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RESEARCH ARTICLE

Toponym-assisted map georeferencing:

Evaluating the use of toponyms for the

digitization of map collections

Karim BahgatID, Dan Runfola*

Department of Applied Science, William & Mary, Williamsburg, VA, United States of America

* danr@wm.edu

Abstract

A great deal of information is contained within archival maps—ranging from historic political

boundaries, to mineral resources, to the locations of cultural landmarks. There are many

ongoing efforts to preserve and digitize historic maps so that the information contained

within them can be stored and analyzed efficiently. A major barrier to such map digitizing

efforts is that the geographic location of each map is typically unknown and must be deter-

mined through an often slow and manual process known as georeferencing. To mitigate the

time costs associated with the georeferencing process, this paper introduces a fully auto-

mated method based on map toponym (place name) labels. It is the first study to demon-

strate these methods across a wide range of both simulated and real-world maps. We find

that toponym-based georeferencing is sufficiently accurate to be used for data extraction

purposes in nearly half of all cases. We make our implementation available to the wider

research community through fully open-source replication code, as well as an online geore-

ferencing tool, and highlight areas of improvement for future research. It is hoped that the

practical implications of this research will allow for larger and more efficient processing and

digitizing of map information for researchers, institutions, and the general public.

Introduction

Institutions across the globe are actively digitizing and georeferencing collections of physical

(or printed) maps [1–9], enabling the information within them to be searched, discovered, and

otherwise accessed using contemporary tools [10–14]. However, the technologies and practices

of georeferencing in use today have remained largely unchanged since the 1980s [15]. These

practices—frequently involving human operators identifying sets of corresponding points

[16–19] —represent a significant bottleneck for governments, libraries, and other entities that

seek to provide geographically query-able data based on archival maps (c.f. [20–22]).

As an illustrative example of the scope of this challenge, data from the crowdsourced geore-

ferencing website MapWarper [22] shows that between the years 2015 and 2019, online con-

tributors produced approximately 19,000 manually georeferenced maps— spending an

average of 92 minutes on each map. With over 714 known map collections held by libraries,
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archives, and museums globally, many holding hundreds of thousands of maps [23], such

manual processes are insufficient to enable broad-scope access to cartographic information in

the face of constraints on time and resources.

A number of approaches have been pursued to mitigate the costs of georeferencing. Most

common are solutions designed to improve the human experience of georeferencing, seeking

to minimize time costs by providing better software environments [10, 12, 19, 20, 22, 24, 25].

A more limited number of approaches have begun to emerge that seek to automate parts of

this process, using information on maps (for example, grid-lines or coordinate labels) to make

automated attempts at georeferencing [20, 26].

In this study we build on these automated approaches, specifically asking the question: to
what degree can map georeferencing be automated through the use of map toponym labels?
Unlike past approaches, which are reliant on features (grid lines, road lines) that are present

on only a fraction of maps, the use of map toponyms would allow for near-universal georefer-

encing, as nearly all maps have labeled places on them. Towards this end, the goal of this paper

is to present the first fully automated toponym-based georeferencing methodology, test the

approach using large sets of real and simulated maps, and provision associated code and tools

to the public.

The paper is structured as follows. First, we give an account of the current state of the art

research on automated georeferencing and highlight issues that have yet to be addressed. Sec-

ond, we describe our implementation of toponym-assisted map georeferencing, making sev-

eral contributions in the areas of text recognition, toponym disambiguation, and (dynamic)

transform estimation. Third, we conduct a large-scale evaluation of this approach for a range

of real and simulated maps to illustrate accuracy and efficiency under different circumstances.

Finally, we discuss some of the implications and remaining limitations with the proposed

methodology.

For users that are interested in applying the outlined procedures to their own map docu-

ments, we have implemented a version of the methodology as part of a free web-based geore-

ferencing tool at: www.maplocate.org.

Previous research on automated map georeferencing

Georeferencing has been used to digitize the contents of maps into actionable data going back

as far as the 1960s [15, 17, 27]. These efforts have enabled maps to be used as source material

in cadestral and land-use databases used by local governments, global administrative boundary

datasets, databases of fauna and soil distribution, and databases of oil-and-gas exploration,

among many other applications [28–33]. As sources of unique historical information, data

extracted from maps are frequently used in everything from the study of land-use change and

hydrological mapping, to research on international development and political conflict [34–43].

However, the georeferencing process is itself resource intensive, leading researchers to explore

methods for full or semi-automation [20, 26].

Researchers have explored at least three approaches for automated (either fully or human

assisted) map georeferencing to-date: coordinate-based, feature-based, and toponym-based.

First, coordinate-based georeferencing attempts to detect explicitly stated information about

the map’s coordinate system. This involves—for example—searching for map grid lines and

tick marks that are marked with coordinate labels, or using line-tracing and text recognition to

parse and place control points at the grid intersections [20, 21, 25, 44, 45]. Others have used

similar techniques to detect labelled map corner coordinates typical for small-extent local

maps [26, 37, 46].
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Second, in feature-based georeferencing, the goal is to detect one or more thematic feature

layers shown in the map (e.g., roads), and then compare that information with some reference

data containing known coordinates [47–52]. The primary challenges identified in this litera-

ture include, first, how to accurately identify the thematic feature layers, and second, how to

efficiently compare complex map feature s with a potentially much larger global reference set

(i.e., the problem of point set conflation; [53, 54]).

