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1  | INTRODUC TION & LITER ATURE RE VIE W

Humans have been migrating for thousands of years, and over time the causes, patterns of manifestation, and ef-
fects of human migration have been evolving together with human society. Reflecting its complex nature, human 
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Abstract
Human migratory decisions are driven by a wide range 
of factors, including economic and environmental condi-
tions, conflict, and evolving social dynamics. These factors 
are reflected in disparate data sources, including house-
hold surveys, satellite imagery, and even news and social 
media. Here, we present a deep learning-based data fusion 
technique integrating satellite and census data to estimate 
migratory flows from Mexico to the United States. We lev-
erage a three-stage approach, in which we (1) construct a 
matrix-based representation of socioeconomic information 
for each municipality in Mexico, (2) implement a convolu-
tional neural network with both satellite imagery and the 
constructed socioeconomic matrix, and (3) use the output 
vectors of information to estimate migratory flows. We 
find that this approach outperforms alternatives by ap-
proximately 10% (r2), suggesting multi-modal data fusion 
provides a valuable pathway forward for modeling migra-
tory processes.
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2496  |    RUNFOLA et al.

migration has been studied through the lens of various disciplines including economics (Stark & Bloom, 1985), 
sociology (Castles, 2007), geography (King, 2011), political theory (Sager, 2016), and multidisciplinary integrative 
efforts (Nawrotzki et al., 2015).

Today, human migratory decisions are influenced by a large range of factors such as changing economic 
and environmental conditions (Black et al., 2011; Brettell & Hollifield, 2014; Clark, 1986; Hunter et al., 2015; 
Leyk et al., 2017), conflict (Abel et al., 2019; Burrows & Kinney, 2015), and evolving social dynamics (Dustmann 
et al., 2017; Mirilovic, 2010; Segal, 2019). Migratory decisions are commonly made at the household or indi-
vidual level (Nawrotzki et al., 2015a), as a means to respond and adapt to the effects of the abovementioned 
factors on human livelihoods and well-being (Brettell & Hollifield, 2014; Leyk et al., 2017). Occasionally, con-
ditions lead to rapid increases in migrants arriving at a single destination within a small period of time (U.S. 
Customs and Border Protection, 2021a). Coupled with the complex legal frameworks that govern migratory in-
flows into most countries, such unexpected rapid increases of migrant populations can result in extremely long 
processing times, overwhelmed local authorities, increases in illicit border crossings, and—in extreme cases—
mortality events (Androff & Tavassoli, 2012; Angelucci, 2012; U.S. Customs and Border Protection, 2021b; 
Délano Alonso & Nienass, 2016; Eschbach et al., 1999). Recently, this has been of particular concern at the 
border between the United States and Mexico, with considerable political and public attention being focused 
on the interplay between governmental policy and the well-being of migrant populations (Abi-Habib, 2021; 
Miroff, 2021).

Efforts to mitigate challenges associated with extreme variations of migratory flows commonly depend on: 
(1) improving our ability to forecast migratory flows to better allocate resources during anticipated periods of 
high migration activity; and (2) reducing migratory outflows by improving living conditions at migrant origin lo-
cales. In this context, scholars and practitioners have conducted research into the drivers of migration (Hanson 
& Spilimbergo,  1999; Hunter et al.,  2015; Lindstrom & Lauster,  2001; Massey & Zenteno,  2000; McKenzie & 
Rapoport, 2010; Nawrotzki et al., 2015b; Riosmena, 2010; Runfola et al., 2016; Sue et al., 2019), including early 
exploratory efforts on the potential of satellite imagery to advance our understanding of migration dynam-
ics, and the ability to predict patterns of migratory flows (Leyk et al.,  2017; Nawrotzki et al.,  2015a; Runfola 
et al., 2016; Runfola & Napier, 2016). One particular challenge in pursuing this research agenda has been the fact 
that migration-relevant information is conveyed across many disparate sources, ranging from tabular datasets (i.e., 
household surveys) to satellite imagery and even news and social media.

Building on this literature, in this article, we specifically explore how survey and satellite data can be inte-
grated within the convolutional stages of a deep learning model. This allows us to fully explore in an integrative 
manner suggestions offered individually in a variety of disciplines regarding causes of migration, to offer a 
robust and thorough study that contributes to this literature, and to advance our corresponding predictive 
capability. To accomplish this, we introduce a technique that transforms tabular (1D) census data into a mean-
ingfully arranged matrix (2D) of information suitable for convolution. In the remainder of Section 1, we provide 
a review of the nascent literature exploring the use of satellite imagery and convolutional neural networks, as 
well as related data fusion strategies that have been pursued in other disciplines. In Section 2, we introduce 
our study area and datasets; in Section 3, we discuss our methodology and model workflow. Section 4 shows 
our results, and in Section 5 we provide a brief discussion of the potential for and challenges to this type of 
approach.

1.1 | Convolutional neural networks and satellite imagery

For decades, satellite-based methods have been used to quantify a wide range of land-cover and land-use charac-
teristics based on observable image data (Fortier et al., 2011; Gao et al., 2011; Griffin et al., 2011; Jensen, 1981; 
Jensen, 1983; Polsky et al., 2012; Rogan et al., 2004, 2010; Runfola, 2012; Runfola et al., 2014). In this context, 
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    |  2497RUNFOLA et al.

the last decade has seen a rapid emergence of interest specifically in convolutional neural networks for land-cover 
and land-use estimation, with a focus on scene classification algorithms (i.e., determining if a given collection of 
pixels represented a forest, water body, or residential building) (Hu et al., 2015; Li et al., 2018; Ma et al., 2019; 
Nogueira et al., 2017; Sumbul et al., 2019; Xia et al., 2017; Zhang et al., 2019). Progress in this emergent field has 
served to illustrate both the value of convolutional approaches and the many challenges to their success in the 
context of satellite imagery; a number of survey articles have recently attempted to capture the breadth of these 
(Cheng et al., 2020; Sumbul et al., 2019; Xia et al., 2017). A much smaller subset of the literature—while building on 
scene-based classification—focuses on a more specific problem: estimating a continuous socioeconomic variable 
such as income on the basis of satellite imagery.

