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Abstract

In mathematics and statistics, the desire to eliminate m athem atical tedium  and 
facilitate exploration has lead to computer algebra systems. These computer algebra 
systems allow students and researchers to perform more of their work at a conceptual 
level. The design of generic algorithms for tedious computations allows modelers to 
push current modeling boundaries outward more quickly.

Probability theory, with its m any theorems and symbolic manipulations of random 
variables is a discipline in which autom ation of certain processes is highly practical, 
functional, and efficient. There are many existing statistical software packages, such 
as SPSS, SAS, and S-Plus, th a t have numeric tools for statistical applications. There 
is a potential for a probability package analogous to these statistical packages for ma
nipulation of random variables. The software package being developed as part of 
this dissertation, referred to as “A Probability Programming Language” (APPL) is a 
random  variable m anipulator and is proposed to  fill a technology gap tha t exists in 
probability theory.

My research involves developing algorithms for the m anipulation of discrete ran
dom variables. By defining data  structures for random variables and writing algo
rithm s for implementing common operations, more interesting and m athematically 
intractable probability problems can be solved, including those not attem pted in 
undergraduate statistics courses because they were deemed too mechanically ardu
ous. Algorithms for calculating the probability density function of order statistics, 
transformations, convolutions, products, and minimi ims/maxi mums of independent 
discrete random variables are included in this dissertation.

x
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Chapter 1

Introduction

Since the beginning of the human race, man has striven to overcome obstacles and 

simplify complexities tha t have faced him in all walks of life. Attempts to solve 

difficult problems have produced new inventions throughout history. These inventions 

have themselves lead to  new discoveries and opened up new paths of learning. In 

mathematics and statistics, the desire to eliminate m athem atical tedium and facilitate 

exploration has lead to computer algebra systems, such as Maple and Mathematica. 

These computer algebra systems allow students and researchers to perform more 

of their work a t a conceptual level. The design of generic algorithms for tedious 

computations allows modelers to push current modeling boundaries outward more 

quickly. Problems once labeled as “intractable” can now be solved.

Upon understanding a certain problem-solving technique with a step-by-step so

lution process, it is natural to want to autom ate the  process so as not to replicate the 

same steps when returning to  the same or similar problems. This is true for concepts 

in many, if not all, disciplines of study. Probability theory, with its many theorems 

(e.g., the sum of independent normal random variables is normally distributed) and 

symbolic manipulations of random variables (e.g. the product of two random vari

ables), is a discipline in which automation of certain processes is highly practical,

2
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functional, and efficient. The only effort to autom ate probability manipulations and 

calculations tha t I have found to date is the M athematica-based mathStatica due to 

Rose and Smith (2001). This is surprising when one considers the dozens of pack

ages written by computer algebra system users for other m athem atical disciplines, 

such as abstract algebra, chaos theory, combinatorics, operations research, and real 

analysis, just to name a few. (For examples of packages available in Maple, see 

http://w w w .m apleapps .com.)

There are many existing statistical software packages, such as SPSS, SAS, and 

S-Plus, tha t have numeric tools for statistical applications. In fact, most computer 

algebra systems, such as Maple and Mathematica, contain built-in statistical libraries 

with symbolic capabilities for use in statistical computations. Applied statistical 

calculations (e.g., calculating the sample mean) are usually numeric manipulations 

of data based on known formulas. According to the help menu for Maple Version 6 , 

its statistics package provides various descriptive statistical functions for the analysis 

of statistical da ta  (e.g., mean, median, standard deviation), the capability to create 

various statistical plots (e.g., histogram, scatter plot, box plot), and various tools for 

transforming lists of statistical data (e.g., sorting data, computing moving averages). 

Also available are subpackages tha t provide

•  random variate generation for certain distributions, such as the standard nor

mal, gamma, and beta distributions,

•  numerical evaluation of certain statistical distributions [e.g., calculate Pr(X  <  

4.0) for a standard normal random variable X ],

•  one-way analysis of variance, and

•  a tool for fitting curves to statistical data.

The procedures in the Maple s t a t s  package and its subpackages perform numeric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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4

computations and provide plots associated with data sets, as indicated in their de

scriptions. Although this is a valuable feature of the Maple software, these procedures 

do not define random variables or perform operations on them. For example, although 

the Maple statistical procedure skewness can compute the skewness of the data  set 

{1, 2, 3, 3, 6 , 7}, it cannot determine the skewness of a normal random variable with 

mean fi = 2  and standard deviation a  =  4. Since the Maple statistical procedures 

cannot be applied to probability distribution functions, solving probability problems 

with these procedures is impossible.

Further, Karian and Tanis (1999, preface) have developed procedures in Maple 

to serve as a supplement for “statistical analysis and also explorations within a rich 

m athem atical environment.” Karian and Tanis’s statistics supplement to Maple “con

sists of about 130 procedures written specifically to  promote explorations of proba

bilistic and statistical concepts.” Their supplement includes procedures for calcu

lating descriptive statistics (e.g., Mean, Median, and Variance), generating random 

samples from distributions, plotting (e.g., BoxWhisker, PlotEmpPDF, and StemLeaf), 
working with regression and correlation problems, producing the probability density 

function (PDF) and cumulative distribution function (CDF) of some distributions, 

finding percentiles of some distributions, producing confidence intervals, perform

ing an analysis of variance, performing goodness-of-fit and nonparam etric tests (e.g., 

QQFit, ChiSquareFit, and KSFit), and com puting the convolution of two random 

variables. While Karian and Tanis have focused their efforts on building a mainly 

statistical package powered by Maple, there is a potential for a probability package 

analogous to this statistical package for m anipulation of random variables.

The notion of probability software is different from the notion of applied statistical 

software. An early work by Kendall (1992) m ade a  distinction between packages th a t 

are able to support investigations and those th a t aim  to implement structure “to  build
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in elements of theory as a preliminary to research investigations.” The latter is the 

type of software th a t is not currently available, except for the forthcoming mathStat

ica, for processing procedures for random variables in probability theory. Although 

the text by Hastings (2000), Introduction to Probability with Mathematica, also uses 

M athem atica as a tool for studying probability theory, the book’s on-line description 

(available at h ttp ://w w w .c rcp re ss .co m /u s) states tha t “its clever use of simula

tion to illustrate concepts and motivate im portant theorems gives it an important 

and unique place in the library of probability theory.” The software package being 

developed as part of this dissertation, referred to as “A Probability Programming 

Language” (APPL), does much more than motivate theorems through simulation. It 

is a random  variable manipulator and is proposed to fill a technology gap that exists 

in probability theory. Although A PPL will more than likely have some similarities 

with the forthcoming mathStatica software, its approach to discrete and continuous 

random variables is unique in data  structure, design, and applications. From a pre

view of Rose and Sm ith’s materials at the Joint Statistical Meetings in August 2000, 

the multivariate distribution abilities of their software, which are not currently a part 

of APPL, were impressive. But the capabilities th a t APPL possesses (many of which 

are new and will be presented in this dissertation) and the simplicity in its use and 

data  structure are quite distinct from what they have developed. A PPL’s overall 

ability matches or surpasses much of what has currently been presented as parts of 

mathStatica.

The APPL software was begun several years ago by my advisor, Dr. Larry Leemis, 

and a former William &; Mary Ph.D. student and current Army Lieutenant Colonel, 

Dr. Andrew Glen. Dr. Glen’s dissertation focused on writing algorithms in a com

puter algebra system for m anipulating continuous random variables. My research 

involves developing similar algorithms, but for discrete random variables. Also, be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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fore any algorithms for discrete random variables could be developed for APPL, a 

data  structure that complimented the data  structure for continuous random variables 

was created.

As can be attested to by Parlar’s book, Interactive Operations Research with 

Maple: Methods and Models (Parlar, 2000), Vivaldi’s discrete mathematics text, Ex

perimental Mathematics vnth Maple (Vivaldi, 2001), Lopez’s book, Advanced Engi

neering Mathematics (Lopez, 2001), and Karian and Tanis’s 2nd edition of Probability 

and Statistics: Explorations with Maple (Karian &c Tanis, 1999), other researchers 

across the country have incorporated computer algebra systems into m athem atical 

fields, especially those with statistical, probabilistic, and combinatorial applications. 

By taking advantage of computer algebra systems, software that will derive functions, 

as opposed to computing numbers, can be developed. Computer algebra systems can 

be exploited to eliminate repetitive and tedious operations (e.g., calculating moments 

or finding the distribution of order statistics) associated with random variables. By 

defining data  structures for random variables and writing algorithms for implement

ing common operations, more interesting and m athem atically intractable probability 

problems can be solved, including those not attem pted in undergraduate statistics 

courses because they were deemed too mechanically axduous. Instructors, students, 

and researchers can take the time they save in m athem atical manipulation and apply 

it to  problem formulation and analysis.

This dissertation contains descriptions of some of the procedures comprising the 

core of APPL. The APPL tree diagram in Figure 1.1 summarizes the existing proce

dures in APPL. My specific contributions to  APPL include

•  devising a da ta  structure for representing the distributions of univariate discrete 

random variables. The data  structure accommodates distributions defined nu

merically, e.g., f ( x ) =  1 /4 fora: =  1 and f ( x )  =  3 /4  for x  =  2, and formulaically,
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e.g., f ( x)  =  x / 6  for x  =  1,2, 3;

Functional Forms

APPL
Procedures

Procedures on One
Random Variable

Procedures on Two
Random Variables

Statistical Procedures

PDF
CDF
SF
HF
CHF
IDF
Transform
OrderStat/RangeStat
Truncate
ConvolutionllD
ProductIID
ExpectedValue
Convolution
Product
Minimum/Maximum
Mixture
MLE
MOM
MLENHPP
KSTest
QQPlot/PPPlot

Utilities

VerifyPDF
PlotDist
Menu
Display
CleanUp

Mean
Variance
Skewness
Kurtosis
MGF
CF

Histogram
PlotEmpCDF
PlotEmpSF
PlotEmpCIF
PlotEmpVsFittedCDF
PlotEmpVsFittedSF
PlotEmpVsFittedCIF

Figure 1 .1 : APPL tree procedures diagram.

•  converting any functional representation of a discrete random  variable into any 

other functional representation using the devised d a ta  structure, i.e., allow

ing conversion amongst the PDF, CDF, survivor function (SF), hazard func

tion (HF), cumulative hazard function (CHF), and inverse distribution function
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(IDF);

•  providing straightforward instantiation of well-known discrete distributions, such 

as the binomial, Poisson, or geometric, with either numeric or symbolic param 

eters;

•  providing straightforward instantiation of non-standard discrete distributions, 

such as the “matching birthday” or “bingo cover” distribution;

•  handling discrete distributions of all types, including those that may have never 

been previously created or explored;

•  calculating summary characteristics for discrete random variables, such as the 

mean, variance, or moment generating function (mgf);

•  plotting any of the six functional forms of a discrete distribution with fixed 

parameters [e.g., the PDF of a binomial(6 , 0.4) random variable or the CDF of 

a Zipf(5) random variable];

•  developing algorithms that calculate the PD F of

* the r th  order statistic from a sample of n  independent and identically dis

tributed (iid) discrete random variables, where sampling can occur either 

with or without replacement;

* the sum of independent discrete random variables, i.e., Z  — X  + Y;

* the product of independent discrete random variables, i.e., Z  = X Y :

* a transformation of a discrete random variable, Y  =  g(X)]

* the minimum and maximum of independent discrete random variables, i.e., 

Z  =  min {A-, Y }  and Z  — max {A, y} ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

•  providing maximum likelihood estimation (MLE) for complete and right-censored 

data  for continuous and discrete distributions defined on a single interval of sup

port,-

•  providing method of moments (MOM) estimation for discrete and continuous 

distributions defined on a single interval of support;

•  providing maximum likelihood estimation for non-homogeneous Poisson pro

cesses (NHPP);

•  verifying a continuous random variable X  has a legitimate PDF in the sense 

th a t f ( x )  > 0  for all x  and f ( x )  dx  =  1 ;

•  calculating the PDF of the range of a random sample of size n drawn from a 

continuous population;

•  calculating the PD F of the mixture of independent continuous random variables;

•  calculating the PD F of a truncated continuous random  variable;

•  verifying whether a continuous distribution satisfies Benford’s law;

•  providing goodness-of-fit testing by calculating the Kolmogorov-Smirnov test 

statistic;

• providing plots for testing model adequacy, such as an empirical versus fitted 

CDF plot, Q- Q  plots, P - P  plots, and empirical versus fitted cumulative inten

sity function plots for data  th a t can be approximated by the power-law process;

•  providing utilities for simplifying functional forms of distributions. For example, 

the utility procedure CleanUp puts a random variable in its simplest form before 

returning it to the user. If X  ~  Normal(0, 1) and Y  ~  Uniform(0, 1 ), for
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example, then the APPL procedure Product returns the PDF of V  =  X Y  as

\ / 2 E i ( l , l / 2 v 2)

where E i is an exponential integral defined for Re(x)  >  0 by

M o ) . . i  - T W —  - ~ < » < o
Q < v  < oo,

fE i(n , x) =  I
oc e_xt

dt, 
tn

where n  is a non-negative integer. The procedure CleanUp puts the identical 

pieces of the PD F of V  together and returns it as

. . .  V 2 E i(l, l / 2 v 2)
f v ( v )  =  -------- -—==-------  — oo <  v < oo;

4-y/7r

•  deriving the distribution of the Kolmogorov-Smirnov test statistic for sampling 

from an exponential population with the param eter estimated from data for 

n =  1 , 2 ;

•  supplementing the structured programming language th a t hosts the software, 

in this case Maple, so th a t all of the above bullets may be used in mathematical 

and computer programming in Maple.

In addition, I have updated APPL to be compatible with newer versions of Maple, 

the latest being Version 6 .

The following chapters highlight my specific contributions to APPL. Chapter 2 

outlines the data  structure, functional forms, and core procedures for discrete distribu

tions. Chapter 3 presents algorithms for computing the PD F of order statistics drawn 

from discrete parent populations, along with an implementation of the algorithms in 

a computer algebra system. Some examples illustrate the utility of these algorithms.
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Chapter 4 introduces algorithms for computing the PD F of the convolution and prod

uct of the PDFs of two independent discrete random variables. Chapter 5 introduces 

algorithms for determining the distribution of the transform ation of a discrete random 

variable. Chapter 6  presents algorithms for determining the PDF of the minimum 

and maximum of random variables. Some of the algorithms in these chapters involved 

implementing known results, while others involved the  development of original algo

rithms. Chapter 7 overviews several APPL procedures concerning continuous random 

variables that have either been extended or newly constructed as separate research 

areas of my dissertation. Chapter 8  considers an application in APPL that identifies 

certain survival distributions th a t satisfy Benford’s law. Chapter 9 overviews proce

dures w ritten in APPL specifically to perform input modeling. Chapter 10 illustrates 

additional applications of the procedures th a t have been developed in APPL. Chapter 

1 1  contains suggestions for future work.

1.1 N otation  and Nom enclature

The following is a list of comments about the notation, names, abbreviations, and 

APPL syntax th a t will be used throughout this dissertation:

•  the abbreviations “PD F,” “CDF,” “SF,” “HF,” “CHF,” and “IDF” represent 

probability density function f {x) ,  cumulative distribution function F(x),  sur

vivor function S(x),  hazard function h(x),  cumulative hazard function H(x) ,  

and inverse distribution function F~ l (x), respectively;

•  the abbreviation “iid” denotes independent and identically distributed;

•  parentheses on subscripts denote order statistics, e.g., the r th  order statistic 

associated with a random sample X±, X 2 , . - -, X n is denoted by X (Ty,
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•  “Pr” abbreviates probability. When “Pr” is used in an expression such as 

Pr(AT =  x), it is read as “probability that X  is equal to x;”

•  “MLE” and “MOM” abbreviate maximum likelihood estim ation and method of 

moments estimation, respectively;

•  “NHPP” abbreviates non-homogeneous Poisson process;

•  typewriter font is used for APPL statements. The Maple input prompt “>” is 

included in the examples;

•  in an APPL procedure, the use of square brackets around an argument indicates 

th a t the argument is optional. For example, PlotDist (X, flow] , [high] ) is 

an APPL procedure th a t plots the distribution of X  from the value low to 

the value high. If these two arguments are not included in the procedure call, 

Maple autom atically determines the plot range;

•  “MUG” refers to the Maple Users’ Group, which is an on-line Maple newsgroup 

th a t provides suggestions and help for Maple related issues;

•  “log” is the natural logarithm (log base e);

•  in Maple plots, © represents a filled (or solid) circle;

•  for clarity, all sentence punctuation has been omitted from APPL statements;

•  the pronoun “we” refers to those who have developed APPL.

1.2 Introductory Examples

I close the  introduction with three examples th a t display three different APPL proce

dures (OrderStat, ConvolutionllD, and MOM) presented in Figure 1.1 and discussed 

in this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

E x a m p le  1 . 1 . (Hogg & Craig, 1995, page 230) A fair die is cast eight times. Find 

the PD F of the smallest of the eight numbers obtained, A b 

so lu t io n :  To compute the numeric PD F by hand, we calculate the value

an-D'w=0 \  /  \  /

for x  =  1,2, . . . , 6 . (Maple incorrectly calculates 0° as 1. While m athematically 

incorrect, it allows the proper calculation.) To determine the  probability th a t the 

first order statistic assumes the  value x  =  4, for example, we calculate

f x w  (4)
w =0  

_   1

5 0  0 ‘"  0 '
1679616

6305
1679616

=  0.0038.

+ 104976 + 7____ | 7 | 35 |____7___ |___ 7___ i 4
26244 ' 52488 Kc;« 1 ' ~ r104976 6561 6561 1 6561

Similar calculations for x  =  1 , 2 , . . . ,  6  yield the PD F of the first order statistic as

/*(!) 0*0 =  <

1288991
1679616

36121
186624

58975
1679616

6305
1679616

85
559872

1
1679616

X  =  1

X  = 2 

x  = 3 

x  = 4 

x  — 5 

x  =  6 .

A uniform discrete random variable X  with minimum support a and maximum 

support 6  is a  pre-defined random  variable in APPL. Thus, we can obtain the above 

PD F for the first order statistic, Ap),  with the statem ents

> X := UniformDiscreteRVCl, 6);
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> OrderStat(X, 8 ,  1 );  □

In the next example, APPL is able to find the convolution of a large num ber (150) 

of discrete random variables. While not impossible, computing the actual distribution 

by hand is tremendously tedious and time-consuming.

E x a m p le  1 .2 . (Thompson, 2000, page 54) Let 5  =  X x -F X 2 4  f- X 150, where

the X{ s are independent, Pr(ATi =  —1 ) =  Pr(ATi =  0) =  Pr(AT,- =  1 ) =  1/3, i -  

1 . 2 , . . . ,  150. Compute Pr(S  =  5).

S o lu tio n : Since the mass values of the parent populations are adjacent, P r(5  =  5) 

can be computed using a combinatorics approach:

w - « . e e e O ( ! ) ' ( ! ) ' ( ; ) '
{ (P ,« J .r ) |p + 9 + r= 1 5 0 ,

0 < p <  150,
0 ? ii? 1 S 0 ,
0 < r < 1 5 0 ,
- P + r = 5>

or equivalently

P r (s  =  5 )  =  y ' (  150  ) ( i ) 150,
^ ; V p , 1 4 5 - 2 p , S + p / V 3 ;  ’

yielding the  result

p ( S  _  _ 160709987007649212790999852367465829596098558279031212787052332840770
r(- ~  ’  ~  4567759074507740406477787437675267212178680251724974985372646979033929’

which is approximately 0.03518.

The APPL statem ents

> X := [[1 / 3, 1 / 3, 1 / 3], [-1, 0, 1], ["Discrete", "PDF"]];
> S := ConvolutionllDCX, 150);
> PDFCS, 5);

yield the exact PD F for S. The statem ent PDFCS, 5) returns the same value com

puted by the combinatorics method.
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The true utility of APPL is not dem onstrated in this particular example because 

of the adjacent mass values of the parent populations. The APPL approach allows 

for unequal mass values and unequally spaced support values. Also, more than three 

mass values can be used in the APPL approach. □

E x a m p le  1.3. (Larsen &c Marx, 2001, page 258) During the  latter part of the 

nineteenth century, Prussian officials gathered information on the hazards tha t horses 

posed to cavalry soldiers. A total of 10 cavalry corps were monitored over a period of 

20 years (Bortkiewicz, 1898). The number of fatalities due to kicks, X ,  was recorded 

for each year and each corps. Table 1.1 shows the empirical distribution of X  for 

these 2 0 0  “corps-years.”

Table 1 .1 : Observed horse kick fatalities.
Number of Deaths

X

Observed Number of Corps-Years 
in Which x Fatalities Occurred

0 109
1 65
2 2 2

3 3
4 1

2 0 0

Among several other phenomena th a t Bortkiewicz successfully “fit” with the Pois- 

son model, the one best remembered is the Prussian cavalry d a ta  described above. 

The Poisson distribution has PDF

f x(x)  = ^ - f -  x =  0 , 1 , 2 , . . . ;  A > 0 .  
x!

Find the method of moments estimate for the param eter A.

Solution: The first APPL statement defines X as a Poisson random variable with
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mean A. The list H o rs e K ic k F a ta litie s  is a pre-defined list in APPL containing 

the horse kick data  in Table 1.1. The statement M0M(X, H o rse K ic k F a ta lit ie s , 

[lam bda]) computes the m ethod of moments estim ate for the parameter A.

> X := PoissonRV(lambda);
> M0M(X, HorseKickFatalities, [lambda]);

The resulting estimate for the parameter is A =  ^ ,  which is the method of mo

ments estim ator 0.61 fatalities per corps-year. Figure 1.2 displays a plot of the actual 

and estimated PDF for th e  H o rse K ic k F a ta litie s  data. □

0.5-

0.4

0.3

PDF

0.2

0 . 1 -

Figure 1.2: Actual and estim ated PD F for the H o rse K ic k F a ta lit ie s  data. The 
solid lines represent the PD F values of the Poisson (61/100) random variable 
a t x  =  0 ,1 , . . . ,4 .  The dashed lines represent the actual PD F values of the  
H o rse K ic k F a ta litie s  d a ta  a t x  =  0 ,1 , . . . ,  4.
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Chapter 2

Data Structure

APPL was originally written for continuous random variables and algorithmic pro

cedures th a t applied to  them. Before adding discrete random variable capabilities, a 

data  structure th a t paralleled the  continuous case needed to be constructed for dis

crete distributions. The data  structure for a continuous random variable with PDF 

/ ( x) is a Maple list consisting of three sublists with the following general format:

[[/(*)], [support], ["Continuous", "XXX"]],

where XXX is either PDF, CDF, SF, HF, CHF, or IDF. The acronyms represent the  following 

for a random  variable X ,  where extensions for discrete random variables have been 

included:

•  probability density function (PDF). For discrete random variables, the proba

bility mass function f{pc) =  Pr(A” =  x) will also be referred to as a probability 

density function;

•  cumulative distribution function (CDF) F(x)  =  J200f ( w ) d w  for a  continuous 

random  variable or F i x ) =  ^2w<xf ( w )  for a discrete random variable;

17
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•  survivor function (SF) S ( x ) =  f { w ) dw for a continuous random variable or 

S(.x ) =  E ® >i f i w ) f°r a discrete random variable;

•  hazard function (HF) h(x ) =  for a continuous or discrete random variable;

•  cumulative hazard function (CHF) H(x)  =  p_c h(w)dw  for a continuous ran

dom variable or H(x)  =  —log(S(x)) for a discrete random variable; and

•  inverse distribution function (IDF) F ~ l (x) for a continuous or discrete random 

variable.

The common data structure used in this software is referred to as the “list-of- 

sublists.” All APPL random variables are input in a list that contains three sub

lists, each with a specific purpose. The first sublist contains either a formula or a 

numeric list th a t defines the functional representation of the distribution. For ex

ample, the PD F representation of the Poisson distribution with mean A and support 

x  =  0 , 1, 2 , . . .  has as its first sublist

\ xe~x
x  - > ---- —  .

x\

The CDF representation of the geometric (^) distribution with support x  =  1 , 2 , . . . ,  

has as its first sublist

The SF representation (in a numeric Maple list) of the probability of obtaining an x  

or higher (where x  =  1, 2 , . . .  6 ) on single roll of a fair 6 -sided die is

‘ 5 2 1 1 1'
’ 6 ’ 3 ’ 2 ’ 3 ’ 6  ’
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Since the third sublist is less complicated than  the second, the third sublist will

representations is used in the first sublist. Again, the choices for this second element 

are PDF, CDF, SF, HF, CHF, or IDF. For the Poisson, geometric, and uniform discrete dis

tributions described in the previous paragraphs, their third sublists are ["Discrete", 
"PDF"], ["Discrete", "CDF"], and ["Discrete", "SF"], respectively.

The second sublist contains the random variable’s support. For a continuous 

random variable, this second sublist contains an ordered list of real numbers th a t 

delineate the end points of the intervals for the functions in the first sublist. The end 

point of each interval is automatically the start point of the subsequent interval. The 

triangular(l, 2, 3) CDF, for example, is defined by a piecewise function in the first 

sublist, specifically [x —>• \ x 2 — x  4 - —>■ —%x2 + 3x  — |] .  Its second sublist, [1 , 2,

3], defines the support interval for each piece of the  function. Thus the CDF is

Putting the three sublists together, the following APPL statem ent defines a  triangu

lar (1, 2, 3) random variable AT as a list-of-sublists:

> X  := [[x -> x ~ 2 / 2 - X + 1 / 2 ,  x - > - x “ 2 / 2  + 3 * x - 7 / 2 ] ,

be examined next. The third sublist indicates the distribution form of the function

in the first sublist. The first element of the th ird  sublist is either the Maple string 

"Continuous" for a continuous random variable or "D isc re te "  for a discrete random

variable. The second element of the third sublist indicates which of the six functional

0 x  < 1

F{x) = I
2 <  x  < 3

1  <  x  < 2

1 x  > 3.
V

Cl. 2, 3], ["Continuous", "CDF"]]
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Standard continuous and discrete distributions, such as the normal, binomial, and 

Poisson distributions, are pre-defined in APPL.

A discrete random variable’s support can be input in one of several different 

formats. This variation in formats presents greater difficulty th an  in the continuous 

case for determining a structure for the second sublist. For example, the Poisson 

distribution with PDF f ( x ) =  ^ r ~  for x  =  0 ,1 ,2 , . . .  has as its support the set 

of nonnegative integers. This support has a pattern to it; the  first value of x  at 

which the PD F is defined is zero and the rest of the support consists of subsequent 

integers. Many discrete random variables do not have a patterned  support. When 

designing the second sublist structure for discrete random variables, we first had to 

distinguish between random variables th a t had some type of p a ttern  to their support 

versus those th a t did not. For example, let A  be a binomial random  variable with 

param eters n  =  5 and p =  0.2, and PD F

The support of the random variable X  consists of adjacent integers. For random 

variables whose support Q is incremented by one, only the first and last values of the 

support are needed to generate the entire support list. This support case is called 

the Dot case, since we can write it in Maple’s range (also called type ’..’) format:

x  =  0 ,1 , . . . ,  5.

Let Y  be the random variable with PD F

r

0 . 2  y = 1

f ( y )  =  0.5

0.3 y  =  1 1 .

min{f2} .. max{f2}. Thus, the second sublist for the random variable X  is input as
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Random variables with supports tha t display no pattern , such as the support of 

Y ,  must be entered as a Maple list, where the list values are separated by commas. 

This support case is called the NoDot  case. The support values listed in sublist two 

correspond to the distribution’s function values in the first sublist. As an example, 

we would write the first and second sublists of Y  as [0 . 2 , 0 .5 , 0.3] and [1 , 7 /  2 , 

1 1 ], respectively.

After distinguishing between the Dot  and NoDot support cases, there are subcases 

of these general two cases to consider. First, in the NoDot  case, the function in the 

first sublist can be written as a formula or a fist of numeric elements. The random 

variable Y  with PD F values [0 . 2 , 0 .5 , 0.3] is a Maple list of numeric elements 

(separated by commas). On the  other hand, the random variable X  with PDF

/(* )  =  ^  re =  1,3, 7,16,

is a valid discrete probability mass function whose PD F can be written as a formula in 

Maple’s function notation as x  —> x/27.  Its first two sublists axe input in Maple as [x 
-> x /  27] and [1 , 3, 7, 16]. APPL allows the user to enter a discrete random variable 

represented in the NoDot case in either format, numeric or formulaic. Converting 

sublists one and two to a “standard” NoDot format (where the first sublist is not 

w ritten as a formula) is handled in a procedure called Convert (see Section 2.1.1). 

If we enter X  as displayed above and apply the Convert procedure to X  with the 

A PPL statements

> X := [[x -> x /  27 ], Cl, 3 , 7 , 16], [ " D isc re te " , "PDF"]];
> X : = Convert (X) ;

X  is returned as [ [ ^ ,  | ,  ^ ,  | | ]  , [1,3,7,16], [“Discrete” , “PD F”]]. The “standard” 

N oD ot  and Dot  formats, along with the Convert procedure, are discussed in moie 

detail in Section 2 .1 .
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The Dot case also has two general subcases—either the random variable has fi

nite or infinite support. Let Q represent the support of a random variable X .  The 

“standard” Dot format has the general form:

[min{fi} .. max{f2}, Support incremented by k , Support transformed by g{x)\,

where the default value of k  (if not entered) is 1 and the default value of g{x) (if 

not entered) is the identity function. If X  has infinite support, it is understood that 

max{fi} =  oo.

To introduce the different variations in format, let X x ~  geometric(1/4) with PDF

/■*.(*) =  i ( ! )  1  =  1, 2, . . . .

Let X 2 =  2Y ,  where Y  ~  binomial(5, 0.2). The PDF of X 2 is

/* , M  = (  (0.2r'2 (0.8)5-*'2 1  = 0 ,2 ,4 , . . . .  10.

Let X z  be a discrete random variable with PDF

/at3 (z) =  x  =  1,4,9,16,

and let X 4  be a discrete random variable with PDF

f x 4 (x) = x  = 9, 25,49.

The support of each of these random variables has a pattern th a t can be accounted 

for in the Dot  data structure. AVs support is incremented by ones, while X 2’s 

support is incremented by twos. The support of X 3  is not only incremented by 

ones, but also is transformed by the function g(x) =  x 2. Going a step further,
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X ^ s  support is incremented by twos starting with x  =  3 and then transformed by 

g{x) =  x 2. In each of these cases, the minimum and maximum values of the support, 

the increment of the support, and the type of transformation applied to the support 

is pertinent information. Thus, in the Dot case, the second sublist will consist of

either 1 , 2 , or 3 elements separated by commas containing this information. This

general capability has been included in the data  structure to accommodate discrete 

algorithmic procedures, such as Transform.

For the random variables X i, X2, X 3, and X4, their supports are input in the 

second sublist in the APPL list-of-sublists as

X x : [1 .. oo]

X 2 : [0 .. 10, 2 ]

X 3 : [1 .. 4, x  —> x 2]

X \  : [3 .. 7, 2, x  —> x 2].

In summary, if the random  variable X  is discrete, its support will match one of 

the cases displayed in Table 2.1. An example of the APPL list-of-sublists format of 

a random  variable from each individual category fohows.

1. NoDot  SUPPORT FORMAT: The random variable’s support 12 is a Maple numeric 

list of elements.

(a )  N u m e r i c  P D F : The random variable’s PDF is a Maple numeric list of 

elements.

E x am p le  2.1. Let X  be the random variable with PD F

0 . 6 x  =  2.5

II 0.3 x =  3

0 . 1 x  = 15.
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Table 2.1: Discrete random variable support categories.

Support Q Cases Subcases Examples

NoDot Numeric PDF 2 . 1

S7 — [2-1.7 2̂ 27 - - - 7 2 n̂] Formulaic PDF 2 . 2

k =  1
g(x) =  x 2.3

Finite Support
g(x) ^  x 2.4

k  #  1
g(x) =  x 2.5

Dot g{x) ^  x 2 . 6

Q. =  [min{f2} .. max{fi},
k  — 1

II H 2.7

Incremented by k,
Infinite Support

g{x) /  x 2 . 8

Transformed by <7(2;)]
k 7^ 1

g(x) =  x 2.9

g{x) ^  x 2 . 1 0

This random  variable X  is input in APPL as

> X := [[0.6, 0.3, 0.1], [2.5, 3, 15], ["Discrete", "PDF"]];

(b ) F o r m u l a i c  P D F : T h e  r a n d o m  v a r ia b le ’s PDF is  fo rm u la ic .

E xam p le  2.2. Let X  be the random  variable with PDF f ( x )  =  x /8  for 

x  =  1 ,3 ,4 . This random variable X  is input in APPL as

> X := [[x -> x / 8], [1, 3, 4 ] ,  ["Discrete", "PDF"]];

2. Dot s u p p o r t  f o r m a t :  The random variable’s support Q is of Maple type

i.e., min{fi} .. max{fi}.

(a) F i n i t e  s u p p o r t :  The random variable’s support is finite.
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i. The random variable’s support is incremented by k =  1 and trans

formed by the identity function, i.e., g(x) = x  for all x.

Exam ple 2.3. Let X  be a Benford random variable with PDF

f ( x )  =  log10 ( 1  +  1/x)  for x  =  1, 2 , . . . ,  9. The Benford random vari

able is input in APPL as

> X := [[x -> log  [10] (1 + 1 /  x)], [1 . .  9 ] ,
["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k =  1 and trans

formed by a function other than the identity function, i.e., g(x)  ^  x 

for some or all x.

Exam ple 2.4. Let X  be a random variable with PDF f {x )  =  x/216 

for x  =  27,64,125. This random  variable is input in APPL as

> X := [[x -> x / 216] , [3 . . 5, x -> x ~ 3] ,
["Discrete", "PDF"]];

iii. The random variable’s support is incremented by k ^  1  and trans

formed by g(x) =  x.

E xam ple 2.5. Let Y  ~  binomial(5, p), and let X  = 2Y.  The random 

variable X  is input in APPL as

> X := [[x -> 120 * p * (x /  2) * (1 -  p) ~ (5 -  x /  2) /
(C5 - x / 2) * (x / 2)!)],
[0 .. 10, 2], ["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k ^  1 and trans

formed by g[x) x.

Exam ple 2.6. Let AT be a random  variable with PDF f ( x )  =  1600/489r 

for x  =  4,25,64. The random  variable is input in APPL as

> X := [[x -> (1600 /  489) /  x ] , [2 . .  8, 3 , x -> x “ 2] ,
["Discrete", "PDF"]];

(b) In fin ite  su ppo rt : The random variable’s support is infinite.
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i. The random variable’s support is incremented by k =  1  and trans

formed by g(x) =  x.

E xam ple 2.7. Let X  be a negative binomial random variable with 

param eters r — 3 and p =  1/3. The simplified PDF of X  is

This random variable is input in APPL as

> X := [[x -> (CCx - 2) * Cx - 1)) /  16) * ( 2 / 3 )  * x],
[3 .. infinity], ["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k =  1 and trans

formed by g(x) 7  ̂x.

E xam ple 2.8. Let X  be the square of a geometric(^) random vari

able; i.e., f ( x )  =  for x  =  1,4, 9 ,  This random variable is input

in APPL as

> X := [[x -> 2 (-sqrt(x))], [1 .. infinity, x -> x ~ 2] ,

iii. The random variable’s support is incremented by k ^  1 and trans

formed by g(x) = x.

E xam p le  2.9. Let Y  ~  geom etric(|). Let X  = 2Y  with PDF

in APPL as

> X := [[x  -> (1 / 2) “ (x /  2 ) ] ,  [2 .. infinity, 2 ], 
["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k ^  1 and trans

formed by g(x)  ^  x.

E x a m p le  2.10 Let Z  ~  geom etric(|), Y  =  2Z,  and X  =  Y 2. The 

PD F of X  is f ( x )  =  for x  =  4,16,36,—  This random

x  =  3 ,4 ,----

["Discrete", "PDF"]];

f ( x )  =  for x  =  2 ,4 ,6 ,—  This random variable is input
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variable is input in APPL as

> X := [[x -> (1 / 2) (sqrt(x) / 2)], 
[2 .. infinity, 2, x -> x ~ 2] , 
["Discrete", "PDF"]];

2.1 Standard Discrete Data Structure Formats

Before an operation is performed on a discrete random variable inside an APPL 

procedure, the random  variable is first converted to its standard form at inside that 

procedure. As discussed in the preceding section, there is a standard  discrete data 

structure format for both the NoDot  and Dot  cases. The conversion is necessary 

since every APPL procedure expects to receive and operate on random  variables in 

these standard formats.

Let AT, for example, be the random variable discussed earlier in this chapter with 

PD F

f ( x )  = ^  * =  1,3,7,16.

Suppose the random  variable X  is input in APPL as

> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];

When an APPL procedure, such as Mean, receives the random variable X as an argu

ment, it first determines if X has a Dot  or NoDot  support format. Since the support 

=  [1, 3, 7, 16] has a NoDot  support format, then the procedure’s formula for com

puting the mean expects that it is receiving the random variable X in its converted 

format, which is

J l  I  -L  Hi
27’ 9 ’ 27’ 27

, [1,3,7,16], [“Discrete” , “PD F”]

In this format, the mean of a random variable with mass values x i ,X 2 , . . .  with a
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NoDot  support form at is computed as

l«l
E[X] =  £ > - / ( * , )

i - 1

= I>(2][i].X[l][i]

"  l ' h  + 3 \  + 7 ' h  + 1 6 ' ¥ i
35

where X[2] [ i]  is the ith  element in sublist two (X ’s support) and X [l] [ i]  is the zth 

element in sublist one (A ’s probability values).

Again, each A PPL procedure operates on random variables only in the standard 

NoDot  and Dot  formats. Expecting arguments in a pre-defined format allows algo

rithms to be developed th a t exploit these formats. W ithout these standard formats, 

an APPL procedure would be forced to diagnose the exact form of each random 

variable it was operating on before making any computations. The computations 

required in a procedure would then depend on the unique structure of each random 

variable, and as indicated in Table 2.1, there are ten acceptable formats for a discrete 

random variable in APPL. The Convert procedure provides each APPL procedure 

with a standard structural format for a discrete random variable.

Some random variables with finite support, such as the random variable Y  with 

PDF

f ( y )  =  YE s/ =  3 ’ 5 ’ 7 ’

can be input in A PPL in several different formats, which include both a NoDot  and 

Dot  format. The APPL statements

> Y := [[1 /  5 , 1 /  3, 7 /  15], [3 , 5, 7 ] , ["D iscrete", "PDF"]];
> Y : = [[y  -> y /  15], [3, 5, 7 ] ,  ["D iscrete", "PDF"]];
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> Y := [[y -> y / 15], [3 .. 7, 2], ["Discrete", "PDF"]];

define the same random  variable Y  in A PPL. The first two lines define Y  in its

NoDot  formats, while the th ird  line displays Y  in one possible Dot  format. Although 

a different format of a certain algorithm or formula may be applied to Y  in any given 

procedure, the outcome will be the same. Conversely, a discrete random variable with 

countably infinite support can only be input using a Dot  support format. Since it is 

impossible to physically list each and every element of a countably infinite set, the 

NoDot  support form at for this type of random variable cannot be used.

2 .1 .1  C onvert

The Convert procedure acts on discrete random variables in both the Dot  and NoDot  

cases. It converts a  discrete random variable X  with a

•  Dot support form at to  the standard APPL Dot  support format. If Q is the

support of X ,  then the standard Dot  support second sublist format is

[min{f2} .. m ax{fi}, Support incremented by k, Support transformed by g(x)\.

•  NoDot  support form at to the standard APPL NoDot  support form at with 

corresponding PD F. If f ( x )  is the PD F and the support is x  =  xi ,  x2, . . . ,  rrn, 

then the standard NoD ot  support second sublist format and corresponding PDF 

first sublist are

[/(* i) , f i x  2 ) , . . . , / ( i„ ) ] ,  [a?!, x 2, . . . ,  x n}.

The Convert procedure requires one argument, a discrete random variable X  in 

its list-of-sublists format. The procedure does the following:

1. Converts X  to  its  PD F representation (if not already in tha t representation) 

using the A PPL PDF procedure which is described later in this chapter;
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2 . Checks to see if the random variable X  is in the discrete Dot  case. It does this 

by checking whether the first element in the second sublist is of Maple type 

“range.” An expression of type range (also called type has two operands, 

the left-hand side expression and the right-hand side expression. For example, 

a geometric( 1/2) random  variable defined in APPL has the structure

[[x -> 1/2X], [1 .. oo], [“Discrete” , “PDF”]].

The first element in the second sublist, 1 .. oo, is of type range, where the 

left-hand side expression is 1  and the right-hand side expression is oo.

3. If X  with support Q is in the Dot  case, then its support sublist contains either 

one, two, or three elements. The structure of the support sublist is either:

•  [min{f2} ..m ax{0}]. This support relays the following information about 

the support of the random variable X :

— The first value of its support is m in{fi},

— The last value of its support is max{f2},

— The support values are incremented by k =  1 , and

— The transform ation on the support values is g{x) =  x.

A random variable with this support form at is converted to the standard 

Dot  format as

[min{fi} .. max{D}, 1 , x  —» x\.

•  [min{f2} .. max{fl}, g(x)], where g(x)  is some function other than  the iden

tity  function, such as g(x)  =  x 2. This support relays the following infor

mation about the support of the random  variable X :

— The first value of its support is m in{fi},
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— The last value of its support is max{Q},

— The support values are incremented by k  =  1, and

— The transformation on the support values is the function g{x), where 

g{x) tL x .

A random variable with th is support format is converted to the standard 

Dot  format as

[min{Q} .. max{fl}, 1 , g{x)].

•  [min{f2} ..max{Q}, k], where A; is a positive real number, most likely an 

integer. This support relays the following information about the support 

of the random variable X :

— The first value of its support is min{fi},

— The last value of its support is max{fl},

— The support values are incremented by k, where k  ^  1, and

— The transformation on the support values is g(x) =  x.

A random variable with this support format is converted to  the standard 

Dot  format as

[min{f2} .. max{fi}, A:, x  —> x\.

•  [min{f2} .. max{f2}, k , <7(2 :)], where A; is a positive real number, most likely 

an integer, and g(x) is some function other than g(x) =  x. This support 

relays the following information about the support of the  random variable 

X :

— The first value of its support is min{fi},

— The last value of its support is max{f2},

— The support values are incremented by A;, where A: ^  1, and
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— The transformation on the support values is g(x),  where g(x) ^  x.

A random variable with this support format is already in the standard Dot  

format.

4. If A  is in the NoDot  case, then determine if its PDF in the first sublist contains 

a list of elements or a formula.

•  If the PDF is a Maple list of elements, then the random variable is already 

in the standard NoDot  format. For example, the A PPL random variable

[[0.5,0.3, 0.2], [1,14, 37], [“Discrete”, “PD F”]]

is already in the standard NoDot  format.

•  If the PD F is a  formula, which means that the element in the first sublist 

is of type “procedure,” the elements in the second sublist are substituted 

into the formula in the first sublist to obtain the probability values that 

correspond to the support values. For example, returning to the random 

variable X  with PD F f ( x )  = x /2 1  for x  =  1 , 3, 7, and 16, the support 

values [1, 3, 7, 16] are substituted into the formula x  —» x /2 1  to determine 

the corresponding probability values [1/27, 1/9, 7/27, 16/27]. Symbolic 

(e.g., [a, b, c]) or infinite support values are not perm itted in the NoDot  

w ith formulaic PDF  case.

5. The converted discrete random variable is returned (to the procedure tha t is 

using it) in its standard Dot  or NoDot  format.

Two examples of the Convert procedure for the NoDot  and Dot  formats are in

cluded for further clarification.
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E x a m p le  2 . 1 1 . Use the APPL Convert procedure to convert a Zipf random variable 

with param eter a  =  1 to the standard Dot  format.

S o lu tio n : The APPL statem ents below define X  as the desired Zipf random variable 

and convert it to its standard Dot  format.

> X := [[x  -> 6  /  (P i * x) ~ 2] , Cl •• i n f i n i t y ] ,  ["D isc re te " , "PDF"]];
> C onvert(X );

The converted Zipf random  variable in the standard APPL Dot  format is

6x
(irx)2 _

, [1.. oo, 1 , x  —»■ x], [“Discrete” , “PD F”]
□

E x a m p le  2 .1 2 . Use the APPL Convert procedure to  convert a Benford random 

variable to the standard N oD ot  format.

Solution: The APPL statem ents below define X  as a Benford random variable and 

convert it to its standard NoD ot  format.

> X := CCx -> log[10] (1 + 1 / x)], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[" D is c re te " , "PDF"]];

> C onvert(X);

The converted Benford random  variable in the standard  A PPL NoDot  format is 

' ln(2) Mf) ln(f) Mf) Ml) Mg) Ml) Ml) Mtt)1 r
E W  Mu>)’ Mu>)’Mu>)’ E oop MU>)’M % ’MW)’ M ^ J  ’C1’2’3’4’5’6’7’8-9! ' - p o t "

□

2.2 The Six Functional Representations

For this subsection and the rest of Chapter 2, let X  be a discrete random variable with 

support Q =  { r i ,  X2 -,. .  .}• W here further explanation and examples are necessary, X
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is a random variable with PDF f ( x )  = x /6  for x  =  1,2, 3. Its formulaic CDF, SF, 

HF, CHF, and IDF are defined in Table 2.2.

Table 2.2: The six functional representations of the random variable X  with PDF 
f ( x )  =  x /6  for x  = 1 , 2, 3. The IDF is defined for x  =  1 / 6 , 1 / 2 , and 1 .

PDF CDF SF

F{x)  = S(x)  =

2x x  4-12h(x) = H{x)  =  -  log — — -P - \ / l  -b 48xx  -f 12—x-

HF CHF IDF

The m atrix in Table 2.3 shows how the PDF, CDF, SF, HF, and CHF distribution 

representations (given in the columns) can be found if one of the representations (given 

by the rows) is known. For example, if the CDF of a distribution is given, then its 

CHF can be determined for z,- G fi by

H{x/)  =  - lo g (S (x j))  =  log(l -  F f e - i ) ) ,

where log is the natural logarithm (log base e) and F (x 0) =  0. Some facts used to 

compute the entries in the m atrix for X{ 6  Q are (Leemis, 1995, pages 56-57, 73):

• K x i) — (Definition)o (XiJ

•  IT(xi) = — log S(xj);  (Definition)

•  S f a ) =  ( 1  — h(xj)); and
j \ X j < X i

•  H { X j )  =  -  5 Z  “  h { x j ) ) -
j [ X j < X i
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Table 2.3: A 5 x 5 transition matrix for determining / ( x z-), F(x,-), S(Xj), /i(x,), or 
H (x i ) from any of the others for discrete distributions, where F (x 0) =  0, h(x0) =  0, 
and when |fi| is finite, S(x|n|+i) =  0 and H ( x ]ni+i) =  0.

/(*i) F{*i )  S(xi )  h(xi) H(xi )

/(*) ■ X  f (*j)
jlxj<Xi

X
j\Xj>X;

/(*i) 
Ujir, >1; / (XJ ) - ‘° g ( X / ^ ) ]

F(x) Fi xi )  -  F i x i - i ) 1 - F [ x i - i )
F{ x i ) -  F( x i - l )  

l - F ( x i - i )
-log(l -  F(x,-_i))

Six) S{Xi) S(Xj-|_i) 1 — 5(n+i)
S(x i) — S( xi + 1 ) 

S(xf) -IogS(xj)

h(x)
j\Xj<Xi

x - n n - ^ ) ] I I I 1 ~ a(xj )1
jlXj<X{

-X to r ti- fc l- j) )

H(x) 1 — e~ H(Xi+i) p - Hi n )
e—W(x.)_e-H(ri+1)

e-H(xi)

Two specific examples of how to derive one distribution representation when an

other is known (using the 5 x 5  matrix in Table 2.3) follow.

E xam ple 2.13. Given h(x)  =  1/4 for x  =  1 ,2 , . . . ,  find / ( x f) for x,- =  i, i €  Z+. 

Solution: Using the (h(x ), /(x ,) )  matrix element in Table 2.3,

f ( x i ) = h(i i )  n t 1 - h (x j ) ] = ^ n
j \ X j < X i  j = 1

which is a geometric distribution with p =  1/4. The geometric distribution is the only

-K!
i

Xi = i; i €  Z +
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discrete distribution, with a constant hazard function (and memoryless property). □

E xam ple  2.14. Determine the SF (in numeric form) corresponding to the PDF 

shown in Figure 2.1.

0.3

0.25

0.2

f(x)

0.15

0.1

0.05 -

1 2 3 x 4 5 6 7

Figure 2.1: PDF for Example 2.14.

Solu tion: The numeric form of the PD F in Figure 2.1 is

/(* )  =  <

0.15 X\ =  1

0.3 z 2 =  2.5

0 . 1 CO II 03

0.25 II

0 . 2 X5  =  6.5

Using the (f ( x ), S(xi))  m atrix element in Table 2.3,

S(X 0  =  £ / ( ! , )  =  1, S(x2) =  £ / ( * , )  =  0.85,
j = 1 3 = 2
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!

5 5

s (x z) = ^ 2 f ( xj) =  °-55> 5 ’(x4) =  =  0.45, S (x5) =  0.2. □
j - 3  j = 4

The algorithms for the PDF, CDF, SF, HF, and CHF procedures are similar and 

utilize the formulas in Table 2.2. When changing the “current representation” of a 

random variable to a “new representation,” the algorithm uses the Table 2.2 matrix 

element ( “current representation” , “new representation”). Section 2.2.1 outlines the 

algorithm for just the PDF procedure. Section 2.2.2 briefly discusses some of the

differences encountered in the algorithms for the other procedures, including IDF.

2 .2 .1  PDF

Let Q be the support of the discrete random variable X .  The PD F of X  is defined 

as f ( x ) =  P r(X  =  x)  for all x  G fl. The APPL PDF(X, [x]) procedure has two 

arguments—the random variable X and an optional real number argument x. (An 

optional argument in a procedure is denoted by square brackets, i.e., [x].) The 

PDF(X, [x]) procedure returns either the

1 . PD F of the random variable X  in its APPL list-of-sublists format if only one 
argument is provided in the procedure call; i.e., PDF(X),

2. probability value Pr(X =  x) if both arguments are provided in the procedure 
call; i.e., PDF(X, x).

