z (z)

of the convolution of the PD Fs of the independent random variables X and Y (with

integer supports) can be computed as

f z {z) = f x+y{z) = f x { z - y) f y(y) dy.

z > 0 . □

Pr(Z = z) = Pr(X + Y = z)

= J ^ P r {X = k , Y = z - k)
k=C
z-C

=]T^Pr(X = fc)Pr(F — z — k).
k=c

(4.1)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

99

The following example illustrates the use of this discrete convolution formula.

E x a m p le 4.2 . (Ross, 1998, pages 270—271) If X and Y are independent Poisson

random variables with respective parameters \ \ and A2, compute the PDF of Z =

X + Y.

S o lu tio n : The PD F of a Poisson random variable X with param eter A is f x (r) =

e r = 0 , 1 , 2 , Since Q = min{0 , 1 , 2 , . . . } = 0 , thenXt

P r (Z = z) = Pr (X + Y = z)
Z

= 5 ^ P r(X = k, Y = z - k)
k=0

z

= J3Pr(X = fc)-Pr(r = z-A;)
k = 0

_ ^ e~Xl A* e~X2\ 2z~k

z \ k \ z — k 'M <*2

^ k l (z - k) !
k = 0

e-(A i+ A 2) 2-1
= ---- ^ -----2 ^ l fc) iAl (binomial series)

fc= 0 " '
g~ (A1+A2)

= -----—----- • (Ai + A2) z z = 0 , 1 , 2 ,

Thus, Z = X + Y has a Poisson distribution with param eter Ai 4 - A2. □

Grinstead and Snell (1997, page 286) state th a t if one wants to sum more than

two iid random variables, then the PDF for Z can be determined by induction. Let

Zn = X i + X 2-\------ \-Xn be the sum of n independent random variables with common

PD F f (x) defined on the integers. Then the PD F of Z\ is f {x) . We can write

Z{ = Zi_i + X i ,

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

100

for i = 2, 3, . . . , n. Thus, since we know the PDF of X, is f (x) , for i = 1 ,2 , . . . , n,

we can find the PDF of Zn by induction. When summing more than two iid random

variables, our C onvolutionllD procedure (see Example 4.8 in Section 4.4) uses this

inductive process to compute the PD F of the convolution.

For example, let X i, X 2, and X 3 have PDFs f (x) = 1/6 for x = 1 , 2 , . . . , 6 . If

Z2 = X \ + X 2, then the PDF f z 2iz) is

2 = 2,3, . . . , 7

2 = 8,9, . . . , 12.

The PDF of Z3 = X \ 4- X 2 + X 3 is the convolution of the PD Fs of Z2 and X 3.

For example, P r (Z3 = 4) = Pt(Z2 = 3)-Pr(X 3 = 1)+ Pr(Z 2 = 2)- P r(X 3 = 2) =

-2. . l , _L . i — _L
36 6 ' 36 6 — 72"

Due to the m athem atical intractability in implementing the discrete convolution

formula (Equation 4.1) for certain non-identically distributed random variables (e.g.,

X ~ Poisson(A), Y ~ geometric(p)) and the inefficiency in making computations

with this formula for random vaxiables with arbitrary supports (e.g., X with sup

port { -2 1 6 ,-5 7 ,2 3 ,8 1 } and Y with support { -1 0 0 2 ,-15 ,2 ,62 ,211}), only certain

convolutions can or should be computed using this formula. For random variables

with arbitrary supports, the discrete convolution formula can be used, but it is often

inefficient because one or both of the random vaxiables have support values ranging

over a large domain of non-adjacent integer values. The following example displays

the inefficiency that can be encountered by using the convolution formula in Equa

tion 4.1, even for random variables with only a small number of support values with

non-zero probability.

E x a m p le 4.3. Suppose X and Y are independent discrete random variables with

f z 2(z) =

2 - :

~36"
13 -

36

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

101

PD Fs defined as

f x (x) = <

0.15 x = —3 /

0.25 x = — 1

0 . 1 x = 2 f r (y) = <

0.3 x = 6

0 . 2 x = 8 ,

0 . 2 y = - 2

0 . 1 y = i

0.3 y = 5

0.4 y = 8 .

Compute the PDF of Z = X + Y .

S o lu tio n : The support values for Z are z = {—5, —3, —2, 0, 2 ,3,4, 5 ,6 ,7 ,9 ,10 ,11 ,13 ,

14,16}. We’ll use the formula P r(-^ = k , Y = z —A;), where C = —3, to compute

only P r(Z = 4).

Pr(Z = 4) = 5 3 Pr(X = k , Y = 4 — k)
f c = - 3

= P r(X = - 3) • Pr(Y = 7) + P r(X = - 2) - Pr(Y = 6) +

P r(X = - 1) • Pr(Y = 5) + P r(X = 0) • Pr(Y = 4) +

P t (X = 1) - Pr(Y = 3) + P r(X = 2) • P r(F = 2) +

P r(X = 3) - Pr(Y = 1) + P t (X = 4) • Pr(Y = 0) +

P r(X = 5) - Pr(Y = - 1) + P r(X = 6) - Pr(Y = -2) +

P r(X = 7) • Pr(Y = -3)

= 0.15 • 0 + 0 • 0 + 0.25 - 0.3 + 0 - 0 + 0 • 0 + 0.1 • 0 +

0 • 0.1 + 0 - 0 + 0 • 0 + 0.3 • 0.2 + 0 - 0

= 0.135.

The probabilities for the other support values are computed similarly. Because of

the tedious calculations needed to compute the PD F of Z by the discrete convolution

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

102

formula (Equation 4.1), we’ll compute it fully in the next example using moment

generating functions (MGFs). □

Unlike the discrete convolution formula, the algorithm to be presented in this

paper avoids all of the zero term computations in the construction of the PDF of

Z. Also, another way to compute the PDF of Z, while avoiding the numerous zero

terms, is to use the moment generating function technique.

E xam ple 4.4. Suppose X and Y are the discrete random variables defined in Ex

ample 4.3 and Z = X + Y . Find the PDF of Z using the moment generating function

technique.

S o lu tion : Since X and Y are independent, the MGF of Z is

M z {t) = E{et(̂x+Y))

= E{et x ety)

= E{et x)E {e tY)

= M x (t) My(t).

The MGFs of X and Y , respectively, are

M x (t) = E(et x) = 0.15e-3* + 0.25e_t + O.le2* + 0.3e64 + 0.2e84,

and
M Y (t) = E (e tY) = 0.2e-2t + O.le* + 0.3e5t + 0.4e8t

for —oo < t < oo. The MGF of Z is

M z (t) = 0.03e"5t + 0.05e"3t + 0.015e"2t + 0.045 + 0.045e2t + 0.01e3t +

0.135e44 + 0.06est + 0.04e6t + 0.16e7t + 0.02e9t + 0.04e10t +

0.09eu t + 0.06e13t + 0.12eu t + 0.08e16t

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

103

for —oo < t < oo. Thus, the PDF of Z is

0.03 2 = — 5
0.05 2 = — 3
0.015 2 = - 2

0.045 2 = 0

0.045 2 = 2

0 . 0 1 2 = 3
0.135 2 = 4
0.06 2 = 5
0.04 2 = 6

0.16 2 = 7
0 . 0 2 2 = 9
0.04 2 = 1 0

0.09 2 = 1 1

0.06 2 = 13
0 . 1 2 2 = 14
0.08 2 = 16.

In complicated examples, especially those involving continuous random variables,

using the moment generating function technique to obtain convolution functions can

be more efficient than direct summation or integration. Along the same lines as the

moment generating function technique, the probability generating function technique

can be used for determining the PD F of the convolution of discrete random variables

with nonnegative integer-valued supports. Unfortunately, the implementation of these

techniques in a computer algebra system (Maple) has drawbacks when the supports

of the random variables X and /or Y are not integer-valued. These implementation

issues are discussed in Section 4.3.

Besides the integration/summation and generating function methods already de

scribed, Parzen (1960, page 395) describes a method for using the characteristic func

tions of independent random variables to compute their convolution. In order to use

this method, though, one must know the inversion formula of the PD F of a random

variable in terms of its characteristic function. The complexity of the inversion also

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

104

makes this m ethod unappealing for complicated or arbitrary distributions.

The purpose of this chapter is to present an algorithm for d eterm in in g the distri

butions of convolutions of discrete random variables, especially those with finite arbi

trary supports. The algorithm handles well-known distributions, such as the binomial

and Poisson, but was written primarily for arb itrary distributions with m oderate car

dinality of their support. Computer algebra systems make it feasible to determine

the distributions of convolutions for these types of distributions.

Section 4.1 describes the algorithm for determ ining the PDF of the convolution

of discrete random variables. The algorithm th a t was constructed to compute this

convolution appears in Section 4.2; implementation issues that arose when the algo

rithm was coded in a computer algebra system are given in Section 4.3. Section 4.4

provides a collection of examples tha t can be solved with the convolution algorithm.

4.1 Conceptual Framework

The convolution of two continuous random variables can be computed by the defini

tion of a convolution presented in the introduction, bu t the definition does not give

insight into the difficulty of this com putation for certain random variables, such as

those tha t are piecewise defined random variables. Glen et al. (2001) developed an

algorithm for computing the distribution of the product of two continuous random

variables in a com puter algebra system. In order to obtain the convolution of con

tinuous random variables X and Y , one can transform X and Y by the function

gi(w) = log(iu), compute their product with the product algorithm, and transform

the resulting product by the function g2(^) = to obtain the convolution of X and

Y. Since an algorithm for computing the convolution of two continuous random vari

ables was already in place, the next natural progression was to construct an algorithm

for computing the PD F of the convolution of two discrete random variables.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

105

One way to compute the PD F of the convolution of the PDFs of two independent

discrete random variables is by what we call the “brute force method.” Let X have

support Qx = %n} and Y have support Qy = {yi-,V2 , ym}- This

method does just what the name implies, it computes all possible sums between

and Qy by brute force, e.g., X i + y i , X i + y 2l . . . , X i + ym, x 2 + y i , x 2 +y2, . . . , arn +

y m -i ,xn + ym. The sums are placed in an one-dimensional array, called s, of length

n -m . The corresponding probabilities for each of these sums, f x (x \) - fy(y i) , f x { x 1) *

fy{V2), • - -, f x (xn) - fy{ym)i are stored in an one-dimensional array called Probs, also

of length n ■ m. The probability in position ProbSi corresponds to the sum in position

s,-, i = 1 , 2 , . . . , n • m.

As an example, let X and Y be the random variables introduced in Example 4.3.

The arrays s and Probs for the random variables X and Y are

s = [-5 , - 2 , 2, 5, - 3 , 0, 4, 7, 0, 3, 7, 10, 4, 7, 11, 14, 6 , 9, 13, 16]

and

Probs = [0.03, 0.015, 0.045, 0.06, 0.05, 0.025, 0.075, 0.1, 0.02, 0.01,

0.03, 0.04, 0.06, 0.03, 0.09, 0.12, 0.04, 0.02, 0.06, 0.08].

We assume th a t s is unsorted and may contain identical values (such as 0, 4, and 7 in

this particular example). The array s is sorted and appropriate updates are made to

the corresponding elements in the array Probs. After sorting, the arrays s and Probs

are

s = [-5 , - 3 , - 2 , 0, 0, 2, 3, 4, 4, 5, 6 , 7, 7, 7, 9, 10, 11, 13, 14, 16]

and

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

106

Last, the redundancies in s are removed and the appropriate probabilities correspond

ing to those redundancies are combined in Probs. The final arrays are

s = [-5 , -3 , - 2 , 0, 2, 3, 4, 5, 6 , 7, 9, 10, 11, 13, 14, 16]

and

Probs = [0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16,

0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

The algorithm first employed by the C onvolution procedure to sort the array

s was insertion sort (Weiss, 1994, pages 254-255), which is contained in the APPL

In s e r tio n S o r t procedure. When n - m is small, the simplicity of insertion sort

makes it an appropriate choice. The general strategy of insertion sort is to partition

the array s into two regions: sorted and unsorted. Initially, the entire array s is

considered unsorted, as already discussed. At each step, insertion sort takes the first

value in the unsorted region and places it in its correct position in the sorted region.

The entire array s will be sorted after the final element in the n • m array position is

inserted.

Unfortunately, for random variables X and Y with large support sizes n and m,

such as n — m = 1 0 , insertion sort is inefficient. Since insertion sort is an 0 (N 2)

algorithm, where N = n • m in our setting, it is not an appropriate method for

sorting lists containing more than a hundred or so elements. For this reason, another

sorting algorithm, heapsort (Weiss, 1994, pages 260-262), was chosen to sort the

array s. Heapsort uses a heap, which is a binary tree with special properties, to sort

s. Heapsort is an 0 (N ■ log(N)) algorithm (Carrano et al., 1998, page 430).

Heapsort builds the array s as a maximum heap da ta structure. It then swaps the

maximum element (the root) of the heap with the element in the last array position

sn m- The heap is rebuilt with the remaining unsorted elements in array positions S\

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout pe rm iss ion .

107

through sn.m_ i- The maximum element of the new heap is then swapped with the

element in the second to last position of the array s, which is position sn.m_i. Now

the last two positions in s are sorted in ascending order. The heap structure is again

restored with the remaining unsorted elements in array positions s i through sn.m_2 -

This swap and rebuild process repeats itself until all elements are removed from the

unsorted region of the heap and placed in ascending order from the front to the back

of the heap. Heapsort proved more efficient than insertion sort, especially for large

values of N. The respective CPU times for a given example using insertion sort and

heapsort are provided in Section 4.3 for comparison.

Shellsort, an improved insertion sort, is the algorithm employed by the m athe

matical software package Maple to sort polynomials (Maple 6 ’s online help guide,

2000). Since Shellsort’s “performance is quite acceptable in practice, even for N

[number of elements] in the tens of thousands” (Weiss, 1994, page 260), we take ad

vantage of Maple’s sorting algorithm for polynomials (when possible) by using the

moment generating function technique to compute the convolution of discrete ran

dom variables. The moment generating functions for X and Y , which are M x { t) and

M y (t) respectively, are first computed. Next, the product of the moment generating

functions, M z (t) , is computed. We manipulate the terms of the moment generat

ing function with Maple’s expand procedure so th a t they are written in a fashion

tha t Maple interprets as polynomials terms. For example, if the moment generat

ing function is M z (t) = then expand(M.z(£)) returns M z (t) as

5 (e4)3+ l (e4)2+ | (e4)5. The terms of the resulting expanded moment generating func

tion are then sorted in descending order by the constant appearing in the exponent of

each e4 term. Sorting the example expression M z { t) returns | (e4) 5 + | (e4) 3 + 1 (e4)2.

The probability and support values are extracted from the terms of the expression

M z i t) , and the PD F of the convolution is formed. The PDF for the example expres-

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

108

sion Mz(t) is

f z (z) = <

f
1
6

x
3

1
2

2 = 2

2 = 3

2 = 5.

Although in theory this is an ideal m ethod, Maple recognizes tha t expressions,

such as 4- 4- \e^5At\ are not truly polynomials and will incorrectly sort

expressions with non-integer valued constants in the exponents. Since the moment

generating function M z (t) may not always have integer constants for exponents, the

moment generating function technique for computing convolutions is only reasonable

to use for integer supports. Using probability generating functions to compute the

PD F of a convolution of random variables results in the same complications. Fur

ther implementation issues faced by moment and probability generating functions are

discussed in Section 4.3.

As suggested by Nicol (2000), the sum array s can be constructed in such a way

th a t the next largest sum element is placed in s as s is being built. Instead of

constructing the array s first and then sorting it, the new algorithm constructs s by

sequentially appending the next ordered element. We refer to this method as the

“moving heap m ethod,” and it involves building, deleting, and inserting sums into a

minimum heap data structure. A minimum heap contains its smallest element in the

root (the top node of the heap), rather than its largest as in a maximum heap.

The idea behind this sorting algorithm is the construction of a two-dimensional

“conceptual” array A. The array A is not instantiated to save memory, but is helpful

in explaining the nature of the algorithm. The array A has m -1-1 rows and n + 1

columns. The array A, illustrated in Example 4.5, is displayed in an unusual manner

in order to resemble the axes in the Cartesian coordinate system. W ithout loss of

generality, we assume that the supports of X and Y are arranged in increasing order;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

109

i.e., Xi < x 2 < • - • < x n and j/i < y2 < * - - < Vm- The array cell (£, j) contains the

sum = yi + Xj for £ = 1,2, . . . , m and j = 1,2, . . . , n. The cells in row m + 1 of

A hold a 0 or 1 for each column j = 1,2, . . . , n to indicate whether the cell in column

j is “active,” which means its entry is in the minimum heap. Thus Am+ij = 0 or 1

for j = 1,2, . . . , n. Likewise, the cells in column n + 1 of A also hold a 0 or 1 for each

row i = 1 , 2, . . . , m to indicate whether the cell in row i is “active”; i.e., A itU+x = 0

or 1 for i = 1 , 2 , . . . , m. The (ra + 1 , n + 1) cell is not used in the algorithm. Example

4.5 illustrates what is meant by an “active” cell.

Since xj < xj+x for j = 1,2, . . . , n — 1 and yi < yi+x for i = 1,2, . . . , m — 1,

the entry in cell (£, j) is always guaranteed to be less than both the entries in cells

(i + 1 , j) and (£, j + 1); i.e., A ^ j < A +i,j and A i j < A itj +i. This result, along with

other proven properties of the array A in Appendix C, allow the algorithm to move

the smallest number of candidate entries for the next largest sum from the array A

to the minimum heap. Thus this algorithm moves from the southwest cell to the

northeast cell of the array A placing the next largest sum into s after first placing

the competing sums into a minimum heap.

Since this process and its intricacies are best explained by an example, we’ll rein

troduce X and Y , the random variables from Example 4.3.

E x a m p le 4 .5 . Let X and Y have PDFs:

0.15 x = —3

0.25 x = — 1

f x (x) = o .l x = 2

0.3 x = 6

f v (y) = <

\

0 . 2 y = - 2

0 . 1 y = 1

0.3 y = 5

0.4 y = 8 .
0.2

Use the “moving heap method” to determine the PD F of Z = X + Y.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

110

Solu tion : Construct the 5 x 6 array A. Set Aij7l+i = A,-t& = 0 for i = 1 , 2 , 3,4 and

Am+i,j = A 5j = 0 for j = 1,2, 3 ,4 ,5 . The smallest value in A is positioned in cell

(1 , 1) and is A.i)X = yi + x x = —5. The algorithm designates the cell (1 , 1) as an

“active” cell in A by setting A m+it i = A5)i = 1 and A i>n+i = A i i6 = 1- The zeros in

the other cells of row five and column six remain. Figure 4.1 displays this initial array.

The entries of A increase in value as one moves up, to the right, or a combination of

both (as in the Cartesian coordinate system).

row 5 1 0 0 0 0

row 4 8 0

row 3 5 0

row 2 1 0

row 1 - 2 - 5 1

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.1: Array A w ith active cell (1, 1), which contains the entry AXjl = —5.

As in the brute force method, the one-dimensional array s of length n - m holds

the sums of the supports of the random variables X and Y . The corresponding

probabilities for each of these sums will again be stored in the one-dimensional array

called Probs, also of length n • m. Clearly, the first (smallest) sum to be placed in the

first position, s x = —5, of the array s is A1)X. Accordingly, fx(%i) • f y (y i) = 0.03 is

placed in the first position, Probsi , in the Probs array. After setting sx = 4 Xi x = —5

and Probsi = P r (Z = A X)1) = f x (x i) ' f y iv i) = 0.03, the cell (1, 1) becomes inactive.

In order to reflect the absence of an element in the first row and first column, reset

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

I l l

A m+\,\ = A 5ji = 0 and Aii7H_i = = 0. The next two cells to become “active” (i.e.,

these cells may contain the next largest sum) in the array A are *41)2 = y\ + x 2 = — 3

and .42, i = y2 + = —2- Since cell (1 , 2) in A is now active, reset -41 i6 = 1 and set

A 5 ,2 = 1- Similarly, since cell (2, 1) is active, set .42 j6 = 1 and reset .45)1 = 1 . The

purpose of these ones and zeros along the boundary of the A array is to assure that

there is no more than one active cell in each row and column. Figure 4.2 contains the

current view of array A.

row 5 1 1 0 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2 1

row 1 - 2 IP - 3 1

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.2: Array A after A i t i has been removed and added to the one-dimensional
sum array s. The cells (1, 2) and (2 , 1) are active, as indicated by the ones in cells
(1, 6), (5, 2), (2, 6), and (5, 1).

The values 2 and A2j i are used to construct a minimum heap H. Informally,

a heap is a complete binary tree with a special ordering property of its nodes. A

complete binary tree is a tree tha t is completely filled with the possible exception of

the bottom level, which is filled from left to right. Figure 4.3 contains illustrations

of structures which are and are not complete binary trees. Each node of the tree has

one parent, except the root of the tree, which has no parent. In a minimum heap,

the smallest element of the heap is contained in its root. In the upper-right tree in

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

112

Figure 4.3, a is the root of the tree. Nodes b and c are a ’s children, where b is the

left child and c is the right child. (According to the definition of a complete binary

tree, when a node above the bottom level of the tree has only one child, it must be a

left child.) Node 6 is the parent to nodes d and e. The height of a tree is the number

of nodes from the root to a node at the bottom level of the tree. The heights of the

three top trees in Figure 4.3, for example, are three, three, and four, respectively. A

complete binary tree of height h has between 2h ~ 1 and 2h — 1 nodes (Carrano et al.,

1998, page 496).

Figure 4.3: Six binary trees. The top three trees are complete binary trees and the
bottom three are not.

Thus, a minimum heap is a complete binary tree with the special ordering property

th a t each parent node contains a value less than or equal to the values in its children’s

nodes. Because of this ordering property, the smallest value in a minimum heap will

always be at the root.

The binary heap H formed with the values 2 and A 2, i is in Figure 4.4. The

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

113

next sum to be entered into s in position s2 is the root of the heap. Since A l i 2 = —3

is the root, it is removed from the heap H and placed in s2, while its corresponding

probability is placed in Probs2- Because the entry A 1j2 is removed from the array

A, reset A ij 6 = 0 and A 5j2 = 0 to indicate th a t row one and column two no longer

contain an active cell. After these changes, array A is displayed in Figure 4.5.

- 3

- 2

Figure 4.4: Heap H containing entries A i>2 = —3 and A 2,\ = —2 .

row 5 1 0 0 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2
t

1

row 1 - 2 H P 0

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.5: Array A after A ^ 2 — —3 is removed and appended to s. Cell (2, 1) is the
only active cell. Candidates to become active are cells (1 , 3) and (2 , 2). Cell (2 , 2)
cannot become active since row two already contains an active cell.

After setting cell (1 , 2) to inactive, the two cells that may enter into the array

A (if the corresponding row and column do not already contain an active cell) are

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

114

cells (3, 1) and (2 , 2). Since row two contains an active cell, then entry .4 2 , 2 is not

activated since its sum is greater than 4 2 , i- However, cell (1 , 3) does become active,

and its entry is 4 1 j3 = yx + = 0. Hence, 4 1 i6 = 1 and 4 .5 , 3 = 1 . After these

changes, array 4 is displayed in Figure 4.6.

row 5 1 0 1 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2 1

row 1 - 2 HPPP 0 1

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.6: Array A with active cells (1, 3) and (2 , 1).

The entry A 1 |3 is inserted into the heap H, and the heap is rebuilt to fulfill its

ordering property. After the addition of 4x,3, the heap H is displayed in Figure 4.7.

The minimum element, 4 2 ,i, is removed from the root of the heap and placed in the

sum array s in position s3. Its corresponding probability is placed in Probsz-

- 2

Figure 4.7: Heap H containing entries A2 , 2 = —2 and A i , 3 = 0.

The two cells th a t may enter the array A after the removal o f the 4 2 , i entry are in

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

115

cells (2 , 2) and (3, 1), as indicated by the arrows in Figure 4.8. Both cells (2 , 2) and

(3, 1) become active, and their values are A2 j 2 = 1)2 + %2 = 0 and A 3_: = y3 4 -Xi = 2.

Hence, A2 , 6 = 1, A5 t 2 = 1 , A3 i6 = 1 , and As5i = 1, as displayed in Figure 4.9. Entries

A2 j2 and A3)1 are inserted into the heap H, and H is again rebuilt. Its structure is

displayed in Figure 4.10.

row 5 0 0 1 0 0

row 4 8 0

row 3 5 0

row 2 1 11 0

row 1 - 2 in 0 1

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.8: Array A after A2)2 = — 2 is removed. Cell (3, 1) is the only active cell.
Candidates to become active are cells (2 , 2) and (3, 1).

Moving ahead to the seventeenth pass through the construction of the array A,

its appearance is displayed in Figure 4.11. A 3) 4 = 11 is placed in s 17, and values

A 3)5 = 13 and A4 i 4 = 14 are activated in the array A and inserted into the heap H.

Since A3 |5 is the root of the heap, it is deleted and placed in s 18. No new element is

allowed to enter the heap, so the root element of the heap is now A4) 4 = 14, and it

is removed and placed in s 19. The last entry to be activated is A4 i5 = 16, and it is

placed in position s 2o of the sum array s.

Thus, after twenty iterations of this process, s and Probs arrays are

s = [-5 , - 3 , - 2 , 0, 0, 2, 3, 4, 4, 5, 6 , 7, 7, 7, 9, 10, 11, 13, 14, 16]

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

116

row 5 1 1 1 0 0

row 4 8 0

row 3 5 2 1

row 2 1

| P

0 1

row 1 - 2 0 1

- 3
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.9: Array A with active cells (1 , 3), (2 , 2), and (3, 1).

Figure 4.10: Heap H with entries A i >3 = 0, A 2,2 = 0 and A1 ;3 = 2 .

and

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

which are the same arrays encountered by using the moment generating function

method. The redundancies are removed from s and the appropriate probabilities are

combined in Probs to complete the algorithm. This could have been embedded into

the iterative steps of the algorithm to save memory. Thus, the PD F of Z — X + Y is

the same as determined in Example 4.4. □

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

117

row 5 0 0 0 1 0

row 4 8 1 (!§ !§ 0

row 3 5 IIP IIP IIP 11 1

row 2 1 ■ ■ ■ ■ ■ 0

row 1 — 2 0

- 3 - 1 2 6 8

col 1 col 2 col 3 col 4 col 5 col 6

Figure 4.11: Array A with its seventeenth active cell (3, 4).

4.2 Algorithm

The algorithm for the ConvolutionCX, Y) procedure returns the PD F of the convo

lution of the PDFs of the independent random variables X and Y . A brief description

of the algorithm follows.

If X and Y are continuous, the PD F of the convolution Z = X -+- Y is computed

with the continuous convolution formula. If X and Y are discrete, their supports,

finite or infinite, dictate which of the m ethods described in Section 4.1 is used to

compute the convolution.

The convolution of the PDFs of X and Y w ith finite support is computed either

using the BruteForceM ethod or MovingHeapMethod procedures, whose algorithms

appear in Appendices D and E, respectively. The PD F of the convolution of Z

is stored in a list-of-sublists format. The list of elements / (z i) , / (Z 2), - •-? f(zn-m)

are the probability values of Z, while zi, z2> - • •, Zn-m are its support values. The

one-dimensional array s is created to contain the sums extracted from the array A.

Similarly, the one-dimensional array Probs is created to hold the probability values

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

118

corresponding to the sums in s.

The zeros (if any) a t the end of the Probs array do not represent probability values;

they correspond to the zeros in the Probs array that are not support values. These

extra zeros indicate th a t there are identical values in the support of Z. The non-zero

probability values are removed from Probs and placed in the array FinalProbs. The

support values that correspond to the removed probability values are removed and

placed in the array FinalSupport.

If the supports of the random variables X and Y are infinite, either the discrete

convolution formula is used to compute the convolution or the APPL MGF procedure

is used to determine the MGF of the product of X and Y .

If either X or Y has infinite support, while the other has finite support, the product

of their MGFs is printed. If both X and Y have infinite support and the discrete

convolution formula formed with their PDFs results in an intractable sum, then the

product of their MGFs is printed. Otherwise, the discrete convolution formula is used

to determine the convolution of their PDFs.

Unless the MGF for Z or the PDF of the convolution for X and Y (with n = 1

and 77i — 1) has already been printed or returned, the PD F f z (z) is returned.

Procedure Convolution: Computes the PDF of the convolution of the PDFs of two
independent random variables
Input: The random variables X and Y . Convert X and Y to their PDF representa
tions, if necessary. The support of X is Qx and the support of Y is fiy.
Output: The PDF of Z = X + Y .

If X and Y are continuous
f z{z) <- f x (z - y) f Y (y) dy

Else [If X and Y are discrete]
If X and Y have finite support

n <— |Dx|
TM <— \nY\
If 77 • 771 < 100

f z (z) BruteForceM ethod(X, Y)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

119

Else
f z { z) <— MovingHeapMethod(X, Y)

If (n — 1 and m = 1) [i.e. f z {z) = 1 for z = c E 1R]
re tu rn (/z (z))

Dimension s[n -m] [Create the sums array s]
Dimension Probs[n - m] [Create the probability array Probs]
For i <— 1 to n - m

Sj <— 0
Probsi <— 0

Si <— Z \

s2 Z2
Probs 1 <— f (z i)
k t - 2

3 2
While (k < n - m) do

Probsj <— Probsj + f { z k)
If Zk 7^ Zfc-M then [Eliminate redundant support values]

3 <- 3 + 1
Sj Zfc+l

k 4— k -f- 1

Probs j <— Probs j + / (z fc)
N u m Z ero s <— 0

For i n • m. to 1 by — 1 while Probsi = 0
N u m Z e r o s N um Zeros 4 -1

Dimension jFma^Pro6 s [l ,n - m — N u m Z e r o s]
Dimension E m a/S uppo rtfl,n - m — NumZeros]
For z •<— 1 to (n - m — N um Z ero s)

FinalProbs.: -f- Probsi
Final Support* <— s,-

/z (z) <— [FinalSupport, FinalProbs]
Else if (X or Y has infinite support or

X and Y have infinite support with intractable discrete convolution sum)
m g f x «- MGF(X)
m g f y <- MGF(V)
m gfprod <— m g f x - m g f y
print {mg f prod)
return

Else [Discrete convolution formula]
f z (z) <- YLt=o(fx(z)) • (f v (z — k))

Else
prin t(“ERROR: X and Y must both be continuous or discrete”)
return

return (fz(z))

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

120

4.3 Implementation

When the supports Qx and fV of X and Y , respectively, are finite and |LLc| • I^VI <

10000, the C onvolution procedure uses the “brute force m ethod” to determine every

possible sum (and its probability) between the supports of the random variables X

and Y. The list of sums are ordered and the identical ones are combined. The

corresponding probability values are repositioned to match their corresponding sums.

One im portant reason for sorting the sums is tha t all other APPL procedures assume

tha t discrete distributions, written in their list-of-sublists NoDot form, have supports

listed in increasing order without repeated values. To be consistent with the APPL

language (and textbooks), the sums are sorted. Also, placing the values of the support

into a list in sorted order means tha t tied + Xj values can be combined d y n a m ica lly

as the algorithm proceeds.

As mentioned in Section 4.1, the first sorting method chosen to sort the fist of sums

created by the brute force method was insertion sort. It was a viable candidate be

cause of its straightforward implementation and efficiency in computing convolutions

of random variables w ith small supports. Unfortunately, as the supports of random

variables grew larger (e.g., random variables with 50 random numbers chosen on the

interval (—1 ,1) as a support), the tim e used to compute the PDF of their convolu

tions became unreasonably large. A faster sorting method for random variables with

large supports was required. Heapsort was employed and is now implemented in the

C onvolution procedure for sorting the list of sums created by the brute force method.

Maple uses Shellsort to sort polynomials. In order to use the Shellsort procedure

in Maple, the MGFs of X and Y need to be computed. The product of the MGFs

of X and Y is an expression composed of exponential terms e*4, where k 6 IR, t > 0.

Letting u = e4, the M GF of the product can be rewritten as a polynomial-type

expression. For example, if u = e4, then Mz(t) = |e 3< + | e 2< + | e 54 can be rewritten

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

121

as M z (u) = |u 3 + |u 2 -|-§u5. The Shellsort procedure sorts the polynomial expression,

and the PD F of the convolution of X and Y is retrieved from this expression. Instead

of moment generating functions, probability generating functions can be used in the

process. MGFs were chosen over PGFs since PGFs can only be formed when the

discrete distribution has nonnegative integer support.