A third approach is seen in the emerging literature on toponym-based georeferencing.

Here, the central idea is to detect toponym map labels, specifically placename toponyms (i.e.

the names of cities or towns), and determine a set of control points by matching these to a ref-

erence gazetteer dataset containing toponym coordinates [8, 55–58]. In addition to being

nearly ubiquitous on maps, toponym labels are some of the most easily identifiable point-like

features on a map. Toponyms therefore serve as a natural choice for control point selection.

Implemented in a semi-automated workflow, all that is required is for the user to locate place-

name toponyms on the map and label them [24], which both improves efficiency and lowers

the level of skill required. Furthermore, the feasibility of finding matching control point coor-

dinates is helped by the availability of several global gazetteer dictionary sources containing

the coordinates of placename toponyms. Lastly, unlike administrative boundaries, roads, riv-

ers, and buildings which may change frequently, the toponyms associated with particular

places typically operate as historical markers and remain unchanged over long time periods

[59, 60].

Today, the literature on toponym-based georeferencing is largely small scale (i.e., based on

anecdotal numbers of maps), and narrow in focus on specific challenges, such as text recogni-

tion (c.f., [8, 55–58]). This paper seeks to overcome these limitations, providing a test of the

accuracy of a fully-implemented toponym-based georeferencing method across a large set of

both real-world and simulated maps.

Materials and methods

A methodology for automated toponym-assisted georeferencing must address and overcome

three major challenges: 1) how to extract a set of toponym labels (and the associated image

coordinates of markers) from the map, 2) how to determine the possible geographic coordi-

nates of these labels, and 3) estimating the most appropriate transform function.

1) Identifying toponym control points in a map

Since toponym-assisted georeferencing is based on the name and placement of placename top-

onym labels, the first step is in how to extract these text labels from the map. In a semi-auto-

mated workflow, this step could be accomplished through an interactive map interface that

lets a user identify and place toponym control points (or adjust existing ones), where all the

user needs to provide is a point location and the toponym text associated with that point (see

Fig 1).

In a fully automated workflow, the identification of toponyms in maps presents unique

challenges compared to traditional text documents, and is an active area of research [5]. With

the exception of some early-stage research on map-based OCR engines [58, 61, 62], most

approaches break the process into three discrete stages: a) the separation of text pixels from the

surrounding background graphics of various colors; b) clustering these pixels to form possible

image regions containing letters, words, and multi-word labels, and c) performing text recog-

nition on each pixel cluster. In this paper, we follow a similar three-step approach tailored for

the task of toponym extraction.
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For the first stage (stage a), we implement a color thresholding approach to define some

pixels as “text” and other pixels as “not text”. Contrasted to most existing implementations

reliant on grayscale or RGB color thresholding [63–67], our implementation identifies per-

ceived color similarities using the CIELab Delta E 2000 color difference metric4E [68]. Since

most maps depict toponym labels in some shade of black or dark gray, for our automated

approach we choose black as the reference color and isolate those pixels where the fuzzy color

difference (4E) is smaller than 25 (see Fig 2a)—a hyperparameter that was determined

through experimentation in order to capture color variation in edge pixels as well as color

Fig 1. Example of a semi-automated workflow. Screenshot of a toponym-assisted georeferencing workflow. In a semi-automated

workflow, if a user notices problems with toponym-based georeferencing, adjustments can be made through the manual selection

and correction of control points. The map image is from the University of Texas at Austin’s Perry-Castañeda Library (PCL) Map

Collection and is in the public domain.

https://doi.org/10.1371/journal.pone.0260039.g001

Fig 2. Illustration of toponym recognition. (a) Thresholded image using the4Emetric for the automated

identification of text and toponym markers. (b) Identified map text labels (in green) and toponym marker points (in

red). The map image is from the University of Texas at Austin’s Perry-Castañeda Library (PCL) Map Collection and is

in the public domain: https://maps.lib.utexas.edu/maps/middle_east_and_asia/china_pol96.jpg.

https://doi.org/10.1371/journal.pone.0260039.g002
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distortions in low-resolution images. This approach provides separation of text- from non-text

pixels and allows us to skip additional steps such as background line removal [61, 63, 69, 70].

Some of the limitations of this approach, and concomitant future directions for research, are

noted in our discussion.

For the second stage (b), rather than identifying individual regions of pixels that make up

individual strings of text and processing each separately, we instead apply text recognition to

the entire set of text pixels all at once. In the presented work, this process is implemented

using the sparse text recognition mode of the popular open-source Tesseract engine, which

detects all text throughout the image regardless of font size; more information on this algo-

rithm is available in [71]. To improve handling of pixelated text in low-resolution images, we

upscale and resample the image prior to text recognition. This results in a list of identified

words and their coordinates, width, height, and confidence level. The text recognition is likely

to contain several errors, so we clean the results by dropping text recognized with a low confi-

dence probability (<60%), as well as single-character text, numeric and non-alphabetic

characters.

In the third stage (c), we group the identified text to form connected text labels, such as

multi-part place names (shown as green rectangles in Fig 2b). We implement a rules-based

algorithm that groups similar words within approximately 1.5 font-height distance apart [72].