For explanation purposes, let X  be the random variable with PD F / ( x) = x / 6  for 

x  =  1 ,2 ,3  whose PDF, CDF, SF, HF, CHF, and IDF are in Table 2.2. If we assign 

the variable FX to the CDF of X  (in its Dot  format), then the statem ent PDF(FX) 
returns the PD F of X  in it APPL list-of-sublists format. The lines

> FX := [[x -> (x “ 2 + x) /  12] , [1 . . 3 ] ,  [" D isc re te " , "CDF"]];
> PDF(FX);
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produce the PDF

[jx  -► | ]  , [1.. 3], [“Discrete” , “PD F”]

Conversely, the statem ents

> FX := [[x -> (x “ 2 + x) /  12] , [1 . . 3] , ["Discrete", "CDF"]];
> PDF(FX, 2);

compute P r(X  =  2), which is 1/3.

The PDF algorithm first checks a discrete random variable X  to determine if it 

has a Dot or NoDot  support format. Although two distinct branches in the algorithm 

have been constructed to process random variables of each format separately, the basic 

functional relationships displayed in Table 2.3 are used in each branch. W hether X  

has a Dot or NoD ot  support format, one of the following bullets will be executed 

depending on AT’s distribution representation (and support format in the case of IDF). 

W ithout loss of generality, we can assume Q = {x l5  x2, - - where x L <  x 2 <  - • • -

•  If X  has a PD F representation, do nothing to  X .

•  If X  has a CDF representation, determine the PD F of X  with the (F(x), f { x i )) 

matrix element in Table 2.3:

f{xi) =  F(xi) -  F{xi-1) x{ e  D,

where £ =  1 ,2 , . . .  and F{xo) =  0.

•  If X  has a SF representation, determine the PD F of X  with the (5(x), f{xi))  

matrix element in Table 2.3:

f  ip'i) =  X{ £  12,

where £ =  1 , 2 , . . .  and <S(x|n|+i) =  0  when |f2 | is finite.
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If X  has a HF representation, determine the PDF of X  with the (/i(x), /(x ,))  

m atrix element in Table 2.3:

f ( x i )  =  h{xi) [l -  h(xj)\ Xi G Q.
j \ X j < X i

where i =  1 , 2 , . . .  and h(x0) =  0 .

If X  has a CHF representation, determine the PDF of X  with the (H {x ), /(x ,))  

m atrix element in Table 2.3:

/(x,-) =  Xi G f2,

where i =  1 , 2 , . . .  and ff(x|n|+x) s  0  when |f2 | is finite.

If X  has an IDF representation with Dot  support, then

1. If there is a ceiling term  as part of the inverse function (discussed in more 

detail in Section 2.2.2), extract the expression under the ceiling in order 

to solve F ~l (x) = y. Referring back to X  with PDF /(x )  =  x / 6  for 

x =  1,2,3, the IDF of X  (provided in Table 2.2) is

F ~ \ x )  = ■ \ + \ y / r + m

for x =  1/6, 1 / 2 , 1 . Rewrite F  x(x) as

1  1

F  H * )  =  +  2 V^1 + 4 8 a :

This removal can be done in Maple using the eval command (McCarron, 

2001).

2. Solve the equation

F _ 1 (x) =  y
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for x, yielding F(y) .  For our particular X , solving — |  -f- |VT+~48z =  y 

for x  yields F ( x ) =  replacing y  with x.

3. Find the appropriate inverse. If there is more than one solution to the 

equation F ~ l (x) = y, determine the correct inverse by testing which so

lution F(x)  correctly calculates i 7,(i7"_1 (s)) =  s for s equal to one of the 

following. The choices for s are considered in the bulleted order.

•  s  =  1 if min{Q} =  — oo and max{0 } =  oo;

•  s =  max{Sl}, if max{fl} ^  oo;

•  s = min{f2}, if min{J2 } ^  — oo;
 min{f2} -I- max{0 }

•  s -  2  '

4. Convert the CDF of X  to  its PDF representation by the using the {F(x), 

f{x i) )  m atrix element in Table 2.3.

5. Determine the range of the PDF of X .  The minimum support value is 

F ~ l (xi) (where x \  is the minimum support value of the IDF here) and the 

maximum support value is i r'_ 1 (l). Since the minimum support value of the 

IDF for the example random  variable X  is =  1/6, then F - 1 ( l / 6 ) =  1 . 

Also, F - 1 (l) =  3.

•  If X  has an IDF representation and a NoDot  support, then the second sublist 

of the APPL list-of-sublists contains the CDF values of X  and the first sublist 

contains the CDF support values. To compute the PD F of X , the first and 

second sublists of the ID F are swapped to form the CDF, and then the PDF is 

computed using the (F(x),  f (x{))  m atrix element in Table 2.3.

In its numeric form, the  IDF of our example random variable X  is
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/

3 x  =  1.

The APPL list-of-sublists is [[1, 2,3], [±, ±, l] , [“Discrete”, “IDF”]]. The CDF is 

found by swapping the first two sublists: [ [ | ,  | ,  l] , [1,2,3], [“Discrete”, “IDF”]]. 

Lastly, the PD F is

After the PD F has been computed, the algorithm  checks the number of arguments 

th a t were entered as part of the procedure, either one or two. If only one argument, 

AT, is provided with the procedure, i.e., PDF(X), then the PDF of X  is returned in

the procedure, then the probability value Pr(Ar =  x) is computed. The algorithm

value.

•  If X  has the Dot  support format and we are computing Pr(AT =  x), then:

1. If the value r,- ^  Q, then return P r(X  =  Xi) =  0. (Determining whether 

or not X{ G Q is discussed in further detail in Section 2.2.2.)

2. If Xj G then compute and return the  probability value f(X{) using the 

PD F formula already determined in the  earlier part of the procedure.

•  If X  has the N oDot  support format, then:

1 . Loop through the support values of the  PD F searching for the value Xi 

in the  second sublist. If r ,  is found in position j ,  then its corresponding

m  =  i

f (2)  =  F ( 2 ) - F ( l )  

m  =  F ( 3 ) - F ( 2 )

1
6

3

its list-of-sublists format. Otherwise, if two arguments, X  and x, are provided with

distinguishes between the two support formats when determining this probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

probability value is in position j  of the first sublist. Return the j th  element 

in the first sublist. If the value x,- is not found in the second sublist, then 

return P r(X  =  xt-) =  0.

Two examples using the PDF procedure follow. Also, Example 1.2 in the introduc

tion uses the PDF procedure to determine a probability value.

E x am p le  2 .15. R eturn to Example 2.13 and use A PPL to determine /(x )  given

h(x)  =  1/4 for x  =  1, 2 ,__

Solution: T h e  s ta t e m e n ts

> X := [[x - > 1 / 4 ] ,  [1 .. infinity], ["Discrete", "HF"]];
> PDF(X);

return the PD F f ( x )  =  K f )*  1 for x =  1 ,2 ,. . . ,  as previously determined. □

E x am p le  2 .16 . (Adapted from Hogg & Craig, 1995, page 37) Cast a die two inde

pendent times and let X  equal the absolute value of the  difference of the two resulting 

values (the numbers on the up sides). The CDF of X  is:

Determine the PD F of X .

Solution: Define the A PPL  NoDot  format of F(x)  as the  random  variable FX. Then 

use the PDF procedure to  determine X ’s numeric PD F.

> FX := [[1 / 6, 4 / 9, 2 / 3, 5 / 6, 17 / 18, 1], [0, 1, 2, 3, 4, 5],
["Discrete", "CDF"]];

> PDF(FX) ;
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The APPL NoDot  format of f ( x )  is

1 _5_ 2 1 i  J_  
6 ’ 18’ 9 ’ 6 ’ 9 ’ 18

, [0,1 , 2,3, 4,5], [“Discrete”, “PD F”]

which can be converted by hand to  the formulaic PDF:

/(*) =

1

6
6  — x  

18

x  =  0

x  =  1 , 2 , □

2 .2 .2  CDF, SF, HF, CHF, a n d  IDF

The CDF, SF, HF, and CHF procedures follow the same algorithmic steps as the PDF 
procedure. The main difference between the procedures is the formulas used for 

transforming one representation into another from Table 2.3. The PDF procedure 

uses column one of Table 2.3, while the CDF, SF, HF, and CHF procedures use columns 

two, three, four, and five, respectively.

Another difference is how the PDF and HF procedures handle two arguments, i.e., 

PDF(X, x), compared to  how CDF, SF, and CHF handle two arguments. The way a 

functional representation procedure (e.g., PDF) treats a two argum ent input stems 

from the representation’s m athem atical definition. Returning to the  example random 

variable X  with PD F f ( x )  = x / 6  for x  =  1 ,2 ,3 , its PDF, CDF, SF, and CHF are

f ( x )  =

x  =  1  

x  = 2 

x  =  3

F(ar) =  <

0

1 
6

1
2

X  <  1

1  <  x  < 2

2 <  x  <  3 

x  >  3
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S(x)  = <
5
6

_1
2

0

X  <  1

1 <  X  < 2

2 <  x < 3 

x  > 3

H(x)  = < - l o g ®

- l o g ®

X  <  1

1 <  X  < 2

2 <  x  <  3.

Since the CDF and SF of X  are defined for x  E 1R and the CHF is defined for x  < 3, 

they could be formulaically defined more generally in Table 2.2 as

F ( x ) =

0

[x j2 +  \x\ 
12

x  < 1 

1 <  X  < 3 

x  >  3,

S(x)  =  < - r x i 2 +  M + i 2

12

0

x  < 1 

1 <  x <  3 

x >  3,

— fx] 2 -I- [x] +  1 2

12 )
x <  1 

1 <  X < 3.

The CDF, SF, and CHF data structures were developed to display the values of these 

functions a t Xi,X2 , . -., hence the term  “discrete” da ta  structure. Although the CDF, 

SF, and CHF representations of X  are defined on a  continuous interval of values, 

their counterparts, PD F and HF, are not. In APPL, discrete random variables are 

defined for a discrete set of values. Users of A PPL  who are familiar with probability 

theory will know that, for example, if F(x)  is displayed as

„ ,  , x x
(X) =  1 2  +  1 2  z  =  1>2>3>
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that when 1 <  x <  2 , F(x)  =  F (  1 ) =  1 / 6 . Consistency of form at between all five 

functional representations was a  priority when the Dot  and NoDot  da ta  structures 

and their distribution representations were constructed.

Accuracy and fact are not jeopardized as a consequence of this consistency. Thus, 

when a procedure, such as CDF, computes CDF(X, 1.5) (for the example random 

variable X ) ,  it returns 1 / 6 . Although the format of the CDF representation of X  

does not display its continuous nature, i.e.,

x 2 x
X —̂ ---

12 12
[1,2, 3], [“Discrete”, “CDF”]

the computation CDF(X, 1 .5 ) yields the correct value of 1/6, not 0 or ^ |-  +  =

0.3125. In order to have the CDF algorithm compute this value correctly in the pro

cedure call CDF(X, x), [LxJJ, where [_[xjj is defined as the largest support value 

less than or equal to x, rather than x, is substituted into the formula for F{x).  In 

the SF and CHF procedures, [|~x]], where [fx]] is defined as the smallest support 

value greater than or equal to x, is substituted into the formulas S(x) and H(x),  

respectively, rather than  x.

Although the PDF and HF procedures are less complex than  CDF, SF, and CHF from 

one perspective (since for x,- </ Q, /(x,-) =  0  and h(x,) =  0 ), checking whether or 

not X {  E presents its own obstacles. If |f2| is finite, which implies th a t x i and x \q \  

are finite, then it is not difficult (albeit time-consuming in some instances) in APPL 

procedures to confirm whether or not xt- E D . If |f2| is infinite, then Xi =  —oo and/or 

X|n[ =  oo. Although an algorithm for determining whether Xj E in this situation 

has not yet been implemented in APPL procedures, the following paragraph describes 

one algorithmic method th a t is under consideration.

Suppose the Dot  support is [a.. b, k,g{x)\,  which means th a t a =  min{fl}, b = 

max{f2}, and the support is incremented by k and transformed by g(x).  In order to
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check if Xj e  Q, do the following

1 . Find the inverse function g~l (x) of g{x)  (if it exists). If g(x ) has more than one 

inverse, the "correct” inverse needs to be determined.

2. Compute v = g~ 1 (xi).

3. Determine if v = a (mod A:), where v =  a (mod A:) provided k\(v — a). If it is, 

then X{ G f2.

Suppose Cl =  {27,125, 343 ,...} , for example, and let x,- =  3375. The Dot  support

of f2 is [3 ..o o ,2 ,x  -> x3]. Since g x(x) =  \ f x  and \/2>37o =  15 =  3(m od2), then 

Xi =  3375 G Cl. Conversely, the value xz- =  2748 ^  Cl since v'/2748 ^  Z [and thus

v2748 ^  3 (m od 2 )] and =  1728 ^  Cl since s/1728 =  12 ^  3 (m od 2 ). Unfortu

nately, problems will arise in this algorithm when g(x)  either does not have an inverse 

or has more than  one inverse and the appropriate one cannot be determined.

Because row one of Table 2.3, ( /(x ) , “newrepresentation”), relies on Maple’s sum 

procedure, this is another area where CDF, SF, HF, and CHF experience some difficulties. 

A probable candidate for a fractious transform ation to  a new functional representation 

is the Poisson random  variable. Since the Poisson random variable is a pre-defined 

random variable in APPL, we can assign the variable X as a Poisson random  variable 

with a mean of A with the statement

> X := PoissonRV(lambda);

APPL returns the random  variable in its list-of-sublists PDF representation as

Axe -A'
x! , [0.. oo], [“Discrete” , “PDF”]

Changing X to its CDF representation in A PPL with the statement 

> CDF(X);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

yields

[0.. oo], [ “Discrete” , “CD F” ] .

The SF, HF, and CHF procedures produce results containing the gamma and incomplete

gamma functions also.

In Maple, the gamma function is defined for 9?(z) >  0 by r(z) = / 0°° e - i £z _ 1  dt,

and is extended to the rest of the complex plane, less the non-positive integers, by

analytic continuation. The incomplete gamma function is defined as T(a, z) =  T(a) — 
za
— l F l ( a , l  4 - a, —z) where 1F1 is the confluent hypergeometric function. In Maple 

notation, lF l ( a ,  1 + a ,  — z) =  hypergeom([a], [1  -Fa], —z). For 3fi(a) >  0, we also have 

the integral representation T(a, z) = e~Ha~l dt.

Although this is not a tractable representation for the CDF of a Poisson random 

variable, cumulative probabilities can still be easily computed, as shown in the next 

example.

E xam ple 2.17. (Ross, 1998, page 155) Consider an experiment th a t consists of 

counting the number of a-particles given off in an one-second interval by one gram 

of a radioactive material. If we know from past experience that, on the average, 3.2 

such a-particles are given off, what is a good approximation to the probability tha t 

no more than three a-particles will appear?

Solution: If we think of the  gram of radioactive m aterial as consisting of a large 

number n of atoms, each of which has probability 3.2 j n  of disintegrating and sending 

off an a-particle during the  second considered, then we see that, to  a very close 

approximation, the number of a-particles given off will be a Poisson random variable 

with parameter A =  3.2. In  order to compute the desired probability, we use the 

A PPL statements

r ( x  -(-1, A) 
r(x + i)
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> X := PoissonRV(3.2);
> CDFCX, 3);

which yield the approximate probability 0.6025. □

Before discussing the IDF procedure, one last example of transform ing from one 

representation to another is presented in Example 2.18.

E x am p le  2 .18. Let n be a positive integer. Let X  be a random  variable with HF 

h{x) defined as

Determine the SF of X  for Xi =  1 , 2 , . . . ,  n.

S o lu tion : Using the (h(x ), S(xi))  m atrix element in Table 2.3, S(xi)  is

s ix i) =  I I C 1  ~  K xi)) x i =  *; * =  1 , 2 , . . . ,  n.

Letting x { — x,  we can simplify S(x)  in the following manner:

X—1

y-r (n — t)(n + t) +  (n — t) 
(n -  t){n + t) +  (n + 1)

C laim :

(2.1)
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for x  = 1 , 2 , . . .  ,n.

P ro o f  o f  C la im : The claim can be proved by induction on x.  Since the left 

hand side of equation (2.1) is an empty product for x  = 1 , it follows th a t S (l)  =

n?=i (n+0 fr£ £ i j  =  1• The right hand side of e(4uation (2 -1 ) for x =  1  is ^ ^ " +l) =

1 . Thus, equation (2 .1 ) is true for x  =  1 .

Now suppose equation (2.1) holds for a certain integer x such th a t 1  <  x <  n — 1 .

Then using this assumption and starting  with the left hand side of equation (2.1)

with x replaced by x +  1 , we find:

t t  {fi — t) (n +  t  +  1 )   -i—r (n  — t) (ri +  £ +  1 ) (7i — x) (n +  x +  1 )
(n +  t )(n — t  +  1 ) (n +  t ) (n  — t  +  1 ) (n +  x ) ( n - x  +  l )

(n — x +  l) (n  +  x) (n — x)(n +  x +  1 )
=   i i jn + i j  ( ^ + I )(n - I +1)  by assumPtion
_  (n — x)(n  +  x +  l)  

n(n  +  1 )

The result is the right hand side of equation (2.1) with x +  1 replacing x. Hence, by 

induction, equation (2 .1 ) holds for x  = 1 , 2 , . . .  ,n.

Using the claim, we can write S(x)  as:

o f „ \   (ji +  x) (n — x +  i)  _ i oS{x)  x — 1,2 , . . . , n .
(n + l ) n

In APPL, the statem ents

> u n a s s ig n ( , n , );
> hX := [[x  - > 2 * x  /  ( n “ 2 + n -  x ~ 2  + x)] , [1 . . n] ,

["Discrete", "HF"]];
> SX := SF(hX);

produce the desired SF th a t we previously computed by hand. □
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C o m p u tin g  th e  IDF in  th e  Dot fo rm a t

Let X  have a CDF F x  in which Fx{y)  =  x.  For x  €E [0,1], the inverse distribution 

function (IDF) F ^ l (x) performs the inverse mapping of x  to y, i.e., F ~ l (x) =  y. Like 

the PDF, CDF, SF, HF, and CHF procedures, the IDF (X, [x] ) procedure returns either 

the

1. IDF of the random variable X  in the APPL list-of-sublists format if only the 

argument X  is provided in the procedure call, i.e., IDF(X);

2. quantile value y  such that P r(A  <  y) =  x  if both arguments are provided in

the procedure call, i.e., IDF(X, x).

Unlike the CDF, SF, and CHF procedures, the IDF functional representation in

sublist one is displayed as a continuous function. The IDF of a random variable X  is 

defined for all real numbers x  € [0,1]. For the example random variable X  with PDF 

f ( x )  — x / 6  for x  =  1 ,2 ,3 , its APPL IDF in Dot  format is

- j  +  5 x /T + 4 8 i , [ l - 3 ,
x z +  x  

12
, [“Discrete” , “IDF”]

where the second sublist |^1.. 3, x  —> indicates IDF support values at | ,  and

1 . Although the first support value is Zi =  1/6, APPL understands the IDF is still 

defined for 0 <  x  < 1 / 6 . When another functional representation procedure, such 

as PDF, receives an IDF with a ceiling expression, it only takes one additional line in 

th a t procedure to remove the ceiling from the expression before computing an inverse. 

In the case of IDF, the ceiling definition was believed to be the appropriate way to 

define this function in its first sublist.

In a much easier scenario, if a “non-IDF” functional representation of X  is reported 

to ID F in its N oD ot format, such as
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> X := [[1 /  6, 1 / 3 ,  1 / 2 ] ,  [1 , 2, 3 ] , ["Discrete", "PDF]];
> IDF(X );

then the IDF algorithm simply computes the CDF of X  and then switches the first 

two sublists to form the IDF.

2.3 Algorithms for Fundamental Procedures

Before attem pting algorithm construction for non-standard discrete random variable 

processes (e.g., O rderS tat), some of the straightforward algorithms were written 

to handle fundamental random variable manipulation (e.g., computing the mean of 

a random variable). The several procedures discussed in this section had already 

been written for continuous distributions. All APPL procedures th a t handle discrete 

random variables are equipped to process random variables in both the Dot  and 

N oD ot formats.

2 .3 .1  V erify ing  th e  V a lid ity  o f  a  P D F

Let X  be a discrete random variable with support Q =  {xi, x2, - -.}. A discrete 

probability density (mass) function (PDF) must satisfy the following two conditions:

•  P r(X  =  x,-) >  0 for each xx- €  D;

•  Pr(AT =  Xi) =  1.
a l l  X i  6  Cl

The APPL V erif yPDF procedure has one argument, a random variable X, and the 

procedure’s purpose is to verify th a t X satisfies these two conditions. When making 

the procedure call VerifyPDF(X), either a message is returned stating tha t X has a 

valid PD F or th a t it does not. The following example illustrates the usage of this 

procedure.
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E x a m p le  2.19. (Karian & Tanis, 1999, page 62) Verify tha t the probabilities of a 

geometric random variable with parameter p sum to 1 .

S o lu tio n : X  can defined as a geometric random variable with parameter p  using the 

pre-defined APPL random variable GeometricRV Cp). When the GeometricRV proce

dure receives a symbolic argument (parameter), it uses the Maple assume command 

to correctly assume th a t the symbolic parameter is inclusively between 0 and 1 . Thus, 

the statements

> X := GeometricRV(p);
> VerifyPDF(X);

indicate th a t X has a valid PD F. □

2 .3 .2  C alcu latin g  S u m m ary  C h aracteristics

Moments describe certain behaviors of random variables. Measures of central ten

dency, for example, such as the mean or median, refer to the “average” or “central” 

values of a random variable. Measures of dispersion, such as the standard devia

tion, are used to measure the spread of a random variable’s distribution. Skewness 

quantifies a random variable’s symmetry about its mean, while kurtosis measures the 

flatness (or “peakedness” ) of a random variable.

If X  is a discrete random  variable with support =  {x i ,X 2 , ■ ■ -} and PDF / ( r ) ,  

then the mean (or expected value) of X  is defined by

E[X\  = » =  Y ,  x ‘ - f t e ) -
a l i i ,  G fi

More generally, if g(X)  is any function of X ,  such as g (X)  =  X 2, then

£ [< K *)]=  Y  9 (* i)- / (* .) -
all X i  G f2
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The ExpectedValue procedure requires one argument, a random variable X, and 

can be given an additional argument, the function g(X). When only one argument is 

provided for the ExpectedValue procedure, i.e., ExpectedValue (X), the mean of the 

random variable X is returned. By default, the procedure assumes g(X)  =  X  when no 

second argument is given. The Mean, V ariance, K u rto s is , and Skewness procedures 

all make use of the ExpectedValue procedure. This is efficient since variance, the 

coefficient of skewness, 7 1 , and the coefficient of kurtosis, 7 2 , for a random variable 

X  can be calculated as

Two examples of the usage of the ExpectedValue procedure follow. In the second 

example, Example 2.21, notice that g(x) is non-linear.

E x a m p le  2.20. (Ross, 1998, page 167) Find the expected value and the variance of

times.

S o lu tio n : Since the random  variable of interest is a negative binomial with parame

ters r  =  4 and p =  1/6, then the statements

> r := 4;
> p := 1 / 6;
> X := NegativeBinomialRVCr, p);
> ExpectedValue(X);
> V ariance(X );

Var(X) =  E[(X  -  p)2] =  E [ X 2} -  p2,

E [ X 3] -  3y E [ X 2] +  2p :

E[ X 4] -  4p E [X 3] +  6 p 2 E [X 2] -  3p4 

[Var(X ) ] 2

the number of times one must throw a die until the  outcome one has occurred four
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yield the  correct results: E [ X ] =  24 and Var(X) =  120. □

E x a m p le  2 .21. (Ross, 1998, page 185) Let X  be a binomial random variable with 

param eters n  and p. Show that

E X  + l
1 ~  (1 ~ P) 

(n +  l)p

n+1

S o lu tio n : Since we want to compute E  [ ^ y ] ,  let g(X)  =  1 / ( X  +  1). The APPL 

statements

> X := BinomialRV(n, p);
> ExpectedValue(X, x -> 1 / (x + 1));

produce the desired expected value. □

2.3 .3  D iscrete  P lo tt in g  F unctions

Especially for newcomers to probability theory, plots of the various representations of 

a random variable can provide much insight into the definition and structure of that 

random variable. The PlotDist procedure requires only one argument, a random 

variable X, but two additional arguments can be provided to  indicate the plotting 

range, low and high. The procedure can plot a random variable in any of its six 

functional representations. The algorithm employed by the PlotDist procedure uti

lizes the list-of-sublists data  structure to glean the necessary information for a plot. 

Graphs for C D F’s, SF’s, CHF’s, and ID F’s, for instance, are plots of step functions 

with jum ps a t the support values specified in sublist two. Open and closed circles at 

the ends of the steps indicate exclusion and inclusion, respectively, of support values. 

One example of a CDF plot follows.

E x a m p le  2 .22. (Karian & Tanis, 1999, page 40) Let f ( x ) =  (5 — a;)/10 for x =
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1 ,2 ,3 ,4  be a PD F of the discrete random variable X .  Use P lo tD is t to depict the 

CDF of X .

S o lu tio n : Instead of first converting X ’s PD F representation into a CDF repre

sentation, one can directly define the PDF and compose the CDF conversion with 

P lo tD is t . The plot of the desired CDF can be executed with the statem ents

> X := [[x -> (5 -  x) /  10 ], [1 . . 4 ] ,  ["Discrete", "PDF"]];
> PlotDist(CDF(X));

The corresponding plot is displayed in Figure 2 .2 .

-H--------------------------------------------------------------------

0 . 8 -

0 . 6 -

CDF

0.4- 

0 .2 -

Figure 2.2: CDF for Example 2.22.
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Chapter 3

Order Statistics

As evidenced by over six hundred references cited in the book “Order Statistics” by 

David (1970), the theory and applications of order statistics appear in many areas of 

statistical theory and practice. Most authors of introductory textbooks only address 

order statistics drawn from continuous parent populations due to the m athem atical 

intractability in the discrete case. Results for order statistics drawn from discrete 

parent populations are sparse and usually specialized to fit one particular discrete 

population. The purpose of this chapter is to present algorithms for determining 

distributions of order statistics drawn from standard (e.g., binomial, geometric) and 

non-standard discrete parent populations. The algorithms handle discrete parent pop

ulations w ith finite or infinite support, and sampling with or without replacement. 

Computer algebra systems make it feasible to  derive (or compute) distributions of or

der statistics from parent populations w ith formulaic (e.g., f{x)  =  |j-, x  =  1, 2 , . . . ,  6 ) 

or numeric (e.g., / ( I )  =  | , /(3 ) =  | , / ( 7 )  =  | )  PD F representations. The devel

opment of these algorithms provides the  general scientific co m m u n it y  easy access to 

many discrete order statistic distributions.

Let X i ,  X 2, - - -, X n be n  independent and identically distributed (iid) random 

variables defined on 11, each with CDF F{x)  and PD F f i x ) .  Let AT(i) <  X(2) <  • • • <

56
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X(n) denote these random variables rearranged in non-descending order of magnitude. 

Thus, X(r) is the r th  smallest order statistic of the sample, r  =  1 , 2 , . . . ,  n. Since the 

order statistics are random variables, it is possible to compute the probabilities th a t 

they take on various values in their support.

When the population is continuous, the PDF of the r th  order statistic can be 

expressed easily since the probability that any two ’s are the same is 0. As is well 

known (e.g., Casella Sz Berger, 1990, page 232), the PD F of X (r) is

f x ^ {x)  =  [F{x)]r~ l [1 ~  F { x ) ] n ~ r x  e  n

for r  =  1, 2 , . . . ,  n. Two examples of order statistics with continuous parent popula

tions follow.

E x am p le  3.1. (Adapted from Feller, 1971, pages 20-21) Let X i ,  AT2, . . . ,  X n be iid 

exponential random variables w ith rate parameter A. Find the PD F of X(r)- 

S o lu tion : Using the above equation, the PDF of the r th  order statistic is

! ) ! ( „  _  r ) , ■ • ( !  -  ■ ( e - 1* ' " - ) )  X >  o

for r  =  1 , 2 , . . .  ,n . □

E x a m p le  3 .2 . (Adapted from Ross, 1998, pages 278-279) Consider a sample of size 

n  =  5 from a beta distribution with parameters a  =  |  and /3 =  2 . Compute the 

probability th a t the median is in the  interval (0 , | ) .

S o lu tion : Again, using the above equation, the PD F of the m edian r  =  3 is

_  4 5 ( - |x 3 /2  +  \ y / x ) 2( l  +  | r 3 /2  -  \ y /x ) 2 (1 — x )
2 y/x
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Thus

Pr(0 < X m  <  i)  =  f 0l / i f X m (x)dx
_  /___3_2;15/2 _j_ 4 5 ^ 1 3 /2  _  15^ .6  _  135x U /2  , 4 5 ^ 5  , 3 9 5 ^ 9 /2  _  4 0 5 ^ 4

\  16 16 16 8 4 8 8
1/4

1035 7 /2  , 4 0 5 -3  , 1 8 9 - 5 /2  1 2 1 5 -2  , 1 3 5 _ 3 /2 \
~  16 X  4  X +  T & X  16~ +  ~ X )

0
_  429913
—  524288

^  0.81999. □

If X i , X 2, . . .  , X n is a random sample from a discrete population, then the PD F 

of the r th  order statistic cannot always be expressed as a single formula, as displayed 

in the continuous case examples. When working with discrete random variables, 

the computation of the PD F of the r th  order statistic  will fall into one of several 

categories, depending on the sampling convention (with or without replacement), the 

random variable’s PD F representation (formulaic or numeric), the random variable’s 

support (finite or infinite), and the random variable’s distribution (equally likely or 

non-equally likely). A taxonomy of these categories appears in Figure 3.1.

3.1 Implementation for Discrete Populations

This section presents an algorithm, O rderS tat, for com puting the PDF of order sta tis

tics sampled from discrete parent populations. Additionally, the algorithm computes 

the PDF of order statistics from continuous populations, as in the examples provided 

previously. The algorithm, included in Appendix A, is implemented in Maple.

After a discrete random  variable X  is defined in its list-of-sublists format, the 

O rderS tat algorithm computes the PDF of the r th  order statistic given th a t n  item s 

are sampled either with or without replacement from the discrete parent population.

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  reproduction  prohibited w ithout perm iss ion .



59

Discrete Population

Sampling 
with replacement 

(Section 3.1.1)

Sampling 
without replacement 

(Section 3.1.2)

Numeric Formulaic Finite Infinite
PD F PD F Support Support

Equally Non-Equally
Likely Likely

Distribution Distribution

Figure 3.1: Categorization of discrete order statistics by sampling convention, PDF 
representation, support type, and population probability distribution.

without replacement, the ConvertToNumeric procedure modifies the first two sublists 

of the random variable to the standard N oD ot format. For example, if the first two 

sublists of the random  variable are entered in the Dot format as [x —► , [1.. 7,2]

(where k  =  2 is the increment value for the range), then ConvertToNumeric rewrites 

the sublists in the standard N oD ot form at as [ ^ ,  , [l, 3, 5, 7]. The conver

sion is necessary since the without replacement part of the algorithm  requires a list 

of support values for the construction of permutations and combinations. The im

plementation steps of the O rd erS ta t algorithm are explained in more detail in the 

“Sampling W ith Replacement” and “Sampling W ithout Replacement” subsections.

3.1 .1  S am p lin g  W ith  R ep la cem en t

If only three arguments, X, n, and r ,  are provided as O rderS ta t arguments, then the 

items are assumed to be sampled from the population with replacement by default. 

The APPL CDF and SF procedures determine the cumulative distribution function,

If the random  variable X  has finite support in the Dot case and sampling is to occur
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F(x)  =  P r(X  <  x),  and survivor function, S(x)  =  Pr(JA >  x), respectively, of X  

in the list-of-sublists format. A branch in the with replacement portion of the code 

then occurs based on the form of the population’s PDF, numeric or formulaic. The 

“Numeric PD F” and “Formulaic PD F” subsections detail the subsequent steps for 

each PD F representation. A random variable with a Dot  support format always has 

a formulaic PDF. A random variable with a N oD ot support format, although it may 

initially have a formulaic PD F representation, is converted to the standard NoDot 

form at with a numeric PD F at the onset of the O rd e rS ta t procedure.

N u m eric  P D F

If the random variable X  (in its APPL list-of-sublists) has a NoD ot format, then 

its PDF is given as or converted to a Maple numeric list. For example, the random 

variable X  with PD F

i  X =  5

II i  X =  6

 ̂ } x  =  1 0 ,

is entered as a random variable in APPL as

> X := [[1 / 4, 1 / 2 ,  1/4], [5, 6, 10], ["Discrete", "PDF"]];

If X  has a N oD ot format, then its support, fl, must be finite. For this particular ex

ample, Q, =  {5,6 ,10}. Assuming (without loss of generality) tha t O =  { 1 ,2 ,. . . ,  A-}, 

the PD F of X(r) when n  items are sampled with replacement is given by:
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fx.r) (*) = <

E f " )  t / a i r ” [5(2)1”
tr=0 '  '

|  E  ( a , -  n r  w * ) r ”  i* « + D i-

E Q i m - i j n / f i v ) ] " - "
<* u= 0  '  '

X  =  1

x  =  N .

The formula above is not valid in the special case when the discrete population consists 

of only one item, i.e., N  =  1 . The PD F of the r th  order statistic with N  =  1 is simply

/*<„( i)  =  i-

The formula for calculating the PD F of X(r) is a direct result of the following 

observation. In order for the r th  order statistic to take on the value x , the r  — 1 

order statistics preceding the r th  index position must be less than or equal to x  and 

the n — r  order statistics following the r th  index position must be greater than or 

equal to x.  More specifically, there m ust be between 0 and r  — 1  values less than x, 

and between 0 and n — r  values greater than x, with all other values equal to x. The 

general formula for x  =  2 ,3 , . . . ,  N  — 1 is obtained by using the CDF, F{x  — 1), to 

determine the probability of obtaining a value less than or equal to x  — 1, the PDF, 

f ( x ) ,  to determine the probability of obtaining x , and the SF, S (x  +  1), to determine 

the probability of obtaining a value greater than or equal to x  +  1 . T he multinomial 

coefficient calculates the number of combinations th a t yield a specific ordering.

As a brief illustration of this formula, let X  be a discrete random  variable tha t 

can assume N  =  4 values with PD F

f{x) = <

0 . 2 x  =  1

0.4 x  = 2

0.3 x  — 3

0 . 1 x  = 4.
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Then the CDF and SF of X , respectively, are

F{x)  =

0 x  < 1 1 x  < 1

0 . 2 1 <  x  < 2 0 . 8 1 < x  < 2

0 . 6 2 <  x  < 3 S{x)  =  < 0.4 2 < x  < 3

0.9 3 <  x  < 4 0 . 1 3 < x  < 4

1 x > 4 0 x > 4.

Sample n  = 3 values with replacement from the population. In order to calculate 

/ x (2) (3), i.e., the probability th a t the second order statistic  (the median, r =  2 ) takes 

on the value x  = 3, simplify the sum

-  t t ( Ui 3  [ f ( 2 ) n / ( 3 ) r « - » [ 5 ( 4 ) r .
u=Q w =0

The first term  in the summation

( o ,3 ,o )  ' <°-6)° ' (°-3)3 - (0 1 )° =  °-33,

is the probability of drawing all threes. The second term

(o, 2, l )  ■ (0'6)° ' (0'3)2 ' (01)1 =  3 ' (0'3)2 ' 0 1 ’

is the probability of drawing two threes and a value greater than or equal to four 

(which can only be the value four in this example). This sample can be drawn three 

different ways: 3-3-4, 3-4-3, or 4-3-3. The third term

( l , 2,o )  ' (°-6)1 ’ (0'3)2 ' ( a i ) ° =  3 ' °'6 ' (°'3)2'

is the probability of drawing two threes and one value less than or equal to two.
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Letting L  represent the value one or two, the three orderings are: L - 3-3, 3-T-3, 

3-3-L .  Finally, the fourth term is the probability of drawing one three, one value less 

than or equal to two, and one value greater than or equal to four. This fourth term 

is

Using the previous notation, the six orderings are: L - 3-4, L - 4-3, 3-L-4, 3-4-L, 4- 

L - 3, 4-3 -L.  Thus, f X(V(3) =  0.33 +3-(0 .3)2 -0.1-f-3-0.6-(0.3)2 +6-0.6-0.3-0.1 =  0.324.

Form ulaic P D F

If the support of X  is countably infinite, i.e., |f2| =  {x,-1 i =  1, 2 ,3 ,. . .} , then the PDF

resentation. For example, if X  ~  Poisson(4) with PD F f ( x )  =  43̂ , 4, x  =  0 ,1, 2 , . . . ,  

then X  is defined in APPL with the statem ent

> X := Ux  -> ((4 ~ x) * exp(-4)) /  x!], [0 . .  i n f i n i t y ] ,
["Discrete", "PDF"]];

It is impossible to write a PD F with infinite support in the APPL standard NoDot 

format. Even if a random variable does not have infinite support, it may still have 

a formulaic PD F in the APPL list-of-sublists format. A binomial(5, 1/2) random 

variable with PD F f ( x ) =  25' (5-x)i x\ ’ x  =  0 ,1 , . . . ,  5, can be defined in APPL with 

the statem ent

> X := [[x -> 120 /  (2 ** 5 * (5 -  x) ! * x ! ) ] ,  [0  .. 5],

The calculation of the PDF of X(r) in the formulaic case, whether the support is 

finite or infinite, is similar to the calculation in the numeric PD F case. The main 
exception is th a t the formula used in the numeric PDF case can be used for values of

of X  must be entered in its APPL list-of-sublists format with a formulaic PDF rep-

["Discrete", "PDF"]];
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x  arbitrarily large:

f x lr) (x) =  <
E(2) V W n~WlS (2 )]“’ti'= 0

X  =  1

x  =  2 .3 , -----

Since the formula assumes that the support of X  is D =  {1 , 2 , . . . ,  N }  or f2 =  

{1 , 2 , . . .} ,  the implementation accepts distributions with finite supports or infinite

in a similar manner. The APPL code presently issues an error message from the 

O rd e rS ta t procedure when there is an infinite left-hand tail.

complicated symbolic expressions. Maple finds and simplifies (in symbolic terms) the 

double summation of a multinomial coefficient times the product of the CDF, PDF, 

and SF raised to various powers (see Example 3.2).

3 .1 .2  S am pling  W ith ou t R ep la cem en t

Providing the string “wo” as the optional fourth argument indicates that items are 

sampled from the discrete population w ithout replacement. The algorithm first de

termines whether the random variable has finite or infinite support. The following 

two subsections explain the steps followed after this determination is made.

F in ite  Support

If the population distribution has finite support, again denote the population size 

by N .  In order to  specify the support of the order statistic in a compact form,

right-hand tails. Discrete distributions with infinite left-hand tails could be handled

Since it is impossible to execute the above formula for infinitely many values of 

x  if the random variable X  has infinite support, a  general expression for f x (r) (z) (in 

terms of x)  is obtained by taking advantage of Maple’s ability to sum and simplify
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additionally assume (without loss of generality) th a t the population support is the 

ordered set Q =  { 1 ,2 ,. . . ,  Ar}. For example, if

then N  =  3, and the support is assumed to be {1, 2 ,3 ), instead of {7,11,15}.

If the population has equally likely PD F values, e.g., f ( x ) =  1 for x  =  1 , 2 , . . . ,  6 , 

then by combinatorial analysis (Wilks 1962, page 243):

If X  has finite support and non-equally likely PD F values, there are three cases 

for calculating the PD F of the r th  order statistic:

1. If n  =  1, i.e., only one item is sampled, then the PD F of the rth  order statistic

is the same as the population PDF.

2. If n  =  N,  i.e., the entire population is sampled, then the PD F of the r th  order

3. If n =  2 ,3 , . . . ,  N  — 1, then an n-by-N  array, ProbStorage , is defined that 

eventually contains the PD F values for all order statistics, i.e., f x (r) (a:) for 

x  =  1,2, ...,1V  and r  =  1,2, . . . , n .  The rows denote the r  order statistic

sume. The array is initialized to contain all zeros. The algorithm’s imple

mentation requires the use of two combinatorial procedures, Next Combination

/
0.5 x  =  7

/(* )  =  0 . 2  x =  1 1

0.3 x =  15,
V.

x =  r, r  +  1 , . . . ,  r  -1- N  — n.

statistic is
1 x =  r

f x (r)(x) =  <
0 otherwise.

values and the columns denote the x values th a t the order statistic may as-
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and N extPerm utation, whose Maple codes are contained in Appendix B. The 

following steps axe implemented.

(a) The first lexicographical combination of n items sampled from the sequence 

of integers 1 to N  is formed. This first combination is the unordered set 

{ 1 , 2  , . . . , n } .

(b) Given a combination consisting of n distinct integers, the algorithm gen

erates all corresponding permutations. It generates the first permutation 

by arranging the integers in increasing order. The probability for the per

m utation is calculated by substituting the permuted values into the PDF 

of X .  Since the PD F has already been converted to a list of probabilities 

values in the first sublist of X , the probability of a perm utation is com

puted by selecting the probability values in the first sublist that occupy 

the positions of the permuted values. For example, let f ( x )  =  A for 

x  =  1, 2 , . . . ,  5. Then the first two sublists of the PD F of X  are (or have 

been converted to) [ ^ ,  | ,  | ,  , [1 , 2 ,3 ,4 , 5], Suppose the permutation

th a t the algorithm is currently processing is [5, 3, 2]. Then the probability 

of this permutation is

m  m  m

or
i  3 1
A 8 _______ 4_______  __ _}_

1 6 ' l - i ' l - ( i  +  | )  SO’

(c) After the perm utation’s probability is computed, the perm utation is rear

ranged in increasing order. The perm utation above, for example, becomes 

[2 , 3, 5]. The algorithm then adds the computed probability value to the 

appropriate cells in the ProbStorage array. The (r, x) cell accumulates the
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probabilities of the various ways that the r th  order statistic takes on the 

value x. For example, the final value of the (1,2) cell represents the prob

ability that the first order statistic  assumes the value two. In the example 

illustrated above, the ProbStorage array cells (1 , 2), (2, 3), and (3, 5) are 

incremented by the perm utation [5, 3, 2]’s probability <k. See Figure 3.2.

Xr 1 2 3 4 5

1 £ ( 1 , 1 ) E ( l , 2 ) +  & £(1 ,3) — —

2 — £ ( 2 , 2 ) E (2 ,3  ) +  i £(2 ,4) —

3 — — £(3,3) £(3,4) £(3 ,5) +  ^

Figure 3.2: ProbStorage array for X  with PD F f {x)  =  jq for x  =  1 , 2 , . . . ,  5, in 
which n  =  3 items are sampled without replacement. Given the perm utation [5, 3, 
2 ], its probability ^  is added to the current probability sums £ (r, x) in cells [1 , 2 ], 
[2, 3], and [3, 5]. Dashes denote impossible values.

(d) After the appropriate cells are incremented, the next perm utation in lex

icographical order is found using the N extPerm utation procedure. The 

perm utation’s probability is then computed and placed in the appropriate 

ProbStorage cells, as discussed above in steps (b) and (c).

(e) After all n! permutations of a given combination are exhausted, the proce

dure NextCombination finds the next lexicographical combination. Given 

this new combination, the algorithm repeats steps (b) through (d). This 

process iterates (^) times, since this is the number of combinations of size 

n  chosen from a population of size N .

In fin ite  Support

If X  has infinite support, then the pattern  established for finding the PD F of the 

r th  order statistic in the finite support case does not work because the loops will
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be endless. At this time, the O rderS tat procedure cannot calculate the distribution 

of order statistics in the without replacement case when the discrete population has 

infinite support and n >  3 or r  > 3. Future work w ith O rd erS ta t wall begin to incor

porate the algorithmic pattern  (already identified for n =  2  in the next paragraphs) 

for values of n > 3.

Assume tha t n items are sampled without replacement from the support fi =  

{1, 2 , . . The PDF of AT̂ ) when n — 1 item is sampled without replacement from 

Q is identical to the population PDF f {x) .

W hen n  =  2, let X x be the first variate sampled and X 2 be the second variate 

sampled. Also, let AT^ =  min{A\, X 2} and AT(2) =  max{ATi, Af2}. Figure 3.3 shows 

the support values associated with the joint distribution X x and X 2 along with the 

appropriate mass values to sum over in order to  calculate f x M {x) =  Pr(AT(i) =  x) 

(indicated by the dashed rectangles of infinite length) and f x m {x) =  Pr(AT(2) =  x) 

(indicated by the solid rectangles). If the population PD F is given by f ( x) ,  the 

marginal PDF of X i  is

f x w  (®i) =  f ( x  i) X! =  1 , 2 , . . . .

The conditional PD F of X 2 given X i  = x x is

r  /  \

f x 2\Xi(x2\xi) =  -  _  ~  =  1, 2, . .  . ; x 2 =  1, 2, #  x2.

Thus the joint distribution of X x and AT2 is

f x  i,x*{xux2) = f x 2\ X i ( x 2 \ x l ) f x l ( x i )  = Xi = 1 ,2 ,...; x2 = 1,2,...; x x x2-
1 —  f i x  l )

Summing as indicated in Figure 3.3 yields the PD Fs for X (X) and X(2) as

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



69

x2

x1

Figure 3.3: Support values associated with the joint distribution of X x and along 
with the appropriate mass values to sum over to calculate f x w {x) (indicated by 
dashed rectangles of infinite length) and / x (2) (x) (indicated by solid rectangles).

and

f x w (x) =  Pr(X (1} =  x)
OO CO

= £  f x x,X2{x l , x ) + f x uX2{x , x2)
X l = X + l  X 2 = X - f l

f  / ( * i) f '  f { x )  n r )
~  ^  1  -  f { x x) ' ^  ^  1  -  f ( x )  ' 2)

X 1 = X + 1  A  U  X 2 = X + 1  j  K ’

£t \ f ( Xi) , f (X) CV | 1 \
=  / ( I ) , ? + 1 W W  +  W W ' S ( I + ’’XI —«c« “I- J.

f x m ix ) =  P r(X (2 ) = x )
X — 1  x — 1

=  f x i ,X 2 (x lj®) +  f x i , x 2 ix ->x 2 )
X l = l  X 2 = l

X — 1 \  X — 1
/ ( * i) \ , / (* )

S w w ' / w + £ i - / w

1 - 1  / ( *  i) , /(* )

/(*  2 )

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



70

Thus, the PDF of and X(2) when n  — 2 items are sampled without replace

ment from =  {1 , 2 , . . .}  are

f x w (x) = f (x) f i x )S { x +  1 )

1 -  w  ' 1 -  /(* )

and

f x m ix) = f{x)
F j x  - 1 ) /(x )
1  -  f i x )  ^  1  -  f i x )

X i  =  1 , 2 ,

x i  =  1, 2 , . . . .

3.2 Examples

Returning to the continuous exercises discussed in the introduction of this chapter, the 

O rd erS ta t algorithm can be used to determine their solutions. In the first example, 

define X  to be an exponential(A) random variable (pre-defined in APPL). Then the 

O rd e rS ta t algorithm (for continuous random variables) is used to determine the PD F 

of its r th  order statistic. The following statem ents

> X := ExponentialRV(lambda) ;
> OrderStat(X, n, r);

returns the PD F in its APPL list-of-sublists as

n! ■ Xe Xx 
(r — l)!(n  — r)!

( 1  -  e~kxy ~l . (,3—Ax(n—r) , [0.. oo], [“Continuous” , “PD F”]

For the second example, define AT as a b e ta ( |,  2) random variable (also pre-defined 

in APPL) and Y  as the PDF of the median order statistic r  =  3 associated with a 

sample of size n  =  5. The CDF for the median order statistic, Y,  at the value 1/4 is 

computed with the APPL statements
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> X := BetaRVCl /  2, 2 );
> Y := O rderS tat(X , 5 , 3 ) ;
> CDF(Y, 1 / 4 ) ;

yielding the exact solution of gff§g§.

The following two subsections use the algorithm  described in the implementation 

section to determine the PD F of r th  order statistic  for discrete populations. Examples 

for each branch of the tree in Figure 3.1 are provided to illustrate the algorithms used 

to generate the PDF of the order statistic. Table 3.1 displays the type of sampling 

and the example associated with it.

Table 3.1: Categorization of discrete order statistics with associated examples.

Sampling
convention

PDF
representation

Support
type

Probability
distribution Examples

W ith Numeric PD F — — 3.3
replacement Formulaic PDF — — 3.4, 3.5

Finite
Equally likely 3.6

W ithout Non-equally likely 3.7

replacement
Infinite — 3.8

3.2 .1  S am p lin g  W ith  R ep lacem en t

E x a m p le  3 .3 . (Miller & Miller, 1999, page 296) Find the sampling distribution 

of X(i) for random samples of size n  =  2  taken with replacement from the finite 

population tha t consists of the first five positive integers. {Hint: Enumerate all 

possibilities.)

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited w ithout perm iss ion .



72

S olu tion : Using the hint, there are twenty-five possible samples of size n = 2  when 

sampling with replacement from the first five positive integers. They are

(1 , 1 ) (2 . 1 ) (3,1) (4,1) (5,1)

(1 , 2 ) (2 , 2 ) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5, 3)

(1,4) (2,4) (3,4) (4,4) (5,4)

(1,5) (2,5) (3,5) (4, 5) (5, 5)

the possibilities, it is not hard to determine tha t the

9
25 x  =  1

r
25 x  = 2

f x m (x) = < 1
5 x  =  3
3

25 x  =  4
1

I 25 x  =  5

“(i)

This PDF is computed in APPL with the statements

> X := U niform D iscreteR V (l, 5 );
> O rderS tat(X , 2, 1 );

Although examples of this type can be done by enumeration, the benefit of APPL 

is demonstrated for large populations and/or when sampling more than just n  =  2  

items. □

The next example illustrates a case in which a formulaic PD F representation of 

the population must be used since it has an infinite support.