The method of computing convolutions via their MGFs for random variables with

finite supports was discarded after realizing th a t Maple can only sort “true” polyno

mial expressions. Maple is unable to sort an expression with non-integer values as

exponents of variables, such as j (e£) 3 / 2 + | (e£) 1 / 2 + | (e£) 5 '5 . Since the Convolution

procedure was intended to be used on all types of discrete distributions, including

those with negative, non-integer supports, the MGF m ethod was abandoned as a

m ethod for determining the PD F of the sum of random variables with finite supports

in the Convolution procedure. The extra tim e involved in checking for appropriate

exponent values also had an effect on the M GF m ethod’s efficiency.

For random variables with large finite supports (e.g., > 1 0 0 0 0), heapsort

also proved inefficient. As an alternative approach to the brute force method with

heapsort, Nicol (2000) suggested constructing a heap dynamically and sorting the

list of sums sequentially, instead of first building and then sorting the sum list. The

algorithm for this “moving heap” was w ritten into the APPL MovingHeapMethod
procedure and implemented in Convolution for X and Y with finite supports, where

\ n x \ • |fV | > 10000. Not only was the moving heap m ethod efficient, but it saved

memory space since the heap always contained m in{|f2x |, |^V |} or fewer entries.

The Convolution procedure was tested on random variables with large supports

by using the BruteForceMethod with insertion sort, the BruteForceMethod with

heapsort, and the MovingHeapMethod. A brief comparison analysis (by hand) of the

three methods suggested th a t MovingHeapMethod would yield the best (fastest) times

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

122

for computing a convolution of random variables with large supports (i.e., | fix|-jfiy | >

10000). Test cases of random variables with increasing support sizes were performed

to confirm this assumption.

The test for comparing the methods involved generating |fix | and |fiy-j random

numbers between — 1 and 1 and making them the support values for the random

variables X and Y, respectively. If |fixj = 3, for example, then three random numbers

x i, x2, x 3 would be generated as fix- To conform to the APPL list-of-sublists NoDot

da ta structure, the values would be sorted and placed into the second sublists of the

respective random variables. For our example, we would list Xi ,x2 ,X3 in increasing

order and rename them as X(i),X(2), and £(3)- The probabilities, which had no effect

on the efficiency of the different algorithms, were assigned to be equally-likely for all

support values; i.e., /(x,-) = l / | f i x | for i = 1 , 2 , . . . , | fix| and f (y j) = l /] f i r | for

.7 = 1 , 2 , . . . , |fiy|. For our example, the list-of-sublists form of X is

j h b ’ Iffef] ’ (“Discrete”, “PDF”]] ;

The CPU times on a 266 mZ machine for determining the PD F of the convolution of

random variables of increasing support sizes |fixi and |fiy | appear in Table 4.1.

W hen either one or both random variables’ supports are infinite, either the con

volution of their PDFs is computed via the discrete convolution formula or the MGF

of their product is determined. If one of the random variables has infinite support,

while the other has finite support, the MGF of their product is returned. Currently,

APPL does not contain a procedure to convert the MGF of a random variable to its

PD F form. In future work, this recognition process may become an APPL procedure.

Two random variables with infinite support do not guarantee th a t the PDF of their

convolution can be determined by the discrete convolution formula. Only tractable

summations, such as the convolution formula for two Poisson random variables as in

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

123

Table 4.1: CPU times (in seconds) for the convolution of random variables X and Y
by the BruteForceM ethod with insertion sort, the BruteForceMethod w ith heapsort,
and the MovingHeapMethod for arbitrary distributions with arbitrary support values
ranging in increasing value from — 1 to 1 .

Support sizes.
\nx \ = \nY\'

BruteForceM ethod
with insertion sort

BruteForceM ethod
with heapsort

MovingHeapMethod

50 70.5 1 0 . 6 15.3
60 143.1 18.1 24.0
70 313.3 29.1 34.6
80 518.0 45.5 50.0
90 824.0 69.9 69.3
95 1050.5 85.3 80.6

1 0 0 1263.5 101.3 93.5
1 1 0 2037.6 153.2 123.3
1 2 0 2897.4 201.7 163.0
125 3283.5 257.5 173.9
130 - 284.8 2 0 1 . 6

140 - 394.8 236.4
150 - 541.1 320.1
160 — 728.8 377.3
170 - 969.0 454.6
175 — 1127.9 506.5
180 — 1319.1 578.5
190 - 1723.2 671.8
2 0 0 2210.3 829.0

Example 4.2, can be computed. This means th a t instead of determining the PDF

for the convolution of the PDFs of some random variables, such as a Poisson with

param eter A = 5 and a geometric w ith param eter p = 0.3, the C onvolution procedure

only computes the product of their MGFs.

4.4 Examples

The following examples use the algorithm described in Section 4.2 to determine the

PD F of the convolution of independent random variables. Examples for a variety of

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

124

random variables are provided to illustrate the utility of the algorithm. Returning

first to Examples 4.1 through 4.4 from the introduction of this chapter, we can use

the C onvolution procedure to determine their solutions.

E x am p le 4.1 R e v is ite d . Compute the PD F of Z = X + Y, where X and Y are iid

random variables with PDFs f (x) = e~x , 0 < x < oo, zero elsewhere and f (y) = e~y ,

0 < y < oo, zero elsewhere.

S o lu tion : In APPL, we first define X and Y to be exponential 1) random variables,

which are predefined in APPL. The C onvolution procedure then finds the PD F of

Z = X + Y . The statem ents

> X := E x p o n en tia lR V (l);
> Y := E x p o n en tia lR V (l);
> Z := C onvolution(X , Y);

return the PD F in its list-of-sublists APPL format as

[[z —»■ ze-2] , [0,0 0], [“Continuous” , “PDF”]] . □

E xam ple 4.2 R ev isited . If X and Y are independent Poisson random variables

with respective param eters Ai and A2, compute the PD F of Z — X + Y .

Solution: In APPL, define X as a Poisson random variable with param eter lambdal

and Y as a Poisson random variable with param eter iambda2. The Poisson random

variable is also predefined in APPL. The PD F Z = X + Y is found with the statem ents

> X := PoissonRV(lambdal);
> Y := PoissonRV(lambda2);
> Z := Convolution(X, Y);

which returns the PD F of Z as

T (2 + l) e - Al~ A2 (A2 + AO*
, [0 .. 00] , [“D isc re te ” , “P D F ”] .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

125

Using the Maple s im p lify procedure, the resulting PDF after simplification is

p - A i - A j + X l) z

/ « = — r (, + i)

which is easy to recognize in its standard form as

o_Ai_a2 ^ + X2y
m = zl 2 = 0 , 1 , □

We are fortunate in Example 4.2 th a t APPL can compute the PD F by the discrete

convolution formula by simplifying the Maple sum Y2k= 0x A2J ~ fce~ A2
k\ (r-fc)! . Unfortu

nately, Maple can only simplify certain expressions, so in some instances we cannot

simplify the PD F by the discrete convolution formula. In Example 4.14, it is shown

tha t Maple can also simplify the discrete convolution formula for a pair of iid geo

m etric random variables.

E x am p les 4 .3 , 4.4, &: 4 .5 R e v is ite d . X and Y are independent discrete random

variables with PDFs defined as

f x { x) = <

0.15 X = - 3

0.25 X = - 1

0.1 X = 2

0.3 X = 6

0.2 X = 8,

f r (y) =

0.2 y = - 2

0.1 y = 1

0.3 y = 5

0.4 y = 8.

Find the PD F of Z.

S o lu tio n : Define the random variables X and Y in APPL’s list-of-sublists format.

Compute the PD F of Z — X + Y w ith the following statements

> X := [[0 .1 5 , 0.25, 0 . 1 , 0 . 3 , 0 . 2] , [-3 , -1 , 2, 6 , 8] ,
["Discrete", "PDF"]];

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

126

> Y := [[0.2, 0.1, 0.3, 0.4], [-2, 1, 5, 8], ["Discrete", "PDF"]];
> Z := ConvolutionCX, Y);
which return the PD F of Z as

[[0.03,0.05,0.015,0.045,0.045,0.01,0.135,0.06,0.04,0.16,0.02,0.04,

0.09,0.06, 0.12,0.08], [-5, -3, -2, 0,2,3,4,5, 6, 7,9,10,11,13,14,16],

[“Discrete” , “PD F”]]. □

E x a m p le 4 .6 . (Sveshnikov, 1968, page 136) Let X and Y be independent random

variables; X assumes three possible values 0, 1, 3 with probabilities | , and | , and

Y assumes two possible values 0 and 1 with probabilities §. Find the PD F of the

random variable Z = X + Y .

S o lu tio n : By hand, we can compute the PD F of Z with probability generating

functions (PGF). The PG Fs G of X and Y , respectively, axe

Gx (t) = E[t*} = i« 3 + + i and Gy{t) = E[tY] = \ t + |

for —oo < t < oo. Thus, the PG F of Z = X + Y is

— oo < t < oo.

Hence, the PD F of Z is

f z (z) = i

1
6
11
24

1
4

X
2 4

_L
12

z = 0

z = 1

z = 2

z — 3

z = 4.

In APPL, define X and Y as list-of-sublists and then apply the Convolution pro

cedure to achieve the same result.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

127

> X := [[1 / 2 , 3 / 8 , 1 / 8] , [0, 1, 3] , ["Discrete", "PDF"]] ;
> Y := [[1 / 3, 2 / 3] , [0, 1], ["Discrete", "PDF"]];
> Z := Convolution(X, Y); □

Other measures, such as the mean and variance, of a distribution can be found

with the use of additional APPL procedures, as seen in the next example.

E x a m p le 4 .7 . (Hogg & Tanis, 1993, page 297) Let X t and X 2 be observations of

a random sample of size n = 2 from a distribution with PDF f (x) = | , x = 1,2,3.

Find the PD F of Y = X i + X 2, and determine the mean and variance of the sum.

S o lu tio n : The PG Fs of X i and X 2 are

GXl (t) = Gx 2 (t) = \ t + \ t 2 + - oo < t < oo.b o 2
Thus, Gy{t) is

and f Y (y) is

1
36 y = 2

1
9 y = 3
5
18 y = 4

1
3 y = 5
1

I 4 y = 6.

The mean and the variance of Y, respectively, are

and

Gy(l) + G ^ (l) - [G y(l)]a = y •

In APPL, the mean and variance of Y are computed with the statem ents

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

128

> X := [[x -> x / 6], [1 .. 3] , ["Discrete", "PDF"]];
> Y := Convolution(X, X);
> Mean(Y);
> Variance(Y); □

E xam ple 4.8. (Hogg & Craig, 1995, page 230) Find the probability of obtaining a

to ta l of 14 in a single toss of four dice.

Solution: Let X be the PDF fx (x) = g, x = 1, 2, . . . , 6. The PGF G of X is

G x (0 = x t 6 4- — t5 -f- - t 4 4- — t3 — t2 4- —i — oo < t < oo.
b b 5 6 6 6

The PDF of Z = X i 4- X 2 + X 3 + X4 can be found by computing [Ga-(£)]4, which is

Thus, Pr(Z = 14) =

In APPL, define X as a uniform discrete random variable (predefined in APPL)

with param eter 1/6. The ConvolutionllD (X, n) procedure computes the PD F of

the convolution of n iid random variables X. This procedure contains a Maple “for

loop” which calls Convolution n times.

> X := UniformDiscreteRVCl, 6);
> Z := ConvolutionIID(X, 4);
> PDFCZ, 14);

The APPL PDF procedure computes the probability th a t Z is 14, which is □

Examples 4.9 and 4.10 are from the article “G etting Normal Probability Approxi

mations without Using Normal Tables” by Thompson (2000). His paper discusses an

1296 t24 + 324
i23 +

648
t22 +

324
t21 4-

35
1296

t20 4-

7 f ,9 + 4 i 18 +
13

162
35

t 13 +
81
125

162
t 17 +

13

125
1296

5

t 16 + 35 15 73 14
t 4- —— t u 4-324

324
5 7

 17 +
324 648

1296
5

t l 2 + w 2 t U + £ t10

1

4- t 9 +
648
3 ^ t8

te +
324 1296

162 1296

— oo < t < oo.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

129

alternate approach to approximating probabilities involving sums of discrete random

variables using the PDF for the normal distribution. He lets S denote the sum of n

independent discrete random variables, and assumes th a t 5 takes on consecutive in

teger values. Letting fi = E(5) and a 2 = Var(S), he argues th a t for sufficiently large

values of n, S is approximately normally distributed. Using the standard continuity

correction, he gets

P r(S = s) = Pr(s — 0.5 < lV(/z, a2) < s + 0.5).

Calculating a midpoint approximation using a single subinterval, the normal PDF

approximation is obtained, which is

2Pr(S = s) =
V2ira

Instead of settling for approximations of the probabilities, we will show how APPL

procedures, including Convolution, can retrieve exact solutions, while still giving the

same insight into the problem.

E xam ple 4 .9 . (Thompson, 2000, page 53) Suppose th a t X i , X 2, . . . , X 2Q are inde

pendent, X i ~ Bernoulli (pi = , i = 1, 2, . . . , 20. Let S = (Here S

denotes the to ta l number of successes obtained in a series of independent trials where

the probability of success varies from trial to trial.) Give an exact probability table

for S for s = 2,3, . . . , 10.

Solution: Using Thompson’s notation, p = 10 and a 2 = 2367/500, and so P r(S =

S ̂ ~ ^ 2^ 2 3 6 7 /5 0 0 e~(3~10)2/(2367/250), s = 0,1, . . . , 20. Using APPL, we obtain the

exact distribution of S with the statements

> p := (29 + 2 * 1) / 100;
> S := BemoulliRV(p);
> f o r i from 2 to 20 do
> P
> X
> s
> od:

= (29 + 2 * i) / 100:
= BeraoulliRV(p):
= Convolution(S, X):

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

130

> S;

Table 4.2 contains the exact probabilities found with APPL and the normal PDF

approximations for s = 2 ,3, . . . , 1 0 . □

Table 4.2: Exact probabilities and normal PDF approximations of Pr(S' = s) for
s = 2,3, . . . , 10.

s
True P r(5 = s)

(APPL)
Approximation of

true P r(5 = s)
Normal PDF

Approximation

2 204658765144989225788930713729011
1600000000000000000000000000000000000 0 . 0 0 0 1 0 . 0 0 0 2

3 670581044381861117271962962043967
800000000000000000000000000000000000 0.0008 0 . 0 0 1 0

4 12306309890051216090420607156481161
3200000000000000000000000000000000000 0.0038 0.0041

5 13130118961411820609429234497062639
1000000000000000000000000000000000000 0.0131 0.0131

6
13845545992556016094922419904605161

400000000000000000000000000000000000 0.0346 0.0338

7 14429186684261724023997491367619439
200000000000000000000000000000000000 0.0721 0.0709

8 193196528593089153025093245904930293
1600000000000000000000000000000000000 0.1207 0 . 1 2 0 2

9 65549414450257125600014354447607969
400000000000000000000000000000000000 0.1639 0.1650

1 0
725313008476889512417635294011302541

4000000000000000000000000000000000000 0.1813 0.1834

E xam ple 4 .10 . (Thompson, 2000, pages 53-54) There are 20 girls and 30 boys in

Group 1 , 25 girls and 25 boys in Group 2, and 10 girls and 10 boys in Group 3. If

10 children are randomly chosen from each group and S denotes the to ta l number of

girls chosen, give an exact probability table for S for s = 7 ,8 , . . . , 2 1 .

S o lu tion : Let X x, X 2, and X 3 be the three independent hypergeometric random

variables, and let S = X x + X 2 + AT3. The mean and variance of S are /x = E[S] =

E[Xx] + E[X2] + E[XZ] = 14 and a 2 = Var(S) = Var(Xx) + V ar(X 2) + Var(X3) =

101/19 (since X x, X 2, and X 3 are independent). Table 4.3 shows the normal PDF

approximation values Pr(S = s) = _ _ _ ^ ^ ^ e-(3- l4)2/(202 /i9) for s — ̂ 21.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

131

Using the APPL C onvolution procedure, we can calculate the PDF of S with the

statements

> XI := HypergeometricRV(50, 20, 10);
> X2 := HypergeometricRV(50, 25, 10);
> X3 := HypergeometricRV(20, 10, 10);
> Y := Convolution(X 3, C onvolution(X I, X2));

The exact values for s = 7, 8 , . . . , 21 are shown in Table 4.3. □

Table 4.3: The exact probabilities and normal PD F approximations for Pr(S = s) for
s = 7 ,8 , . . . , 21.

s True P r(5 = s)

(APPL)
Approximation of

true P r(5 = s)

Normal PDF
Approximation

7 4641594894759547665
3082276280132202064912 0.0015 0.0017

8 97479371530863990
17512933409842057187 0.0056 0.0059

9 12613791756912076515
770569070033050516228 0.0164 0.0165

1 0 74849525260411094591
1926422675082626290570 0.0389 0.0384

1 1 57967137494173367365
770569070033050516228 0.0752 0.0742

1 2 2096975232909133615
17512933409842057187 0.1197 0.1188

13 22076335771392253895
140103467278736457496 0.1576 0.1575

14 317244095646532855
1843466674720216546 0.1721 0.1730

15 9955623438355053449
63683394217607480680 0.1563 0.1575

16 217921905682010165
1843466674720216546 0.1182 0.1188

17 1894259194489549345
25473357687042992272 0.0744 0.0742

18 71588441634588035
1843466674720216546 0.0388 0.0384

19 10756216836381565
641205799902684016 0.0168 0.0165

2 0 1208983087163529637
202781334219223820060 0.0060 0.0059

2 1 280730797358534065
162225067375379056048 0.0017 0.0017

E x am p le 4 .11. (Grinstead &; Snell, 1997, pages 290-291) Assume that r > 2 is

a non-prime integer. Show th a t there are non-trivial distributions for X and Y on

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

132

the nonnegative integers such that the convolution of X and Y is the equiprobable

distribution on the set 0 , 1 , 2 , . . . , i— 1 .

S o lu tio n : Let n be the smallest prime factor of a given non-prime integer r > 2 .

The random variables X and Y can have PDFs

/
7 y = oy = 0

y = n

fv{y) = < £ y = 2 - n

x = n — 1 , n

Loading the f a c to r s e t procedure from Maple’s number theory package, we test

our conjecture for r = 1 2 , for instance, w ith the statements

> with(numtheory, factorset):
> r := 12;
> n := minCop(factorset(r)));
> X := [[seq(l / n, i = 0 .. n - 1)], [seq(j, j = 0 .. n - 1)],

["Discrete", "PDF"]];
> Y := [[seqCn / r, i = 0 .. n / r - 1)],

[seq(j * n , j = 0 .. r / n - 1)], ["Discrete", "PDF"]];
> Z := Convolution(X, Y) ;

The PD F of Z is returned in its list-of-sublists APPL format as the discrete equiprob

able distribution on the set 0 , 1 , 2 , . . . , 1 1 . □

APPL can also handle some convolutions of discrete random variables with infinite

support. The PD F of the convolution of the random variables needs to be tractable

so Maple can simplify the resulting sum.

E x a m p le 4.12. (Larsen & Marx, 1986, page 220) A wet spell of x days is defined

to be a “run” of x days on each of which measurable precipitation occurs. Under the

assumption th a t the weather tomorrow depends only on the weather today, there is a

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

133

probability po that a wet day will be followed by a dry day. From this, the probability

of an x-day-long wet spell is p0(l — Po) x _ 1 = Po<7o_\ a; = 1, 2, . . which is a geometric

distribution- Let X denote the random variable representing the lengths of the wet

spells.

Similarly, the random variable Y is the length of dry spells; furthermore, /y (y) =

y = 1 , 2 , . . . , where pi is the probability of a dry day followed by a wet one.

Since a given day’s weather is affected only by the previous day’s, it follows th a t X

and Y are independent.

Now, a weather cycle will be defined as, say, a wet spell followed by a dry spell.

If Z denotes the length of such a cycle, then Z = X + Y . Find the PD F of Z.

S o lu tio n : The APPL statem ents
> X := [[x -> pO * qO ~ (x - 1)] , [1 . . i n f i n i t y] ,

["D isc re te " , "PDF"]];
> Y := [[x -> p i * q l (x - 1)] , [1 . . i n f i n i t y] ,

["D isc re te " , "PDF"]];
> Z := Convolution(X, Y);

yield the PDF in its APPL list-of-sublists form as

qo (<Zo — <7i)
, [2 .. oo], [“Discrete” , “PD F”]

□

4.5 Products of Random Variables with Finite Sup

ports

The algorithm th a t was constructed (with heaps) to compute the PD F of the con

volution was extended to determine the PDF of the product. Because of possible

negative, zero, and positive support values for the random variables X and Y , the

product algorithm “splits” the conceptual array A into four quadrants (as in the

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

134

Cartesian coordinate system) before heaping- The quadrants are conceptually split

based on X ’s and T ’s negative and nonnegative support values. Figure 4.12 illus

trates the evolution of the algorithm in the most general case when both X and Y

have negative and nonnegative support values. The product algorithm conceptually

starts a t the northwest and southeast comers of quadrants two and four and moves

toward the center where the quadrants meet, considers the case where one or both of

the supports include zero, and then works outward from the center through quadrants

one and three.

Quadrant 2 Q uadrant 1

- 2

Quadrant 3 Quadrant 4
- 3 - 1 2 6 8

Figure 4.12: Array A split into four quadrants for the product algorithm.

To compute the product for two random variables X and Y with finite supports

= {zi, x 2, . . . xn}, where x x < x 2 < • • • < x n, and Qy = {yi, y2, . . . , ym}, where

2/i < 2/2 < * • • < 2/mi the MovingHeapProductMethod was developed. It basically

mimics the logic of the algorithm in the MovingHeapMethod (for convolutions), ex

cept it determines increasing product values and their probabilities. In order to take

advantage of the moving heap method (as constructed for convolutions), the support

sublists of the random variables X and Y are manipulated (and sometimes split)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

135

to produce increasing product values as the algorithm moves northeasterly from the

southwest corner of A to its northeast comer. When thinking in terms of the Carte

sian coordinate system, there are nine subcases that need to be considered when

constructing the conceptual array A. The subcases are based on the signs of xi, x n,

7/1 , and ym- Details of the nine subcases follow and examples with APPL solutions

illustrate some of these subcases.

1. If x i > 0 and y x > 0, then the support of the product of X and Y contains

zero and/or positive values. For i = 1,2, . . . , n, each x,- support value is listed

in increasing order (i.e., x i , x 2, . . . , x n) from left to right along the bottom of

the array A. Similarly for j = 1,2, . . . , m, each yj support value is listed in

increasing order (i.e., t/i, ?/2, • • -, Um) from bottom to top along the left side of

the array A. The MovingHeapProductMethod procedure uses the same method

as MovingHeapMethod for convolutions—it starts computing products in the

lower-left comer of A and moves northeasterly computing increasing product

values until it reaches the upper-right comer of A. Since 0 < X\ < x2 < • • • < xn

and 0 < t/i < y2 < • • • < ym, then xi+1 • yj+l > x f • y j , x i+x ■ yj > x{ ■ yj: and

Xi • 7/j+i > Xi ■ yj for i = 1, 2, . . . , n — 1 and j = 1,2, . . . , m — 1. Thus, we are

guaranteed that moving northeasterly within the array A produces increasing

product values.

E x a m p le 4.13. A spinner yields three equally likely outcomes: 1, 2, 3. If

the random variable Z denotes the product of the outcomes of the two spins,

compute P r(Z < 6).

S o lu tio n : The APPL statements

> X := UniformDiscreteRVd, 3);
> Y := UniformDiscreteRVCl, 3);
> Z := Product(X, Y);
> prob := CDF(Z, 6);

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

136

return the probability of 8/9. □

2. If x n < 0 and ym < 0, then the support of the product of X and Y contains

positive values. For i = 1,2, . . . , n, each Xi support value is listed in decreasing

order (i.e., x n, x n- i , . . . , Xi) from left to right along the bottom of the array A.

Similarly for j = 1,2, m, each yj support value is listed in decreasing order

(i.e., ym. ym- u - - -, 2/i) from bottom to top along the left side of the array A.

The MovingHeapProductMethod procedure again computes products starting in

the lower-left corner of A and moves northeasterly computing increasing product

values until it reaches the upper-right corner of A. Since x x < x2 < - - - < x n < 0

and yi < y2 < - • • < ym < 0, then x,-_x - yj - 1 > x { ■ yj: x {- i ■ y3- > Xi • ?/j, and

Xi-yj-i > Xi-yj for i = 2, . . . , n and j = 2, . . . , m. Moving northeasterly within

the array A again produces increasing product values. The following APPL

implementation example and accompanying figure illustrates this subcase.

To determine the PD F of the product in APPL, the order of the elements in

the first and second sublists of the random variables X and Y is reversed. Then

X and Y have their product determined by the MovingHeapProductMethod

procedure with their first two sublists in this new order.

For example, if X and Y are represented in APPL as

X = [[0.2,0.1,0.3,0.4], [-6 , - 3 , - 2 , -1] , [“Discrete”, “PD F”]]
and

Y = [[0.3,0.3,0.4], [-5, - 3 , -2], [“Discrete” , “PD F”]],

then they are rewritten as

X = [[0.4,0.3,0.1,0.2], [-1 , - 2 , - 3 , -6] , [“Discrete”, “PD F”]]
and

Y = [[0.4,0.3,0.3], [-2 , - 3 , -5], [“Discrete” , “PD F”]]

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

137

before entering the MovingHeapProductMethod procedure- Using the newly

ordered, sublists, MovingHeapProductMethod determines the correct product

Z = X - Y , namely

Z = [[0.16- 0.12, 0.12,0.12,0.13,0.03,0.09,0.08,0.03,0.06,0.06],

[2,3,4,5,6, 9,10,12,15,18,30], [“Discrete”, “PD F”]].

Figure 4.13 illustrates the increasing product values for i = 3 and j = 2 as one

moves northeasterly in the array A.

Vi - 5

V2 - 3

ys - 2

Figure 4.13: Product array A for subcase two. For i = 2, j = 3, rr2 • Vi > £ 3 • V2 ,
X2 -U2 > %z' V2 t and x $ - y i > r 3 - ?/2, i.e., cells to the northeast of the cell with product
X3 • 2/2 = 6 have larger product values.

3. If x i > 0 and ym < 0, then the support of the product of X and Y contains

zero and /o r negative values. For i = 1, 2, . . . , n, each rr,- support value is listed

in decreasing order (i.e., x ni xn_x, . . . , £ 1) from left to right along the bottom

of the array A. For j = 1,2, . . . , m, each yj support value is listed in increasing

order (i.e., yu y2, . . . , ym) from bottom to top along the left side of the array A.

The MovingHeapProductMethod procedure computes products starting in the

lower-left corner of A and moves northeasterly computing increasing product

values until it reaches the upper-right corner of A. Since 0 < Xi < x 2 < • ■ ■ < xn

and yi < y2 < • • • < ym < 0, then x ^ • yj+1 > x f ■ y j , • yj > x { • yj, and

10 15
? .

I /
6 ~ 0 9

- 1 - 2 - 3 - 6
X i X 3 X 2 X i

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

138

Xi * yj+i > • yj for i = 2 , . . . , n and j = 1, 2, . . . , m — 1. Thus, moving

northeasterly within the array A produces increasing product values.

To determine the PD F of the product in APPL, the order of the elements in

the first and second sublists of only the random variable X is reversed. Then X

and Y have their product determined by MovingHeapProductMethod with X ’s

first two sublists in this new order.

For example, if X and Y are represented in APPL as

X = [[0.2,0.1, 0.3,0.4], [1, 2,4,6], [“Discrete”, “PDF”]],
and

Y = [[0.3,0.3, 0.4], [-5 , - 3 , -2], [“Discrete”, “PD F”]],

then just X is rewritten as

X = [[0.4,0.3,0.1,0.2], [6,4,2,1], [“Discrete”, “PD F”]]

before entering the MovingHeapProductMethod procedure. Using the newly

ordered sublists of X and the original sublists of Y , MovingHeapProductMethod

determines the product correctly. The PDF of Z = X • Y is

Z = [[0.12,0.09,0.12,0.25,0.03,0.12,0.03,0.06,0.04,0.06,0.08],

[-30, -2 0 , -1 8 , -1 2 , -1 0 , - 8 , - 6 , - 5 , - 4 , - 3 , -2],

[“Discrete” , “PD F”]].

Figure 4.14 illustrates the increasing product values for i = 2 and j = 2 as one

moves northeasterly in the array A.

4. If x n < 0 and yi > 0, then the support of the product of X and Y contains

zero and /o r negative values. Proceed as in subcase three, except reverse only

the sublists for the random variable Y in APPL.

5. If Xi < 0, x n > 0, and yi > 0, then the support of the product of X and Y
contains both negative and nonnegative values. For example, let X and Y be

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

139

2/3 ~*2 —4
* J

1 to

I T 7

2/2 - 3 - 6 - ^ - 3

2/i - 5

6 4 2 1
X i 3-3 ^ 2 X i

Figure 4.14: Product array A for subcase three. For i = 2, j = 2, x 2 ■ y3 > x 2 ■ y-z,
• 2/2 > x 2 - 2/2) and • y3 > x 2 • 2/2) i-e., cells to the northeast of the cell with product

^ 2 *2/2 = —6 have larger product values.

random variables with PDFs

I /
/*(*)

f 0.2

= , 0 1
0.3
0.4

x = 1

If Z = X - Y , then the PD F of Z is

f z { z) = <

-3
-2

f v { y) = <

5

r is

' 0.08 z = -1 5
0.04

orH1II

0.06 z = - 9
0.09 z = —6
0.03 z - - 4
0.09 z = 2
0.09 z = 3
0.12 2T = 4
0.12 z = 5
0.12 z = 6

k 0.16 z = 10.

0.3 y = 2
0.3 y = 3
0.4 y = 5.

The random variable X is split into two separate lists. The negative support

values and their corresponding probabilities are placed in the variable X_, while

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

140

the nonnegative support values and their corresponding probabilities are placed

in the variable X +. Since yj > 0 for j = 1,2, m and xx- < 0 for each

x,- E &X- 1 then we can use the MovingHeapProductMethod procedure on X_

and Y first, proceeding as in subcase four. Since yj > 0 for j = 1, 2, . . . , m

and Xi > 0 for each Xi E flx+i then we can use the MovingHeapProductMethod

procedure on X + and Y next, proceeding as in subcase one.

For the given example, the two sublists of X _ and X + are

= [[0.2, 0.1], [-3 , -2]] and = [[0.4, 0.3], [1, 2]].

The two conceptual arrays, A_ and A +, for computing the increasing products

from the lower-left to the upper-right comers of the arrays are displayed in

Figure 4.15.

A _ A a

2

3

5

5

t
-----^ 3

t
-1 5 — 2 2 r -

- 3 - 2 1 2

Figure 4.15: Product arrays A _ and A + for subcase five.

6. If Xi < 0, x n > 0, and ym < 0, then the support of the product of X and Y con

tains both negative and nonnegative values. Again, the random variable X is

split into two separate lists. The negative support values and their correspond

ing probabilities are placed in the variable X_, while the nonnegative support

values and their corresponding probabilities are placed in the variable X +. Since

yj < 0 for j = 1,2, . . . , m and x t > 0 for each x,- E 0*-+ (which results in neg

ative and /o r zero products), then we can use the MovingHeapProductMethod

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

141

procedure on X + and Y first, proceeding as in subcase three. Since yj < 0 for

j = 1, 2, . . . , m and Xi < 0 for each Xi £ (which will result in positive

products), then we can use the MovingHeapProductMethod procedure on X _

and Y next, proceeding as in subcase two.

E x a m p le 4 .14 Let X have a uniform discrete distribution between —4 and 1,

and let Y have a uniform discrete distribution between 1 and 6. Use APPL to

compute the PD F of their product.