With the growth of convolutional neural network-based approaches to satellite imagery analysis, studies are 
now beginning to emerge which seek to quantify explicit attributes about geographic locations—that is, the in-
come of a household (Babenko et al., 2017; Jean et al., 2016; Perez et al., 2017; Tingzon et al., 2019), likelihood of 
a conflict event (Goodman et al., 2020), population density (Hu et al., 2019; Tiecke et al., 2017), school education 
outcomes (Runfola et al., 2021), and continuous grades of road quality (Brewer et al., 2021; Cadamuro et al., 2018). 
Many of these studies have been in response to the critical lack of data on human well-being in data-scarce envi-
ronments (Burke et al., 2021), specifically seeking to improve our ability to capture relationships in impoverished 
areas (Jean et al., 2016). Among other contributions, this literature has established the value of transfer learning 
in overcoming the relatively small-N of many socioeconomic datasets (Brewer et al., 2021; Goodman et al., 2020; 
Jean et al., 2016; Runfola et al., 2021).

These pathbreaking studies have illustrated the tremendous amount of information contained in satellite 
image data, reflective of long-theorized relationships between the ways in which humans modify the land-
scape and underlying societal factors (Kugler et al., 2019; Runfola & Hughes, 2014). However, the information 
in satellite data is not unlimited: there are many social factors that cannot be adequately measured using 
imagery alone (Burke et al., 2021). One common approach to overcoming this limitation is through the inte-
gration of other data sources (i.e., tabular surveys) into deep learning models to improve overall predictive 
capability.

1.2 | Data integration in convolutional neural networks

Convolutional neural networks (CNNs) have predominantly been applied to extract numeric vectors of data 
from imagery, where each vector contains information on the presence or absence of features of relevance 
for a particular algorithm task (i.e., identifying if a car is in an image) (Lecun et al., 2015). CNNs rely on a set 
of convolutional layers, in which each convolution involves shifting a moving window (the “filter”) across an 
image, and at each movement calculating the multiplicative sum of each filter weight and the underlying image 
data. After this process is completed, the filter weights themselves are then updated through an optimization 
routine, repeated iteratively until meaningful patterns are identified (Lecun et al., 2015). In most contexts, filter 
dimensions become iteratively smaller in deeper layers of the network, until an affine (or, fully connected) layer 
is utilized to produce a final score for a given input image. This final affine layer most commonly takes the form 
of a multi-layer neural network in which all nodes are connected to all other nodes in the following layer (Lecun 
et al., 2015).

In the cases where ancillary data are used alongside imagery in a prediction (i.e., metadata providing the lo-
cation of a cellphone), the ancillary information is generally integrated only in the final affine layer [in the con-
text of satellite imagery, see e.g., Babenko et al. (2017), Burke et al. (2021), Cadamuro et al. (2018), Goodman 
et al. (2020), Hu et al. (2019), Jean et al. (2016), Perez et al. (2017), and Tingzon et al. (2019)]. In the broader 
literature, recent work has explored the integration of tabular data into the convolutional network itself, rather 
than only the final predictive layer(s). In 2019, Sharma et al. (2019) proposed a technique to arrange data about 
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2498  |    RUNFOLA et al.

genes into meaningful clusters across a two-dimensional surface, allowing the tabular information about those 
genes to be analyzed using convolutional approaches. By reprojecting 1D vectors into two-dimensional space 
and employing convolutional models, they saw—on average—a 9% gain in accuracy as contrasted to current 
state-of-the-art classification models. Separate, but related work focused on time-series manipulation has 
established the value of transforming data (such as sensor inputs from robot-mounted cameras) into 2D “fin-
gerprints” for integration with other machine learning techniques (Hinders, 2020). Recent research has noted 
the value of such transformations for sparse datasets (Kanber, 2020), improving the performance of transfer 
learning approaches (Kovalerchuk & Agarwal, 2020), and increasing computational efficiency (Kanber, 2020; 
Kovalerchuk & Agarwal, 2020).

In this article, we build on this research to explore the value of integrating ancillary tabular data (census 
information) with satellite imagery data across all layers of a convolutional network. To do so, we implement 
a “social signature” approach to generate a dynamically generated 2D surface of socioeconomic variables that 
is suitable for convolution. This strategy builds on recent research from a range of disciplines indicating such 
a strategy can improve the networks ability to learn patterns (i.e., if certain variables interrelate with one an-
other), but is as-of-yet untested in the context of satellite data (Kanber, 2020, Kovalerchuk & Agarwal, 2020; 
Sharma et al., 2019).

2  | STUDY ARE A AND DATA

2.1 | Study area

In this article, we seek to estimate the total number of international migrants leaving Mexico, with estimates 
focused on the specific municipality of departure (see Figure  1). In recent decades, Mexico has been the 
top origin country for immigrant populations moving to the United States; in 2018, 25% of all migrants to 
the United States originated in Mexico [with China representing the second most common origin, with 6% 
(Budiman, 2020)].