E x am p le  3-4. (Sampling with replacement; Formulaic rD F)  Define a geometric 

random variable X  w ith param eter p  (0 < p  <  1 ) to be the number of trials up to
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and including the first success, i.e., f x { x )  =  P - <7X_1, where q =  1 — p  for x  =  1 ,2 ,__

Margolin and Winokur (1967, pages 924-925) have tabulated values for the mean and 

variance of the rth  order statistic of a geometric distribution in a sample of size n for 

77. =  1,5,10,15,20, r  =  1 ,2 , . . . ,  5,10,15, 20, (where r  < n), and p =  0.25,0.5,0.75. 

(The table values provided by Margolin and Winokur are given to two decimal places.) 

If X  ~  geom etric(|), then determine the exact values of the mean and variance of 

the third order statistic when n  = 5 items are sampled with replacement.

S o lu tio n : The formulas Margolin and Winokur (1967, page 921) use to  compute the 

first and second moments of the r th  order statistic of a geometric distribution (with 

param eter p  =  1 — q) when n items are sampled are

E  \ v  1 =  r ,  ( n ~  ( j  )

\ r  — 1 J "  {n — r + j  +  1 ) ( 1  — qn~- r + j + l \
j = 0 v"  v- i  )

and
(—I ) 3 (T- / )  ( 1  +  ? "-’-+3+1)

r +  j  +  1 ) ( 1  — g"-'-+i+l)2'

Using the O rderS tat procedure, the exact value of any of the rounded figures 

given in their tables can be produced. If X  ~  geom etric(|), then the exact values 

of the mean and variance of the third (r =  3) order statistic when n =  5 items are 

sampled (with replacement) can be found with the statements

> X := GeometricRVCl / 4);
> Y := OrderStat(X, 5, 3 );
> Mean(Y);
> Variance(Y);

which yields f§fg§  S  3.22 and S ™ 756- S* 2.67, respectively. □

The O rderS ta t procedure is able to accept a much larger range of arguments than

just the numeric values for p , n, and r  given in Example 3.4. Further, the procedures
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can also accept random variables with symbolic parameters. If Y  ~  geometric (p), for 

example, then the variance of the minimum order statistic  (r =  1 ) when n  =  6  items

> Variance(OrderStat(GeometricRV(p), 6, 1));

O ther measures, such as the median of this distribution, can be found with the 

use of additional APPL procedures. The median of the maximum order statistic 

when n =  15 items are sampled with replacement from a geometric distribution with 

param eter p =  |  can be found with the statements

> X := GeometricRV(2 / 5) ;
> Y := OrderStat(X, 15, 15);
> IDF(Y, 0.5);

which returns the median of this distribution as 7.

E x a m p le  3.5. (Sampling with replacement; Formulaic PDF) Let X  ~  Poisson(A). 

Draw n  =  3 items with replacement from this population and determine the PD F of 

the largest order statistic.

Solution: In order to find a formula for the PD F of -AT(3), where / ( z )  =  for

x  =  0 , 1 , 2 , . . . ,  simplify the following general expressions (in terms of x) to obtain

are sampled is y  i§p*-2o%*+i5p- 6 ) > which is determined with the statem ent

f x (3){0 ) =  [ / ( 0 ) ] 3 =  e 3A and

( * 0 3 YU yl J  ( * ! ) 2 \U  yl J  x !
A3xe~3A T(x,  A) A2xe - 2A (r (a :,A ))2 A*e~A 

(z !)3 ^  T(x)  ' (z !)2 ( r ( z ) ) 2 ' x\
e~x (A3xe _2A +  3A2xe ~ Ar ( z ,  A )z +  3AX ( r ( z ,  A))2 z 2)

(z ! ) 3
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where T(a,z)  =  f ^°e  lta idt is the incomplete gamma function. The APPL state

ments

> X := PoissonRV(lambda) ;
> OrderStat(X, 3 , 3 );

yield the above PD F as a single function

e~x (3XX ( r ( r ,  A))2 x 2 -I- 3A2 le _Ar ( r ,  X)x + X3xe~2X)
/*»<*> =  --------------------------------

for x  =  0,1, —  APPL procedures, such as O rderS ta t, are written so as to con

vert expressions involving gamma functions and incomplete gamma functions to their 

simplest form, which may include rewriting gamma terms as factorials, whenever 

possible. Especially in the case of problems w ith Poisson random variables, the user 

should see the PD F in its well-known form f { x )  =  rather than f ( x )  =  r(x+i)

for x  =  0 , 1 , __  □

3 .2 .2  S am p lin g  W ith o u t R ep la cem en t

E x a m p le  3.6. (Sampling without replacement; Finite support; Equally likely dis

tribution) (Hogg & Craig, 1995, page 231) Draw 15 cards a t random and without 

replacement from a  deck of 25 cards numbered 1 ,2 , . . . ,  25. Find the probability th a t 

the card numbered 1 0  is the median of the cards selected.

S o lu tio n : Let f ( x )  =  ^  for x  =  1, 2 , . . . ,  25. The population size is N  =  25, the size 

of the sample drawn is n  =  15, and the order statistic  being considered is r  =  8 . To 

calculate the probability that the median order statistic is x  =  1 0 , compute

Pr(X <8) =  10) =

_  1053
14858

S  0.0709,
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since X  has finite support and equally likely probability values.

The APPL statements to solve this problem are

> X := UniformDiscreteRVCl, 25);
> Y : = OrderStatCX, 15, 8, "wo"); # sampling without ("wo") replacement
> PDF(Y, 10);

which yield the exact solution . □

Of greater significance, the random variable Y  computed in Example 3.6 contains 

more than just the PDF value a t y = 10—it contains the distribution of the median, 

ranging from 8  to 18. The PD F of Y  as returned in Example 3.6 is

Y  ~  IT 13 208 1053 936 1287 7128 1287 936 1053 208 13 1
1 L2185 ’ 7429’ 14858’ 7429’ 7429 ’ 37145’ 7429 ’ 7429’ 14858’ 742 9 ’ 2185 J ’

[8,9,10,11,12,13,14,15,16,17,18], [“Discrete”, “PD F”]].

Furthermore, APPL can return the formulaic PDF for the r th  order statistic of 

Example 3.6 when n  =  15 items are drawn from the population without replacement. 

The statements

> X := UniformDiscreteRVCl, 25);
> Y := OrderStat(X, 15, r, "wo");

produce the correct PDF

Y  := 326^760 ( r  — l )  ( l 5  — r ) ]  ’ (x =  r ” 1 0  +  'I- [“Discrete” , “PD F”]

E x a m p le  3.7. (Sampling without replacement; Finite support; Non-equally likely 

distribution) Let X  be a random variable with PDF
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/(x )  =  <

P i

P2

P 3

P 4

X =  1

x =  1 0

X =  100

x =  1 0 0 0 ,

where Pi + p 2 + P 3 + P 4 =  1 and p,- >  0,z =  1,2, 3,4. Find the distribution of the 

median order statistic r =  2 when n =  3 items are sampled without replacement from 

the population.

S o lu tio n : The PDF for the median order statistic r  =  2 when n = 3 items are 

sampled is

fX(2) (*) =

r
P4 P2 P i

+
P4 P 2  P i

+
P4 P2  P I

+
P4 P 2  P i  ,

( 1 - P 4 ) ( 1 ~ P 2 - P 4 ) 1 - P 4 ) ( 1 ~ P 1 - P 4 ) 1 - P 2 ) ( 1 - P 2 - P 4 ) 1 - P 2 ) ( l - P l - P 2 )  '

P 4  P2  P i
+

P4  P 2  P i
+

P 3 P 2  P I
+

P3  P 2  P i  |
( l - p i ) ( l - p i - p 4 ) 1 - P l ) ( l - P l - P 2 ) 1 - P 3 ) ( 1 - P 2 — P 3 ) l - P 3 ) ( l ~ P l - P 3 )

P3  P2 P i
+

P 3  P 2  P i
+

P 3  P 2  P I
+

P3 P2  P i
( 1 - P 2 ) ( 1 - P 2 ~ P 3 ) 1 - P 2 ) ( l - P l - P 2 ) l - P l ) ( l - P l ~ P 3 ) 1 - P l ) ( l - P l - P 2 )

P4  P 3  P2
+

P4 P 3  P2
+

P 4  P 3  P2
+

P4 P 3  P2 |
( 1 _ P 4 ) ( 1 - - P 4 - P 3 ) 1 - P 4 ) ( 1 - P 2 - P 4 ) 1 - P 3 ) ( 1 - P 4 - P 3 > 1 - P 3 ) ( 1 - P 2 - P 3 )  '

P4 P 3  VI
+

P 4 P 3  P2
+

P4 P 3  P I P4 P 3  P i  1

( 1 - P 2 ) ( 1 ~ P 2 - P 4 ) 1 — P 2 ) ( l — P 2  - P 3 ) 1 P 4 ) (1  P 4  P 3 ) l - P 4 ) ( l ~ P l - P 4 )

P4 P 3  P i
+

P4  P 3  P i
+

P 4  P 3  P i
+

P4  P 3  P i
.  ( 1 - P 3 ) ( 1 ~ P 4 - P 3 ) 1 —P 3 ) ( l —P 1 - P 3 ) l - P l ) ( l - P l ~ P 4 ) l - P l ) ( l - P l ~ P 3 )

x =  1 0

x =  1 0 0 ,

which is found in APPL using the statements

> X := [ [ p i ,  p2, p3, p4] , [1 , 10, 100, 1000], ["D isc re te " , "PDF"]];
> OrderStatCX, 3, 2, "wo"); □

E x am p le  3.8. (Sampling without replacement; Infinite support) Let X  ~  geom etric(|). 

Find the probability that the maximum order statistic r  =  2 is five when n  =  2 items 

are drawn without replacement from the population.

S o lu tio n : Let X  ~  geometric (p) parameterized as

f ( x )  =  p (l -  p) X—1 x =  1 , 2 , . . . .
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The SF is

S ( x ) =  Pr(AT >  x )
OO

=  ^ Z f ( w )
VJ—X
oo

=  E p ^ - p ) ” ' 1
w = x

=  ( 1  - p ) * - 1 x  = l , 2 , . . .

by summing the geometric series. Also, since F(x)  +  S(x)  — f ( x )  =  1  for x  =  1 , 2 , . .  

the CDF is

F(x) = 1 -  ( 1  -  p ) - 1 +  p ( l  -  p ) * - 1 

=  1 -  ( 1  - p ) 1 1  =  1, 2, . . . .

Thus, the PD Fs of ATp) and AT^) when n  =  2 items are sampled w ithout replacement 

are

—  n f l  —

/**(.) -  +

xi =1 + 1

for x  =  1 , 2 , . . and

x 1 p(l  — p)Xl 1 p ( l  — p)x 1

/,„,(*> = Pd - P ) - E , + Tf f r l V *  • t1 -  P - r t - 1]

=  »2a  -  o i1- 1 V  ( i  - p ) 11-1 p ( i  - p )1 ' 1 - p ( i  - p )2x~2
i  — p ( i  — p ) x i _ 1  l — p (i — p ) x - 1Xl —1
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As a result, the PD F of the maximum order statistic X(2) for p =  1 /2  is

x+l x-1
©

X i - l

E \2 J_____
1 -  ( ^ Xlx i = l

+
21

( i ) 1  -  a:  
i - a r

, 2 x — l

x = 1 , 2 ,

and so

fX(2) (5 ) -  G ) '
4

E \21
i  -  (M

x i = 1  \ 2 /

xi

681
8680

, a ) 5 - » ) !

i  -  ( i ) 5

This probability value is computed in APPL with the statements

> X := GeometricRVCl / 2);
> Y := OrderStatCX, 2, 2, "wo");
> PDF(Y, 5); □

3.3 Range Statistics

One natural extension of the O rd e rS ta t procedure is RangeStat, a procedure which 

determines the PDF of the range of a sample of n  items drawn from a discrete 

population, either with or without replacement. Since R angeStat had not been coded 

in APPL for continuous distributions, the procedure was also extended to cover these 

distributions for use in Section 3.4, the bootstrap section.

3.3 .1  D iscre te  D istr ib u tio n s

Let AT be a discrete random variable with PD F f ( x ) and support x x, x2, ■ ■ ■, x #  €  Z + , 

where x x < x 2 < • • • <  x ^ .  Also, let f { x i ) =  pi for i =  1 , 2 , . . . ,  N .  Suppose n  items 

are sampled with replacement (which implies th a t the n  draws are independent) from 

the discrete population. The probability th a t the maximum value drawn is Xj and
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the minimum value drawn is Xi for i < j ,  or th a t the range is |Xj — Xi\, for those n 

draws is computed using the formula (Stockmeyer, 2001):

P r ( x (n ) =  Xj,xa)=x̂  = -  Y  {Pk)n - Y ^ n +  Y  (p̂ n
k=i  fc= i+ l k=i k = i + l

for i =  1 ,2 , . . . ,  IV, j  =  i, i 1 , . . . ,  N .  The term  ]Ci=z(Pfc)n is the probability that 

all sampled items lie between Xi and Xj inclusive. The term removes

the probability that the sampled items do not include x i: since this would result in a 

range which is less than \ x j  — £ ;| .  The term  (Pk)n removes the probability that 

the sampled items do not include Xj, since this would also result in a  range which is 

also less than |Xj — Xi\. The term Y2k=i+i(P*)” adds back in the probabilities that 

were removed twice (by the second and th ird  term s)—specifically, the probabilities of 

obtaining samples that included neither Xi nor Xj.

To demonstrate how this formula is used in the RangeStat procedure, let A- be a 

discrete random variable with PDF

f i x )  = <

0.5 x  — 1

0.3 x  = 5

0.2 x  = 9.

If n  =  3 values are sampled (with replacement) from the population, then the 33 

possible outcomes can be written as the  ten ordered sets {1, 1, 1}, {5, 5, 5}, {9, 9, 

9}, {1, 1, 5}, { 1 , 1 , 9}, {1 , 5, 5}, {1 , 9, 9}, {1, 5, 9}, {5, 5, 9}, and {5, 9, 9}. The 

possible range values are 0, 4, and 8 . The range statistic algorithm does the following:

1 . Two arrays, R S  and R P ,  are built, where R S  contains the range support values 

and R P  contains the corresponding range probability mass values. The arrays 

are initialized to contain all zeros. Given tha t the support is x x < x^ <  • • • <  x N,
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there are 2 ~  possible non-zero range support values, some of

which may be identical, and one support value of zero. Thus, the arrays are 

initialized to be of size +  1 . For the example random variable X ,  the

initial R S  and R P  arrays are

RS:

RP:

0 0 0 0

o

0 0
o

2 . Fill the first element of R P  with YliLi f i x i)Ni the probability tha t the range is 

zero. For the example random variable X , the arrays are

RS:

RP:

0 0 0 0

0.16 0 0 0

since (0.5) 3 +  (0.3) 3 +  (0.2) 3 =  0.16.

3. For i  =  1, 2 , . . . , N ,  j  =  i-f-1, z-f-2,. . . ,  IV, the difference Xj  — Xi  is computed and 

placed in R S  array cell k , where k =  2 ,3 , . . . ,  _|_ i .  The corresponding

probability, Pr(X (n) =  j , X ( i) =  z), is computed by the formula discussed on 

the previous page and placed in the R P  array cell k. The updated R S  and R P  

arrays in the example axe

RS:

RP:

0 4 8 4

0.16 0.36 0.39 0.09
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4. The APPL In s e r tio n S o r t  procedure uses an insertion sort algorithm to sort 

the array R S  and to make the appropriate updates to the R P  array. The R S  

and R P  arrays after sorting for the example are

RS:

RP:

0 4 4 8

0.16 0.36 0.09 0.39

5. The identical values in the range support array are combined and the appro

priate updates are made to the probability mass value array. Zeros at the end 

of the R S  array reflect the number of identical range values th a t are combined. 

For the example, since two range values of four are combined, one array cell 

containing zero appears at the end of the R S  (and R P )  array.

RS:

RP:

0 4 8 0

0.16 0.45 0.39 0

6 . The extraneous zeros axe removed from the range support and probability mass 

value arrays. The zeros (if any) a t the end of the R P  array are not probability 

values. The zeros exist because of the redundant values in R S .  Use the R P  

array to determine how many extraneous zeros exist, and reconstruct the R S  

and R P  arrays so the extra zeros are not included as part of the  arrays. The 

final R S  and R P  arrays for the example are

RS:

RP:

0 4 8

0.16 0.45 0.39
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E x am p le  3.9. When giving a multiple choice pre-calculus test, I have noticed that 

the probability tha t a student earns a certain score X  on the test has the following 

PDF:

f x ( x )  =  <

0 . 0 1 x  =  40

0.06

oinII
0 . 1 2 x  =  60

0.28

okIIH
0.37

o00IIH

0.14 x  =  90

0 . 0 2 x  =  1 0 0 .

After scoring a  test, I give students summary statistics about how they did as a 

class on the test. One of these statistics includes reporting the range score to them,

i.e., the difference between the highest and lowest test scores. At The Ohio State 

University, I had 200 students taking a particular test, while at Virginia Wesleyan 

College I had only 20 students who would take th a t same test. Ohio State students 

complained more than Virginia Wesleyan students about the test being too hard after 

looking a t the range score. W hy is this so?

S o lu tio n : APPL can be used to quantify this phenomena. Let X be the discrete 

random variable representing the typical scores of students on these tests. Assign Y 

as the range statistic of the scores at Ohio State, and assign Z as the range statistic 

of the scores a t Virginia Wesleyan. The statem ents

> X := [ [0 .0 1 , 0 .0 6 , 0 .1 2 , 0 .28 , 0 .3 7 , 0 .1 4 , 0 .0 2 ] ,
[40, 50, 60, 70, 80, 90, 100], [ " D isc re te " , "PDF"]];

> Y := R angeStat(X , 200);
> Z := R angeStat(X , 20);
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produce the rounded PD Fs for the ranges as

and

f v ( y )  =  <

f z { z )  =  <

0.4369 - 10- 86 II O

0.3825 - 10~ 37 y  =  io

0.3373 - 10~ 20 II N
5

O

0.6431 • 10- 8 *3 II CO O

0.2262 - 1 0 ~ 2 II o

0.1470 y =  50

0.8507 y =  60,

0.2321 - 10~ 8 z = 0

0.1827-10~3 oII

0.0140 • 10- 1 z  = 20

0.1620 z  =  30

0.4567 II o
0.3088 z  =  50

0.0583

otoII

As can be seen from the  PD F of Y ,  there is more than  a 99% chance at Ohio 

State that a range of 50 or more is reported on a test. In fact, with a probability of 

approximately 0.85, the range is 60. The high range score leads students to focus on 

the fact that very low scores, e.g., 40 and 50, are obtained and the test must be too 

hard. On the other hand, a t  Virginia Wesleyan the range is 40 approximately 45% 

of the time. In students’ minds, a  range of 40 means there is not a large discrepancy 

between high and low scores (as in the Ohio State classes). A large range indicates a 

large variation in grades. Although this can be a good for some students because it
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suggests there axe those who scored on the high end, most students focus on the fact 

th a t a high range indicates th a t low scores are obtained. □

If the RangeStat procedure is given three arguments, X, n, and "wo", then it 

returns the PD F of the range of the discrete random variable X  when n  items are 

sampled from the random variable’s population without replacement. In the without 

replacement case, assume, w ithout loss of generality, that the support of X  is Q =  

{1 , 2 , . . . ,  N },  where N  e  Z + .

In the without replacement case, the R angeStat algorithm basically follows the 

same steps as the O rd e rS ta t algorithm, including the use of the NextCombination 

and N extPerm utation procedures. If n  =  N ,  i.e., the entire population is sampled, 

then the PDF of the range, which is called Y  here, is

f ( v )  =  <

f

1 y — N  — 1

0  otherwise.

If n  =  2, 3 , . . . ,  N  — 1 in the  without replacement case, then a single-dimensional 

array of length N  — n  +  1 is defined to contain the PD F range values y  =  n  — 

l , n , . . . ,  iV — 1. A sin  the O rd e rS ta t procedure, the first lexicographical combination 

of n  items sampled from the sequence of integers 1 to TV is formed. Given a combi

nation, the algorithm generates all corresponding perm utations. The probability for 

each perm utation is calculated (as described in the Section 3.1.2), and then the max

imum and minimum values of th a t perm utation is determined. The perm utation’s 

range, i.e., the difference of its maximum and minimum values, is computed and then 

the appropriate array cell is incremented by th a t perm utation’s probability.

For example, let f ( x )  =  for x  =  1,2, . . . , 5 .  Suppose the perm utation

th a t the algorithm is currently processing is [5, 3, 2]. Then the  probability of this
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permutation is ^  (as computed in Section 3.1.2). The maximum and m i n i m u m  values 

of the perm utation are 5 and 2 , respectively, which means the range is 3. The PD F 

range cell y =  3 is incremented by

To demonstrate this algorithm, let X  be the discrete random variable with PD F

/(*) =

x  =  1 

x  = 2 

x  =  3.

If n  =  2 values are sampled (without replacement) from the population, then the 

possible outcomes are the ordered sets {1 , 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, and {3,

2}. The possible range values are one and two. To calculate the PDF of the range, the 

six permutations and their probabilities axe computed and added to the appropriate 

range array cells. The array cell that represents the probability that the range is one 

is computed as

Pr(F =  1) =  Pr(Xx =  1, X 2 =  2) +  P r ^  =  2, X 2 =  1) +  PrpG =  2, X 2 =  3) +  P r ^  =  3, X 2 =  2)

= i  + i  + i15 12  4 3

  U .
1 5 '

Thus, array cell one holds the value ^  while array cell two holds the value T , which 

is computed in a similar manner. The APPL statem ents

> X := [[1  /  6 , 1 / 3 ,  1 / 2 ] ,  [1, 2 , 3 ] ,  [ " D is c re te " , "PDF"]];
> RangeStat(X , 2 , "wo");

produce the range PD F

f ( y )  =
ii
15

_4_
15

y  = l 
y  = 2.
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3.3 .2  C ontinuous D istr ib u tio n s

Let X  be a continuous random  variable with support Q. and PD F f x ( x )  and CDF 

Fx {x). For n > 2, the jo in t PD F of and X (n) is (Hogg & Craig, 1995, pages 

199-200)

f x w ,xw (x(l), x (n)) =  n  - (re -  1 ) [Fx(3:(n)) -  Fx (x ( 1 ) ) ] n _ 2  • f x (xw ) - f x {xw )

for min{Q} <  <  X(n) <  max{fi}.

The goal is to determine the PD F of the range X ^  — . Using the transforma

tion technique, let Yi = X (n) — X^) and define the dummy transform ation Y2 =  X (n). 

Consider the one-to-one transform ations yi =  X(n) — X(i) and y2 = X(n), and their in

verses X(x) =  y2 — yi and X(„) = y2, so th a t the corresponding Jacobian of the inverse 

transformation is

d x (1 )

d y i

d x (1 )

d V 2
- 1  1

d x ( n )
d y i

d x ( n )

d y 2
0  1

The joint PDF of Yx and Y2 is

fYUY2(yu sfe) =  | -  i | ■ n  • (n -  \)[Fx {y2 ) — Fx (y2 -  yx)]n~2 ■ f x ( y 2 -  yi) ■ f x { y 2 )

for min{f2} < yx < y 2 < m ax{fi}. Hence, the PDF of the range Yi =  X(n) — X(i) is

J/ - m a x { Q }

n ■ (n -  l)[Fx (y2) -  Fx (y2 -  y i ) ] n ~ 2 • f x (2/2 — Vi) ■ f x ( y 2) dy2
yi

for 0  <  yi <  max{fi}.

E x am p le  3.10. (Parzen, 1960, page 328) Find the probability th a t in a random 

sample of size n  of a random variable uniformly distributed on the interval [0 , l] the 

range will exceed 0 .8 .
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S o lu tio n : Assume tha t n  > 2 since a range is being determined and a t least two 

values are necessary. Thus, the following APPL statements

> assume(n >= 2 ) ;
> X := UniformRVCO, 1 );
> Y := RangeStatCX, n) ;
> SFCY, 0 .8 ) ;

determine the probability as 1  — n (0 .8 ) ra_1  +  (n — l ) ( 0 .8 )n. □

E x a m p le  3.11. (Bain & Engelhart, 1992, pages 219-220) Consider a random sample 

of size n =  2 from a distribution with PDF f ( x ) =  2x  for 0 <  x  < 1. Find the  PD F 

of the range.

S o lu tio n : Define X to be the random variable of interest in APPL. The statem ents

> X := [[x  -> 2 * x] , [0, 1 ] , ["C ontinuous", "PDF"]];
> Y := RangeStatCX, 2 ) ;

produce the PDF of the  range Y ,  which is

8  4vz
f ( y )  =  ^  + - - 4 y  0 < y < l .6 6 □

3.4 Eliminating Resampling Error in Bootstrap

ping

Bootstrapping procedures require tha t B  bootstrap samples be generated in order to 

perform some statistical inference concerning a d a ta  set. Although the requirements 

for the magnitude of B  are typically modest, a practitioner would prefer to avoid the 

resampling error introduced by choosing a finite B , if possible. This section shows how 

APPL can be used to perform exact bootstrapping analysis in certain applications, 

eliminating the need for resampling in the analysis of a  da ta  set.
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3 .4 .1  In trod u ction

Using Efron and Tibshirani’s (1993) notation, consider the elimination of the genera

tion of B  bootstrap samples when performing a bootstrap analysis by calculating the 

exact distribution of the statistic of interest. There are several reasons for considering 

this approach:

•  A bootstrapping novice can easily confuse the sample size n  and number of 

bootstrap samples B.  Eliminating the resampling of the data  set B  times 

simplifies the conceptualization of the bootstrapping process.

•  In many situations, computer time is saved using the exact approach.

•  A practitioner does not need to be concerned about problem-specific require

ments for B , e.g., “B  in the range of 50 to 200 usually makes seb00t a good 

standard error estimator, even for estimators like the median” (Efron and Tib- 

shirani, 1993, page 14) or “B  should be >  500 or 1000 in order to make the 

variability of acceptably low” for estimating 95th percentiles (Efron and Tib- 

shirani, 1993, page 275).

•  Exact values are always preferred to approximations. One should not add re

sampling error to sampling error unnecessarily.

By way of example, this section shows how APPL can be used to perform exact 

bootstrap analysis. The use of APPL eliminates the resampling variability that is 

present in a bootstrap procedure. The application area tha t is presented here is the 

estimation of standard errors.
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3 .4 .2  E s t im a t io n  o f  S ta n d a r d  E rro rs

The standard error of the sample mean, s/y /n ,  is useful when comparing means, but 

standard errors for comparing other quantities (e.g., fractiles) are often intractable. 

This section considers the estimation of standard errors associated with the rat sur

vival da ta  given in Table 3.2 (Efron and Tibshirani, 1993, page 11). Seven rats are 

given a treatm ent and their survival times, given in days, are shown in the first row 

of the table. Nine other rats constitute a control group, and their survival times are 

shown in the second row of the table.

Table 3.2: R at survival data.

Group D ata n Median Mean Range

Treatment 16, 23, 38, 94, 99, 141, 197 7 94 8 6 . 8 6 181

Control 10, 27, 30, 40, 46, 51, 52, 104, 146 9 46 56.22 136

E x a m p le  3.12. (Comparing medians.) Consider first the estimation of the standard 

error of the difference between the medians of the two samples. The standard boot

strapping approach to estimating the standard error of the median for the treatm ent 

group is to generate B  bootstrap samples, each of which consists of seven samples 

drawn with replacement from 16, 23, 38, 94, 99, 141, and 197. The sample standard 

deviation of the medians of these B  bootstrap samples is an estim ate of the standard 

error of the median. Using the Splus commands

s e t . s e e d ( l )
x <- c(16 , 23, 38, 94, 99, 141, 197) 
medn <- fu n c tio n (x ){ q u a n ti le (x , 0 .50 )}  
b o o ts tra p (x , medn, B = 50)

yields an estimated standard error of 41.18 for the treatm ent da ta  with B  — 50 

bootstrap replicates. With the s e t . s e e d  function used to call a  stream  number
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corresponding to the associated column, Table 3.3 shows the estimated standard errors 

for several B  values, where the B  =  + 0 0  column will be calculated subsequently.

Table 3.3: Bootstrap estimates of the standard  error of the median.

B  =  50 B  =  100 B  =  250 B  =  500 B  =  1000 B  = - ( - 0 0

Treatment

Control

41.18

20.30

37.63

1 2 . 6 8

36.88

9.538

37.90

13.10

38.98

13.82

37.83

13.08

There is considerable resampling error introduced for smaller values of B. The 

B  =  + 0 0  column of Table 3.3 corresponds to the ideal bootstrap estimate of the 

standard error of 0 , or sej=.(0 *) =  lima-^+oo sea, to use the terminology and notation 

in Efron and Tibshirani (1993, page 46).

The APPL statem ents below eliminate the resampling error (i.e., B  =  +oc):

> tre a tm e n t := [16, 23, 38, 94, 99, 141, 197];
> X : = B o o ts trap R V (trea tm en t);
> Y := O rderS tat(X , 7 , 4 ) ;
> s q r t(V a r ia n c e (Y )) ;

The BootstrapRV procedure creates a discrete random  variable X  that can as

sume the values 16, 23, 38, 94, 99, 141, and 197, each with probability The call 

O rd e rS ta t (X, 7 , 4) determines the distribution of the fourth order statistic in seven 

draws with replacement from the population associated with X , i.e., the distribution 

of the median. This call returns the distribution of the random variable Y  as

f ( y )  = <

8359
823543

80809
823543

196519
823543

252169
823543

196519
823543

80809
823543

8359
823543

y = 16 

y  =  23 

y  =  38 

y = 94 

y — 99 

y = 141 

y = 197.
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Finally, s q r t  (V ariance (Y)) returns the standard error as §23543 \/242712738519382 

which can be approximated using Maple’s e v a lf  procedure as 37.83467. In a simi

lar fashion, the ideal bootstrap estimate of the standard error of the median can be 

calculated in the control case with the APPL statements

> control := [10, 27, 30, 40, 46, 51, 52, 104, 146]
> X := BootstrapRV(control);
> Y := OrderStat(X, 9, 5);
> sqrt(Variance(Y));

which yields \/25662937134123797402 ^  13.07587. Finally, although the

difference between the two sample medians (94 — 46 =  48) seems large, it is only 

4 8 /\/37.832 +  13.082 =  1.19 standard deviation units away from zero, indicating that 

the observed difference in the medians is not statistically significant. Had the stan

dard bootstrapping procedure been applied with B  =  50 bootstrap replications, Table 

3.3 indicates tha t the number of standard deviation units would have been estimated 

to  be 48/\/41.182 +  20.302 =  1.05. Although the conclusion in this case is the same,

the difference between using B  =  50 and B  =  + 0 0  could result in different conclu

sions for the same data set. □

E x a m p le  3-13- (Comparing means.) Although the standard error of the mean can 

be expressed in closed-form, the previous analysis and attem pt to compare the sample 

means to  illustrate how to adapt APPL for comparing means is continued. Splus can 

be used to  create bootstrap estimates given in Table 3.4 with the commands

s e t . s e e d ( l )
x <- c (1 6 , 23, 38, 94, 99, 141, 197)
b o o ts tr a p (x , mean, B = 50)

producing the upper-left-hand entry.

The APPL statements required to produce the B  =  + 0 0  column associated with

the treatm ent case of Table 3.4 are
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Table 3.4: Bootstrap estimates of the standard error of the mean.

B  = 50 B  = 100 B  = 250 B  =  500 B  = 1000 B  =  +oo

Treatment

Control

23.89

17.07

24.29

13.83

23.16

13.40

24.36

13.13

23.75

13.55

23.36

13.35

> n := 7;
> data := [16, 23, 38, 94, 99, 141, 197];
> X := BootstrapRV(data);
> Y := ConvolutionIID(X, n);
> Y := Transform(Y, [[x -> x / n], [-infinity, infinity]]);
> sqrt(Variance(Y));

which yield the PD F of the mean Y as

1/7 7 =  1/823543 y =  16

Q / 7 7 =  1/117649 y =  17

Q / 7 7 =  3/117649

00rHII

Q / 7 7 =  5/117649 y =  19

Q / 7 7 =  1/117649 y =  134/7

Q / 7 7 =  5/117649 y =  2 0

1/7 7 =  1/823543 y =  197

and the standard error as

|v ' 3 2 7 6 4 9 ,

or approximately 23.36352. This is, of course, equal to \ J ^  where

s is the standard deviation of the treatm ent survival times. This fact is the fortunate 

consequence of the mathem atical tractability of the standard eiror for means. Other, 

less fortunate, situations can be handled in a similar manner.
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Similar APPL statem ents for the control case yield an estimated standard error 

in the  B  = + 0 0  case of

^v/129902,

or approximately 13.34886.

To complete the analysis of the difference of the means between the treatm ent and 

control group (86.86—56.22 =  30.64), this difference is only 30.64/\/23.362 +  13.352 =  

1.14 standard deviation units away from zero, indicating that the observed difference 

in the medians is also not statistically significant. □

E x a m p le  3.14. (Comparing ranges.) The previous two examples have estim ated the 

standard errors of measures of central tendency (e.g., the median and mean). The 

estim ation of the standard error of a measure of dispersion, the sample range R, will 

now be considered.

The APPL statements required to produce the  standard error of the range R for 

the treatm ent case are

> n := 7;
> d a ta  := [16, 23, 38, 94, 99, 141, 197];
> X := B oo tstrapR V (data);
> R := R angeStat(X , n ) ;
> sq r t(V a r ia n c e (R )) ;

which yield

1 6 ^ 8 8 7 8 1 5 0 9 9 8 3 ,

or approximately 35.45692. Similar APPL statem ents for the control case yield an 

estim ated standard error for the range as

4785969^5666287777334555,

or approximately 31.4762.
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To complete the analysis of the difference of the ranges between the treatment and 

control group (181 — 136 =  45), we observe th a t the difference is 45/>/35.462 -r 31.482 

=  0.95 standard deviations away from zero, indicating that the observed difference in 

the range is not statistically significant. □

E x a m p le  3.15. (Confidence interval for range.) The previous three examples esti

m ated the standard errors of measures of central tendency and a measure of disper

sion. This example constructs a confidence interval for the sample range of the rat 

treatm ent group.

Let R  be the range of the n  =  7 observations. The APPL statem ents

> n := 7;
> d a ta  := [16, 23, 38, 94, 99, 141, 197];
> X := B oo tstrapR V (data);
> R := RangeStatCX, n)
> IDF(R, 0 .025 );
> IDF(R, 0 .975 );

result in a 95% confidence interval of 76 <  R  < 181. This confidence interval has the 

unappealing property tha t the point estim ator, R  =  181, is also the upper limit of 

the confidence interval.

Trosset (2001) suggested an alternative m ethod for computing a confidence inter

val for the range R , which involves param etric bootstrapping. F irst, an exponential 

distribution with mean 1/9 is fit to the treatm ent da ta  using the A PPL MLE (maximum 

likelihood estimator) procedure. The procedure identifies the param eter estimate for 

the distribution as 9 =  The (continuous) distribution of the sample range of 

n  =  7 observations drawn from an exponential population with param eter 9 =  ^  is 

then computed. The confidence interval is determined with the CDF procedure.

The following APPL statem ents yield a 95% confidence interval for the range R  

for n  =  7 samples as 6 8  <  R  <  475.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



96

> d a ta  := [16, 23, 38, 94, 99, 141, 197];
> X := E xponentialR V (theta) ;
> th e ta h a t  := op(MLE(X, tre a tm e n t, [ t h e ta ] ) ) ;
> Y := E xponen tia lR V (thetahat) ;
> Z := RangeStat(Y , 7 ) ;
> IDF(Z, 0 .025);
> IDF(Z, 0 .975);

The last two statements fail since IDF is currently designed to analytically (instead 

of numerically) determine quantiles. Thus the following two APPL statem ents are 

required to return the endpoints of the 95% confidence interval.

> lo  := fsolve(CDF(Z, a) = 0 .025 , a = 0 . .  100);
> h i  := fsolve(CDF(Z, a) = 0 .975 , a = lo  . .  500); □

3 .4 .3  C onclusion

For moderate sample sizes and test statistics having distributions that APPL can 

determine, the exact approach to bootstrapping can reduce computation time and 

eliminate resampling error.
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Chapter 4

Convolutions and Products

An im portant operation in probability theory is to  calculate the distribution of the 

convolution of two independent random  variables X  and Y .  Applications of con

volutions appear in many areas of m athem atics, probability theory, physics, and 

engineering. Most texts devote the m ajority of their attention to convolutions of con

tinuous random variables, rather than discrete random variables. The distribution of 

Z  =  X  + Y ,  where X  and Y  are continuous and independent, can be obtained as

F z( z )  =  Fx +y (z )

= P r {X  +  Y < z )

= J J  f x { x )  f Y {y )dxdy

=  [  [  f x ( x )  f Y {y)dxdy
J  — oo */ — oo

=  f  f  f x { x ) d x f Y {y)dy  
J —oo J —oo

/ oo
Fx {z  -  y) f Y (y) dy.

■OO

By differentiating Fz{ z ) ,  we obtain the PD F f z (z) of Z  =  X  + Y ,  which is the

97
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convolution of the PDFs f x ( x )  and f y ( y )  of the random  variables X  and Y.  The 

convolution formula for f z {z )  is

The following example illustrates the use of this formula.

E x a m p le  4.1. (Hogg & Craig, 1995, page 179) Determine the PDF of Z  = X  + Y,  

where X  and Y  are iid random variables with PD Fs fx{%) =  e_ I, 0 < x  < oo, zero 

elsewhere and f y { y ) =  e~y, 0  <  y  <  oo, zero elsewhere.

S o lu tio n : The PD F f z {z) is

We now turn  to the case in which X  and Y  are discrete random variables. W ithout 

loss of generality, assume th a t the supports of X  and Y  are integer valued. For 

computing the PD F of Z  =  X  4 - Y  in the discrete case, there axe several approaches. 

The event { X  + Y  = z},  z  €  Z, can be written as the union of the disjoint events

=  C, y  = z — C}, { X  =  C +  1, Y  = z — (C +  1)}, { X  =  z  — C, Y  = £},  where

C is the minimum of the union of the support values of X  and Y.  The PDF f z ( z )  

of the convolution of the PD Fs of the independent random  variables X  and Y  (with 

integer supports) can be computed as

f z {z )  = f x+y{z)  =  f x { z  -  y) f y(y)  dy.

z  > 0 . □

Pr(Z =  z) = Pr(X + Y  = z)

= J ^ P r  {X = k , Y  = z - k )
k=C
z-C

=  ]T^Pr(X =  fc)Pr(F — z — k). 
k=c

(4.1)
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The following example illustrates the use of this discrete convolution formula. 

E x a m p le  4.2 . (Ross, 1998, pages 270—271) If X  and Y  are independent Poisson 

random variables with respective parameters \ \  and A2, compute the PDF of Z  =  

X  + Y.

S o lu tio n : The PD F of a Poisson random variable X  with param eter A is f x  (r) =  

e r  =  0 , 1 , 2 ,  Since Q =  min{0 , 1 , 2 , . . . }  =  0 , thenXt

P r (Z = z) = Pr ( X  + Y  = z)
Z

=  5 ^  P r(X  =  k, Y  =  z -  k)
k=0

z

= J3Pr(X = fc)-Pr(r = z-A;)
k = 0

_  ^  e~Xl A* e~X2\ 2z~k

z  \  k \  z — k  'M <*2

^ k l  (z - k ) !
k = 0

e-(A i+ A 2) 2-1
=  ---- ^ -----2 ^  l fc) iAl (binomial series)

fc= 0  " '
g~ (A1+A2)

=  -----—----- • (Ai +  A2) z z  =  0 , 1 , 2 , . . . .

Thus, Z  =  X  +  Y  has a Poisson distribution with param eter Ai 4 - A2. □

Grinstead and Snell (1997, page 286) state  th a t if one wants to sum more than 

two iid random variables, then the PDF for Z  can be determined by induction. Let

Zn =  X i + X 2-\------ \-Xn be the sum of n  independent random variables with common

PD F f ( x ) defined on the integers. Then the PD F of Z\  is f {x) .  We can write

Z{ =  Zi_i  +  X i ,
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for i =  2, 3, . . . ,  n. Thus, since we know the PDF of X, is f ( x ) ,  for i =  1 ,2 , . . . ,  n, 

we can find the PDF of Zn by induction. When summing more than  two iid random 

variables, our C onvolutionllD  procedure (see Example 4.8 in Section 4.4) uses this 

inductive process to compute the PD F of the convolution.

For example, let X i, X 2, and X 3 have PDFs f ( x ) =  1/6 for x  =  1 , 2 , . . . ,  6 . If 

Z2 =  X \  +  X 2, then the PDF f z 2iz ) is

2  =  2,3, . . . ,  7 

2  =  8,9, . . . ,  12.

The PDF of Z3 =  X \  4- X 2 +  X 3 is the convolution of the PD Fs of Z2 and X 3.

For example, P r (Z3 =  4) =  Pt(Z2 =  3)-Pr(X 3 =  1)+ Pr(Z 2 =  2)- P r(X 3 =  2) =

-2. . l , _L . i  — _L 
36 6 ' 36 6 —  72"

Due to the m athem atical intractability in implementing the discrete convolution 

formula (Equation 4.1) for certain non-identically distributed random  variables (e.g., 

X  ~  Poisson(A), Y  ~  geometric(p)) and the inefficiency in making computations 

with this formula for random vaxiables with arbitrary supports (e.g., X  with sup

port { -2 1 6 ,-5 7 ,2 3 ,8 1 }  and Y  with support { -1 0 0 2 ,-15 ,2 ,62 ,211}), only certain 

convolutions can or should be computed using this formula. For random variables 

with arbitrary supports, the discrete convolution formula can be used, but it is often 

inefficient because one or both of the random vaxiables have support values ranging 

over a large domain of non-adjacent integer values. The following example displays 

the inefficiency that can be encountered by using the convolution formula in Equa

tion 4.1, even for random variables with only a small number of support values with 

non-zero probability.

E x a m p le  4.3. Suppose X  and Y  are independent discrete random  variables with

f z 2(z) =

2  - :  

~36" 
13 -  

36
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PD Fs defined as

f x ( x )  =  <

0.15 x  =  —3 /

0.25 x  =  — 1

0 . 1 x  =  2 f r ( y )  =  <

0.3 x  =  6

0 . 2 x  =  8 ,

0 . 2 y = -  2

0 . 1 y  =  i

0.3 y  =  5

0.4 y  =  8 .

Compute the PDF of Z  = X  + Y .

S o lu tio n : The support values for Z  are z =  {—5, —3, —2, 0, 2 ,3,4, 5 ,6 ,7 ,9 ,10 ,11 ,13 , 

14,16}. We’ll use the formula P r(-^ = k , Y  =  z —A;), where C =  —3, to compute 

only P r(Z  =  4).

Pr(Z  =  4) =  5 3  Pr(X =  k , Y  = 4 — k)
f c = -  3

=  P r(X  =  - 3 )  • Pr(Y =  7) +  P r(X  =  - 2 )  - Pr(Y  =  6 ) +  

P r(X  =  - 1 ) • Pr(Y  =  5) +  P r(X  =  0) • Pr(Y  =  4) +  

P t ( X  =  1 ) - Pr(Y  =  3) +  P r(X  =  2) • P r(F  =  2) +  

P r(X  =  3) - Pr(Y  =  1) +  P t ( X  =  4) • Pr(Y  =  0) +  

P r(X  =  5) - Pr(Y  = - 1 ) +  P r(X  =  6 ) - Pr(Y  =  -2 )  +

P r(X  =  7) • Pr(Y  =  -3 )

=  0.15 • 0 +  0 • 0 +  0.25 - 0.3 +  0 - 0 +  0 • 0 +  0.1 • 0 +

0 • 0.1 +  0 - 0 +  0 • 0 +  0.3 • 0.2 +  0 - 0

=  0.135.

The probabilities for the other support values are computed similarly. Because of 

the tedious calculations needed to compute the PD F of Z  by the discrete convolution
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formula (Equation 4.1), we’ll compute it fully in the next example using moment 

generating functions (MGFs). □

Unlike the discrete convolution formula, the algorithm to be presented in this 

paper avoids all of the zero term computations in the construction of the PDF of 

Z.  Also, another way to compute the PDF of Z, while avoiding the numerous zero 

terms, is to use the moment generating function technique.

E xam ple 4.4. Suppose X  and Y  are the discrete random variables defined in Ex

ample 4.3 and Z  =  X  + Y .  Find the PDF of Z  using the moment generating function 

technique.

S o lu tion : Since X  and Y  are independent, the MGF of Z  is

M z {t) =  E{et(̂x+Y))

= E{et x ety )

= E{et x )E {e tY)

= M x  (t) My(t).

The MGFs of X  and Y ,  respectively, are

M x (t) =  E(et x ) =  0.15e-3* +  0.25e_t +  O.le2* +  0.3e64 +  0.2e84,

and
M Y (t) = E (e tY) =  0.2e-2t +  O.le* +  0.3e5t +  0.4e8t 

for —oo <  t  < oo. The MGF of Z  is

M z (t) = 0.03e"5t +  0.05e"3t +  0.015e"2t +  0.045 +  0.045e2t +  0.01e3t +  

0.135e44 +  0.06est +  0.04e6t +  0.16e7t +  0.02e9t +  0.04e10t +

0.09eu t +  0.06e13t +  0.12eu t +  0.08e16t
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for —oo <  t  < oo. Thus, the PDF of Z  is

0.03 2  =  — 5
0.05 2  =  — 3
0.015 2  =  - 2

0.045 2  =  0

0.045 2  =  2

0 . 0 1 2  =  3
0.135 2 = 4
0.06 2  =  5
0.04 2  =  6

0.16 2  =  7
0 . 0 2 2  =  9
0.04 2  =  1 0

0.09 2  =  1 1

0.06 2  =  13
0 . 1 2 2  =  14
0.08 2  =  16.

In complicated examples, especially those involving continuous random variables, 

using the moment generating function technique to obtain convolution functions can 

be more efficient than direct summation or integration. Along the same lines as the 

moment generating function technique, the probability generating function technique 

can be used for determining the PD F of the convolution of discrete random variables 

with nonnegative integer-valued supports. Unfortunately, the implementation of these 

techniques in a computer algebra system (Maple) has drawbacks when the supports 

of the random variables X  and /or Y  are not integer-valued. These implementation 

issues are discussed in Section 4.3.

Besides the integration/summation and generating function methods already de

scribed, Parzen (1960, page 395) describes a method for using the characteristic func

tions of independent random variables to  compute their convolution. In order to use 

this method, though, one must know the inversion formula of the PD F of a random 

variable in terms of its characteristic function. The complexity of the inversion also
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makes this m ethod unappealing for complicated or arbitrary distributions.

The purpose of this chapter is to present an algorithm for d eterm in in g  the distri

butions of convolutions of discrete random variables, especially those with finite arbi

trary supports. The algorithm handles well-known distributions, such as the binomial 

and Poisson, but was written primarily for arb itrary  distributions with m oderate car

dinality of their support. Computer algebra systems make it feasible to  determine 

the distributions of convolutions for these types of distributions.

Section 4.1 describes the algorithm for determ ining the PDF of the convolution 

of discrete random  variables. The algorithm  th a t was constructed to compute this 

convolution appears in Section 4.2; implementation issues that arose when the algo

rithm was coded in a computer algebra system are given in Section 4.3. Section 4.4 

provides a collection of examples tha t can be solved with the convolution algorithm.

4.1 Conceptual Framework

The convolution of two continuous random variables can be computed by the defini

tion of a convolution presented in the introduction, bu t the definition does not give 

insight into the  difficulty of this com putation for certain random variables, such as 

those tha t are piecewise defined random variables. Glen et al. (2001) developed an 

algorithm for computing the distribution of the product of two continuous random 

variables in a  com puter algebra system. In order to obtain the convolution of con

tinuous random  variables X  and Y ,  one can transform  X  and Y  by the function 

gi(w) =  log(iu), compute their product with the product algorithm, and transform 

the resulting product by the function g2(^ ) =  to obtain the convolution of X  and 

Y.  Since an algorithm  for computing the convolution of two continuous random  vari

ables was already in place, the next natural progression was to construct an algorithm 

for computing the  PD F of the convolution of two discrete random variables.
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One way to compute the PD F of the convolution of the PDFs of two independent 

discrete random variables is by what we call the “brute force method.” Let X  have 

support Qx  = %n} and Y  have support Qy  =  {yi-,V2 , ym}- This

method does just what the name implies, it computes all possible sums between 

and Qy  by brute force, e.g., X i + y i , X i + y 2l . . . , X i  + ym, x 2 + y i , x 2 +y2, . . . ,  arn +  

y m -i ,xn + ym. The sums are placed in an one-dimensional array, called s, of length 

n -m .  The corresponding probabilities for each of these sums, f x ( x \ )  - fy(y i) ,  f x { x  1 ) * 

fy{V2 ), • - -, f x (xn )  - fy{ym)i  are stored in an one-dimensional array called Probs, also 

of length n ■ m.  The probability in position ProbSi corresponds to the sum in position 

s,-, i =  1 , 2 , . . . ,  n  • m.

As an example, let X  and Y  be the random variables introduced in Example 4.3. 

The arrays s and Probs for the random variables X  and Y  are

s =  [-5 , - 2 ,  2, 5, - 3 ,  0, 4, 7, 0, 3, 7, 10, 4, 7, 11, 14, 6 , 9, 13, 16]

and

Probs =  [0.03, 0.015, 0.045, 0.06, 0.05, 0.025, 0.075, 0.1, 0.02, 0.01,

0.03, 0.04, 0.06, 0.03, 0.09, 0.12, 0.04, 0.02, 0.06, 0.08].