S o lu tio n : In APPL, the statements

> X
> Y
> Z

= U niform D iscreteRV (-4, 1);
= UniformDiscreteRVCl, 6);
= Product(X , Y) ;

return the product Z as

z - [3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 12’ 3 6 ’ 3 6 ’ 1 8 ’ 12’ 3 6 ’ 12 ’ 18’ 1 8 ’ 3 6 ’ 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 36

[-2 4 , - 2 0 , - 1 8 , - 1 6 , - 1 5 , - 1 2 , - 1 0 , - 9 , - 8 , - 6 , - 5 , - 4 , - 3 , - 2 , - 1 ,0 ,1 ,2 ,3 ,4 ,5 ,6] ,

[“Discrete”, “PDF”] □

7. If x i > 0 , 2/x < 0, and ym > 0, then the support of the product of X and Y con

tains both negative and nonnegative values. In this case, the random variable Y

is split into two separate lists. The negative support values and their correspond

ing probabilities are placed in the variable V_, while the nonnegative support

values and their corresponding probabilities are placed in the variable Y+- Since

Xj > 0 for i = 1, 2, . . . , n and yj < 0 for each yj 6 Qy_ (which results in neg

ative and /or zero products), then we can use the MovingHeapProductMethod

procedure on X and YL first, proceeding as in subcase three. Since x, > 0 for

i — 1,2, . . . , n and yj > 0 for each yj € Dy+ (which results in positive and/or

zero products), then we can use the MovingHeapProductMethod procedure on

X and Y+ next, proceeding as in subcase one.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

142

8. If x n < 0, yi < 0, and ym > 0, then the support of the product of X and

Y contains both negative and nonnegative values. The random variable Y

is again split into two separate lists. The negative support values and their

corresponding probabilities are placed in the variable YL, while the nonnegative

support values and their corresponding probabilities are placed in the variable

Y+. Since Xi < 0 for i = 1,2, . . . , n and yj > 0 for each yj 6 Qy-+. then we can

use the MovingHeapProductMethod procedure on X and Y+ first, proceeding as

in subcase four. Since x,- < 0 for i = 1, 2, . . . , n and yj < 0 for each yj € ,

then we can use the MovingHeapProductMethod procedure on X and YL next,

proceeding as in subcase two.

9. If Xi < 0, x n > 0, yi < 0, and ym > 0, then the support of the product of X

and Y contains both negative and nonnegative values. This is the most difficult

case, displayed pictorially in Figure 4.12. The random variables X and Y are

both split into two separate lists, X _, X +, and Y - , r +, respectively. In subcase

nine, there are “dueling heaps,” and we use the A PPL MovingHeapDuelMethod

procedure.

The products of the support values of the variables X + and YL are nega

tive, as well as the products of the support values for X _ and Y+. All four

variables are sent to the MovingHeapDuelMethod so their support products can

be computed in increasing order. The array A i- is used for X + and YL, and

the products of their support values are computed according to the method in

subcase three. The array A 2- is used for X - and Y+, and the products of their

support values are computed according to the m ethod in subcase four. As the

next largest products arise in A x- and A 2- , they “duel” each other as the larger

product. If the product in A \- is larger, for example, it is selected as the next

largest product and the MovingHeapDuelMethod continues to move northeast-

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

143

erly through .4.!-. The next largest value in A x- then challenges this same A 2-

value as the next largest product. This process continues until the northeast

corners of both arrays are reached and their values are recorded in increasing

order.

The products of the support values of the variables X _ and Y _ are positive,

and the products of the support values for X + and Y+ are nonnegative. All

four variables are sent to the MovingHeapDuelMethod so their support products

can be computed in increasing order. The array Aj+ is used for and YL,

and the products of their support values are computed according to the method

in subcase two. The array A 2+ is used for X + and Y+, and the products of

their support values are computed according to the method in subcase one. As

the next largest products arise in A x+ and A2+, they “duel” each other as the

larger product. If the product in A 2+ is larger, for example, it is selected as

the next largest product and the MovingHeapDuelMethod continues to move

northeasterly through A 2+. The next largest value in A 2+ then challenges this

same A x+ value as the next largest product. This process continues until the

northeast corners of both arrays axe reached and their values are recorded in

increasing order.

In order to visualize how subcase nine works, let X and Y be the random

variables indicated in Figure 4.12. Their first sublists axe [—3, —1, 2,6,8] and

[—2,1 ,5 ,8]. Figure 4.16 shows the conceptual arrays A x~, A 2~, A x+, and A 2+

for X and Y . The arrows in the figure indicate the direction the products will

be computed (in order to obtain larger product values). Figure 4.17 displays

the first three products of X and Y as the MovingHeapDuelMethod progresses

simultaneously through A x- and A 2- .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

144

Ai- Ao-

- 2

8

Ai+

t

-2 4 —

- 2

8

5

- 1 - 3

3

A 2+

1

t

2 —

2 6 8

Figure 4.16: Dueling product arrays Ax- and A 2- , and Ai+ and A 2+ for subcase nine.

A i-

- 3

|P
lilj - 8

- 3 - 1

- 2 -1 2

8 6 2

Figure 4.17: The MovingHeapDuelMethod as it progresses simultaneously through
arrays A i- and A 2- for subcase nine. The first three elements of the product support
list are —24, —16, and —15.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

Chapter 5

Transformat ions

A method of finding the distribution of a function of one of more random variables

is called the change-of-variable technique. The change-of-variable technique can be

used to determine the distribution of a discrete random variable Y = g (X) given

the distribution of the discrete random variable X and a one-to-one transformation

g from the support of X , fix , to the support of Y , f2y. Further, the transformation

may be “piecewise many-to-one,” as presented in Bain and Engelhardt (1992, page

203). A “piecewise many-to-one” transformation denotes a transformation th a t is

either one-to-one, two-to-one, three-to-one, etc. (i.e., many-to-one) on disjoint sub

sets (“pieces”) of fix- For example, if X is a uniform discrete random variable for

x = - 2 , - 1 , . . . , 3, then Y = |A| is a two-to-one transform ation on the subset

{—2, —1,1,2} and a one-to-one transformation on the subsets {0} and {3}. Glen et

al. (1997) presents a generalized version of the univariate change-of-variable technique

for transforming continuous random variables. The purpose of this chapter is to ex

tend their technique to discrete random variables for both one-to-one and piecewise

many-to-one transformations.

145

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

146

5.1 Theory

5.1 .1 O n e-to -O n e T ransform ations

T h e o re m 5.1. (Bain & Engelhardt, 1992, page 197) Suppose th a t X is a discrete

random variable with PD F f x i x) and Y = g {X) defines a one-to-one transformation

from fix to fiy-, i.e., y = g(x) can be solved uniquely, say x = g~l (y). Then the PDF

of Y is

f v { y) = f x { g ~ L{y)) y e f i r

where QY = { y i f v { y) > 0 }-

P ro o f: By substitution,

Mv) = P r (y = y) = P r(9 (JC) = y) = P r(X = g ~ \ y)) = f x i g ' ^ y)) . □

The following two examples show how Theorem 5.1 is applied to discrete trans

formation problems.

E x a m p le 5.1. (Miller & Miller, 1999, page 242) If X is the num ber of heads obtained

in four tosses of a fair coin, find the PDF of Y — xyy.

S o lu tio n : The random variable X is binomial with param eters n = 4 and p = 1/2,

and support fix = {0 ,1 ,2 ,3 ,4} . Let Y = g(X) = ;^yy, which defines a one-to-one

transformation from fix to fiy = (| , 5 , §, l}- By Theorem 5.1, the PDF of Y is

My) = Pr = „) - Pr (X = 1 ^) = h (i ^) - (4) (i) *.

for v = — — — — 1 □y 5 ’ 4 ’ 3 ’ 2 >

E x a m p le 5.2. (Hogg & Craig, 1995, page 51) Let f (x) = rr/6 , x = 1,2,3, zero

elsewhere, be the PD F of X . Find the CDF of Y = X 2.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

147

S o lu tio n : The function Y = g (X) = X 2 defines a one-to-one transformation in this

example since fix contains strictly positive values. By Theorem 5.1, the PDF of Y is

Mv) = Pr(K = y) = Pr(AT2 = y) = Pr(X = Jy) = Y?-,b
for y = 1,4,9. Thus, FY (y) = J J L i 4 for V = 4, 9- n

5 .1 .2 “P ie c e w is e M a n y - to -O n e ” T r a n s fo r m a tio n s

If the function Y = g(X) is piecewise many-to-one on fix , then there is no unique

solution to the equation Y = g (X) on fix- Bain and Engelhardt (1992, page 202)

suggest partitioning fix into disjoint subsets fix ,, fix2, - - - such th a t Y = g(X) is one-

to-one over each fix,-- Then for each y € {<?(x) | x 6 fix}, the equation y = g{x) has a

unique solution x,- = g~1(y) on the subset fix,-- Hence, Theorem 5.1 can be extended

to functions that are piecewise many-to-one by replacing f v (y) = f x (g ~ 1(y)) with

f A v)
i

The following example shows how Theorem 5.1 is extended to cover problems

where Y = g(X) is a piecewise many-to-one transformation.

E x a m p le 5.3. (Miller & Miller, 1999, page 243) If X is again the number of heads

obtained in four tosses of a fair coin, find the PDF of the random variable Y =

{ X - 2)2.

S o lu tio n : The transformation Y = g(X) — (X — 2)2 is a two-to-one transformation

for X = 0,1,3,4 and a one-to-one transformation for X = 2, as can be seen in

Figure 5.1. Partition fix such th a t fixi = {0,1,2}, and fix2 = {3,4}. Then the

transformation g{X) = (X — 2)2 is a one-to-one mapping of fix , and fix2 into fiy =

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

148

{0,1,4}. Since gl l (y) = ~ ^ y + 2 and g2 l {y) = y/y + 2, then

f y (0) = f x (- y / 0 + 2) = f x (2) =
6_
16’

/y (l) — f x (—V 1 + 2) + f x (V l + 2) — f x (l) -h fx(3) = 2 • = ~ 7 i

/y (4) = f x (- V 4 + 2) + M V 4 + 2) = f x (0)+ f x (4) = 2 • Q) (1) ‘ = ^

4<>

3-

3 4
X

Figure 5.1: The transformation Y = g(X) = (X — 2)2 for X = 0,1,2,3,4. The
transform ation is two-to-one for X = 0 ,1 ,3 ,4 and a one-to-one for X = 2.

Another wav to write the PDF of Y is

My)

f v(y) = g y = o, and

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

149

5.2 Implementation

Glen et al. (1997) provide a theorem and resulting com puter algebra system imple

mentation for “determining the PD F of Y = g{X) for any univariate random variable

X of the continuous type with few restrictions on the transformation g (X) ” The

algorithm discussed in this section for determining the PD F of Y = g{X) for any

univariate random variable X of the discrete type is modeled after their theorem

and implementation. Naturally, there are differences in the implementation of their

algorithm and the algorithm for discrete random variables, especially since Theorem

5.1 does not hold as stated for continuous random variables. But many issues, such

as Maple producing more than one inverse function g f l (y) (e.g., if gi{x) = x 2) or

partitioning fix into disjoint subsets so that Y = g(X) is one-to-one on each of them,

is a problem for both continuous random variables and discrete random variables.

As with all procedures th a t operate on discrete random variables, the T ransf orm

procedure treats N oD ot and Dot formatted random variables separately. It is not

difficult to transform a random variable X with a N oD ot da ta structure format into a

new random variable Y — g{X) since the PDF and support of X are lists. The trans

formation g(x), whether one-to-one, piecewise many-to-one, or even discontinuous, is

applied by brute force to each element in AT’s support list. Although it is necessary

to determine which “piece” of g(x) corresponds to the various support values in fix ,

we do not need to partition fix since identical support values in Y = g{X) can be

combined before the transformed random variable is returned. Thus, the difficult task

of partitioning fix into subsets fix, and determining the unique solution x = g7 l (y)

for each transformation y = gi(x) on fixf is not required in the NoDot case.

The implementation for random variables with a Dot d a ta structure format posed

several difficult issues, one in particular with the APPL discrete list-of-sublists data

structure. The implementation (and implementation issues) for both data structure

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

150

formats, N oD ot and Dot, are discussed in more detail in the subsections entitled

“NoD ot Form at” and uDot Format.”

The APPL T ransf orm(X, g) procedure requires two arguments: a random vari

able X (either continuous or discrete) and a transformation function g. The trans

formation function g(x) is provided as a list of two sublists, where the first sublist

contains the transformation function (or functions) and the second sublist specifies

the domain of g{x) by either

• listing its piecewise components and the endpoints of the corresponding domains

for random variables with NoD ot formats; or

• listing its monotone piecewise components and the endpoints of the correspond

ing domains for random variables w ith Dot (or NoDot) formats.

For example, if Y = g(X) = \X — 2\ and AT is a discrete random variable with a

N oD ot format, then g{x) is entered in A PPL as

[[a; -> I* - 2 [], [-0 0 ,0 0]] .

If X has a Dot format (or NoDot form at), the example g(x) is entered as

[[a; —» 2 — x, x —> x — 2], [—00, 2,00]].

In APPL, discrete random variables, unlike continuous ones, need direction as to

how to interpret the inclusion of endpoints in the second sublist of g{x). Let g(x)

have the form

[{x gi {x) , x ->■ g2{x), . . . , x -> £m(:r)], [a1} a2, . . . , am+1l,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

151

where ai and am+1 may be negative or positive infinity, respectively. Then the pro

cedure Transform assumes th a t g(x) is defined as

g{x) = <

gi(x) ai < x < a2

£2 (2) a2 < x < a z

Clfn < X 5 ; ^ m + l -

Let X, for example, be a uniform discrete random variable for x = —1,0, . . . , 8

in its NoDot format. A discontinuous transformation function, such as

g(x) = <
x 2
8 — X

x < 4

x > 4,

must be entered as

[[a; —► x2, x —> 8 — x], [—oo, 3, oo]]

in order for APPL to interpret the transformation correctly. Although this may seem

like an awkward way of writing this transformation, a structure for working with

discontinuous transformation functions had to be put in place to handle situations

like this one. If X has a D ot format, g(x) is entered as

[[x —>■ x 2, x —> x 2, x —► 8 — x], [—oo, 0,3, oo]]

5 .2 .1 NoDot Form at

In the APPL NoD ot data structure format, the random variable X has each support

value listed in sublist two of the list-of-sublists. Let X , for example, have PDF

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

152

f (x) = rr/15 for x = 1, 2, . . . , 5. The standard N oD ot format of X is

, [1,2, 3,4, 5], [“Discrete” “PDF”]
1 2 1 4 1

15’ 15’ 5 ’ 15’ 3

Since the support values of X are contained in sublist two, any transform ation that

is applied to a random variable X affects this second sublist. The support values

change based on the specific transform ation g(x). The probability values for the

random variable Y = g{X) [before they are combined if g{x) is not one-to-one] are

the same as those for X and contained in the first sublist.

For ease and consistency in the implementation of the NoDot case, we assume

th a t g(x) is a piecewise many-to-one transform ation function. The process for work

ing with a piecewise many-to-one function (which includes one-to-one functions) for

discrete N oD ot random variables follows.

• The random variable X is converted to its PD F representation, if necessary.

• Since X has a NoDot format, when g(x) is one-to-one, sublist one will not

change (since the probability values for X and Y are the same). Sublist three

remains or becomes [“Discrete” , “PD F”].

• In the N oD ot case, each piecewise segment oig{x) is indicated in the first sublist

in its list of two sublists format. The algorithm identifies which segment of the

transform ation function is applied to which support value or values of X . (If

every monotone segment is listed in the first sublist, such as g : = [[x -> -x ,

x -> x] , [- i n f i n i t y , 0 , i n f i n i t y]] for Y = g(X) = |X |, the algorithm

still applies the appropriate segment of g(x) to the support values of X.)

• The appropriate transform ation function <7,-(x) is applied to the partitioned sup

port values of fix tha t are in sublist two. (If Y = g(X) is a one-to-one transfor-

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

153

mation of fix = {xi , x 2, - - -, x n} into fi^, for example, then each support value

Xi is transformed by g{x), i.e., the second sublist becomes [<7(2:1), <7(2 :2),

S (*n)])-

• T ’s support values (and corresponding probability values) are sorted in increas

ing value to conform to the APPL discrete random variable format.

• If identical support values exist in sublist two, they are removed and their

probabilities are combined. (Identical support values will occur when the trans

formation is not one-to-one.) If X is a uniform discrete random variable for

x = —1,0,1 and Y = X 2, for example, then x = —1 , 1 produce the identical

support value y = 1 .

• The transformed random variable is returned to the user in a NoD ot standard

format.

Three examples are presented to illustrate the algorithm for the N oD ot case. In

the first example, Y = g(X) is a one-to-one transformation; in the second example,

Y = g{X) is a piecewise many-to-one transformation; and in the last example, Y =

g{X) is not only piecewise many-to-one, but also discontinuous.

E x a m p le 5.4. Let X have PD F f (x) = x/15 for x = 1, 2, . . . , 5 as introduced in

the beginning of this subsection. Find the PDF of Y = 2 X + 1 .

S o lu tio n : The standard N oD ot form at of X is

L JL I i i
15’ 15’ 5 ’ 15’ 3

, [1 ,2,3,4,5], [“Discrete” “PD F”]

Since X is in its N oD ot format and the transformation g{X) = 2 X + 1 is a one-

to-one transformation for f ix = {1 ,2 ,3 ,4 ,5} , then fix is not partitioned. The only

step required in determining the PD F of Y in this case is transform ing the support

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

154

values of X by the one and only transform ation segment g(X) = 2 X + 1. Applying

the transformation g(X) to £lx yields the support values fiy = {3,5,7,9,11} in

increasing order. The statem ents

> X := [[x -> x / 15], [1 , 2, 3 , 4 , 5] , [" D isc re te " , "PDF"]];
> g := [Cx -> 2 * x + 1], [-infinity, infinity]];
> Y := Transform(X, g) ;

return the PDF of Y as

In the following example where Y = g{X) is a piecewise many-to-one transforma-

transformation in Example 5.4) is the clean up process of Y, i.e., the removal of iden

tical support values from the PDF of Y.

E x a m p le 5.5. (Bain & Engelhardt, 1992, page 203) Let f {x) = ^ (|) x for x =

—2, —1,0,1,2. Determine the PDF of Y = \X\.

S o lu tio n : The transformation g(X) = |X | is a piecewise many-to-one transformation

for fi* = {—2, —1,0,1, 2} to VIy = {0,1,4}. Since X will be entered in APPL in its

NoD ot format in this example, the function g(x) may be entered in APPL as one

segment, i.e., [[x -> a b s(x)] , [- i n f i n i t y , i n f i n i t y]] . The function g(X) =

|A”| is applied to fix to yield the support values in VLy - The support values obtained

by these transformations (in the second APPL sublist of Y) are

J_ _2_ 1 4_ 1
15’ 15’ 5 ’ 15’ 3

- , [3, 5, 7, 9,11], [“Discrete” “PD F”] .
□

tion, the only additional step required of the algorithm (as compared to the one-to-one

Before sorting and combining identical support values, Y has the form

^ I i 1 I'
31’ 31’ 31’ 31’ 31

— , [2 ,1 ,0 ,1 ,2], [“Discrete” , “PD F”] .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

155

After sorting the support values (and corresponding probability values) in increasing

order, Y has the form

‘_4_ _8_ 2_ 16 _1_
31’ 31’ 31’ 31’ 31

, [0,1,1, 2,2], [“Discrete”, “PD F”]

The identical support values are removed, and the final form of Y is

, [0,1, 2], [“Discrete”, “PD F”]
10 17

31’ 31’ 31

The APPL statements needed to return this PD F are

> X :

> g :
> Y :

= [[x -> (4 / 31) * (1 / 2) ~ x] , [-2 , -1 , 0, 1, 2] ,
["D isc re te " , "PDF"]];

= [[x -> ab s (x)] , [- i n f i n i t y , i n f i n i t y]] ;
= Transform(X, g) ; □

E x a m p le 5.6. Let X be a uniform discrete random variable for x = —1, 0, . . . , 8

and

y = g (x) =
{

X 2
8 — X

x < 4
x > 4.

Determine the PDF of Y.

S o lu tio n : The support fix is partitioned into two subsets: f ix x = {—1) 0,1,2,3} and

fix 2 — {4,5, 5, 7, 8}. The transform ation Yx = gx(X) = X 2 is applied to fixx and the

transform ation Y2 = g2(X) = 8 — X is applied to fix2- The PD F of Y,

f v (y) = <

1/5 y = o
3/10 y = l
1/10 y = 2
1/10 y = 3
1/5 y = 4
1/10 y = 9,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

156

is returned by the APPL statem ents

> X := UniformDiscreteRV(-l, 8);
> g := [[x -> x ~ 2, x -> 8 - x] , [-infinity, 3 , infinity]];
> Y := Transform(X, g) ; □

5 .2 .2 Dot F o rm a t

In the APPL Dot da ta structure format, the random variable X has a formulaic PD F

in the first sublist and pattern describing AT’s support in the second sublist. Let X ,

for example, have PD F /(x) = x /15 for x = 1 , 2, . . . , 5. The standard Dot format of

X is

j^x —y , [1 .. 5 ,1 , x —>• x], [“Discrete” , “P D F ”] .

Since the second sublist indicates th a t the support s ta rts a t the value one, each

additional value is incremented by one and transformed by x —>• x, and the last

support value is five, then the support is clearly { 1 ,2 ,3 ,4 ,5 } . Since the PDF of X

is formulaic, then any transform ation g(x) th a t is applied to the random variable

X will affect both its first and second sublists. The formulaic probability function

is determined by finding the appropriate inverse function g f 1{x) for each monotone

segment f2x,-, substituting the inverse g~l [y) for x into the formulaic PDF (for the

appropriate Qxt- partition), and making the appropriate adjustm ents to the support

of X . There are four separate subcases in APPL for determ ining the transformation

of a discrete random variable X w ith a Dot format tha t are outlined in Table 5.1 and

described separately in the following four subsections.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

157

Table 5.1: Categories for computing the PD F of the random variable Y = g (X) when
X is a discrete random variable with support Qx in a Dot support format.

g{x) Continuous,
g(x) in One Piece,

Qx g(x) One-to-One on flx Action Resulting Y

Finite

Yes Substitute g{X) into formulaic PDF;
reverse support list, if necessary

Random variable in
standard Dot format

No Convert X to
standard N oD ot format

Random variable in
standard N oD ot format

Infinite

Yes Substitute g(X) into formulaic PDF;
reverse support list, if necessary

Random variable in
standard Dot format

No — Random variable with
an “alien” APPL format

F in ite s u p p o r t , Y = g(X) a C o n tin u o u s O ne-to -O ne F u n c tio n G iven in O ne

P ie ce

The process for determining the PD F of Y = g(X) when X is a discrete random

variable with finite support with an A PPL Dot format and g{x) is a continuous

one-to-one function that is given in one piece is:

• The random variable X is converted to its PDF representation, if necessary.

• Each monotone segment of g{x) is indicated in the first sublist in its list of

two sublists format. If g(x) is continuous and one-to-one on fix? then only one

transform ation will be in the first sublist. The correct inverse must be deter

mined for x € Qx , which is sometimes difficult since Maple sometimes produces

several candidates for <7-1 (?/). The correct inverse is selected by requiring tha t

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

158

<7- 1 (<j(c)) = c, where c = (min{fix} -f m ax{fix})/2 , which is valid because

min{Qx} # —oo, m ax{fix} 7^ 0 0 .

• The correct inverse g~1(y) is substituted into the formulaic PDF for x.

• The support f ly is returned as a Dot support range with either the format:

(a) [min{f2x} -• m ax{f2x}, l , x —¥ g(x)], or

(b) [max{ftx} - m in{fix}, - 1 , x -> #(x)].

If g(x) is an increasing function on fix [i.e., #(min{Qx}) < <7(max{IV})], then

the support of IV has form at type (a). If g{x) is a decreasing function [i.e.,

^(min{fix}) > <7(m ax{fix })] 5 then the support of Qy has format type (b).

• The PDF of Y is returned in its standard Dot form at.

E x a m p le 5.7. Let X again have PD F f { x) = x/15 for x = 1 ,2, . . . , 5. Find the

PD F of Y = 2X + 1 in its A PPL Dot format.

S o lu tio n : The random variable X and transformation g (X) are entered into APPL

as

> X := [[x -> x / 15], [1 . . 5] , ["Discrete", "PDF"]];
> g '.= [[x -> 2 * x + 1], [-infinity, infinity]];

The transformation g{X) = 2 X + 1 is a one-to-one transform ation for Qx =

{1 ,2 ,3 ,4 ,5} . The procedure T ransform recognizes tha t g{x) is one-to-one since there

is only one function in its first sublist. The unique inverse g~l {y) = (y — l) / 2 is

substituted for x in X ’s formulaic PD F. The PDF of Y is

f Y {y) = ¥ - ^ 1
30

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

for y 6 { 3 ,5 ,7 ,9 ,1 1 }. The support fiy is returned in its Dot format as [1 ..5 ,x —>

2x + 1] (since g(x) = 2 x + 1 is an increasing function for x G fix). The final APPL

statem ent

> Y := Transform(X, gX) ;

returns the PDF of Y as

x x — 1

30
, [1.. 5, x —> 2x + 1], [“Discrete”, “PD F”]

□

F in i te s u p p o r t , Y = g{X) a D isco n tin u o u s o r P iecew ise M a n y -to -O n e F u n c

t io n

The process for determining the PDF of Y = g (X) when X is a discrete random

variable with finite support with an APPL Dot form at and g(x) is a discontinuous or

piecewise many-to-one function is:

• The random variable X is converted to its PD F representation, if necessary.

• Each monotone segment of g{x) is indicated in the first sublist in its list of two

sublists format. If g(x) is discontinuous or piecewise many-to-one on fix , then

more than one transformation will be in the first sublist. To avoid returning

an “alien” APPL random variable format (as discussed in the upcoming “Infi

nite support, Y = g(X) a Discontinuous or Piecewise Many-to-One Function”

subsection) for the PDF of Y , X is converted to its NoDot format w ith the

ConvertToNoDot procedure.

• The PD F of Y is determined as discussed in the NoDot format section. Al

though this approach poses no difficulty within the Transform procedure itself,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

160

the procedure does return a random variable in a different format than the one

in which it was entered. We prefer this consequence (NoDot format) to the

currently inevitable alternative—an unfriendly A PPL random variable that is

not acceptable as an argument to other APPL procedures.

Infin ite support, Y = g{X) a Continuous O ne-to-O ne Function G iven in

One P iece

The process for determining the PDF of Y = g (AT) when AT is a discrete random

variable with infinite support with an APPL Dot form at and g{x) is a continuous

one-to-one function given in one piece is:

• The random variable X is converted to its PDF representation, if necessary.

• If g(x) is continuous and one-to-one on Qx, then only one transformation will be

in the first sublist. The correct inverse is determined (for x e SI*) by using Glen

et al.’s approach (1997, page 289). The correct inverse is selected by requiring

tha t g~1(g(c)) = c, where c is a point in the support range of £lx- The portion

of the algorithm for determining c is

1. If m in{Dx} = —oo and m ax{n^} = oo, then c = 0.

2. If m in{Gx} = —oo and max{Qx} r oo, then c = m ax{fix} — 1-

3. If min{Q^-} ^ —oo and m ax{ny} = oo, then c = m in{fiy} + 1 .

4. For all other cases, c = (min{Dy} + m ax{Q y})/2.

• The correct inverse g~l {y) is substituted into the formulaic PD F for x.

• The support Dy is returned as a Dot support range with either the format:

(a) [min{Dx} •• max{Dx }, 1 , x -» ^(a:)], or

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

161

(b) [max{Qx} ~m in{fix}, - l , x ->• g{x)].

If g{x) is an increasing function on fij*-, then the support of Q y has format type

(a). If g(x) is a decreasing function, then the support of f2y has format type (b).

In some cases, the support sublist may look awkward, such as [oo .. 1 , — 1 , x —> £]

for Y = 1 / X where X is a geometric random variable, bu t it is in a standard

Dot format.

• The PD F of Y is returned in its standard Dot format.

E x am p le 5.8. (Hogg & Craig, 1995, pages 163-164) Let X have the Poisson PDF

Find the PD F of Y = 4X.

S o lu tion : The PD F of Y = 4X is determined with the APPL statem ents

> X := PoissonRV(mu);
> Y := TransformCX, [[x -> 4 * x] , [-infinity, infinity]]);

The resulting PD F for Y is

= (y/4)- ^ = 0’4>8’ —

APPL returns the lists-of-sublists for Y as

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

162

In fin ite support, Y — g(X) a D iscontinu ous or P iecew ise M any-to-O ne

F unction

The process for determining the PD F of Y — g { X) when X is a discrete random

variable with infinite support with an APPL Dot format and g{x) is a discontinuous

or piecewise many-to-one function is:

• The random variable X is converted to its PD F representation, if necessary.

• Each monotone segment of g[x) is indicated in the first sublist in its list of two

sublists format. If g{x) is discontinuous or many-to-one on fix , then more than

one transform ation will be in the first sublist. In this situation, it is currently

impossible to avoid returning an “alien” A PPL random variable format for the

PD F of Y. Since X has infinite support, i t cannot be converted to a NoDot

format. Thus, a t least two formulaic (piecewise) PD Fs are returned in the first

sublist of Y , and sublist two must be adjusted to reflect the piecewise PDFs.

The algorithm m ust identify which segment of the transformation function is

applied to which support value or values of X . This is more difficult than in the

NoDot case since each support value is not listed, but rather alluded to by the

second sublist data structure. Since it is impossible to mechanically calculate an

infinite number of support values, the algorithm simply returns the transformed

support as a range of support values followed by the transformation tha t applies

to it. For example, if X ~ Poisson(2), then its support in sublist two is [0.. oo].

If the transformation is Y = \X — 2|, then the transformed random variable Y

is

f f 2 ^ - ^ e - 2 2 (2+I)e -2l
l r “* (2 - x) r X ^ (2 +x) \ J ’

[2.. 0, - 1 , x ->• 2 - rr, 3 .. oo, x x - 2], [“Discrete” , “PDF”] .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

163

• The algorithm determines the appropriate inverse for the z'th monotone segment

with corresponding transform ation function gi(x), for each i. The correct inverse

is selected by requiring th a t g~1(gi(ci)) = eg when eg is a point in the support

range of • The algorithm for determining eg (where the ith subinterval has

endpoints Xi and z,-+1) is

1. If Xi - - —oo and x-i ^ oo, then = x 2 — 1-

2. If xn ^ —oo and x n+i - - oo, then eg, = xn + 1.

3. For all other cases, eg = (x{ + x l+i)/ 2 .

• The correct inverses g~1{y) are substituted into the formulaic PDF for x.

• If gi{x) is an increasing function on f ^ , then the support of the transformed

random variable, f1y, has format type:

[Xi..Xi+l, l , X -¥

If gi(x) is a decreasing function on Clxt, then the support of the transformed

random variable, has format type:

[xi+l.. Xi, - 1 , X <7,-(a;)].

• The transformed random variable Y is printed (not in its standard Dot format)

and a warning message is returned. This is the first tim e APPL has output a

random variable with more than one formulaic PD F in its first sublist. Other

APPL procedures are unable to work with a random variable in this format.

Further work on the discrete data structure will handle this situation. Unfor

tunately, the transformed PD F Y is being output in a form th a t is foreign (or

alien) to other APPL procedures.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

164

5.3 Applications

W hen a sample X i , X 2, - - ., X n is drawn, some summary statistics are computed, such

as the mean, variance, and median. It is also possible to compute the distributions

of these summary statistics provided th a t the X i are iid random samples from a

given distribution. Examples using the T ransf orm procedure to compute distributions

for the sample mean, sample geometric mean, sample harmonic mean, and sample

quadratic mean are displayed on the next several pages.

E xam ple 5.9. (Sample mean) Let X \ , X i , . . . , X 10 be iid Bernoulli random variables

with general parameter 0 < p < 1 . Find the PD F of the sample mean X .

Solution: The APPL statements below define X as a Bernoulli random variable

with parameter p, find the convolution of the ten Bernoulli random variables, and

transform the resulting convolution by 1/10.