Our analysis is based on municipalities of Mexico, which represents the smallest geographic unit at which 
information regarding migratory flows are publicly available (Ruggles et al., 2003); we ultimately seek to estimate 
the number of migrants leaving a given municipality for an international destination. In 2010, the most recent 
decade for which census data are today available, there were 2358 municipalities in Mexico. Municipalities are 

F I G U R E  1 Map of the 2358 municipalities included in this analysis. Panel (a) shows the observed pattern 
of migration, with darker shades indicating a higher intensity of international migration. Panel (b) shows the 
predicted pattern of migration from the social signature model, with the same color scheme. Information is 
provided by IPUMS (Ruggles et al., 2003); map boundaries are provided by geoBoundaries (Runfola et al., 2020).
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    |  2499RUNFOLA et al.

considered second-level administrative units (Runfola et al., 2020), and are led by an elected municipal council 
which provisions public services across each region.

2.2 | Data

2.2.1 | Census information

Information on socioeconomic characteristics and migratory flows from each municipality in Mexico were 
collected from the 2010 Population and Housing Census conducted by the Instituto Nacional de Estadística, 
Geografía e Informática (INEGI), as distributed by IPUMS (Ruggles et al., 2003). The 2010 decennial census was 
conducted in Mexico between May and June of 2010, and was conducted with a 10% sample of the population 
(N = 11,938,402). A one-stage stratified cluster sample was implemented by municipality, with specific enumera-
tion areas selected by random sampling. Sample weights constructed based on the relative population sampled 
are provided by the government of Mexico, which allow for weighted aggregate statistics to be generated for each 
household and, in turn, municipality.

For our outcome variable, we rely on a survey question which indicates the number of people in a house-
hold who have—over the 5 years preceding the interview—left to go live in another country. Respondents 
were instructed to exclude events such as vacations, work assignments, visits to relatives, or other events that 
would not result in a change of residence (IPUMS International, 2021). This variable allows us to construct a 
per-municipality estimate of international migrants between 2005 and 2010.1 We further integrate a large 
number (201) of ancillary variables from the 2010 Population and Housing Census into our analysis, which are 
used as the basis for the analysis we present in Section 3.2. These variables (aggregated to the municipality) 
are summarized in Table 1, and are standardized before use. A full list of all ancillary variables used in this 
analysis is provided in the Appendix 1.

2.2.2 | Satellite information

The Landsat 5 Thematic Mapper (TM) Level-1 data product (USGS, 2021) is leveraged in this study. This product 
provides level-1 precision terrain (L1TP), inter-calibrated data, and georegistration errors with a root mean square 
error of less than 12 m. For each municipality in Mexico, we estimate a cloud-free monthly scene by compositing 
all images taken within a given calendar month by either: (a) selecting and taking the minimum of all cloud-free 
pixels; or (b) masking pixels that have no cloud-free imagery available for the selected time period (Google, 2021). 
Following this approach, we retrieve imagery for each municipality in Mexico, for the month of January in calendar 
year 2010 (selected to align with relevant growing seasons). Each municipalities' imagery is subdivided into tiles 
with 224 pixels on a side,2 and use this information to train and test the model defined below in Section 3.

3  | METHODOLOGY

3.1 | Overall model workflow

Figure 2 provides an example of the overall model workflow presented in this work, and Figure 3 provides an 
overview of data inputs and outputs into various model components. The approach we leverage follows a series 
of distinct steps, with the overall goal of: (a) constructing a social signature using the input census data by finding 
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2500  |    RUNFOLA et al.

the optimal mapping of 1D tabular data to a 2D space; and (b) using this information in our estimation by feeding 
the resultant 2D image into a convolutional model. The specific steps are as follows:

1.	 Apply a transformation to our tabular (1D) municipality data, moving it into 2D space according to a 
parameterized mapping (we refer to the output 2D matrix as a “social signature”).

TA B L E  1 Representative selection of variables used in this analysis. Additional variables included (see the 
Appendix 1), for example, binary variables indicating the specific type of trash collection, or mechanism through 
which water entered a home

Mean Std Min Max

Weighted avg income 692,270.76 57,591.44 451,129.67 962,387.30

Total pop 48,030.95 191,678.79 90.00 5,210,265.00

% Rural 0.61 0.35 0.00 1.00

% Owned 0.86 0.09 0.46 1.00

% Yes electricity 0.95 0.06 0.30 1.00

% Electricity fuelcook 0.00 0.00 0.00 0.07

% Sewage system 0.44 0.32 0.00 0.99

% Yes cell 0.41 0.26 0.00 0.92

% Yes internet 0.07 0.09 0.00 0.66

% Yes autos 0.33 0.20 0.01 0.95

% Yes computer 0.13 0.11 0.00 0.70

Avg room num 3.40 0.54 1.95 5.89

Avg bedroom num 2.00 0.27 1.16 2.82

% Yes kitchen 0.86 0.11 0.28 1.00

% Flush toilet 0.38 0.27 0.00 0.98

% Non-flush other toilet 0.53 0.27 0.01 1.00

% Married with children 
hhtype

0.49 0.07 0.22 0.74

% Married 0.42 0.03 0.31 0.54

Avg nfams 1.03 0.02 1.00 1.32

Avg nmothers 1.11 0.11 0.69 2.13

% Single parent hhtype 0.07 0.02 0.01 0.17

% Single 0.50 0.04 0.34 0.64

% Yes school 0.28 0.04 0.15 0.43

Avg years of school 5.16 1.13 1.85 9.73

% Unemployed 0.01 0.01 0.00 0.11

% Disabled 0.02 0.01 0.00 0.12

% Electricity fuelcook 0.00 0.00 0.00 0.07

% Other fuelcook 0.00 0.00 0.00 0.02

% Gas piped utility fuelcook 0.13 0.18 0.00 0.81

% Gas tanked bottled fuelcook 0.53 0.33 0.00 1.00

% Wood fuelcook 0.45 0.34 0.00 1.00

% Charcoal fuelcook 0.01 0.01 0.00 0.14
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    |  2501RUNFOLA et al.