We assume th a t s is unsorted and may contain identical values (such as 0, 4, and 7 in 

this particular example). The array s is sorted and appropriate updates are made to 

the corresponding elements in the array Probs. After sorting, the arrays s and Probs 

are

s =  [ -5 , - 3 ,  - 2 ,  0, 0, 2, 3, 4, 4, 5, 6 , 7, 7, 7, 9, 10, 11, 13, 14, 16]

and

Probs =  [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08].
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Last, the redundancies in s are removed and the appropriate probabilities correspond

ing to those redundancies are combined in Probs. The final arrays are

s =  [-5 , -3 ,  - 2 ,  0, 2, 3, 4, 5, 6 , 7, 9, 10, 11, 13, 14, 16]

and

Probs =  [0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16,

0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

The algorithm first employed by the C onvolution procedure to sort the array 

s was insertion sort (Weiss, 1994, pages 254-255), which is contained in the APPL 

In s e r tio n S o r t  procedure. When n - m  is small, the simplicity of insertion sort 

makes it an appropriate choice. The general strategy of insertion sort is to partition 

the array s into two regions: sorted and unsorted. Initially, the entire array s is 

considered unsorted, as already discussed. At each step, insertion sort takes the first 

value in the unsorted region and places it in its correct position in the sorted region. 

The entire array s will be sorted after the final element in the n  • m array position is 

inserted.

Unfortunately, for random variables X  and Y  with large support sizes n  and m, 

such as n — m  =  1 0 , insertion sort is inefficient. Since insertion sort is an 0 ( N 2) 

algorithm, where N  = n • m  in our setting, it is not an appropriate method for 

sorting lists containing more than a hundred or so elements. For this reason, another 

sorting algorithm, heapsort (Weiss, 1994, pages 260-262), was chosen to sort the 

array s. Heapsort uses a heap, which is a  binary tree with special properties, to sort 

s. Heapsort is an 0 ( N  ■ log(N)) algorithm (Carrano et al., 1998, page 430).

Heapsort builds the array s as a maximum heap da ta  structure. It then swaps the 

maximum element (the root) of the heap with the element in the last array position 

sn m- The heap is rebuilt with the remaining unsorted elements in array positions S\
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through sn.m_ i- The maximum element of the new heap is then swapped with the 

element in the second to last position of the array s, which is position sn.m_i. Now 

the last two positions in s are sorted in ascending order. The heap structure is again 

restored with the remaining unsorted elements in array positions s i through sn.m_2 - 

This swap and rebuild process repeats itself until all elements are removed from the 

unsorted region of the heap and placed in ascending order from the front to the back 

of the heap. Heapsort proved more efficient than  insertion sort, especially for large 

values of N.  The respective CPU times for a given example using insertion sort and 

heapsort are provided in Section 4.3 for comparison.

Shellsort, an improved insertion sort, is the algorithm employed by the m athe

matical software package Maple to sort polynomials (Maple 6 ’s online help guide, 

2000). Since Shellsort’s “performance is quite acceptable in practice, even for N  

[number of elements] in the tens of thousands” (Weiss, 1994, page 260), we take ad

vantage of Maple’s sorting algorithm for polynomials (when possible) by using the 

moment generating function technique to compute the convolution of discrete ran

dom variables. The moment generating functions for X  and Y ,  which are M x { t )  and 

M y ( t )  respectively, are first computed. Next, the product of the moment generating 

functions, M z ( t ) ,  is computed. We manipulate the terms of the moment generat

ing function with Maple’s expand procedure so th a t they are written in a fashion 

tha t Maple interprets as polynomials terms. For example, if the moment generat

ing function is M z ( t ) =  then expand(M.z(£)) returns M z ( t ) as

5  (e4)3+ l  (e4)2+ |  (e4)5. The terms of the resulting expanded moment generating func

tion are then sorted in descending order by the constant appearing in the exponent of 

each e4 term. Sorting the example expression M z { t ) returns |  (e4) 5 +  |  (e4) 3 + 1 (e4)2. 

The probability and support values are extracted from the terms of the expression 

M z i t ) ,  and the PD F of the convolution is formed. The PDF for the example expres-
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sion Mz(t)  is

f z ( z )  = <

f
1 
6

x
3

1
2

2 =  2 

2 =  3 

2 =  5.

Although in theory this is an ideal m ethod, Maple recognizes tha t expressions, 

such as 4- 4- \e^5At\  are not truly polynomials and will incorrectly sort

expressions with non-integer valued constants in the exponents. Since the moment 

generating function M z (t) may not always have integer constants for exponents, the 

moment generating function technique for computing convolutions is only reasonable 

to use for integer supports. Using probability generating functions to compute the 

PD F of a convolution of random variables results in the same complications. Fur

ther implementation issues faced by moment and probability generating functions are 

discussed in Section 4.3.

As suggested by Nicol (2000), the sum array s can be constructed in such a way 

th a t the  next largest sum element is placed in s as s is being built. Instead of 

constructing the array s first and then sorting it, the new algorithm constructs s by 

sequentially appending the next ordered element. We refer to  this method as the 

“moving heap m ethod,” and it involves building, deleting, and inserting sums into a 

minimum heap data  structure. A minimum heap contains its smallest element in the 

root (the top node of the heap), rather than  its largest as in a maximum heap.

The idea behind this sorting algorithm  is the construction of a two-dimensional 

“conceptual” array A. The array A  is not instantiated to save memory, but is helpful 

in explaining the nature of the algorithm. The array A  has m  -1-1 rows and n + 1 

columns. The array A, illustrated in Example 4.5, is displayed in an unusual manner 

in order to resemble the axes in the Cartesian coordinate system. W ithout loss of 

generality, we assume that the supports of X  and Y  are arranged in increasing order;
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i.e., Xi < x 2 <  • - • <  x n and j/i <  y2 <  * - - <  Vm- The array cell (£, j )  contains the 

sum =  yi +  Xj for £ =  1,2, . . . ,  m  and j  =  1,2, . . . ,  n. The cells in row m  +  1 of 

A  hold a 0 or 1 for each column j  =  1,2, . . . ,  n to indicate whether the cell in column 

j  is “active,” which means its entry is in the minimum heap. Thus Am+ij  =  0  or 1  

for j  =  1,2, . . . ,  n. Likewise, the cells in column n  + 1  of A  also hold a 0  or 1 for each 

row i  =  1 , 2, . . . ,  m  to indicate whether the cell in row i is “active”; i.e., A itU+x =  0 

or 1 for i =  1 , 2 , . . . ,  m.  The (ra +  1 , n + 1 ) cell is not used in the algorithm. Example 

4.5 illustrates what is meant by an “active” cell.

Since xj < xj+x for j  =  1,2, . . . ,  n  — 1 and yi < yi+x for i =  1,2, . . . ,  m  — 1, 

the entry in cell (£, j )  is always guaranteed to  be less than both the entries in cells 

(i +  1 , j )  and (£, j  +  1 ); i.e., A ^ j  < A +i,j and A i j  < A itj +i. This result, along with 

other proven properties of the array A  in Appendix C, allow the algorithm to  move 

the smallest number of candidate entries for the next largest sum from the array A  

to the minimum heap. Thus this algorithm moves from the southwest cell to  the 

northeast cell of the array A  placing the next largest sum into s after first placing 

the competing sums into a minimum heap.

Since this process and its intricacies are best explained by an example, we’ll rein

troduce X  and Y ,  the random variables from Example 4.3.

E x a m p le  4 .5 . Let X  and Y  have PDFs:

0.15 x  =  —3

0.25 x  = — 1

f x ( x )  =  o .l x  =  2

0.3 x  =  6

f v ( y ) =  <

\

0 . 2  y =  - 2

0 . 1  y = 1

0.3 y =  5

0.4 y =  8 .
0.2

Use the “moving heap method” to determine the PD F of Z  =  X  +  Y.
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Solu tion : Construct the 5 x 6  array A. Set Aij7l+i =  A,-t& =  0 for i =  1 , 2 , 3,4 and 

Am+i,j = A 5j  =  0 for j  =  1,2, 3 ,4 ,5 . The smallest value in A  is positioned in cell 

(1 , 1 ) and is A.i)X =  yi +  x x =  —5. The algorithm designates the cell (1 , 1 ) as an 

“active” cell in A  by setting A m+it i =  A5)i = 1  and A i>n+i =  A i i6  =  1- The zeros in 

the other cells of row five and column six remain. Figure 4.1 displays this initial array. 

The entries of A  increase in value as one moves up, to  the right, or a combination of 

both (as in the Cartesian coordinate system).

row 5 1 0 0 0 0

row 4 8 0

row 3 5 0

row 2 1 0

row 1 - 2 - 5 1

- 3  
col 1

- 1  

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.1: Array A  w ith active cell (1, 1), which contains the entry AXjl =  —5.

As in the brute force method, the one-dimensional array s of length n - m  holds 

the sums of the supports of the random variables X  and Y .  The corresponding 

probabilities for each of these sums will again be stored in the one-dimensional array 

called Probs, also of length n  • m.  Clearly, the first (smallest) sum to be placed in the 

first position, s x =  —5, of the array s is A1)X. Accordingly, fx(%i)  • f y ( y i) =  0.03 is 

placed in the first position, Probsi , in the Probs array. After setting sx =  4 Xi x =  —5 

and Probsi =  P r (Z  =  A X)1) =  f x ( x i ) '  f y iv i )  =  0.03, the cell (1, 1) becomes inactive. 

In order to reflect the absence of an element in the first row and first column, reset
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A m+\,\ =  A 5ji =  0 and Aii7H_i =  =  0. The next two cells to become “active” (i.e.,

these cells may contain the next largest sum) in the array A  are *41 )2  =  y\ + x 2 =  — 3 

and .42, i =  y2 +  =  —2- Since cell (1 , 2) in A  is now active, reset -41 i6  =  1 and set

A 5 ,2  =  1- Similarly, since cell (2, 1 ) is active, set .42 j6  =  1 and reset .45)1 =  1 . The 

purpose of these ones and zeros along the boundary of the A  array is to assure that 

there is no more than one active cell in each row and column. Figure 4.2 contains the 

current view of array A.

row 5 1 1 0 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2 1

row 1 - 2 IP - 3 1

- 3  
col 1

- 1  

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.2: Array A  after A i t i has been removed and added to the  one-dimensional 
sum array s. The cells (1, 2) and (2 , 1 ) are active, as indicated by the ones in cells 
(1, 6 ), (5, 2), (2, 6 ), and (5, 1).

The values 2 and A2j i are used to construct a minimum heap H.  Informally, 

a heap is a complete binary tree with a special ordering property of its nodes. A 

complete binary tree is a tree tha t is completely filled with the  possible exception of 

the bottom  level, which is filled from left to  right. Figure 4.3 contains illustrations 

of structures which are and are not complete binary trees. Each node of the tree has 

one parent, except the root of the tree, which has no parent. In a minimum  heap, 

the smallest element of the heap is contained in its root. In the upper-right tree in
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Figure 4.3, a is the root of the tree. Nodes b and c are a ’s children, where b is the 

left child and c is the right child. (According to the definition of a complete binary 

tree, when a node above the bottom  level of the tree has only one child, it must be a 

left child.) Node 6  is the parent to nodes d and e. The height of a tree is the number 

of nodes from the root to a node at the bottom  level of the tree. The heights of the 

three top trees in Figure 4.3, for example, are three, three, and four, respectively. A 

complete binary tree of height h has between 2h ~ 1 and 2h — 1 nodes (Carrano et al., 

1998, page 496).

Figure 4.3: Six binary trees. The top three trees are complete binary trees and the 
bottom  three are not.

Thus, a minimum heap is a complete binary tree with the  special ordering property 

th a t each parent node contains a value less than or equal to  the values in its children’s 

nodes. Because of this ordering property, the smallest value in a minimum heap will 

always be at the root.

The binary heap H  formed with the values 2 and A 2, i is in Figure 4.4. The
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next sum to be entered into s in position s2 is the root of the heap. Since A l i 2  =  —3 

is the root, it is removed from the heap H  and placed in s2, while its corresponding 

probability is placed in Probs2- Because the entry A 1j2 is removed from the array 

A,  reset A ij 6  =  0 and A 5j2 =  0 to indicate th a t row one and column two no longer 

contain an active cell. After these changes, array A  is displayed in Figure 4.5.

- 3

- 2

Figure 4.4: Heap H  containing entries A i>2 =  —3 and A 2,\ =  —2 .

row 5 1 0 0 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2
t

1

row 1 - 2 H P 0

- 3  
col 1

- 1  

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.5: Array A  after A ^ 2 — —3 is removed and appended to s. Cell (2, 1 ) is the 
only active cell. Candidates to  become active are cells (1 , 3) and (2 , 2 ). Cell (2 , 2 ) 
cannot become active since row two already contains an active cell.

After setting cell (1 , 2 ) to  inactive, the two cells that may enter into the  array 

A  (if the corresponding row and column do not already contain an active cell) are
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cells (3, 1) and (2 , 2 ). Since row two contains an active cell, then entry .4 2 , 2  is not 

activated since its sum is greater than 4 2 , i- However, cell (1 , 3) does become active, 

and its entry is 4 1 j3  =  yx +  =  0. Hence, 4 1 i6  =  1 and 4 .5 , 3 =  1 . After these

changes, array 4  is displayed in Figure 4.6.

row 5 1 0 1 0 0

row 4 8 0

row 3 5 0

row 2 1 - 2 1

row 1 - 2 HPPP 0 1

- 3  
col 1

- 1  

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.6: Array A  with active cells (1, 3) and (2 , 1 ).

The entry A 1 |3  is inserted into the heap H,  and the heap is rebuilt to fulfill its 

ordering property. After the addition of 4x,3, the heap H  is displayed in Figure 4.7. 

The minimum element, 4 2 ,i, is removed from the root of the heap and placed in the 

sum array s in position s3. Its corresponding probability is placed in Probsz-

- 2

Figure 4.7: Heap H  containing entries A2 , 2  =  —2 and A i , 3 =  0.

The two cells th a t may enter the array A  after the removal o f the 4 2 , i entry are in
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cells (2 , 2 ) and (3, 1 ), as indicated by the arrows in Figure 4.8. Both cells (2 , 2 ) and 

(3, 1) become active, and their values are A2 j 2  =  1)2 + %2 =  0 and A 3_: =  y3 4 -Xi =  2. 

Hence, A2 , 6 =  1, A5 t 2  =  1 , A3 i6  =  1 , and As5i =  1, as displayed in Figure 4.9. Entries 

A2 j2  and A3)1  are inserted into the heap H,  and H  is again rebuilt. Its structure is 

displayed in Figure 4.10.

row 5 0 0 1 0 0

row 4 8 0

row 3 5 0

row 2 1 11 0

row 1 - 2 in 0 1

- 3  
col 1

- 1  

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.8: Array A  after A2)2 =  — 2  is removed. Cell (3, 1) is the only active cell. 
Candidates to  become active are cells (2 , 2 ) and (3, 1 ).

Moving ahead to the seventeenth pass through the construction of the array A, 

its appearance is displayed in Figure 4.11. A 3 ) 4 =  11 is placed in s 17, and values 

A 3 )5  =  13 and A4 i 4  =  14 are activated in the array A  and inserted into the heap H.  

Since A3 |5  is the root of the heap, it is deleted and placed in s 18. No new element is 

allowed to enter the heap, so the root element of the heap is now A4) 4 =  14, and it 

is removed and placed in s 19. The last entry to  be activated is A4 i5  =  16, and it is 

placed in position s 2o of the sum array s.

Thus, after twenty iterations of this process, s  and Probs arrays are

s =  [-5 , - 3 ,  - 2 ,  0, 0, 2, 3, 4, 4, 5, 6 , 7, 7, 7, 9, 10, 11, 13, 14, 16]
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row 5 1 1 1 0 0

row 4 8 0

row 3 5 2 1

row 2 1

| P

0 1

row 1 - 2 0 1

- 3  
col 1

- 1

col 2

2

col 3
6

col 4
8

col 5 col 6

Figure 4.9: Array A  with active cells (1 , 3), (2 , 2 ), and (3, 1 ).

Figure 4.10: Heap H  with entries A i >3 =  0, A 2,2 =  0 and A1 ;3  =  2 .

and

Probs =  [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

which are the same arrays encountered by using the  moment generating function 

method. The redundancies are removed from s and the appropriate probabilities are 

combined in Probs to complete the  algorithm. This could have been embedded into 

the iterative steps of the algorithm to save memory. Thus, the PD F of Z  — X  +  Y  is 

the same as determined in Example 4.4. □
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row 5 0  0  0  1  0

row 4 8 1 (!§ !§ 0

row 3 5 IIP IIP IIP 11 1

row 2 1 ■ ■ ■ ■ ■ 0

row 1 — 2 0

- 3 - 1 2  6  8

col 1 col 2 col 3 col 4 col 5 col 6

Figure 4.11: Array A  with its seventeenth active cell (3, 4).

4.2 Algorithm

The algorithm for the ConvolutionCX, Y) procedure returns the PD F of the  convo

lution of the PDFs of the independent random  variables X  and Y . A brief description 

of the algorithm follows.

If X  and Y  are continuous, the PD F of the  convolution Z  =  X  -+- Y  is computed 

with the continuous convolution formula. If X  and Y  are discrete, their supports, 

finite or infinite, dictate which of the m ethods described in Section 4.1 is used to 

compute the convolution.

The convolution of the PDFs of X  and Y  w ith finite support is computed either 

using the BruteForceM ethod or MovingHeapMethod procedures, whose algorithms

appear in Appendices D and E, respectively. The PD F of the convolution of Z

is stored in a list-of-sublists format. The list of elements / ( z i ) , / ( Z 2 ), - •-? f(zn-m) 

are the probability values of Z,  while zi, z2> - • •, Zn-m are its support values. The 

one-dimensional array s is created to contain the sums extracted from the array A. 

Similarly, the one-dimensional array Probs is created to hold the probability values
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corresponding to the sums in s.

The zeros (if any) a t the end of the Probs array do not represent probability values; 

they correspond to the zeros in the Probs array that are not support values. These 

extra zeros indicate th a t there are identical values in the support of Z.  The non-zero 

probability values are removed from Probs and placed in the array FinalProbs. The 

support values that correspond to the removed probability values are removed and 

placed in the array FinalSupport.

If the supports of the random variables X  and Y  are infinite, either the discrete 

convolution formula is used to  compute the convolution or the  APPL MGF procedure 

is used to determine the MGF of the product of X  and Y .

If either X  or Y  has infinite support, while the other has finite support, the product 

of their MGFs is printed. If both X  and Y  have infinite support and the discrete 

convolution formula formed with their PDFs results in an intractable sum, then the 

product of their MGFs is printed. Otherwise, the discrete convolution formula is used 

to determine the convolution of their PDFs.

Unless the MGF for Z  or the PDF of the convolution for X  and Y  (with n  =  1 

and 77i — 1) has already been printed or returned, the PD F f z ( z )  is returned.

Procedure Convolution: Computes the PDF of the convolution of the PDFs of two 
independent random variables
Input: The random variables X  and Y .  Convert X  and Y  to  their PDF representa
tions, if necessary. The support of X  is Qx  and the support of Y  is fiy.
Output: The PDF of Z  =  X  +  Y .

If X  and Y  are continuous
f z{z )  <- f x ( z  -  y)  f Y (y) dy 

Else [If X  and Y  are discrete]
If X  and Y  have finite support 

n  <— |Dx|
TM <— \nY\
If 77 • 771 <  100

f z ( z ) BruteForceM ethod(X, Y)
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Else
f z { z )  <— MovingHeapMethod(X, Y)

If (n — 1 and m  = 1 ) [i.e. f z {z) =  1 for z =  c E 1R]
re tu rn (/z (z))

Dimension s[n -m] [Create the sums array s]
Dimension Probs[n - m] [Create the probability array Probs]
For i <— 1  to n - m

Sj <— 0
Probsi <— 0

Si <— Z \

s2 Z2
Probs 1 <— f ( z i )  
k t -  2  

3 2
While (k <  n - m)  do

Probsj <— Probsj +  f { z k)
If Zk 7^ Zfc-M then [Eliminate redundant support values]

3 <- 3 +  1 
Sj  Zfc+l 

k 4— k  -f- 1 

Probs j <— Probs j  +  / ( z fc)
N u m Z ero s  <— 0

For i n  • m. to 1 by — 1  while Probsi =  0 
N u m Z e r o s  N um Zeros  4 -1 

Dimension jFma^Pro6 s [ l ,n - m  — N u m Z e r o s ]
Dimension E m a/S uppo rtfl,n - m  — NumZeros]
For z •<— 1  to (n - m  — N um Z ero s )

FinalProbs.: -f- Probsi 
Final Support* <— s,- 

/z (z ) <— [FinalSupport, FinalProbs]
Else if (X  or Y  has infinite support or

X  and Y  have infinite support with intractable discrete convolution sum)
m g f x  «- MGF(X)
m g f y  <- MGF(V)
m gfprod  <— m g f x  - m g f y
print {mg f  prod)
return

Else [Discrete convolution formula]
f z ( z )  <- YLt=o(fx(z)) • ( f v ( z  — k ))

Else
prin t(“ERROR: X  and Y  must both be continuous or discrete” ) 
return 

return ( fz(z))
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4.3 Implementation

When the supports Qx  and fV  of X  and Y ,  respectively, are finite and |LLc| • I^VI <  

10000, the C onvolution procedure uses the “brute force m ethod” to  determine every 

possible sum (and its probability) between the supports of the random variables X  

and Y.  The list of sums are ordered and the identical ones are combined. The 

corresponding probability values are repositioned to match their corresponding sums. 

One im portant reason for sorting the sums is tha t all other APPL procedures assume 

tha t discrete distributions, written in their list-of-sublists NoDot  form, have supports 

listed in increasing order without repeated values. To be consistent with the APPL 

language (and textbooks), the sums are sorted. Also, placing the values of the support 

into a list in sorted order means tha t tied +  Xj values can be combined d y n a m ica lly  

as the algorithm proceeds.

As mentioned in Section 4.1, the first sorting method chosen to sort the fist of sums 

created by the brute force method was insertion sort. It was a viable candidate be

cause of its straightforward implementation and efficiency in computing convolutions 

of random variables w ith small supports. Unfortunately, as the supports of random 

variables grew larger (e.g., random  variables with 50 random numbers chosen on the 

interval (—1 ,1) as a support), the tim e used to  compute the PDF of their convolu

tions became unreasonably large. A faster sorting method for random variables with 

large supports was required. Heapsort was employed and is now implemented in the 

C onvolution procedure for sorting the list of sums created by the brute force method.

Maple uses Shellsort to  sort polynomials. In order to use the Shellsort procedure 

in Maple, the MGFs of X  and Y  need to be computed. The product of the MGFs 

of X  and Y  is an expression composed of exponential terms e*4, where k 6  IR, t  > 0. 

Letting u =  e4, the M GF of the product can be rewritten as a polynomial-type 

expression. For example, if u  =  e4, then Mz(t)  =  |e 3< +  | e 2< +  | e 54 can be rewritten
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as M z ( u ) =  |u 3 +  |u 2 -|-§u5. The Shellsort procedure sorts the polynomial expression, 

and the PD F of the convolution of X  and Y  is retrieved from this expression. Instead 

of moment generating functions, probability generating functions can be used in the 

process. MGFs were chosen over PGFs since PGFs can only be formed when the 

discrete distribution has nonnegative integer support.

The method of computing convolutions via their MGFs for random variables with 

finite supports was discarded after realizing th a t Maple can only sort “true” polyno

mial expressions. Maple is unable to sort an expression with non-integer values as 

exponents of variables, such as j  (e£) 3 / 2  +  |  (e£) 1 / 2  +  |  (e£) 5 '5 . Since the Convolution 

procedure was intended to be used on all types of discrete distributions, including 

those with negative, non-integer supports, the MGF m ethod was abandoned as a 

m ethod for determining the PD F of the sum of random variables with finite supports 

in the Convolution procedure. The extra tim e involved in checking for appropriate 

exponent values also had an effect on the M GF m ethod’s efficiency.

For random variables with large finite supports (e.g., > 1 0 0 0 0 ), heapsort

also proved inefficient. As an alternative approach to the brute force method with 

heapsort, Nicol (2000) suggested constructing a heap dynamically and sorting the 

list of sums sequentially, instead of first building and then sorting the sum list. The 

algorithm  for this “moving heap” was w ritten into the APPL MovingHeapMethod 
procedure and implemented in Convolution for X  and Y  with finite supports, where 

\ n x \ • |fV | >  10000. Not only was the moving heap m ethod efficient, but it saved 

memory space since the heap always contained m in{|f2x |,  |^V |} or fewer entries.

The Convolution procedure was tested on random variables with large supports 

by using the BruteForceMethod with insertion sort, the BruteForceMethod with 

heapsort, and the MovingHeapMethod. A brief comparison analysis (by hand) of the 

three methods suggested th a t MovingHeapMethod would yield the best (fastest) times
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for computing a convolution of random variables with large supports (i.e., | fix|-jfiy | >  

10000). Test cases of random variables with increasing support sizes were performed 

to confirm this assumption.

The test for comparing the methods involved generating |fix | and |fiy-j random 

numbers between — 1 and 1  and making them  the support values for the random 

variables X  and Y,  respectively. If |fixj =  3, for example, then three random numbers 

x i, x2, x 3 would be generated as fix- To conform to the APPL list-of-sublists NoDot  

da ta  structure, the values would be sorted and placed into the second sublists of the 

respective random variables. For our example, we would list Xi ,x2 ,X3 in increasing 

order and rename them as X(i),X(2), and £(3)- The probabilities, which had no effect 

on the efficiency of the different algorithms, were assigned to be equally-likely for all 

support values; i.e., /(x,-) =  l / | f i x |  for i =  1 , 2 , . . . ,  | fix|  and f ( y j )  =  l / ] f i r |  for 

.7 =  1 , 2 , . . . ,  |fiy|. For our example, the list-of-sublists form of X  is

j h b ’ Iffef] ’ (“Discrete”, “PDF”]] ;

The CPU times on a 266 mZ machine for determining the PD F of the convolution of 

random variables of increasing support sizes |fixi and |fiy | appear in Table 4.1.

W hen either one or both random  variables’ supports are infinite, either the con

volution of their PDFs is computed via the discrete convolution formula or the MGF 

of their product is determined. If one of the random variables has infinite support, 

while the other has finite support, the MGF of their product is returned. Currently, 

APPL does not contain a procedure to  convert the MGF of a random  variable to its 

PD F form. In future work, this recognition process may become an APPL procedure.

Two random variables with infinite support do not guarantee th a t the PDF of their 

convolution can be determined by the discrete convolution formula. Only tractable 

summations, such as the convolution formula for two Poisson random variables as in
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Table 4.1: CPU times (in seconds) for the convolution of random variables X  and Y  
by the BruteForceM ethod with insertion sort, the BruteForceMethod w ith heapsort, 
and the MovingHeapMethod for arbitrary  distributions with arbitrary support values 
ranging in increasing value from — 1  to 1 .

Support sizes.
\nx \ = \nY\'

BruteForceM ethod 
with insertion sort

BruteForceM ethod
with heapsort

MovingHeapMethod

50 70.5 1 0 . 6 15.3
60 143.1 18.1 24.0
70 313.3 29.1 34.6
80 518.0 45.5 50.0
90 824.0 69.9 69.3
95 1050.5 85.3 80.6

1 0 0 1263.5 101.3 93.5
1 1 0 2037.6 153.2 123.3
1 2 0 2897.4 201.7 163.0
125 3283.5 257.5 173.9
130 - 284.8 2 0 1 . 6

140 - 394.8 236.4
150 - 541.1 320.1
160 — 728.8 377.3
170 - 969.0 454.6
175 — 1127.9 506.5
180 — 1319.1 578.5
190 - 1723.2 671.8
2 0 0 2210.3 829.0

Example 4.2, can be computed. This means th a t instead of determining the PDF 

for the convolution of the PDFs of some random  variables, such as a Poisson with 

param eter A =  5 and a  geometric w ith param eter p =  0.3, the C onvolution procedure 

only computes the product of their MGFs.

4.4 Examples

The following examples use the algorithm described in Section 4.2 to determine the 

PD F of the convolution of independent random  variables. Examples for a variety of
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random variables are provided to illustrate the utility of the algorithm. Returning 

first to Examples 4.1 through 4.4 from the introduction of this chapter, we can use 

the C onvolution procedure to determine their solutions.

E x am p le  4.1 R e v is ite d . Compute the PD F of Z  =  X  + Y,  where X  and Y  are iid 

random variables with PDFs f ( x )  =  e~x , 0 <  x  <  oo, zero elsewhere and f ( y ) =  e~y , 

0 <  y <  oo, zero elsewhere.

S o lu tion : In APPL, we first define X and Y to be exponential 1) random variables, 

which are predefined in APPL. The C onvolution  procedure then finds the PD F of 

Z  = X  + Y .  The statem ents

> X := E x p o n en tia lR V (l);
> Y := E x p o n en tia lR V (l);
> Z := C onvolution(X , Y );

return the PD F in its list-of-sublists APPL format as

[[z —»■ ze-2] , [0,0 0 ], [“Continuous” , “PDF”]] . □

E xam ple 4.2  R ev isited . If X  and Y  are independent Poisson random variables 

with respective param eters Ai and A2, compute the PD F of Z  — X  +  Y .

Solution: In APPL, define X as a Poisson random  variable with param eter lambdal 

and Y as a Poisson random variable with param eter iambda2. The Poisson random 

variable is also predefined in APPL. The PD F Z  =  X + Y  is found with the statem ents

> X := PoissonRV(lambdal);
> Y := PoissonRV(lambda2);
> Z := Convolution(X, Y );

which returns the  PD F of Z  as

T  (2 +  l ) e - Al~ A2 (A2 +  AO*
, [0 .. 00] ,  [“D isc re te ” , “P D F ” ] .
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Using the Maple s im p lify  procedure, the resulting PDF after simplification is

p - A i - A j  +  X l ) z

/ «  =  —  r ( ,  +  i)

which is easy to recognize in its standard form as

o_Ai_a2 ^  +  X2y
m  = zl 2 =  0 , 1 , □

We are fortunate in Example 4.2 th a t APPL can compute the PD F by the discrete

convolution formula by simplifying the  Maple sum Y2k= 0x A2J ~ fce~ A2
k\ (r-fc)! . Unfortu

nately, Maple can only simplify certain expressions, so in some instances we cannot 

simplify the PD F by the discrete convolution formula. In Example 4.14, it is shown 

tha t Maple can also simplify the discrete convolution formula for a pair of iid geo

m etric random variables.

E x am p les  4 .3 , 4.4, &: 4 .5  R e v is ite d . X  and Y  are independent discrete random 

variables with PDFs defined as

f x { x )  =  <

0.15 X =  - 3

0.25 X =  - 1

0.1 X =  2

0.3 X =  6

0.2 X =  8,

f r ( y )  =

0.2 y  = - 2

0.1 y  = 1

0.3 y  = 5

0.4 y  = 8.

Find the PD F of Z.

S o lu tio n : Define the random  variables X and Y in APPL’s list-of-sublists format. 

Compute the PD F of Z  — X  + Y  w ith the following statements

> X := [[0 .1 5 , 0.25,  0 . 1 ,  0 . 3 ,  0 . 2 ] ,  [ -3 , -1 , 2, 6 , 8 ] ,
["Discrete", "PDF"]];
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> Y := [[0.2, 0.1, 0.3, 0.4], [-2, 1, 5, 8], ["Discrete", "PDF"]];
> Z := ConvolutionCX, Y);
which return the PD F of Z  as

[[0.03,0.05,0.015,0.045,0.045,0.01,0.135,0.06,0.04,0.16,0.02,0.04,

0.09,0.06, 0.12,0.08], [-5, -3, -2, 0,2,3,4,5, 6, 7,9,10,11,13,14,16], 

[“Discrete” , “PD F”]]. □

E x a m p le  4 .6 . (Sveshnikov, 1968, page 136) Let X  and Y  be independent random 

variables; X  assumes three possible values 0, 1, 3 with probabilities | ,  and | ,  and 

Y  assumes two possible values 0 and 1 with probabilities §. Find the PD F of the 

random variable Z  =  X  +  Y .

S o lu tio n : By hand, we can compute the PD F of Z  with probability generating 

functions (PGF). The PG Fs G  of X  and Y ,  respectively, axe

Gx (t) =  E[t*} = i« 3 +  +  i  and Gy{t)  = E[tY] =  \ t  +  |

for —oo <  t  <  oo. Thus, the PG F of Z  =  X  +  Y  is

— oo <  t  < oo.

Hence, the  PD F of Z  is

f z ( z )  = i

1
6
11
24

1
4

X
2 4

_L
12

z  =  0 

z  =  1 

z  =  2 

z  — 3 

z  =  4.

In APPL, define X and Y as list-of-sublists and then apply the Convolution pro

cedure to  achieve the same result.
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> X := [[1  /  2 , 3 /  8 , 1 / 8 ] ,  [0,  1, 3 ] ,  ["Discrete", "PDF"]] ;
> Y := [[1 / 3,  2 / 3] ,  [0, 1], ["Discrete", "PDF"]];
> Z := Convolution(X, Y); □

Other measures, such as the mean and variance, of a distribution can be found 

with the use of additional APPL procedures, as seen in the next example.

E x a m p le  4 .7 . (Hogg & Tanis, 1993, page 297) Let X t and X 2 be observations of 

a random sample of size n = 2 from a distribution with PDF f ( x ) =  | ,  x  =  1,2,3.

Find the PD F of Y  =  X i  + X 2, and determine the mean and variance of the sum.

S o lu tio n : The PG Fs of X i  and X 2 are

GXl (t ) =  Gx 2 (t) =  \ t  +  \ t 2 +  -  oo <  t  < oo.b o  2
Thus, Gy{t)  is 

and f Y (y) is

1
36 y =  2

1
9 y = 3
5
18 y =  4

1
3 y =  5
1

I 4 y = 6.

The mean and the variance of Y,  respectively, are

and

Gy(l)  +  G ^ (l)  -  [G y(l)]a =  y •

In APPL, the mean and variance of Y  are computed with the statem ents
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> X := [[x  -> x /  6], [1 .. 3 ] , ["Discrete", "PDF"]];
> Y := Convolution(X, X);
> Mean(Y);
> Variance(Y); □

E xam ple 4.8. (Hogg & Craig, 1995, page 230) Find the probability of obtaining a 

to ta l of 14 in a single toss of four dice.

Solution: Let X  be the PDF fx (x )  =  g, x = 1, 2, . . . ,  6. The PGF G  of X  is

G x  (0  =  x t 6 4- — t5 -f- - t 4 4- — t3 — t2 4- —i  — oo < t <  oo.
b b 5 6 6 6

The PDF of Z  =  X i  4- X 2 +  X 3 +  X4 can be found by computing [Ga-(£)]4, which is

Thus, Pr(Z  =  14) =

In APPL, define X as a uniform discrete random variable (predefined in APPL) 

with param eter 1/6. The ConvolutionllD (X, n) procedure computes the PD F of 

the convolution of n iid random variables X. This procedure contains a Maple “for 

loop” which calls Convolution n times.

> X := UniformDiscreteRVCl, 6);
> Z := ConvolutionIID(X, 4);
> PDFCZ, 14);

The APPL PDF procedure computes the probability th a t Z  is 14, which is □

Examples 4.9 and 4.10 are from the article “G etting Normal Probability Approxi

mations without Using Normal Tables” by Thompson (2000). His paper discusses an

1296 t24 + 324
i23 +

648
t22 +

324
t21 4-

35
1296

t20 4-

7 f ,9 +  4 i 18 +
13

162
35

t 13 +
81 
125

162
t 17 +

13

125
1296 

5

t 16 + 35 15 73 14
t  4- —— t u  4-324

324
5 7

 17 +
324 648

1296 
5

t l 2 + w 2 t U + £ t10 

1

4- t 9 +
648
3 ^ t8

te +
324 1296

162 1296

— oo <  t  < oo.
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alternate approach to approximating probabilities involving sums of discrete random 

variables using the PDF for the normal distribution. He lets S  denote the sum of n  

independent discrete random variables, and assumes th a t 5  takes on consecutive in

teger values. Letting fi =  E(5) and a 2 =  Var(S), he argues th a t for sufficiently large 

values of n, S  is approximately normally distributed. Using the standard continuity 

correction, he gets

P r(S  =  s) = Pr(s — 0.5 <  lV(/z, a2) < s + 0.5).

Calculating a midpoint approximation using a single subinterval, the normal PDF  

approximation is obtained, which is

2Pr(S  = s) =
V2ira

Instead of settling for approximations of the probabilities, we will show how APPL 

procedures, including Convolution, can retrieve exact solutions, while still giving the 

same insight into the problem.

E xam ple 4 .9 . (Thompson, 2000, page 53) Suppose th a t X i , X 2, . . . ,  X 2Q are inde

pendent, X i  ~  Bernoulli (pi =  , i =  1, 2, . . . ,  20. Let S  =  (Here S

denotes the to ta l number of successes obtained in a series of independent trials where 

the probability of success varies from trial to trial.) Give an exact probability table 

for S  for s =  2,3, . . . ,  10.

Solution: Using Thompson’s notation, p  =  10 and a 2 =  2367/500, and so P r(S  =

S  ̂ ~  ^ 2^ 2 3 6 7 /5 0 0  e~(3~10)2/(2367/250), s =  0,1, . . . ,  20. Using APPL, we obtain the 

exact distribution of S  with the statements

> p := (29 + 2 * 1) /  100;
> S := BemoulliRV(p);
> f o r  i  from 2 to  20 do
> P
> X
> s
> od:

= (29 + 2 * i) / 100: 
= BeraoulliRV(p):
= Convolution(S, X):
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> S;

Table 4.2 contains the exact probabilities found with APPL and the normal PDF 

approximations for s  =  2 ,3, . . . ,  1 0 . □

Table 4.2: Exact probabilities and normal PDF approximations of Pr(S' =  s) for 
s =  2,3, . . . ,  10.

s
True P r(5  =  s) 

(APPL)
Approximation of 

true P r(5  =  s )
Normal PDF 

Approximation

2 204658765144989225788930713729011
1600000000000000000000000000000000000 0 . 0 0 0 1 0 . 0 0 0 2

3 670581044381861117271962962043967
800000000000000000000000000000000000 0.0008 0 . 0 0 1 0

4 12306309890051216090420607156481161
3200000000000000000000000000000000000 0.0038 0.0041

5 13130118961411820609429234497062639 
1000000000000000000000000000000000000 0.0131 0.0131

6
13845545992556016094922419904605161

400000000000000000000000000000000000 0.0346 0.0338

7 14429186684261724023997491367619439
200000000000000000000000000000000000 0.0721 0.0709

8 193196528593089153025093245904930293
1600000000000000000000000000000000000 0.1207 0 . 1 2 0 2

9 65549414450257125600014354447607969
400000000000000000000000000000000000 0.1639 0.1650

1 0
725313008476889512417635294011302541

4000000000000000000000000000000000000 0.1813 0.1834

E xam ple 4 .10 . (Thompson, 2000, pages 53-54) There are 20 girls and 30 boys in 

Group 1 , 25 girls and 25 boys in Group 2, and 10 girls and 10 boys in Group 3. If 

10 children are randomly chosen from each group and S  denotes the  to ta l number of 

girls chosen, give an exact probability table for S  for s =  7 ,8 , . . . ,  2 1 .

S o lu tion : Let X x, X 2, and X 3 be the  three independent hypergeometric random 

variables, and let S  =  X x + X 2 +  AT3. The mean and variance of S  are /x =  E[S] =  

E[Xx] +  E[X2] +  E[XZ] =  14 and a 2 =  Var(S) =  Var(Xx) +  V ar(X 2) +  Var(X3) =  

101/19 (since X x, X 2, and X 3 are independent). Table 4.3 shows the normal PDF 

approximation values Pr(S  =  s) =  _ _ _ ^ ^ ^ e-(3- l4 )2/(202 /i9 ) for s —  ̂ 21.
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Using the APPL C onvolution procedure, we can calculate the PDF of S  with the 

statements

> XI := HypergeometricRV(50, 20, 10);
> X2 := HypergeometricRV(50, 25, 10);
> X3 := HypergeometricRV(20, 10, 10);
> Y := Convolution(X 3, C onvolution(X I, X2));

The exact values for s =  7, 8 , . . . ,  21 are shown in Table 4.3. □

Table 4.3: The exact probabilities and normal PD F approximations for Pr(S  =  s) for 
s =  7 ,8 , . . . ,  21.

s True P r(5  =  s )  

(APPL)
Approximation of 

true P r(5  =  s )

Normal PDF 
Approximation

7 4641594894759547665
3082276280132202064912 0.0015 0.0017

8 97479371530863990
17512933409842057187 0.0056 0.0059

9 12613791756912076515 
770569070033050516228 0.0164 0.0165

1 0 74849525260411094591
1926422675082626290570 0.0389 0.0384

1 1 57967137494173367365
770569070033050516228 0.0752 0.0742

1 2 2096975232909133615 
17512933409842057187 0.1197 0.1188

13 22076335771392253895
140103467278736457496 0.1576 0.1575

14 317244095646532855
1843466674720216546 0.1721 0.1730

15 9955623438355053449
63683394217607480680 0.1563 0.1575

16 217921905682010165
1843466674720216546 0.1182 0.1188

17 1894259194489549345
25473357687042992272 0.0744 0.0742

18 71588441634588035
1843466674720216546 0.0388 0.0384

19 10756216836381565
641205799902684016 0.0168 0.0165

2 0 1208983087163529637
202781334219223820060 0.0060 0.0059

2 1 280730797358534065
162225067375379056048 0.0017 0.0017

E x am p le  4 .11. (Grinstead &; Snell, 1997, pages 290-291) Assume that r  >  2 is 

a non-prime integer. Show th a t there are non-trivial distributions for X  and Y  on
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the nonnegative integers such that the convolution of X  and Y  is the equiprobable 

distribution on the set 0 , 1 , 2 , . . . ,  i—  1 .

S o lu tio n : Let n  be the smallest prime factor of a given non-prime integer r > 2 . 

The random variables X  and Y  can have PDFs

/
7 y = oy =  0

y = n

fv{y )  =  < £ y =  2  - n

x  = n  — 1 , n

Loading the f a c to r s e t  procedure from Maple’s number theory package, we test 

our conjecture for r =  1 2 , for instance, w ith the statements

> with(numtheory, factorset):
> r := 12;
> n := minCop(factorset(r)));
> X := [[seq(l / n, i = 0 .. n - 1)], [seq(j, j = 0 .. n - 1)],

["Discrete", "PDF"]];
> Y := [[seqCn / r, i = 0 .. n / r - 1)],

[seq(j * n ,  j = 0 .. r /  n -  1)], ["Discrete", "PDF"]];
> Z := Convolution(X, Y) ;

The PD F of Z  is returned in its list-of-sublists APPL format as the discrete equiprob

able distribution on the set 0 , 1 , 2 , . . . ,  1 1 . □

APPL can also handle some convolutions of discrete random variables with infinite 

support. The PD F of the convolution of the random variables needs to be tractable 

so Maple can simplify the resulting sum.

E x a m p le  4.12. (Larsen & Marx, 1986, page 220) A wet spell of x  days is defined 

to  be a “run” of x  days on each of which measurable precipitation occurs. Under the 

assumption th a t the weather tomorrow depends only on the weather today, there is a
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probability po that a wet day will be followed by a dry day. From this, the probability 

of an x-day-long wet spell is p0( l  — Po) x _ 1  =  Po<7o_\  a; =  1, 2, . . which is a geometric 

distribution- Let X  denote the random variable representing the lengths of the wet 

spells.

Similarly, the random variable Y  is the length of dry spells; furthermore, /y (y ) =  

y = 1 , 2 , . . . ,  where pi is the probability of a dry day followed by a wet one. 

Since a given day’s weather is affected only by the previous day’s, it follows th a t X  

and Y  are independent.

Now, a weather cycle will be defined as, say, a wet spell followed by a dry spell.

If Z  denotes the length of such a cycle, then Z  =  X  + Y .  Find the PD F of Z.

S o lu tio n : The APPL statem ents
> X := [[x  -> pO * qO ~ (x -  1 ) ] ,  [1 . .  i n f i n i t y ] ,

["D isc re te " , "PDF"]];
> Y := [[x  -> p i  * q l  (x -  1 ) ] ,  [1 . .  i n f i n i t y ] ,

["D isc re te " , "PDF"]];
> Z := Convolution(X, Y );

yield the PDF in its APPL list-of-sublists form as

qo (<Zo — <7i)
, [2 .. oo], [“Discrete” , “PD F”]

□

4.5 Products of Random Variables with Finite Sup

ports

The algorithm th a t was constructed (with heaps) to compute the PD F of the con

volution was extended to determine the PDF of the product. Because of possible 

negative, zero, and positive support values for the random variables X  and Y ,  the 

product algorithm “splits” the conceptual array A  into four quadrants (as in the
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Cartesian coordinate system) before heaping- The quadrants are conceptually split 

based on X ’s and T ’s negative and nonnegative support values. Figure 4.12 illus

trates the evolution of the algorithm in the most general case when both X  and Y  

have negative and nonnegative support values. The product algorithm conceptually 

starts a t the northwest and southeast comers of quadrants two and four and moves 

toward the center where the quadrants meet, considers the case where one or both of 

the supports include zero, and then works outward from the center through quadrants 

one and three.

Quadrant 2  Q uadrant 1

- 2

Quadrant 3 Quadrant 4
- 3 - 1 2  6  8

Figure 4.12: Array A  split into four quadrants for the product algorithm.

To compute the product for two random variables X  and Y  with finite supports 

= {zi, x 2, . . .  xn}, where x x < x 2 <  • • • <  x n, and Qy =  {yi, y2, . . . ,  ym}, where 

2/i <  2/2 <  * • • <  2/mi the MovingHeapProductMethod was developed. It basically 

mimics the logic of the algorithm in the MovingHeapMethod (for convolutions), ex

cept it determines increasing product values and their probabilities. In order to take 

advantage of the moving heap method (as constructed for convolutions), the support 

sublists of the random variables X  and Y  are manipulated (and sometimes split)
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to produce increasing product values as the algorithm moves northeasterly from the 

southwest corner of A  to its northeast comer. When thinking in terms of the Carte

sian coordinate system, there are nine subcases that need to be considered when 

constructing the conceptual array A. The subcases are based on the signs of xi, x n, 

7/1 , and ym- Details of the nine subcases follow and examples with APPL solutions 

illustrate some of these subcases.

1. If x i > 0 and y x >  0, then the support of the product of X  and Y  contains 

zero and/or positive values. For i =  1,2, . . . ,  n, each x,- support value is listed 

in increasing order (i.e., x i , x 2, . . . ,  x n) from left to right along the bottom of 

the array A. Similarly for j  =  1,2, . . . ,  m, each yj support value is listed in 

increasing order (i.e., t/i, ?/2, • • -, Um) from bottom to top along the left side of 

the array A. The MovingHeapProductMethod procedure uses the same method 

as MovingHeapMethod for convolutions—it starts computing products in the 

lower-left comer of A  and moves northeasterly computing increasing product 

values until it reaches the upper-right comer of A. Since 0 <  X\ <  x2 <  • • • <  xn 

and 0 <  t/i <  y2 <  • • • <  ym, then xi+1 • yj+l >  x f • y j , x i+x ■ yj > x{ ■ yj: and 

Xi • 7/j+i >  Xi ■ yj for i =  1, 2, . . . ,  n — 1 and j  =  1,2, . . . ,  m  — 1. Thus, we are 

guaranteed that moving northeasterly within the array A  produces increasing 

product values.

E x a m p le  4.13. A spinner yields three equally likely outcomes: 1, 2, 3. If 

the random variable Z  denotes the product of the outcomes of the two spins, 

compute P r(Z  <  6).

S o lu tio n : The APPL statements

> X := UniformDiscreteRVd, 3);
> Y := UniformDiscreteRVCl, 3);
> Z := Product(X, Y);
> prob := CDF(Z, 6);
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return the probability of 8/9. □

2. If x n <  0 and ym < 0, then the support of the product of X  and Y  contains 

positive values. For i =  1,2, . . . ,  n, each Xi support value is listed in decreasing 

order (i.e., x n, x n- i ,  . . . ,  Xi) from left to right along the bottom of the array A. 

Similarly for j  =  1,2, . . . .  m, each yj support value is listed in decreasing order 

(i.e., ym. ym- u  - - -, 2/i) from bottom  to top along the left side of the array A. 

The MovingHeapProductMethod procedure again computes products starting in 

the lower-left corner of A  and moves northeasterly computing increasing product 

values until it reaches the upper-right corner of A. Since x x <  x2 <  - - - <  x n < 0 

and yi < y2 <  - • • <  ym < 0, then x,-_x - yj - 1  >  x { ■ yj: x {- i  ■ y3- > Xi • ?/j, and 

Xi-yj-i > Xi-yj for i =  2, . . . ,  n  and j  =  2, . . . ,  m. Moving northeasterly within 

the array A  again produces increasing product values. The following APPL 

implementation example and accompanying figure illustrates this subcase.

To determine the PD F of the product in APPL, the order of the elements in 

the first and second sublists of the random  variables X  and Y  is reversed. Then 

X  and Y  have their product determined by the MovingHeapProductMethod 

procedure with their first two sublists in this new order.

For example, if X  and Y  are represented in APPL as

X  =  [[0.2,0.1,0.3,0.4], [ -6 , - 3 ,  - 2 ,  -1 ] , [“Discrete”, “PD F”]]
and

Y  =  [[0.3,0.3,0.4], [-5, - 3 ,  -2 ], [“Discrete” , “PD F”]], 

then they are rewritten as

X  =  [[0.4,0.3,0.1,0.2], [-1 , - 2 ,  - 3 ,  -6 ] , [“Discrete”, “PD F”]]
and

Y  =  [[0.4,0.3,0.3], [-2 , - 3 ,  -5], [“Discrete” , “PD F”]]

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



137

before entering the MovingHeapProductMethod procedure- Using the newly 

ordered, sublists, MovingHeapProductMethod determines the correct product 

Z  = X  - Y , namely

Z  =  [[0.16- 0.12, 0.12,0.12,0.13,0.03,0.09,0.08,0.03,0.06,0.06],

[2,3,4,5,6, 9,10,12,15,18,30], [“Discrete”, “PD F”]].