> n := 10;
> X : = BemoulliRV (p) ;
> Y : = ConvolutionIID(X, n);
> Z : = TransformCY, [[x -> x / n] , [-infinity, infinity]]);

The resulting PD F for the sample mean Z = X is

f (1-P)10 z = 0

z = 1 / 1 0

z = 1/5
z = 2/5
z = 3/10
z = 1 / 2

z = 3/5
z = 7/10
z = 4/5
z = 9/10
z = 1 ,

1 0 p (l — p) 9

45p2(l — p) 8

1 2 0 p3(l - p) 7

2 1 0 p4(l - p) 6

/z (z) = 252p5(l — p) 5

2 1 0 p6(l - p) 4

1 2 0 p7(l - p) 3

45p8(l — p) 2

1 0 p9(l — p)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

165

which is the distribution of the ratio of a binomial(1 0 , p) random variable and 1 0 . □

E x am p le 5.10. (Sample geometric mean) Suppose th a t an urn contains 2 red balls

and 8 white balls. If 5 balls are drawn at random without replacement, then the to ta l

number of red balls selected X has a hypergeometric distribution with PDF

f x (x) =
320

(2 — r)!x!(3 + x)!(5 — x)\
x = 0 , 1 , 2 .

Let X i , X 2, . . . , X X2 be iid hypergeometric random variables with the above PDF.

Find the distribution of the sample geometric mean G.

Solu tion : The sample geometric mean G is defined by

n \ VnHtH
The APPL statem ents

> n
> X
> Y
> G

= 1 2 ;
= HypergeometricRV(10, 2, 5);
= ProductIID(X, n);
= TransformCY, [[x -> x (1 / n)] , [-infinity, infinity]]);

return the PD F of G in its list-of-sublists as

'268588249280 244140625G := 390625000 859375000
282429536481’ 282429536481’ 94143178827’ 94143178827’

3437500000 343750000 220000000 308000000
282429536481’ 31381059609’ 31381059609’ 94143178827’

35200000 8800000 14080000 563200
31381059609’ 31381059609’ 282429536481’ 94143178827’

4 0 9 6 0 _______________4 0 9 6] [q x 2 1 / 1 2 2 1 /6 2 1 /4 2 1 /3 2 S /1 2
94143178827’ 28242953648lJ ’ L ’ ’ ’

v/2, 2 7/ 1 2 ,2 2/3,2 3/4,2 5//6,2 U/12, 2], [“Discrete”, “PD F”]
□

E xam ple 5.11. (Sample harmonic mean) Let X i , X 2, X$, X 4 be iid uniform discrete

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

166

random variables with PD F /x (x) = 1/6 for x = 1, 2, . . . , 6 . Find the distribution

of the sample harmonic mean H.

Solution: The sample harmonic mean H is defined by

H = i -1 _ '
n Z^i=l Xi

The APPL statem ents

> n := 4;
> X := UniformDiscreteRVCl, 6);
> Tempi := TransformCX, [[x -> 1 / x] , [0, infinity]]);
> Temp2 := ConvolutionllD(Tempi, n);
> H := Transform(Temp2, [[x -> n / x] , [0, infinity]]);

return the PD F of H as

’ 1/1296
1/324

1/216
1/108

1/72
11/648
1/54

fu{h) = <
41/1296
1/36
5/162
2/81
17/648
13/648
31/1296
7/324
23/1296
1/81
5/648

h = 1,5,6
h = 8/7,6/5,16/13,5/4,24/19,5/2,40/11,30/7,80/17,

120/23,16/3,40/7
h = 4/3,5/3,20/7,60/11
h = 24/17,16/11,40/27,48/31,30/19,80/49,48/29,120/71,

16/9,20/11,40/19,30/13,80/33,120/47,80/29,120/37,
80/23,240/59,240/49,240/47

h = 3/2,12/7,15/4,40/9
h = 8/5
h = 24/13,48/25,120/61,80/39,240/107,240/97,48/19,60/23,

48/17,120/41,240/77,60/13
h = 2
h = 48/23,15/7,240/67,120/31
h = 24/11,40/17,10/3
h = 16/7,16/5,
h = 12/5,24/7
h = 8/3
h = 3
h = 48/13,80/19
h = 4
h = 48/11
h = 24/5.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

167

E xam ple 5-12. (Sample quadratic mean) Let X 2, . . . , X 10 be iid Bernoulli ran

dom variables with parameter p, where 0 < p < 1. Find the distribution of the sample

quadratic mean Q.

Solution: The sample quadratic mean Q is defined by

The APPL statements

Q = \
i n
iE * . '2-n t—'i—1

> n
> X
> Y
> Z
> T
> Q

= 1 0 ;
= BernoulliRV(p);
= Transform(X, [[x -> x * 2] , [-infinity, infinity]]);
= ConvolutionllD(Y, n);
= Transform(Z, [[x -> x / n] , [-infinity, infinity]]);
= Transform(T, [[x -> sqrt(x)], [0, infinity]]);

return the PDF of Q as

/« (?) = <

(1 - p) 10 q = 0

1 0 p (l - p) 9 q = v '1 0 / 1 0

45p2(l — p) 8 q = V 5/5
1 2 0 p3(l — p) 7 q = >/30/10
2 1 0 p4(l - p) 6 q = v/10/5
252p5(l — p) 5 q = y/2 / 2

2 1 0 p6(l — p) 4 q = v/15/5
1 2 0 p 7(l - p) 3 q = v/70/10
45p8(l — p) 2 q = 2>/5/5
1 0 p9(l — p) q = 3710/10
pio qf = l . □

E xam ple 5.13. (Reliability) Three different components, numbered one, two, and

three, are tested. They are to be arranged in a series system. The number of com

ponents tested and successes for each type of component are listed in Table 5.1. The

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout pe rm iss ion .

168

point estim ate for the system reliability is | | - • | | = = 0.8595. Find the lower

95% bootstrap confidence interval bound.

Table 5.2: Life tests on a three-component system.

Component Number on Test Number of Passes

1 23 2 1

2 28 27

3 84 82

Solution: The APPL statem ents below, which utilize the P roduct and Transform

procedures, are used to determine the lower 95% bootstrap confidence interval bound

for the system reliability.

> n l := 23; s i := 21;
> XI := BinomialRV(nl, s i / n l) ;
> XI := TransformCXl, [[x -> x / n l] , [- i n f i n i ty , i n f i n i t y]]) ;
> n2 := 28; s2 := 27;
> X2 := BinomialRV(n2, s2 / n 2) ;
> X2 := Transform(X2, [[x -> x / n2] , [- i n f i n i ty , i n f i n i t y]]) ;
> n3 := 84; s3 := 82;
> X3 := BinomialRV (n3 , s3 / n 3) ;
> X3 := Transform(X3, [[x -> x / n3] , [- i n f i n i t y , i n f i n i t y]]) ;
> Temp := P roduct(X I, X2) ;
> T := Product(Temp, X3);

Out of the possible 24 • 29 • 85 = 59,610 potential mass values for T determined by

the P roduct procedure, only 6,419 remain since the procedure combines redundant

values. The lower 95% bootstrap confidence interval bound is 120/161 = 0.7453.

This lower bound was verified by the following Splus function, which samples 10,000

systems to determine the lower bound:

se rie ssy s tem b o o t <- fu n c t io n (n , y , a lpha) ■{

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

nn <- lengthCn)
nrep <- 10000
yy <- rep(l, nrep)
point <- prod(y) / prod(n)
for (j in lrnrep) -C
for (i in l:nn) -C

y y [j] <- y y [j] * rbinom(l, n[i] , y[i] / n[i]) / n[i]
}

>
yy <- sort(yy)
interval <- yy[floor(alpha * nrep)]
c(point, interval)

The function se rie ssy s te m b o o t was called five times with the command

se rie ssy s te m b o o t(c (2 3 , 28, 84) , c (21 , 27, 82) , 0.05)

yielding 0.7457, 0.7487, 0.7457, 0.7402, and 0.7457.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 6

Minimums and Maximums

Let X and Y be two independent discrete random variables with supports f i x and

respectively. This chapter outlines a procedure for determining the PDF of the

minimum and maximum of X and Y. At first glance, it appears th a t computing the

PDF of min{Af, Y } is no more difficult than determining the PDF of the smallest order

statistic for some discrete random variable. This is true when X and Y are identically

distributed; we can ju st use the O rderS tat procedure (introduced in Chapter 3) with

the following three parameters:

• X = X (or Y),

• n = 2 (the sample size drawn from the population), and

• r = 1 , i.e., minimum.

W hen X and Y are not identically distributed, their supports (finite or infinite)

and specific support value relationships (e.g., max{f2x} < max{fV}) determine how

the PD Fs of their minimum and maximum are calculated. Table 6.1 illustrates the

various categories considered when the Minimum procedure determines the PDF of

the minimum of independent discrete random variables X and Y. Each category is

discussed in its own subsection. Since computing the PD F of the maximum is more
170

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

171

than ju st a reversal of the algorithm for computing the PD F of the minimum, it is

discussed separately with examples and figures a t the end of this chapter.

Table 6.1: Categories for computing the PD F of the minimum of two independent,
non-identically distributed random variables X and Y . The notation U(a, b) repre
sents a uniform discrete random variable on the interval [a, 6], Geo(p) represents a
geometric random variable with parameter p, and NegBinom(r, p) represents a nega
tive binomial random variable with parameters r and p.

Support
Supports Value
fix & f i r Relationships Examples

fix finite,
fiy finite

m ax{fix} = max{fiy} X ~ U (l, 6), Y ~ U(3, 6)

m ax{fix} < max{fiy}
(or vice versa)

X ~ U (l, 4), Y ~ U(3, 5)

fix infinite,
fiy infinite

m in{fix} = min{fiy} X ~ G e o (l/2), Y ~ G eo(l/4)

min{fix} < min{fiy}
(or vice versa)

X ~ G eo(l/2),
Y ~ NegBinom(2, 1/2)

fix infinite,

fiy finite

(or vice versa)

* w-
' II u S r-̂-
N

'-r-
' X ~ G e o (l/2), Y ~ U(l, 4)

min{fix} < max{fiy} X ~ G e o (l/2), Y ~ U(3, 5)

m in{fix} > max{fiy} X ~ NegBinom(2, 1/2),
Y ~ U(l , 4)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

172

6.1 PDF of the Minimum

Let X and Y be two independent discrete random variables with supports Qx and

fir , respectively. Let Z = min{X, Y} . Then the CDF of Z is computed as

for z € Qz C U fi>-, where Qz is discussed further in the various subsections. The

CDF of Z can be converted to its PDF representation if desired. When X and Y are

identically distributed (as discussed in the following subsection), the CDF of Z when

n samples are drawn from X ’s population is

6 .1 .1 Id en tica lly D istr ib u ted R a n d o m V ariab les

For discrete iid random variables, the MinimumIID(X, n) procedure was written to

determine the PD F of the minimum of n iid random variables X. The MinimumIID(X,

n) procedure determines the PD F of the minimum by making the procedure call:

O rd erS ta t (X, n , 1). From Chapter 3, OrderStatCX, n , r) determines the PDF

of the r th order statistic when n random samples are drawn (with replacement) from

the parent population corresponding to the random variable X. Thus, the statement

Fz (z) = P r (Z < z)

1 - P r(Z > z)

1 — Pr(min{A', Y } > z)

1 — P r(X > z) ■ Pv{Y > z) (X and Y are independent)

1 - (1 - Pr(J\T < z)) • (1 - P r(K < z))

1 - (1 - Fx {z)) ■ (1 - FY {z)) (6 .1)

Fz (z) = 1 - (1 - Fx {z))n z € fix- (6 .2)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

173

O rderS ta t (X, n , 1) determines the PDF of the first order statistic, the m i n i m u m ,

when n random samples are drawn from the parent population. Unlike the Minimum

procedure, MinimumllD can determine the PDF of the m i n i m u m for more than just

two random variables. Also, as shown in Example 6.2, MinimumllD can be used for

random variables with infinite supports.

E x am p le 6.1. (Adapted from Bain & Engelhardt, 1992, page 54) A fair four-sided

die is rolled twice. Determine the PDF of the minimum.

S o lu tion : Let Xi be the outcome of the die on its ith roll, i = 1,2. Then f Xi {x) = 1/4

for x = 1 , 2 ,3,4; i = 1 , 2 . Let Z = min-fXi, X 2}. The diagram in Figure 6 . 1 shows

th a t the PDF of Z is

f z { z) = <

7_
16

5
16

3
16

1
16

z — 1

z = 2

z = 3

z = 4.

4

3

2

1

21 3 4

m i n i m u m
value

4

3

2

1

probability

_L
16

3
16

o
16

16

*1

Figure 6.1: The PD F of the minimum when a four-sided die is rolled twice.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

174

The APPL statements required to determine this PDF are

> X := UniformDiscreteRVCl, 4) ;
> Z := MinimumllD(X, 2); □

E x a m p le 6.2. (Adapted from Bain & Engelhaxdt, 1992, page 229) Consider a ran

dom sample of size n = 4 from a geometric distribution with PDF f x {%) = p- (1 — p)x~l

for x = 1 ,2 , . . . : 0 < p < 1 . Determine the PD F of the minimum.

S o lu tio n : Let Z be the minimum of the four geometric random variables. The CDF

of X is Fx {x) = 1 — (1 — p)x, and thus the CDF of Z (by equation 6.2) is

Fz (z) = l - (l - (l - (l - py) f

= 1 - (1 - p) ^ z = 1, 2 ,

The simplified PD F representation of Z , found by differencing, is

cf ̂ _ - p (p4 - 4p3 + 6 p2 - 4p + l) 2 (p3 - 4p2 4-6 p - 4)
J \ . z) . . 4 z — I , z , . . . ,

(1 ~P)

which is obtained with the APPL statem ents

> X := GeometricRV(p) ;

> Z := MinimumllD(X, 4); □

6 .1 .2 N o n - id e n t ic a lly D is tr ib u te d R a n d o m V a r ia b le s

One of the largest obstacles in determining the PD F of Z when X and Y do not

have the same distribution is working with supports Qx and Qy th a t are often not

identical [e.g., X ~ geom etric(l/2), Y ~ negative binomial(2, 1/2)]. There are three

categories to consider: (1) Qx and Sly both finite, (2) Six and Sly infinite, and (3)

Six infinite and Sly finite (or vice versa).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

175

f i x F in ite , f i y F in ite

In APPL, random variables with finite supports come in one of two formats: Dot

or NoDot . Instead of working w ith random variables in their Dot formats and pro

ducing alien APPL PDFs (e.g., the transformed random variable displayed in its

list-of-sublists a t the bottom of page 162), random variables with Dot formats are

converted to their NoDot formats with the ConvertToNoDot procedure at the start

of the Minimum procedure. A brute force m ethod is used to determine the PDF of

the minimum Z.

For explanation purposes, let X and Y be the random variables

f x (x) = <

0 . 2 x — 1

0.3 x = 5
0.4 x = 7
0 . 1 x = 9,

f v (y) = <
0.6
0.1
0.3

y — 4
y=- 5
V = 6 .

The support of Z = min{AT, Y } contains only the support values of fix and fiy

th a t result in nonzero probabilities (for minima), i.e., fiz = {1 ,4, 5, 6 }. Thus, if

• m ax{fix} = max{fiy}, then f iz = Qx U fiy;

• m ax{fix} > max{fiy}, then the Qz = {x € fix \ x < max{Qy}} U fiy . The

example introduced in this subsection falls into this category;

• m ax{fix} < max{fiy}, then the Qz = U {y € fiy } y < m ax{fix}}.

For each support value z € Qz, the probability value Fz {z) is computed using

equation 6.1. In APPL, the value F z (z) is computed using the CDF procedure. That

is,

Fz (z) = 1 - (1 - CDF (AT, z)) • (1 - CDF(T, z))

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

176

for each z G Q.z - After the CDF of Z is determined in the Minimum procedure, it is

converted to its PD F representation with the PDF procedure.

E x a m p le 6.3. Determine the PDF of Z = min{AT, Y } for the random variables X

and Y introduced in this subsection.

S o lu tio n : Figure 6 . 2 illustrates how the five minimum support values in Viz axe

obtained.

minimum
value

minimum
value

Figure 6.2: The minimum values Qz = {1 ,4 ,5 ,6 } for X and Y in Example 6.3.

Using equation 6 .1 , the CDF of Z and its corresponding PD F are

0 . 2 2 = 1 0 . 2 2 = 1

0 . 6 8 2 = 4
f z { z) = <

0.48 2 = 4

0.85 2 = 5 0.17 2 = 5
1 2 = 6 , 0.151 2 = 6 .

Fz{z) =

The PD F of Z is determined with the APPL statem ents

> X
> Y
> Z

= [[0 .2 , 0 . 3 , 0 . 4 , 0 . 1] , [1, 5, 7, 9] , [" D is c re te " , "PDF"]];
= [[0 . 6 , 0 . 1 , 0 . 3] , [4 , 5, 6] , [" D is c re te " , "PDF"]];
= Minimum(X, Y) ; □

E x a m p le 6.4. Fair six-sided and twelve-sided dice are rolled. Determine the proba

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

97

9951995299

177

bility th a t the minimum face showing is a three or less.

S o lu tio n : The probability that the minimum face Z is less than or equal to three is

5/8, as determined by the APPL statem ents

> X := UniformDis''-^eteRV(l, 6) ;
> Y := UniformDiscreteRVCl, 12);
> Z := Minimum(X, Y);
> CDFCZ, 3) ; □

Qx In f in ite , fiy In fin ite

When Vtx and fiy have infinite supports, the random variables X and Y have Dot

formats in APPL. Thus, a formulaic PD F for Z = min{X, Y } will be returned in

APPL. Assume th a t the supports Qx and fiy are subsets of adjacent integer values.

(This is often the case since many random variables, such as the geometric, Poisson,

and negative binomial random variables, have this type of support.) In this particular

category, it is im portant to determine whether or not min{fix} = min{fiy}.

In the case where m in{fi^} = min{fiy}, the CDF of Z is computed using equation

6.1 and the CDFs of X and Y. In APPL, the CDF procedure is used to determined

the formulaic CDFs for X and Y . Once the CDF of Z is determined, its PDF is

calculated— in APPL, this is done with the PDF procedure.

E x a m p le 6 .5 . Determine the probability th a t the minimum of a Poisson random

variable X w ith a mean of one and a Poisson random variable Y with a mean of two

is greater than or equal to three.

S o lu tio n : T he CDF of Z = min{X, Y } can be determined with equation 6.1, and

then converted to its PD F representation. In APPL, the desired probability, Pr(Z >

3), is computed with the SF (survivor function) procedure. The statem ents

> X := PoissonRV(l);
> Y := PoissonRV(2);

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

178

> Z : = MinimumCX, Y);
> evalf(SF(Z, 3));

return the probability as the floating point approximation 0.0260. □

In the case where min{fix} # m in{f2r}? the PD F of Z = min{AT, Y } is a piecewise

defined function. Assume without loss of generality th a t min{f2x} < min{fiy-} . The

support of the minimum Z is identical to the support of X , i.e., Qz = Q x - For

2 E {min{ftx }, min{fix } + 1, . . . , min{Qy } - 1} C Qx , f z (z) = f x {z). For 2 E

{min{fiy-}, min{fiy-}+l, . . .} = Qx —{m in{fix } 5 m in{ fix}+ l, - - • 7 m in{fV }—1 }, the

formulaic piece of the CDF F z (z) is computed using equation 6.1. The corresponding

formulaic piece of the PDF f z{z) for 2 E {min{fV}, min{fV} + 1, . . .} is computed

using both the formulaic CDF segment of Fz(z) for 2 E {min{Qy}, min{f2y} + l , . . .}

and the PD F values f z{z) for 2 E {min{f2x}, min{Qx} + 1, . . . , m in{fiy} — 1}.

For example, let AT be a geometric random variable with param eter p = 1/2, and

let Y be a negative binomial random variable with parameters r = 2 and p = 1 / 2 . The

first segment of the PDF of Z is f z { z) = (l /2)z. As indicated by the first column

in Figure 6.3 with x = 1 , the minimum value 2 = 1 occurs with probability 1/2,

the formulaic piece of the CDF of Z is computed using equation 6.1 with the CDFs

PD F o i X is f x {x) = (1/2)*, x = 1, 2, . . . , and the PDF of Y is f Y (y) =

y = 2 ,3 , ---- For 2 E {m in{fix},m in{f2x} + 1, min{fV} — 1} = {1}, the

1. For 2 E {min{fiy},min{fiy-} + 1, . . . } = {2,3, . . .},

Fx (x) = 1 - (l /2)x, x = 1,2 , . . . , and FY (y) = 1 - (y + l)/2», y = 2 ,3 ,

The resulting PD F for the minimum Z for the example random variables X and

Y is

2 — 2 , 3 ,

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

179

minimum
value

Y

7

6

5

V

3 4
X

minimum
value

- 3

- 2

Figure 6.3: The support values for a geometric random variable with support
Qx = {1,2, . . . } and and a negative binomial random variable with support fly =
{ 2 , 3 , . . . } .

As discussed in Chapter 5 on transformations, A PPL is forced to return an error

message and print the PDF of Z in a form th a t is alien to other APPL procedures.

APPL prints the PD F for Z as

x
3 x - l

4X
, [1 ,2 . . oo], [“Discrete” , “PD F”]

Q x In fin ite, Q y F in ite

For discussion purposes, X has an infinite support and Y has a finite support in

this subsection, though they could be swapped w ithout consequence. Assume that

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

180

the support Qx is a subset of adjacent integer values. There are three cases to

consider in this category: (1) min{f2x} = min{fiy}, (2) min{ft;c} > min{Qy}, and

(3) min{fix} < min{S2y}.

• min{Qx} = min{fiy}

E x am p le 6 .6 . Let X ~ geom etric(l/2) with PDF fx{%) — (l /2)x for x =
1,2, . . . , and Y have PDF

f v (y) = <

r 1/4 y = l
1 / 8 y = 3
1 / 2 y = 4

k 1 / 8 y = 6 .

Determine the PD F of the minimum Z.

S o lu tion : In the case where min{f2x} = min{fiy}, Qz = {min{Dx}, m in{fix}+

1, . . . , max{f2y}}. Since \Qz\ is finite, the probability value Fz (z) is computed

(by brute force) for each z £ Qz using equation 6.1. In APPL, Z will have a

NoDot format, where its second sublist will range over all integers between and

including m in{Qx} to max{Qy}. Figure 6.4 illustrates how the six m in im u m

values are determined in this example.

The CDF of X is Fx {x) = 1 - (l /2)x for x = 1,2, . . . , and the CDF of Y is

Fy{y) = *

1/4 y = 1

3/8 y = 3
7/8 y = 4
1 y = 6 .

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

181

minimum
value

il a minimum
v a l n p

lli ^ 0

^ 4

pi
1

1 2 3 4 5 6 7 . . .
X

Figure 6.4: The support values for the random variable X with infinite support and
the random variable Y with finite support, where m in{fl^} = m in{fV }.

For 2 = 5, for example,

Fz (5) = P r (Z < 5)

= 1 — Pr(m in{X , Y } > 5)

= 1 - (1 - P r(X < 5)) • (1 - P r(F < 5))

- ' - © ‘ f f l
255

” 256'

The other CDF values are obtained similarly to yield the CDF of Z as

5 /8 z = l
13/16 2 = 2

59/64 2 = 3
127/128 2 = 4
255/256 2 = 5
1 2 = 6 .

The resulting PDF, computed by the APPL statements

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited without perm iss ion .

182

> X := GeometricRVCl / 2);
> Y := [[1 / 4 , 1 / 8 , 1 / 2, 1 / 8] , Cl, 3 , 4 , 6] ,

["Discrete", "PDF"]];
> Z := Minimum(X, Y);

is

f z (z) = <

5/8 z = 1

3/16 z = 2

7/64 z = 3
9/128 z = 4
1/256 z = 5

k 1/256 z = 6 . □

m in{fix} > min{£V}

E x a m p le 6.7. Let X be a negative binomial(4, 1 / 2) random variable with
PD F f x (x) = ^~96(i - 4 j;— j x = 4,5, . . . and Y be a random variable with PDF

f r (y) = <

1/4 y = i
1/4 y = 3
1/4 y = 5

k 1/4 y = 7.

Find the PD F of Z = min{X, Y} .

S o lu tio n : Figure 6.5 illustrates the support values of X and Y. When min{Q_y}

> m in{fV }, = {y £ f i y ! y < m in{flx}} U {min{SlA:}, min{f2*} + 1 , . . . ,

max{f2y}}- For z € {y € QY IV < m in-fn*}}, Fz (z) = FY (z). For z 6

{min{f2x}, min{Qx} + 1 , . . . , max{CV}}, the value Fz {z) is computed using

equation 6.1 and the CDFs of X and Y. Finally, the CDF of Z is converted to

its PD F representation.

In APPL, the assignment Y : = UniformDiscreteRVCa, b , k) ; defines Y

as a uniform discrete random variable (provided th a t k divides b — a) with PDF

f r (y) = n + 1
y = a,a + k , a + 2k , . . . , a + n k ,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

183

minimum
value ^

minimum
value

7

5

3

1

4 5 6 7 8 9 10

Figure 6.5: The support values for the random variable X with infinite support and
the random variable Y with finite support, where min{f2x} > min{fV}.

where n = (b — a)/k . Thus, the statements

> X := NegativeBinomialRV(4, 1/2);
> Y := UnifonnDiscreteRVd, 7, 2);
> Z := MinimumCX, Y);

return the PD F of Z as

1/4 Z = 1

1/4 z — 3
1/32 2 = 4
17/64 2 = 5
5/128 2 = 6
21/128 2=7.

• m in{fix} < min{fV}

E x a m p le 6 .8 . Let J b e a geom etric(l/4) random variable with PD F f x (x) =

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

184

4 (f)* \ x = 1> 2, - - and Y be a random variable with PD F

1/4 y = 4

1 1/4 y = 6

1/4 y = 7

. 1 /4 y = 9.

Find the PD F of Z = min{AT, Y } .

S o lu tio n : Figure 6 . 6 illustrates the support values of X and Y . When m in{fix} <

m in{fV}, Q z = { x € Q x I x < m in{fV}} U {min{S7y'}, m in{fV } H- 1,

max{f2y }}. For z 6 {a: G Qx I x < m in{fV}}, Fz (z) = Fx {z). For z G

{min{^K},min{Dy} + 1, max{Dy}}, Fz (z) is computed using equation

6.1 and the CDFs of X and Y. Finally, the CDF of Z is converted to its PDF

representation.

m i n i m u m

value
m inim um
value

9

7

6

4

2 61 3 4 5 7 8 9 10
X

Figure 6 .6 : The support values for the random variable X with infinite support and
the random variable Y with finite support, where m in ify } < min{£V}-

In APPL, the statements

> X := GeometricRVCl / 4);

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

185

> Y := [[1 / 4 , 1 / 4 , 1 / 4 , 1 / 4] , [4 , 6 , 7 , 9] ,
[" D is c re te " , "PDF"]];

> Z := MinimumCX, Y);

return the PDF of Z (in its NoDot format) as

'1 / 4 2 = 1
3/16 z = 2
9/64 z = 3
189/1024 2 = 4

f z { z) = 243/4096 2 = 5
729/8192 2 = 6

3645/65536 2 = 7
2187/262144 2 = 8

k 6561/262144 2 = 9.

6.2 PDF of the Maximum

Let X and Y be two independent discrete random variables with supports Q x and

Qy, respectively. Let M = max{X, Y} . Then the CDF of M is computed as

Fm {m) = P r(M < m)

= Pr(m ax{X , Y } < m)

= P r(X < m) ■ P r(F < m)

= P r(X < m) - P r(T < m)

= F x (m) • FY (m)

(X and Y are independent)

(6.3)

for m G fijif C Qx U Qy, where SlM is discussed further in the various subsections.

The CDF of M can be converted to its PD F representation if desired. When X and

Y are identically distributed, the CDF of M when n samples are drawn from X ’s

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

186

population is

FM{m) = Fx {m)n m e Q X - (6.4)

For discrete iid random variables or random variables with finite support, the

MaximumllD and Maximum procedures are closely related to their counterpart minimum

procedures in APPL. The MaximumllD (X, n) procedure determines the PDF of the

maximum of n iid random variables X. The MaximumllD procedure determines the

PD F of the maximum by calling the O rderS tat procedure with the random variable

X = X , the number of samples drawn n = n, and the order statistic r = n. The

statem ent O rderS tat (X, n , n) determines the PDF of the largest order statistic.

Unlike the Maximum procedure, MaximumllD can determine the PDF of the m axim um

for more than ju st two random variables.

E xam ple 6.9. A fair twelve-sided die is rolled five times. Determine the PDF of the

maximum.

Solution: Let Xi be the outcome of the die on its zth roll, i = 1 ,2 ,3 ,4 ,5 . Then

f Xi(x) = 1/12 for x = 1,2, . . . , 12; * = 1,2, . . . , 5. Let M = m ax{Xi, X2, X3, AT4, AT5}.

The CDF of M is computed using equation 6.4. Its corresponding PDF is

1/248832
31/24883

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10
m — 11

m = 12.

fM{m) = <

211/248832
781/248832
2101/248832
4651/248832
9031/248832
15961/248832
26281/248832
40951/248832
61051/248832
87781/248832

V

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

187

The APPL statem ents required to determine this PDF are

> X := UniformDiscreteRV(l, 12);
> M := MaximumllD(X, 5); □

As in the Minimum procedure, random variables with Dot formats axe converted

to their NoDot formats with the ConvertToNoDot procedure. A brute force method

is used to determine the PDF of the maximum M.

For explanation purposes, again let X and Y be the random variables

f x { x) = <

0.2 x = 1
0.3 x = 5
0.4 x = 7
0.1 x = 9,

f r{ y) = <
0.6 y = 4
0.1 y = 5
0.3 y = 6.

The support of M contains only the support values of fi* and fiy th a t result in

nonzero probabilities (as maxima), i.e., fiM = {4, 5,6, 7, 9}. Thus, if

• m in {fijr} = m in { f iy } , then = Qx U f iy ;

• m in{fi*} > m in{fiy}, then the = fi* U {y £ fiy | y < m in{fix}};

• min{fix} < min{fiy}, then the f i^ = {x E. f i^ | x < min{fiy}} U fiy. The

example reintroduced in this subsection falls into this category.

For each support value m £ f i^ , the probability value i'V (ra) is computed using

equation 6.3. In APPL, the value F^f(m) is computed using the CDF procedure. T hat

is,

FM{m) = CDF (AT, m) • CDF(K, m)

for each m £ f i ^ f . After the CDF of M is determined in the Maximum procedure, it is

converted to its PD F representation with the PDF procedure.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

188

E xam ple 6.10. Determine the PD F of M = max{X, Y } for the random variables

X and Y reintroduced in this subsection.

Solution: Figure 6.7 illustrates how the five maximum support values m G Qm are

obtained. Using equation 6.3, the CDF of M and its corresponding PD F are

FM(m) =

' 0.12 m = 4
0.35 m = 5
0.5 m = 6
0.9 m = 7
1\ m = 9,

X
m a x im u m 1 5 7 9

r 0.12 m = 4
0.23 m = 5
0.15 m = 6
0.4 m = 7
0.1 m = 9.

6

5

4

6

5 Y

4

maximum
7 9 value

Figure 6.7: The maximum values {4 ,5 ,6 ,7 ,9} for X and Y in Example 6.10.

The PD F of M is determined with the APPL statements

> X
> Y
> M

= [[0.2, 0.3, 0.4, 0.1], [1, 5, 7, 9], ["Discrete", "PDF"]];
= [[0.6, 0.1, 0.3], [4, 5, 6], ["Discrete", "PDF"]];
= Maximum (X, Y) ; □

O ne or B o th 0 .x and f l y Infin ite

We assume that the supports of Qx and Qy are integer valued. W hen both Fix and

J7y are infinite, it is im portant to determine whether or not min{f2x} = min{fiy}. If

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

189

• m in{fix} = min{fi^}, then fi/vr = fix (or f ir);

• m in{fix} > m in{fir}, then fi^- = fix-;

• m in{fix} < min{fiy}, then f i ^ = QY.

The maximum CDF in all cases is determined using equation 6.3 and can then be

converted to its PDF representation.

E xam ple 6.11. Let X be a negative binomial random variable with parameters

r — 2 and p = 1/2, and Y be a geometric random variable with parameter p = 1/4.

Determine the PD F of M = max{AT, Y} .