The result is a list of all text including map titles, legend descriptions, and descriptive sen-

tences. Since we are only interested in text representing toponym labels, we only keep those

located within the bounds of the main rectangular map area, and where the first character of

each word is capitalized. No rules are implemented with regard to font size (i.e., all font sizes

are eligible to be defined as toponyms) to account for maps which may use font size to define

toponyms at varying levels of a hierarchy.

Once toponym labels are identified, the coordinates of the symbol associated with a given

toponym need to be identified (i.e., the marker—such as a circle or square—representing the

toponym’s location on a map). There are many possible approaches to detecting a toponym

marker symbol [73–76]; here we implement a contour-based approach that looks for arbi-

trarily shaped black-colored pixel collections in the neighbourhood of each toponym label.

The centroid of the closest such group to each text marker is used as the image coordinate for

each toponym (shown as red circles in Fig 2b). Toponyms for which no marker symbol can be

detected are removed from the final set.

2) Toponym geocoding & disambiguation

In the previous step we identified a set of N toponyms: θi = 1, θi = 2, θi = . . ., θi = N. The next step

is to associate each θi with their equivalent geographic coordinates by searching gazetteer dic-

tionaries, a process known as geocoding. To allow for flexible usage and wide global coverage,

we integrate several publicly available global gazetteers: The USGS Geographic Names Server

(GNS) gazetteer [77], the GeoNames gazetteer [78], the CIESIN Global Settlement Points data-

set [79], the OpenStreetMap-based placenames dataset [80], and the Natural Earth Populated

Places dataset [81]. This database is used to search and lookup the coordinates of the identified

toponyms.

A major challenge in this step, and with geocoding more broadly, is that toponyms are

often ambiguously used in many different parts of the world—i.e. for each toponym θi there is

typically more than one possible candidate coordinate. Solving this problem requires figuring

out which of these candidate coordinates is the correct one, a process known as toponym dis-

ambiguation. The problem can be illustrated for the case of three toponyms identified from a

map of Cameroon: “Poli”, “Mbe”, and “Tchollire” (Fig 3a). This set of three placename
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toponyms has thousands of possible matching candidate coordinates (Fig 3c); however, only

one of those combinations is the one we are interested in (Fig 3b). To promote a semi- or

fully-automated approach to toponym based georeferencing, we must provide an algorithm

which serves to disambiguate and find the correct matches among all of these possible

coordinates.

Typically, toponym disambiguation is solved by providing additional hierarchical informa-

tion, such as the country and administrative unit. For map toponyms however, this informa-

tion is not explicitly given and would have to be inferred manually. Instead, research on

toponym-based georeferencing has taken advantage of the fact that we know not just one but

multiple toponyms, and that we also have information on their relative spatial locations. Previ-

ous approaches in the literature has ranged from simple clustering algorithms to obtain the

approximate location of a map [8, 55, 57], to more complicated Bayesian RANSAC probability

models [56, 58]. Here, we introduce an alternative approach rooted in the literature on point

pattern matching [82–86]. Specifically, we outline an approach based on normalized coordi-

nate space and combinatorial optimization to achieve both efficient and accurate results,

which we describe below.

Pattern-based toponym disambiguation: Normalizing coordinate space. The funda-

mental idea of using point pattern matching for toponym disambiguation is to identify the pat-

tern that the toponyms make in the un-georeferenced map image, and then compare this

pattern to the patterns formed by our georeferenced gazetteer points. For example, if three cit-

ies are arranged so as to make an equilateral triangle in the image space, we would seek to find

three cities arranged in a similar equilateral triangle in our projected gazetteer space. Before

we can compare these point patterns of the image toponyms with their geographic coordinates,

which are given in different units (i.e., pixels and decimal degrees), we must first convert them

to a common coordinate system. In our approach we normalize their coordinates as values

ranging from 0 to 1 between the minimum and maximum x and y coordinates for each point

pattern (Fig 4). To preserve the aspect ratio of the point patterns, the longest of the x or y axis

will extend to a maximum of 1, while the shortest axis will only range to some fraction of 1

depending on the ratio between the longest and shortest axes. This approach retains the infor-

mation in the shapes that is most relevant for the algorithm presented here—relative coordi-

nate positions.

Pattern-based toponym disambiguation: Match selection procedure. Having normal-

ized all coordinates according to the previous step, consider that the set of original image topo-

nyms forms a pattern ϕ in normalized coordinate space. Each of the θi toponyms that make up

Fig 3. Pattern-based toponym identification. (a) Point pattern of the toponyms Mbe, Poli, and Tchollire detected in

the image. (b) Point pattern of the corresponding geographic coordinates to the toponyms. (c) Full view of all

candidate gazetteer matches and their point patterns. The map image is from the University of Texas at Austin’s Perry-

Castañeda Library (PCL) Map Collection and is in the public domain: https://maps.lib.utexas.edu/maps/africa/

cameroon_pol98.jpg. The geodata used to render country outlines is from ©Natural Earth data and is in the public

domain.

https://doi.org/10.1371/journal.pone.0260039.g003
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ϕ has Mi possible coordinates: ŷ i;j¼1; ŷ i;j¼2; . . . ; ŷ i;j¼Mi
. For the full set of toponyms this means

there are Z possible combinations of all possible ŷ i;j coordinates, where the point pattern of

each combination is given as �̂z. Match selection is done by contrasting the original point pat-

tern ϕ to the point pattern of each candidate coordinate combination �̂z. We do this following

a metric of pattern similarity defined as the average relative distance between coordinates in

normalized space:

4�̂ z ¼
XN

i¼1;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x̂i;j

q
Þ

2
þ ðyi � ŷi;jÞ

2
=N ð1Þ

where N is the number of toponyms, xi, yi is the normalized image coordinate for the toponym

at i, and x̂i;j; ŷi;j is the normalized geographic coordinate of the j’th possible match in a particu-

lar point pattern combination. All combinations of match candidates that fall below some

threshold of similarity σ, can be said to resemble the point pattern in the original image while

also allowing for map projection distortions and noise from mismatched toponyms. This may

result in some incorrect matches for smaller point sets, but the chance of finding multiple

parts of the world with the same names and spatial configurations decreases significantly when

matching more complex and larger sets of point patterns.