Figure 4.13 illustrates the increasing product values for i =  3 and j  = 2 as one 

moves northeasterly in the array A.

Vi - 5  

V2 - 3  

ys - 2

Figure 4.13: Product array A  for subcase two. For i = 2, j  =  3, rr2 • Vi > £ 3  • V2 , 
X2 -U2 >  %z'  V2 t and x $ - y i  >  r 3 - ?/2, i.e., cells to the northeast of the  cell with product 
X3 • 2/2 =  6 have larger product values.

3. If  x i  > 0  and ym <  0, then the support of the product of X  and Y  contains 

zero and /o r negative values. For i =  1, 2, . . . ,  n, each rr,- support value is listed 

in decreasing order (i.e., x ni xn_x, . . . ,  £ 1 ) from left to right along the bottom 

of the array A. For j  =  1,2, . . . ,  m, each yj support value is listed in increasing 

order (i.e., yu  y2, . . . ,  ym) from bottom  to top along the left side of the array A. 

The MovingHeapProductMethod procedure computes products starting in the 

lower-left corner of A  and moves northeasterly computing increasing product 

values until it reaches the upper-right corner of A. Since 0 <  Xi < x 2 < • ■ ■ < xn 

and yi <  y2 <  • • • <  ym < 0, then x ^  • yj+1 > x f ■ y j , • yj > x { • yj, and

10 15
? .

I /  
6 ~ 0  9

- 1  - 2  - 3  - 6
X i  X 3 X 2 X i
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Xi * yj+i > • yj for i =  2 , . . . , n  and j  =  1, 2, . . . ,  m  — 1. Thus, moving

northeasterly within the array A  produces increasing product values.

To determine the PD F of the product in APPL, the order of the elements in 

the first and second sublists of only the random variable X  is reversed. Then X  

and Y  have their product determined by MovingHeapProductMethod with X ’s 

first two sublists in this new order.

For example, if X  and Y  are represented in APPL as

X  =  [[0.2,0.1, 0.3,0.4], [1, 2,4,6], [“Discrete”, “PDF”]],
and

Y  =  [[0.3,0.3, 0.4], [-5 , - 3 ,  -2 ], [“Discrete”, “PD F”]], 

then just X  is rewritten as

X  =  [[0.4,0.3,0.1,0.2], [6,4,2,1], [“Discrete”, “PD F”]] 

before entering the MovingHeapProductMethod procedure. Using the newly 

ordered sublists of X  and the original sublists of Y ,  MovingHeapProductMethod 

determines the product correctly. The PDF of Z  =  X  • Y  is

Z  =  [[0.12,0.09,0.12,0.25,0.03,0.12,0.03,0.06,0.04,0.06,0.08],

[-30, -2 0 , -1 8 , -1 2 , -1 0 , - 8 ,  - 6 ,  - 5 ,  - 4 ,  - 3 ,  -2 ],

[“Discrete” , “PD F”]].

Figure 4.14 illustrates the increasing product values for i = 2 and j  = 2 as one 

moves northeasterly in the array A.

4. If x n <  0 and yi > 0, then the support of the product of X  and Y  contains 

zero and /o r negative values. Proceed as in subcase three, except reverse only 

the sublists for the random variable Y  in APPL.

5. If Xi < 0, x n >  0, and yi > 0, then the support of the product of X  and Y  
contains both negative and nonnegative values. For example, let X  and Y  be
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2/3 ~*2 —4 
* J

1 to

I T 7

2/2 - 3 - 6 - ^ - 3

2/i - 5

6 4 2 1
X i 3-3 ^ 2 X i

Figure 4.14: Product array A  for subcase three. For i =  2, j  =  2, x 2 ■ y3 > x 2 ■ y-z, 
• 2/2 > x 2 - 2/2 ) and • y3 > x 2 • 2/2 ) i-e., cells to the northeast of the cell with product 

^ 2 *2/2 =  —6 have larger product values.

random  variables with PDFs

I /
/*(*)

f  0.2

=  , 0 1
0.3
0.4

x  =  1

If Z  = X - Y ,  then the PD F of Z  is

f z { z )  = <

-3
-2

f v { y )  =  <

5

r is

' 0.08 z  =  -1 5
0.04

orH1II

0.06 z  = - 9
0.09 z  =  —6
0.03 z - - 4
0.09 z  =  2
0.09 z  =  3
0.12 2T =  4
0.12 z  = 5
0.12 z =  6

k 0.16 z =  10.

0.3 y  = 2
0.3 y = 3
0.4 y  =  5.

The random variable X  is split into two separate lists. The negative support 

values and their corresponding probabilities are placed in the variable X_, while
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the nonnegative support values and their corresponding probabilities are placed 

in the variable X +. Since yj >  0 for j  =  1,2, m  and xx- <  0 for each 

x,- E &X- 1  then we can use the MovingHeapProductMethod procedure on X_ 

and Y  first, proceeding as in subcase four. Since yj > 0 for j  =  1, 2, . . . ,  m

and Xi > 0 for each Xi E flx+i then we can use the MovingHeapProductMethod

procedure on X + and Y  next, proceeding as in subcase one.

For the given example, the two sublists of X _  and X + are

=  [[0.2, 0.1], [ -3 , -2]] and =  [[0.4, 0.3], [1, 2]].

The two conceptual arrays, A_ and A +, for computing the increasing products 

from the lower-left to  the upper-right comers of the arrays are displayed in 

Figure 4.15.

A _ A a

2

3

5

5

t
-----^  3

t
-1 5 — 2 2 r -

- 3 - 2 1 2

Figure 4.15: Product arrays A _ and A + for subcase five.

6. If Xi < 0, x n > 0, and ym < 0, then the support of the product of X  and Y  con

tains both negative and nonnegative values. Again, the random  variable X  is 

split into two separate lists. The negative support values and their correspond

ing probabilities are placed in the variable X_, while the nonnegative support 

values and their corresponding probabilities are placed in the variable X +. Since 

yj < 0 for j  =  1,2, . . . ,  m  and x t > 0 for each x,- E 0*-+ (which results in neg

ative and /o r zero products), then we can use the MovingHeapProductMethod
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procedure on X + and Y  first, proceeding as in subcase three. Since yj < 0 for 

j  =  1, 2, . . . ,  m  and Xi <  0 for each Xi £  (which will result in positive 

products), then we can use the MovingHeapProductMethod procedure on X _ 

and Y  next, proceeding as in subcase two.

E x a m p le  4 .14 Let X  have a uniform discrete distribution between —4 and 1, 

and let Y  have a uniform discrete distribution between 1 and 6. Use APPL to 

compute the PD F of their product.

S o lu tio n : In APPL, the statements

> X
> Y
> Z

= U niform D iscreteRV (-4, 1); 
= UniformDiscreteRVCl, 6 );
= Product(X , Y) ;

return the product Z  as 

z  -  [ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 12’ 3 6 ’ 3 6 ’ 1 8 ’ 12’ 3 6 ’ 12 ’ 18’ 1 8 ’ 3 6 ’ 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 3 6 ’ 36 

[ -2 4 , - 2 0 ,  - 1 8 ,  - 1 6 ,  - 1 5 ,  - 1 2 ,  - 1 0 ,  - 9 ,  - 8 ,  - 6 ,  - 5 ,  - 4 ,  - 3 ,  - 2 ,  - 1 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ] ,

[“Discrete”, “PDF”] □

7. If x i  >  0 , 2/x <  0, and ym > 0, then the support of the product of X  and Y  con

tains both negative and nonnegative values. In this case, the random variable Y  

is split into two separate lists. The negative support values and their correspond

ing probabilities are placed in the variable V_, while the nonnegative support 

values and their corresponding probabilities are placed in the variable Y+- Since 

Xj > 0 for i =  1, 2, . . . ,  n  and yj < 0 for each yj 6  Qy_ (which results in neg

ative and /or zero products), then we can use the MovingHeapProductMethod 

procedure on X  and YL first, proceeding as in subcase three. Since x, >  0 for 

i — 1,2, . . . ,  n  and yj > 0 for each yj €  Dy+ (which results in positive and/or 

zero products), then we can use the MovingHeapProductMethod procedure on 

X  and Y+ next, proceeding as in subcase one.
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8. If x n < 0, yi < 0, and ym > 0, then the support of the product of X  and 

Y  contains both negative and nonnegative values. The random variable Y  

is again split into two separate lists. The negative support values and their 

corresponding probabilities are placed in the variable YL, while the nonnegative 

support values and their corresponding probabilities are placed in the variable 

Y+. Since Xi <  0 for i =  1,2, . . . ,  n  and yj > 0 for each yj 6  Qy-+. then we can 

use the MovingHeapProductMethod procedure on X  and Y+ first, proceeding as 

in subcase four. Since x,- <  0 for i = 1, 2, . . . ,  n  and yj  <  0 for each yj  € , 

then we can use the MovingHeapProductMethod procedure on X  and YL next, 

proceeding as in subcase two.

9. If Xi < 0, x n >  0, yi <  0, and ym >  0, then the support of the product of X  

and Y  contains both negative and nonnegative values. This is the most difficult 

case, displayed pictorially in Figure 4.12. The random  variables X  and Y  are 

both split into two separate lists, X _, X +, and Y - ,  r +, respectively. In subcase 

nine, there are “dueling heaps,” and we use the A PPL MovingHeapDuelMethod 

procedure.

The products of the support values of the variables X + and YL are nega

tive, as well as the products of the support values for X _  and Y+. All four 

variables are sent to the MovingHeapDuelMethod so their support products can 

be computed in increasing order. The array A i-  is used for X + and YL, and 

the products of their support values are computed according to the method in 

subcase three. The array A 2-  is used for X -  and Y+, and the products of their 

support values are computed according to the m ethod in subcase four. As the 

next largest products arise in A x- and A 2- , they “duel” each other as the larger 

product. If the product in A \-  is larger, for example, it is selected as the next 

largest product and the MovingHeapDuelMethod continues to move northeast-
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erly through .4.!-. The next largest value in A x-  then challenges this same A 2- 

value as the next largest product. This process continues until the northeast 

corners of both arrays are reached and their values are recorded in increasing 

order.

The products of the support values of the variables X _  and Y _ are positive, 

and the products of the support values for X + and Y+ are nonnegative. All 

four variables are sent to the MovingHeapDuelMethod so their support products 

can be computed in increasing order. The array Aj+ is used for and YL, 

and the products of their support values are computed according to the method 

in subcase two. The array A 2+ is used for X + and Y+, and the products of 

their support values are computed according to the method in subcase one. As 

the next largest products arise in A x+ and A2+, they “duel” each other as the 

larger product. If the product in A 2+ is larger, for example, it  is selected as 

the next largest product and the  MovingHeapDuelMethod continues to  move 

northeasterly through A 2+. The next largest value in A 2+ then challenges this 

same A x+ value as the next largest product. This process continues until the 

northeast corners of both arrays axe reached and their values are recorded in 

increasing order.

In order to visualize how subcase nine works, let X  and Y  be the random 

variables indicated in Figure 4.12. Their first sublists axe [—3, —1, 2,6,8] and 

[—2,1 ,5 ,8]. Figure 4.16 shows the conceptual arrays A x~, A 2~, A x+, and A 2+ 

for X  and Y .  The arrows in the figure indicate the direction the  products will 

be computed (in order to  obtain larger product values). Figure 4.17 displays 

the first three products of X  and Y  as the  MovingHeapDuelMethod progresses 

simultaneously through A x-  and A 2- .

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited w ithout perm iss ion .



144

Ai- Ao-

- 2

8

Ai+

t

-2 4 —

- 2

8

5

- 1  - 3

3

A 2+

1

t

2 —

2 6 8

Figure 4.16: Dueling product arrays Ax- and A 2- , and Ai+ and A 2+ for subcase nine.

A i-

- 3

|P
lilj - 8

- 3  - 1

- 2 -1 2

8 6 2

Figure 4.17: The MovingHeapDuelMethod as it progresses simultaneously through 
arrays A i-  and A 2-  for subcase nine. The first three elements of the product support 
list are —24, —16, and —15.
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Chapter 5

Transformat ions

A method of finding the distribution of a function of one of more random variables 

is called the change-of-variable technique. The change-of-variable technique can be 

used to determine the distribution of a discrete random  variable Y  = g (X ) given 

the distribution of the discrete random variable X  and a one-to-one transformation 

g from the support of X , fix , to the support of Y ,  f2y. Further, the transformation 

may be “piecewise many-to-one,” as presented in Bain and Engelhardt (1992, page 

203). A “piecewise many-to-one” transformation denotes a transformation th a t is 

either one-to-one, two-to-one, three-to-one, etc. (i.e., many-to-one) on disjoint sub

sets ( “pieces”) of fix- For example, if X  is a uniform discrete random variable for 

x  =  - 2 , - 1 ,  . . . ,  3, then Y  = |A| is a two-to-one transform ation on the subset 

{—2, —1,1,2} and a one-to-one transformation on the subsets {0} and {3}. Glen et 

al. (1997) presents a  generalized version of the univariate change-of-variable technique 

for transforming continuous random variables. The purpose of this chapter is to ex

tend their technique to discrete random variables for both one-to-one and piecewise 

many-to-one transformations.

145
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5.1 Theory

5.1 .1  O n e-to -O n e T ransform ations

T h e o re m  5.1. (Bain & Engelhardt, 1992, page 197) Suppose th a t X  is a discrete 

random variable with PD F f x i x ) and Y  =  g {X ) defines a one-to-one transformation 

from fix  to fiy-, i.e., y =  g(x) can be solved uniquely, say x  = g~l (y). Then the PDF 

of Y  is

f v { y )  =  f x { g ~ L{y)) y  e  f i r

where QY = { y  i f v { y )  >  0 }- 

P ro o f: By substitution,

Mv)  =  P r (y  =  y) =  P r(9 (JC) =  y) =  P r(X  =  g ~ \ y ) )  =  f x i g ' ^ y ) ) .  □

The following two examples show how Theorem 5.1 is applied to discrete trans

formation problems.

E x a m p le  5.1. (Miller & Miller, 1999, page 242) If X  is the  num ber of heads obtained 

in four tosses of a fair coin, find the PDF of Y  — xyy.

S o lu tio n : The random variable X  is binomial with param eters n  =  4 and p  =  1/2, 

and support fix  =  {0 ,1 ,2 ,3 ,4} . Let Y  = g(X)  =  ;^yy, which defines a one-to-one

transformation from fix  to fiy  =  ( | ,  5 , §, l}- By Theorem  5.1, the PDF of Y  is

My )  =  Pr =  „ ) -  Pr ( X  =  1 ^ )  =  h  ( i ^ )  -  ( 4 )  ( i )  *.

for v =  — — — — 1 □y  5  ’ 4  ’ 3  ’ 2  >

E x a m p le  5.2. (Hogg & Craig, 1995, page 51) Let f ( x )  =  rr/6 , x  =  1,2,3, zero 

elsewhere, be the PD F of X .  Find the CDF of Y  = X 2.
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S o lu tio n : The function Y  =  g ( X )  =  X 2 defines a one-to-one transformation in this 

example since fix  contains strictly  positive values. By Theorem 5.1, the PDF of Y  is

Mv )  =  Pr(K =  y) =  Pr(AT2 = y) = Pr(X = Jy) = Y?-,b
for y =  1,4,9. Thus, FY (y) =  J J L i  4  for V =  4, 9- n

5 .1 .2  “P ie c e w is e  M a n y - to -O n e ” T r a n s fo r m a tio n s

If the function Y  =  g(X)  is piecewise many-to-one on fix , then there is no unique 

solution to the equation Y  =  g ( X)  on fix- Bain and Engelhardt (1992, page 202) 

suggest partitioning fix  into disjoint subsets fix ,, fix2, - - - such th a t Y  = g(X)  is one- 

to-one over each fix,-- Then for each y €  {<?(x) | x  6  fix}, the equation y = g{x) has a 

unique solution x,- =  g~1(y) on the subset fix,-- Hence, Theorem 5.1 can be extended 

to functions that are piecewise many-to-one by replacing f v ( y )  = f x ( g ~ 1(y)) with

f A v )
i

The following example shows how Theorem 5.1 is extended to cover problems 

where Y  =  g(X)  is a piecewise many-to-one transformation.

E x a m p le  5.3. (Miller & Miller, 1999, page 243) If X  is again the number of heads 

obtained in four tosses of a fair coin, find the PDF of the random variable Y  =  

{ X  -  2)2.

S o lu tio n : The transformation Y  = g(X)  — ( X  — 2)2 is a two-to-one transformation 

for X  =  0,1,3,4 and a one-to-one transformation for X  =  2, as can be seen in 

Figure 5.1. Partition fix  such th a t fixi =  {0,1,2}, and fix2 =  {3,4}. Then the 

transformation g{X) = ( X  — 2)2 is a one-to-one mapping of fix , and fix2 into fiy =
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{0,1,4}. Since gl l (y) = ~ ^ y  +  2 and g2 l {y) =  y/y + 2, then

f y ( 0 ) = f x ( - y / 0  + 2 ) = f x (2) =
6_
16’

/y ( l )  — f x ( —V 1 +  2) +  f x ( V l  + 2 )  — f x ( l )  -h fx(3) =  2 • =  ~ 7 i

/y (4 ) = f x ( - V 4  + 2 ) + M V 4  + 2) = f x (0)+ f x (4) = 2 • Q )  ( 1 )  ‘ =  ^

4<>

3-

3  4
X

Figure 5.1: The transformation Y  =  g( X)  =  ( X  — 2)2 for X  =  0,1,2,3,4.  The 
transform ation is two-to-one for X  =  0 ,1 ,3 ,4  and a  one-to-one for X  =  2.

Another wav to write the PDF of Y  is

My)

f v(y)  =  g y  =  o, and
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5.2 Implementation

Glen et al. (1997) provide a theorem and resulting com puter algebra system imple

mentation for “determining the PD F of Y  =  g{X)  for any univariate random variable 

X  of the continuous type with few restrictions on the transformation g ( X ) ” The 

algorithm discussed in this section for determining the PD F of Y  =  g{X)  for any 

univariate random variable X  of the discrete type is modeled after their theorem 

and implementation. Naturally, there are differences in the implementation of their 

algorithm and the algorithm for discrete random variables, especially since Theorem 

5.1 does not hold as stated  for continuous random variables. But many issues, such 

as Maple producing more than one inverse function g f l (y) (e.g., if gi{x) =  x 2) or 

partitioning fix  into disjoint subsets so that Y  =  g(X)  is one-to-one on each of them, 

is a problem for both continuous random  variables and discrete random variables.

As with all procedures th a t operate on discrete random  variables, the T ransf orm 

procedure treats N oD ot  and Dot  formatted random variables separately. It is not 

difficult to transform a random  variable X  with a N oD ot  da ta  structure format into a 

new random variable Y  — g{X)  since the PDF and support of X  are lists. The trans

formation g(x),  whether one-to-one, piecewise many-to-one, or even discontinuous, is 

applied by brute force to each element in AT’s support list. Although it is necessary 

to determine which “piece” of g(x)  corresponds to the various support values in fix , 

we do not need to partition fix  since identical support values in Y  =  g{X)  can be 

combined before the transformed random variable is returned. Thus, the difficult task 

of partitioning fix  into subsets fix, and determining the unique solution x  =  g7 l (y) 

for each transformation y  =  gi(x)  on fixf is not required in the NoDot  case.

The implementation for random variables with a Dot  d a ta  structure format posed 

several difficult issues, one in particular with the APPL discrete list-of-sublists data  

structure. The implementation (and implementation issues) for both data  structure
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formats, N oD ot  and Dot, are discussed in more detail in the subsections entitled 

“NoD ot  Form at” and uDot Format.”

The APPL T ransf orm(X, g) procedure requires two arguments: a random vari

able X (either continuous or discrete) and a transformation function g. The trans

formation function g(x ) is provided as a list of two sublists, where the  first sublist 

contains the transformation function (or functions) and the second sublist specifies 

the domain of g{x) by either

• listing its piecewise components and the  endpoints of the corresponding domains 

for random variables with NoD ot  formats; or

•  listing its monotone piecewise components and the endpoints of the correspond

ing domains for random variables w ith Dot (or NoDot) formats.

For example, if Y  =  g(X)  = \X  — 2\ and AT is a discrete random variable with a 

N oD ot  format, then g{x) is entered in A PPL  as

[[a; ->  I* -  2 [], [ -0 0 ,0 0 ] ] .

If X  has a Dot  format (or NoDot form at), the  example g(x) is entered as

[[a; —» 2 — x, x  —> x  — 2], [—00, 2,00]].

In APPL, discrete random variables, unlike continuous ones, need direction as to 

how to interpret the inclusion of endpoints in the second sublist of g{x).  Let g(x) 

have the form

[{x gi {x) , x  ->■ g2{x), . . . ,  x  ->  £m(:r)], [a1} a2, . . . ,  am+1l,
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where ai and am+1 may be negative or positive infinity, respectively. Then the pro

cedure Transform assumes th a t g(x) is defined as

g{x) =  <

gi(x) ai < x  <  a2

£2 (2 ) a2 < x  < a z

Clfn <  X  5 ; ^ m + l  -

Let X,  for example, be a uniform discrete random variable for x  =  —1,0, . . . ,  8 

in its NoDot  format. A discontinuous transformation function, such as

g(x) = <
x 2
8 — X

x  < 4  

x  >  4,

must be entered as

[[a; —► x2, x  —> 8 — x], [—oo, 3, oo]]

in order for APPL to interpret the transformation correctly. Although this may seem 

like an awkward way of writing this transformation, a structure for working with 

discontinuous transformation functions had to be put in place to handle situations 

like this one. If X  has a D ot  format, g(x)  is entered as

[[x —>■ x 2, x  —> x 2, x  —► 8 — x], [—oo, 0,3, oo]]

5 .2 .1  NoDot Form at

In the APPL NoD ot  data structure format, the random variable X  has each support 

value listed in sublist two of the list-of-sublists. Let X , for example, have PDF
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f ( x )  =  rr/15 for x  =  1, 2, . . . ,  5. The standard N oD ot  format of X  is

, [1,2, 3,4, 5], [“Discrete” “PDF”]
1 2  1 4  1 

15’ 15’ 5 ’ 15’ 3

Since the support values of X  are contained in sublist two, any transform ation that 

is applied to a random variable X  affects this second sublist. The support values 

change based on the specific transform ation g(x).  The probability values for the 

random variable Y  =  g{X)  [before they are combined if g{x) is not one-to-one] are 

the same as those for X  and contained in the first sublist.

For ease and consistency in the implementation of the NoDot case, we assume 

th a t g(x)  is a piecewise many-to-one transform ation function. The process for work

ing with a piecewise many-to-one function (which includes one-to-one functions) for 

discrete N oD ot  random variables follows.

•  The random  variable X  is converted to  its PD F representation, if necessary.

•  Since X  has a NoDot  format, when g(x)  is one-to-one, sublist one will not 

change (since the probability values for X  and Y  are the same). Sublist three 

remains or becomes [“Discrete” , “PD F”].

•  In the N oD ot  case, each piecewise segment oig{x)  is indicated in the first sublist 

in its list of two sublists format. The algorithm identifies which segment of the 

transform ation function is applied to which support value or values of X .  (If 

every monotone segment is listed in the first sublist, such as g : = [ [x -> -x , 

x -> x] , [ - i n f i n i t y ,  0 , i n f i n i t y ] ]  for Y  =  g(X)  =  |X |, the algorithm 

still applies the appropriate segment of g(x)  to the support values of X. )

•  The appropriate transform ation function <7,-(x) is applied to the partitioned sup

port values of fix  tha t are in sublist two. (If Y  =  g( X)  is a one-to-one transfor-
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mation of fix  = {xi ,  x 2, - - -, x n} into fi^, for example, then each support value 

Xi is transformed by g{x),  i.e., the second sublist becomes [<7(2:1), <7(2 :2 ),

S (*n )])-

•  T ’s support values (and corresponding probability values) are sorted in increas

ing value to conform to the APPL discrete random variable format.

•  If identical support values exist in sublist two, they are removed and their 

probabilities are combined. (Identical support values will occur when the trans

formation is not one-to-one.) If X  is a uniform discrete random variable for 

x  =  —1,0,1 and Y  =  X 2, for example, then x  =  —1 , 1  produce the identical 

support value y =  1 .

•  The transformed random variable is returned to the  user in a NoD ot  standard 

format.

Three examples are presented to  illustrate the algorithm for the N oD ot  case. In 

the first example, Y  =  g( X)  is a  one-to-one transformation; in the second example, 

Y  =  g{X)  is a piecewise many-to-one transformation; and in the last example, Y  =  

g{X)  is not only piecewise many-to-one, but also discontinuous.

E x a m p le  5.4. Let X  have PD F f ( x )  =  x/15  for x  =  1, 2, . . . ,  5 as introduced in 

the beginning of this subsection. Find the PDF of Y  = 2 X  +  1 .

S o lu tio n : The standard N oD ot  form at of X  is

_L JL I i_ i
15’ 15’ 5 ’ 15’ 3

, [1 ,2,3,4,5], [“Discrete” “PD F”]

Since X  is in its N oD ot  format and the transformation g{X)  =  2 X  +  1 is a one- 

to-one transformation for f ix  =  {1 ,2 ,3 ,4 ,5} , then fix  is not partitioned. The only 

step required in determining the PD F of Y  in this case is transform ing the support

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



154

values of X  by the one and only transform ation segment g( X)  = 2 X  +  1. Applying 

the transformation g(X)  to £lx yields the support values fiy  =  {3,5,7,9,11} in 

increasing order. The statem ents

> X := [[x  -> x /  15 ], [1 , 2, 3 , 4 , 5 ] , [ " D isc re te " , "PDF"]];
> g := [Cx -> 2 * x + 1], [-infinity, infinity]];
> Y := Transform(X, g ) ;

return the PDF of Y  as

In the following example where Y  =  g{X)  is a piecewise many-to-one transforma-

transformation in Example 5.4) is the clean up process of Y,  i.e., the removal of iden

tical support values from the PDF of Y.

E x a m p le  5.5. (Bain & Engelhardt, 1992, page 203) Let f {x)  =  ^ ( | ) x for x  =  

—2, —1,0,1,2.  Determine the PDF of Y  =  \X\.

S o lu tio n : The transformation g(X)  =  |X | is a piecewise many-to-one transformation 

for fi*  =  {—2, —1,0,1, 2} to  VIy  =  {0,1,4}. Since X  will be entered in APPL in its 

NoD ot  format in this example, the function g(x)  may be entered in APPL as one 

segment, i.e., [[x  -> a b s(x )]  , [ - i n f i n i t y ,  i n f i n i t y ] ] .  The function g( X)  =  

|A”| is applied to fix  to yield the support values in VLy - The support values obtained 

by these transformations (in the second APPL sublist of Y )  are

J_  _2_ 1 4_ 1 
15’ 15’ 5 ’ 15’ 3

-  , [3, 5, 7, 9,11], [“Discrete” “PD F”] .
□

tion, the only additional step required of the algorithm (as compared to the one-to-one

Before sorting and combining identical support values, Y  has the form

^ I  i  1  I'
31’ 31’ 31’ 31’ 31

— , [2 ,1 ,0 ,1 ,2], [“Discrete” , “PD F”] .
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After sorting the support values (and corresponding probability values) in increasing 

order, Y  has the form

‘_4_ _8_ 2_ 16 _1_ 
31’ 31’ 31’ 31’ 31

, [0,1,1, 2,2], [“Discrete”, “PD F”] 

The identical support values are removed, and the final form of Y  is

, [0,1, 2], [“Discrete”, “PD F”]
10 17 

31’ 31’ 31

The APPL statements needed to return this PD F are 

> X :

> g :
> Y :

= [[x  -> (4 /  31) * ( 1 / 2 )  ~ x ] ,  [-2 , -1 ,  0, 1, 2 ] ,  
["D isc re te " , "PDF"]];

= [[x  -> ab s (x ) ] ,  [ - i n f i n i t y ,  i n f i n i t y ] ] ;
= Transform(X, g) ; □

E x a m p le  5.6. Let X  be a uniform discrete random variable for x  =  —1, 0, . . . ,  8 

and

y  = g ( x )  =
{

X 2
8 — X

x  < 4  
x > 4.

Determine the PDF of Y.

S o lu tio n : The support fix  is partitioned into two subsets: f ix x =  {—1) 0,1,2,3} and 

fix 2 — {4,5, 5, 7, 8}. The transform ation Yx =  gx(X)  =  X 2 is applied to fixx and the 

transform ation Y2 = g2(X)  = 8 — X  is applied to  fix2- The PD F of Y,

f v ( y )  =  <

1/5 y  =  o
3/10 y  =  l
1/10 y  =  2
1/10 y  =  3
1/5 y = 4
1/10 y  =  9,
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is returned by the APPL statem ents

> X := UniformDiscreteRV(-l, 8);
> g := [[x  -> x ~ 2, x ->  8 -  x] , [-infinity, 3 , infinity]];
> Y := Transform(X, g ) ; □

5 .2 .2  Dot F o rm a t

In the APPL Dot  da ta  structure format, the random variable X  has a formulaic PD F 

in the first sublist and pattern  describing AT’s support in the  second sublist. Let X ,  

for example, have PD F /(x )  =  x /15  for x  =  1 , 2, . . . ,  5. The standard Dot  format of 

X  is

j^x —y , [1 .. 5 ,1 , x  —>• x], [“Discrete” , “P D F ”] .

Since the second sublist indicates th a t the support s ta rts  a t the value one, each

additional value is incremented by one and transformed by x  —>• x, and the last

support value is five, then the support is clearly { 1 ,2 ,3 ,4 ,5 } . Since the PDF of X  

is formulaic, then any transform ation g(x)  th a t is applied to  the random variable 

X  will affect both its first and second sublists. The formulaic probability function 

is determined by finding the appropriate inverse function g f 1{x) for each monotone 

segment f2x,-, substituting the  inverse g~l [y) for x into the  formulaic PDF (for the 

appropriate Qxt- partition), and making the appropriate adjustm ents to the support 

of X .  There are four separate subcases in APPL for determ ining the transformation 

of a discrete random variable X  w ith a Dot  format tha t are outlined in Table 5.1 and 

described separately in the following four subsections.
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Table 5.1: Categories for computing the PD F of the random variable Y  =  g (X)  when 
X  is a discrete random variable with support Qx  in a Dot  support format.

g{x) Continuous, 
g(x)  in One Piece,

Qx g(x)  One-to-One on flx  Action Resulting Y

Finite

Yes Substitute g{X)  into formulaic PDF; 
reverse support list, if necessary

Random variable in 
standard Dot  format

No Convert X  to 
standard N oD ot format

Random variable in 
standard N oD ot format

Infinite

Yes Substitute g(X)  into formulaic PDF; 
reverse support list, if necessary

Random variable in 
standard Dot  format

No — Random variable with 
an “alien” APPL format

F in ite  s u p p o r t ,  Y  =  g(X)  a  C o n tin u o u s  O ne-to -O ne  F u n c tio n  G iven  in  O ne 

P ie ce

The process for determining the PD F of Y  = g(X)  when X  is a discrete random 

variable with finite support with an A PPL Dot  format and g{x) is a continuous 

one-to-one function that is given in one piece is:

•  The random  variable X  is converted to its PDF representation, if necessary.

•  Each monotone segment of g{x) is indicated in the first sublist in its list of 

two sublists format. If g(x) is continuous and one-to-one on fix? then only one 

transform ation will be in the first sublist. The correct inverse must be deter

mined for x  €  Qx , which is sometimes difficult since Maple sometimes produces 

several candidates for <7-1 (?/). The correct inverse is selected by requiring tha t
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<7- 1 (<j(c)) =  c, where c =  (min{fix} -f m ax{fix} )/2 , which is valid because 

min{Qx} #  —oo, m ax{fix} 7^ 0 0 .

•  The correct inverse g~1(y) is substituted into the formulaic PDF for x.

•  The support f ly  is returned as a Dot  support range with either the format:

(a) [min{f2x} -• m ax{f2x}, l , x  —¥ g(x)], or

(b) [max{ftx} -  m in{fix}, - 1 , x  -> #(x)].

If g(x) is an increasing function on fix  [i.e., #(min{Qx}) <  <7(max{IV})], then 

the support of IV  has form at type (a). If g{x) is a  decreasing function [i.e., 

^(min{fix}) > <7(m ax{fix } ) ] 5 then the support of Qy  has format type (b).

•  The PDF of Y  is returned in its standard Dot  form at.

E x a m p le  5.7. Let X  again have PD F f { x )  = x/15  for x  =  1 ,2, . . . ,  5. Find the

PD F of Y  = 2X  + 1  in its A PPL Dot  format.

S o lu tio n : The random variable X  and transformation g ( X )  are entered into APPL 

as

> X := [[x  -> x / 15], [1 . .  5 ] ,  ["Discrete", "PDF"]];
> g '.= [[x  -> 2 * x + 1], [-infinity, infinity]];

The transformation g{X)  =  2 X  +  1 is a one-to-one transform ation for Qx = 

{1 ,2 ,3 ,4 ,5} . The procedure T ransform  recognizes tha t g{x) is one-to-one since there 

is only one function in its first sublist. The unique inverse g~l {y) =  (y — l ) / 2  is 

substituted for x  in X ’s formulaic PD F. The PDF of Y  is

f Y {y) = ¥ - ^ 1
30
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for y  6  { 3 ,5 ,7 ,9 ,1 1 }. The support fiy is returned in its Dot  format as [1  ..5 ,x  —> 

2x +  1] (since g(x) = 2 x  + 1 is an increasing function for x  G fix ). The final APPL 

statem ent

> Y := Transform(X, gX) ;

returns the PDF of Y  as

x x  — 1  

30
, [1.. 5, x  —> 2x +  1], [“Discrete”, “PD F”]

□

F in i te  s u p p o r t ,  Y  = g{X)  a  D isco n tin u o u s o r  P iecew ise  M a n y -to -O n e  F u n c 

t io n

The process for determining the PDF of Y  =  g (X)  when X  is a  discrete random  

variable with finite support with an APPL Dot  form at and g(x) is a discontinuous or 

piecewise many-to-one function is:

•  The random variable X  is converted to its PD F representation, if necessary.

•  Each monotone segment of g{x) is indicated in the first sublist in its list of two 

sublists format. If g(x)  is discontinuous or piecewise many-to-one on fix , then 

more than one transformation will be in the first sublist. To avoid returning 

an “alien” APPL random variable format (as discussed in the upcoming “Infi

nite support, Y  = g(X)  a Discontinuous or Piecewise Many-to-One Function” 

subsection) for the PDF of Y ,  X  is converted to  its NoDot  format w ith the 

ConvertToNoDot procedure.

•  The PD F of Y  is determined as discussed in the NoDot  format section. Al

though this approach poses no difficulty within the Transform procedure itself,
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the procedure does return a random variable in a different format than the one 

in which it was entered. We prefer this consequence (NoDot  format) to the 

currently inevitable alternative—an unfriendly A PPL random variable that is 

not acceptable as an argument to other APPL procedures.

Infin ite  support, Y  =  g{X)  a Continuous O ne-to-O ne Function G iven in  

One P iece

The process for determining the PDF of Y  =  g (AT) when AT is a discrete random 

variable with infinite support with an APPL Dot  form at and g{x) is a continuous 

one-to-one function given in one piece is:

•  The random variable X  is converted to its PDF representation, if necessary.

•  If g(x) is continuous and one-to-one on Qx,  then only one transformation will be 

in the first sublist. The correct inverse is determined (for x  e  SI*) by using Glen 

et al.’s approach (1997, page 289). The correct inverse is selected by requiring 

tha t g~1(g(c)) =  c, where c is a point in the support range of £lx- The portion 

of the algorithm for determining c is

1. If m in{Dx} =  —oo and m ax{n^} =  oo, then c =  0.

2. If m in{Gx} =  —oo and max{Qx} r  oo, then c =  m ax{fix} — 1-

3. If min{Q^-} ^  —oo and m ax{ny} =  oo, then c =  m in{fiy} +  1 .

4. For all other cases, c =  (min{Dy} +  m ax{Q y})/2.

•  The correct inverse g~l {y) is substituted into the formulaic PD F for x.

•  The support Dy is returned as a Dot  support range with either the format:

(a) [min{Dx} •• max{Dx }, 1 , x  -»  ^(a:)], or
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(b) [max{Qx} ~m in{fix}, - l , x  ->• g{x)].

If g{x) is an increasing function on fij*-, then the support of Q y  has format type 

(a). If g(x)  is a decreasing function, then the support of f2y has format type (b). 

In some cases, the support sublist may look awkward, such as [oo .. 1 , — 1 , x  —> £] 

for Y  = 1 / X  where X  is a geometric random variable, bu t it is in a standard 

Dot  format.

•  The PD F of Y  is returned in its standard Dot  format.

E x am p le  5.8. (Hogg & Craig, 1995, pages 163-164) Let X  have the Poisson PDF

Find the PD F of Y  =  4X.

S o lu tion : The PD F of Y  =  4X  is determined with the APPL statem ents

> X := PoissonRV(mu);
> Y := TransformCX, [[x  -> 4 * x ] , [-infinity, infinity]]);

The resulting PD F for Y  is

= (y/4)- ^ = 0’4>8’ —

APPL returns the lists-of-sublists for Y  as
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In fin ite  support, Y  — g(X)  a  D iscontinu ous or P iecew ise  M any-to-O ne  

F unction

The process for determining the PD F of Y  — g { X ) when X  is a discrete random 

variable with infinite support with an APPL Dot  format and g{x) is a discontinuous 

or piecewise many-to-one function is:

• The random variable X  is converted to its PD F representation, if necessary.

•  Each monotone segment of g[x) is indicated in the first sublist in its list of two 

sublists format. If g{x) is discontinuous or many-to-one on fix , then more than 

one transform ation will be in the first sublist. In this situation, it is currently 

impossible to avoid returning an “alien” A PPL random variable format for the 

PD F of Y.  Since X  has infinite support, i t  cannot be converted to a  NoDot  

format. Thus, a t least two formulaic (piecewise) PD Fs are returned in the  first 

sublist of Y ,  and sublist two must be adjusted to reflect the piecewise PDFs. 

The algorithm m ust identify which segment of the transformation function is 

applied to which support value or values of X .  This is more difficult than  in the 

NoDot  case since each support value is not listed, but rather alluded to by the 

second sublist data  structure. Since it is impossible to mechanically calculate an 

infinite number of support values, the algorithm simply returns the transformed 

support as a range of support values followed by the transformation tha t applies 

to it. For example, if X  ~  Poisson(2), then its support in sublist two is [0.. oo]. 

If the transformation is Y  =  \X  — 2|, then the  transformed random variable Y  

is

f f 2 ^ - ^ e - 2 2 (2+I)e -2l
l r “* ( 2 - x ) r X ^  (2 +x ) \  J ’

[2.. 0, - 1 ,  x  ->• 2 -  rr, 3 .. oo, x  x  -  2], [“Discrete” , “PDF”] .
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•  The algorithm determines the appropriate inverse for the  z'th monotone segment 

with corresponding transform ation function gi(x), for each i. The correct inverse 

is selected by requiring th a t g~1(gi(ci )) =  eg when eg is a point in the support 

range of • The algorithm  for determining eg (where the ith  subinterval has 

endpoints Xi and z,-+1) is

1. If Xi - - —oo and x-i ^  oo, then =  x 2 — 1-

2. If xn ^  —oo and x n+i - - oo, then eg, = xn +  1.

3. For all other cases, eg = (x{ + x l+i)/ 2 .

•  The correct inverses g~1{y) are substituted into the formulaic PDF for x.

•  If gi{x) is an increasing function on f ^ ,  then the support of the transformed 

random variable, f1y, has format type:

[Xi..Xi+l, l , X  -¥

If gi(x) is a decreasing function on Clxt, then the support of the transformed 

random variable, has format type:

[xi+l.. Xi, - 1 ,  X <7,-(a;)].

•  The transformed random  variable Y  is printed (not in its standard Dot  format) 

and a warning message is returned. This is the first tim e APPL has output a 

random variable with more than one formulaic PD F in its first sublist. Other 

APPL procedures are unable to work with a  random variable in this format. 

Further work on the discrete data structure will handle this situation. Unfor

tunately, the transformed PD F Y  is being output in a form th a t is foreign (or 

alien) to other APPL procedures.
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5.3 Applications

W hen a sample X i ,  X 2, - - ., X n is drawn, some summary statistics are computed, such 

as the mean, variance, and median. It is also possible to compute the distributions 

of these summary statistics provided th a t the X i  are iid random samples from a 

given distribution. Examples using the T ransf orm procedure to compute distributions 

for the sample mean, sample geometric mean, sample harmonic mean, and sample 

quadratic mean are displayed on the next several pages.

E xam ple 5.9. (Sample mean) Let X \ ,  X i ,  . . . ,  X 10 be iid Bernoulli random variables 

with general parameter 0 < p <  1 . Find the PD F of the sample mean X .

Solution: The APPL statements below define X as a Bernoulli random variable 

with parameter p, find the convolution of the ten Bernoulli random variables, and 

transform the resulting convolution by 1/10.

> n := 10;
> X : = BemoulliRV (p) ;
> Y : = ConvolutionIID(X, n);
> Z : = TransformCY, [[x  -> x / n] , [-infinity, infinity]]);

The resulting PD F for the sample mean Z =  X  is

f (1-P)10 z =  0  

z =  1 / 1 0  

z =  1/5 
z =  2/5 
z =  3/10 
z =  1 / 2  

z =  3/5 
z =  7/10 
z =  4/5 
z =  9/10 
z =  1 ,

1 0 p ( l — p ) 9

45p2(l — p ) 8 

1 2 0 p3(l - p ) 7 

2 1 0 p4(l -  p ) 6

/z (z ) =  252p5(l — p ) 5

2 1 0 p6(l - p ) 4 

1 2 0 p7(l -  p ) 3

45p8(l — p ) 2

1 0 p9(l — p)
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which is the distribution of the ratio of a binomial(1 0 , p) random variable and 1 0 . □

E x am p le  5.10. (Sample geometric mean) Suppose th a t an urn contains 2  red balls 

and 8  white balls. If 5 balls are drawn at random without replacement, then the to ta l 

number of red balls selected X  has a hypergeometric distribution with PDF

f x ( x )  =
320

(2 — r)!x!(3 +  x)!(5 — x)\
x  =  0 , 1 , 2 .

Let X i , X 2, . . . ,  X X2 be iid hypergeometric random variables with the above PDF. 

Find the distribution of the sample geometric mean G.

Solu tion : The sample geometric mean G  is defined by

n \  VnHtH
The APPL statem ents

> n
> X
> Y
> G

= 1 2 ;
= HypergeometricRV(10, 2, 5);
= ProductIID(X, n);
= TransformCY, [[x -> x (1 / n)] , [-infinity, infinity]]);

return the PD F of G  in its list-of-sublists as 

'268588249280 244140625G := 390625000 859375000
282429536481’ 282429536481’ 94143178827’ 94143178827’ 

3437500000 343750000 220000000 308000000
282429536481’ 31381059609’ 31381059609’ 94143178827’ 

35200000 8800000 14080000 563200
31381059609’ 31381059609’ 282429536481’ 94143178827’

4 0 9 6 0 _______________4 0 9 6  ]  [q  x  2 1 / 1 2  2 1 /6  2 1 /4  2 1 /3  2 S /1 2
94143178827’ 28242953648lJ ’ L ’ ’ ’

v/2, 2 7/ 1 2 ,2 2/3,2 3/4,2 5//6,2 U/12, 2], [“Discrete”, “PD F”]
□

E xam ple 5.11. (Sample harmonic mean) Let X i ,  X 2, X$, X 4 be iid uniform discrete
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random  variables with PD F /x (x )  =  1/6 for x  =  1, 2, . . . ,  6 . Find the distribution 

of the sample harmonic mean H.

Solution: The sample harmonic mean H  is defined by

H  = i  -1 _ '
n Z^i=l  Xi

The APPL statem ents

> n := 4;
> X := UniformDiscreteRVCl, 6);
> Tempi := TransformCX, [[x -> 1 / x] , [0, infinity]]);
> Temp2 := ConvolutionllD(Tempi, n);
> H := Transform(Temp2, [[x -> n / x] , [0, infinity]]);

return the PD F of H  as

’ 1/1296 
1/324

1/216 
1/108

1/72
11/648
1/54

fu{h) = <
41/1296 
1/36 
5/162 
2/81 
17/648 
13/648 
31/1296 
7/324 
23/1296 
1/81 
5/648

h =  1,5,6
h =  8/7,6/5,16/13,5/4,24/19,5/2,40/11,30/7,80/17,

120/23,16/3,40/7 
h = 4/3,5/3,20/7,60/11
h =  24/17,16/11,40/27,48/31,30/19,80/49,48/29,120/71, 

16/9,20/11,40/19,30/13,80/33,120/47,80/29,120/37, 
80/23,240/59,240/49,240/47 

h = 3/2,12/7,15/4,40/9 
h =  8/5
h =  24/13,48/25,120/61,80/39,240/107,240/97,48/19,60/23, 

48/17,120/41,240/77,60/13 
h =  2
h =  48/23,15/7,240/67,120/31 
h =  24/11,40/17,10/3 
h =  16/7,16/5, 
h =  12/5,24/7 
h = 8/3 
h =  3
h =  48/13,80/19 
h =  4 
h =  48/11 
h =  24/5.
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E xam ple 5-12. (Sample quadratic mean) Let X 2, . . . ,  X 10 be iid Bernoulli ran

dom variables with parameter p, where 0 <  p < 1. Find the distribution of the sample 

quadratic mean Q.

Solution: The sample quadratic mean Q is defined by

The APPL statements

Q = \
i  n
iE * . '2-n  t—'i—1

> n
> X
> Y
> Z
> T
> Q

= 1 0 ;
= BernoulliRV(p);
= Transform(X, [[x -> x * 2] , [-infinity, infinity]]); 
= ConvolutionllD(Y, n);
= Transform(Z, [[x -> x / n] , [-infinity, infinity]]); 
= Transform(T, [[x -> sqrt(x)], [0, infinity]]);

return the PDF of Q as

/« (?) =  <

(1 - p ) 10 q =  0

1 0 p (l -  p ) 9 q =  v '1 0 / 1 0

45p2(l — p ) 8 q = V 5/5
1 2 0 p3(l — p ) 7 q =  >/30/10
2 1 0 p4(l -  p ) 6 q  =  v/10/5
252p5( l — p ) 5 q = y/2 / 2

2 1 0 p6(l — p ) 4 q  =  v/15/5
1 2 0 p 7(l -  p ) 3 q  =  v/70/10
45p8(l — p ) 2 q = 2>/5/5
1 0 p9(l — p) q =  3710/10
pio qf =  l . □

E xam ple 5.13. (Reliability) Three different components, numbered one, two, and 

three, are tested. They are to be arranged in a series system. The number of com

ponents tested and successes for each type of component are listed in Table 5.1. The
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point estim ate for the system reliability is | |  - •  | |  =  =  0.8595. Find the lower

95% bootstrap confidence interval bound.

Table 5.2: Life tests on a three-component system.

Component Number on Test Number of Passes

1 23 2 1

2 28 27

3 84 82

Solution: The APPL statem ents below, which utilize the P roduct and Transform 

procedures, are used to determine the lower 95% bootstrap confidence interval bound 

for the system reliability.

> n l  := 23; s i  := 21;
> XI := BinomialRV(nl, s i  /  n l ) ;
> XI := TransformCXl, [[x -> x /  n l ] ,  [ - i n f i n i ty ,  i n f i n i t y ] ] ) ;
> n2 := 28; s2 := 27;
> X2 := BinomialRV(n2, s2 /  n 2 ) ;
> X2 := Transform(X2, [[x -> x /  n2] , [ - i n f i n i ty ,  i n f i n i t y ] ] ) ;
> n3 := 84; s3 := 82;
> X3 := BinomialRV (n3 , s3 /  n 3 ) ;
> X3 := Transform(X3, [[x -> x /  n3] , [ - i n f i n i t y ,  i n f i n i t y ] ] ) ;
> Temp := P roduct(X I, X2) ;
> T := Product(Temp, X3);

Out of the possible 24 • 29 • 85 =  59,610 potential mass values for T  determined by 

the P roduct procedure, only 6,419 remain since the procedure combines redundant 

values. The lower 95% bootstrap  confidence interval bound is 120/161 =  0.7453. 

This lower bound was verified by the  following Splus function, which samples 10,000 

systems to determine the lower bound:

se rie ssy s tem b o o t <- fu n c t io n (n , y , a lpha) ■{
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nn <- lengthCn) 
nrep <- 10000 
yy <- rep(l, nrep) 
point <- prod(y) / prod(n) 
for (j in lrnrep) -C 
for (i in l:nn) -C

y y [j]  <- y y [ j]  * rbinom(l, n[i] , y[i] / n[i]) / n[i]
}

>
yy <- sort(yy)
interval <- yy[floor(alpha * nrep)] 
c(point, interval)

The function se rie ssy s te m b o o t was called five times with the command 

se rie ssy s te m b o o t(c (2 3 , 28, 84) ,  c (21 , 27, 82) ,  0.05)  

yielding 0.7457, 0.7487, 0.7457, 0.7402, and 0.7457.
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Chapter 6

Minimums and Maximums

Let X  and Y  be two independent discrete random variables with supports f i x  and 

respectively. This chapter outlines a procedure for determining the PDF of the 

minimum and maximum of X  and Y.  At first glance, it appears th a t computing the 

PDF of min{Af, Y }  is no more difficult than determining the PDF of the smallest order 

statistic for some discrete random variable. This is true when X  and Y  are identically 

distributed; we can ju st use the O rderS tat procedure (introduced in Chapter 3) with 

the following three parameters:

•  X =  X  (or Y),

•  n  =  2  (the sample size drawn from the population), and

•  r  =  1 , i.e., minimum.