S o lu tio n : In APPL, the PDF is computed with the statements

> X := NegativeBinomialRV(2, 1/2);
> Y := GeometricRVCl / 4);
> M := Maximum(X, Y) ;

The resulting PD F is

purposes, choose X to have an infinite support and Y to have a finite support, though

they could be swapped without consequence. There are three cases to again consider:

(1) m in{fix} = m in{fiy}, (2) m in{fix} > min{fiy}, and (3) min{fix} < m inlfi^}-

• m in{fix} = min{fiK}

m = 2 ,3 , ___

Notice th a t fi^- = fiY , since m in{fix} < min{fiy}. □

When either fix or fiy is infinite (and the other is finite), the relationship between

m in{fix} and min{fiy-} plays an im portant role in determining For discussion

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

190

E x am p le 6.12. Let X ~ geometric(1/2) with PDF f x (x) = (1/2)1 for x =

1,2, . . . , and Y have PDF

f v i y) = <

' 1/4 y = l
1/8 y = 3
1/2 y = 4

. 1/8 y = 6.

Determine the PDF of M = max {AT, Y} .

S o lu tio n : In the case where m in{fix} = min{f2y}, = {min{fix}, m in{fix}+

1, i.e., I^Afl is infinite. The probability value Fm-(jti) is computed (by

brute force) for each m £ {m in{fix}5 min{f2x} + 1 , - . . , max{fiy}} using equa

tion 6.1. In APPL, M has a NoDot format for m £ {min{f2x}, min{fi;c} +

1, . . . , max{fiy}}. For each m £ {max{Qy} 4-1, max{fiy} + 2, . . .} , /m (m) =

and M has a Dot format for these m ’s. Figure 6.8 illustrates how the

maximum values are determined in this example.

X
1 2 3 4 5 6 7 8 . . .

\

. i '1 i r 1 \ 1 i
maximum

value

6

4

3

1

8

Figure 6.8: The support values for the random variable X with infinite support and
the random variable Y with finite support, where min{S7x} = min{fly}.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

191

The CDF of X is Fx (x) = 1 - (l /2)x for x = 1, 2 , . . . , and the CDF of Y iis

1/4 y = l
3/8 y = 3
7/8 y = 4
1 y = 6

Fy(y) = <

For m = 5, for example, FM{p) = (31/32) - (7/8) = 217/256. The other CDF
values are obtained similarly and the PD F of M is

f M(m) = <

1/8 m = 1
1/16 m = 2
9/64 771 = 3
63/128 7 7 1 = 4
7/256 771 = 5
35/256 771 = 6
(1/2)”1 771 = 7, 8 ,----

The APPL statem ents

> X := GeometricRV(l / 2);
> Y := [[1 / 4 , 1 / 8 , 1 / 2 , 1 / 8] , [1 , 3 , 4 , 6] ,

[" D isc re te " , "PDF"]];
> M := MaximumCX, Y);

prints an error message about the random variable’s alien format and prints the

PD F of M in a split NoDot f Dot format as

M := 1 1 9 63 7 35 (D'l.8’ 16’ 64’ 128’ 256’ 256

[1,2,3,4, 5 ,6 ,7 .. oo], [“Discrete”, “PDF”]
□

min{fi^} > min{fV}

E x a m p le 6 .13 . Let X be a negative binomial(4, 1/2) random variable with

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

192

PD F f x {x) =_ (»-l)!(l/2)«
9 6 (x —4)! x = 4, 5, . . . and Y be a random variable with PDF

1/4 V = 1
1/4 y = 3
1/4 y = 5
1/4 y = 7.

f v (y) = <

Find the PD F of M = max{X, Y } .

S o lu tio n : The support values yielded by X and Y are {4,5, 6 ,. . .} . When

min{Dx} > min{Qy}, the support of M is the same as the support of X , i.e.,

= &x- For m e { x e £ l x 1̂ < m axlfiy}}, the CDF of M is computed using

equation 6.1 and the CDFs of X and Y . For m € {m ax{fV} + l,m ax{fly} +

2, - Fxf(m) = Fx (m). Finally the CDF of M is converted to its PDF

representation.

In APPL, the statem ents

> X
> Y
> M

= NegativeBinomialRV(4, 1 / 2);
= UniformDiscreteRVCl, 7, 2);
= Maximum(X, Y);

print the PD F of M as

M := 1 7 15 31
;>x

(. x - l) ! (l / 2) x- 41
32’ 64’ 128’ 128’"“ ' 9 6 (rr-4)!

[4,5,6,7, 8 .. oo], [“Discrete” , “PD F”]
□

• m in{fix} < min{f2y-}

E x a m p le 6 .14. Let X be a geometric(1/4) random variable with PD F f x (x)
K I) X X» x ~ 1’ 2, - * • and y be a random variable with PD F

f r { y) = <

1/4 y = 4
1/4 y = 6
1/4 y = 7
1/4 y = 9.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

193

Find the PDF of M = max{X, Y} .

S olu tion : Figure 6.9 illustrates the support values of X and Y. When min{fix} <

min{fiy}, Qm = {min{Qx}, m in{fix}+ l, . . .} . For m G {m in^x-}, min{f2x}+

1, . . . , max{f2;ic}}, the CDF of M is computed using equation 6.1 and the CDFs

of X and Y. For m G {max{fix} + l,max{fix:} + 2, . . FM{m) = Fx (rn).

Finally the CDF of M is converted to its PDF representation.

X
4 5 6 7 8 9 10

'N
1

5

CO

>■<

1

imum \ ! 1 ' i ' 1' !1

value 4 5 6 7 8 9 10

Figure 6.9: The support values for the random variable X w ith infinite support and
the random variable Y with finite support, where min{Qx} < min{Sly}.

In APPL, the statem ents

> X := GeometricRVCl / 4);
> Y := [[1 / 4, 1 / 4, 1 / 4, 1 / 4], [4, 6, 7 , 9],

["Discrete", "PDF"]];
> M := Maximum(X, Y) ;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

return the PD F of M as

yw(ra) =

r 175/1024
81/4096
1805/8192

< 15655/65536
6561/262144
1/4

. (1/4) • (3 /4) " -1

m = 4
771 = 5
m = 6

m = 7
m = 8
m = 9
771 = 10,11,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Chapter 7

Algorithms for Operations on

Continuous Distributions

This chapter contains work on algorithms associated with the manipulation of mainly

continuous random variables. The first section describes how the algorithmic proce

dure VerifyPDF, which was originally written by Dr. Glen for his dissertation, was

rewritten to check the validity of a random variable’s probability density function.

The second section finds method of moments estim ators for a real or symbolic data set

associated with a particular distribution. The th ird section finds maximum likelihood

estim ators for a complete or right-censored da ta set. The fourth section introduces

the APPL M ixture and T runcate procedures.

7.1 Existence Conditions for PDFs

For a continuous random variable X , its PD F f { x) must satisfy

• f i x) > 0 for —oo < x < oo, and

• I-oo f (x) dx = L

195

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

196

The latter condition is typically straightforward to verify using a symbolic mathe

m atical software package since integral evaluation is a built-in procedure in these

packages. Showing that f { x) is nonnegative over its support is more complicated

though since there is no easy way to check that f (x) is nonnegative for each and ev

ery x in an uncountable range. This section describes how the VerifyPDF procedure

was rewritten in order to check that f (x) > 0 for all x in its domain. Also, VerifyPDF
was extended to confirm the validity of probability mass functions for discrete random

variables.

In order to show why it is important to verify th a t / (x) is nonnegative over

its support, consider the continuous random variable X with PDF f (x) = 3|x| — 1

for — 1 < x < 1. Previously, the procedure VerifyPDF reported that f (x) was

a valid PDF since f (x) integrates to 1 on the interval [—1,1]. The PDF f (x) is

not valid, however, since, for example, / (0) = — 1. At th a t time, the VerifyPDF
procedure checked tha t f (x) was positive at its endpoints. Although the integration

and endpoint check correctly identified the validity of m ost PDFs, including the PDFs

of standard distributions (e.g., exponential, gamma, normal, uniform), it incorrectly

verified some distributions with invalid PDFs as valid, as the one illustrated in this

paragraph.

Graphically, it is easy to tell if the PDF f (x) of a random variable X is nonneg

ative. If the graph of f (x) dips below the x-axis for any value of x in the random

variable’s support, then X does not have a valid PD F. Figure 7.1, for example, il

lustrates tha t the random variable X with PDF f { x) = 3|x| — 1 is not valid for

—1 < x < 1 since its graph clearly extends below the x-axis. Since gleaning results

interactively from a graphical display of a PDF is mechanically impossible in many

m athem atical software packages (including Maple), an analytic method to indicate

negative PD F values was developed. The analytic method involves checking that both

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

197

/_“ f (x) dx and \ f (x) | dx integrate to the value 1. By the following proposition,

if these conditions are satisfied, then f (x) > 0 for all real x.

1.5-

0.5-

-1 -0 .8 -0 .6 -0.4V0.2

-1-i

Figure 7.1: The graph of f { x) = 3 |r | — 1 for — 1 < x < 1.

P ro p o s it io n : Let f (x) be an integrable function on £lx- If Jqx f (x) dx = 1 and

f Qx |/ (x) | dx = 1, then f (x) > 0 almost everywrhere.

P ro o f: Let g{x) = |/ (x) | — f{x) > 0 for all x € Vtx- Then g(x) is a nonnegative

integrable function on Since f Qx g(x) dx = f n (\f{x) \ — f (x)) dx = 0, then

by a standard measure theory theorem (Halmos, 1950, page 104), g{x) = 0 almost

everywhere. Thus, f (x) = |/(a:)| > 0 almost everywhere.

The following examples illustrate how VerifyPDF handles various continuous ran

dom variables.

E x a m p le 7.1. (Casella & Berger, 1990, page 43) Prove that the PD F of the random

variable X with CDF given by

. 1 tan -1 (r)F(x) = — -(--------------------- — oo < x < oo
2 7T

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

198

is a valid PDF.

Solution: It is not necessary that X is in its PD F representation for the VerifyPDF
procedure to correctly determine if its PDF is valid since the procedure calls PDF to

convert the random variable’s representation initially. The APPL statem ents

> X := [[x -> 1 / 2 + arctan(x) / Pi], [-infinity, infinity],
["Continuous", "CDF"]] ;

> VerifyPDF(X);

print the following:

The area under f (x) is 1,

f (x) is nonnegative.

T he P D F o f the given random variable

x —> — rz — , [—oo, oo], [“Continuous” , “PD F”]

is valid. □

7 r (l + x 2)

E x a m p le 7.2. (Bain & Engelhardt, 1992, page 85) Determine whether each of the

following functions is a valid CDF over the indicated part of the domain.

(a) F(x) = e~x for 0 < x < oo;

(b) F(x) = 1 — e~x for — 1 < x < oo.

S o lu tio n : If a random variable’s PDF is not valid, then its CDF is not valid. The

VerifyPDF procedure can be used to “weed out” random variables with invalid PDFs,

which also have invalid CDFs.

For example (a), the APPL statements

> X := [[x -> ex p (-x)] , [0 , i n f i n i t y] , ["C on tinuous", "CDF"]];
> VerifyPDF(X);

print the following:

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

199

The P D F o f the given random variable

is N O T valid because f i x) is negative fo r some value x

in its support.

For example (b), the APPL statem ents

> X := [[x -> 1 - e x p (- x)] , [-1 , i n f i n i t y] , ["C ontinuous", "CDF"]];
> VerifyPDF(X);

print the following:

T he area under f{x) is 2.718281828.

The P D F o f the given random variable is N O T valid. □

There are instances in which f {x) dx = 1 and \ f {x) \dx = 1, but due to

roundoff error VerifyPDF incorrectly determines th a t the random variable X has a

valid PDF. As computer algebra systems become more sophisticated and powerful in

their numerical evaluation methods, these types of errors will occur less frequently.

E x a m p le 7.3. (APPL trap) Let AT be a continuous random variable with PDF

f (x) = 1.00002|x - 1| - 0.00001 0 < x < 2.

Show graphically th a t X has an invalid PDF, although VerifyPDF does not indicate

this.

S o lu tio n : Figure 7.2, which displays the PDF of X for 0.9999 < x < 1.0001, is

created with the APPL statem ents

> X := [[x -> 1.00002 * absCx - 1) - 0.00001], [0, 2],
["Continuous", "PDF"]];

> PlotDist(X, 0.9999, 1.0001);

As can be seen in the figure, /(0) < 0, and thus X does not have a valid PDF. Since

Maple evaluates 11.00002 • \x — 1| — 0.000011dx as one, then the APPL statement

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

200

8e-05

f(x)

6e-05 -j

4e-C5

2e-05

\
0.99992 0.99996 \ 1 / 1.00006 1.0001 x

Figure 7.2: The graph of f (x) = 1.0002\x - 1| - 0.0001 for 0.9999 < x < 1.0001.

> VerifyPDF(X)

incorrectly determines that X has a valid PDF. As Maple’s abilities progress, A PPL ’s

will also! □

7.2 Method of Moments Estimation

This section presents the MOM procedure for estimating param eters via the method

of moments. This method calculates the estimates of the unknown param eters by

equating the first k theoretical moments of a random variable X to their corresponding

sample moments, where k is the number of unknown parameters.

Let X i , X 2 , . . - , X n be a random sample of size n from a distribution with PD F

f x{x \Q i, #2) • • •, #*:). The first k moments of a random variable X , if they exist, are

found by computing the expectation

P{j) ~ E ix i)-< j = l , 2 , . . . , k .

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

201

The first k sample moments are found by computing

n

M u) = '52 (xi / n)i j = i , 2 , . . . , k ,
i= 1

where x1? x2, - - -, x n are the data values.

Given that /x (x ; 9\ , , Ok) is a suitable model for estim ating the population

distribution, then Myj should be approximately equal to the corresponding p;y) for

j = 1, 2 , . . . , k. Thus, a general procedure for estim ating the parameters 9X, 02, - - •, Ok

is to solve the system of equations

^(3) = M U)

for j = 1 ,2 , . . . , k. The solutions to these equations are called the method o f moments

estimates.

7.2 .1 Im p lem en ta tio n

The APPL procedure MQM(X, Sample, Param eters) used to compute the method

of moments estimates is implemented as follows:

• The procedure is presented with three arguments:

- X: A random variable (written in the APPL list-of-sublists format) with

PDF f x (x- 0 i,02,---,0fc),

- Sample: A list of sample data points drawn from the distribution with

PDF f x (x ; 02, • • •, 0k), and

- Param eters: A list of parameters to be estimated.

• The procedure checks th a t the appropriate number of arguments are entered

in their indicated formats. T hat is, X must be entered as a list-of-sublists, the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

202

Sample data m ust be entered as a list, and Param eters m ust be entered as a

list.

• After converting X to its PDF form, if necessary, the procedure checks that the

Param eter list contains the same variable names assigned to the random vari

able X. That is, if X := GammaRVCa, b), then the Param eter list must be en

tered as [a , b] . The variables being estimated in the Param eter list must

m atch the distribution’s param eters for the Maple so lve procedure to correctly

equate and solve the sample and theoretical moments for the appropriate pa

rameters.

• In order to return exact solutions instead of floating point approximations

(whenever possible), the procedure converts the values in the list Sample to

rational numbers.

• The procedure computes and simplifies the sample and theoretical distribution

moments. In order to compute the theoretical moments, the procedure calls the

A PPL ExpectedValue procedure, which was presented in Chapter 2.

• If possible, the procedure uses so lv e to find the exact solution(s) to the simul

taneous system of equations obtained from equating the theoretical moments

w ith their corresponding sample moments. If Maple cannot determine the exact

solution with so lv e , then the procedure sends the equations to Maple’s numeric

solver, f solve.

• Finally, the procedure returns the method of moment param eter estimates as a

list. If the estimates have been solved by Maple’s numeric solver, a message is

displayed along with the estim ates to indicate th a t f so lv e was used.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

203

7 .2 .2 E x a m p le s

This subsection contains two applications of the MOM procedure. The first exam

ple estimates the parameters for a continuous distribution, the gamma distribution.

The second example finds param eter estimates for an exponential distribution and

a Weibull distribution that are fit to the same data set. This example takes advan

tage of Maple’s numeric solver, f so lve . One pitfall of f solve is encountered in this

example, though a correct param eter estimation can be found by making a slight

adjustm ent in the MOM procedure. Example 1.3 in Chapter 1 used MOM to estim ate the

single param eter for a Poisson distribution.

Example 7.4. (Larsen & Marx, 2001, pages 319-322) Although hurricanes generally

strike only the eastern and southern coastal regions of the United States, they do

occasionally sweep inland before completely dissipating. The U.S. Weather Bureau

confirms th a t in the period from 1900 to 1969 a to tal of 36 hurricanes moved as far as

the Appalachians. Table 7.1 fists the maximum 24-hour precipitation levels recorded

from those 36 storms during the time they were over the mountains.

A histogram of the data suggests that the random variable AT, which is the max

imum 24-hour precipitation, might be well approximated by the gamma distribution

with PDF
, , . . A(Arr)*-1e-Aa: ^ ,

f x { x ; A, k) = = r-r rc > 0; A > 0; « > 0.
I (k;

In this example, A and k are the parameters to be estimated.

The following APPL statements define X as a gamma random variable, assign

the hurricane data to the fist Hurricane, and assign the parameters to be estim ated

to the fist Pars. Then, M0M(X, Hurricane, Pars) assigns the method of moments

estimates for the parameters A and k as a fist to HurricanePars.

> X := GammaRV(lambda, kappa);
> Hurricane := [31.00, 2.82, 3.98, 4.02, 9.50, 4.50, 11.40, 10.71,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

204

Table 7.1: Maximum 24-hour precipitation for 36 inland hurricanes (1900-1969).

Year N am e Location

M aximum
P redpitation

(inches)
1969 Camille Tye River, Va. 31.00
1968 Candy Hickley, N .Y . 2.82
1965 B etsy Haywood Gap, N.C. 3.98
1960 Brenda Cairo, N .Y . 4.02
1959 G rade Big Meadows, Va. 9-50
1957 Audrey Russels Point, Ohio 4.50
1955 Connie Slide M t., N .Y . 11.40
1954 Hazel B ig Meadows, Va. 10.71
1954 Carol Eagles Mere, Pa. 6.31
1952 Able Bloserville 1-N, Pa. 4.95
1949 North Ford # 1 , N.C. 5.64
1945 Crossnore, N.C. 5.51
1942 B ig Meadows, Va. 13.40
1940 Rhodhiss Dam , N.C. 9.72
1939 Caesars Head, S.C. 6.47
1938 Hubbardston, Mass. 10.16
1934 Balcony Falls, Va. 4.21
1933 Peekamoose, N.Y. 11.60
1932 Caesars Head, S.C. 4.75
1932 Rockhouse, N.C. 6.85
1929 Rockhouse, N.C. 6.25
1928 Roanoke, Va. 3.42
1928 Caesars Head, S.C. 11.80
1923 Mohonk Lake, N.Y. 0.80
1923 Wappingers Falls, N.Y. 3.69
1920 Landrum, S.C. 3.10
1916 A ltapass, N .C. 22.22
1916 Highlands, N.C. 7.43
1915 Lookout M t., Tenn. 5.00
1915 Highlands, N.C. 4.58
1912 Norcross, Ga. 4.46
1906 Horse Cove, N.C. 8.00
1902 Sewanee, Tenn. 3.73
1901 Linville, N .C. 3.50
1900 Marrobone, Ky. 6.20
1900 St. Johnsbury, Vt. 0.67

6 .3 1 , 4 .9 5 , 5 .6 4 , 5 .5 1 , 13 .40 , 9 .7 2 , 6 .47, 10 .16 , 4 .2 1 , 11.60,
4 .7 5 , 6 .8 5 , 6 .2 5 , 3 .4 2 , 11 .80 , 0 .8 0 , 3 .69 , 3 .1 0 , 22 .2 2 , 7 .43 ,
5 .0 0 , 4 .5 8 , 4 .4 6 , 8 .0 0 , 3 .7 3 , 3 .5 0 , 6 .20, 0 .6 7] ;

> Pars := [lambda, kappa];
> HurricanePars := M0M(X, Hurricane, Pars);

The resulting estimates for the param eters are A = 4| 5542°105°3 = 0.224 and k = ^ 5 2 1 5 3 ~

1.64. □

E x a m p le 7.5. (Leemis, 1995, page 190) A complete da ta set of n = 23 ball bearing

failure times to test the endurance of deep-groove ball bearings has been extensively

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

205

studied. The ordered set of failure tim es measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

Let X be a random variable denoting the ball bearing failure times.

(a) Assume X is an exponential random variable with failure rate A. Use MOM to

estim ate A.

(b) Assume AT is a Weibull distribution with parameters A and ac. Use MOM to

estim ate the parameters’ values.

S o lu tio n : For part (a), the following A PPL statem ents unassign the variable name A,

define X as an exponential random variable, and assign the parameters to be estimated

to the list P ars. The data set for the failure times, B allB earing , is a pre-defined list

in APPL. M0M(X, B a llB earing , P a rs) assigns the method of moments estimate for

the param eter A as a list to E xpB allB earingPar.

> unassignC * lam bda’) ;
> X := ExponentialRV(lambda) ;
> P ars : = [lambda] ;
> E xpB allB earingPar := M0M(X, B a llB e a rin g , P a rs) ;

The resulting m ethod of moments estim ate for the parameter is A = -4%l4 — 0.0138

failures per million revolutions.

The graphs of the empirical CDF along wuth the CDF for the fitted exponential

distribution are displayed in Figure 7.3. The graphs suggest th a t the exponential

distribution provides a poor fit for this da ta set. The APPL procedure for producing

the graph in this figure is discussed in C hapter 9.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

206

0 .8 -

0.6

CDF

0.4

0.2

Figure 7.3: Empirical and fitted exponential CDFs for the ball bearing data set.

The Weibull distribution provides a much better approximation for this data. The

PD F of the Weibull distribution is

fx(x' , A, k) = K,AKx K~1e~(X x x > 0; A > 0; k > 0.

Again using the ball bearing data set, we can find the method of moments estimates

for the parameters A and k using the following APPL statements

> unassign(’lambda’); unassignC’kappa’);
> X := WeibullRV(lambda, kappa);
> WeibBallBearingPar := M0M(X, BallBearing, [lambda, kappa]);

In this case, MOM informs the user tha t a numerical method was used to solve for

the values of the parameters A and k . The numerical approximations are A = 0.0176

and k = —3.55. Although these are correct solutions to the simultaneous system of

equations obtained from equating the theoretical moments with their corresponding

sample moments, they are incorrect param eter estimates for the Weibull distribution

since we need A > 0 and k > 0. Unfortunately, the Maple f so lve procedure searches

for the first real root for a general equation, then quits (Heal et al., 1998, page 69).

Often a plot of the simultaneous equations can suggest the general vicinity of other

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

207

real roots, and then fso lv e can be used again with a specified range. To obtain

the correct parameter estimates, the f s o lv e command line in MOM was changed to

specify the range of another real root. Instead of using the general f so lv e procedure:

f s o lv e (E qnSet, ParamSet), the f s o lv e procedure was used with a solution range:

fso lv e (E q n S e t, ParamSet, lambda = 0 . . 0 .015). The new correct parameter

estimates returned are A = 0.0123 and k = 2.07.

7.3 Maximum Likelihood Estimation with Right

Censoring

This section presents the MLE procedure for estimating param eters via maximum

likelihood estimation. Let X be a random variable with PD F 9), where 9 is a

vector of k unknown parameters, i.e., 9 = (0\, 92, - - •, 9k). Suppose X 2, . . . , X n is a

random sample drawn from the population with PDF fx(x ', 9). Maximum likelihood

estimation estimates the unknown param eter 9 with a value 9 th a t maximizes the

“likelihood” of obtaining tha t particular random sample.

The likelihood function , L(9), for a given set of observations, X i , x 2, .. -, xn, from

the population with PDF fx{%\ 9) is the product of the PD F fx(x' ,9) evaluated at

the n sample d a ta points, i.e.,

71

L (P) (7.1)
t=l

The maximum likelihood estimator 9 is found by maximizing L{9) with respect to 9.

The param eter estimate 9 is the value th a t is most likely to have produced the sample

data points x \ , x 2, . . . , x n.

In practice, it is often easier to maximize the log likelihood function log£(0) to

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

208

determine 0, which is valid since the logarithm function is strictly increasing. The log

likelihood function is

n

log L(9) = log f x{x i \9) . (7.2)
2 = 1

If L(Q) is differentiable and assumes a maximum on the param eter space, then the

MLE is a solution to

f e \°s m = o.

E x a m p le 7.6. (Leemis, 1995, page 190) Returning to the ball bearing data set in

Example 7.5, the ordered set of failure times measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

Let X be a random variable denoting the ball bearing failure times and assume X

is an exponential random variable with failure rate A. Estim ate the parameter A by

maximum likelihood estim ation.

S o lu tio n : The log likelihood function for A is

23

log L(A) = 23 log A — A
*=i

Differentiating both sides of this equation and solving for A, the maximum likelihood

estim ator A is

A - 23
~ V"23 ~

23
~ 1661.16
S 0.0138,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

209

which is same as the method of moments estimator for this data set. □

7.3.1 R igh t-C ensored D a ta S ets

Suppose n items are being tested and their failure times t i , t 2, - tn are being

recorded. If the test stops before an item has failed, only a lower bound for the

failure time is known. These failure times are right-censored data values. Right cen

soring occurs frequently in lifetime data sets since it is often impossible, impractical,

and /or infeasible (because of time, money, energy, etc.) to continue running a test

until all items on the test have failed. If a data set contains one or more censored

observations, it is called a censored data set. Otherwise, if all the failure times are

known, i t ’s called a complete data set.

Following the notation and language used by Leemis (1995, pages 184-186), let

t i , t 2, . - . , tn be the independent failure times collected during a test. Let c i , C2, . • - , Cn

be the associated right-censored times. Let Xi = min{£,, c,}, i = 1,2, . . . , n. We can

then split the indexes of the data items 1 ,2 , . . . , n into two disjoint sets: U and C.

The set U contains the indexes of the items that are observed to fail during the test,

and the set C contains the indexes of the items whose failure times are right-censored.

If 9 is the vector of unknown parameters, we can rewrite the likelihood function in

equation 7.1 with respect to the indexes of the observed failures and the right-censored

observations:

m = (n /*(*<■•»)) •
\ieu J \ie c

where Sx(x{-, 9) is the probability th a t item i survives to time a;,-. The log likelihood

function is

log L(9) = log f x {xi\ 0) + lo g Sx (xr, 9).
ieu iec

Since the PD F fx{%) is the product of the hazard function hx{x) and survivor func

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

210

tion Sx (x), the log likelihood function can be simplified to

lo gL(0) = E E log S x (x i', 9)
ieu ieu iec

n

= 2 log h x (Xi] ^ + l o g ; e) •
iety i=i

We can rewrite the log likelihood function in terms of the hazard and cumulative

hazard functions only:

n

logL(0) = E loghx(xi,0) - E H x (x u e). (7.3)
i&U t= l

E x a m p le 7.7. (Leemis, 1995, page 190) The set of remission times for the treatment

group in the study concerning the drug 6-MP (Gehan, 1965) is a right-censored data

set. Letting an asterisk denote a right-censored observation, the remission times (in

weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16

17* 19* 20* 22 23 25* 32* 32* 34* 35*.

Let X ~ exponential (A) be used to model the remission tim e data. Use maximum

likelihood estimation to determine the value of the param eter A.

S o lu tio n : Since there are n = 21 individuals on the test, nine uncensored observa

tions, hx (x) = A, and Hx (x) = \ x , then the log likelihood function for A is

21

log L{A) = 9 log A — A
i= l

Taking the derivative of the log likelihood function with respect to A, equating it to

zero, and solving for A, we obtain A = 0.0251. □

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

211

7 .3 .2 Im p lem en tation

The APPL procedure, MLE(X, D ata, P a ram e te rs , [R ightcensor]) , is used to com

pute the maximum likelihood estim ators for the parameters (in the list Param eters)

of a random variable X given a sample da ta set (Data) from the d istribution’s popula

tion. An optional argument, R igh tcenso r, allows for data values to be right-censored.

The argument R igh tcensor is a list of ones and zeros, corresponding to the data val

ues in the list Data. The value one in position i of the R igh tcensor list indicates that

the data value in position i of the D ata list is an observed value. A zero indicates a

right-censored value. The procedure is implemented as follows:

• The procedure is called with either three or four arguments. If there are three

arguments, the MLEs are determined using the log likelihood formula in equa

tion 7.2.

• If there are four arguments, then the procedure assumes there axe right-censored

values in the Data list. (If there are no right-censored observations, i.e., there

are only zeros in the list R ig h tcen so r, the MLEs are just computed using the

log likelihood function in equation 7.3. The HF and CHF procedures are used to

determine the hazard and cumulative hazard functions of X. The log likelihood

function in equation 7.3 is used to determine the MLEs.

• As in the MOM procedure, MLE uses so lv e to find the exact solution(s) to the

simultaneous system of differentiated log likelihood functions (with respect to

the unknown parameters in the P aram eters list) and the unknown parameters.

If Maple cannot determine the exact solution with so lve , then the procedure

sends the equations to Maple’s numeric solver, fso lv e .

• Finally, the procedure returns the maximum likelihood param eter estimates as

a list. If the estimates have been solved by Maple’s numeric solver, a message

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

212

is printed along with the estimates to indicate that f s o lv e was used.

E x am p le 7.6. R e v is ite d (APPL solution) The APPL statem ents

> X := ExponentialRV(lambda);
> l a mha t := MLE(X, B a llB earing , [lambda]);

return A = 0.0138 as the maximum likelihood estim ator. □

E x am p le 7.7. R e v is ite d (APPL solution) Both MP6 and MP6Censor are pre-defined

data sets in APPL. The list MP6 is simply a list of the 21 da ta values given in Example

7.7, and MPSCensor is the list

MP6Censor := [1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

where 0 represents a censored value and 1 represents an uncensored value. The

statements used to determine the MLE for the exponential distribution are

> X := ExponentialRV(lambda);
> hat := MLE(X, MP6, [lambda], MP6Censor);

The statements yield A = ;Jg. □

7.4 Mixture and Truncate Procedures

Chapter 8 is about Benford’s law and determining which probability distributions

conform to it. The two procedures introduced in th is section, along with the Benf ord
procedure described in Chapter 8, were originally w ritten to aid in making this de

termination. The Mixture and Truncate procedures are described in the following

subsections.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

213

7 .4 .1 M ixture

A population may contain items gathered from several different populations, each

with a distinct lifetime distribution. A car mechanic, for example, may have a part

th a t is manufactured in one of four facilities, but he is not certain in which one. In

a finite mixture model, items are assumed to come from one of n populations. The

failure time distribution of the item can be expressed in term s of a mixture of each

item ’s population distribution.

The PDFs of mixture distributions, also called compound distributions, can be ex

pressed as weighted sums of the PDFs of the component distributions. This APPL

procedure, M ixture, is written for finite mixtures, as described in the previous para

graph. The PDF of a general finite m ixture random variable X is

n

f x (x) = ^ 2 p x t f x i (x \ 0 X i),
i=1

where f Xi(x\0Xi) is the PDF for the random variable A,- from population i, 0Xi is

a vector of parameters for the distribution of X,-, and pXi is the mix parameter for

population X i? i = 1 ,2 , . . . , n. Note th a t pXi > 0, for * = 1 ,2 , . . . , n and Y!i=iPXi = 1.

The M ixture (M ixParam eters, MixRVs) procedure “mixes” the random variables

Ax, X 2, . . . , X n defined in the list MixRVs by taking weighted sums defined in the list

M ixParameters. Two examples of the M ixture procedure follow.

E x a m p le 7.8. (Leemis, 1995, page 118) If n = 2 facilities produce items with

exponentia l 1) and exponential(2) lifetimes, respectively, and one-third of the items

come from facility one and two-thirds come from facility 2, determine the PD F of the

tim e to failure of an item whose manufacturing site is unknown.

S o lu tio n : Let X i ~ exponential(Ax) and X 2 ~ exponential(A2), where Ax = 1 and

A2 = 2. Let A be the time to failure for the item from the unknown manufacturing

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

214

site. The PD F of X is

f x 0) = PxJ f x , (a;| Ai) + Px2 f x 2 (x\x2)

= ^e~x + ^ e “2x x > 0,

which is a finite m ixture of the populations from distributions X \ and X 2. This model

is a special case of the hyperexponential distribution, which is the finite m ixture of n

exponential populations.