2.	 Apply a convolutional neural network [ResNet18 (He et al., 2016)] to the input satellite data and the generated 
social signature. In this step, the social signature is effectively treated as if it was any other image, and filters are 
convolved across it.

3.	 Pass the output vectors into a dense network.
4.	 Calculate an estimate of migrant flow from each municipality, and related losses.
5.	 Backpropagate throughout the network to update weights, including parameters which control the two-

dimensional positioning of each column of our observed tabular data in the social signature.
6.	 Repeat this procedure until parameter optimization is obtained.

By backpropagating to the social signature surface, we allow the network to construct an optimal image repre-
sentation of the underlying tabular data. We discuss this unique aspect of the approach further in the next section.

3.2 | Optimizing the social signature

A core contribution of the presented work is taking—for each unit of observation—the vector of observed socio-
economic variables and remapping them into a 2D space (see Figure 4). The idea of mapping 1D descriptors of an 
object to 2D space arose in genomics literature (Sharma et al., 2019), in which the structure of a gene provides a 
natural mapping. Despite facing a similar challenge (i.e., hundreds of covariates that are inter-related with one an-
other), in our application, we have no such mapping—that is, it is not clear if data on (for example) average income 
should be placed in close proximity to population, or if another structure might be more appropriate. Without 
identifying an optimal “blueprint” with which to map our socioeconomic data to two-dimensional space, we run 
the risk of losing many of the benefits of this mapping (in particular, the capability to mitigate sparse or heavily 
correlated data).

F I G U R E  2 Overall modeling approach. In addition to parameters in the dense and convolutional network, the 
signature blueprint is updated on the basis of the loss function results, allowing for a flexible re-arrangement of 
input observation data into an optimal 2D representation of the tabular data.
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2502  |    RUNFOLA et al.

Recognizing the importance of this mapping, we integrate the mapping itself as a parameter in our network, as 
summarized in Figure 4. At the initial state of the network, we first define a random mapping, that is, in the case of 
four ancillary variables, we would randomly allocate one of these four to a single cell of the 2D matrix (initialized 
with the smallest square dimensions possible to contain all variables). This procedure scales, that is, in the case of 
201 variables, a 2D representation of 201 cells would be constructed with a random initialization, with the goal 

F I G U R E  3 Flow of data through model architecture. Of note, the mapping function is parameterized, 
allowing the social signatures to be updated across epochs.

F I G U R E  4 Example of the optimization procedure for the social signature.
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    |  2503RUNFOLA et al.

of mapping these cells to an optimal organization during the optimization procedure. This mapping is then fed 
forward through the convolutional network, and the ordering of variables is updated based on the accuracy (or 
lack thereof) of the final estimate. We ultimately seek to identify the single mapping that minimizes the overall 
loss of the CNN.

This approach is formalized as follows. We define X as a vector of ancillary data with length A (i.e., the number 
of dimensions in the ancillary data), in which each element Xi is to be mapped to a single cell within matrix S of size 
�

√

(A)
�

x
�

√

(A)
�

. S represents the social signature we seek to construct to input it into the convolutional stages of 
the network. Additionally, we define an indexing vector, B, which is used to define a blueprint that maps the one-
dimensional vector X to S. Vector B has an identical length to X, and is initialized with random values Bi. Finally, 
vector T is a holding vector with identical length to X.

During the first forward pass of the network, matrix S is constructed through a multiple-step procedure, in 
which:

1.	 Vector X is sorted into T in ascending rank order on the basis of the values in vector B. For example, 
in the case of i  =  10, if B10 is the largest value in vector B, X10 is mapped to T1.

2.	 Vector T is reshaped to a shape of 
�

√

(A)
�

x
�

√

(A)
�

, in which each element Ti is entered into the matrix starting 
with the upper-left value, and winding left-to-right.

3.	 S is set equal to the reshaped T.

The resultant matrix S is then fed forward into the convolutional stages of the network, and the values in vec-
tor B are added to the list of parameters to be updated during backpropagation to facilitate the identification of an 
optimal mapping. An upside of this approach is that, during backpropagation, only the values in vector B need to 
be updated—represented as blueprint changes in Figure 4. Because only one element is added to B for each input 
ancillary dataset Xi, the overall number of additional parameters that are required to be fit in the network is limited 
to A, although alternative network architectures may necessitate values larger than A.

3.3 | Implementation and validation

To illustrate the value of integrating information using a social signature, we perform four separate tests and pre-
sent the accuracy of each in our results. The specific tests we perform are as follows:

•	 Dense Net. A four-layer neural network in which each of the socioeconomic variables are input into the network 
and a single output (migration) is predicted.

•	 Satellite Imagery Model. A ResNet50 (pretrained with ImageNet) convolutional neural network using 
12 months of satellite imagery from 2010 as input. No socioeconomic variables are used in this baseline 
model.

•	 Social Signature without Imagery. The social signature model detailed in Section 3, omitting satellite imagery.
•	 Social Signature with Imagery. The full model described in Section 3, incorporating the social signature and sat-

ellite imagery.

Tests were implemented using 8 NVIDIA RTX6000 GPUs and pyTorch version 1.8.1. For each test, the data 
being trained on is the N = 2358 municipalities in Mexico, using a 80/20 train/test split; z-score standardization 
is applied to all input information. We present both the R-squared (r2) and mean absolute error (MAE) for each of 
these cases; MAE is used as the minimization target for optimization. Each model using ancillary data includes the 
variables presented in the Appendix 1. Hyperparameters were tuned independently in each case, and additional 
epochs performed until no further improvements in loss could be achieved (generally achieved between 200 and 
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2504  |    RUNFOLA et al.