W hen X  and Y  are not identically distributed, their supports (finite or infinite)

and specific support value relationships (e.g., max{f2x} <  max{fV}) determine how

the PD Fs of their minimum and maximum are calculated. Table 6.1 illustrates the

various categories considered when the Minimum procedure determines the PDF of

the minimum of independent discrete random  variables X  and Y.  Each category is

discussed in its own subsection. Since computing the  PD F of the maximum is more
170
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than  ju st a reversal of the algorithm for computing the PD F of the minimum, it is 

discussed separately with examples and figures a t the end of this chapter.

Table 6.1: Categories for computing the PD F of the minimum of two independent, 
non-identically distributed random variables X  and Y . The notation U(a, b) repre
sents a uniform discrete random variable on the interval [a, 6 ], Geo(p) represents a 
geometric random variable with parameter p, and NegBinom(r, p) represents a nega
tive binomial random variable with parameters r  and p.

Support 
Supports Value
fix  & f i r  Relationships Examples

fix  finite, 
fiy  finite

m ax{fix} =  max{fiy} X  ~  U (l, 6 ), Y  ~  U(3, 6 )

m ax{fix} <  max{fiy} 
(or vice versa)

X  ~  U (l, 4), Y  ~  U(3, 5)

fix  infinite, 
fiy infinite

m in{fix} =  min{fiy} X  ~  G e o ( l/2 ), Y  ~  G eo(l/4)

min{fix} <  min{fiy} 
(or vice versa)

X  ~  G eo(l/2),
Y  ~  NegBinom(2, 1/2)

fix  infinite, 

fiy  finite

(or vice versa)

* w-
' II u S r-̂-
N

'-r-
' X  ~  G e o ( l/2 ), Y  ~  U(l, 4)

min{fix} <  max{fiy} X  ~  G e o ( l/2 ), Y  ~  U(3, 5)

m in{fix} >  max{fiy} X  ~  NegBinom(2, 1/2), 
Y  ~  U(l ,  4)
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6.1 PDF of the Minimum

Let X  and Y  be two independent discrete random  variables with supports Qx  and 

fir , respectively. Let Z  =  min{X, Y} .  Then the CDF of Z  is computed as

for z  €  Qz C U fi>-, where Qz is discussed further in the various subsections. The 

CDF of Z  can be converted to its PDF representation if desired. When X  and Y  are 

identically distributed (as discussed in the following subsection), the CDF of Z  when 

n  samples are drawn from X ’s population is

6 .1 .1  Id en tica lly  D istr ib u ted  R a n d o m  V ariab les

For discrete iid random variables, the MinimumIID(X, n) procedure was written to 

determine the PD F of the minimum of n iid random  variables X. The MinimumIID(X, 

n) procedure determines the PD F of the minimum by making the procedure call: 

O rd erS ta t (X, n , 1 ). From Chapter 3, OrderStatCX, n , r )  determines the PDF 

of the r th  order statistic when n random samples are drawn (with replacement) from 

the parent population corresponding to the random  variable X. Thus, the statement

Fz (z) =  P r ( Z < z )

1 -  P r(Z  >  z)

1 — Pr(min{A', Y }  > z)

1 — P r(X  >  z) ■ Pv{Y > z) (X  and Y  are independent)

1 -  ( 1  -  Pr(J\T <  z)) • ( 1  -  P r(K  <  z))

1 -  (1 -  Fx {z)) ■ ( 1  -  FY {z)) (6 .1)

Fz (z) =  1 -  ( 1  -  Fx {z))n z  €  fix- (6 .2)
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O rderS ta t (X, n , 1 ) determines the PDF of the first order statistic, the m i n i m u m , 

when n random samples are drawn from the parent population. Unlike the Minimum 

procedure, MinimumllD can determine the PDF of the m i n i m u m  for more than just 

two random variables. Also, as shown in Example 6.2, MinimumllD can be used for 

random variables with infinite supports.

E x am p le  6.1. (Adapted from Bain & Engelhardt, 1992, page 54) A fair four-sided 

die is rolled twice. Determine the PDF of the minimum.

S o lu tion : Let Xi  be the outcome of the die on its ith  roll, i =  1,2. Then f Xi {x) =  1/4 

for x  =  1 , 2 ,3,4;  i  =  1 , 2 . Let Z  =  min-fXi, X 2}. The diagram in Figure 6 . 1  shows 

th a t the PDF of Z  is

f z { z )  =  <

7_
16

_5_
16

_3_
16

_1_
16

z — 1  

z =  2  

z  =  3 

z =  4.

4

3

2

1

21 3 4

m i n i m u m  
value

4 

3 

2 

1

probability

_L
16

_3_
16

o
16

16

*1

Figure 6.1: The PD F of the minimum when a four-sided die is rolled twice.
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The APPL statements required to determine this PDF are

> X := UniformDiscreteRVCl, 4 ) ;
> Z := MinimumllD(X, 2 ); □

E x a m p le  6.2. (Adapted from Bain & Engelhaxdt, 1992, page 229) Consider a ran

dom sample of size n = 4 from a geometric distribution with PDF f x  {%) =  p- (1 — p)x~l 

for x  =  1 ,2 , . . . :  0 < p < 1 . Determine the PD F of the minimum.

S o lu tio n : Let Z  be the minimum of the four geometric random variables. The CDF 

of X  is Fx {x) =  1 — (1 — p)x, and thus the CDF of Z  (by equation 6.2) is

Fz (z) =  l - ( l - ( l - ( l  - py ) f

=  1 - ( 1  - p ) ^  z  =  1, 2 , . . . .

The simplified PD F representation of Z , found by differencing, is

cf  ̂ _  - p  (p4 -  4p3 +  6 p2 -  4p +  l ) 2 (p3 -  4p2 4-6 p -  4)
J \ . z )  . . 4 z  — I ,  z , . . . ,

(1 ~P)

which is obtained with the APPL statem ents

> X := GeometricRV(p) ;

> Z := MinimumllD(X, 4 ); □

6 .1 .2  N o n - id e n t ic a lly  D is tr ib u te d  R a n d o m  V a r ia b le s

One of the largest obstacles in determining the PD F of Z  when X  and Y  do not 

have the same distribution is working with supports Qx  and Qy  th a t are often not 

identical [e.g., X  ~  geom etric(l/2), Y  ~  negative binomial(2, 1/2)]. There are three 

categories to consider: (1 ) Qx  and Sly both finite, (2) Six and Sly infinite, and (3) 

Six infinite and Sly finite (or vice versa).
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f i x  F in ite , f i y  F in ite

In APPL, random variables with finite supports come in one of two formats: Dot  

or NoDot .  Instead of working w ith random  variables in their Dot  formats and pro

ducing alien APPL PDFs (e.g., the transformed random variable displayed in its 

list-of-sublists a t the bottom  of page 162), random variables with Dot  formats are 

converted to their NoDot  formats with the ConvertToNoDot procedure at the start 

of the Minimum procedure. A brute force m ethod is used to determine the PDF of 

the minimum Z.

For explanation purposes, let X  and Y  be the random variables

f x ( x )  =  <

0 . 2 x  — 1

0.3 x  =  5
0.4 x  = 7
0 . 1 x  =  9,

f v ( y )  = <
0.6
0.1
0.3

y — 4 
y=-  5 
V =  6 .

The support of Z  =  min{AT, Y }  contains only the support values of fix  and fiy 

th a t result in nonzero probabilities (for minima), i.e., fiz =  {1 ,4, 5, 6 }. Thus, if

•  m ax{fix} =  max{fiy}, then f iz  =  Qx  U fiy;

•  m ax{fix} >  max{fiy}, then the Qz  =  {x €  fix  \ x  < max{Qy}} U fiy . The 

example introduced in this subsection falls into this category;

•  m ax{fix} <  max{fiy}, then the Qz =  U {y €  fiy } y < m ax{fix}}.

For each support value z  €  Qz,  the probability value Fz {z) is computed using 

equation 6.1. In APPL, the value F z ( z ) is computed using the CDF procedure. That 

is,

Fz (z) =  1 -  (1 -  CDF (AT, z)) • (1 -  CDF(T, z))
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for each z  G Q.z - After the CDF of Z  is determined in the Minimum procedure, it is 

converted to its PD F representation with the PDF procedure.

E x a m p le  6.3. Determine the PDF of Z  =  min{AT, Y }  for the random variables X  

and Y  introduced in this subsection.

S o lu tio n : Figure 6 . 2  illustrates how the five minimum support values in Viz  axe 

obtained.

minimum
value

minimum
value

Figure 6.2: The minimum values Qz  =  {1 ,4 ,5 ,6 } for X  and Y  in Example 6.3.

Using equation 6 .1 , the CDF of Z  and its corresponding PD F are

0 . 2 2  =  1 0 . 2 2  =  1

0 . 6 8 2  =  4
f z { z )  =  <

0.48 2 = 4

0.85 2  =  5 0.17 2  =  5
1 2  =  6 , 0.151 2  =  6 .

Fz{z) =

The PD F of Z  is determined with the APPL statem ents

> X
> Y
> Z

= [ [ 0 .2 ,  0 . 3 ,  0 . 4 ,  0 . 1 ] ,  [1, 5, 7,  9 ] ,  [ " D is c re te " , "PDF"]];
= [ [0 . 6 ,  0 . 1 ,  0 . 3 ] ,  [4 , 5, 6 ] ,  [ " D is c re te " , "PDF"]];
= Minimum(X, Y) ; □

E x a m p le  6.4. Fair six-sided and twelve-sided dice are rolled. Determine the proba
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bility th a t the minimum face showing is a three or less.

S o lu tio n : The probability that the minimum face Z  is less than or equal to three is 

5/8, as determined by the APPL statem ents

> X := UniformDis''-^eteRV(l, 6 ) ;
> Y := UniformDiscreteRVCl, 12);
> Z := Minimum(X, Y);
> CDFCZ, 3) ; □ 

Qx  In f in ite , fiy In fin ite

When Vtx and fiy have infinite supports, the random variables X  and Y  have Dot  

formats in APPL. Thus, a formulaic PD F for Z  =  min{X, Y }  will be returned in 

APPL. Assume th a t the supports Qx  and fiy are subsets of adjacent integer values. 

(This is often the case since many random variables, such as the geometric, Poisson, 

and negative binomial random variables, have this type of support.) In this particular 

category, it  is im portant to determine whether or not min{fix} =  min{fiy}.

In the case where m in{fi^} =  min{fiy}, the CDF of Z  is computed using equation

6.1 and the CDFs of X  and Y.  In APPL, the CDF procedure is used to determined 

the formulaic CDFs for X  and Y . Once the CDF of Z  is determined, its PDF is 

calculated— in APPL, this is done with the PDF procedure.

E x a m p le  6 .5 . Determine the probability th a t the minimum of a Poisson random 

variable X  w ith a mean of one and a Poisson random variable Y  with a mean of two 

is greater than  or equal to three.

S o lu tio n : T he CDF of Z  =  min{X, Y }  can be determined with equation 6.1, and 

then converted to its PD F representation. In APPL, the desired probability, Pr(Z  > 

3), is computed with the SF (survivor function) procedure. The statem ents

> X := PoissonRV(l);
> Y := PoissonRV(2);
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> Z : = MinimumCX, Y);
> evalf(SF(Z, 3));

return the probability as the floating point approximation 0.0260. □

In the case where min{fix} #  m in{f2r}? the PD F of Z  = min{AT, Y } is a piecewise 

defined function. Assume without loss of generality th a t min{f2x} <  min{fiy-} . The 

support of the minimum Z  is identical to the support of X ,  i.e., Qz  =  Q x - For 

2  E {min{ftx }, min{fix } +  1, . . . ,  min{Qy } -  1} C  Qx , f z ( z )  =  f x {z). For 2  E 

{min{fiy-}, min{fiy-}+l, . . .} =  Qx —{m in{fix } 5 m in{ fix}+ l, - - • 7 m in{fV }—1 }, the 

formulaic piece of the CDF F z ( z ) is computed using equation 6.1. The corresponding 

formulaic piece of the PDF f z{z )  for 2  E {min{fV}, min{fV} +  1, . . .}  is computed 

using both the formulaic CDF segment of Fz(z)  for 2 E {min{Qy}, min{f2y} +  l ,  . . .} 

and the PD F values f z{z)  for 2 E {min{f2x}, min{Qx} +  1, . . . ,  m in{fiy} — 1}.

For example, let AT be a geometric random  variable with param eter p = 1/2, and 

let Y  be a negative binomial random variable with parameters r =  2  and p =  1 / 2 . The

first segment of the PDF of Z  is f z { z ) =  ( l /2 )z. As indicated by the first column 

in Figure 6.3 with x  =  1 , the minimum value 2  =  1  occurs with probability 1/2,

the formulaic piece of the CDF of Z  is computed using equation 6.1 with the CDFs

PD F o i X  is f x {x) =  (1/2)*, x =  1, 2, . . . ,  and the PDF of Y  is f Y (y) =

y  =  2 ,3 , ----  For 2  E {m in{fix},m in{f2x} +  1, min{fV} — 1} =  {1}, the

1. For 2  E {min{fiy},min{fiy-} +  1, . . . }  =  {2,3, . . .},

Fx (x) =  1  -  ( l /2 )x, x  = 1,2 , . . . ,  and FY (y) =  1 -  (y +  l)/2», y  =  2 ,3 , . . . .

The resulting PD F for the minimum Z  for the example random variables X  and 

Y  is

2  — 2 , 3 , . . . .
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minimum
value

Y

7

6

5

V

3 4
X

minimum
value

-  3

-  2

Figure 6.3: The support values for a geometric random  variable with support 
Qx  =  {1,2, . . .  } and and a negative binomial random  variable with support fly  =  
{ 2 , 3 , . . . } .

As discussed in Chapter 5 on transformations, A PPL is forced to return an error 

message and print the PDF of Z  in a form th a t is alien to other APPL procedures. 

APPL prints the PD F for Z  as

x
3 x - l

4X
, [1 ,2 . .  oo], [“Discrete” , “PD F”]

Q x  In fin ite, Q y  F in ite

For discussion purposes, X  has an infinite support and Y  has a finite support in 

this subsection, though they could be swapped w ithout consequence. Assume that
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the support Qx  is a  subset of adjacent integer values. There are three cases to 

consider in this category: (1 ) min{f2x} =  min{fiy}, (2 ) min{ft;c} >  min{Qy}, and 

(3) min{fix} <  min{S2y}.

•  min{Qx} =  min{fiy}

E x am p le  6 .6 . Let X  ~  geom etric(l/2) with PDF fx{%) — ( l /2 )x for x = 
1,2, . . . ,  and Y  have PDF

f v ( y )  =  <

r 1/4 y  =  l
1 / 8 y  =  3
1 / 2 y  =  4

k 1 / 8 y  =  6 .

Determine the PD F of the minimum Z.

S o lu tion : In the case where min{f2x} =  min{fiy}, Qz  =  {min{Dx}, m in{fix}+ 

1, . . . ,  max{f2y}}. Since \Qz\ is finite, the probability value Fz ( z ) is computed 

(by brute force) for each z  £  Qz  using equation 6.1. In APPL, Z  will have a 

NoDot  format, where its second sublist will range over all integers between and 

including m in{Qx} to max{Qy}. Figure 6.4 illustrates how the six m in im u m  

values are determined in this example.

The CDF of X  is Fx {x) =  1 -  ( l /2)x for x  =  1,2, . . . ,  and the CDF of Y  is

Fy{y)  =  *

1/4 y = 1

3/8 y  = 3
7/8 y  = 4
1 y  = 6 .
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minimum
value

il a minimum
v a l n p

lli ^  0

^  4

pi
1

1 2 3 4 5 6  7 . . .
X

Figure 6.4: The support values for the random  variable X  with infinite support and 
the random variable Y  with finite support, where m in{fl^} =  m in{fV }.

For 2  =  5, for example,

Fz ( 5) =  P r ( Z < 5 )

=  1 — Pr(m in{X , Y }  > 5)

=  1 -  ( 1  -  P r(X  <  5)) • ( 1  -  P r(F  <  5))

-  ' - © ‘ f f l
255 

”  256'

The other CDF values are obtained similarly to yield the CDF of Z  as

5 /8 z = l
13/16 2  =  2

59/64 2  =  3
127/128 2 = 4
255/256 2  =  5
1 2  =  6 .

The resulting PDF, computed by the APPL statements
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> X := GeometricRVCl / 2 );
> Y := [[1 /  4 , 1 /  8 , 1 /  2, 1 /  8 ] , Cl, 3 , 4 , 6 ] ,

["Discrete", "PDF"]];
> Z := Minimum(X, Y );

is

f z ( z )  = <

5/8 z =  1

3/16 z =  2

7/64 z =  3
9/128 z =  4
1/256 z =  5

k 1/256 z =  6 . □

m in{fix} >  min{£V}

E x a m p le  6.7. Let X  be a negative binomial(4, 1 / 2 ) random  variable with 
PD F f x ( x )  =  ^~96( i - 4 j;— j x =  4,5, . . .  and Y  be a random  variable with PDF

f r ( y )  = <

1/4 y  =  i
1/4 y  =  3
1/4 y  = 5

k 1/4 y  =  7.

Find the PD F of Z  =  min{X, Y} .

S o lu tio n : Figure 6.5 illustrates the support values of X  and Y.  When min{Q_y} 

>  m in{fV }, =  {y  £  f i y ! y  < m in{flx}} U  {min{SlA:}, min{f2*} +  1 , . . . ,  

max{f2y}}- For z  €  {y  €  QY IV < m in-fn*}}, Fz (z) = FY (z). For z  6  

{min{f2x}, min{Qx} +  1 , . . . ,  max{CV}}, the value Fz {z) is computed using 

equation 6.1 and the CDFs of X  and Y.  Finally, the CDF of Z  is converted to 

its PD F representation.

In APPL, the assignment Y : = UniformDiscreteRVCa, b , k) ; defines Y  

as a uniform discrete random variable (provided th a t k divides b — a) with PDF

f r ( y )  = n  + 1
y = a,a + k , a  + 2k , . . . ,  a + n k ,
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minimum
value ^

minimum
value

7

5

3

1

4 5 6 7 8 9 10

Figure 6.5: The support values for the random variable X  with infinite support and 
the random variable Y  with finite support, where min{f2x} >  min{fV}.

where n  = (b — a)/k  . Thus, the statements

> X := NegativeBinomialRV(4, 1/2);
> Y := UnifonnDiscreteRVd, 7, 2);
> Z := MinimumCX, Y);

return the PD F of Z  as

1/4 Z =  1

1/4 z  —  3
1/32 2 =  4
17/64 2 =  5
5/128 2 =  6
21/128 2=7.

•  m in{fix} <  min{fV}

E x a m p le  6 .8 . Let J b e a  geom etric(l/4) random variable with PD F f x ( x )  =
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4 ( f)*  \  x  =  1> 2, - - and Y  be a random variable with PD F

1/4 y  =  4

1 1/4 y  = 6

1/4 y = 7

. 1 /4 y =  9.

Find the PD F of Z  =  min{AT, Y } .

S o lu tio n : Figure 6 . 6  illustrates the support values of X  and Y .  When m in{fix} < 

m in{fV}, Q z  =  { x  €  Q x  I x  <  m in{fV}} U  {min{S7y'}, m in{fV } H- 1, 

max{f2y }}. For z  6  {a: G Qx  I x  < m in{fV}}, Fz (z) =  Fx {z). For z G 

{min{^K},min{Dy} +  1, max{Dy}}, Fz (z) is computed using equation

6.1 and the CDFs of X  and Y.  Finally, the CDF of Z  is converted to its PDF 

representation.

m i n i m u m

value
m inim um
value

9

7

6

4

2 61 3 4 5 7 8 9 10
X

Figure 6 .6 : The support values for the random  variable X  with infinite support and 
the random variable Y  with finite support, where m in ify }  <  min{£V}-

In APPL, the statements 

> X := GeometricRVCl / 4);
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> Y := [[1 /  4 , 1 /  4 , 1 /  4 , 1 /  4 ] ,  [4 , 6 , 7 , 9 ] ,
[ " D is c re te " , "PDF"]];

> Z := MinimumCX, Y );

return the PDF of Z  (in its NoDot  format) as

'1 / 4  2  =  1
3/16 z = 2
9/64 z = 3
189/1024 2  =  4

f z { z )  =  243/4096 2  =  5
729/8192 2  =  6

3645/65536 2  =  7
2187/262144 2  =  8

k 6561/262144 2  =  9.

6.2 PDF of the Maximum

Let X  and Y  be two independent discrete random  variables with supports Q x and 

Qy, respectively. Let M  =  max{X, Y} .  Then the CDF of M  is computed as

Fm {m)  =  P r(M  <  m)

=  Pr(m ax{X , Y }  < m )

=  P r(X  <  m) ■ P r(F  <  m) 

=  P r(X  <  m)  - P r(T  <  m)  

=  F x ( m ) • FY (m)

( X  and Y  are independent)

(6.3)

for m  G fijif C  Qx U Qy,  where SlM is discussed further in the various subsections. 

The CDF of M  can be converted to its PD F representation if desired. When X  and 

Y  are identically distributed, the CDF of M  when n  samples are drawn from X ’s
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population is

FM{m) =  Fx {m)n m  e Q X - (6.4)

For discrete iid random variables or random variables with finite support, the 

MaximumllD and Maximum procedures are closely related to their counterpart minimum 

procedures in APPL. The MaximumllD (X, n) procedure determines the PDF of the 

maximum of n iid random variables X. The MaximumllD procedure determines the 

PD F of the maximum by calling the O rderS tat procedure with the random variable 

X =  X ,  the number of samples drawn n =  n, and the order statistic r  =  n. The 

statem ent O rderS tat (X, n , n) determines the PDF of the largest order statistic. 

Unlike the Maximum procedure, MaximumllD can determine the PDF of the m axim um  

for more than ju st two random variables.

E xam ple 6.9. A fair twelve-sided die is rolled five times. Determine the PDF of the 

maximum.

Solution: Let Xi  be the outcome of the die on its zth roll, i =  1 ,2 ,3 ,4 ,5 . Then

f Xi(x) =  1/12 for x  =  1,2, . . . ,  12; * =  1,2, . . . ,  5. Let M  =  m ax{Xi, X2, X3, AT4, AT5}. 

The CDF of M  is computed using equation 6.4. Its corresponding PDF is

1/248832
31/24883

m = 1 
m = 2 
m =  3 
m = 4 
m  =  5 
m  =  6 
m  = 7 
m  =  8 
m =  9 
m  =  10 
m  —  11 

m  =  12.

fM{m)  =  <

211/248832
781/248832
2101/248832
4651/248832
9031/248832
15961/248832
26281/248832
40951/248832
61051/248832
87781/248832

V
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The APPL statem ents required to determine this PDF are

> X := UniformDiscreteRV(l, 12);
> M := MaximumllD(X, 5); □

As in the Minimum procedure, random variables with Dot  formats axe converted 

to their NoDot  formats with the ConvertToNoDot procedure. A brute force method 

is used to determine the PDF of the maximum M.

For explanation purposes, again let X  and Y  be the random variables

f x { x )  =  <

0.2 x  =  1
0.3 x  =  5
0.4 x = 7
0.1 x  =  9,

f r{ y)  = <
0.6 y =  4
0.1 y =  5
0.3 y =  6.

The support of M  contains only the support values of fi*  and fiy th a t result in 

nonzero probabilities (as maxima), i.e., fiM =  {4, 5,6, 7, 9}. Thus, if

•  m in {fijr}  =  m in { f iy } ,  then = Qx  U f iy ;

• m in{fi*} >  m in{fiy}, then the =  fi*  U {y £  fiy  | y < m in{fix}};

•  min{fix} <  min{fiy}, then the f i^  =  {x  E. f i^  | x  < min{fiy}} U fiy. The 

example reintroduced in this subsection falls into this category.

For each support value m  £ f i^ ,  the probability value i'V (ra) is computed using 

equation 6.3. In APPL, the value F^f(m)  is computed using the CDF procedure. T hat 

is,

FM{m) = CDF (AT, m ) • CDF(K, m)

for each m  £  f i ^ f .  After the CDF of M  is determined in the Maximum procedure, it is 

converted to its PD F representation with the PDF procedure.
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E xam ple 6.10. Determine the PD F of M  = max{X, Y }  for the random variables 

X  and Y  reintroduced in this subsection.

Solution: Figure 6.7 illustrates how the five maximum support values m  G Qm are 

obtained. Using equation 6.3, the CDF of M  and its corresponding PD F are

FM(m) =

' 0.12 m  = 4
0.35 m  =  5
0.5 m  =  6
0.9 m  =  7
1\ m  =  9,

X
m a x im u m 1 5 7 9

r 0.12 m =  4
0.23 m =  5
0.15 m =  6
0.4 m =  7
0.1 m =  9.

6

5

4

6

5 Y  

4

maximum 
7 9 value

Figure 6.7: The maximum values {4 ,5 ,6 ,7 ,9} for X  and Y  in Example 6.10. 

The PD F of M  is determined with the APPL statements

> X
> Y
> M

= [[0.2, 0.3, 0.4, 0.1], [1, 5, 7, 9], ["Discrete", "PDF"]]; 
= [[0.6, 0.1, 0.3], [4, 5, 6], ["Discrete", "PDF"]];
= Maximum (X, Y) ; □

O ne or B o th  0 .x  and f l y  Infin ite

We assume that the supports of Qx  and Qy are integer valued. W hen both Fix and 

J7y are infinite, it is im portant to determine whether or not min{f2x} =  min{fiy}. If
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•  m in{fix} =  min{fi^}, then fi/vr =  fix  (or f ir);

•  m in{fix} >  m in{fir}, then fi^- =  fix-;

•  m in{fix} <  min{fiy}, then f i ^  =  QY.

The maximum CDF in all cases is determined using equation 6.3 and can then be

converted to its PDF representation.

E xam ple 6.11. Let X  be a negative binomial random variable with parameters 

r — 2 and p =  1/2, and Y  be a geometric random variable with parameter p =  1/4. 

Determine the PD F of M  =  max{AT, Y} .

S o lu tio n : In APPL, the PDF is computed with the statements

> X := NegativeBinomialRV(2, 1/2);
> Y := GeometricRVCl / 4 );
> M := Maximum(X, Y) ;

The resulting PD F is

purposes, choose X  to have an infinite support and Y  to have a finite support, though 

they could be swapped without consequence. There are three cases to again consider: 

(1) m in{fix} =  m in{fiy}, (2) m in{fix} >  min{fiy}, and (3) min{fix} < m inlfi^}-

•  m in{fix} =  min{fiK}

m  = 2 ,3 , ___

Notice th a t fi^- =  fiY , since m in{fix} <  min{fiy}. □

When either fix  or fiy  is infinite (and the other is finite), the relationship between 

m in{fix} and min{fiy-} plays an im portant role in determining For discussion
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E x am p le  6.12. Let X  ~  geometric(1/2) with PDF f x ( x )  =  (1/2)1 for x  =  

1,2, . . . ,  and Y  have PDF

f v i y )  =  <

' 1/4 y  =  l
1/8 y  =  3
1/2 y = 4

.  1/8 y  =  6.

Determine the PDF of M  =  max {AT, Y} .

S o lu tio n : In the case where m in{fix} =  min{f2y}, =  {min{fix}, m in{fix}+ 

1, i.e., I^Afl is infinite. The probability value Fm-(jti) is computed (by

brute force) for each m  £  {m in{fix}5 min{f2x} + 1 , - . . ,  max{fiy}} using equa

tion 6.1. In APPL, M  has a NoDot  format for m  £  {min{f2x}, min{fi;c} +

1, . . . ,  max{fiy}}. For each m  £  {max{Qy} 4-1, max{fiy} +  2, . . .} , /m  (m) =  

and M  has a Dot  format for these m ’s. Figure 6.8 illustrates how the 

maximum values are determined in this example.

X
1 2 3 4 5 6 7 8 . . .

\

. i '1 i r 1 \ 1 i
maximum 

value

6

4

3

1

8

Figure 6.8: The support values for the random variable X  with infinite support and 
the random variable Y  with finite support, where min{S7x} =  min{fly}.
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The CDF of X  is Fx (x) =  1 -  ( l /2 )x for x  =  1, 2 , . . . ,  and the CDF of Y  iis

1/4 y =  l
3/8 y =  3
7/8 y = 4
1 y = 6

Fy(y)  =  <

For m  =  5, for example, FM{p) =  (31/32) - (7/8) =  217/256. The other CDF 
values are obtained similarly and the PD F of M  is

f M(m)  = <

1/8 m  =  1
1/16 m  =  2
9/64 771 =  3
63/128 7 7 1 =  4
7/256 771 =  5
35/256 771 =  6
(1/2)”1 771 =  7, 8 ,----

The APPL statem ents

> X := GeometricRV(l /  2 );
> Y := [[1 /  4 , 1 /  8 , 1 /  2 , 1 /  8 ] ,  [1 , 3 , 4 , 6 ] ,

[" D isc re te " , "PDF"]];
> M := MaximumCX, Y );

prints an error message about the random variable’s alien format and prints the 

PD F of M  in a split NoDot f  Dot  format as

M  := 1 1 9 63 7 35 (D'l.8’ 16’ 64’ 128’ 256’ 256 

[1,2,3,4, 5 ,6 ,7 .. oo], [“Discrete”, “PDF”]
□

min{fi^} > min{fV}

E x a m p le  6 .13 . Let X  be a negative binomial(4, 1/2) random variable with
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PD F f x {x) =_  (»-l)!(l/2)« 
9 6 ( x —4 )! x  =  4, 5, . . .  and Y  be a random variable with PDF

1/4 V = 1
1/4 y  = 3
1/4 y =  5
1/4 y  =  7.

f v ( y )  =  <

Find the PD F of M  =  max{X, Y } .

S o lu tio n : The support values yielded by X  and Y  are {4,5, 6 ,. . .} .  When 

min{Dx} >  min{Qy}, the support of M  is the same as the support of X ,  i.e., 

=  &x- For m  e  { x  e £ l x  1̂  <  m axlfiy}}, the CDF of M  is computed using 

equation 6.1 and the CDFs of X  and Y . For m € {m ax{fV} + l,m ax{fly}  +  

2, - Fxf(m) = Fx (m).  Finally the CDF of M  is converted to its PDF 

representation.

In APPL, the statem ents

> X
> Y
> M

= NegativeBinomialRV(4, 1 / 2); 
= UniformDiscreteRVCl, 7, 2);
= Maximum(X, Y);

print the PD F of M  as

M  := 1 7 15 31
;>x

( . x  -  l ) ! ( l / 2 ) x- 41
32’ 64’ 128’ 128’"“ ' 9 6 (rr-4 )!

[4,5,6,7, 8 .. oo], [“Discrete” , “PD F”]
□

•  m in{fix} <  min{f2y-}

E x a m p le  6 .14. Let X  be a geometric(1/4) random variable with PD F f x ( x )  
K I ) X X» x  ~  1’ 2, - * • and y  be a random  variable with PD F

f r { y )  = <

1/4 y = 4
1/4 y  =  6
1/4 y = 7
1/4 y = 9.
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Find the PDF of M  =  max{X, Y} .

S olu tion : Figure 6.9 illustrates the support values of X  and Y.  When min{fix} <  

min{fiy}, Qm =  {min{Qx}, m in{fix}+ l, . . .} . For m  G {m in^x-}, min{f2x}+

1, . . . ,  max{f2;ic}}, the CDF of M  is computed using equation 6.1 and the CDFs 

of X  and Y.  For m  G {max{fix} +  l,max{fix:} +  2, . . FM{m) =  Fx (rn). 

Finally the CDF of M  is converted to its PDF representation.

X
4 5 6 7 8 9 10

'N
1

5

CO

>■<

1

imum \ ! 1 ' i ' 1' !1

value 4 5 6 7 8 9 10

Figure 6.9: The support values for the random variable X  w ith infinite support and 
the random variable Y  with finite support, where min{Qx} <  min{Sly}.

In APPL, the statem ents

> X := GeometricRVCl / 4);
> Y := [[1 / 4, 1 / 4, 1 / 4, 1 / 4], [4, 6, 7 , 9],

["Discrete", "PDF"]];
> M := Maximum(X, Y) ;
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return the PD F of M  as

yw(ra) =

r 175/1024 
81/4096 
1805/8192 

< 15655/65536 
6561/262144 
1/4

. (1/4) • (3 /4 ) " -1

m  =  4 
771 =  5 
m  =  6 

m  = 7 
m  =  8 
m =  9 
771 =  10,11,
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Chapter 7

Algorithms for Operations on 

Continuous Distributions

This chapter contains work on algorithms associated with the manipulation of mainly 

continuous random  variables. The first section describes how the algorithmic proce

dure VerifyPDF, which was originally written by Dr. Glen for his dissertation, was 

rewritten to check the validity of a random  variable’s probability density function. 

The second section finds method of moments estim ators for a real or symbolic data  set 

associated with a particular distribution. The th ird  section finds maximum likelihood 

estim ators for a complete or right-censored da ta  set. The fourth section introduces 

the APPL M ixture and T runcate  procedures.

7.1 Existence Conditions for PDFs

For a continuous random variable X ,  its PD F f { x )  must satisfy

•  f i x )  >  0 for —oo < x  < oo, and

•  I-oo f ( x ) dx = L

195
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The latter condition is typically straightforward to verify using a symbolic mathe

m atical software package since integral evaluation is a built-in procedure in these 

packages. Showing that f { x )  is nonnegative over its support is more complicated 

though since there is no easy way to check that f ( x )  is nonnegative for each and ev

ery x  in an uncountable range. This section describes how the VerifyPDF procedure 

was rewritten in order to check that f (x)  > 0  for all x  in its domain. Also, VerifyPDF 
was extended to confirm the validity of probability mass functions for discrete random 

variables.

In order to show why it is important to verify th a t / ( x) is nonnegative over 

its support, consider the continuous random variable X  with PDF f ( x ) =  3|x| — 1 

for — 1 <  x  <  1. Previously, the procedure VerifyPDF reported that f ( x )  was 

a  valid PDF since f ( x )  integrates to 1 on the interval [—1,1]. The PDF f ( x )  is 

not valid, however, since, for example, / ( 0) =  — 1. At th a t time, the VerifyPDF 
procedure checked tha t f ( x )  was positive at its endpoints. Although the integration 

and endpoint check correctly identified the validity of m ost PDFs, including the PDFs 

of standard distributions (e.g., exponential, gamma, normal, uniform), it incorrectly 

verified some distributions with invalid PDFs as valid, as the one illustrated in this 

paragraph.

Graphically, it is easy to tell if the PDF f ( x )  of a random  variable X  is nonneg

ative. If the graph of f ( x )  dips below the x-axis for any value of x  in the random 

variable’s support, then X  does not have a valid PD F. Figure 7.1, for example, il

lustrates tha t the random variable X  with PDF f { x )  =  3|x| — 1 is not valid for 

—1 <  x  < 1 since its graph clearly extends below the x-axis. Since gleaning results 

interactively from a graphical display of a PDF is mechanically impossible in many 

m athem atical software packages (including Maple), an analytic method to indicate 

negative PD F values was developed. The analytic method involves checking that both
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/_“  f ( x ) dx  and \ f (x)  | dx integrate to the value 1. By the following proposition,

if these conditions are satisfied, then f ( x )  > 0 for all real x.

1.5-

0.5-

-1 -0 .8 -0 .6 -0.4V0.2

-1-i

Figure 7.1: The graph of f { x )  =  3 |r | — 1 for — 1 <  x  <  1.

P ro p o s it io n :  Let f ( x )  be an integrable function on £lx- If Jqx f ( x ) dx = 1 and 

f Qx |/ (x ) | dx  =  1, then f ( x )  > 0 almost everywrhere.

P ro o f: Let g{x) =  |/ (x ) | — f{x)  > 0 for all x  €  Vtx- Then g(x)  is a nonnegative 

integrable function on Since f Qx g(x) dx = f n (\f{x) \ — f ( x ) )  dx  =  0, then 

by a standard measure theory theorem (Halmos, 1950, page 104), g{x) = 0 almost 

everywhere. Thus, f ( x )  =  |/(a:)| >  0 almost everywhere.

The following examples illustrate how VerifyPDF handles various continuous ran

dom variables.

E x a m p le  7.1. (Casella & Berger, 1990, page 43) Prove that the PD F of the random 

variable X  with CDF given by

. 1 tan -1 (r)F(x)  =  — -(--------------------- — oo <  x  < oo
2  7T
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is a valid PDF.

Solution: It is not necessary that X  is in its PD F representation for the VerifyPDF 
procedure to correctly determine if its PDF is valid since the procedure calls PDF to 

convert the random variable’s representation initially. The APPL statem ents

> X := [[x -> 1 / 2 + arctan(x) / Pi], [-infinity, infinity],
["Continuous", "CDF"]] ;

> VerifyPDF(X);

print the following:

The area under f ( x )  is  1, 

f ( x ) is nonnegative.

T he  P D F  o f the given random  variable

x  —> — rz — , [—oo, oo], [“Continuous” , “PD F”]

is  valid. □

7 r ( l  +  x 2)

E x a m p le  7.2. (Bain & Engelhardt, 1992, page 85) Determine whether each of the 

following functions is a valid CDF over the indicated part of the domain.

(a) F(x)  = e~x for 0 <  x  <  oo;

(b) F(x)  =  1 — e~x for — 1 <  x  < oo.

S o lu tio n : If a random variable’s PDF is not valid, then its CDF is not valid. The 

VerifyPDF procedure can be used to “weed out” random  variables with invalid PDFs, 

which also have invalid CDFs.

For example (a), the APPL statements

> X := [[x  -> ex p (-x )]  , [0 , i n f i n i t y ] ,  ["C on tinuous", "CDF"]];
> VerifyPDF(X);

print the following:
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The  P D F  o f  the given random variable 

is N O T  valid because f i x )  is negative fo r  some value x

in  its  support.

For example (b), the APPL statem ents

> X := [[x -> 1 -  e x p ( - x ) ] , [ -1 , i n f i n i t y ] ,  ["C ontinuous", "CDF"]];
> VerifyPDF(X);

print the following:

T he area under f{x)  is 2.718281828.

The  P D F  o f  the given random variable is N O T  valid. □

There are instances in which f {x)  dx =  1 and \ f {x ) \dx  =  1, but due to 

roundoff error VerifyPDF incorrectly determines th a t the random variable X  has a 

valid PDF. As computer algebra systems become more sophisticated and powerful in 

their numerical evaluation methods, these types of errors will occur less frequently. 

E x a m p le  7.3. (APPL trap) Let AT be a continuous random variable with PDF

f ( x )  =  1.00002|x -  1| -  0.00001 0 <  x  <  2.

Show graphically th a t X  has an invalid PDF, although VerifyPDF does not indicate 

this.

S o lu tio n : Figure 7.2, which displays the PDF of X  for 0.9999 <  x  < 1.0001, is 

created with the APPL statem ents

> X := [[x -> 1.00002 * absCx - 1) - 0.00001], [0, 2],
["Continuous", "PDF"]];

> PlotDist(X, 0.9999, 1.0001);

As can be seen in the figure, /(0 )  <  0, and thus X  does not have a valid PDF. Since 

Maple evaluates 11.00002 • \x — 1| — 0.000011dx  as one, then the APPL statement
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8e-05

f(x)

6e-05 -j

4e-C5

2e-05

\
0.99992 0.99996 \  1 / 1.00006 1.0001 x

Figure 7.2: The graph of f ( x ) =  1.0002\x -  1| -  0.0001 for 0.9999 <  x  <  1.0001.

> VerifyPDF(X)

incorrectly determines that X  has a valid PDF. As Maple’s abilities progress, A PPL ’s 

will also! □

7.2 Method of Moments Estimation

This section presents the MOM procedure for estimating param eters via the method 

of moments. This method calculates the estimates of the unknown param eters by 

equating the first k theoretical moments of a random variable X  to their corresponding 

sample moments, where k  is the number of unknown parameters.

Let X i , X 2 , . .  - , X n be a random sample of size n  from a distribution with PD F 

f x{x \Q i, #2 ) • • •, #*:). The first k  moments of a random variable X , if they exist, are 

found by computing the expectation

P{j) ~  E ix i )-< j  = l , 2 , . . . , k .
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The first k  sample moments are found by computing

n

M u) = '52 (xi / n )i j  = i , 2 , . . . , k ,
i=  1

where x1? x2, - - -, x n are the data  values.

Given that /x (x ; 9\ , , Ok) is a suitable model for estim ating the population

distribution, then Myj should be approximately equal to the corresponding p;y) for 

j  =  1, 2 , . . . ,  k. Thus, a general procedure for estim ating the parameters 9X, 02, - - •, Ok 

is to solve the system of equations

^(3) =  M U)

for j  = 1 ,2 , . . . ,  k. The solutions to these equations are called the method o f moments 

estimates.

7.2 .1  Im p lem en ta tio n

The APPL procedure MQM(X, Sample, Param eters) used to compute the method 

of moments estimates is implemented as follows:

•  The procedure is presented with three arguments:

- X: A random variable (written in the APPL list-of-sublists format) with 

PDF f x (x- 0 i,02,---,0fc),

- Sample: A list of sample data points drawn from the distribution with 

PDF f x (x ; 02, • • •, 0k), and

- Param eters: A list of parameters to be estimated.

•  The procedure checks th a t the appropriate number of arguments are entered 

in their indicated formats. T hat is, X must be entered as a list-of-sublists, the
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Sample data m ust be entered as a list, and Param eters m ust be entered as a 

list.

•  After converting X to its PDF form, if necessary, the procedure checks that the 

Param eter list contains the same variable names assigned to the random vari

able X. That is, if X := GammaRVCa, b), then the Param eter list must be en

tered as [a , b ] . The variables being estimated in the Param eter list must 

m atch the distribution’s param eters for the Maple so lve  procedure to correctly 

equate and solve the sample and theoretical moments for the appropriate pa

rameters.

•  In order to return exact solutions instead of floating point approximations 

(whenever possible), the procedure converts the values in the list Sample to 

rational numbers.

•  The procedure computes and simplifies the sample and theoretical distribution 

moments. In order to compute the theoretical moments, the procedure calls the 

A PPL ExpectedValue procedure, which was presented in Chapter 2.

•  If possible, the procedure uses so lv e  to find the exact solution(s) to the simul

taneous system of equations obtained from equating the theoretical moments 

w ith their corresponding sample moments. If Maple cannot determine the exact 

solution with so lv e , then the procedure sends the equations to  Maple’s numeric 

solver, f  solve.

•  Finally, the procedure returns the method of moment param eter estimates as a 

list. If the estimates have been solved by Maple’s numeric solver, a message is 

displayed along with the estim ates to indicate th a t f  so lv e  was used.
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7 .2 .2  E x a m p le s

This subsection contains two applications of the MOM procedure. The first exam

ple estimates the parameters for a continuous distribution, the gamma distribution. 

The second example finds param eter estimates for an exponential distribution and 

a Weibull distribution that are fit to the same data set. This example takes advan

tage of Maple’s numeric solver, f  so lve . One pitfall of f  solve is encountered in this 

example, though a correct param eter estimation can be found by making a slight 

adjustm ent in the MOM procedure. Example 1.3 in Chapter 1 used MOM to estim ate the 

single param eter for a Poisson distribution.

Example 7.4. (Larsen & Marx, 2001, pages 319-322) Although hurricanes generally 

strike only the eastern and southern coastal regions of the United States, they do 

occasionally sweep inland before completely dissipating. The U.S. Weather Bureau 

confirms th a t in the period from 1900 to 1969 a to tal of 36 hurricanes moved as far as 

the Appalachians. Table 7.1 fists the maximum 24-hour precipitation levels recorded 

from those 36 storms during the time they were over the mountains.

A histogram of the data  suggests that the random variable AT, which is the max

imum 24-hour precipitation, might be well approximated by the gamma distribution 

with PDF
, , . . A(Arr)*-1e-Aa: ^ ,

f x { x ;  A, k )  =  = r-r  rc >  0; A > 0; « >  0.
I (k;

In this example, A and k  are the parameters to be estimated.

The following APPL statements define X as a gamma random variable, assign 

the hurricane data  to the fist Hurricane, and assign the parameters to be estim ated 

to the fist Pars. Then, M0M(X, Hurricane, Pars) assigns the method of moments 

estimates for the parameters A and k  as a fist to HurricanePars.

> X := GammaRV(lambda, kappa);
> Hurricane := [31.00, 2.82, 3.98, 4.02, 9.50, 4.50, 11.40, 10.71,
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Table 7.1: Maximum 24-hour precipitation for 36 inland hurricanes (1900-1969).

Year N am e Location

M aximum
P redpitation

(inches)
1969 Camille Tye River, Va. 31.00
1968 Candy Hickley, N .Y . 2.82
1965 B etsy Haywood Gap, N.C. 3.98
1960 Brenda Cairo, N .Y . 4.02
1959 G rade Big Meadows, Va. 9-50
1957 Audrey Russels Point, Ohio 4.50
1955 Connie Slide M t., N .Y . 11.40
1954 Hazel B ig Meadows, Va. 10.71
1954 Carol Eagles Mere, Pa. 6.31
1952 Able Bloserville 1-N, Pa. 4.95
1949 North Ford # 1 ,  N.C. 5.64
1945 Crossnore, N.C. 5.51
1942 B ig Meadows, Va. 13.40
1940 Rhodhiss Dam , N.C. 9.72
1939 Caesars Head, S.C. 6.47
1938 Hubbardston, Mass. 10.16
1934 Balcony Falls, Va. 4.21
1933 Peekamoose, N.Y. 11.60
1932 Caesars Head, S.C. 4.75
1932 Rockhouse, N.C. 6.85
1929 Rockhouse, N.C. 6.25
1928 Roanoke, Va. 3.42
1928 Caesars Head, S.C. 11.80
1923 Mohonk Lake, N.Y. 0.80
1923 Wappingers Falls, N.Y. 3.69
1920 Landrum, S.C. 3.10
1916 A ltapass, N .C. 22.22
1916 Highlands, N.C. 7.43
1915 Lookout M t., Tenn. 5.00
1915 Highlands, N.C. 4.58
1912 Norcross, Ga. 4.46
1906 Horse Cove, N.C. 8.00
1902 Sewanee, Tenn. 3.73
1901 Linville, N .C. 3.50
1900 Marrobone, Ky. 6.20
1900 St. Johnsbury, Vt. 0.67

6 .3 1 , 4 .9 5 , 5 .6 4 , 5 .5 1 , 13 .40 , 9 .7 2 , 6 .47, 10 .16 , 4 .2 1 , 11.60,
4 .7 5 , 6 .8 5 , 6 .2 5 , 3 .4 2 , 11 .80 , 0 .8 0 , 3 .69 , 3 .1 0 , 22 .2 2 , 7 .43 ,
5 .0 0 , 4 .5 8 , 4 .4 6 , 8 .0 0 , 3 .7 3 , 3 .5 0 , 6 .20, 0 .6 7 ] ;

> Pars := [lambda, kappa];
> HurricanePars := M0M(X, Hurricane, Pars);

The resulting estimates for the param eters are A =  4| 5542°105°3 =  0.224 and k  =  ^ 5 2 1 5 3  ~  

1.64. □

E x a m p le  7.5. (Leemis, 1995, page 190) A complete da ta  set of n  =  23 ball bearing 

failure times to test the endurance of deep-groove ball bearings has been extensively
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studied. The ordered set of failure tim es measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

Let X  be a random  variable denoting the ball bearing failure times.

(a) Assume X  is an exponential random  variable with failure rate  A. Use MOM to 

estim ate A.

(b) Assume AT is a Weibull distribution with parameters A and ac.  Use MOM to 

estim ate the parameters’ values.

S o lu tio n : For part (a), the following A PPL statem ents unassign the variable name A, 

define X as an exponential random variable, and assign the parameters to be estimated 

to the list P ars. The data set for the failure times, B allB earing , is a pre-defined list 

in APPL. M0M(X, B a llB earing , P a rs )  assigns the method of moments estimate for 

the param eter A as a  list to E xpB allB earingPar.

> unassignC * lam bda’) ;
> X := ExponentialRV(lambda) ;
> P ars  : = [lambda] ;
> E xpB allB earingPar := M0M(X, B a llB e a rin g , P a rs ) ;

The resulting m ethod of moments estim ate for the parameter is A =  -4%l4 — 0.0138 

failures per million revolutions.

The graphs of the  empirical CDF along wuth the CDF for the fitted exponential 

distribution are displayed in Figure 7.3. The graphs suggest th a t the exponential 

distribution provides a poor fit for this da ta  set. The APPL procedure for producing 

the graph in this figure is discussed in C hapter 9.
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Figure 7.3: Empirical and fitted exponential CDFs for the ball bearing data  set.

The Weibull distribution provides a much better approximation for this data. The 

PD F of the Weibull distribution is

fx(x' ,  A, k ) =  K,AKx K~1e~(X x x  > 0; A >  0; k  > 0.

Again using the ball bearing data  set, we can find the method of moments estimates 

for the parameters A and k  using the following APPL statements

> unassign(’lambda’); unassignC’kappa’);
> X := WeibullRV(lambda, kappa);
> WeibBallBearingPar := M0M(X, BallBearing, [lambda, kappa]);

In this case, MOM informs the user tha t a numerical method was used to solve for 

the values of the parameters A and k . The numerical approximations are A =  0.0176 

and k =  —3.55. Although these are correct solutions to the simultaneous system of 

equations obtained from equating the theoretical moments with their corresponding 

sample moments, they are incorrect param eter estimates for the Weibull distribution 

since we need A >  0 and k > 0. Unfortunately, the Maple f  so lve  procedure searches 

for the first real root for a general equation, then quits (Heal et al., 1998, page 69). 

Often a plot of the simultaneous equations can suggest the general vicinity of other
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real roots, and then fso lv e  can be used again with a specified range. To obtain 

the correct parameter estimates, the f s o lv e  command line in MOM was changed to 

specify the range of another real root. Instead of using the general f so lv e  procedure: 

f s o lv e  (E qnSet, ParamSet), the f s o lv e  procedure was used with a solution range: 

fso lv e (E q n S e t, ParamSet, lambda = 0 . .  0 .015). The new correct parameter 

estimates returned are A =  0.0123 and k  =  2.07.