The following A PPL statements return the PD F of the above model

> X := ExponentialRV(l) ;
> Y := ExponentialRV(2);
> p := [i/3, 2/3];
> Mixture(p, [X, Y]) ; □

E xam ple 7.9. Let X i ~ triangular(l, 2, 3), X 2 ~ triangular(l, 2, 4), and X 3 ~

triangular(2, 5, 7). Let p x j = Px2 = | , and p x3 = | be the probabilities of selecting

an item from the distributions associated with the random variables X i , X 2l and X 3.

Find the PDF of Z , the finite mixture of the three distributions.

S o lu tion : This example forces the M ixture procedure to return a PDF defined on

more than a single segment of support. The following APPL statements

> XI := TriangularRVCl, 2, 3);
> X2 := TriangularRVCl, 2, 4);
> X3 := TriangularRV(2, 5, 7);
> Z := Mixture([1 / 8, 5 / 8, 1 / 4], [XI, X2, X3]);

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

returns the PDF of Z as

215

1 3 7 13
24 24

137 - X r129 10

23 - I ?30 " 40

I . 1
30 15

7
- 1 r

20 ” 20

1 < z < 2

2 < z < 3

M Z1 = i 1 - & 3 < z < 4

4 < z < 5

o < z < 7 .X £-\J

7 .4 .2 T runcate

Let X be a random variable with PD F /x (x) on fl*-. Then for a,b G fl* , the PDF

of the doubly truncated (i.e., truncated below at a and above at 6) random variable T

is

M t) - • < . < » ,

provided Fx(b) — Fx (a) =£ 0. The Truncate(X, low, high) procedure returns the

PD F of the random variable X truncated below a t low and above a t high. Three

examples of the Truncate procedure follow.

E x a m p le 7.10. (Rohatgi, 1976, page 119) Let X be a random variable with PDF

f (x) = l i f 0 < x < l , and 0 otherwise. Let T be the random variable formed

by truncating X below at 1/3 and above a t 1/2. Find the PDF of the truncated

distribution T, its mean, and its variance.

S o lu tio n : The PD F of T is

f T (t) = 6 i < t <

Its mean is while its variance is The following APPL statem ents determine

the PDF, mean, and variance of T :

> U := UniformRV(0, 1);

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

216

> T := T runcate(U , 1 / 3 , 1 / 2) ;
> Mean(T);
> V arian ce (T); □

E x a m p le 7 .11 . (Barr & Sherrill, 1999, page 359) (Truncated normal distribution)

Let T ~ N (l, 2) random variable truncated below at 2. Determine the mean of T.

(The standard deviation, not the variance, of T is two.)

S o lu tio n : Let N(^i, cr) denote a normal random variable with mean and standard

deviation a. If T is a N (f i , cr) random variable truncated below by a, then (T — fj.) / a =

Z is a standard normal random variable truncated below by a* = (a — f j) /cr. The

expected value of T in terms of the expected value of Z is

E (T) = aE {Z) + fi.

For our example, T ~ N (l, 2) truncated below a t a = 2, and thus

E (T) = 2 • E (Z) + 1,

where Z ~ N(0, 1) truncated below at a* = 1/2. The density of Z is

f () - e (- 2/ 2>V2

Z y/n (—1 + erf(>/2/4))

where “e rf ’ is the Maple procedure defined by erf(x) = / Qx dt. The mean of Z

is

S (Z) =
ypH (—1 + erf (\/2 /4)) ’

which is approximately 1.141078. Hence, E (T) = 2 -E {Z) + l = 3.282156. This mean

is computed in APPL with the statements

> X := NormalRV(1 , 2);
> T := T runcate(X , 2 , i n f in i t y) ;
> Mean(T); □

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

217

E x a m p le 7.12. (Hogg & Craig, 1995, page 146) Let q>(x) and $(x) be the PDF and

the CDF of a standard normal random variable X . Let Y be the random variable

formed by truncating X below at —2 and above at 3. Show tha t E { Y) = .

S o lu tio n : We can use the T runca te procedure to determine E (Y) with the following

statements:

> X := StandardNormalRVO ;
> Y := Truncate(X, -2, 3);
> ExpectedValue(Y);

which returns the value J ^ + erf(-/2)) ~ 0-0508, where e r f is the Maple procedure

defined by erf (r) = f * e~t2dt. W riting this expression in terms of 0 and <&, first

notice tha t 0 (—2) — 0(3) = e 2̂ |^ 9/2. Then, converting the Maple expression in the

denominator, erf(|v^2) + e r f (v /2), into its integral form, we have:

dw ----7=

-) = f e~w2/2diu)
y / 2 n J o J

e~w2dw

i r-e-™2/2 j \
I ----7=—dw |

2($(3) - $ (- 2)) .

Thus, the expected value of Y is

\/2 (e~2 — e~9/2) _ (V 2 [V5F (0 (-2) - ^(3))]
V ? (e rf(|v 5) + erf(V 2)) ^ v « [! («(3) - * (-2))]

<f>(-2) - ^(3)
«(3) - * (- 2) ' □

R e p ro d u c e d with pe rm iss io n of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 8

Survival Distributions Satisfying

Benford’s Law

Benford’s law has traditionally concerned the distribution of the leading digit for a

da ta set. This chapter quantifies compliance with Benford’s law for several popular

survival distributions. The traditional analysis of Benford’s law considers it appli

cability to data sets. This chapter switches the emphasis to probability distributions

th a t obey Benford’s law.

8.1 Benford’s Law

Astronomer and mathematician Simon Newcomb noticed “how much faster the first

pages (of tables of logarithms) wear out than the last ones” leading to the counter

intuitive conclusion that the first significant digit in the values in a logarithm table

is not uniformly distributed between 1 and 9. Using a heuristic argument, he found

th a t ones occur most often (more than 30 percent of the time) and nines least often

(less than 5 percent of the tim e). More specifically, if the random variable X denotes

218

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

219

the first significant digit, then

P r(X = x) = log10 (1 + 1/x) x = 1 ,2 , . . . ,9.

He published this “logarithm law” in the American Journal of Mathematics in 1881.

General Electric physicist Frank Benford (1938) apparently independently arrived

at the same conclusion as Newcomb concerning logarithm tables. He proceeded to

“collect data from as many fields as possible” to see if natural and sociological data

sets would also obey the logarithm law. He often found good agreement between

the logarithm law for his 20,229 total observations, including data sets as diverse as

the areas of rivers, American League baseball statistics, atomic weights of elements,

death rates, and numbers appearing in Reader’s Digest.

W hat has become known as “Benford’s law” has found applications in the dis

tribution of the one-day return on stock market indices (Ley, 1996), the distribution

of the populations of 3141 counties in the 1990 U.S. Census, and the detection of

accounting fraud (Nigrini, 1996).

A mathematically rigorous proof of Benford’s law has proven elusive. This is in

part due to the fact th a t certain da ta sets (e.g., random numbers) do not follow

Benford’s law. Recent attem pts have considered the effect of scale invariance (e.g.,

dollars vs. yen), base invariance (e.g., octal vs. base ten), and mixtures (i.e., sample

data drawn from several population distributions th a t are selected at random), as

indicated in Hill (1995, 1998).

The purpose here is to switch the emphasis from the examination of data sets

th a t obey Benford’s law to probability distributions th a t obey Benford’s law. Survival

distributions (i.e., random variables with positive support) will be emphasized here,

although more general distributions can be examined in the same fashion.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

8.2 Parametric Survival Distributions

220

Hill (1995, pages 361-362) states tha t “An interesting open problem is to determine

which common distributions (or m ixtures thereof) satisfy Benford’s law This

section quantifies compliance with Benford’s law for several popular survival distri

butions.

As before, let X denote a random variable having Benford’s distribution, and let

T denote a random lifetime with SF S(t) = P r(T > t). If Y is the value of the first

significant digit in the lifetime T, then

OO

Pr(y = y)=J2 [S(v 10‘) - S ((y + 1)10’)]
oo

for y = 1 , 2 , . . . , 9. Thus Pr(V = 7), for example, is found by summing the appropriate

probabilities on the intervals

. . . , (0.07, 0.08), (0.7, 0.8), (7, 8), (70, 80) ,

More detailed examples on the derivation of the probability mass function of Y are

given in Section 8.3.

For a particular random variable T having prescribed survivor function S(t), it is

desired to measure the goodness-of-fit between Benford’s distribution and the distri

bution of the first significant digit. Two such measures are the chi-square goodness-

of-fit statistic
_ A [Pr(V = x) ~ P r(X = s)]2

i t P r(X = x)

and

m = max { |P r (y = x) — P r(X = :c)|} .
i = l , 2 ,...,9 Ll v

These measures are calculated for several popular lifetime distributions in Table 8.1

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

2 2 1

Table 8.1: Conformance to Benford’s law for param etric survival distributions.

Distribution A K Class c m
Exponential 1 IF R /D F R 0.61 • 10~2 0.29 • lO-1
Exponential 5 IF R /D F R 0.54 - lO -2 0.18 • lO '1
Muth 0.1 IFR 0.13 • 10-1 0.41 - lO '1
Gompertz 5 1.1 IFR 0.62 - lO-2 0.20 • lO-1
Weibull 1 0.3 D FR 0.37 - lO"10 0.16 - 10~5
Weibull 1 2 IFR 0.19 0.11
Gamma 1 0.3 D FR 0.15 • 10~3 0.29 - lO"2
Gamma 1 2 IFR 0.48 • 10-1 0.50 - lO” 1
Log logistic 1 0.3 D FR 0.86 - 10-21 0.67- lO-11
Log logistic 1 2 UBT 0.24 - 10"1 0.35 - 10"1
Exponential Power Distribution 1 0.3 BT 0.48 • 10~4 0.17-10-2

as parameterized in Leemis (1995, Chapter 4). Appendix F contains APPL code for

computing the distribution of Y for the unit exponential distribution and the Benford

distribution X for one significant digit.

The following observations were made while constructing the table:

• The results for the exponential distribution for A = 5, for example, are also

good for A = 5 - 10fe, for k = ±1, ±2, —

• For all distributions considered with a shape param eter k , the goodness-of-fit

measures c and m increased in k for the values of k considered.

• For all two-param eter distributions, the goodness-of-fit measures c and m were

more sensitive to changes in the shape param eter k than the scale param eter A.

Notice that for the log logistic distribution with A = 1 and k = 0.3, there is an

astonishing 11-digit agreement with Benford’s law. The fact th a t the PD F of the

logarithm of a log logistic random variable is sym m etric might provide a clue as to

why it matched Benford’s law so closely.

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

222

General conditions associated with the distribution of the random variable T will

now be derived in order to determine when Benford’s law applies.

8.3 Conditions for Conformance to Benford’s Law

As stated earlier, the PD F of a Benford random variable X is

f x (x) = P r(X = x) = log10 (1 + 1 / x) ,

for x = 1 , 2 , . . . , 9. The associated CDF is

Fx {x) = P r(X < x) = log10 (1 + x) ,

for x = 1 ,2 , . . . , 9. Inverting the CDF, a Benford variate X can be generated by

[TO^-ll,
or

X i r - [lÔ J,

where U U(0, 1).

As before, let T be the random lifetime wThose first significant digit is of interest.

Let the integer-valued random variable D satisfy

10D < T < 10o+1

(e.g., T = 365 => D = 2 and T = 1/10 => D = —1). This definition of D allows the

first significant digit Y to be written in terms of T and D as

Y = [T ■ 10_X>J = Ll0logio^-^J

(e.g., T = 365 =* Y = [365 • 10"2J = [3.65J = 3).

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

223

Referring back to the variate generation algorithm, it is cleax th a t if the random

variable Z = log10 T —D ~ U(0, 1), which represents the result from the logarithm ta

ble, then the first significant digit Y has the Benford distribution. Using conditioning,

the CDF of Z is given by

Fz (z) = P r (Z < z)
OO

= Pr (l0 d < T < 10d+1) • P r (log10 T — d < z|10d < T < 10d+1) ,
d = — oo

for 0 < z < 1. Thus conformance to Benford’s law implies th a t the weights (the first

term in the product) associated with each order of the magnitude and the distribution

of Z = log10 T — D (the second term in the product) are such th a t the infinite sum

produces a linear function in z.

Why was Newcomb surprised? He expected each page of a logarithm table to

be equally worn; i.e., he surmised that the values that people used as arguments in

logarithm tables would be uniformly distributed between 1.0 and 10.0. Although the

left-hand column of a logarithm table is arranged in a linear fashion so th a t 1.0 to 2.0

requires | of the pages, Newcomb correctly observed that the people using the tables

in 1881 did not use them in a uniform fashion (e.g., over 30% of the table look-ups

were from the first | of the pages). In summary, Newcomb expected uniformity in the

inputs to the logarithm tables, but uniformity was actually achieved in the resultant

logarithms, represented by Z.

We now proceed to investigate distributions th a t satisfy these conditions.

E x am p le 8.1. A distribution can be created tha t satisfies Benford’s law exactly. Let

W ~ U(0, 2). Let T = 1QW. The PDF of T is

*T ^ 2t log 10

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

224

for 1 < t < 100. The probability mass function of D is

r10 i
f D(0) = Pr(£> = 0) = P r(l < T < 10) = j f T (t)dt = -

and
rlOO i

f D(l) = P r (D = 1) = Pr(10 < T < 100) = / f T (t)dt = - .
J 10 2

The probability mass function of the leading digit Y is

f Y{y) = P r (Y = y)

= P r (y < T < y + 1) 4- Pr(10y < T < 10(y + 1))
r y + 1 r l 0 (y + l)

= I f r i t) dt + I f r (t) dt
J y J

r y + i ^ /* io (y + i) 2

Jy 21 lo g 10 dt + Jl0y 21 lo g 10 dt
= log10 y - 1 , 2 , . . . , 9.

This probability mass function matches Benford’s distribution exactly.

Alternatively, one can proceed by determining the distribution of Z = log 10 T —D,

where W = log10 T.

Fz (z) = Pr (Z < z)
CO

= P r (I0d < T < 10d+1) • P r (log10 T - d < z\10d < T < lO ^ 1)
d= —oo

1
= ^ 2 P v { d < W < d + l) - P r { W - d < z \ d < W < d + l)

d=0

= Pr (0 < W < 1) • P r (W < z\0 < W < 1) +

P r (1 < W < 2) • P r (W - 1 < z\ l < W < 2)
1 1

= —z 4— z
2 2

= z

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

225

for 0 < 2 < 1. Since this is the CDF for a U(0, 1) random variable, Benford’s law is

satisfied exactly. □

The previous example can be generalized as follows. Let W ~ U(a, 6), where a

number of orders of magnitude, then the first significant digit of the random variable

a = —2, 6 = 1 and a = log10(3/2), 6 = log10(150).

There is no need for the support of the distribution of T = 1 0 to span several

orders of magnitude as is the case for many of the data sets that conform to Benford’s

law. Example 8.1 shows that a single order of magnitude (e.g., a = 5, 6 = 6) is

sufficient.

The next example considers a non-uniform distribution for W.

E x a m p le 8.2. Let W ~ triangular(0,1,2). The PD F for W is

As before, let T = 10^ and Z = W — D. The cumulative distribution function of Z

is

and 6 are real numbers satisfying a < 6. If the interval (l0a, 106) covers an integer

T = 10wr satisfies Benford’s law exactly. Equivalently, if 6 — a is a positive integer,

then the first significant digit of T = 10^ satisfies Benford’s law. Examples include

w 0 < w < 1
f w(w) = <

2 — w 1 < w < 2.
V

1
Fz {z) = ^ 2 P r { d < W < d + l) - P T (W - d < z \ d < W < d + l)

= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly. □

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

226

This example can also be generalized- Let W ~ triangular(a, 6, c), where a , 6,

and c are real numbers satisfying a < b < c. The first significant digit of the random

variable T = 10M' satisfies Benford’s law exactly if a, 6, and c are integers.

The symmetric, integer-parameter triangular distribution’s conformance to Ben

ford’s law may provide some insight into the log logistic’s stellar performance in Table

1. If the PDF of W is symmetric about an integer and the variance of W is large, then

it is often the case that the PD F of W is approximately linear between consecutive

integers. The symmetric portions of the PDF of W will nearly cancel one another

when computing the distribution of Z. A normal random variable W with integer

mean // and large standard deviation cr, for example, corresponds to a lognormal

T = 10w whose first significant digit closely approximates Benford’s law.

The next example considers a non-symmetric distribution for W.

E x a m p le 8.3. Let W have PDF

f w(w) = <

f

21 — w — 1 < w < 0

(w — l) 2 0 < w < 1.

As before, let T = 10vv and Z = W — D. The cumulative distribution function of Z

is

Fz {z) = P r (d < W < d + l) - P i (W - d < z \ d < W < d + l)

+ I t1 + (z ~ 1)3]

d=—1
2
3

z3 3 z2
2 + 2 3

= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly. □

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

227

This example can be generalized for W with probability density function

{1 — w n — 1 < w < 0

(w - l) n 0 < U 7 < 1 ,

where n is a positive, even integer.

We wanted to experiment with several other probability distributions in order to

evaluate conformance to Benford’s law. In order to autom ate this process, we wrote

the APPL B enford procedure, whose argument is the distribution of W and whose

returned value is the distribution of Z. The algorithm is shown below.

Q <— Support(W) [The set Q is the support of the random variable W]
Lo <— [S7J [Lower loop limit]
H i <r- [Q] — 1 [Upper loop limit]
W eight <— Array[1.. H i — Lo -I- 1] [Weight holds the mixture probabilities]
T r a n s f W Array[1.. H i — Lo + 1] [T r a n s fW holds W ’s transformed segments]

For d i— Lo to H i
Weight[d] <— Fw (d + 1) — Fw{d) [Calculate weights for the mixture]
TruncW[d\ Truncate(W, d , d + 1) [Truncate W between d and d + 1]
T ransfW [d \ —̂ Transform(TruncW, w — d) [Horizontally shift W by d units]

Z <— Mixture {Weight, Trans f W) [Compute the distribution of the mixture]

The statem ents required to return the distribution of Z for the triangular distribution

in Example 8.2, for instance, are

W := TriangularRVCO, 1, 2);
Z := Benford(W);

After experimenting with Benford on other distributions, we have come to the

following conclusions:

1. Distributions of W with a single mode th a t occurs a t either extreme of their

support will never satisfy Benford’s law (e.g., W ~ exponential).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

228

2. Using a geometric argument, certain limiting distributions of W (e.g., W ~

N(/z, cr2), where fi is an integer and a oo) will satisfy Benford’s law.

3. Other distributions (e.g., Weibull) may come very close to satisfying Benford’s

law for various param eter values. Our experimentation revealed that compli

ance with Benford’s law depends on parameter values within one particular

parametric family. Thus using Benford’s law to detect accounting fraud, for

example, is dubious due to an unacceptably high rate of false positives.

4. For a random variable T th a t can assume negative values, all of the conclusions

drawn here apply since the first digit of ITI equals the first digit of T.

5. If W is a distribution such th a t the first significant digit of 10VK satisfies Ben

ford’s law, then the first significant digit of bw satisfies Benford’s law for base

6 = 2,3,

6. The distribution associated with the more general form of Benford’s law

Pr(m antissa < t) = log101 1 < t < 10,

where the mantissa of a real number is the number obtained from shifting the

decimal point to the place immediately following the first significant (non-zero)

digit, is sum-invariant (Allaart, 1997). A short proof of a generalization of

A llaart’s result appears below.

R e su lt: Using our earlier notation, let W ~ U(0, 1) and T = 10^. Then

the random variable T , with CDF given by FT(t) = log101 for 1 < t < 10,

is sum-invariant; i.e., if the interval [1, 10) is equally partitioned by h > 0,

then the expected sum of n random variates from this distribution in any given

partitioned interval is the same for all intervals.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

229

P roo f: Let k be any natural number and set h = | . W ithout loss of generality,

fix k. Let Aj = [1 + (j — 1) • h, 1 + j - h) C 3? for j = 1, 2 , . . . , k. The probability

that T is in the interval Aj and the conditional expected value of T on the

interval A j for any j = 1, 2 , . . . , k are, respectively,

rl+j-h -i
P r(l -f- (j - 1) - h < T < 1 + j - h) = / —— — - dx

Ji+(j-i)-hXlog{lO)
_ logf1 + U ~ 1) • h) - log(l + j ■ h)

log(10)

and

E(T| 1 + (j - l) - h < T < l + j - h) = f l +Jh — - - x dx
Ji+U-D-h * 0 o g (l + (j - 1) - h) - Iog(l + 3 -h))
________________h_______________
log(l + (j - 1) • h) - lo g (l + j ■ h) '

Thus, the expected sum of n variates in the interval Aj for any j is

n-E(T|l + (j - l) - f c < r < l + i - A) - P r (l + (3 - l) . A < r < l + i . h) = J L *
log(10)

Since this expected sum depends on k and is independent of j , the distribution

of T is sum-invariant.

7. Any mixture of distributions that individually obey Benford’s law will obey

Benford’s law. The case of two random variables satisfying Benford’s law is

proven below.

R esu lt: Let Ti and T2 be nonnegative random variables whose first significant

digits satisfy Benford’s law. Let the random variable T have PDF

h (t) = p fTl (t) + (l - p) f T2 (t) t > 0,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

230

for 0 < p < 1. Then T also satisfies Benford’s law.

P ro o f: Let Z\ — log10 T\ — D, Z2 = log10 T2 — D , and Z = log10 T — D. Since

Ti and T2 satisfy Benford’s law, then FZl(z) = z and F z 2 (z) = z. In order to

prove that T also satisfies Benford’s law, we need to show th a t Fz (z) = z. By

conditioning on z, we have

Fz(z) = pFZl (z) + (1 - p)FZ2 (^)

= pz + (1 —p)z

= z 0 < z < 1.

8.4 Variate Generation

As stated earlier, variates from the Benford distribution can be generated via

X <r- U O ^ J ,

where U ~ U(0, 1). Two variations of this algorithm can be developed by allowing

different bases and multiple significant digits as described in the next two paragraphs.

Benford’s law for the first significant digit in base b is associated with the PDF

f x { x) = P r(X = *) = log6 (1 + 1/x) x = 1, 2 , . . . , b — 1

for b = 2,3, — Since the CDF is

Fx {x) = P r(X < x) = log6 (1 + x) x = 1, 2 , . . . , b - 1,

variates can be generated via

x * - V > u \,

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

231

where U ~ U(0, 1). When 6 is 2 (the binary case), for example, the X value generated

is always 1, as expected.

When the first r digits are considered, Benford’s law generalizes to

f x (x) = P r(X = x) = log10 (1 + 1/x) x = 10r_1,10r_1 + 1 , . . . , 10r - 1

for r = 1,2, — [Note th a t this rather relaxed notation implies th a t x = 365 when

r = 3 corresponds to a first digit Ri = 3, second digit R 2 = 6, and third digit

i?3 = 5, which occurs with probability P r(X = 365) = P r(i?L = 3, R2 = 6, i?3 = 5) =

logxo (1 + 1/365).] The CDF is

Fx {x) = P r (X < : r)
X

= 1° g io (1 + 1A)
i=10p_1

x

= lo Sio (* + 1) - lo g 10 i
i= 10r- 1

= log10(x + 1) - log10 (I0 r~1)

= logic (fo^r) x = lor_1’ lor_1 + 1, • • • 510r - 1.

Variates can be generated by inversion via

X <r- LlO^~r+1J,

where U ~ U(0, 1).

Combining the previous two cases, a discrete Benford variate X associated with

the first r significant digits in base b is generated by inversion via

where U ~ U(0, 1).

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

232

8.5 Conclusions

Benford’s law holds exactly for certain param etric survival distributions introduced

in Section 8.3, holds to varying degrees for many other parametric distributions as

shown in Section 8.2, and holds very poorly [e.g., for the number of children in a

family in the U.S. or T ~ U(3, 7) since the digits 1, 2, 7, 8, 9 never occur] for other

distributions. The reason that Benford’s law applies to so many data sets may simply

be due to the fact that many popular param etric lifetime models also closely follow

his law for particular values of their parameters.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 9

Input Modeling

Input modeling th a t involves fitting standard univariate param etric probability dis

tributions is typically performed using an input modeling package, such as Arena,

AweSim, Unifit, BestFit, or Stat::Fit (Swain, 2001). These packages typically fit sev

eral distributions to a da ta set, then determine the distribution with the best fit by

comparing goodness-of-fit statistics. But what if an appropriate input model is not

included in one of these packages? The modeler must resort to deriving estimators

by hand for an appropriate input model. The purpose of this chapter is to inves

tigate the use of APPL for input modeling. A PPL allows an analyst to specify a

standard or non-standard distribution for an input model, and have the derivations

performed automatically. Input modeling serves as an excellent arena for illustrating

the applicability and usefulness of APPL. I t contains input modeling procedures for

param eter estim ation (as described in Chapter 7), plotting empirical and fitted CDFs,

and performing goodness-of-fit tests. In this chapter, examples are used to exhibit

A PPL’s utility for input modeling. Limitations of some procedures when applied to

certain distributions (i.e., applying maximum likelihood to the Weibull distribution)

and strategies for overcoming these obstacles are also discussed in this chapter.

233

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

234

9.1 Examples

Both APPL and Maple can easily be adapted for use in input modeling. This section

provides seven examples of cases where a symbolic language is of use in analyzing a

da ta set.

E x a m p le 9 .1 . (Model selection) One of the tools for selecting a suitable input model

is a plot of the coefficient of variation (7 = cr/fi) versus the skewness

After constructing this plot, the sample coefficient of variation and sample skewness

can be plotted for a particular da ta set or da ta sets to determine an appropriate

distribution for modeling the data.

The APPL statem ents th a t produce the plot in Figure 9.1 for the Weibull, gamma,

log normal, and log logistic distributions use the additional APPL CoefOfVar and

Skewness procedures. The statem ents necessary to plot the gamma distribution’s

coefficient of variation versus skewness are shown below. The plots for the other

distributions are calculated similarly. The Maple statem ent used to display all four

plots in one graphic is also provided.

> u n a s s ig n (Jkappa’) ;
> lambda := 1;
> X := GammaRVdambda, kappa);
> c : = CoefOfVar(X);
> s := Skewness(X);
> GammaPlot := p l o t ([c , s , kappa = 0 . 5 . . 999] , la b e ls = [c v , skew]):

> p lo ts [d isp lay]({G am m aP lo t, W e ib u llP lo t, LogNorm alPlot,
L o g L o g is ticP lo t} , s c a l in g = u n c o n s tra in e d) ;

The u n a ss ig n command in Maple is used to unassign any previous value given to an

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

235

existing variable name, such as k . □

skew

0.4 0.6 0.8cv 1.2 1.4

- 1-

Figure 9.1: Coefficient of variation, 7 , versus skewness, 7 3 , for the gamma, Weibull,
log normal, and log logistic distributions.

E x am p le 9.2. The n = 23 ball bearing failure times were collected to determine an

input model in a discrete-event simulation of a reliability system. The failure times

in 1 0 6 revolutions are

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 6 8 . 8 8 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

[Although these ball bearing failure times are from the life testing literature (Lawless

1982, page 228), the same analysis would apply to service times, for example.] In Ex

ample 7.5 we used the MOM procedure to determine the param eter estimates for fitting

an exponential distribution and a Weibull distribution to this da ta set. Determine

the model adequacy for these two distributions.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

236

Solu tion : Figure 7.3 is a plot of the empirical and fitted CDFs for the ball bearing

failure times and the exponential distribution. The PlotEmpVsFittedCDF procedure

was written to provide a graphical means for comparing a da ta se t’s empirical CDF

and its fitted CDF for various distributions. The APPL statem ents used to plot

the empirical and fitted CDFs for the ball bearing failure times and the Weibull

distribution (where the parameters for the Weibull distribution A = 0.0123 and k =

2.07 were computed in Example 7.5) in Figure 9.2 are

> X := WeibullRV(lambda, kappa);
> PlotEmpVsFittedCDF(X, BallBearing, [lambda = 0.0123, kappa = 2.07],

0, 180);

0.8

0.6

CDF

0.4

0.2

Figure 9.2: Empirical and fitted Weibull CDFs (using the m ethod of moments) for
the ball bearing data set.

In order to assess the model adequacy, either a formal goodness-of-fit test can

be performed, or goodness-of-fit statistics can be compared for competing models.

The Kolmogorov-Smirnov test statistic, for example, can be computed for both the

fitted exponential and Weibull distributions. The KSTest procedure determines the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

237

maximum vertical difference between the empirical distribution function and the fitted

cumulative distribution function. For the fitted exponential distribution (where the

param eter A = 575/41534 was computed in Example 7.5) and the ball bearing failure

times, the APPL statem ents

> X := ExponentialRV(lambda) ;
> KSTest(X, BallBearing, [lambda = 575 / 41534]);

return 0.3068, indicating a rather poor fit. Similar APPL statem ents return the

Kolmogorov-Smirnov test statistic for the fitted Weibull distribution as 0.1511. □

As an alternative to fitting the exponential or Weibull distributions to the ball

bearing failure times, one might consider fitting the reciprocal of an exponential ran

dom variable to the ball bearing failure times, as suggested in the following example.

P art of the appeal in using APPL for input modelling is being able define non-standard

distributions to fit to da ta sets.

E x a m p le 9.3. F it the reciprocal of an exponential random variable to the ball

bearing failure times in the previous example.

S o lu tio n : The APPL statem ents required to find the distribution of the reciprocal

of an exponential random variable and find the MLE for the unknown param eter are

> X := ExponentialRV(lambda) ;
> g := [[x -> 1 / x] , [0, infinity]];
> Y := Transform (X, g);
> lamhat := MLE(Y, BallBearing, [lambda]);

which return the PD F of Y as

fr{y) = ~2 e~x̂y y > o
2T

and calculate the MLE A = 55.06. The function g is used to find the distribution of

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

Y = g(X) = 1 / X.

238

□

As can be seen in Figure 9.3, the reciprocal of the exponential also provides a poor

fit to the ball bearing failure times. Although the Weibull distribution provides a fairly

good fit for the ball bearing failure times, it is not the best parametric model available

in terms of the Kolmogorov-Smirnov goodness-of-fit statistic. It seems appropriate

to consider another two-parameter distribution as a potential model, as shown in the

next example.

0 . 8 -

0 . 6 -

CDF

0.4

0.2

Figure 9.3: Empirical and reciprocal exponential fitted CDFs for the ball bearing
failure times.

E x am p le 9.4. Fit the inverse Gaussian distribution to the ball bearing failure times.

S o lu tion : Again using the APPL MLE and KSTest procedures, the statements

> X := InverseGaussianRVClambda, mu);
> hat := MLE(X, BallBearing, [lambda, mu]);
> KSValue := KSTest(X, BallBearing, [lambda = hat[l], mu = hat[2]]);

yields an improved fit w ith A = 231.67, p, = 72.22, and a Kolmogorov-Smirnov test

statistic of 0.088. The statem ents lambda = hat[l] and mu = hat [2] assign the

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

239

values in the list h a t to lambda and mu, respectively. The procedure MLE is able to re

turn the appropriate values because the maximum likelihood estim ators are in closed

form for this particular distribution. This will not always be the case, as illustrated

in Example 9.5 with the Weibull distribution. □

Besides the procedures PlotEmpVsFittedCDF and KSTest, fit can be assessed vi

sually using a Q-Q or P -P plot (Law and Kelton, 2000, pages 352-358). The APPL

statements used to produce the Q -Q and P -P plots for the Weibull distribution and

the ball bearing failure times data set displayed in Figures 9.4 and 9.5 are

> Y := WeibullRV(lambda, kappa);
> QQPlot(Y, B allB earing , [lambda = 0.0123, kappa = 2 .0 7]) ;
> PPPlot(Y , B allB earing , [lambda = 0.0123, kappa = 2 .0 7]) ;

Q-Q Plot
180-

160

140

120

100-
model

80-

60-

40

20

0 20 40 60 80 100 120 140 160 180
sample

Figure 9.4: Q -Q plot of ball bearing failure times with fitted (method of moments)
Weibull distribution.