250 epochs for the presented learning rates and problem scope). Learning rates, batch size, and Adam optimizer 
beta parameters were all selected through a series of systematic tests in which each hyperparameter was mod-
ified independently until an optimal performing value was found (using the imagery-only model as the baseline). 
Learning rates and batch sizes for each test are shown in Table 2; an Adam optimizer with betas of 0.5 and 0.9 
was selected.3

4  | RESULTS

The results of all model tests are summarized in Table 2. Of the 2358 municipalities included in the analysis, es-
timates were generated for a total of 1944 after removing municipalities with insufficient imagery due to cloud 
cover. These municipalities were largely localized to two regions, including a portion of suburbs of Mexico City 
and rural regions around Chiapas.

The first tested model was a fully connected network with four layers. The input shape of 201 was passed 
forward into hidden layers with sizes of 128, 64, and 32, respectively. No activation functions were integrated, 
providing a baseline accuracy that might be expected using socioeconomic information alone. After 250 epochs 
of training, this model achieved a r2 of 0.63, and a mean absolute error (MAE) of 1019.

The second tested model built on the dense net approach, first applying the social signature construction 
routine detailed in Section 3.2 to the socioeconomic data, and then passing the constructed signatures into a 
ResNet18. This reprojection of the data from the 1D vector of covariates to the 2D signature resulted in a small 
improvement in r2, increasing to 0.66. The MAE also decreased to 959.

The third comparison model included only satellite imagery, using a ResNet18 and the imagery from a given 
census unit (i.e., determining how well satellite imagery alone could predict migratory trends). As expected, this 
was the worst performance of the test cases, with a r2 of 0.47 and a MAE of 4547.

The full social signature with imagery outperformed all baseline cases, with a r2 of 0.72 and MAE of 913. 
Approximately 64% of estimates were accurate to within 1000 migrants for a given flow; 38% were accurate to 
within 500 migrants. Additionally, as a secondary analysis, we explored how error correlated along the various 
dimensions available in our dataset (Table  2). As was expected, we observed no spatial pattern in our errors. 
However, total population was the most closely correlated with error, with a r2 of 0.66 (see Figure 5). We discuss 
some of our model optimization strategies in the next section, and how these strategies are inter-related with this 
apparent bias in model estimates.

In addition to these results, we performed additional tests to explore the degree to which errors may be 
correlated across space (thus indicating a lack of accounting for either spatial dependence or ancillary informa-
tion with spatial correlations). A Moran's I was estimated on the basis of the surface of errors, using a first-order 
Queen's contiguity matrix. Results suggested little evidence of spatial correlation in errors, with a global Moran's 
I value of 0.153. A local Moran's I indicated some evidence (p = 0.05) of significant error clustering in and around 
the Chiapas & Tabasco region, to the southwest of the Yucatan peninsula.

TA B L E  2 Summary of accuracy of estimates for each modeling strategy

Model Test r2 MAE Number of epochs Learning rate Batch size

Social signature with imagery 0.72 913 250 0.001 64

Comparison models

1. Dense Net 0.627 1019 250 0.001 64

2. Social Signature without 
Imagery

0.662 959 250 0.001 64

3. Satellite Imagery Model 0.467 4547 200 0.01 64
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5  | DISCUSSION

While the social signature model showed the highest performance of all tested cases, there are still marked limita-
tions of the presented approach. As Figure 1 shows, the predicted pattern of where migrants are originating from 
is broadly similar to the observed data, but with a number of notable exceptions. While the model is capable of 
predicting migratory flows are more likely from the areas in and around Mexico City, it is unable to capture the 
extremes; similarly, it rarely identifies cases of extremely low migration in rural areas. Figure 5 further explores 
the relationship between error and total population, indicating that the currently specified model tends to under-
estimate in areas with higher population (i.e., the same areas in and around Mexico City). Because total population 
is included in the model, this suggests that a larger sample size and/or deeper network architecture would likely 
be beneficial to allow the model more observations with which to identify optimal parameters.

To better understand the mechanisms driving the presented model, we further apply a measurement of 
feature importance—specifically, permutation feature importance [sometimes referred to as model reliance 
(Breiman, 2001, Fisher et al., 2018)]—to explore the relative importance of different covariates in the presented 
model. The fundamental concept of permutation feature importance is that if a data dimension is unimportant 
to the model, randomly shuffling the values of that dimension would have little impact on overall error (and, 
conversely, shuffling the data of important dimensions would increase error). Explicit details of how permutation 
feature importance is implemented with convolutional models can be found in Fisher et al. (2018).

In our implementation, we iteratively loop over each of our 201 variables, in each case permuting the data in 
that variable and running the fully fit social signature model on this revised input data. We then record the overall 
change in mean absolute error in each case, and define feature importance as a quotient (Fisher et al., 2018):

 where each dimension of the ancillary data j is assigned a feature importance quotient (FI) by dividing the mean abso-
lute error of the estimate after permutation is done by the original.

The results from the PIF are presented in Figure 6. The data suggest that basic municipal infrastructure param-
eters (trash collection and the type of fuel used for cooking), health (health insurance, food), economic conditions 
(i.e., hours worked, education level), and demographic characteristics (i.e., age and family structure) have the 
strongest effects on the migratory outcomes predicted. These findings are consistent with the well-established 

(1)FIj = MAEpermuted ∕MAEoriginal

F I G U R E  5 Scatterplot contrasting the overall error (ŷ − y) of the estimate of international migratory flows for 
each municipality to the municipalities population (r2 = 0.66). Outliers omitted from visualization, but included in 
calculation of r2. The model tends to under-estimate flows from municipalities with large populations.
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2506  |    RUNFOLA et al.

literature on prevalent models in migration theory as they were referenced in Section 1 of this article. For exam-
ple, correlations between increasing age and migration have been identified in past literature on migratory flows 
from Mexico (Nawrotzki et al., 2013), likely reflective of a similar reduction in capacity to migrate as age increases.