Fig 4. Normalized point pattern coordinates. Pattern matching of image placename toponyms Mbe, Poli, and Tchollire and

coordinate combinations in normalized space.

https://doi.org/10.1371/journal.pone.0260039.g004
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Pattern-based toponym disambiguation: Combinatorial optimization. Following this

match selection procedure we have narrowed down the list of possible candidate coordinate

sets, but still have to decide which of these to use. Comparing all possible matching patterns

and choosing the optimal one requires calculating the similarity metric4�̂z for all possible

combinations of coordinates for every toponym. Specifically, the number of combinations for

which we would have to calculate the pattern similarity metric is equal to the sum product of

the number of possible coordinates of each toponym:

Z ¼
YN

i¼1

Mi ¼ Mi¼0 �Miþ1 � . . . �MN ð2Þ

where Z is the total number of combinations, Mi is the number of possible matches for topo-

nym θi, and N is the number of toponyms. This means that the computational cost grows

exponentially as N increases. For instance, if there are exactly 5 possible coordinates for every

toponym, then the number of comparisons for a mere 10 toponyms is 510� 10 million. For 20

placenames this increases to 520� 95 trillion. Most maps will likely have on the order of 30–40

placenames, resulting in an algorithm that would only be practical in a cluster environment if

an exhaustive search was used.

To overcome this, we focus on an ordered, piece-wise, growth-based method for quickly

finding a number of candidate matching sets (for other approaches, see [87–89]). Our

approach is based on the idea that finding a match for just three of the toponyms is often suffi-

cient for finding an initial matching set, and this set can then be expanded iteratively at a

much lower computational cost. The presented method consists of five steps:

1. Create a list T of all toponyms. From this set of all toponyms T, construct a set C made up

of all possible combinations of three non-repeating toponyms, ordered such that the triplets

with the fewest possible toponym coordinates—and therefore least computationally costly

to resolve—appear first. For instance, in the case of four toponyms, set C would contain

three possible combinations:

C ¼ ffy1; y2; y3g; fy1; y2; y4g; fy2; y3; y4gg ð3Þ

2. Select and remove the first triplet from set C. The goal is then to identify the optimal geo-

graphic coordinates—as described in the previous section—for these three toponyms, i.e.

the combination of matched toponyms θi,j whose coordinates best match the original

3-point pattern in the image. The number of comparisons required to find the optimal set

of coordinates for these three toponyms is:

Ztriplet ¼
Y3

k¼1

Mk ð4Þ

where Mk is the number of possible matches for each toponym θk at position k in the triplet.

If the optimal combination of coordinates for the triplet satisfies some minimum threshold

of similarity σ, we add the triplet to a result set R and proceed to step 3. If not, we repeat

step 2 with the next triplet of C.

3. We then consider any of the remaining toponyms θi in set T that have not yet been added

to the result set R, and determine its geographic coordinate based on the match candidate

ŷ i;j that best improves the pattern similarity score4�̂z of R. If the new similarity score for
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the optimal coordinate remains under the similarity threshold σ, we add this toponym to

the result set R—e.g. updating it from the original 3-point triplet to a 4-point set.

4. Repeat step 3 until all—or as many as possible—toponyms θi in set T are associated with a

matching toponym ŷ i;j in the result set R. The remaining number of comparisons required

to expand the initial result triplet R with all the remaining elements in T is then only:

Zexpand ¼
XN� 3

i¼1

Mi ð5Þ

whereN is the number of toponyms, andMi is the number of possible matches for each top-

onym θi that remains. The expanded result set R can be used as the basis for the control

points.

5. Since the result set R may in rare cases be a spurious match, repeat steps 2 to 4 a given num-

ber of times τ by looking for additional triplets in C that can be matched and expanded,

resulting in multiple possible R sets of control points. The algorithm ends as soon as the

number of matching triplets reaches τ, or the total number of comparisons has reached

some maximum threshold ω (to avoid the cost of a full exhaustive search).

This approach is not guaranteed to find all matching sets—in contrast to a full exhaustive

search which would iterate through all possible combinations of place name coordinates. How-

ever, it drastically reduces the computational cost of the search while still finding a list of possi-

ble matching control point sets that meet a minimum level of similarity. This leaves us with a

list of possible sets of control points, with a final stage requiring the selection of a single set of

the most optimal control points.

3) Transform estimation and selection

To select between the multiple sets of possible control points from the previous step, we use

the point correspondences of each set of identified control points to estimate the optimal

transformation model for each map image, and then compare and contrast their model fits.