To conclude the ball bearing failure times data analysis, Table 9.1 (on page 241)

summarizes the Kolmogorov-Smirnov test statistic values for various distributions

that were fit to the data via maximum likelihood estimation.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

240

P-P Plot

0.8 H

0.6

model

0.4

0 .2 -

°-2 H a m p le 0 '6 0 8 1

Figure 9.5: P -P plot of ball bearing failure times with fitted (m ethod of moments)
Weibull distribution.

Another wrinkle that can present itself in input modeling is the presence of cen

soring. A right-censored data set, for example, often occurs in reliability and bio-

statistical applications. Examples likely to arise in discrete-event input modeling

situations include machine failure times (when some machines have not yet failed)

and the analysis of rare events.

E x a m p le 9 .5 . Consider again the problem (introduced in Example 7.7) of deter

mining an input model for the remission time for the treatm ent group in the study

concerning the drug 6-MP (Gehan, 1965). Letting an asterisk denote a right-censored

observation, the remission times (in weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16

17* 19* 20* 22 23 25* 32* 32* 34* 35*.

In this example, fit a Weibull distribution to the 6-MP data.

S o lu tio n : Both MP6 and MP6Censor are pre-defined lists in APPL. MP6 is simply the

21 da ta values given above, and MP6Censor is the list

[1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0]

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

241

Table 9.1: Kolmogorov-Smirnov test statistic values for various distributions that
were fit to the ball bearing failure times in APPL via maximum likelihood estimation.

Model Test statistic
Exponential 0.307

Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

where 0 represents a censored value and 1 represents an uncensored value. Unfortu

nately, the statem ents

> Y : = WeibullEV(lambda, kappa);
> hat := MLE(Y, MP6, [lambda, kappa], MP6Censor);

fail to return the MLEs in APPL. The Maple numerical equation solving procedure

f so lve is not clever enough to exploit some of the structure in the score vector th a t

is necessary to find the MLEs. Therefore a special routine, MLEWeibull, has been

written th a t computes MLEs for the Weibull distribution. The additional statem ent

> hat := MLEWeibull(MP6, MP6Censor);

yields the MLE estimates A = 0.03 and k = 1.35 for the Weibull distribution. The

Kaplan-M eier product-lim it survivor function estim ate for the MP6 data set, along

with the fitted Weibull survivor function are plotted in Figure 9.6 using the additional

APPL statem ent

> PlotEmpVsFittedSF(Y, MP6, [lambda = hat[l], kappa = hat [2]],
MP6Censor, 0, 23);

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

242

0.8

0.6

S F

0.4

0.2

20

Figure 9.6: Product-limit survivor function estimate and fitted Weibull survivor func
tion for the 6-MP treatm ent group.

The downward steps in the estim ated survivor function occur only at observed remis

sion times. The six parameters to the plotting function PlotEmpVsFittedSF are the

random variable whose SF is to be plotted, the data values in a list, the parameters

associated "with the random variable, the right-censoring vector in a list, and the lower

and upper plotting limits. Note th a t the product-limit estim ator cuts off after the

largest observed remission tim e (Lawless, 1982). □

All of the input modeling examples thus far have been limited to continuous data.

The next example fits the geometric distribution as a model for daily demand at a

vending machine.

E xam p le 9.6. A vending machine has capacity for 24 cans of “Purple Passion” grape

drink. The machine is restocked to capacity every day at noon. Restocking time is

negligible. The last five days have produced the following Purple Passion sales:

14 24 18 20 24.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

243

The demand for Purple Passion a t this particular vending machine can be esti

m ated from the data by treating the 24-can sales figures as right-censored demand

observations. If demand has the geometric distribution, with PDF

f (t) = p { l - p) t t = 0 ,1 ,2 , . . .

find the MLE for p.

S o lu tio n : Although not discussed in Chapter 7, the MLE procedure can also handle

discrete distributions. Since the pre-defined geometric distribution in A PPL is pa

rameterized for t = 1, 2 , . . . , we need to define a geometric random variable with the

different parameterization (used above) in the list-of-sublists data structure. No new

APPL procedures are needed to compute the MLE for p. The statements

> X := [[x -> p * (1 - p) x] , [0 . . i n f i n i t y] , ["D isc re te " , "PDF"]];
> P urp lePass := [14, 24, 18, 20, 24];
> PurplePassC ensor := [1 , 0, 1, 1, 0];
> MLE(X, P u rp leP ass , [p] , P u rp leP assC en so r);

yield p = Model adequacy is not considered for this particular example. □

All previous examples have considered time-independent observations. There are

occasions when a series of event times may be tim e dependent, and a more complicated

input model may be appropriate.

E x a m p le 9.7. Ignoring preventive maintenance, twelve odometer readings (from a

certain model of car) associated with failures appearing over the first 100,000 miles

are

12,942 28,489 65,561 78,254 83,639 85,603

88,143 91,809 92,360 94,078 98,231 99,900

Fit a nonhomogeneous Poisson process to the above d a ta set, where the ending tim e

of the observation interval is assumed to be 100,000 miles.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

244

S o lu tio n : The data can be approxim ated by a power law process (i.e., the intensity

function has the same param etric form as the hazard function for a Weibull ran

dom variable). The following A PPL statements, including the additional MLENHPP
procedure, return A = 0.000026317 and k = 2.56800:

> CarFailures := [12942, 28489, 65561, 78254, 83639, 85603, 88143,
91809, 92360, 94078, 98231, 99900];

> X := WeibullRVClambda, kappa);
> hat := MLENHPP(X, CarFailures, [lambda, kappa], 100000);

The last argument in MLENHPP tells the procedure that the failures were observed over

the interval [0, 100,000] miles. The additional APPL statem ent

> PlotEmpVsFittedCIF(X, Sample, [lambda = hat[l], kappa = hat[2]],
0 , 100000) ;

produces a plot of the empirical cumulative intensity function and the power law

cumulative intensity function as shown in Figure 9.7. □

12 -

10

8

c i f 6

4

0

2

20000 40000 x 60000 80000 100000

Figure 9.7: Cumulative intensity function estimate and fitted power law intensity
function for the C arF a ilu res data.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

245

9.2 Further work

Some ongoing work in the area of input modeling in APPL is described here. First,

most distributions containing 3 or 4 unknown parameters (e.g., the Johnson dis

tributions) do not have closed-form maximum likelihood estimators. Based on our

experience with the Weibull distribution in Example 9.5, it will be necessary to write

custom code for many of these distributions. This is precisely what is required from

the batch and interactive software packages tha t perform input modeling. Fortu

nately, there is significant literature concerning the numerical methods required to

arrive at these estimators.

Second, some distributions, such as the Erlang distribution, have both a discrete

and a continuous parameter. In order to compute parameter estimates, it is necessary

to prove results th a t will expedite their calculation. In using maximum likelihood on

the Erlang, for example, it would not be possible to calculate the MLEs for the

scale param eter for all shape param eters in the parameter space. Thus some results

concerning the monotonicity of the likelihood function as the shape parameter varies

are necessary to provide an algorithm for calculating the MLEs.

Third, some distributions have their unknown parameters as part of their support.

Consider finding the MLEs for the triangular(a, b, c) distribution for a sample size of

n = 2. W ithout loss of generality, assume X\ < Symmetry dictates that

- X \ + X2

b = — r ~

and th a t b — a = c — b. Thus the problem of finding the MLE for a, for example,

reduces to maximizing

2{x\ - a) _ x i - a
X l,a (c — a) (6 — a) (b — a)2

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

246

Differentiating with respect to a yields

d f _ — (b — a)2 -+- 2(xi — a)(b — a)
da (6 — a)4

When the derivative is equated to zero and the resulting equation is solved for a, the

MLE is

a = 2xi — b.

Likewise,

c = 2 ^ 2 — b.

Moving to the case of n = 3 is more complicated since it is not clear whether the

middle data value should have its likelihood function considered paxt of the left or

the right support of the PD F. An algorithm must be developed in order to compute

the MLEs for general n.

APPL is a platform which can be used for input modeling in an interactive, as

opposed to a batch platform. Its ability to interface w ith probability theory presents

some advantages for calculating exact probability measures.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Chapter 10

APPLications

10.1 Kolmogorov-Smirnov Test Statistic for Esti

mated Parameters

The Kolmogorov-Smirnov (K-S) test compares a hypothetical or fitted CDF F(x)

with an empirical CDF Fn(x) in order to assess fit. The empirical CDF Fn(x) is

defined as
_ . . num ber of X / s < x
Fn(x) = ----------------------------,

n

where n is the size of the random sample, which means Fn (x) is the proportion of the

observations th a t are less than or equal to x. The K-S test statistic D n is the largest

vertical distance between Fn(x) and F (x) for all values of x, i.e.,

Dn = sup{|F„(a;) - F(a?)|}.
X

The statistic Dn can be computed by calculating (Law & Kelton, 2000, page 364)

D»+=m { i ~ Aw } ’
247

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

248

and letting

Dn = max{£)+, D n }.

Although the test statistic Dn is easy to calculate, its distribution is mathemati

cally intractable. Drew et al. (2000) provide an algorithm for calculating the CDF of

case has been previously coded into APPL as the KSRV procedure.

The more common and practical situation occurs when the parameters are un

known and are estimated from the sample data, using a technique such as maximum

likelihood estimation. In this case, the distribution of D n depends upon both n

and the particular distribution th a t is being fit to the data. This section presents the

derivation of the distribution of Dn for the case of exponential sampling for n = 1 and

n — 2. Future work involves extending the pattern established for n = 1 and n = 2

for the exponential distribution to larger samples and other population distributions.

Let X be an exponential random variable with PD F f (x) = \ e~ x!e and CDF

F {x) = 1 — e~x!° for x > 0. If Xi,a?2 , • • - ,x n are the sample data values, then the

Dn when all the parameters of the hypothetical CDF F(x) are known (referred to as

the “all parameters known” case). Assuming tha t F is continuous, the distribution

of D n is a function of n, but does not depend on F. This “all parameters known”

MLE 6 is

10.1.1 Di for th e E xp on en tia l D istr ib u tion

If there is only n — 1 sample data value, which we will call x i , then 9 — X\. Thus,

the fitted CDF is

F(x) = 1 - e~x/§ = 1 - e~x/xi x > 0 .

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

249

As can be seen in Figure 10.1, the largest vertical distance between Fx(x) and F(x)

occurs at x x and it the value Dx = 1 — 1/e. The PD F for D x is degenerate at 1 — 1/e:

f Dl{dx) = 1 dx = 1 - 1/e.

Empirical CDF

Fitted CDF0 .8 -

0 .6 -

0.4-

0 .2 -

Figure 10.1: The empirical and fitted exponential distribution for one da ta value x x.
The K-S test statistic value Dx = 1 — 1/e is pictured.

1 0 .1 .2 £>2 for th e E xp on en tia l D istr ib u tio n

Order the n = 2 sample da ta values and let x ^ = min{a:i, x2} and x@) =

The MLE is 0 = (a:^) + X(2))/2 and the fitted CDF is

F(x) = 1 - e~x/* = 1 - e-2x/(x(i)+a:(2)) x > 0.

Let

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

250

where 0 < y < 1 since 0 < xp) < X(2). The fitted CDF F (x) a t the values xpj and

xp) is

F (x (1)) = 1 - e- 2x<*)/(*(D+*(*)) = l _ e-2y/(y+D 0 < y < l ,

and

F(x(2)) = 1 - e- - x™/{x^ +x™) = 1 - e~2/(2/+1) 0 < y < 1.

The fitted CDF F{x) always intersects the second riser of the empirical CDF F2 (x)

since F(x(2)) ranges from 1 — ^ = 0.6321 (when y = 1) to 1 — ^ = 0.8647 (when

y — 0). The fitted CDF may intersect the first riser of the empirical CDF depending

on the value of y. For 0 < y < 2_iog(2) ~ 0.5304, the first riser is intersected. For

2-°og(2) V — T fitted CDF lies entirely above the first riser.

Define lengths A, B, C and D according to the diagram in Figure 10.2. With

respect to y = the lengths A, B , C and D (as functions of y) are

Fitted CDF0.8

0.6
Empirical CDF

0.4

0.2

Figure 10.2: The empirical and fitted exponential distribution for twro da ta values X(i)
and X(2). In this particular plot, 0 < y < 2~°og(2) > so r ŝer ° f the empirical
CDF F2(x) is intersected by F(x) .

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

251

A(y) = | (1 - e-2j'/(y+1)) - 0| = | l - e_2y/(j,+1) | = 1 - e~2y/{-y+l) 0 < y < 1;

B(y) = I _ (1 _ e -2 y / (iH - D) 1

The length B is defined piecewise as

B(y) = <
3- 2 y / (y + l) _ 1

o < y < ^
log(2)

log(2)
2—log(2)

2 —Iog(2)

< y < i;

C(y) = (1 - e - 2«»+») - 5 = 5 - e "2/<!,+1) 0 < y < 1;

£>(y) = | l — (1 — e_2/(y+1)) | = e-2/(y+1) 0 < y < 1.

Figure 10.3 is a graph of the lengths A, B, C and D plotted with respect to

0 < y < 1- For any given y on (0,1], the K-S test statistic is D2 = max{A, B , C , £>}.

Thus, only C(y), A(y), and the first piece of B(y) are needed to define D2 in terms

of y. In addition, there are two y values of interest in Figure 10.3:

0.6 -

0 .5 -

0.4

0.3

0 2

02 0.60.4 0.8

Figure 10.3: Lengths A , B , C, and D from Figure 10.2 for 0 < y < 1.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

252

The value y* such th a t B(y) — C(y). Using Maple’s so lve procedure, we

determine that

V =
2 + log (± - 1 ^ 1 - 4 / e 2)

l ° g (| - i ^ l - 4 / e 2)
^ 0.0965,

and

C{y *) = exp ^ - 2 - log Q - ~ \ / l — 4 /e 2̂ ^ ^ = 0.3386.

The value y** such th a t A{y) = C{y). Using Maple’s so lv e procedure, we

determine that

2 + log + | v ' 1 + 16/ e2)

log (4 + l \ / l + 16/e2)
^ 0.2226,

and

C(y’ ’) = 1 - exp ^ —2 - log + ^ a/ 1 + 16/ e2^ - °- 3052.

Thus, the largest vertical distance Z)2 is either computed using the length formula for

A (Y) , B (Y) , or C(Y) depending on the value Y — X ^ / X ^) , i-e.,

Do = <

B (Y)

con
A (Y)

0 < r <
Iog(|-§V^l-4/e2)

2+ l o g (^ - i y i - 4 /e2) < y < 2+ l o g (- H i y ,1+ 16/e2)

•og(|-|-s/1_4/e2) _ 1og(-^+iv/,1+16/e2)
 2+ l°g (— y / l + 16/ e 2) y .

l°g (—^ + ^ - \ / l+ 1 6 /e 2) ’

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

253

or, equivalently,
/

B (Y) 0 < Y < y*

A = C (Y) U* < Y < y**

A (Y) y ” < Y < 1.

D eterm in in g th e D istr ib u tion o f Y = X (1)/X (2)

Let A i, X 2 be a random sample drawn from a population having PD F

f (x) = \ e~X/° x > °,

for 9 > 0. In order to determine the distribution of A , we must determine the

distribution of /A (2), where

= min{Ai, A 2 }, and

A (2) = m a x ^ , A2}.

Using an order statistic result (Hogg & Craig, 1995, page 199) the joint PD F of A(x)

and X^Q is

/(* (!) ,Z(2)} = 2! • • ^e~xw /e

= ^ e - ^ +x^)/0 0 < £(!) < rr(2).

The CDF technique is used to determine the CDF of Y . Let Y = A(i)/A(2)

and define the dummy transform ation Z = A(2). The random variables Y and Z

define a one-to-one transformation th a t maps A = {(z(i),X(2)) | 0 < X(x) < £(2)} to

& = {{Viz) 10 < V < 1)z > 0}. Since y = x ^ / x ^) and z = x@) (be., £(i) = yz and

x (2) = z) and the Jacobian of the inverse transformation is J = z, then the PD F of

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

254

Y is

f v (y) =
r°° 9

J p eHyZ+z)/e\z \ dz
9 f ° °

^2 I e~z(y+1^ ez d z
v Jo
2_
¥

¥
2_

¥
2_
92

0 - 0 +

: e 2

(y + 1)
e2

y +
- r
1 Jo

e-z(V+l)/B dz

0-z(y+\)/8
10 J

(v + i y
0 < y < 1.

The final step in determining the distribution of D2 is to project the maximum of

A, B , C, and D in Figure 10.3 onto the vertical axis. In order to determine the CDF

for A>, we need to find the functions Fa, Fp, and F7 associated with the following

limits for the CDF of D 2:

FdM =

0 0 < d < C(y”)

Fa(d) C (t T) < d < C(y*)

F M C (y ') < d < \

Fy(d) \ < d < 1 - J

1

.-<1 u
1rHA93

D e te rm in in g fo rm u la s fo r Fa, Fp, an d F7

In order to determine the three functions FQ, Fp, and F7 associated with the CDF

of D 2, it will be necessary to find the point of intersection of a horizontal line at

height d in Figure 10.4 with C(y), A(y), and the first piece of B(y). These points

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

255

0 .8 -

0 .6 -

0.4-

0.2 0.4 0.6 0.8

Figure 10.4: D 2 = max{A, B, C , D}.

of intersection will be necessary in order to set up the appropriate integration limits

when using the CDF technique to determine the distribution of D 2.

First, consider the intersection of the first piece of B(y) with a horizontal line at

height d in Figure 10.4:

e - 2 » / (y + D _ I = rf.
2

Solving this equation for y yields

_ log ((d + 1/2)
2 + log [d, + 1/2)

Next, consider the intersection of C (y) with a horizontal line at height d in Figure

10.4:

1 _ e - 2 / (y + l) = d
2

Solving this equation for y yields

= 2 + log (1/2 - d)
V log (1/2 - d)

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited without perm iss ion .

256

Finally, consider the intersection of A(y) with a horizontal line at height d in Figure

10.4:

1 _ e-2»/(»+l) = d

Solving this equation for y yields

log (l - d)
V = 2 -f-log(1 — d)'

The following three paragraphs give the limits of integration associated with the

functions Fa , Fp, and F7.

For C(y**) < d < C(y*), FD2(d), i.e., expression for Fa(d)., is

Fa(d) = P r (D2 < d)
log(l-d)

y 2 + io g (i - d)

= j f v { y) d y + J f r (y) d y
2 + l o g (l / 2 - d) y "

lo g (I /2 - d)

= - log(l/2 - d) - 2 - log(l - d)

= —2 — log[(l/2 — d)(l — rf)].

For C(y*) < d < 0.5, FD2(d), i.e., expression for Fp(d), is

Fp{d) = P r (D2 <d)

= 1 - P r {D2 > d)

= 1 - / M v) d y + J f y (y) d y
L U 2 + l o g (l - d)

i (d + 1/2^

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

257

For 0.5 < d < 1 — 1/e, Fp2(d), i.e., expression for F^(d), is

Fy(d) = P r(D 2 < d)

= 1 - Pr(_D2 > d)

= 1 - /: lO K (l-d)
fv{y) dy

2 + I o g (l - d)

= - l o g (l - d) .

Pu tting the pieces together, the CDF for Do is

FdM
- 2 — log [(1/2 _ rf)(l - rf)I

l o g (^)

- log(l - d)

0 < d < C(y**)

C(y") < d < C{y •)

C{y*) < d < \

i < d < i - i

d > i - i .

This CDF is consistent with the tabled values from Leemis (1995, page 274) which

were generated using Monte Carlo simulation with 500,000 replications.

E x a m p le 10.1. Let a;(i) = 95 and £(2) = 100. The maximum likelihood estimator 9

is

e = 9- 5 ± 100 = 97.5

The ratio of the data values

y = — = 0.95,
X(2)

which indicates, from Figure 10.4, th a t the test statistic

D 2 = .4(0.95) = 1 - e- 2(o-95)/(x.95) ^ 0.6226

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

258

falls in the right-hand tail of the distribution of Di and hence provides evidence to

reject the null hypothesis for the goodness-of-fit test. Since large values of the test

statistic lead to rejecting Ho, the p-value associated with this particular data set is

V = 1 - FD2 (0.6226) = 1 + Iog(l - 0.6226) = 0.02556. □

The procedure ExponentialKSRV (Data) returns the PDF of Dn for the exponen

tial distribution when given a list of da ta values Data. For data sets containing more

then two elements, the procedure currently prints an error message.

10.2 Others

This section contains various other applications of APPL procedures.

E x a m p le 10.2. This example considers the use of the Kolmogorov-Smirnov test

for assessing model adequacy (goodness-of-fit) for the prime modulus multiplicative

linear congruential random number generator:

zi+i — azi mod m

for i = 0 ,1 , . . . , where z0 is a seed, a = 75 = 16,807, and m = 231 — 1 = 2,147,483,647

(Park and Miller, 1988). The random numbers generated are Z \ / m , z - i l t n , etc. If the

seed zq = 987,654,321 is used, then the first five random numbers generated are

1,605,065,384 1,791,818,921 937,423,366
2,147,483,647 2,147,483,647 2,147,483,647

1,334,477,970 252,032,522
2,147,483,647 2,147,483,647

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

259

or, approximately

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five da ta values are being evaluated for their uniformity, there should

be a reasonable match between their empirical cumulative distribution function and

the cumulative distribution function for a U(0, 1) random variable. If we let the list

Sample contain the five random numbers generated above, then the APPL statem ents

required to plot these two functions over the interval (0, 1), shown in Figure 10.5, are

> n := 5;
> a := 7 “ 5;
> seed := 987654321;
> m := 2 ~ 31 - 1;
> Sample := □ ;
> for j from 1 to n do
> seed := a * seed mod m:
> Sample := Cop(Sample), seed / m]:
> od;
> U := UniformRV(0, 1)
> PlotEmpVsFittedCDFCU, Sample, □, 0, 1);

The five param eters to the plotting function are the random variable whose CDF is

to be plotted, the data values in a list, the param eters associated with the random

variable (empty in this case of U(0, 1)), and the optional lower and upper plotting

limits.

Let F(x) be the hypothesized CDF and F$(x) be the empirical CDF. In order to

determine the Kolmogorov-Smirnov test statistic,

A = sup |F (r) - F5(x) | ,

which measures the largest vertical distance between the two cumulative distribution

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

0.8

0.6

CDF

260

/

0.2 0.4 - 0.6 0.8 1

Figure 10.5: The empirical CDF of Sample and the theoretical U(0, 1) CDF.

functions, the following additional command must be issued

> T e s tS ta t := KSTest(U, Sample, []) ;

The approximate value of the test statistic for the five random numbers is 0.2365,

which occurs just to the left of the random number 0.4365.

Since large values of the test statistic indicate a poor fit and the cumulative

distribution function FDs(y) of the test statistic is (Drew et al., 2000)

z

F D 5(y) = <

0

<§ (1 0 * - l) 5

—288 z4 4- 240 z 3 - ^ z 2 + f g

160z5 - 2 4 0 z 4 + ^ z 3 + 12z2 -

—20z5 + 74 z 4 _ ijp *3 + 224^ _ tm

12z5 —6 z 4 — f z 3 + f z 2 + ^

—20y6 + 3 2 2/5 - l f y 3 + ^ § - 2

—8 z 5 4- 22z 4 — + —

2 x 5 — 10 z 4 4- 20 z 3 — 20 z 2 4- 10 z — 1

96
625

1 0 8 m t 336
25 X 625

125 X

^ ■ T — 1 125 X 1

9,3 i U 2 . „ 2 i 3371 _ -i
9 ^ 36 ^ 648 y 1

y < T o

T 6 < y < l

1s<y<ro
ro<y< I
§ < ^ < 5

h < y < l

k < y < I
i <y <l
l <y< i
y> i,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

261

the j>-value for this particular test is found with the additional APPL statem ent

> p := SF(KSRV(5), TestStat);

which yields p = 0.8838.

If this process is repeated for a total of 1000 groups of nonoverlapping consecutive

sets of five random numbers, the empirical CDF of the Kolmogorov-Smirnov statis

tics should be close to the theoretical from APPL if the random number generator is

valid. Figure 10.6 is a plot of the empirical CDF of the 1000 Kolmogorov-Smirnov

statistics versus the theoretical Kolmogorov-Smirnov CDF with n = 5. The empirical

CDF lies slightly above the theoretical. If this experiment were performed repeatedly,

the empirical CDFs should fluctuate around the theoretical CDF. □

0.8

0.6

CDF

0.4

0.2

0.2 0.4 0.80.6

Figure 10.6: Empirical CDF of 1000 Kolmogorov-Smirnov statistics and the theoret
ical Kolmogorov-Smirnov CDF for n = 5.

E x am p le 10.3. Consider a 2 x 2 m atrix of 17(0,1) random variables. Find the

distribution of the determinant of the matrix.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

262

S o lu tio n : Let X Y, X 2, X 3, and X A be iid U(0, 1), and let Yx = X rX 2 and Y2 = X 3X 4.

The distribution of Y{ for i = 1, 2 is fvi iy) = —logQ/) for 0 < y < 1 (which can be

determined in APPL). Now we must find the distribution of Yx — Y2.

The joint PD F of FI and Y2 is

/ r , ,^ (2/1 , 2/2) = (log(yi))(log(jfe))

for 0 < 2/1 < 1 . 0 < y2 < 1. Consider the one-to-one transformation 0 such tha t

wx = yx - y2 y1 =
<t> : 0 - 1 :

w2 = 2 / i + 2 / 2 2/2 =

The Jacobian of the inverse transformation is

1
2

The joint PD F of Y\ and Y2 is

f w 1,w2(w1,w 2) = / K , , r 2 (0 l (w i ,w2)) • |J |
'©1 + IU2 \ , (W2 — W\1 /w i + W2 \ (w 2 — W i \

= a — Jlog (.— 2— ; ’

where w-i, w2 satisfy the inequalities —Wi < w2, w2 < 2 — w\, w2 < w \ , and Wi — 2 <

w2. The m arginal distribution of Wi is

S T dw,,

S T ' l l o g f ^ J l o g t ^ -) d w 2,

—1 < w\ < 0

0 < W\ < 1.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

263

Simplifying the above expression yields

2 — -u/ilog(w i + 1) — log (i//i + 1) + 2w \ 4- w \ d ilo g () -

tyilog(—iui)log(i(;1) — (l/6)ii;x7r2 — w xlog(—̂w \) — 1 < w \ < 0

2 4- tt;xlog(l — w \) — lo g (l — w \) -f- w xlog(w x) — twxdilog(iux) —

(l/2)'u;x(log(tyx))2 — 2w\ + w xlog(l — iwx)log(wx-1) 0 < w \ < 1,

where dilog(z) = f * dt.

Using the APPL D eterm inant procedure, which returns the PD F of the determi

nant of a 2 x 2 m atrix with random variables as elements, we determine the PDF of

this example with the statements:

> Xll := UniformRVCO, 1)
> X12 := UniformRVCO, 1)
> X21 := UniformRVCO, 1)
> X22 := UniformRVCO, 1)
> M := arrayCl . . 2 , 1 .
> Determinant CM); □

2, [CX11, X12] , [X21, X22]]) ;

E x am p le 10.4. Find the distribution of the distance between two points chosen

randomly in the unit square.

S o lu tio n : Let (Xx,Yi) and (X2, Y2) be two pairs of independent and identically

distributed U(0, 1) random variables. The distribution of the distance between the

two points can be found by hand using a similar process to the one exhibited in the

last example.

The APPL statements used to determine this distribution are

> XI := UniformRVCO, l);
> X2 := UniformRVCO, l);
> Y1 := UniformRVCO, l);
> Y2 := UniformRVCO, l);
> DX := Difference CXI, X2) ;

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

264

> DY := Difference(Yl, Y2);
> g := [[x -> x ~ 2, x -> x 2], [-infinity, 0, infinity]];
> h : = [[x -> sqrt(x)], [0, infinity]];
> SDX := Transform(DX, g) ;
> SDY := Transform(DY, g);
> SSQ := Convolution(SDX, SDY);
> Z := TransformCSSQ, h) ;

The resulting PD F is

f z (z) = 2 (z2 + 7T — 4 | z |) z 0 < Z < 1

and

f z { z) - —2 | 2 y / z 2 — 1 + 2 arcsin ^ y / z 2 — 1 + z2-\/z2 — 1 — 4 z2 + 4^ —t ̂ =tt

for 1 < z < y/2. The APPL statement DX := Difference (XI, X2) assigns the PD F

of X i —X i to the Maple variable DX. Similarly, Y\ — Yi gets assigned to the variable DY.
The Transform function transforms the random variable DX by the function g(x) = x2.

Thus, the statem ent SDX := Transform(DX, g) assigns the PDF of {Xx — X 2)2 to

the variable SDX, while SDY is assigned the PD F of (Yi — Y2)2. The Convolution
procedure calculates the PDF of the sum of the random variables SDX and SDY. Last,

the resulting convolution, SSQ is transformed by the function h(x) = yfx, x > 0 to

produce the PD F f z (z) . □

E x a m p le 10.5. Let X i , X2, and X 3 be a random sample drawn from an exponential

distribution with failure rate A and PD F fx{%) = \ e ~ Xx for x > 0. Test

Ho : A = 5

H x : A < 5

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

265

at significance level a = 0 . 0 1 using the test statistics

(a) X \ + X 2 + -X3 , and

(b) X (3).

Find the critical values and the power curves for each test statistic.

S o lu tio n (a): Let Y = X i + X 2 + X 3 and C\ be the critical value of the test. Since

large values of the test statistic lead to rejecting H0, we need to compute the critical

value Ci such that P r(T > ci) = 0.01 under H0. We can first find the survivor function

(SF) of the sum Y with the APPL statements

> X := ExponentialRVC5);
> Y := ConvolutionIID(X, 3);
> SY := SF (Y) ;

which returns

S y {u) = y 2e~5y + 5 ye~5y -t- e~5y y > 0.

In order to determine P r(F > Ci) = 0.01, we first use the Maple procedures op

and unapply to extract the survivor function from the list of sublists Y and set it

equal to 0.01. We then use Maple’s numeric solver, f so lv e , to solve the resulting

equation
25
— d 2 e"5ci + 5 c ie _Sci + e ~ 5ci = 0 . 0 1

for ci- The Maple statem ent needed to solve this equation for ci is

> c l := fso lv e C o p (u n a p p ly (S Y [1](c l))(c l)) = 0 .0 1) ;

which yields ci = 1.681189383. We can verify this value of ci with the APPL state

ment

> a lp h a := SF(Y, c l) ;

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout pe rm iss ion .

266

which returns a = 0.01.

We will determine the power curve for part (a) after determining the critical value

for the test statistic X@) in part (b). We want to examine each test sta tistic ’s power

curve on the same plot.

S o lu tio n (b): Let c2 be the critical value of the test. Since large values of the test

statistic again lead to rejecting HQl we need to compute the critical value c2 such that

P r (y > c2) = 0.01 under H0. We first find the survivor function of the third order

statistic, X3, with the APPL statements

> X := ExponentialRV(5) ;
> X3 := OrderStat(X, 3, 3);
> SX3 := SFCX3);

where SF(X3) computes the survivor function of the third order statistic when three

items are drawn randomly from the given exponential population. The survivor

function of the third order statistic is

S*(3)(x) = e - 15* - 3 e- 10* + 3 e - 5* x > 0.

The Pr(AT(3) > c2) = 0.01 is solved with the A PPL statem ent

> c2 := fsolve(op(unapply(SX3[1] (c2)) (c2)) = 0 . 01) ;

which yields c2 = 1.140087221. We can verify this value of c2 with the APPL state

ment

> alpha := SF(X3, c 2);

which returns a = 0.009999999988.

The additional statements needed to generate the power curves for the test statis

tics Y = X t + X 2 + X 3 and AT(3) are

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

267

> X := ExponentialRV(lambda) ;
> Y := SF(ConvolutionIID(X, 3));
> X3 := SF(OrderStat(X, 3, 3));
> PCa := subs(y = cl, Y[l](y));
> PCb := subs(x = c2, X3[l](x));
> PCPlota := plot(subs(lambda = i, op(PCa)), i = 0 . . 6):
> PCPlotb := plot(subs(lambda = i, op(PCb)), i = 0 . . 6):
> plots [display] ([PCPlota, PCPlotb]);

As can be seen in Figure 10.7, the sum test statistic, Y — X \ -f- X 2 + X 3, is more

powerful than the order statistic test statistic, *(3), for this particular hypothesis test.