Moving beyond the importance of individual variables, interpretation of the optimal social signature identified 
can help provide information on how information is interrelated as it relates to migration. As the location of each 
ancillary variable is parameterized in the surface itself (see Figure 4), the final pattern of the derived signature can 
help inform us as to groupings of variables that may have important interrelationships or correlations within them. 
In the implementation presented in this article, we used a 3 × 3 filter to convolve across the generated signature, so 
groupings of variables within 3 × 3 regions are of particular interest. While it is not possible to identify all relation-
ships across these groupings that may occur at deeper levels of the network, visualizing the surface can provide 
top-level information about potentially meaningful clusters.

Incorporating the social signature mapping as a parameter within the network resulted in substantial changes 
in the arrangement of the social signature itself throughout the model. Because the social signature is ultimately 
represented as an image, we can observe the ways in which the pixel values fluctuate from epoch to epoch within 
the network (ultimately resulting in the final image layout seen in Figure 7). Figure 8 shows one example of the 
evolution of a social signature across model epochs, with each figure showing the values of the social signature at 
the end of a given epoch.

Figure 7 shows the signature derived in the final model presented in this work. Two regions of the signature 
are highlighted as exemplars of the approach, and the type of information that can be gleaned. First, the red box 
in the upper right illustrates the grouping of variables inter-related with unemployment, a lack of healthcare, and 
total hours worked. The dynamic grouping of these variables through the parameterization strategy shown in 
Figure 4 suggests that the co-occurrence of certain values along these nine dimensions is of importance in gen-
erating an accurate prediction. Here, we can suggest that the interrelationship between unemployed populations 
and the percentage of individuals with no healthcare plays a meaningful role in driving migratory flows. Similarly, 
the blue box highlights a region which contains information on healthcare, meals skipped, and trash collection, 
indicating a separate set of possible inter-dependencies. These examples serve to highlight the potential of social 
signatures for understanding drivers, but are of limited value due to the limitations inherent to the predictive 
models presented here. Considerable future research could explore this signature interpretation approach further 

F I G U R E  6 Top 10 permutation feature importance values in social signature deep learning model.
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    |  2507RUNFOLA et al.

in causal attribution contexts—incorporating metrics of model influence, for example, or ascertaining significance 
by removing individual elements of the data frame and re-running the model, recording reductions in accuracy.

Researchers seeking to leverage approaches similar to the signature described here should be aware of 
limitations in our current understanding of the field, many of which provide fertile ground for future inquiry. 

F I G U R E  7 Final social signature surface generated. Each cell represents one of the 201 variables included in 
the analysis, colored according to type (light green: Health; red: Physical house; dark green: Education; purple: 
Demographics; yellow: Information; blue: Economic.

F I G U R E  8 Example of how the social signature shifts across epochs within the network. The highlighted 
bright element is the representative of how the “Total population” variable was remapped across epochs.
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2508  |    RUNFOLA et al.

First, the mapping technique described in this piece relies on a single function, meaning that socioeconomic 
information is always mapped onto a square “image” with dimensions 

√

(A) x
√

(A) (where A is the number of 
attributes). No research exists today on what the most appropriate mappings for this might be, that is, different 
network filter dimensions or mappings may be most appropriate for this type of data. Similarly, the winding 
order strategy most appropriate for 2D mapping is unclear, and the implementation in this article will result 
in a nonlinear relationship in edge cases (i.e., when a value previously located in the 15th column of a 15 × 15 
image is moved to the 1st column, the Euclidean distance of the movement is larger than if it shifts from the 
14th column to 15th column). Second, there are unique challenges associated with model explanability in the 
context of this work; while methods such as permutation feature importance can provide insight into the 
relative impact of different attributes, traditional techniques to visualize the impact of features within convo-
lutional network architectures do not consider tradeoffs between mapping weights and filter weights, leaving 
a potential avenue for future research.

6  | CONCLUSION

In this article, we presented a deep-learning based data fusion technique to estimate migratory flows from Mexico 
to the United States. We find that migratory flows can be estimated at the municipality scale with an accuracy 
of r2 = 0.72, improving on models which leverage only socioeconomic information by approximately 10% (an im-
provement in r2 of 0.1).

Our findings make three main contributions to the literature. First, we present a novel approach to integrating 
socioeconomic and satellite data to improve our capability to predict migratory flows, illustrating the capacity of a 
social signature approach to improve predictive capabilities. Second, we provide further evidence of the value of 
satellite imagery and convolutional neural networks for estimating migratory flows, expanding on literature using 
satellite imagery to predict socioeconomic variables more broadly. Third, we provide some evidence that many 
of the drivers of migratory flows identified in the broader literature can also be identified as key drivers in deep 
learning models.
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ENDNOTE S
	1	 While no specific information on whether an international migrant was US-bound exists in the Mexican census, as of 

2019 approximately 97.4% of all Mexican emigrants' destination was the United States (Ng et al., 2020). While this 
strategy omits single-family households in which all members of the household moved, the population we are most 
prone to undercount (single-person households) represent only 3% of households in Mexico; 32% of families live with 
extended family.

	2	 We create 224 × 224 tiles so as to be able to optimally take advantage of previous weights trained on ImageNet in our 
transfer learning stage, and avoid any data loss due to image warping. Each image is weighted in the final model ac-
cording to the total number of images for a municipality so that all images carry an equal weight, and the final estimate 
is calculated by averaging all inputs.