The purpose of the transform function in map georeferencing is to translate between image

and geographic coordinates in a way that mimics the mathematical equations underlying the

original map projection. For the application presented in this paper, we compare the transform

functions of the most commonly used 1st, 2nd, and 3rd order polynomial transforms.

To compare and find the optimal transform function we need to measure the accuracy of

each set of candidates, which is typically done using the root mean square error (RMSE) of the

control point residuals [17]. However, to mitigate overfitting and underreporting of errors in

RMSE, as well as a bias towards higher-order polynomials [16, 17, 90, 91], we use an accuracy

metric based on out-of-sample or leave-one-out residuals [17, 92, 93], and use the maximum

residual for a more conservative estimate, modelMaxLOO. Because our sets of control points

are likely to contain misidentified outlier points, we also need a way to identify and drop these

outliers without the manual input that is typical of traditional map georeferencing [17]. In this

paper we implement an automated procedure where we go through each of the control points

and estimate the model errormodelMaxLOO that would result if that point were to be dropped.

The point whose exclusion best improves the model (results in the lowest model error) is then

dropped. This is repeated until the model stops improving beyond a specified percentage

threshold (e.g. drops below 10%).

Based on these automated procedures we are able to exclude possible outliers and estimate

the best model for each set of control points. Having estimated all the candidate models, we
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can use the modelMaxLOO accuracy metric as the basis for comparing and selecting the set of

control points whose transform model achieves the highest accuracy. This step completes the

proposed method and gives us the final output: a transformed georeferenced image based on a

toponym-assisted process that requires no manual intervention.

Evaluating the accuracy of toponym assisted georeferencing

In order to evaluate the accuracy of toponym-assisted georeferencing, we engage in two exer-

cises. First, we test our implementation on a large collection of simulated maps and report the

accuracy achieved for different types of map parameters. Second, we explore the use and accu-

racy of the approach for a selection of real-world maps. Overall, the goal is to evaluate and

demonstrate that toponym-assisted georeferencing is viable as a general-purpose approach

applicable and easily implemented for a large variety of maps.

Evaluating georeferencing accuracy for simulated maps. In order to evaluate the accu-

racy of the toponym-assisted approach for map georeferencing, we first conduct a series of

tests on computer simulated maps. This simulation approach a) allows the calculation of the

true error of the georeferencing process, and b) provides full control over the test map charac-

teristics, which can be used to evaluate how effective the automated georeferencing is for dif-

ferent types of maps.

For the map generation process, we selected 379 geographic areas sampled from around the

world for which we generate our map simulations (see Fig 5). These “scenes” were defined to

ensure a broad range of geographic coverage for primarily land-based locations, with variable

numbers of toponyms, map projections, and spatial extents. Each scene was rendered multiple

times for different combinations of a set of map parameters: toponym location uncertainty

(based on random coordinate offsets), map resolution (defined as the pixel width of the

image), and image pixel noise (resulting from lossy image file formats). The map parameters

Fig 5. Bounding boxes of the simulated map scenes. The geodata used to render country outlines is from ©Natural Earth data and is in the public

domain.

https://doi.org/10.1371/journal.pone.0260039.g005
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and their values are outlined in Table 1, and were chosen to represent the diversity of maps

likely to be encountered in the wild (as well as some more extreme outlier scenarios). In total,

7,580 simulated maps were generated. The simulated maps were rendered using data from

Natural Earth [94], including layers for country boundaries, rivers, roads, and urban extents,

as well as a map title, legend, and coordinate grid lines (some examples of the simulated maps

can be seen in Fig 6).

To evaluate the georeferencing error at each pixel, we leverage the known transform of the

map renderer to arrive at the true relationship between pixel and geographic coordinates in

the computer generated maps. The georeferencing error of our approach can thus be calcu-

lated as the pixel distance from the estimated georeferenced coordinate to the original geo-

graphic coordinate for any given point (as opposed to only at the control points). For this

exercise we calculate the total map error as the true maximum of all pixel errors, trueMax,

which constitutes a very conservative accuracy estimate and a more demanding evaluation. To

enable the comparison of different map resolutions in this section, we express the maximum

error metric in scale independent units by normalizing the error as a percentage of the map

radius, i.e. the number of pixels from the center of the map to any of its corners [92, 95]. For

example, a normalized maximum error metric of 50% would mean a pixel displacement from

one of the corners of the map to about halfway towards the map center. Based on this normal-

ized metric, we subset our results into categories qualitatively representative of the usefulness

Table 1. Sample sizes of the simulated map parameters.

Parameter Value Test maps

Scene selection:

mapCenter Random lat-long coordinate 7,580

mapExtent 5000 km 1480

1000 km 1520

500 km 1440

100 km 1680

25 km 1460

mapProjection Equirectangular 2480

Lamber Conformal Conic 2540

Transverse Mercator 2560

numToponyms 80 text labels 2060

40 text labels 2100

20 text labels 2100

10 text labels 1320

Scene permutations:

toponymUncertainty 0 1895

1 km 1895

10 km 1895

50 km 1895

imgResolution 3000 pixels 3032

2000 pixels 3032

1000 pixels 1516�

pixelNoise png 4548

jpg 3032�

� Maps rendered at the coarsest resolution (1000 pixel width) with the noisiest image file format (jpg) were dropped from the analysis, since text labels were illegible for

this combination of parameter values.

https://doi.org/10.1371/journal.pone.0260039.t001
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of toponym-assisted georeferencing under different circumstances: Excellent, Reasonable,
Approximate, Needs adjustment, and Not usable (see Fig 6). Maps where the algorithm was

unable to produce a georeferenced result are considered as a sixth Failed category.