7.3 Maximum Likelihood Estimation with Right 

Censoring

This section presents the MLE procedure for estimating param eters via maximum 

likelihood estimation. Let X  be a random  variable with PD F 9), where 9 is a

vector of k  unknown parameters, i.e., 9 =  (0\, 92, - - •, 9k). Suppose X 2, . . . ,  X n is a 

random sample drawn from the population with PDF fx(x ', 9). Maximum likelihood 

estimation estimates the unknown param eter 9 with a value 9 th a t maximizes the 

“likelihood” of obtaining tha t particular random  sample.

The likelihood function , L(9),  for a given set of observations, X i , x 2, .. -, xn, from 

the population with PDF fx{%\ 9) is the product of the PD F fx(x' ,9)  evaluated at 

the n  sample d a ta  points, i.e.,

71

L ( P )  (7.1)
t=l

The maximum likelihood estimator 9 is found by maximizing L{9) with respect to 9. 

The param eter estimate 9 is the value th a t is most likely to have produced the sample 

data  points x \ , x 2, . . . ,  x n.

In practice, it is often easier to maximize the log likelihood function log£(0) to
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determine 0, which is valid since the logarithm function is strictly  increasing. The log 

likelihood function is

n

log L(9) =  log f x{x i \9) .  (7.2)
2 =  1

If L(Q) is differentiable and assumes a maximum on the param eter space, then the 

MLE is a solution to

f e \°s  m  = o.

E x a m p le  7.6. (Leemis, 1995, page 190) Returning to the ball bearing data set in

Example 7.5, the ordered set of failure times measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

Let X  be a random variable denoting the ball bearing failure times and assume X  

is an exponential random  variable with failure rate A. Estim ate the parameter A by 

maximum likelihood estim ation.

S o lu tio n : The log likelihood function for A is

23

log L(A) =  23 log A — A
*=i

Differentiating both sides of this equation and solving for A, the maximum likelihood 

estim ator A is

A -  23
~  V"23 ~

23
~  1661.16 
S  0.0138,
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which is same as the method of moments estimator for this data  set. □

7.3.1  R igh t-C ensored  D a ta  S ets

Suppose n  items are being tested and their failure times t i , t 2, - tn are being 

recorded. If the test stops before an item has failed, only a lower bound for the 

failure time is known. These failure times are right-censored data  values. Right cen

soring occurs frequently in lifetime data  sets since it is often impossible, impractical, 

and /or infeasible (because of time, money, energy, etc.) to continue running a test 

until all items on the test have failed. If a data  set contains one or more censored 

observations, it is called a censored data set. Otherwise, if all the failure times are 

known, i t ’s called a complete data set.

Following the notation and language used by Leemis (1995, pages 184-186), let 

t i , t 2, . - . ,  tn be the independent failure times collected during a test. Let c i ,  C2, . • - ,  Cn 

be the associated right-censored times. Let Xi =  min{£,, c,}, i =  1,2, . . . ,  n. We can 

then split the indexes of the data  items 1 ,2 , . . . ,  n  into two disjoint sets: U and C. 

The set U contains the indexes of the items that are observed to fail during the test, 

and the set C  contains the indexes of the items whose failure times are right-censored.

If 9 is the vector of unknown parameters, we can rewrite the likelihood function in 

equation 7.1 with respect to the indexes of the observed failures and the right-censored 

observations:

m = ( n /*(*<■•»)) •
\ieu  J  \ie c

where Sx(x{-, 9) is the probability th a t item  i survives to time a;,-. The log likelihood 

function is

log  L(9) = log  f x {xi\ 0) + lo g  Sx  (xr, 9).
ieu iec

Since the PD F fx{%) is the product of the  hazard function hx{x)  and survivor func
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tion Sx (x), the log likelihood function can be simplified to

lo gL(0) = E E log S x ( x i', 9)
ieu ieu iec

n

=  2 log h x  (Xi] ^ + l o g  ; e) • 
iety i=i

We can rewrite the log likelihood function in terms of the hazard and cumulative 

hazard functions only:

n

logL(0) =  E loghx(xi,0) -  E H x ( x u e). (7.3)
i&U t= l

E x a m p le  7.7. (Leemis, 1995, page 190) The set of remission times for the treatment 

group in the study concerning the drug 6-MP (Gehan, 1965) is a right-censored data 

set. Letting an asterisk denote a right-censored observation, the remission times (in 

weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16

17* 19* 20* 22 23 25* 32* 32* 34* 35*.

Let X  ~  exponential (A) be used to model the remission tim e data. Use maximum 

likelihood estimation to determine the value of the param eter A.

S o lu tio n : Since there are n  =  21 individuals on the test, nine uncensored observa

tions, hx (x) =  A, and Hx (x) =  \ x ,  then the log likelihood function for A is

21

log L{A) =  9 log A — A
i= l

Taking the derivative of the log likelihood function with respect to A, equating it to 

zero, and solving for A, we obtain A =  0.0251. □

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



211

7 .3 .2  Im p lem en tation

The APPL procedure, MLE(X, D ata, P a ram e te rs , [R ightcensor] ) ,  is used to com

pute the maximum likelihood estim ators for the parameters (in the list Param eters) 

of a random variable X given a sample da ta  set (Data) from the d istribution’s popula

tion. An optional argument, R igh tcenso r, allows for data values to be right-censored. 

The argument R igh tcensor is a list of ones and zeros, corresponding to the data  val

ues in the list Data. The value one in position i of the R igh tcensor list indicates that 

the data  value in position i of the D ata list is an observed value. A zero indicates a 

right-censored value. The procedure is implemented as follows:

•  The procedure is called with either three or four arguments. If there are three 

arguments, the MLEs are determined using the log likelihood formula in equa

tion 7.2.

•  If there are four arguments, then the procedure assumes there axe right-censored 

values in the Data list. (If there are no right-censored observations, i.e., there 

are only zeros in the list R ig h tcen so r, the  MLEs are just computed using the 

log likelihood function in equation 7.3. The HF and CHF procedures are used to 

determine the hazard and cumulative hazard functions of X. The log likelihood 

function in equation 7.3 is used to determine the MLEs.

•  As in the MOM procedure, MLE uses so lv e  to find the exact solution(s) to the 

simultaneous system of differentiated log likelihood functions (with respect to 

the unknown parameters in the P aram eters list) and the unknown parameters. 

If Maple cannot determine the exact solution with so lve , then the procedure 

sends the equations to Maple’s numeric solver, fso lv e .

•  Finally, the procedure returns the maximum likelihood param eter estimates as 

a list. If the estimates have been solved by Maple’s numeric solver, a message
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is printed along with the estimates to indicate that f s o lv e  was used.

E x am p le  7.6. R e v is ite d  (APPL solution) The APPL statem ents

> X := ExponentialRV(lambda);
> l a mha t  := MLE(X, B a llB earing , [lambda]);

return A =  0.0138 as the maximum likelihood estim ator. □

E x am p le  7.7. R e v is ite d  (APPL solution) Both MP6 and MP6Censor are pre-defined 

data  sets in APPL. The list MP6 is simply a list of the 21 da ta  values given in Example 

7.7, and MPSCensor is the list

MP6Censor := [1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

where 0 represents a censored value and 1 represents an uncensored value. The 

statements used to determine the MLE for the exponential distribution are

> X := ExponentialRV(lambda);
> hat := MLE(X, MP6, [lambda], MP6Censor);

The statements yield A =  ;Jg. □

7.4 Mixture and Truncate Procedures

Chapter 8 is about Benford’s law and determining which probability distributions 

conform to it. The two procedures introduced in th is section, along with the Benf ord 
procedure described in Chapter 8, were originally w ritten to aid in making this de

termination. The Mixture and Truncate procedures are described in the following 

subsections.
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7 .4 .1  M ixture

A population may contain items gathered from several different populations, each 

with a distinct lifetime distribution. A car mechanic, for example, may have a part 

th a t is manufactured in one of four facilities, but he is not certain in which one. In 

a finite mixture model, items are assumed to come from one of n  populations. The 

failure time distribution of the item can be expressed in term s of a mixture of each 

item ’s population distribution.

The PDFs of mixture distributions, also called compound distributions, can be ex

pressed as weighted sums of the PDFs of the component distributions. This APPL 

procedure, M ixture, is written for finite mixtures, as described in the previous para

graph. The PDF of a general finite m ixture random variable X  is

n

f x ( x )  =  ^ 2 p x t f x i ( x \ 0 X i ),
i=1

where f Xi(x\0Xi) is the PDF for the random variable A,- from population i, 0Xi is 

a vector of parameters for the distribution of X,-, and pXi is the mix parameter for 

population X i? i =  1 ,2 , . . . ,  n. Note th a t pXi > 0, for * =  1 ,2 , . . . ,  n  and Y!i=iPXi =  1.

The M ixture (M ixParam eters, MixRVs) procedure “mixes” the random variables 

Ax, X 2, . . . ,  X n defined in the list MixRVs by taking weighted sums defined in the list 

M ixParameters. Two examples of the M ixture procedure follow.

E x a m p le  7.8. (Leemis, 1995, page 118) If n =  2 facilities produce items with 

exponentia l 1) and exponential(2) lifetimes, respectively, and one-third of the items 

come from facility one and two-thirds come from facility 2, determine the PD F of the 

tim e to  failure of an item whose manufacturing site is unknown.

S o lu tio n : Let X i ~  exponential(Ax) and X 2 ~  exponential(A2), where Ax =  1 and 

A2 =  2. Let A  be the time to failure for the item from the unknown manufacturing
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site. The PD F of X  is

f x 0 )  =  PxJ f x ,  (a;| Ai) +  Px2 f x 2 (x\x2)

= ^e~x +  ^ e “2x x  > 0,

which is a finite m ixture of the populations from distributions X \  and X 2. This model 

is a special case of the hyperexponential distribution, which is the finite m ixture of n  

exponential populations.

The following A PPL statements return the PD F of the above model

> X := ExponentialRV(l) ;
> Y := ExponentialRV(2);
> p  := [i/3, 2/3];
> Mixture(p, [X, Y] ) ; □

E xam ple 7.9. Let X i  ~  triangular(l, 2, 3), X 2 ~  triangular(l, 2, 4), and X 3 ~  

triangular(2, 5, 7). Let p x j =  Px2 =  | ,  and p x3 =  |  be the probabilities of selecting 

an item from the distributions associated with the random  variables X i ,  X 2l and X 3. 

Find the PDF of Z , the  finite mixture of the three distributions.

S o lu tion : This example forces the M ixture procedure to return a PDF defined on 

more than a single segment of support. The following APPL statements

> XI := TriangularRVCl, 2, 3);
> X2 := TriangularRVCl, 2, 4);
> X3 := TriangularRV(2, 5, 7);
> Z := Mixture([1 / 8, 5 / 8, 1 / 4], [XI, X2, X3]);
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7 .4 .2  T runcate

Let X  be a random variable with PD F /x (x )  on fl*-. Then for a,b G fl* , the PDF 

of the doubly truncated (i.e., truncated below at a and above at 6) random variable T  

is

M t )  -  • < . < » ,

provided Fx(b) — Fx (a) =£ 0. The Truncate(X, low, high) procedure returns the 

PD F of the random variable X truncated below a t low and above a t high. Three 

examples of the Truncate procedure follow.

E x a m p le  7.10. (Rohatgi, 1976, page 119) Let X  be a random variable with PDF 

f ( x )  =  l i f 0 < x < l ,  and 0 otherwise. Let T  be the random variable formed 

by truncating X  below at 1/3 and above a t 1/2. Find the PDF of the truncated 

distribution T, its mean, and its variance.

S o lu tio n : The PD F of T  is

f T (t) = 6  i  <  t  <

Its mean is while its variance is The following APPL statem ents determine

the PDF, mean, and variance of T :

> U := UniformRV(0, 1);
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> T := T runcate(U , 1 / 3 ,  1 / 2 ) ;
> Mean(T);
> V arian ce (T ); □

E x a m p le  7 .11 . (Barr & Sherrill, 1999, page 359) (Truncated normal distribution) 

Let T  ~  N (l, 2) random variable truncated below at 2. Determine the mean of T. 

(The standard deviation, not the variance, of T  is two.)

S o lu tio n : Let N(^i, cr) denote a normal random variable with mean and standard 

deviation a. If T  is a N ( f i ,  cr) random variable truncated below by a, then (T  —  fj.) / a  =  

Z  is a standard normal random variable truncated below by a* =  (a — f j ) /cr. The 

expected value of T  in terms of the expected value of Z  is

E (T)  =  aE {Z )  +  fi.

For our example, T  ~  N (l, 2) truncated below a t a =  2, and thus

E (T )  =  2 • E (Z )  +  1, 

where Z  ~  N(0, 1) truncated below at a* =  1/2. The density of Z  is

f  (  ) - e ( - 2/ 2>V2

Z y/n  (—1 +  erf(>/2/4))

where “e rf ’ is the Maple procedure defined by erf(x) =  / Qx dt. The mean of Z  

is

S (Z ) =
ypH (—1 +  erf (\/2 /4 )) ’

which is approximately 1.141078. Hence, E (T )  = 2 -E {Z ) + l  =  3.282156. This mean 

is computed in APPL with the statements

> X := NormalRV(1 , 2 );
> T := T runcate(X , 2 , i n f in i t y ) ;
> Mean(T); □
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E x a m p le  7.12. (Hogg & Craig, 1995, page 146) Let q>(x) and $(x)  be the PDF and 

the CDF of a standard normal random variable X .  Let Y  be the random variable 

formed by truncating X  below at —2 and above at 3. Show tha t E { Y ) =  .

S o lu tio n : We can use the T runca te  procedure to determine E (Y )  with the following 

statements:

> X := StandardNormalRVO ;
> Y := Truncate(X, -2, 3);
> ExpectedValue(Y);

which returns the value J ^ + erf(-/2)) ~  0-0508, where e r f  is the Maple procedure

defined by erf (r) =  f *  e~t2dt. W riting this expression in terms of 0 and <&, first 

notice tha t 0 (—2) — 0(3) =  e 2̂ |^ 9/2. Then, converting the Maple expression in the 

denominator, erf(|v^2) + e r f (v /2), into its integral form, we have:

dw ----7=

- ) =  f  e~w2/2diu)
y / 2  n  J o  J

e~w2dw

i  r-e-™2/2 j  \  
I ----7=—dw |

2($(3) - $ ( - 2 ) ) .

Thus, the expected value of Y  is

\/2  (e~2 — e~9/2) _  ( V 2  [V5F (0 ( -2 )  -  ^(3))]
V ? (e rf( |v 5 )  +  erf(V 2)) ^  v « [ !  («(3) -  * ( -2 ) ) ]

<f>(-2) -  ^(3)
«(3) -  * ( - 2 ) ' □
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Chapter 8 

Survival Distributions Satisfying 

Benford’s Law

Benford’s law has traditionally concerned the distribution of the leading digit for a 

da ta  set. This chapter quantifies compliance with Benford’s law for several popular 

survival distributions. The traditional analysis of Benford’s law considers it appli

cability to data sets. This chapter switches the  emphasis to probability distributions 

th a t obey Benford’s law.

8.1 Benford’s Law

Astronomer and mathematician Simon Newcomb noticed “how much faster the first 

pages (of tables of logarithms) wear out than  the last ones” leading to  the counter

intuitive conclusion that the first significant digit in the values in a logarithm  table 

is not uniformly distributed between 1 and 9. Using a heuristic argument, he found 

th a t ones occur most often (more than  30 percent of the time) and nines least often 

(less than 5 percent of the tim e). More specifically, if the random variable X  denotes

218
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the first significant digit, then

P r(X  =  x) =  log10 (1 +  1/x) x  = 1 ,2 , . . .  ,9.

He published this “logarithm law” in the American Journal of Mathematics in 1881.

General Electric physicist Frank Benford (1938) apparently independently arrived 

at the same conclusion as Newcomb concerning logarithm tables. He proceeded to 

“collect data from as many fields as possible” to see if natural and sociological data 

sets would also obey the logarithm law. He often found good agreement between 

the logarithm law for his 20,229 total observations, including data  sets as diverse as 

the areas of rivers, American League baseball statistics, atomic weights of elements, 

death rates, and numbers appearing in Reader’s Digest.

W hat has become known as “Benford’s law” has found applications in the dis

tribution of the one-day return on stock market indices (Ley, 1996), the distribution 

of the populations of 3141 counties in the 1990 U.S. Census, and the detection of 

accounting fraud (Nigrini, 1996).

A mathematically rigorous proof of Benford’s law has proven elusive. This is in 

part due to the fact th a t certain da ta  sets (e.g., random numbers) do not follow 

Benford’s law. Recent attem pts have considered the effect of scale invariance (e.g., 

dollars vs. yen), base invariance (e.g., octal vs. base ten), and mixtures (i.e., sample 

data  drawn from several population distributions th a t are selected at random), as 

indicated in Hill (1995, 1998).

The purpose here is to switch the emphasis from the examination of data sets 

th a t obey Benford’s law to probability distributions th a t obey Benford’s law. Survival 

distributions (i.e., random variables with positive support) will be emphasized here, 

although more general distributions can be examined in the same fashion.
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Hill (1995, pages 361-362) states tha t “An interesting open problem is to determine 

which common distributions (or m ixtures thereof) satisfy Benford’s law This 

section quantifies compliance with Benford’s law for several popular survival distri

butions.

As before, let X  denote a random variable having Benford’s distribution, and let 

T  denote a random lifetime with SF S(t)  =  P r(T  >  t). If Y  is the value of the first 

significant digit in the lifetime T, then

OO

Pr(y = y)=J2 [S(v 10‘) -  S ((y + 1)10’)]
oo

for y =  1 , 2 , . . . ,  9. Thus Pr(V  =  7), for example, is found by summing the appropriate 

probabilities on the intervals

. . . ,  (0.07, 0.08), (0.7, 0.8), (7, 8), (70, 80) , . . . .

More detailed examples on the derivation of the probability mass function of Y  are 

given in Section 8.3.

For a particular random variable T  having prescribed survivor function S(t), it is 

desired to measure the goodness-of-fit between Benford’s distribution and the distri

bution of the first significant digit. Two such measures are the chi-square goodness- 

of-fit statistic
_  A  [Pr(V = x ) ~  P r(X  =  s)]2 

i t  P r(X  =  x)

and

m  =  max { |P r (y  =  x) — P r(X  =  :c)|} .
i = l , 2 ,...,9 Ll v

These measures are calculated for several popular lifetime distributions in Table 8.1
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Table 8.1: Conformance to Benford’s law for param etric survival distributions.

Distribution A K Class c m
Exponential 1 IF R /D F R 0.61 • 10~2 0.29 • lO-1
Exponential 5 IF R /D F R 0.54 - lO -2 0.18 • lO '1
Muth 0.1 IFR 0.13 • 10-1 0.41 - lO '1
Gompertz 5 1.1 IFR 0.62 - lO-2 0.20 • lO-1
Weibull 1 0.3 D FR 0.37 - lO"10 0.16 - 10~5
Weibull 1 2 IFR 0.19 0.11
Gamma 1 0.3 D FR 0.15 • 10~3 0.29 - lO"2
Gamma 1 2 IFR 0.48 • 10-1 0.50 - lO” 1
Log logistic 1 0.3 D FR 0.86 - 10-21 0.67- lO-11
Log logistic 1 2 UBT 0.24 - 10"1 0.35 - 10"1
Exponential Power Distribution 1 0.3 BT 0.48 • 10~4 0.17-10-2

as parameterized in Leemis (1995, Chapter 4). Appendix F contains APPL code for 

computing the distribution of Y  for the unit exponential distribution and the Benford 

distribution X  for one significant digit.

The following observations were made while constructing the table:

•  The results for the exponential distribution for A =  5, for example, are also 

good for A =  5 - 10fe, for k  =  ±1, ±2, —

•  For all distributions considered with a shape param eter k , the goodness-of-fit 

measures c and m  increased in k  for the values of k  considered.

• For all two-param eter distributions, the goodness-of-fit measures c and m  were 

more sensitive to  changes in the shape param eter k  than the scale param eter A.

Notice that for the log logistic distribution with A =  1 and k =  0.3, there is an 

astonishing 11-digit agreement with Benford’s law. The fact th a t the PD F of the 

logarithm of a log logistic random variable is sym m etric might provide a clue as to 

why it matched Benford’s law so closely.
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General conditions associated with the distribution of the  random variable T  will 

now be derived in order to  determine when Benford’s law applies.

8.3 Conditions for Conformance to Benford’s Law

As stated earlier, the PD F of a Benford random variable X  is

f x ( x )  =  P r(X  =  x) =  log10 (1 +  1 / x ) ,

for x  =  1 , 2 , . . . ,  9. The associated CDF is

Fx {x) =  P r(X  <  x) =  log10 ( 1 + x ) ,

for x =  1 ,2 , . . . ,  9. Inverting the CDF, a Benford variate X  can be generated by

[TO^-ll,
or

X i r -  [lÔ J,

where U U(0, 1).

As before, let T  be the  random lifetime wThose first significant digit is of interest. 

Let the integer-valued random  variable D  satisfy

10D <  T <  10o+1

(e.g., T  =  365 => D  =  2 and T  =  1/10 => D  =  —1). This definition of D  allows the 

first significant digit Y  to be written in terms of T  and D  as

Y  =  [T ■ 10_X>J =  Ll0logio^-^J 

(e.g., T  = 365 =* Y  =  [365 • 10"2J =  [3.65J =  3).
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Referring back to the variate generation algorithm, it is cleax th a t if the random 

variable Z  =  log10 T —D  ~  U(0, 1), which represents the result from the logarithm ta

ble, then the first significant digit Y  has the  Benford distribution. Using conditioning, 

the CDF of Z  is given by

Fz (z) =  P r ( Z < z )
OO

=  Pr (l0 d <  T  <  10d+1) • P r (log10 T  — d <  z|10d <  T  < 10d+1) ,
d = — oo

for 0 <  z  <  1. Thus conformance to Benford’s law implies th a t the weights (the first 

term in the product) associated with each order of the magnitude and the distribution 

of Z  =  log10 T  — D  (the second term in the product) are such th a t the infinite sum 

produces a linear function in z.

Why was Newcomb surprised? He expected each page of a logarithm table to 

be equally worn; i.e., he surmised that the values that people used as arguments in 

logarithm tables would be uniformly distributed between 1.0 and 10.0. Although the 

left-hand column of a logarithm table is arranged in a linear fashion so th a t 1.0 to 2.0 

requires |  of the pages, Newcomb correctly observed that the people using the tables 

in 1881 did not use them  in a uniform fashion (e.g., over 30% of the  table look-ups 

were from the first |  of the pages). In summary, Newcomb expected uniformity in the 

inputs to the logarithm tables, but uniformity was actually achieved in the resultant 

logarithms, represented by Z.

We now proceed to investigate distributions th a t satisfy these conditions. 

E x am p le  8.1. A distribution can be created tha t satisfies Benford’s law exactly. Let 

W  ~  U(0, 2). Let T  =  1QW. The PDF of T  is

*T ^  2t log 10
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for 1 < t <  100. The probability mass function of D  is

r10 i
f D(0) =  Pr(£> =  0) =  P r( l  < T <  10) =  j f T (t)dt =  -

and
rlOO i

f D(l) = P r (D =  1) =  Pr(10 <  T  < 100) =  /  f T (t)dt = - .
J 10 2

The probability mass function of the leading digit Y  is

f Y{y) =  P r (Y  =  y)

= P r (y < T  < y  +  1) 4- Pr(10y <  T  < 10(y +  1))
r y + 1 r l  0 (y + l)

=  I  f r i t )  dt + I f r ( t )  dt 
J y  J

r y + i  ^ /* io (y + i) 2

Jy 21 lo g  10 dt +  Jl0y 21 lo g  10 dt
=  log10 y -  1 , 2 , . . . ,  9.

This probability mass function matches Benford’s distribution exactly.

Alternatively, one can proceed by determining the distribution of Z  =  log 10 T —D, 

where W  =  log10 T.

Fz (z) = Pr ( Z < z )
CO

=  P r (I0d <  T  < 10d+1) • P r (log10 T - d <  z\10d < T  < lO ^ 1)
d= —oo 

1
=  ^ 2 P v { d < W  < d + l ) - P r { W - d < z \ d < W  < d  +  l)

d=0

=  Pr (0 <  W  < 1) • P r ( W  < z\0 < W  < 1) +  

P r (1 <  W  < 2) • P r ( W -  1 <  z\ l  < W  < 2)
1 1

=  —z 4— z  
2 2

=  z
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for 0 <  2  <  1. Since this is the CDF for a U(0, 1) random variable, Benford’s law is 

satisfied exactly. □

The previous example can be generalized as follows. Let W  ~  U(a, 6), where a

number of orders of magnitude, then the first significant digit of the random variable

a = —2, 6 =  1 and a =  log10(3/2), 6 = log10(150).

There is no need for the support of the distribution of T  =  1 0 to span several 

orders of magnitude as is the case for many of the data  sets that conform to Benford’s 

law. Example 8.1 shows that a single order of magnitude (e.g., a =  5, 6 =  6) is 

sufficient.

The next example considers a non-uniform distribution for W.

E x a m p le  8.2. Let W  ~  triangular(0,1,2). The PD F for W  is

As before, let T  =  10^  and Z  =  W  — D.  The cumulative distribution function of Z  

is

and 6 are real numbers satisfying a < 6. If the interval (l0a, 106) covers an integer

T  =  10wr satisfies Benford’s law exactly. Equivalently, if 6 — a is a positive integer, 

then the first significant digit of T  =  10^  satisfies Benford’s law. Examples include

w 0 <  w < 1
f w(w)  = <

2 — w 1 <  w < 2.
V

1
Fz {z) =  ^ 2 P r { d < W  < d  + l ) - P T ( W - d < z \ d < W  < d  + l)

=  z  0 <  z < 1.

Thus the first significant digit of T  satisfies Benford’s law exactly. □
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This example can also be generalized- Let W  ~  triangular(a, 6, c), where a , 6, 

and c are real numbers satisfying a < b < c. The first significant digit of the random 

variable T  =  10M' satisfies Benford’s law exactly if a, 6, and c are integers.

The symmetric, integer-parameter triangular distribution’s conformance to Ben

ford’s law may provide some insight into the log logistic’s stellar performance in Table 

1. If the PDF of W  is symmetric about an integer and the variance of W  is large, then 

it is often the case that the PD F of W  is approximately linear between consecutive 

integers. The symmetric portions of the PDF of W  will nearly cancel one another 

when computing the distribution of Z.  A normal random variable W  with integer 

mean // and large standard deviation cr, for example, corresponds to a lognormal 

T  =  10w whose first significant digit closely approximates Benford’s law.

The next example considers a non-symmetric distribution for W.

E x a m p le  8.3. Let W  have PDF

f w( w)  =  <

f

21 — w — 1 <  w < 0

(w — l ) 2 0 <  w < 1.

As before, let T  =  10vv and Z  = W  — D.  The cumulative distribution function of Z  

is

Fz {z) = P r ( d < W  < d + l ) - P i ( W - d < z \ d <  W < d + l )

+  I  t1 +  (z  ~  1)3]

d=—1 
2 
3

z3 3 z2
2 +  2 3

=  z 0 <  z <  1.

Thus the first significant digit of T  satisfies Benford’s law exactly. □
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This example can be generalized for W  with probability density function

{1 — w n — 1 <  w < 0

( w - l ) n 0 < U 7 < 1 ,

where n  is a positive, even integer.

We wanted to experiment with several other probability distributions in order to 

evaluate conformance to Benford’s law. In order to autom ate this process, we wrote 

the APPL B enford procedure, whose argument is the distribution of W  and whose 

returned value is the distribution of Z. The algorithm is shown below.

Q <— Support(W ) [The set Q is the support of the random variable W]
Lo <— [S7J [Lower loop limit]
H i <r- [Q] — 1 [Upper loop limit]
W eight <— Array[ 1.. H i — Lo -I- 1] [Weight holds the mixture probabilities]
T r a n s f W  Array[  1.. H i — Lo +  1] [ T r a n s fW  holds W ’s transformed segments]

For d i— Lo to H i
Weight[d] <— Fw (d +  1) — Fw{d) [Calculate weights for the mixture]
TruncW[d\ Truncate(W, d , d +  1) [Truncate W  between d and d +  1]
T ransfW [d \  —̂ Transform(TruncW, w — d) [Horizontally shift W  by d units] 

Z  <— Mixture {Weight, Trans f W )  [Compute the distribution of the mixture]

The statem ents required to return the distribution of Z  for the triangular distribution 

in Example 8.2, for instance, are

W := TriangularRVCO, 1, 2);
Z := Benford(W);

After experimenting with Benford on other distributions, we have come to the 

following conclusions:

1. Distributions of W  with a single mode th a t occurs a t either extreme of their 

support will never satisfy Benford’s law (e.g., W  ~  exponential).
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2. Using a geometric argument, certain limiting distributions of W  (e.g., W  ~  

N(/z, cr2), where fi is an integer and a  oo) will satisfy Benford’s law.

3. Other distributions (e.g., Weibull) may come very close to satisfying Benford’s 

law for various param eter values. Our experimentation revealed that compli

ance with Benford’s law depends on parameter values within one particular 

parametric family. Thus using Benford’s law to detect accounting fraud, for 

example, is dubious due to an unacceptably high rate of false positives.

4. For a random variable T  th a t can assume negative values, all of the conclusions 

drawn here apply since the first digit of ITI equals the first digit of T.

5. If W  is a distribution such th a t the first significant digit of 10VK satisfies Ben

ford’s law, then the first significant digit of bw  satisfies Benford’s law for base 

6 =  2,3, . . . .

6. The distribution associated with the more general form of Benford’s law

Pr(m antissa <  t) =  log101 1 <  t <  10,

where the mantissa of a real number is the number obtained from shifting the 

decimal point to the place immediately following the first significant (non-zero) 

digit, is sum-invariant (Allaart, 1997). A short proof of a generalization of 

A llaart’s result appears below.

R e su lt:  Using our earlier notation, let W  ~  U(0, 1) and T  =  10^. Then 

the random variable T , with CDF given by FT(t) =  log101 for 1 <  t  <  10, 

is sum-invariant; i.e., if the interval [1, 10) is equally partitioned by h > 0, 

then the expected sum of n  random  variates from this distribution in any given 

partitioned interval is the same for all intervals.
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P roo f: Let k be any natural number and set h =  | .  W ithout loss of generality, 

fix k. Let Aj =  [1 + (j  — 1) • h, 1 +  j  - h) C 3? for j  =  1, 2 , . . . ,  k. The probability 

that T  is in the interval Aj  and the conditional expected value of T  on the 

interval A j  for any j  =  1, 2 , . . . ,  k are, respectively,

rl+j-h -i
P r(l -f- ( j  -  1) - h < T  < 1 +  j  - h) =  / —— — - dx

Ji+(j-i)-hXlog{lO)
_  logf1 +  U ~  1) • h) -  log(l +  j  ■ h)

log(10)

and

E(T| 1 +  ( j  - l ) - h < T  < l + j - h )  =  f l +Jh — - - x  dx
Ji+U-D-h  * 0 o g ( l  +  (j  -  1) - h) -  Iog(l +  3 -h))
________________h_______________
log(l +  (j  -  1) • h) -  lo g (l +  j  ■ h) '

Thus, the expected sum of n  variates in the interval Aj  for any j  is

n-E(T|l +  ( j - l ) - f c < r < l + i - A ) - P r ( l  +  (3 - l ) . A < r < l + i . h )  =  J L *
log(10)

Since this expected sum depends on k and is independent of j ,  the distribution 

of T  is sum-invariant.

7. Any mixture of distributions that individually obey Benford’s law will obey 

Benford’s law. The case of two random variables satisfying Benford’s law is 

proven below.

R esu lt: Let Ti and T2 be nonnegative random variables whose first significant 

digits satisfy Benford’s law. Let the random variable T  have PDF

h ( t )  = p fTl (t) + ( l - p )  f T2 (t) t >  0,
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for 0 <  p <  1. Then T  also satisfies Benford’s law.

P ro o f: Let Z\ — log10 T\ — D, Z2 =  log10 T2 — D , and Z  =  log10 T  — D. Since 

Ti and T2 satisfy Benford’s law, then FZl(z) =  z and F z 2 ( z ) = z. In order to 

prove that T  also satisfies Benford’s law, we need to show th a t Fz (z) =  z. By 

conditioning on z, we have

Fz(z) = pFZl (z) +  (1 -  p)FZ2 (^)

=  pz  +  (1 —p)z  

=  z 0 <  z <  1.

8.4 Variate Generation

As stated earlier, variates from the Benford distribution can be generated via

X  <r- U O ^ J ,

where U ~  U(0, 1). Two variations of this algorithm can be developed by allowing 

different bases and multiple significant digits as described in the next two paragraphs. 

Benford’s law for the first significant digit in base b is associated with the PDF

f x { x )  =  P r(X  =  *) =  log6 (1 +  1/x)  x  =  1, 2 , . . . ,  b — 1

for b =  2,3, —  Since the CDF is

Fx {x) =  P r(X  <  x) =  log6 (1 +  x) x  =  1, 2 , . . . ,  b -  1,

variates can be generated via

x * - V > u \,
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where U ~  U(0, 1). When 6 is 2 (the binary case), for example, the X  value generated 

is always 1, as expected.

When the first r  digits are considered, Benford’s law generalizes to

f x ( x )  =  P r(X  =  x) =  log10 (1 +  1/x)  x  =  10r_1,10r_1 +  1 , . . . ,  10r -  1

for r  =  1,2, —  [Note th a t this rather relaxed notation implies th a t x =  365 when 

r =  3 corresponds to a first digit Ri  =  3, second digit R 2 =  6, and third digit 

i?3 =  5, which occurs with probability P r(X  =  365) =  P r(i?L =  3, R2 =  6, i?3 =  5) =  

logxo (1 +  1/365).] The CDF is

Fx {x) =  P r ( X < : r )
X

=  1° g io (1 +  1A )
i=10p_1

x

=  lo Sio (* +  1) -  lo g 10 i
i= 10r- 1

=  log10(x +  1) -  log10 (I0 r~1)

=  logic (fo^r) x =  lor_1’ lor_1 +  1, • • • 510r -  1.

Variates can be generated by inversion via

X  <r- LlO^~r+1J,

where U ~  U(0, 1).

Combining the previous two cases, a discrete Benford variate X  associated with 

the first r  significant digits in base b is generated by inversion via

where U ~  U(0, 1).
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8.5 Conclusions

Benford’s law holds exactly for certain param etric survival distributions introduced 

in Section 8.3, holds to varying degrees for many other parametric distributions as 

shown in Section 8.2, and holds very poorly [e.g., for the number of children in a 

family in the U.S. or T  ~  U(3, 7) since the digits 1, 2, 7, 8, 9 never occur] for other 

distributions. The reason that Benford’s law applies to so many data  sets may simply 

be due to the fact that many popular param etric lifetime models also closely follow 

his law for particular values of their parameters.
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Chapter 9

Input Modeling

Input modeling th a t involves fitting standard univariate param etric probability dis

tributions is typically performed using an input modeling package, such as Arena, 

AweSim, Unifit, BestFit, or Stat::Fit (Swain, 2001). These packages typically fit sev

eral distributions to  a da ta  set, then determine the distribution with the best fit by 

comparing goodness-of-fit statistics. But what if an appropriate input model is not 

included in one of these packages? The modeler must resort to deriving estimators 

by hand for an appropriate input model. The purpose of this chapter is to inves

tigate the use of APPL for input modeling. A PPL allows an analyst to specify a 

standard or non-standard distribution for an input model, and have the derivations 

performed automatically. Input modeling serves as an excellent arena for illustrating 

the applicability and usefulness of APPL. I t contains input modeling procedures for 

param eter estim ation (as described in Chapter 7), plotting empirical and fitted CDFs, 

and performing goodness-of-fit tests. In this chapter, examples are used to exhibit 

A PPL’s utility for input modeling. Limitations of some procedures when applied to 

certain distributions (i.e., applying maximum likelihood to the Weibull distribution) 

and strategies for overcoming these obstacles are also discussed in this chapter.

233
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9.1 Examples

Both APPL and Maple can easily be adapted for use in input modeling. This section 

provides seven examples of cases where a  symbolic language is of use in analyzing a 

da ta  set.

E x a m p le  9 .1 . (Model selection) One of the tools for selecting a suitable input model 

is a plot of the coefficient of variation ( 7  =  cr/fi) versus the skewness

After constructing this plot, the sample coefficient of variation and sample skewness 

can be plotted for a particular da ta  set or da ta  sets to determine an appropriate 

distribution for modeling the data.

The APPL statem ents th a t produce the  plot in Figure 9.1 for the Weibull, gamma, 

log normal, and log logistic distributions use the additional APPL CoefOfVar and 

Skewness procedures. The statem ents necessary to plot the gamma distribution’s 

coefficient of variation versus skewness are shown below. The plots for the other 

distributions are calculated similarly. The Maple statem ent used to display all four 

plots in one graphic is also provided.

> u n a s s ig n ( Jkappa’) ;
> lambda := 1;
> X := GammaRVdambda, kappa);
> c : = CoefOfVar(X);
> s := Skewness(X);
> GammaPlot := p l o t ( [ c , s , kappa = 0 . 5  . .  999] ,  la b e ls  = [c v , skew]):

> p lo ts [d isp lay ]({G am m aP lo t, W e ib u llP lo t, LogNorm alPlot,
L o g L o g is ticP lo t} , s c a l in g  = u n c o n s tra in e d ) ;

The u n a ss ig n  command in Maple is used to unassign any previous value given to an
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existing variable name, such as k . □

skew

0.4 0.6 0.8cv 1.2 1.4

- 1-

Figure 9.1: Coefficient of variation, 7 , versus skewness, 7 3 , for the gamma, Weibull, 
log normal, and log logistic distributions.

E x am p le  9.2. The n =  23 ball bearing failure times were collected to determine an 

input model in a discrete-event simulation of a reliability system. The failure times 

in 1 0 6 revolutions are

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 6 8 . 8 8  84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40.

[Although these ball bearing failure times are from the life testing literature (Lawless 

1982, page 228), the same analysis would apply to service times, for example.] In Ex

ample 7.5 we used the MOM procedure to determine the param eter estimates for fitting

an exponential distribution and a Weibull distribution to this da ta  set. Determine 

the model adequacy for these two distributions.
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Solu tion : Figure 7.3 is a plot of the empirical and fitted CDFs for the ball bearing 

failure times and the exponential distribution. The PlotEmpVsFittedCDF procedure 

was written to provide a graphical means for comparing a da ta  se t’s empirical CDF 

and its fitted CDF for various distributions. The APPL statem ents used to plot 

the empirical and fitted CDFs for the ball bearing failure times and the Weibull 

distribution (where the parameters for the Weibull distribution A =  0.0123 and k  =  

2.07 were computed in Example 7.5) in Figure 9.2 are

> X := WeibullRV(lambda, kappa);
> PlotEmpVsFittedCDF(X, BallBearing, [lambda = 0.0123, kappa = 2.07],

0, 180);

0.8

0.6

CDF

0.4

0.2

Figure 9.2: Empirical and fitted Weibull CDFs (using the m ethod of moments) for 
the ball bearing data  set.

In order to assess the model adequacy, either a formal goodness-of-fit test can 

be performed, or goodness-of-fit statistics can be compared for competing models. 

The Kolmogorov-Smirnov test statistic, for example, can be computed for both the 

fitted exponential and Weibull distributions. The KSTest procedure determines the
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maximum vertical difference between the empirical distribution function and the fitted 

cumulative distribution function. For the fitted exponential distribution (where the 

param eter A =  575/41534 was computed in Example 7.5) and the ball bearing failure 

times, the APPL statem ents

> X := ExponentialRV(lambda) ;
> KSTest(X, BallBearing, [lambda = 575 /  41534]);

return 0.3068, indicating a rather poor fit. Similar APPL statem ents return  the 

Kolmogorov-Smirnov test statistic for the fitted Weibull distribution as 0.1511. □

As an alternative to fitting the exponential or Weibull distributions to  the ball 

bearing failure times, one might consider fitting the reciprocal of an exponential ran

dom variable to the ball bearing failure times, as suggested in the following example. 

P art of the appeal in using APPL for input modelling is being able define non-standard 

distributions to fit to  da ta  sets.

E x a m p le  9.3. F it the reciprocal of an exponential random variable to  the  ball 

bearing failure times in the previous example.

S o lu tio n : The APPL statem ents required to find the distribution of the reciprocal 

of an exponential random variable and find the MLE for the unknown param eter are

> X := ExponentialRV(lambda) ;
> g := [[x -> 1 / x] , [0, infinity]];
> Y := Transform (X, g);
> lamhat := MLE(Y, BallBearing, [lambda]); 

which return the PD F of Y  as

fr{y) = ~2 e~x̂y y > o
2T

and calculate the MLE A =  55.06. The function g is used to find the distribution of
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Y  =  g(X)  = 1 / X.
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□

As can be seen in Figure 9.3, the reciprocal of the exponential also provides a poor 

fit to the ball bearing failure times. Although the Weibull distribution provides a fairly 

good fit for the ball bearing failure times, it is not the best parametric model available 

in terms of the Kolmogorov-Smirnov goodness-of-fit statistic. It seems appropriate 

to consider another two-parameter distribution as a potential model, as shown in the 

next example.

0 . 8 -

0 . 6 -

CDF

0.4

0.2

Figure 9.3: Empirical and reciprocal exponential fitted CDFs for the ball bearing 
failure times.

E x am p le  9.4. Fit the inverse Gaussian distribution to  the ball bearing failure times. 

S o lu tion : Again using the APPL MLE and KSTest procedures, the statements

> X := InverseGaussianRVClambda, mu);
> hat := MLE(X, BallBearing, [lambda, mu]);
> KSValue := KSTest(X, BallBearing, [lambda = hat[l], mu = hat[2]]);

yields an improved fit w ith A =  231.67, p, =  72.22, and a Kolmogorov-Smirnov test 

statistic of 0.088. The statem ents lambda = hat[l] and mu = hat [2] assign the
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values in the list h a t to lambda and mu, respectively. The procedure MLE is able to re

turn the appropriate values because the maximum likelihood estim ators are in closed 

form for this particular distribution. This will not always be the case, as illustrated 

in Example 9.5 with the Weibull distribution. □

Besides the procedures PlotEmpVsFittedCDF and KSTest, fit can be assessed vi

sually using a Q-Q or P -P  plot (Law and Kelton, 2000, pages 352-358). The APPL 

statements used to produce the Q -Q  and P -P  plots for the Weibull distribution and 

the ball bearing failure times data  set displayed in Figures 9.4 and 9.5 are

> Y := WeibullRV(lambda, kappa);
> QQPlot(Y, B allB earing , [lambda = 0.0123, kappa = 2 .0 7 ] ) ;
> PPPlot(Y , B allB earing , [lambda = 0.0123, kappa = 2 .0 7 ] ) ;

Q-Q Plot
180-

160

140

120

100-
model

80-

60-

40

20

0 20 40 60 80 100 120 140 160 180
sample

Figure 9.4: Q -Q  plot of ball bearing failure times with fitted (method of moments) 
Weibull distribution.

To conclude the ball bearing failure times data analysis, Table 9.1 (on page 241) 

summarizes the Kolmogorov-Smirnov test statistic values for various distributions 

that were fit to the data  via maximum likelihood estimation.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



240

P-P Plot

0.8 H

0.6

model

0.4

0 .2 -

°-2 H a m p le 0 '6 0 8  1

Figure 9.5: P -P  plot of ball bearing failure times with fitted (m ethod of moments) 
Weibull distribution.

Another wrinkle that can present itself in input modeling is the presence of cen

soring. A right-censored data set, for example, often occurs in reliability and bio-

statistical applications. Examples likely to arise in discrete-event input modeling

situations include machine failure times (when some machines have not yet failed) 

and the analysis of rare events.

E x a m p le  9 .5 . Consider again the problem (introduced in Example 7.7) of deter

mining an input model for the remission time for the treatm ent group in the study 

concerning the drug 6-MP (Gehan, 1965). Letting an asterisk denote a right-censored 

observation, the remission times (in weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16

17* 19* 20* 22 23 25* 32* 32* 34* 35*.

In this example, fit a Weibull distribution to  the 6-MP data.

S o lu tio n : Both MP6 and MP6Censor are pre-defined lists in APPL. MP6 is simply the 

21 da ta  values given above, and MP6Censor is the list

[1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0]
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Table 9.1: Kolmogorov-Smirnov test statistic values for various distributions that 
were fit to the ball bearing failure times in APPL via maximum likelihood estimation.

Model Test statistic
Exponential 0.307

Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

where 0 represents a censored value and 1 represents an uncensored value. Unfortu

nately, the statem ents

> Y : = WeibullEV(lambda, kappa);
> hat := MLE(Y, MP6, [lambda, kappa], MP6Censor);

fail to return the MLEs in APPL. The Maple numerical equation solving procedure 

f  so lve  is not clever enough to exploit some of the structure in the score vector th a t 

is necessary to find the MLEs. Therefore a special routine, MLEWeibull, has been 

written th a t computes MLEs for the Weibull distribution. The additional statem ent

> hat := MLEWeibull(MP6, MP6Censor);

yields the MLE estimates A =  0.03 and k  =  1.35 for the Weibull distribution. The 

Kaplan-M eier product-lim it survivor function estim ate for the MP6 data set, along 

with the fitted Weibull survivor function are plotted in Figure 9.6 using the additional 

APPL statem ent

> PlotEmpVsFittedSF(Y, MP6, [lambda = hat[l], kappa = hat [2]],
MP6Censor, 0, 23);
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Figure 9.6: Product-limit survivor function estimate and fitted Weibull survivor func
tion for the 6-MP treatm ent group.

The downward steps in the estim ated survivor function occur only at observed remis

sion times. The six parameters to  the plotting function PlotEmpVsFittedSF are the 

random  variable whose SF is to be plotted, the data values in a list, the parameters 

associated "with the random variable, the right-censoring vector in a list, and the lower 

and upper plotting limits. Note th a t the product-limit estim ator cuts off after the 

largest observed remission tim e (Lawless, 1982). □

All of the input modeling examples thus far have been limited to continuous data. 

The next example fits the geometric distribution as a model for daily demand at a 

vending machine.

E xam p le  9.6. A vending machine has capacity for 24 cans of “Purple Passion” grape 

drink. The machine is restocked to  capacity every day at noon. Restocking time is 

negligible. The last five days have produced the following Purple Passion sales:

14 24 18 20 24.
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The demand for Purple Passion a t this particular vending machine can be esti

m ated from the data  by treating the 24-can sales figures as right-censored demand 

observations. If demand has the geometric distribution, with PDF

f ( t ) = p { l - p ) t t  =  0 ,1 ,2 , . . .

find the MLE for p.

S o lu tio n : Although not discussed in Chapter 7, the MLE procedure can also handle 

discrete distributions. Since the pre-defined geometric distribution in A PPL is pa

rameterized for t  =  1, 2 , . . . ,  we need to  define a geometric random variable with the 

different parameterization (used above) in the list-of-sublists data structure. No new 

APPL procedures are needed to compute the MLE for p. The statements

> X := [[x -> p * (1 -  p) x ] , [0 . .  i n f i n i t y ] ,  ["D isc re te " , "PDF"]];
> P urp lePass := [14, 24, 18, 20, 24];
> PurplePassC ensor := [1 , 0, 1, 1, 0 ];
> MLE(X, P u rp leP ass , [ p ] , P u rp leP assC en so r);

yield p =  Model adequacy is not considered for this particular example. □

All previous examples have considered time-independent observations. There are 

occasions when a series of event times may be tim e dependent, and a more complicated 

input model may be appropriate.

E x a m p le  9.7. Ignoring preventive maintenance, twelve odometer readings (from a 

certain model of car) associated with failures appearing over the first 100,000 miles 

are

12,942 28,489 65,561 78,254 83,639 85,603

88,143 91,809 92,360 94,078 98,231 99,900

Fit a nonhomogeneous Poisson process to  the above d a ta  set, where the ending tim e 

of the observation interval is assumed to  be 100,000 miles.
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S o lu tio n : The data can be approxim ated by a power law process (i.e., the intensity 

function has the same param etric form as the hazard function for a Weibull ran

dom variable). The following A PPL statements, including the additional MLENHPP 
procedure, return A =  0.000026317 and k  =  2.56800:

> CarFailures := [12942, 28489, 65561, 78254, 83639, 85603, 88143,
91809, 92360, 94078, 98231, 99900];

> X := WeibullRVClambda, kappa);
> hat := MLENHPP(X, CarFailures, [lambda, kappa], 100000);

The last argument in MLENHPP tells the procedure that the failures were observed over 

the interval [0, 100,000] miles. The additional APPL statem ent

> PlotEmpVsFittedCIF(X, Sample, [lambda = hat[l], kappa = hat[2]],
0 , 100000) ;

produces a plot of the empirical cumulative intensity function and the power law 

cumulative intensity function as shown in Figure 9.7. □

12 -

10

8

c i f 6

4

0

2

20000 40000 x 60000 80000 100000

Figure 9.7: Cumulative intensity function estimate and fitted power law intensity 
function for the C arF a ilu res  data.
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9.2 Further work

Some ongoing work in the area of input modeling in APPL is described here. First, 

most distributions containing 3 or 4 unknown parameters (e.g., the Johnson dis

tributions) do not have closed-form maximum likelihood estimators. Based on our 

experience with the Weibull distribution in Example 9.5, it will be necessary to write 

custom code for many of these distributions. This is precisely what is required from 

the batch and interactive software packages tha t perform input modeling. Fortu

nately, there is significant literature concerning the numerical methods required to 

arrive at these estimators.

Second, some distributions, such as the Erlang distribution, have both a discrete 

and a continuous parameter. In order to compute parameter estimates, it is necessary 

to prove results th a t will expedite their calculation. In using maximum likelihood on 

the Erlang, for example, it would not be possible to calculate the MLEs for the 

scale param eter for all shape param eters in the parameter space. Thus some results 

concerning the monotonicity of the likelihood function as the shape parameter varies 

are necessary to provide an algorithm for calculating the MLEs.

Third, some distributions have their unknown parameters as part of their support. 