	3	 All details on our implementation strategy can be seen in our replication code made available online at https://github.
com/DanRu​nfola/​socia​lSign​ature_MX_Migra​tion. Please note that we are unable to redistribute the source data cen-
sus information for this analysis due to license agreements; however, interested users can retrieve this information 
from ipums.org at no monetary cost.
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APPENDIX 1

COMPLETE LISTING OF ALL VARIABLES USED IN ANALYSIS
This Appendix provides a full list of all variables used in this analysis, as well as the groupings leveraged in produc-
ing figures throughout the document. Also provided are the parameterized mapping values for the construction 
of the social signature (and concomitant ranking for the mapping function).

Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Demographic total_pop 60.9823 58

Demographic perc_rural 9.1412 100
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Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Demographic unrel_ppl 49.9742 65

Demographic perc_one_person_hhtype 210.0583 20

Demographic perc_married_no_children_
hhtype

214.7408 17

Demographic perc_married_with_children_
hhtype

16.5928 87

Demographic perc_single_parent_hhtype 55.009 62

Demographic perc_extended_family_
hhtype

93.6725 41

Demographic perc_composite_hhytpe 28.1091 78

Demographic perc_non_family_hhtype −43.3635 131

Demographic perc_unclassifiable_hhtype −62.6992 139

Demographic avg_nfams −99.6938 159

Demographic avg_ncouples 83.2246 49

Demographic avg_nmothers −92.0229 156

Demographic avg_nfathers 451.6351 5

Demographic avg_npersons −89.2188 152

Demographic avg_eldch_age −167.3317 176

Demographic avg_yngch_age −162.8154 175

Demographic perc_single −244.5899 185

Demographic perc_married −114.1688 166

Demographic perc_separated −214.5356 183

Demographic perc_widowed 65.3096 56

Demographic perc_marriage_unknown 37.7299 75

Demographic perc_native_born_nativity −102.2147 160

Demographic perc_foreign_born_nativity 1.3754 107

Demographic perc_yes_indig −66.916 142

Demographic perc_no_indig 120.6098 32

Demographic perc_yes_speakind −224.6967 184

Demographic perc_yes_and_spanish_
speakind

97.2841 40

Demographic perc_yes_only_indig_
speakind

−45.4091 132

Demographic perc_no_speakind −90.9219 154

Demographic avg_age −97.2522 158

Demographic perc_urban 40.5623 74

Demographic avg_famsize 391.0973 6

Demographic avg_nchild 13.1593 94

Demographic avg_nchlt5 15.2249 90

Economic sum_income −12.0844 116

A P P E N D I X  (Continued)

(Continues)
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Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Economic sum_earned_income −23.5427 123

Economic weighted_avg_income 40.8963 73

Economic weighted_avg_earned_
income

−73.1683 144

Economic perc_owned −103.131 162

Economic perc_not_owned 42.8174 69

Economic perc_employed −383.4019 198

Economic perc_unemployed 134.5314 29

Economic perc_inactive_empstat 87.1225 43

Economic perc_unknown_empstat −178.6864 179

Economic perc_senior_officials −43.1239 130

Economic perc_professionals 256.3073 14

Economic perc_technicians_associate_
professionals

−48.5612 133

Economic perc_clerks 17.1383 86

Economic perc_service_workers 69.2939 53

Economic perc_agri_fish_workers −147.2469 172

Economic perc_trades_workers 68.9685 54

Economic perc_machine_operators 132.9778 30

Economic perc_elementary_
occupations

303.3344 8

Economic perc_armed_forces 144.6595 28

Economic perc_agriculture_fishing_
forestry_indgen

−69.4024 143

Economic perc_mining_extraction_
indgen

26.3821 81

Economic perc_manufacturing_indgen 85.6989 45

Economic perc_electricity_gas_water_
wm_indgen

224.4006 16

Economic perc_construction_indgen −211.5922 182

Economic perc_wholesale_retail_indgen −119.2095 167

Economic perc_hotels_restaurants_
indgen

49.1013 66

Economic perc_transportation_
storage_indgen

30.0519 77

Economic perc_financial_insurance_
indgen

−8.4872 113

Economic perc_public_administration_
defense_indgen

26.6483 80

Economic perc_business_real_estate_
indgen

−76.7899 147

Economic perc_education_indgen 4.4532 104
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Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Economic perc_health_social_work_
indgen

−158.0378 174

Economic perc_private_household_
services_indgen

17.3778 85

Economic perc_self_employed −140.0303 170

Economic perc_wage_worker 88.9591 42

Economic perc_unpaid_worker 84.3546 47

Economic avg_hrsactual1 258.9368 13

Economic perc_no_pension 43.9773 68

Economic perc_no_disemp 41.6492 72

Education perc_yes_school −152.3744 173

Education perc_no_school −169.3654 177

Education perc_no_literacy −38.1843 128

Education perc_yes_literacy −91.7548 155

Education perc_less_than_primary_edu −17.6488 121

Education perc_primary_edu 98.7114 38

Education perc_secondary_edu −50.9989 135

Education perc_university_edu 464.379 4

Education avg_YRSCHOOL 55.074 61

Health avg_chborn 75.2778 52

Health avg_chsurv 84.5255 46

Health avg_num_years_from_last_
birth

−135.9623 169

Health avg_chdead −13.6545 117

Health perc_no_lab 296.8198 9

Health perc_yes_lab 127.5875 31

Health perc_disabled 59.7646 59

Health perc_not_disabled 294.8391 10

Health perc_social_security_imss_
hlthfac

−3.9819 111

Health perc_permex_defense_
navy_hlthfac

−284.9268 191

Health perc_public_workers_issste_
hlthfac

511.6509 1

Health perc_ministry_of_public_
health_hlthfac

−132.7794 168

Health perc_private_facility_hlthfac −194.3963 181

Health perc_other_hlthfac −15.4401 119

Health perc_no_facility_used_
hlthfac

−3.1183 109
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2516  |    RUNFOLA et al.

Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Health perc_imss_only_hlthcov −53.3301 138

Health perc_issste_only_hlthcov −102.9388 161

Health perc_pemex_military_naval_
hlthcov

−296.9604 193

Health perc_public_insurance_
hlthcov

−262.8056 189

Health perc_other_hlthcov −181.2531 180

Health perc_imss_issste_hlthcov −590.0114 200

Health perc_imss_pemex_military_
naval_hlthcov

13.9231 92

Health perc_imss_public_insurance_
hlthcov

100.3457 37

Health perc_imss_other_hlthcov 205.7886 21

Health perc_issste_pemex_military_
naval_hlthcov

484.1331 2

Health perc_issste_public_
insurance_hlthcov

110.0921 34

Health perc_issste_other_hlthcov −89.5548 153

Health perc_pemex_military_naval_
public_insurance_hlthcov

−177.2138 178

Health perc_pemex_military_naval_
other_hlthcov

108.1588 35

Health perc_public_insurance_
other_hlthcov

172.4246 24

Health perc_no_coverage_hlthcov 86.7607 44

Health perc_no_onemeal −144.5758 171

Health perc_no_nomeal −657.453 201

Health perc_no_nofood −261.7165 188

Health perc_dead_lastbmort −30.7434 127

Health avg_agedeadyr 27.2295 79

Information perc_no_phone −51.8278 137

Information perc_yes_phone 76.1931 51

Information perc_yes_cell −30.7331 126

Information perc_no_cell 183.0066 23

Information perc_no_internet −291.6582 192

Information perc_yes_internet −89.2157 151

Information perc_no_computer 79.024 50

Information perc_yes_computer 98.2894 39

Information perc_no_tv 3.3868 105

Information perc_yes_tv 42.5552 71

Information perc_no_radio −328.3254 196
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Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Information perc_yes_radio −85.6885 150

Information perc_unknown_phone 214.6631 18

Information perc_unknown_cell 110.2272 33

Information perc_unknown_internet 8.8827 101

Physical perc_yes_electricity 31.9531 76

Physical perc_no_electricity −17.8994 122

Physical perc_no_piped_water 68.3394 55

Physical perc_unknown_water_supply 62.6555 57

Physical perc_sewage_system −42.3599 129

Physical perc_septic_tank 1.6494 106

Physical perc_no_sewage_system 10.9967 97

Physical perc_unknown_sewage 54.8446 63

Physical perc_electricity_fuelcook −94.7667 157

Physical perc_other_fuelcook 14.8264 91

Physical perc_trash_burned −9.0464 115

Physical perc_trash_buried 15.6413 88

Physical perc_no_autos 10.167 98

Physical perc_yes_autos 12.5058 96

Physical perc_no_hotwater −15.8516 120

Physical perc_yes_hotwater 1.0462 108

Physical perc_no_washer −8.794 114

Physical perc_yes_washer −113.1417 165

Physical perc_no_refrig 186.0179 22

Physical perc_yes_refrig 20.1786 84

Physical avg_room_num 45.9297 67

Physical avg_bedroom_num 42.6516 70

Physical perc_no_kitchen −73.6021 145

Physical perc_yes_kitchen 9.3369 99

Physical perc_no_toilet 13.4695 93

Physical perc_flush_toilet 6.3966 102

Physical perc_non_flush_other_toilet −104.5496 164

Physical perc_no_bath 52.2919 64

Physical perc_yes_bath −51.561 136

Physical perc_no_unfinished_floor −3.8901 110

Physical perc_cement_floor 163.3371 27

Physical perc_other_finished_floor 103.5356 36

Physical perc_scrap_wall −77.133 148

Physical perc_cardboard_wall 242.539 15

Physical perc_wood_wall −77.6535 149
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Variable group Variable name
Social signature 
parameterization

Social signature blueprint 
mapping location

Physical perc_reed_bamboo_palm_
wall

5.3882 103

Physical perc_brick_stone_wall 83.5843 48

Physical perc_adobe_wall −66.7502 141

Physical perc_mud_wall −26.9473 125

Physical perc_metal_asbestos_sheet_
wall

−73.6166 146

Physical perc_masonry_roof −49.1074 134

Physical perc_slate_roof −6.1862 112

Physical perc_asbestos_roof 329.8614 7

Physical perc_sheet_metal_roof −355.1543 197

Physical perc_plant_materials_roof 22.3486 83

Physical perc_wood_roof −14.2654 118

Physical perc_thatch_roof 12.7461 95

Physical perc_scrap_material_roof 56.9434 60

Physical perc_cardboard_roof 168.0385 25

Physical perc_piped_inside_dwelling_
watsup

−63.6969 140

Physical perc_piped_shared_watsup 167.4444 26

Physical perc_piped_within_building_
watsup

15.6408 89

Physical perc_public_piped_watsup 479.883 3

Physical perc_gas_piped_utility_
fuelcook

−256.4779 187

Physical perc_gas_tanked_bottled_
fuelcook

292.7046 11

Physical perc_wood_fuelcook −312.5053 194

Physical perc_charcoal_fuelcook 267.6657 12

Physical perc_unknown_fuelcook 25.6361 82

Physical perc_trash_collected_directly −25.0437 124

Physical perc_trash_collected_
indirectly

−104.1329 163

Physical perc_trash_street −250.9431 186

Physical perc_trash_river 210.7923 19

Physical perc_trash_canyon −269.2986 190

Physical perc_trash_communal −321.3191 195

Physical perc_trash_unknown −452.2279 199
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