Evaluating georeferencing accuracy for real-world maps. In addition to testing our

method on a wide range of realistic but simulated maps, we augment the simulated results

with additional tests (333) for a sample of real-world maps. To do this we collected the top two

maps listed on each of the country pages from the University of Texas at Austin Map Collec-

tion [96]—a total of 333 country-maps which contained toponyms. The sampled maps com-

prised a variety of image formats stored at low to medium levels of resolutions (the average

width of the map images was approximately 1300 pixels). Since the true coordinates of these

real world maps are unknown, we measured their accuracy as the modelMaxLOO leave-one-out

maximum residual error (as contrasted to the true maximum error measured in our simulated

cases).

Results

Simulated map georeferencing results

In total, the computing time required to process all 7,580 maps was approximately 61 cpu-

hours or 2.5 days of consecutive computation, with a median of 28 seconds per map. A total of

6,430 maps were considered after excluding edge-case combinations of parameters unlikely to

reflect real-world maps, such as cases with extreme toponym uncertainty (approaching 50% of

the map extent). The results of our accuracy assessment are presented in Table 2 as the share

of maps in each of the accuracy categories. To aide in the interpretation of the results we focus

on the trueMax metric and the cumulative georeferencing success rates for two possible use-

cases:

Fig 6. Simulated map accuracy categories. Shows example georeferenced maps overlaid on source maps with known

coordinates. Map accuracy is calculated based on normalized maximum map error (as a percentage of image radius).

The simulated maps were generated based on public domain data from ©Natural Earth, including data on country

outlines, populated places, urban extents, rivers, and roads.

https://doi.org/10.1371/journal.pone.0260039.g006
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1. high-accuracy georeferencing as the share of maps in or better than the Reasonable accuracy

category (less than 5% error); and

2. low-accuracy georeferencing as the share of maps in or better than the Needs adjustment
category (less than 100% error).

In terms of overall success rates, approximately one-fourth (26.9%) of the 6,430 simulated

maps could be used for high-accuracy georeferencing (less than 5% error), while about three-

fourths of maps (77.7%) could be used for low-accuracy georeferencing (less than 100% error).

However, the full sample of simulated maps includes maps unlikely to be encountered in the

real world as well as maps of poor quality. Therefore, we additionally report what levels of

accuracy to expect for a subset of more realisticmaps—dropping outlier combinations of bad

image quality and low resolution—as well as a subset of high-resolution realistic maps (see

Table 2 for details on the definitions of each subset of maps). For the more realistic map sam-

ple (N = 4,390), over one-third (36.7%) of maps can be georeferenced with high accuracy, and

86.7% with low accuracy. For the high-resolution, realistic map sample (N = 3,512), 40.1% are

georeferenced with high accuracy, and nine out of ten maps (91.4%) with low accuracy. The

automated model selection procedure tended to favor lower-order polynomial models, with

1st order polynomials used in 69% of all georeferenced maps, followed by 24% of maps for 2nd

order polynomials, and only 7% for 3rd order polynomials.

Table 2. Accuracy result metrics from the automated georeferencing of simulated maps.

trueMax modelMaxLOO modelMax
Accuracy % Cum. % Cum. % Cum.

Full (n = 6,430):

Exc. (<1%) 12.6% 12.6% 33.0% 33.0% 51.0% 51.0%

Reas. (1–5%) 14.3% 26.9% 22.3% 55.4% 20.9% 71.9%

Approx. (5–20%) 24.6% 51.5% 21.5% 76.8% 15.8% 87.7%

Needs. (20–100%) 26.3% 77.7% 9.2% 86.1% 2.3% 90.0%

Not. (>100%) 12.2% 90.0% 3.9% 90.0%

Failed 10.0% 100.0% 10.0% 100.0% 10.0% 100.0%

Real. (n = 4,390):

Exc. (<1%) 17.6% 17.6% 45.9% 45.9% 60.0% 60.0%

Reas. (1–5%) 19.1% 36.7% 24.5% 70.4% 21.5% 81.5%

Approx. (5–20%) 25.6% 62.3% 16.5% 86.9% 12.1% 93.6%

Needs. (20–100%) 24.4% 86.7% 6.8% 93.7% 2.1% 95.7%

Not. (>100%) 9.0% 95.7% 2.1% 95.7%

Failed 4.3% 100.0% 4.3% 100.0% 4.3% 100.0%

Hi-res. (n = 3,512):

Exc. (<1%) 19.8% 19.8% 49.5% 49.5% 60.8% 60.8%

Reas. (1–5%) 20.2% 40.1% 26.1% 75.7% 22.9% 83.7%

Approx. (5–20%) 26.9% 67.0% 16.1% 91.8% 12.3% 96.1%

Needs. (20–100%) 24.5% 91.4% 5.3% 97.1% 2.1% 98.2%

Not. (>100%) 6.8% 98.2% 1.1% 98.2%

Failed 1.8% 100.0% 1.8% 100.0% 1.8% 100.0%

Shows percent and cumulative percent of simulated maps in each accuracy category, for three subsets of maps: the “full” sample; a “realistic” sample with at least 20

toponyms and toponym uncertainty no larger than 10km; and a “high resolution” group of realistic maps that also have a pixel resolution of 2000 or higher.