Solid Line: Power Curve for (a)

Dashed Line: Power Curve for (b)

0.8 -

0.6

0.4

0.2

Figure 10.7: Power curves for the test statistic Y = X \ + X 2 + X z (solid line) and
test statistic (dashed line) for Example 10.5.

E x a m p le 10.6. (Barr & Sherrill, 1999, pages 357-358) (Army selection boards)

The Army uses centralized Army-wide selection boards to select officers for

promotion and advanced m ilitary schooling. Each selection board deter

mines a performance-based “order of merit” ranking of the officers under

its consideration. Generally, officers under consideration for promotion

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

268

or advanced schooling who are not selected for the new grades or schools

either leave or are separated from the Army. Officers being considered for

promotion to Lieutenant Colonel (LTC), for example, have successfully

passed five such selection boards. D ata from recent years shows the se

lection rates of these boards averages about 78%. Thus, very roughly, the

fraction of officers remaining after five boards is about 30% of the orig

inal population, i.e., 0.785 = 0.29. If we assume the original population

of officers has normally distributed “performance,” and selection boards

select officers with the highest performance, then a LTC selection board is

effectively considering a truncated normal population of “performance,”

with a truncation point corresponding to the 70th percentile of the orig

inal normal population. Determine the variance of the population under

consideration by the LTC board. (Barr & Sherrill, 1999, pages 357-358)

Solution: For a standard normal distribution, truncation at the 70th percentile

would correspond to a lower truncation point of b = 0.53. To determine the variance

of a truncated standard normal distribution with a lower truncation point b — 0.53,

the following A PPL statements are used

> X := StandardNormalRVO ;
> b := IDF(X, 7 / 10);
> T := Truncate(X, b, infinity);
> var := Variance(T);

The statem ents return the variance var = 0.2636, meaning the variance of the

population under consideration by the LTC board is only about one-fourth th a t of

the original population. Barr & Sherrill state:

.. th a t th is relatively small variance makes it more difficult for the

board to discriminate among officers under consideration. Members of

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

269

Table 10.1: Variance of a truncated standard normal distribution T for increasing
values of the lower truncation point t.

Lower truncation value t Variance of T truncated below at t
0.53 0.2636
0.65 0.2452
0.75 0.2309
0.85 0.2176
0.95 0.2050

selection boards for the higher ranks are sometimes quoted as saying, ‘All

the officers look about the same.” ’

Barr &; Sherrill also note th a t as t increases, there is a rapid decrease in variation.

Table 10.1 displays the variance of the truncated standard normal distribution for

increasing values of t as determ ined in APPL. They conclude that, a t higher ranks,

there is relatively little difference in performance scores. □

E x a m p le 10.7. (Maple anim ation of a continuous order statistic) The PDF of a

standardized inverse Gaussian (IG) random variable X is

= - § < « < » ■

Balakrishnan and Chen’s (1997) text, CRC Handbook o f Tables fo r Order Statistics

from Inverse Gaussian Distributions with Applications, contains hundreds of pages

of tables and plots for IG distributions. A plot of the N (0 ,1) and the standardized

IG(0.8) PDFs overlaid in a single plot, for example, is on page 50. Not only can APPL

reproduce many of these tables and plots (with ease), it can also produce animations

(with Maple’s anim ate procedure) to make comparisons of plots for various parameter

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited w ithout pe rm iss ion .

270

values. For example, The two plots for the N (0 ,1) and IG(fc) may be overlaid and

animated for k increasing from zero to one as follows:

> Z : = NormalRV(0, 1);
> X := [[x -> (3 / (3 + k * x)) ' (3 / 2) *

exp(-3 * x ~ 2 / (6 + 2 * k * x)) / sqrt(2 * Pi)],
[-3 / k, infinity], ["Continuous", "PDF"]];

> NormalExpr := op(unapply(Z [1] (x)) (x)) ;
> InvGaussExpr := op (unapply(X[l] (x))(x));
> unassign(,kJ);
> plots [animate] (-[NormalExpr, InvGaussExpr}, x = -4 .. 4, k = 0 . . 1) ;

The plot is shown in Figure 10.8 for k = 0.8. To execute the animation, first select

the plot by clicking on it. Then choose “Play” from the “Animation” menu.

-0.4

0.3

PDF
0.2

0.1

-3 -2

Figure 10.8: Overlaid plots of the standard norm al and standard IG(0.8) distributions.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 11

Future Work

As new algorithms are devised and implemented as APPL procedures, it is clear that

the discrete data structure will need to become more general. There are instances

when manipulating one or more random variables results in a random variable with

a mixed Dot and N oD ot format. We do not want these random variables to be alien

to the existing APPL procedures, and the best way to remedy this situation is to

adjust the data structure format first. Since we eventually want APPL procedures

to be able to work with random variables that have a mixed discrete and continu

ous support, developing a mixed D ot/N oD ot format for random variables with only

discrete supports is a good place to begin construction on a new or revised format.

Not only would we like to see the data structure become more general in the future,

but we would like to begin eliminating certain restrictions on random variables in

various procedures. In the Maximum procedure, for example, we assume that discrete

random variables have infinite supports consisting of consecutive integer values. This

would exclude, for example, determining the PD F of the maximum of the random

variable Y = 2X , where X ~ Geometric(p). In other procedures, the restrictions

are not implemented as part of the procedure, bu t are intrinsic Maple restrictions,

e.g., sizes of lists. Some Maple restrictions are possible to work around, such as

271

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

272

using Maple’s numeric equation solver fso lv e (in MOM and MLE) when so lve cannot

determine a analytic solution. In other procedures, such as CDF or Transform, it is

unclear how to proceed when an analytic inverse cannot be determined.

One of our primary interests is finding additional application areas for APPL,

especially those involving discrete random variables. Our article “APPL: A Proba

bility Programming Language” introduced the statistical community to APPL in the

May, 2001 issue of The American Statistician. This article was devoted primarily to

continuous distributions. We are encouraged by the interest level in APPL, and we

are continually seeking applications from other fields of interest. We are interested

in situations where an “exact” probability calculation is needed. Not only is APPL

a tool for extending the depth of probabilistic theory, but it has the potential to

strengthen the analysis and design of problems from other scientific fields.

Some of the application areas we are considering for future work axe

• R eliability: Finding the exact distribution of a system tim e to failure given

the component time to failure distributions.

• Networks: Finding the exact distribution of the project duration in a stochas

tic activity network.

• M echanical D esign: Finding the exact distribution of clearance in a design

with random tolerancing parameters.

• Statistics:

— Analysis of outliers,

— Critical values for hypothesis testing,

— Distribution of point estimators,

— Coverage of confidence intervals.

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r reproduction prohibited without perm iss ion .

273

Besides research, APPL is a tool for learning probability. Theoretical aspects of

probability are enhanced by the visualization of the manipulation of random variables

in a computer algebra system. It is my intention to continue developing APPL for

use by students and researchers at all levels in their scientific careers. W hat we give

to others today may be that small piece of tha t something they need to to make their

breakthrough tomorrow.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Appendix A

Algorithm for OrderStat

The algorithm for the A PPL O rderS tat(X , n , r , ["wo"]) procedure returns the

PD F of the r th order statistic of a random variable X (with support Q) given th a t

n items are sampled from the random variable’s population, either with or with

out ("wo") replacement. O rderS ta t uses the PDF, CDF, SF, NextPerm utation, and

NextCombination procedures. Algorithms for N extPerm utation and NextCombination

are in Appendix B.

Procedure OrderStat(X, n , r , ["wo"])
If r > n then

Retum(“Error: Order statistic index larger than sample size”)
f X <r- PDF(X)
F X <- CDF(X)
If (X is Continuous) then

. ”> i F X) ’ - 1 (1 - F X) " - r f X
(r — 1)! (n — r) !

Else if (X is Discrete) then
N < r - |Q|

Lo <— min(fi)
S X <- SF (fX)
If (Number of arguments = 3) then [Sampling with replacement]

If (X has a numeric PDF) then
For k <— 1 to N

274

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

275

If (N = 1) then

f X O S [1] <- 1

E lse if (fc = 1) and (k ^ N) then

E lse if {k ^ 1) and (k = N) then

f X O S [N] <r- [FJT(iV - 1)]“ [/X (fV)]n- u
n—n ' *u—O

E lse
r —1 n —r

fX O S[k] <- t t L n " J [FX{k - l)]u [fX (k)]n- u~w [S X (k + l)]w
u =0 iy=0 ^ '

Else if (X has a symbolic PDF) then

fX O S l <- ^ (n) [fX(Lo)]n~w [SX{Lo + l)]w
w=0 ^W'

[fX O S l holds the numeric PDF value of the rth order statistic at x = Lo]

JX O S2 <- [FX{x - 1)]“ [fX(x)]n- u~w [SX(x + 1)]"
u=0tu=0 ’ ’ '

[fXO S2 holds the symbolic PDF of the r th order statistic at x = Lo + 1, Lo + 2, ...]

If fXO S2(Lo) = fX O S l then
fX O S <— f XOS2 [Return single function fX O S]

Else
fX O S <r- fX O S l, fX O S 2 [Return piecewise defined fX O S]

Else if (Number of arguments = 4) then [Sampling without replacement]
If (X has finite support) then

If (n > N) then
Return(“Error: Sample size larger than population size”)

f X <— ConvertToNumeric(/X) [Converts PDF of X to a numeric representation]
If (Equally likely distribution) then

For i <— r to N — n + r

fxos\i] < -

In/
Else if (Non-equally likely distribution) then

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

276

If (n = 1) then [One item is sampled]
fX O S <- f X

Else if (n = N) then [Entire population is sampled]
fXO S[r] <— 1 [The rth position is assigned the value 1, others 0]

Else [Number of items sampled is 2 ,3 ,. . . , N — 1]
ProbStorage <— Array [1.. n, 1.. IV]
For i <— 1 to n

For j i— 1 to N
ProbStorage[i, j] <— 0 [Initialize array to hold zeroes]

Combo <— [1.. n] [Create the first ordering of values 1 through n]
For i 1 to (^)

Perm <— Combo [Assign the permutation as the current combination]
For j <— 1 to nl [Compute the probability of ob taining the permutation]

PermProb <— f X [Perm [1]]
Cum Sum <— PermProb
For m <— 2 to n

PermProb PermProb ■
Cum Sum «— Cum Sum 4- fX{Perm[m}]

OrderedPerm «— sort {Perm) [Sort the permutation]
For m <— 1 to n

For k <— 1 to IV
If (OrderedPerm[k] = m) then

ProbStorage[m, fc] <— PermProb + ProbStorage [m, A:]
Perm <— NextPermutation(Perm) [Return next permutation]

Combo <— NextGombination(C'om6o, N) [Return next combination]
Else if (Infinite Support) then

If (n = 1) then [One item is sampled]
fX O S <- f X

Else if (n = 2) and (r = 1) then

fX O S *- fX (x) S X (x + 1) , ^ f X (y)

Else
Retum(“No formula for this infinite support case”)

Return(/X OS)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Appendix B

Maple Code for NextCombination

and NextPermutation

These Maple codes were adapted from Nijenhaus and W ilf (1978) and Reingold et al.

(1977). The code for NextCombination generates the next lexicographical (“alpha

betical order”) combination of size n (where n is the size of the previous combination)

of the integers 1 ,2 , . . . , N. The procedure receives as arguments a list of integers, which

is the previous combination, and the size of the underlying set of integers from which

the next combination is to be formed. For example, if P rev ious := [1, 2 , 4 , 7]

and N = 10 are entered as arguments in NextCombination, then NextCombination

returns the next lexicographical combination of four elements chosen from the set

{1,2, . . . ,1 0 } as [1 , 2 , 4 , 8]. As another example, if P rev ious := [1 , 4 , 9,

10] and N = 10, then NextCombination returns [1, 5, 6 , 7].

The code for N extPerm utation generates the next lexicographical permutation of

the integers 1 ,2 , . . . , N . The code receives as its only argument a list of integers, which

is the previous permutation. For example, if P rev ious := [1, 2, 4 , 7] is entered

as an argument in N extPerm utation, then the code returns the next lexicographical

perm utation as [1, 2, 7 , 4]. Similarly, [1 , 2, 7, 4] as an argument generates
277

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

278

the next perm utation [1, 4 , 2 , 7].

The method being used for both codes requires the construction of the next com

bination (or permutation) by a small modification of the previous combination (or

permutation). We chose the lexicographical approach because of its computational

simplicity and straightforward construction.

NextCombination := p roc(P rev ious :: l i s t , N :: p o s in t)
lo c a l Next, n , MoveLeft, i , j :

i f (nargs <> 2) then
p r i n t (‘ERROR(NextCombination): T his p rocedure re q u ire s 2 a rg u m e n ts ') :
RETURN() :

f i :
Next := P re v io u s :
n := n o p s (P re v io u s) :
#
I f th e v a lu e in th e f i n a l p o s i t io n of th e com bination i s n o t th e
maximum v a lu e i t cam a t t a i n , N, th e n increm ent i t by 1.
#
i f (Next[n] <> N) then

Next[n] := N extfn] + 1:
#
I f th e f i n a l p o s i t io n in th e com bination i s a lread y a t i t s maximum
v a lu e , N, th e n move l e f t th rough th e com bination and f in d th e nex t
p o s s ib le v a lu e th a t can be increm ented . Index p o s i t io n i ’s maximum
a t ta in a b le va lue i s N + i - n .
#
e ls e

MoveLeft := t r u e :
f o r i from (n - 1) by -1 to 1 w hile (MoveLeft = tru e) do

i f (N ex t[i] < N + i - n) th en
N ex t[i] := N ex t[i] + 1:

#
Upon increm en ting th e r ig h tm o st elem ent in p o s i t io n i , r e s e t each
value in th e j t h p o s i t io n (j = 1, 2 , . . . , n - i) to th e r ig h t of
th e i t h p o s i t io n to 1 more th an th e va lue in th e p reced ing p o s i t io n .
#

fo r j from 1 to (n - i) do
N ex t[i + j] := N e x t[(i + j) - 1] + 1:

od:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

279

MoveLeft := f a l s e :
f i :

od:
f i :
RETURN(Next):
end:

E x am p le B . l . Let A := [1, 2 , 4 , 6] and N = 10. Find NextCombination (A).

1. Error check: Two arguments supplied.

2. Assign Next := [1, 2, 4 , 6]. Since the final position in the combination is
not the value N = 10, then increment it by 1.

3. Return the next combination as [1, 2, 4 , 7].

E x am p le B .2. Let A := [1, 4 , 9, 10] and N = 10. Find NextCombination (A).

1. Error check: Two arguments supplied.

2. Assign Next := [1, 4 , 9 , 10]. Since the final position in the combination
has already attained its maximum value, N = 10, then scan the combination
from right to left to locate the rightmost element tha t has not yet attained its
maximum value. Since position two has not attained its maximum value of 8,
then increment it by 1. Next becomes [1, 5 , 9 , 10].

3. Reset each value to the right of second position to one more than the value
in the preceding position. Thus, position three’s value becomes 6 and position
four’s value becomes 7. Next is now [1, 5 , 6 , 7].

4. Return the next combination as [1, 5 , 6 , 7].

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited without perm iss ion .

280

NextPerm utation. := procC Previous : : l i s t)
lo c a l Next, n , f l a g , i , OrigVal, Swaplndex, j , Tempi, k , Temp2, m:

i f (nargs <> 1) th en
p r i n t (‘ERROR(NextPermutation): This p rocedu re re q u ire s 1 a rg u m e n t') :
RETURN() :

f i :
Next := P re v io u s :
n := n o p s(P re v io u s) :
f l a g := f a l s e :
#
Find th e l a r g e s t index value i f o r which Next [i] < NextCi + 1].
#
fo r i from n - 1 to 1 by -1 while n o t (f la g) do

i f (Next [i] < Next Ci + 1]) then
f la g := t r u e :
OrigVal := N e x t [i] :
Swaplndex := i + 1:

#
Find th e sm a lle s t va lu e NextCjJ f o r which NextCi] < NextCj] and i < j .
#

f o r j from n to Swaplndex by -1 do
i f ((N extC j] < NextCSwapIndex]) and (NextCj] > O rigV al)) th en

Swaplndex := j :
f i :

od:
Tempi := NextCSwapIndex]:
Next CSwapIndex] := Next Ci] :
NextCi] := Tempi:

#
Reverse th e o rd e r o f th e va lues to th e r i g h t of th e le f tm o s t swapped value
#

f o r k from i + 1 to n do
Temp2Cn] := NextCn] :

od:
f o r m from i + 1 to n do

Next Cm] : = Temp2 Cn + i + 1 - m] :
od:

f i :
od:
RETURN(Next):
end:

E x am p le B . 3. Let A := Cl, 4 , 3, 2]. Find N extPerm utation (A).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

281

1 . Error check: One argument supplied.

2. Assign Next := [1 , 4 , 3, 2] . The largest index value i in which Next[z] <
Nextjz + 1] is i = 1.

3. The smallest value Next [7] such that Next[f] < Next [7] and i < j is Next[4] =
2 .

4. Swap the values in position i = 1 and j = 4. Next becomes [2 , 4 , 3 , 1] .

5. Reverse the order of the values to the right of Next[l] = 2. Next becomes [2 ,
1, 3, 4].

6 . Return [2 , 1 , 3 , 4] as the next permutation.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Appendix C

Determining Candidate Sums for

the Heap

T h eo rem : Let x i < x 2 < ■ • • < x n and y\ < y2 < • - • < ym be finite real numbers.

Let the m x n array A be arranged as shown in Figure C .l and have entries A itj =

yi 4- Xj, i = 1, 2, . . . , m and j = 1, 2, . . . , n. Let the set C contain all (z, j) pairs such

th a t Xi + yj < c, where c > + x x is a real number. Let P be the path from the

northwest corner of A to the southeast corner of A th a t separates C from C'. The

smallest element in C' must occur ju st to the northeast of a southward followed by

an eastward change in direction of the path P .

P ro o f: For any cell in C, every cell to the southwest of C is also in C since X\ <

x-i < • • • < x n and y\ < z/2 < • • • < ym. Thus C must be a finite union of rectangles

in A, where each rectangle contains the (1,1) cell. The next cell to be included in C

as c increases is the smallest element in C ’. Since C will continue to be a finite union

of rectangles when the next cell is added, the smallest element in C' must occur at

intersections of the rectangles and the western and southern boundaries of A th a t

occur on P.

Figure C.2 displays the array A for Example 4.3 with Chapter 4 with c = 3.
282

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

283

Vm V m + X i y m + X2 2/m ”F x n

;
• r •

y-2 V2 + X i 2/2 + X ’l y2 + x n

Vi 2/i + X i 2/i + x 2 2/1 + Xn

%l %2 X n

Figure C.l: Array A where x x < x 2 < • * • < x n and yx < y2 < • • • < ym.

8 ©
5 2

1 - 2 0 3

2 - 5 - 3 0 ©
- 3 - 1 2 6 8

Figure C.2: Array A corresponds to Example 4.3 in Chapter 4. The path P from the
northwest corner to the southeast corner of A th a t delimits the set C = {(z, j) | ?/,- +
Xj < 3} from C' is thickened. The circled entries lie ju s t to the northeast of points
in the path where there is a tu rn from a southward to an eastward direction. These
three entries are contained in the cells in C' th a t hold the smallest entries in C' for
c = 3.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Appendix D

Algorithm for BruteForceMethod

The algorithm for the APPL procedure BruteForceMethod(X, Y) computes the PDF

of the convolution of the PDFs of the two random variables X and Y by the “brute

force m ethod” described in Chapter 4. The support list for the convolution is sorted

by a heapsort in the APPL procedure HeapSort, which sorts the elements of its first

argument, making corresponding swaps to the elements of its second argument. The

variables Dx and Qy are the supports of the random variables X and Y , respectively.

Procedure BruteForceMethod (X, Y)
n 4— |f2x|
771 <— \ Q y \

s <— array [1.. n ■ m]
Probs <— array[1.. n ■ m]
For i <— 1 to 71

For j <— 1 to 77i
s < -Vi + x j
Probs <- fv ij/i) ■ fx (x j)

retum (H eapSort(s, Probs))

284

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Appendix E

Algorithm for MovingHeapMethod

The algorithm for the APPL procedure MovingHeapMethod (X, Y) computes the PDF

of the convolution of two random variables X and Y by the “moving heap method”

described in Chapter 4. The additional APPL procedures RebuildHeap, InsertH eap,

and PercolateDownHeap are standard heap programs for inserting and restructuring

a heap so th a t it continues to fulfill the properties of a heap.

Procedure MovingHeapMethod (X, Y)
n 4— |Dx|
771 4—

Dimension s[n -m]
Dimension Probs[n • mi\
s i V i + x i

Probsi 4- f Y (yi) ■ fx { x \)
Dimension r[77i + 1]
Dimension c[n + 1]
rowlcol2entry 4r- [yi -hx2, fy (y i) • f x (x 2)]
r i 4— 1

C i 4— 1
row 2collentry 4r- [y2 + x u f r (Z/2) • f x (x 1)]
r2 4 -1

285

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

286

Ci 4— 1

rn + 1 <— 1 [Keeps search for new entries inside north border of A]
Cm+i <— 1 [Keeps search for new entries inside east border of A]
H 4— [—1 * 1020, row lcol2entry, row2col\entry]
M im ic 4— [[0, 0], [1, 2], [2, 1]]
PercolateDownHeap(2, 3)
For q 4— 2 to n - m

R oo tltem 4— H 2
R ootPosition 4— M im ic2
sq 4— R oo tltem i
Probsq 4— R o o tltem 2
a 4— RootPositioni
b 4— R ootPosition2

ra <— 0
q, e— 0
size <— \H |

H 2 i Hsize
M im ic2 <— M im icSize
H < r - [H 1 . . H aize- 1]

M im ic <— [M im ic i.. M im icSize-i]
RebuildHeap(2, size — 1)
If (ra = 0) and (c&+i = 0) then
ra <— 1

Cb+ 1 <— 1
N ew P osition 4— [a, b + 1]

InsertHeap(iVew Position)
If (r a+i = 0) and (c6 = 0) then

’’a+i <— 1
Cb 4— 1
N ew P osition 4— [a + 1, b]
InsertHeap {N ew Position)

return(s, Probs)

[Holds the positions of the entries]
[Restructures H to fulfill the heap properties]

[Root entry placed in sums array s]
[Root’s probability placed in probability array Probs]

[The root’s row becomes inactive]
[The roo t’s column becomes inactive]

[Restores F a s a heap]
[If the cell ju st east of

the removed entry is inactive,
insert its entry into the heap]

[If the cell just south of
the removed entry is inactive,
insert its entry into the heap]

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Appendix F

APPL Code for Benford

This appendix contains APPL code for computing the probability mass functions of

Y when T has the unit exponential distribution. Other distributions are handled

analogously. The values of the loop indices low and high must be input in order to

avoid summing an infinite number of terms. The parameter in the ExponentialRV

procedure refers to the failure rate in the exponential distribution. The SF proce

dure gives the survivor function of the random variable given in the first argument

evaluated at the second argument.

T := ExponentialRVC 1) ;
pmf : = [0, 0, 0, 0, 0, 0, 0, 0, 0] ;
for y from 1 to 9 do
for i from low to high do
pmf[y] := pmf[y] + SF(T, y * 10 “ i) - SF(T, (y + 1) * 10 ~ i) ;

od;
od;

287

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Bibliography

Allaart, P. C. (1997), “An Invariant-Sum Characterization of Benford’s Law,” Jour
nal of Applied Probability, 34, 288—291.

Bain, L., and Engelhardt, M. (1992), Introduction to Probability and Mathematical
Statistics (2nd ed.), PW S-K EN T Publishing Company, Boston, MA.

Balakrishnan, N., and Chen, W. W. S. (1997), CRC Handbook of Tables for Order
Statistics from Inverse Gaussian Distributions with Applications., CRC, New York,
NY.

Barr, D., and Sherrill, T. (1999), “Mean and Variance of Truncated Normal Distri
butions,” The American Statistician , 53, 357—361.

Benford, F. (1938), “The Law of Anomalous Numbers,” Proceedings o f the American
Philosophical Society, 78, 551—572.

Bortkiewicz, L. (1898), Das Gesetz der Kleinen Zahlen, Teubner.

Carrano, F. M., Helman, P., and Veroff, R. (1998), Data Abstraction and Problem
Solving with C++: Walls and Mirrors (2nd ed.), Addison-Wesley Longman, Inc.,
Reading, MA.

Casella, G., and Berger, R. (1990), Statistical Inference, Wadsworth & Brooks/Cole
Advanced Books and Software, Pacific Grove, CA.

David, H. A. (1970), Order Statistics, John Wiley & Sons, Inc., New York, NY.

Drew, J. H., Glen, A. G., and Leemis, L. M. (2000), “Computing the Cumulative Dis
tribution Function of the Kolmogorov-Smirnov Statistic,” Computational Statis
tics and Data Analysis, 34, 1—15.

Efron, B., and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, Chapman
& Hall, New York, NY.

288

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

289

Feller, W. (1971), An Introduction to Probability and Its Applications, Volume II,
John Wiley &: Sons, Inc., New York, NY.

Gehan, E. A. (1965), “A Generalized Wilcoxon Test for Comparing A rbitrarily Singly-
Censored Samples,” Biometrika, 52, 203-223.

Glen, A. G., Leemis, L. M., and Drew, J. H. (1997), “A Generalized Univariate
Change-of-Variable Transformation Technique,” INFORM S Journal on Comput
ing, 9, 288-295.

Glen, A., Leemis, L., and Drew, J. (2001), “Computing the Distribution of the Prod
uct of Two Continuous Random Variables,” Technical report, M athematics De
partm ent, The College of William & Mary.

Glen, A., Evans, D., and Leemis, L. (2001), “APPL: A Probability Programming
Language,” The American Statistician, 55, 156—166.

Grinstead, C. M., and Snell, J. L. (1997), Introduction to Probability (2nd rev. ed.),
American Mathematical Society, Providence, RI.

Halmos, P. (1950), Measure Theory, D. Van Nostrand Company, Inc., New York, NY.

Hastings, K. (2001), Introduction to Probability with Mathematica, Chapm an & H all/
CRC, Boca Rotan, FL.

Heal, K. M., Hansen, M. L., and Rickard, K. M. (1998), Maple V Learning Guide,
Springer-Verlag, New York, NY.

Hill, T. P. (1995), “A Statistical Derivation of the Significant-Digit Law,” Statistical
Science, 86, 354-363.

Hill, T. P. (1998), “The First Digit Phenomenon,” American Scientist, 86, 358-363.

Hogg, R. V., and Craig, A. T. (1995), Mathematical Statistics (5th ed.), P rentice-
Hall, Englewood Cliffs, NJ.

Hogg, R. V., and Tanis, E. A. (1993), Probability and Statistical Inference (4th ed.),
Macmillan Publishing Company, New York, NY.

Karian, Z. A., and Tanis, E. A. (1999), Probability and Statistics: Explorations with
Maple (2nd ed.), Wiley, New York, NY.

Kendall, W. S. (1993), “Computer Algebra in Probability and Statistics,” Statistica

R e p ro d u c e d with p e rm iss ion of th e copyrigh t ow ner. F u r th e r rep roduction prohibited w ithout perm iss ion .

290

Neerlandica, 47, 9—25.

Larsen, Ft. J., and Marx, M. L. (1986), An Introduction to Mathematical Statistics
and Its Applications (2nd ed.), Prentice-Hall, Englewood Cliffs, NJ.

Larsen, R. J., and Marx, M. J. (2001), An Introduction to Mathematical Statistics
and Its Applications (3rd ed.), Prentice-Hall, Upper Saddle Ftiver, NJ.

Law, A. M., and Kelton, W. D. (2000), Simulation Modeling and Analysis (3rd ed.),
McGraw-Hill, New York, NY.

Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, John Wiley
& Sons, Inc., New York

Leemis, L. M. (1995), Reliability: Probabilistic Models and Statistical Methods., Pren
tice-Hall, Englewood Cliffs, NJ.

Ley, E. (1996), “On the Peculiar Distribution of the U.S. Stock Indices Digits,” Am er
ican Statistician, 50, 311-313.

Lopez, R. (2001), Advanced Engineering Mathematics, Addison-Wesley, Boston, MA.

Margolin, B. H., and Winokur, Jr., H. S. (1967), “Exact Moments of the Order
Statistics of the Geometric Distribution and their Relation to Inverse Sampling
and Reliability of Redundant Systems,” Journal o f the American Statistical A s
sociation, 62, 915-925.

McCarron, J. (2001), MUG newsgroup communication.

Miller, I., and Miller, M. (1999) John E. Freund’s Mathematical Statistics, (6th ed.),
Prentice-Hall, Upper Saddle River, NJ.

Nicol, D. (2000), Personal communication.

Nigrini, M. (1996), “A Taxpayer Compliance Application of Benford’s Law,” Journal
of the American Taxation Association, 18, 72-91.

Nijenhaus, A., and Wilf, H. S. (1978), Combinatorial Algorithms: For Computers and
Calculators (2nd ed.), Academic Press, Inc., New York, NY.

Park, S. K., and Miller, K. W. (1988), “Random Number Generators: Good Ones
Are Hard to Find,” Communications o f the ACM , 31, 1192-1201.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

291

Parlar, M. (2000), Interactive Operations Research with Maple: Methods and Models,
Birkhauser, Boston, MA.

Parzen, E. (1960), Modem Probability Theory and Its Applications, John Wiley &
Sons, Inc., New York, NY.

Reingold, R. M., Nievergelt, J., and Deo, N. (1977), Combinatorial Algorithms: The
ory and Practice, Prentice-Hall, Englewood Cliffs, NJ.

Rohatgi, V. K. (1976), An Introduction to Probability Theory and Mathematical
Statistics, John Wiley and Sons, New York, NY.

Rose, C., and Smith, M. D. (2001), Mathematical Statistics and Mathematica, forth
coming, Springer-Verlag, New York, NY.

Ross, S. (1998), A First Course in Probability (5th ed.), Macmillan College Publish
ing Company, Inc., New York, NY.

Stockmeyer, P. (2001), Personal communication.

Sveshnikov, A. A., Ed. (1968), Problems in Probability Theory, Mathematical Statis
tics and Theory of Random Functions, Dover Publications, Inc., New York, NY.

Swain, J. (2001), “Simulation Software Survey: Powerful Tools for Visualization and
Decision-Making,” O R /M S Today, 28, pages 52-63.

Thompson, P. (2000), “Getting Normal Probability Approximations without Using
Normal Tables,” The College o f Mathematics Journal, T. Farmer, Ed., 31, pages
51-54.

Trosset, M. (2001), Personal communication.

Vivaldi, F. (2001), Experimental Mathematics with Maple, Chapman & Hall/CRC,
London.

Weiss, M. A. (1994), Data Structures and Algorithm Analysis in C++, Addison-
Wesley Publishing Company, Menlo Park, CA.

Wilks, S. S. (1962), Mathematical Statistics, John Wiley & Sons, Inc., New York, NY.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

Vita

Diane Lynn Evans

Diane was born in Akron, Ohio on February 11, 1968. She received her B.S. (1990)

and M.A. (1992) degrees in Mathematics from The Ohio State University, and an

M.S. (1998) degree in Operations Research from the Mathematics Department at

The College of William & Mary. Diane was awarded a two-year Clare Boothe Luce

Fellowship in 1998 from the Applied Science departm ent at William Mary to work

on her Ph.D. She has taught as an instructor in the Mathematics and Computer

Science Departm ent at W ittenberg University in Springfield, Ohio (1992-1994) and

in the M athematics Department at Virginia Wesleyan College in Norfolk, Virginia

(1994-1998). She is a member of ASA, AMS, and INFORMS. In Fall 2001, Diane

will begin teaching at Rose-Hulman Institu te of Technology in Terre Haute, Indiana

as an assistant professor in the m athem atics departm ent. Her email and web addresses

are <devans@evansmath. com> and <www. evansmath.. com/~ devans >.

292

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

	Algorithms for operations on probability distributions in a computer algebra system
	Recommended Citation

	tmp.1539734415.pdf.Aod2o