Consider finding the MLEs for the triangular(a, b, c) distribution for a sample size of 

n  = 2. W ithout loss of generality, assume X\ < Symmetry dictates that

-  X \  +  X2

b = — r ~

and th a t b — a = c — b. Thus the problem of finding the MLE for a, for example, 

reduces to maximizing

2{x\ -  a) _  x i - a  
X l,a (c — a) (6 — a) (b — a )2

R e p ro d u c e d  with pe rm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



246

Differentiating with respect to a yields

d f  _  — (b — a)2 -+- 2(xi — a)(b — a) 
da (6 — a)4

When the derivative is equated to zero and the resulting equation is solved for a, the 

MLE is

a = 2xi — b.

Likewise,

c =  2 ^ 2  — b.

Moving to the case of n  =  3 is more complicated since it is not clear whether the 

middle data value should have its likelihood function considered paxt of the left or 

the right support of the PD F. An algorithm must be developed in order to compute 

the MLEs for general n.

APPL is a platform which can be used for input modeling in an interactive, as 

opposed to a batch platform. Its ability to interface w ith probability theory presents 

some advantages for calculating exact probability measures.
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Chapter 10

APPLications

10.1 Kolmogorov-Smirnov Test Statistic for Esti

mated Parameters

The Kolmogorov-Smirnov (K-S) test compares a hypothetical or fitted CDF F(x)  

with an empirical CDF Fn(x) in order to assess fit. The empirical CDF Fn(x) is 

defined as
_  . . num ber of X / s  < x
Fn( x) = ----------------------------,

n

where n  is the size of the random sample, which means Fn (x) is the proportion of the 

observations th a t are less than  or equal to x. The K-S test statistic D n is the largest 

vertical distance between Fn(x) and F (x )  for all values of x, i.e.,

Dn =  sup{|F„(a;) -  F(a?)|}.
X

The statistic  Dn can be computed by calculating (Law & Kelton, 2000, page 364)

D»+=m { i  ~ Aw }  ’
247
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and letting

Dn =  max{£)+, D n }.

Although the test statistic Dn is easy to calculate, its distribution is mathemati

cally intractable. Drew et al. (2000) provide an algorithm for calculating the CDF of

case has been previously coded into APPL as the KSRV procedure.

The more common and practical situation occurs when the parameters are un

known and are estimated from the sample data, using a technique such as maximum 

likelihood estimation. In this case, the distribution of D n depends upon both n  

and the particular distribution th a t is being fit to the data. This section presents the 

derivation of the distribution of Dn for the case of exponential sampling for n  =  1 and 

n — 2. Future work involves extending the pattern established for n  =  1 and n  =  2 

for the exponential distribution to larger samples and other population distributions.

Let X  be an exponential random variable with PD F f ( x ) =  \ e~ x!e and CDF 

F {x) =  1 — e~x!° for x >  0. If Xi,a?2 , • • - ,x n are the sample data  values, then the

Dn when all the parameters of the hypothetical CDF F(x)  are known (referred to as 

the “all parameters known” case). Assuming tha t F  is continuous, the distribution 

of D n is a function of n, but does not depend on F. This “all parameters known”

MLE 6 is

10.1.1  Di for th e  E xp on en tia l D istr ib u tion

If there is only n  — 1 sample data  value, which we will call x i ,  then 9 — X\. Thus,

the fitted CDF is

F(x) = 1 -  e~x/§ =  1 -  e~x/xi x > 0 .
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As can be seen in Figure 10.1, the largest vertical distance between Fx(x) and F(x)  

occurs at x x and it the value Dx = 1 — 1/e. The PD F for D x is degenerate at 1 — 1/e:

f Dl{dx) = 1  dx = 1 -  1/e.

Empirical CDF

Fitted CDF0 .8 -

0 .6 -

0.4-

0 .2 -

Figure 10.1: The empirical and fitted exponential distribution for one da ta  value x x. 
The K-S test statistic value Dx = 1 — 1/e is pictured.

1 0 .1 .2  £>2 for  th e  E xp on en tia l D istr ib u tio n

Order the n =  2 sample da ta  values and let x ^  =  min{a:i, x2} and x@) =  

The MLE is 0 =  (a:^) +  X(2))/2 and the fitted CDF is

F(x)  =  1 -  e~x/* =  1 -  e-2x/(x(i)+a:(2)) x  > 0.

Let
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where 0 <  y < 1 since 0 <  xp) <  X(2). The fitted CDF F ( x ) a t the values xpj and 

xp) is

F (x (1)) = 1 -  e- 2x<*)/(*(D+*(*)) =  l _  e-2y/(y+D 0 < y < l ,

and

F(x(2)) =  1 -  e- - x™/{x^ +x™) =  1 -  e~2/(2/+1) 0 <  y  <  1.

The fitted CDF F{x) always intersects the second riser of the empirical CDF F2 (x) 

since F(x(2)) ranges from 1 — ^ =  0.6321 (when y =  1) to 1 — ^  =  0.8647 (when 

y  — 0). The fitted CDF may  intersect the first riser of the empirical CDF depending 

on the value of y. For 0 <  y  < 2_iog(2 ) ~  0.5304, the first riser is intersected. For 

2-°og(2) V — T fitted CDF lies entirely above the first riser.

Define lengths A, B,  C  and D  according to the diagram in Figure 10.2. With 

respect to y = the lengths A, B , C  and D (as functions of y) are

Fitted CDF0.8

0.6
Empirical CDF

0.4

0.2

Figure 10.2: The empirical and fitted exponential distribution for twro da ta  values X(i) 
and X(2). In this particular plot, 0 <  y < 2~°og(2 ) > so r ŝer ° f  the empirical
CDF F2(x ) is intersected by F(x) .
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A(y) =  | (1 -  e-2j'/(y+1)) -  0| =  | l  -  e_2y/(j,+1) | =  1 -  e~2y/{-y+l) 0 <  y  <  1;

B(y)  = I  _  ( 1  _  e -2 y / ( iH - D ) 1

The length B  is defined piecewise as

B(y)  =  <
3- 2 y / ( y + l )  _  1

o < y < ^
log(2)

log(2) 
2—log(2)

2 —Iog(2)

<  y  <  i;

C(y) = (1 -  e - 2«»+» )  - 5 = 5 -  e "2/<!,+1) 0  <  y  < 1;

£>(y) =  | l  — (1 — e_2/(y+1)) | =  e-2/(y+1) 0 <  y < 1.

Figure 10.3 is a graph of the lengths A, B,  C  and D  plotted with respect to 

0 <  y < 1- For any given y  on (0,1], the K-S test statistic is D2 =  max{A, B ,  C , £>}. 

Thus, only C(y), A(y),  and the first piece of B(y)  are needed to define D2 in terms 

of y. In addition, there are two y values of interest in Figure 10.3:

0.6 -

0 .5 -

0.4

0.3

0 2

02 0.60.4 0.8

Figure 10.3: Lengths A , B , C, and D  from Figure 10.2 for 0 <  y < 1.
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The value y* such th a t B(y)  — C(y). Using Maple’s so lve  procedure, we 

determine that

V =
2 + log ( ± - 1 ^ 1 - 4 / e 2) 

l ° g ( |  -  i ^ l - 4 / e 2)
^  0.0965,

and

C{y *) =  exp ^ - 2  -  log Q  -  ~ \ / l  — 4 /e 2̂  ^ ^  =  0.3386.

The value y** such th a t A{y) =  C{y). Using Maple’s so lv e  procedure, we 

determine that

2 +  log +  | v ' 1 +  16/ e2) 

log ( 4  +  l \ / l  +  16/e2)
^  0.2226,

and

C(y’ ’) =  1 -  exp ^ —2 -  log +  ^ a/ 1 +  16/ e2^  -  °- 3052.

Thus, the largest vertical distance Z)2 is either computed using the length formula for 

A (Y ) ,  B (Y ) ,  or C(Y)  depending on the value Y  — X ^ / X ^ ) ,  i-e.,

Do  =  <

B (Y )

con
A (Y)

0 <  r  <
Iog(|-§V^l-4/e2)

2+ l o g ( ^ - i y i - 4 /e2) <  y  <  2+ l o g ( - H i y ,1+ 16/e2)

•og(|-|-s/1_4/e2) _  1og(-^+iv/,1+16/e2)
 2+ l°g (— y / l + 16/ e 2) y .

l°g (—^ + ^ - \ / l+ 1 6 /e 2) ’
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or, equivalently,
/

B ( Y )  0 <  Y  <  y*

A  =  C (Y )  U* < Y  < y**

A ( Y )  y ”  <  Y  <  1.

D eterm in in g  th e  D istr ib u tion  o f  Y  =  X (1)/X (2)

Let A i, X 2 be a random sample drawn from a population having PD F

f ( x ) =  \ e~X/° x  > °,

for 9 > 0. In order to determine the distribution of A ,  we must determine the 

distribution of /A (2), where

=  min{Ai, A 2 }, and

A (2) =  m a x ^ ,  A2}.

Using an order statistic result (Hogg & Craig, 1995, page 199) the joint PD F of A(x) 

and X^Q is

/(* (!) ,Z(2)} =  2! • • ^e~xw /e

= ^ e - ^ +x^ )/0 0 <  £(!) <  rr(2).

The CDF technique is used to determine the CDF of Y .  Let Y  =  A(i)/A(2) 

and define the dummy transform ation Z  =  A(2). The random  variables Y  and Z  

define a one-to-one transformation th a t maps A  =  {(z(i),X(2)) | 0 <  X(x) <  £(2)} to 

& = {{Viz ) 10 <  V <  1)z >  0}. Since y  =  x ^ / x ^ )  and z =  x@) (be., £(i) =  yz  and 

x (2) =  z) and the Jacobian of the inverse transformation is J  =  z, then the PD F of
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Y  is

f v ( y )  =
r°° 9

J  p eHyZ+z)/e\z \ dz
9 f ° °

^2 I e~z(y+1^ ez d z  
v Jo
2_
¥

¥
2_

¥
2_
92

0 - 0  +

: e 2

(y + 1) 
e2

y  +
- r
1 Jo

e-z(V+l)/B dz

0-z(y+\)/8
10 J

( v + i y
0 <  y <  1.

The final step in determining the distribution of D2 is to project the maximum of 

A, B , C, and D  in Figure 10.3 onto the vertical axis. In order to determine the CDF 

for A>, we need to find the functions Fa, Fp, and F7 associated with the following 

limits for the CDF of D 2:

FdM  =

0 0 <  d < C(y” )

Fa(d) C ( t T )  < d <  C(y*)

F M C (y ')  < d < \

Fy(d) \ < d < 1 - J

1

.-<1 u 
1rHA93

D e te rm in in g  fo rm u la s  fo r Fa, Fp, an d  F7

In order to determine the three functions FQ, Fp, and F7 associated with the CDF 

of D 2, it will be necessary to find the point of intersection of a horizontal line at 

height d in Figure 10.4 with C(y), A(y),  and the  first piece of B(y). These points
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0 .8 -

0 .6 -

0.4-

0.2 0.4 0.6 0.8

Figure 10.4: D 2 =  max{A, B, C , D}.

of intersection will be necessary in order to set up the appropriate integration limits 

when using the CDF technique to determine the distribution of D 2.

First, consider the intersection of the first piece of B(y)  with a horizontal line at 

height d in Figure 10.4:

e - 2 » / ( y + D  _  I  =  rf.
2

Solving this equation for y yields

_  log ((d +  1/2)
2 +  log [d, +  1/2)

Next, consider the intersection of C (y ) with a horizontal line at height d in Figure 

10.4:

1  _  e - 2 / ( y + l )  =  d
2

Solving this equation for y yields

=  2 +  log (1/2 -  d)
V log (1/2 -  d)
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Finally, consider the intersection of A(y)  with a horizontal line at height d in Figure 

10.4:

1 _  e-2»/(»+l) =  d

Solving this equation for y  yields

log (l -  d)
V = 2 -f-log(1 — d)'

The following three paragraphs give the limits of integration associated with the 

functions Fa , Fp, and F7.

For C(y**) < d < C(y*), FD2(d), i.e., expression for Fa(d)., is

Fa(d) =  P r (D2 < d )
log(l-d)

y  2 + io g ( i - d )

= j  f v { y ) d y +  J  f r ( y ) d y
2 + l o g ( l / 2 - d )  y "

lo g ( I /2 - d )

=  -  log(l/2  -  d) -  2 -  log(l -  d)

=  —2 — log[(l/2 — d )(l — rf)].

For C(y*) < d < 0.5, FD2(d), i.e., expression for Fp(d), is

Fp{d) =  P r (D2 <d)

=  1 - P r  {D2 > d )

=  1 -  /  M v ) d y  +  J  f y ( y ) d y
L U 2 + l o g ( l - d )

i (  d  +  1/2^
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For 0.5 <  d <  1 — 1/e, Fp2(d), i.e., expression for F^(d), is

Fy(d) =  P r(D 2 <  d)

=  1 -  Pr(_D2 > d)

=  1 - /: lO K (l-d )
fv{y) dy

2 + I o g ( l - d )

=  - l o g ( l - d ) .

Pu tting  the pieces together, the CDF for Do is

FdM
- 2  — log [(1/2 _  rf)(l -  rf)I 

l o g ( ^ )

-  log(l -  d)

0 < d < C(y**)

C(y" )  <  d < C{y •) 

C{y*) < d < \

i < d < i - i  

d >  i - i .

This CDF is consistent with the tabled values from Leemis (1995, page 274) which 

were generated using Monte Carlo simulation with 500,000 replications.

E x a m p le  10.1. Let a;(i) =  95 and £(2) =  100. The maximum likelihood estimator 9 

is

e = 9- 5 ±  100 =  97.5

The ratio of the data values

y  = —  =  0.95,
X(2)

which indicates, from Figure 10.4, th a t the test statistic

D 2 =  .4(0.95) =  1 -  e- 2(o-95)/(x.95) ^  0.6226
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falls in the right-hand tail of the distribution of Di  and hence provides evidence to 

reject the null hypothesis for the goodness-of-fit test. Since large values of the test 

statistic  lead to rejecting Ho,  the p-value associated with this particular data  set is

V =  1 -  FD2 (0.6226) =  1 +  Iog(l -  0.6226) =  0.02556. □

The procedure ExponentialKSRV (Data) returns the PDF of Dn for the exponen

tial distribution when given a list of da ta  values Data. For data  sets containing more 

then two elements, the procedure currently prints an error message.

10.2 Others

This section contains various other applications of APPL procedures.

E x a m p le  10.2. This example considers the use of the Kolmogorov-Smirnov test 

for assessing model adequacy (goodness-of-fit) for the prime modulus multiplicative 

linear congruential random number generator:

zi+i — azi mod m

for i =  0 ,1 , . . . ,  where z0 is a seed, a =  75 =  16,807, and m =  231 — 1 =  2,147,483,647 

(Park and Miller, 1988). The random numbers generated are Z \ / m , z - i l t n ,  etc. If the 

seed zq =  987,654,321 is used, then the  first five random numbers generated are

1,605,065,384 1,791,818,921 937,423,366
2,147,483,647 2,147,483,647 2,147,483,647

1,334,477,970 252,032,522
2,147,483,647 2,147,483,647
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or, approximately

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five da ta  values are being evaluated for their uniformity, there should 

be a reasonable match between their empirical cumulative distribution function and 

the cumulative distribution function for a U(0, 1) random  variable. If we let the list

Sample contain the five random numbers generated above, then the APPL statem ents

required to plot these two functions over the  interval (0, 1), shown in Figure 10.5, are

> n := 5;
> a := 7 “ 5;
> seed := 987654321;
> m := 2 ~ 31 - 1;
> Sample := □ ;
> for j from 1 to n do
> seed := a * seed mod m:
> Sample := Cop(Sample), seed / m]:
> od;
> U := UniformRV(0, 1)
> PlotEmpVsFittedCDFCU, Sample, □, 0, 1);

The five param eters to the plotting function are the random  variable whose CDF is 

to be plotted, the data  values in a list, the param eters associated with the random  

variable (empty in this case of U(0, 1)), and the optional lower and upper plotting 

limits.

Let F(x)  be the hypothesized CDF and F$(x) be the empirical CDF. In order to 

determine the Kolmogorov-Smirnov test statistic,

A  =  sup |F (r )  -  F5(x ) | ,

which measures the largest vertical distance between the two cumulative distribution
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Figure 10.5: The empirical CDF of Sample and the theoretical U(0, 1) CDF.

functions, the following additional command must be issued 

> T e s tS ta t  := KSTest(U, Sample, [ ] ) ;

The approximate value of the test statistic for the five random numbers is 0.2365, 

which occurs just to the left of the random number 0.4365.

Since large values of the  test statistic  indicate a poor fit and the cumulative 

distribution function FDs(y) of the test statistic is (Drew et al., 2000)

z
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the j>-value for this particular test is found with the additional APPL statem ent

> p := SF(KSRV(5), TestStat);

which yields p  =  0.8838.

If this process is repeated for a total of 1000 groups of nonoverlapping consecutive 

sets of five random numbers, the empirical CDF of the Kolmogorov-Smirnov statis

tics should be close to the theoretical from APPL if the random number generator is 

valid. Figure 10.6 is a plot of the empirical CDF of the 1000 Kolmogorov-Smirnov 

statistics versus the theoretical Kolmogorov-Smirnov CDF with n  =  5. The empirical 

CDF lies slightly above the theoretical. If this experiment were performed repeatedly, 

the empirical CDFs should fluctuate around the theoretical CDF. □

0.8

0.6

CDF

0.4

0.2

0.2 0.4 0.80.6

Figure 10.6: Empirical CDF of 1000 Kolmogorov-Smirnov statistics and the  theoret
ical Kolmogorov-Smirnov CDF for n =  5.

E x am p le  10.3. Consider a 2 x 2 m atrix of 17(0,1) random variables. Find the 

distribution of the determinant of the matrix.
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S o lu tio n : Let X Y, X 2, X 3, and X A be iid U(0, 1), and let Yx =  X rX 2 and Y2 =  X 3X 4. 

The distribution of Y{ for i =  1, 2 is fvi iy)  =  —logQ/) for 0 <  y  <  1 (which can be 

determined in APPL). Now we must find the distribution of Yx — Y2.

The joint PD F of FI and Y2 is

/ r , ,^  (2/1 , 2/2 ) =  (log(yi))(log(jfe))

for 0 <  2/1 < 1 . 0 <  y2 < 1. Consider the one-to-one transformation 0 such tha t

wx =  yx -  y2 y1 =
<t> : 0 - 1 :

w2 =  2 / i + 2 / 2  2/2 =

The Jacobian of the inverse transformation is

1 
2

The joint PD F of Y\ and Y2 is

f w 1,w2(w1,w 2) = / K , , r 2 ( 0  l (w i ,w2)) • |J |
'©1 +  IU2 \ , ( W2 — W\1 /w i  +  W2 \  ( w 2 — W i \

=  a — Jlog (.— 2— ;  ’

where w-i, w2 satisfy the inequalities —Wi < w2, w2 < 2 — w\, w2 < w \ ,  and Wi — 2 < 

w2. The m arginal distribution of Wi  is

S T  dw,,

S T '  l l o g f ^ J l o g t ^ - )  d w 2,

—1 <  w\  <  0

0 <  W\ <  1.
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Simplifying the above expression yields

2 — -u/ilog(w i +  1) — log (i//i +  1) +  2w \  4- w \  d ilo g ( ) -

tyilog(—iui)log(i(;1 ) — (l/6)ii;x7r2 — w xlog(—̂w \ )  — 1 <  w \  <  0

2 4- tt;xlog(l — w \ )  — lo g ( l  — w \ )  -f- w xlog(w x) — twxdilog(iux) —

(l/2)'u;x(log(tyx))2 — 2w\  +  w xlog(l — iwx)log(wx-1 ) 0 <  w \  <  1,

where dilog(z) =  f *  dt.

Using the APPL D eterm inant procedure, which returns the PD F of the determi

nant of a 2 x 2 m atrix with random variables as elements, we determine the PDF of 

this example with the statements:

> Xll := UniformRVCO, 1)
> X12 := UniformRVCO, 1)
> X21 := UniformRVCO, 1)
> X22 := UniformRVCO, 1)
> M := arrayCl . . 2 , 1 .
> Determinant CM); □

2, [CX11, X12] , [X21, X22] ] ) ;

E x am p le  10.4. Find the distribution of the distance between two points chosen 

randomly in the unit square.

S o lu tio n : Let (Xx,Yi) and (X2, Y2) be two pairs of independent and identically 

distributed U(0, 1) random variables. The distribution of the distance between the 

two points can be found by hand using a similar process to the one exhibited in the 

last example.

The APPL statements used to  determine this distribution are

> XI := UniformRVCO, l);
> X2 := UniformRVCO, l);
> Y1 := UniformRVCO, l);
> Y2 := UniformRVCO, l);
> DX := Difference CXI, X2) ;
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> DY := Difference(Yl, Y2);
> g := [[x -> x ~ 2, x -> x 2], [-infinity, 0, infinity]];
> h : = [[x -> sqrt(x)], [0, infinity]];
> SDX := Transform(DX, g) ;
> SDY := Transform(DY, g);
> SSQ := Convolution(SDX, SDY);
> Z := TransformCSSQ, h) ;

The resulting PD F is

f z ( z )  =  2 (z2 +  7T — 4 | z | ) z  0 <  Z  <  1

and

f z { z )  - —2 | 2 y /  z 2 — 1 +  2 arcsin ^  y /  z 2 — 1 +  z2-\/z2 — 1 — 4 z2 + 4^ —t ̂  =tt

for 1 <  z <  y/2. The APPL statement DX := Difference (XI, X2) assigns the PD F 

of X i  —X i  to the Maple variable DX. Similarly, Y\ — Yi gets assigned to the variable DY. 
The Transform function transforms the random  variable DX by the function g(x) =  x2. 

Thus, the statem ent SDX := Transform(DX, g) assigns the PDF of {Xx — X 2)2 to 

the variable SDX, while SDY is assigned the PD F of (Yi — Y2 )2. The Convolution 
procedure calculates the PDF of the sum of the random variables SDX and SDY. Last, 

the resulting convolution, SSQ is transformed by the function h(x ) =  yfx, x  > 0 to 

produce the PD F f z ( z ) .  □

E x a m p le  10.5. Let X i ,  X2, and X 3 be a  random  sample drawn from an exponential 

distribution with failure rate A and PD F fx{%) =  \ e ~ Xx for x  > 0. Test

Ho : A =  5

H x : A <  5
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at significance level a  =  0 . 0 1  using the test statistics

(a) X \  +  X 2 +  -X3 , and

(b) X (3).

Find the critical values and the power curves for each test statistic.

S o lu tio n  (a): Let Y  = X i  + X 2 + X 3 and C\ be the critical value of the test. Since 

large values of the test statistic lead to rejecting H0, we need to compute the critical 

value Ci such that P r(T  >  ci) =  0.01 under H0. We can first find the survivor function 

(SF) of the sum Y  with the APPL statements

> X := ExponentialRVC5);
> Y := ConvolutionIID(X, 3);
> SY := SF (Y) ;

which returns

S y {u) =  y 2e~5y +  5 ye~5y -t- e~5y y  > 0.

In order to determine P r(F  >  Ci) =  0.01, we first use the Maple procedures op 

and unapply to extract the survivor function from the list of sublists Y and set it 

equal to  0.01. We then use Maple’s numeric solver, f  so lv e , to solve the resulting 

equation
25
—  d 2 e"5ci + 5 c ie _Sci + e ~ 5ci =  0 . 0 1  

for ci- The Maple statem ent needed to solve this equation for ci is

> c l  := fso lv e C o p (u n a p p ly (S Y [1 ](c l))(c l))  = 0 .0 1 ) ;

which yields ci =  1.681189383. We can verify this value of ci with the APPL state

ment

> a lp h a  := SF(Y, c l ) ;
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which returns a  = 0.01.

We will determine the power curve for part (a) after determining the critical value 

for the test statistic X@) in part (b). We want to examine each test sta tistic ’s power 

curve on the same plot.

S o lu tio n  (b ): Let c2 be the critical value of the test. Since large values of the test 

statistic again lead to rejecting HQl we need to compute the critical value c2 such that 

P r (y  >  c2) =  0.01 under H0. We first find the survivor function of the third order 

statistic, X3, with the APPL statements

> X := ExponentialRV(5) ;
> X3 := OrderStat(X, 3, 3);
> SX3 := SFCX3);

where SF(X3) computes the survivor function of the third order statistic when three 

items are drawn randomly from the given exponential population. The survivor 

function of the third order statistic is

S*(3)( x ) = e - 15* - 3 e- 10* +  3 e - 5* x  > 0.

The Pr(AT(3) >  c2) =  0.01 is solved with the  A PPL statem ent

> c2 := fsolve(op(unapply(SX3[1] (c2 ))  (c2 ))  = 0 . 01) ;

which yields c2 =  1.140087221. We can verify this value of c2 with the APPL state

ment

> alpha := SF(X3, c 2 );

which returns a  =  0.009999999988.

The additional statements needed to generate the power curves for the  test statis

tics Y  = X t + X 2 + X 3 and AT(3) are
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> X := ExponentialRV(lambda) ;
> Y := SF(ConvolutionIID(X, 3));
> X3 := SF(OrderStat(X, 3, 3));
> PCa := subs(y = cl, Y[l](y));
> PCb := subs(x = c2, X3[l](x));
> PCPlota := plot(subs(lambda = i, op(PCa)), i = 0 . .  6 ):
> PCPlotb := plot(subs(lambda = i, op(PCb)), i = 0 . . 6 ):
> plots [display] ([PCPlota, PCPlotb]);

As can be seen in Figure 10.7, the sum test statistic, Y  — X \  -f- X 2 +  X 3, is more

powerful than the order statistic  test statistic, *(3), for this particular hypothesis test.

Solid Line: Power Curve for (a) 

Dashed Line: Power Curve for (b)

0.8 -

0.6

0.4

0.2

Figure 10.7: Power curves for the test statistic Y  =  X \  +  X 2 +  X z (solid line) and 
test statistic (dashed line) for Example 10.5.

E x a m p le  10.6. (Barr & Sherrill, 1999, pages 357-358) (Army selection boards)

The Army uses centralized Army-wide selection boards to select officers for 

promotion and advanced m ilitary schooling. Each selection board deter

mines a performance-based “order of merit” ranking of the officers under 

its consideration. Generally, officers under consideration for promotion
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or advanced schooling who are not selected for the new grades or schools 

either leave or are separated from the Army. Officers being considered for 

promotion to Lieutenant Colonel (LTC), for example, have successfully 

passed five such selection boards. D ata from recent years shows the se

lection rates of these boards averages about 78%. Thus, very roughly, the 

fraction of officers remaining after five boards is about 30% of the orig

inal population, i.e., 0.785 =  0.29. If we assume the original population 

of officers has normally distributed “performance,” and selection boards 

select officers with the highest performance, then a LTC selection board is 

effectively considering a truncated normal population of “performance,” 

with a truncation point corresponding to the 70th percentile of the orig

inal normal population. Determine the variance of the population under 

consideration by the LTC board. (Barr & Sherrill, 1999, pages 357-358)

Solution: For a standard normal distribution, truncation at the 70th percentile 

would correspond to a lower truncation point of b =  0.53. To determine the variance 

of a truncated standard normal distribution with a lower truncation point b — 0.53, 

the following A PPL statements are used

> X := StandardNormalRVO ;
> b := IDF(X, 7 /  10);
> T := Truncate(X, b, infinity);
> var := Variance(T);

The statem ents return the variance var =  0.2636, meaning the variance of the 

population under consideration by the LTC board is only about one-fourth th a t of 

the original population. Barr & Sherrill state:

.. th a t th is relatively small variance makes it more difficult for the 

board to discriminate among officers under consideration. Members of
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Table 10.1: Variance of a truncated standard normal distribution T  for increasing 
values of the lower truncation point t.

Lower truncation value t Variance of T  truncated below at t
0.53 0.2636
0.65 0.2452
0.75 0.2309
0.85 0.2176
0.95 0.2050

selection boards for the  higher ranks are sometimes quoted as saying, ‘All 

the officers look about the same.” ’

Barr &; Sherrill also note th a t as t  increases, there is a  rapid decrease in variation. 

Table 10.1 displays the variance of the truncated standard normal distribution for 

increasing values of t  as determ ined in APPL. They conclude that, a t higher ranks, 

there is relatively little difference in performance scores. □

E x a m p le  10.7. (Maple anim ation of a continuous order statistic) The PDF of a 

standardized inverse Gaussian (IG) random variable X  is

= - § < « < » ■

Balakrishnan and Chen’s (1997) text, CRC Handbook o f Tables fo r Order Statistics 

from  Inverse Gaussian Distributions with Applications, contains hundreds of pages 

of tables and plots for IG distributions. A plot of the N (0 ,1) and the standardized 

IG(0.8) PDFs overlaid in a single plot, for example, is on page 50. Not only can APPL 

reproduce many of these tables and plots (with ease), it can also produce animations 

(with Maple’s anim ate procedure) to make comparisons of plots for various parameter
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values. For example, The two plots for the  N (0 ,1) and IG(fc) may be overlaid and 

animated for k increasing from zero to one as follows:

> Z : = NormalRV(0, 1);
> X := [[x -> (3 / (3 + k * x)) ' (3 / 2) *

exp(-3 *  x  ~ 2 /  (6 + 2 * k * x)) / sqrt(2 * Pi)],
[-3 / k, infinity], ["Continuous", "PDF"]];

> NormalExpr := op(unapply(Z [1] (x) ) (x) ) ;
> InvGaussExpr := op (unapply(X[l] (x))(x));
> unassign(,kJ);
> plots [animate] (-[NormalExpr, InvGaussExpr}, x = -4 .. 4, k = 0 . .  1) ;

The plot is shown in Figure 10.8 for k  =  0.8. To execute the animation, first select

the plot by clicking on it. Then choose “Play” from the “Animation” menu.

-0.4

0.3

PDF
0.2

0.1

-3  -2

Figure 10.8: Overlaid plots of the standard norm al and standard IG(0.8) distributions.
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Chapter 11

Future Work

As new algorithms are devised and implemented as APPL procedures, it is clear that 

the discrete data  structure will need to become more general. There are instances 

when manipulating one or more random variables results in a random variable with 

a mixed Dot and N oD ot format. We do not want these random variables to be alien 

to the existing APPL procedures, and the best way to remedy this situation is to 

adjust the data structure format first. Since we eventually want APPL procedures 

to be able to work with random variables that have a mixed discrete and continu

ous support, developing a mixed D ot/N oD ot format for random variables with only 

discrete supports is a  good place to begin construction on a new or revised format.

Not only would we like to see the data structure become more general in the future, 

but we would like to begin eliminating certain restrictions on random variables in 

various procedures. In the Maximum procedure, for example, we assume that discrete 

random variables have infinite supports consisting of consecutive integer values. This 

would exclude, for example, determining the PD F of the maximum of the random 

variable Y  =  2X , where X  ~  Geometric(p). In other procedures, the restrictions 

are not implemented as part of the procedure, bu t are intrinsic Maple restrictions, 

e.g., sizes of lists. Some Maple restrictions are possible to work around, such as
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using Maple’s numeric equation solver fso lv e  (in MOM and MLE) when so lve cannot 

determine a analytic solution. In other procedures, such as CDF or Transform, it is 

unclear how to proceed when an analytic inverse cannot be determined.

One of our primary interests is finding additional application areas for APPL, 

especially those involving discrete random variables. Our article “APPL: A Proba

bility Programming Language” introduced the statistical community to APPL in the 

May, 2001 issue of The American Statistician. This article was devoted primarily to 

continuous distributions. We are encouraged by the interest level in APPL, and we 

are continually seeking applications from other fields of interest. We are interested 

in situations where an “exact” probability calculation is needed. Not only is APPL 

a tool for extending the depth of probabilistic theory, but it  has the potential to 

strengthen the analysis and design of problems from other scientific fields.

Some of the application areas we are considering for future work axe

•  R eliability: Finding the  exact distribution of a system tim e to failure given 

the component time to failure distributions.

•  Networks: Finding the exact distribution of the project duration in a stochas

tic activity network.

•  M echanical D esign: Finding the exact distribution of clearance in a design 

with random tolerancing parameters.

•  Statistics:

— Analysis of outliers,

— Critical values for hypothesis testing,

— Distribution of point estimators,

— Coverage of confidence intervals.
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Besides research, APPL is a tool for learning probability. Theoretical aspects of 

probability are enhanced by the visualization of the manipulation of random  variables 

in a computer algebra system. It is my intention to continue developing APPL for 

use by students and researchers at all levels in their scientific careers. W hat we give 

to others today may be that small piece of tha t something they need to to make their 

breakthrough tomorrow.
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Appendix A 

Algorithm for OrderStat

The algorithm for the A PPL O rderS tat(X , n , r ,  ["wo"]) procedure returns the 

PD F of the r th  order statistic  of a random variable X (with support Q) given th a t 

n items are sampled from the random variable’s population, either with or with

out ("wo") replacement. O rderS ta t uses the PDF, CDF, SF, NextPerm utation, and 

NextCombination procedures. Algorithms for N extPerm utation and NextCombination 

are in Appendix B.

Procedure OrderStat(X, n , r ,  ["wo"])
If r  > n then

Retum(“Error: Order statistic index larger than sample size”) 
f X  <r- PDF(X)
F X  <- CDF(X)
If (X  is Continuous) then

. ”> i F X ) ’ - 1 (1 -  F X ) " - r f X  
( r  — 1)! (n  — r ) !

Else if (X  is Discrete) then 
N < r -  |Q|

Lo <— min(fi)
S X  <- SF ( fX )
If (Number of arguments =  3) then [Sampling with replacement]

If ( X  has a numeric PDF) then 
For k <— 1 to N
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If ( N  =  1) then  

f X O S [  1] <- 1 

E lse if  (fc =  1) and (k ^  N ) then

E lse if  {k ^  1) and (k =  N )  then

f X O S [ N ]  <r- [FJT(iV -  1)]“ [/X (fV )]n- u
n—n ' *u—O

E lse
r —1 n —r

fX O S[k ] <- t t L n "  J  [FX{k -  l)]u [fX (k)]n- u~w [S X (k  + l)]w
u =0 iy=0 ^ '

Else if (X has a symbolic PDF) then

fX O S l  <- ^  ( n)  [fX(Lo)]n~w [SX{Lo +  l)]w
w=0 ^W'

[ fX O S l holds the numeric PDF value of the rth  order statistic at x  = Lo] 

JX O S2  <- [FX{x -  1)]“ [fX(x)]n- u~w [SX(x + 1)]"
u=0tu=0 ’ ’ '

[fXO S2  holds the symbolic PDF of the r th  order statistic at x  = Lo + 1, Lo +  2, ...]

If fXO S2(Lo) = fX O S l  then
fX O S  <— f  XOS2  [Return single function fX O S]

Else
fX O S  <r- fX O S l, fX O S 2  [Return piecewise defined fX O S]

Else if (Number of arguments =  4) then [Sampling without replacement]
If (X  has finite support) then 

If (n > N ) then
Return(“Error: Sample size larger than population size”) 

f X  <— ConvertToNumeric(/X) [Converts PDF of X to a numeric representation]
If (Equally likely distribution) then 

For i <— r to N  — n + r

fxos\i]  < -

In/
Else if (Non-equally likely distribution) then
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If (n =  1) then [One item is sampled]
fX O S  <- f X

Else if (n = N ) then [Entire population is sampled]
fXO S[r] <— 1 [The rth  position is assigned the value 1, others 0]

Else [Number of items sampled is 2 ,3 ,. . . ,  N  — 1]
ProbStorage <— Array [1.. n, 1.. IV]
For i  <— 1 to n 

For j  i— 1 to N
ProbStorage[i, j] <— 0 [Initialize array to hold zeroes]

Combo <— [1.. n] [Create the first ordering of values 1 through n]
For i 1 to (^)

Perm  <— Combo [Assign the permutation as the current combination] 
For j  <— 1 to nl [Compute the probability of ob taining the permutation] 

PermProb <— f X  [Perm [1]]
Cum Sum  <— PermProb 
For m  <— 2 to n

PermProb PermProb ■
Cum Sum  «— Cum Sum  4- fX{Perm[m}]

OrderedPerm  «— sort {Perm) [Sort the permutation]
For m  <— 1 to n 

For k <— 1 to IV
If (OrderedPerm[k] =  m) then

ProbStorage[m, fc] <— PermProb  +  ProbStorage [m, A:]
Perm  <— NextPermutation(Perm) [Return next permutation]

Combo <— NextGombination(C'om6o, N ) [Return next combination]
Else if (Infinite Support) then

If (n =  1) then [One item is sampled]
fX O S  <- f X  

Else if (n =  2) and (r =  1) then

fX O S  *- fX (x ) S X (x  + 1) , ^  f X (y)

Else
Retum(“No formula for this infinite support case”) 

Return(/X  OS)
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Appendix B

Maple Code for NextCombination 

and NextPermutation

These Maple codes were adapted from Nijenhaus and W ilf (1978) and Reingold et al. 

(1977). The code for NextCombination generates the next lexicographical (“alpha

betical order”) combination of size n  (where n  is the size of the previous combination) 

of the integers 1 ,2 , . . . ,  N. The procedure receives as arguments a list of integers, which 

is the previous combination, and the size of the underlying set of integers from which 

the next combination is to be formed. For example, if P rev ious := [1, 2 , 4 , 7] 

and N = 10 are entered as arguments in NextCombination, then NextCombination 

returns the next lexicographical combination of four elements chosen from the set 

{1,2, . . . ,1 0 }  as [1 , 2 , 4 , 8 ]. As another example, if P rev ious := [1 , 4 , 9, 

10] and N = 10, then NextCombination returns [1, 5, 6 , 7].

The code for N extPerm utation generates the  next lexicographical permutation of 

the integers 1 ,2 , . . . ,  N . The code receives as its only argument a list of integers, which 

is the previous permutation. For example, if P rev ious := [1, 2, 4 , 7] is entered 

as an argument in N extPerm utation, then the code returns the next lexicographical

perm utation as [1, 2, 7 , 4 ]. Similarly, [1 , 2, 7, 4] as an argument generates
277
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the next perm utation [1, 4 , 2 , 7].

The method being used for both codes requires the construction of the next com

bination (or permutation) by a small modification of the previous combination (or 

permutation). We chose the lexicographical approach because of its computational 

simplicity and straightforward construction.

NextCombination := p roc(P rev ious ::  l i s t ,  N :: p o s in t)  
lo c a l  Next, n , MoveLeft, i ,  j :

i f  (nargs <> 2) then
p r i n t ( ‘ERROR(NextCombination): T his p rocedure  re q u ire s  2 a rg u m e n ts ') : 
RETURN() :  

f i :
Next := P re v io u s : 
n := n o p s (P re v io u s ) :
#
# I f  th e  v a lu e  in  th e  f i n a l  p o s i t io n  of th e  com bination i s  n o t th e
# maximum v a lu e  i t  cam a t t a i n ,  N, th e n  increm ent i t  by 1.
#
i f  (Next[n] <> N) then  

Next[n] := N extfn] + 1:
#
# I f  th e  f i n a l  p o s i t io n  in  th e  com bination i s  a lread y  a t  i t s  maximum
# v a lu e , N, th e n  move l e f t  th rough  th e  com bination and f in d  th e  nex t
# p o s s ib le  v a lu e  th a t  can be increm ented . Index p o s i t io n  i ’s maximum
# a t ta in a b le  va lue  i s  N + i  -  n .
#
e ls e

MoveLeft := t r u e :
f o r  i  from (n -  1) by -1 to  1 w hile  (MoveLeft = tru e )  do

i f  (N ex t[i] < N + i  -  n) th en  
N ex t[i]  := N ex t[i] + 1:

#
# Upon increm en ting  th e  r ig h tm o st elem ent in  p o s i t io n  i ,  r e s e t  each
# value  in  th e  j t h  p o s i t io n  ( j  = 1, 2 , . . .  , n  -  i )  to  th e  r ig h t  of
# th e  i t h  p o s i t io n  to  1 more th an  th e  va lue  in  th e  p reced ing  p o s i t io n .
#

fo r  j  from 1 to  (n -  i )  do
N ex t[i + j ]  := N e x t[( i  + j )  -  1] + 1: 

od:
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MoveLeft := f a l s e :  
f i :

od:
f i :
RETURN(Next): 
end:

E x am p le  B . l .  Let A := [1, 2 , 4 , 6] and N = 10. Find NextCombination (A).

1. Error check: Two arguments supplied.

2. Assign Next := [1, 2, 4 , 6]. Since the final position in the combination is 
not the  value N =  10, then increment it by 1.

3. Return the next combination as [1, 2, 4 , 7].

E x am p le  B .2. Let A := [1, 4 , 9, 10] and N = 10. Find NextCombination (A).

1. Error check: Two arguments supplied.

2. Assign Next := [1, 4 , 9 , 10]. Since the final position in the combination
has already attained its maximum value, N =  10, then scan the combination
from right to left to locate the rightmost element tha t has not yet attained its 
maximum value. Since position two has not attained its maximum value of 8, 
then increment it by 1. Next becomes [1, 5 , 9 , 10].

3. Reset each value to the right of second position to one more than the value 
in the preceding position. Thus, position three’s value becomes 6 and position 
four’s value becomes 7. Next is now [1, 5 , 6 , 7].

4. Return the next combination as [1, 5 , 6 , 7].
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NextPerm utation. := procC Previous : :  l i s t )
lo c a l  Next, n , f l a g ,  i ,  OrigVal, Swaplndex, j ,  Tempi, k , Temp2, m:

i f  (nargs <> 1) th en
p r i n t ( ‘ERROR(NextPermutation): This p rocedu re  re q u ire s  1 a rg u m e n t') :
RETURN() :  

f i :
Next := P re v io u s : 
n := n o p s(P re v io u s ) : 
f l a g  := f a l s e :
#
# Find th e  l a r g e s t  index  value i  f o r  which Next [ i]  < NextCi + 1].
#
fo r  i  from n -  1 to  1 by -1  while n o t ( f la g )  do 

i f  (Next [ i ]  < Next Ci + 1]) then  
f la g  := t r u e :
OrigVal := N e x t [ i ] :
Swaplndex := i  + 1:

#
# Find th e  sm a lle s t  va lu e  NextCjJ f o r  which NextCi] < NextCj] and i  < j .
#

f o r  j  from n to  Swaplndex by -1 do
i f  ((N extC j] < NextCSwapIndex]) and (NextCj] > O rigV al)) th en  

Swaplndex := j  : 
f i :  

od:
Tempi := NextCSwapIndex]:
Next CSwapIndex] := Next Ci] :
NextCi] := Tempi:

#
# Reverse th e  o rd e r  o f th e  va lues to  th e  r i g h t  of th e  le f tm o s t swapped value
#

f o r  k from  i  + 1 to  n do 
Temp2Cn] := NextCn] : 

od:
f o r  m from i  + 1 to  n do

Next Cm] : = Temp2 Cn + i  + 1 -  m] : 
od: 

f i :  
od:
RETURN(Next): 
end:

E x am p le  B . 3. Let A := Cl, 4 , 3, 2]. Find N extPerm utation (A).
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1 . Error check: One argument supplied.

2. Assign Next := [1 , 4 , 3, 2 ] .  The largest index value i in which Next[z] <
Nextjz +  1] is i =  1.

3. The smallest value Next [7] such that Next[f] <  Next [7 ] and i < j  is Next[4] =
2 .

4. Swap the values in position i =  1 and j  =  4. Next becomes [2 , 4 , 3 , 1 ] .

5. Reverse the order of the values to the right of Next[l] =  2. Next becomes [2 ,
1, 3, 4 ].

6 . Return [2 , 1 , 3 , 4] as the next permutation.
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Appendix C

Determining Candidate Sums for 

the Heap

T h eo rem : Let x i < x 2 < ■ • • < x n and y\ < y2 < • - • <  ym be finite real numbers. 

Let the m  x  n  array A  be arranged as shown in Figure C .l and have entries A itj  =  

yi 4- Xj, i =  1, 2, . . . ,  m  and j  =  1, 2, . . . ,  n. Let the set C  contain all (z, j )  pairs such 

th a t Xi + yj < c, where c >  + x x is a real number. Let P  be the  path  from the

northwest corner of A  to the southeast corner of A  th a t separates C  from C'. The 

smallest element in C' must occur ju st to  the northeast of a southward followed by 

an eastward change in direction of the path  P .

P ro o f: For any cell in C, every cell to the southwest of C is also in C  since X\ < 

x-i < • • • <  x n and y\ <  z/2  <  • • • <  ym. Thus C  must be a finite union of rectangles 

in A, where each rectangle contains the (1,1) cell. The next cell to be included in C  

as c increases is the smallest element in C ’. Since C  will continue to be a finite union 

of rectangles when the next cell is added, the smallest element in C' must occur at 

intersections of the rectangles and the western and southern boundaries of A  th a t 

occur on P.

Figure C.2 displays the array A  for Example 4.3 with Chapter 4 with c =  3.
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Vm V m + X  i y m  +  X2 2/m ”F x n

;
• r •

y-2 V2 +  X i 2/2 +  X ’l y2 +  x n

Vi 2/i + X i 2/i + x 2 2/1 +  Xn

%l %2 X n

Figure C.l: Array A  where x x < x 2 <  • * • <  x n and yx < y2 < • • • <  ym.

8 ©
5 2

1 - 2 0 3

2 - 5 - 3 0 ©
- 3 - 1 2  6 8

Figure C.2: Array A  corresponds to Example 4.3 in Chapter 4. The path P  from the 
northwest corner to the southeast corner of A  th a t delimits the set C  =  {(z, j )  | ?/,- +  
Xj <  3} from C' is thickened. The circled entries lie ju s t to the northeast of points 
in the path  where there is a tu rn  from a southward to  an eastward direction. These 
three entries are contained in the  cells in C' th a t hold the smallest entries in C' for 
c =  3.
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Appendix D

Algorithm for BruteForceMethod

The algorithm for the APPL procedure BruteForceMethod(X, Y) computes the PDF 

of the convolution of the PDFs of the two random variables X  and Y  by the “brute 

force m ethod” described in Chapter 4. The support list for the convolution is sorted 

by a heapsort in the APPL procedure HeapSort, which sorts the elements of its first 

argument, making corresponding swaps to the elements of its second argument. The 

variables Dx and Qy are the supports of the random variables X  and Y , respectively.

Procedure BruteForceMethod (X, Y)
n  4— |f2x|
771 <—  \ Q y \

s <— array [1.. n ■ m]
Probs <— array[1.. n  ■ m]
For i <— 1 to 71 

For j  <— 1 to 77i 
s < -Vi + x j
Probs <- fv ij/i)  ■ fx ( x j)  

retum (H eapSort(s, Probs))
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Algorithm for MovingHeapMethod

The algorithm for the APPL procedure MovingHeapMethod (X, Y) computes the PDF 

of the convolution of two random variables X  and Y  by the “moving heap method” 

described in Chapter 4. The additional APPL procedures RebuildHeap, InsertH eap, 

and PercolateDownHeap are standard heap programs for inserting and restructuring 

a heap so th a t it continues to fulfill the properties of a heap.

Procedure MovingHeapMethod (X, Y)
n  4— |Dx|
771 4—

Dimension s[n -m]
Dimension Probs[n • mi\ 
s i V i +  x i

Probsi 4- f Y (yi) ■ fx { x \)
Dimension r[77i + 1]
Dimension c[n + 1]
rowlcol2entry 4r- [yi -hx2, fy (y i)  • f x ( x 2 )] 
r i  4— 1 

C i 4—  1
row 2collentry 4r- [y2 + x u  f r ( Z/2 ) • f x ( x  1)] 
r2 4 -1
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Ci 4— 1

rn + 1 <— 1 [Keeps search for new entries inside north border of A]
Cm+i <— 1 [Keeps search for new entries inside east border of A]
H  4— [—1 * 1020, row lcol2entry, row2col\entry]
M im ic  4— [[0, 0], [1, 2], [2, 1]] 
PercolateDownHeap(2, 3)
For q 4— 2 to n  - m  

R oo tltem  4— H 2 
R ootPosition 4— M im ic2 
sq 4— R oo tltem i 
Probsq 4— R o o tltem 2 
a 4— RootPositioni 
b 4— R ootPosition2 

ra <— 0 
q, e— 0 
size  <— \H |

H 2 i Hsize
M im ic2 <— M im icSize 
H < r - [ H 1 . . H aize- 1]

M im ic  <— [M im ic i.. M im icSize-i] 
RebuildHeap(2, size  — 1)
If (ra =  0) and (c&+i =  0) then 
ra <— 1

Cb+ 1 <— 1
N ew P osition  4— [a, b +  1] 

InsertHeap(iVew Position)
If (r a+i =  0) and (c6 =  0) then

’’a+i <— 1 
Cb 4— 1
N ew P osition  4— [a +  1, b] 
InsertHeap {N ew Position) 

return(s, Probs)

[Holds the positions of the entries] 
[Restructures H  to fulfill the heap properties]

[Root entry placed in sums array s] 
[Root’s probability placed in probability array Probs]

[The root’s row becomes inactive] 
[The roo t’s column becomes inactive]

[Restores F a s  a heap] 
[If the cell ju st east of 

the removed entry is inactive, 
insert its entry into the heap]

[If the cell just south of 
the removed entry is inactive, 
insert its entry into the heap]
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Appendix F

APPL Code for Benford

This appendix contains APPL code for computing the probability mass functions of 

Y  when T  has the unit exponential distribution. Other distributions are handled 

analogously. The values of the loop indices low and high must be input in order to 

avoid summing an infinite number of terms. The parameter in the ExponentialRV 

procedure refers to the failure rate in the exponential distribution. The SF proce

dure gives the survivor function of the random variable given in the first argument 

evaluated at the second argument.

T := ExponentialRVC 1) ;
pmf : = [0, 0, 0, 0, 0, 0, 0, 0, 0] ;
for y from 1 to 9 do
for i from low to high do
pmf[y] := pmf[y] + SF(T, y * 10 “ i) - SF(T, (y + 1) * 10 ~ i) ; 

od; 
od;
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