https://doi.org/10.1371/journal.pone.0260039.t002
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Going beyond these topline values, we can use the simulation parameters we defined for

each map to evaluate the characteristics of maps that most negatively affect the accuracy of top-

onym-based map georeferencing (see Fig 7). For low-accuracy georeferencing only two of the

map parameters have a noticeable impact. The first and most important factor is that fewer

numbers of toponyms is related to lower georeferencing success rates, particularly for maps

with only 10 toponyms (with accuracy dropping from about 80% in cases with a high number

of toponyms, to 40% with smaller numbers of toponyms). Second, we see that very coarse

image resolutions result in a drop of georeferencing success from 80% to 60%. Only when

high-accuracy georeferencing is required do we see that toponym uncertainty, map extent, or

map projection have an effect on the success rates.

Recognizing that our metric of accuracy can only be used in a simulation setting, Table 2

further presents the results for two alternative metrics of accuracy in which only control points

are used to assess accuracy, to allow for meaningful comparison to real-world cases. In terms

of the share of simulated maps that can be georeferenced to within 1% error, the traditionally

applied model residual calculation (modelMax) suggests a success rate of 51%, while the calcu-

lation based on leave-one-out residuals (modelMaxLOO) suggests a success rate of 33%.

Although both of these metrics are overly optimistic—i.e., they contrast to the known success

rate (trueMax) of 12.6%—they may provide guidance to users seeking to compare the results

from this paper to georeferencing results from the real world where the trueMax georeferen-

cing error is unknown.

Fig 7. Effect of simulated map parameters for georeferencing success rates. Share of all simulated maps that were successfully

georeferenced, for different parameter values.

https://doi.org/10.1371/journal.pone.0260039.g007
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Real world georeferencing results

In addition to our simulation tests, we also tested the capabilities of toponym based georefer-

encing for a set of real-world maps (Table 3). The country coverage and overall accuracy of the

resulting georeferenced outputs are visualized in Fig 8. A representative sample of the results

for individual country maps are included as figures in the Supporting information section.

Based on the modelMaxLOO error metric, out of a total of 333 maps, approximately 82% of

the maps resulted in low-accuracy georeferencing outputs (less than 100% error); 67% of the

maps resulted in high-accuracy georeferenced outputs (less than 5% error); and 44% of the

total had less than 1% error. This is nearly identical to the modelMaxLOO results for the simu-

lated dataset (see Table 2).

Table 3. Accuracy result metrics from the automated georeferencing of real-world country-maps.

modelMaxLOO modelMax
Accuracy % Cum. % Cum.

Exc. (<1%) 44.4% 44.4% 63.1% 63.1%

Reas. (1–5%) 22.8% 67.3% 15.3% 78.4%

Approx. (5–20%) 7.2% 74.5% 3.9% 82.3%

Needs. (20–100%) 7.8% 82.3% 2.4% 84.7%

Not. (>100%) 2.4% 84.7% 0.0% 100%

Failed 15.3% 100.0% 15.3% 100.0%

Shows percent and cumulative percent of real-world maps (n = 333) in each accuracy category.

https://doi.org/10.1371/journal.pone.0260039.t003

Fig 8. Georeferencing results for real-world country maps. Shows subset of maps with errors less than 5% of map radius, representing about 67% of

the total sample. The georeferenced overlay maps are from the University of Texas at Austin’s Perry-Castañeda Library (PCL) Map Collection and are

in the public domain. The complete list of all map images and their source URLs can be found in the replication data accompanying this article (see

Data Availability statement). The geodata used to render country outlines is from ©Natural Earth data and is in the public domain.

https://doi.org/10.1371/journal.pone.0260039.g008
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Discussion

Capabilities & limitations

Our results illustrate a number of advantages of—and limitations to—toponym-based

approaches to georeferencing. Broadly, we find that toponym-based georeferencing can be

used to georeference most contemporary and recent historical maps, including both overview

maps and topographic map sheets that contain toponyms. Maps containing text of any lan-

guage and script can be read using this method, provided they use clear text label typesetting.

As few as 10 toponyms was shown to be sufficient in order to achieve a generally acceptable

level of georeferencing accuracy.

Toponym-based georeferencing is—by design—sensitive to image resolution, but

more effective at lower resolutions than anticipated. This is predominantly because the pri-

mary need of the algorithm is the ability to discern text, which our findings suggest does

not degrade until text resolutions become lower than 1.33 pixels-per-point of font size (the

international standard). This is reflected in our results, in which an image resolution of

1000 pixels was equivalent to approximately 1 pixel-per-point (or 75% of the standard size); in

these cases, only 60% of maps were succesfully georeferenced, down from over 80% in cases

where text resolution was at least 1.33 pixels-per-point (our 2000 and 3000 pixel resolution

cases).

A second area of anticipated sensitivity was related to toponym uncertainty—i.e., disagree-

ment across gazetteer sources as to where places are located. As the spatial extent of the map to

be georeferenced decreased, we anticipated these disagreements would result in larger poten-

tial inaccuracy. Our results, however, suggest that toponym-assisted georeferencing can pro-

duce accurate results for map extents as small as 25km, and simulated toponym uncertainties

of up to 10km. This apparent strength of the model is due to both (a) the reliance on a pattern

matching strategy, in which multiple places would need to have bias in similar geographic

directions, and (b) a generally small level of disagreement across gazetteers, frequently within

1km [97, 98]. Despite this promise, based on anecdotal testing we caution against using the

approach presented in this paper for maps smaller than 25km due to the sparsity of meaningful

toponyms likely to be available at these scales.

Although distortions from map projections may negatively impact the toponym matching

process in some cases, this should not be a concern for most maps. Our results showed no

noticeable difference between several widely used map projections for low-accuracy georefer-

encing (less than 100% error of map radius), and only minor differences for high-accuracy

georeferencing (less than 5% error). The effects of map projection also appear to be limited to

high-accuracy georeferencing of very large extent maps, e.g. global or regional maps where dis-

tortions due to map projection should be the most pronounced [99]. However, our testing in

this dimension has been limited to map projections that are commonly encountered, and we

would caution against generalizing our results to less common source projections.

Future work

There are several elements of the presented methodology that could be improved as next steps

for future research. These include improvements to: a) the detection and extraction of topo-

nym text labels and their image locations, b) approaches for geocoding and matching topo-

nyms to candidate real-world coordinates, and c) methods for refining the lists of control

points and selecting between multiple possible transform functions.

Recognizing that the number of toponyms identified within the map was a key predictor of

georeferencing accuracy, we suggest it should be a focus of researchers interested in improving
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this approach. Text-recognition in maps is a field which is rapidly evolving [5], with several

alternative approaches to the implementation presented here that could help improve the geor-

eferencing results. The approach to text recognition described in this paper could be compared

with the use of existing tools and software for map-based text recognition [67], machine-learn-

ing approaches designed for complex multi-color text detection [62], and predictive toponym

detection given the approximate coordinates from an initial round of georeferencing [55, 56,

63, 100]. Following text-recognition, more sophisticated symbol recognition of toponym

markers in the image [76], as well as improved linking of toponym labels with toponym mark-

ers [101], would likely result in more accurately detected toponym locations and higher overall

accuracy results.

Even with sufficient numbers of toponyms, the approaches used in this method for match-

ing and transform estimation still resulted in some cases of falsely matched toponyms and dis-

torted transformations. Possible avenues for improved matching include repeated step-wise

georeferencing to incrementally refine and limit the candidates to be searched [55, 56, 58] or

the use of more sophisticated point set registration methods [56, 87–89]. Assuming a set of

matched points, there are also a number of alternative non-polynomial transform estimation

methods that have been suggested [99, 102, 103] that may or may not result in more accurate

map transformations, particularly for larger-extent maps.

Conclusion

Georeferencing mapped documents is an important step in the process of making archival

and contemporaneous maps discoverable, searchable, and otherwise accessible [30, 35,

42, 104]. However, the process of georeferencing is—even today—largely manual and

inefficient.

Building on past literature, this study sought to answer the question: to what degree can
map georeferencing be automated through the use of map toponym labels? In answering this

question, we made three contributions to the literature. First, we outlined a new, automated

approach to georeferencing that reads and parses the names of toponyms listed on a map,

searches and retrieves the real-world coordinates of these places, and uses this information to

estimate the coordinate reference frame of the map. Second, by evaluating this approach on a

large sample of simulated and real-world maps, we demonstrated that the method is suffi-

ciently accurate to be used for real-world and general-purpose use-cases. Third, we made the

methodology readily available as open-source code for researchers who wish to replicate or

improve the technique (see Data Availability statement), and as a web-based tool for end-users

who wish to use it to georeference maps.

The methodology demonstrated here was—with no manual intervention or tuning—able

to automatically process and provide results nearly indistinguishable from manually georefer-

enced maps (accurate to within 5% of the map radius) in 40% of cases. In 90% of cases, the top-

onym-based georeferencing approach was able to provide maps referenced to broadly correct

regions of the world, with errors that—while substantial—may be easily correctable with small

perturbations by human coders. These results were robust against a variety of simulated and

real-world map parameters, able to georeference low-information maps with as few as 10 topo-

nym labels, image resolutions as low as 1000 pixels, map extents as small as 25 km across, and

several commonly available map projections.

As institutions continue to create, find, archive, and digitize mapped documents, the need

for automated procedures to georeference that information will continue to grow. The work

presented in this paper illustrates that toponym-based approaches to georeferencing may pro-

vide an automated solution to this challenge, and one which is applicable to a broad range of
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cartographic presentations of information. Replication code provided with this study is open-

source and can be used freely by researchers, libraries, and museums for automated toponym-

assisted georeferencing of large collections of maps.

Supporting information

S1 Fig. Benin country map. Automatically georeferenced map and control points overlaid on

satellite imagery. Map resolution = 1046 x 1227 pixels. ModelMaxLOO = 0.8 pixels (0.1% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

africa/benin_pol_2007.jpg. The background satellite data is from NASA Visible Earth’s “Blue

Marble” true-color global image mosaic and is in the public domain. The geodata used to ren-

der country outlines (in white) and roads (in yellow) is from ©Natural Earth data and is in the

public domain.

(PNG)

S2 Fig. Cape Verde country map. Automatically georeferenced map and control points over-

laid on satellite imagery. Map resolution = 2584 x 2003 pixels. ModelMaxLOO = 2.3 pixels

(0.14% of image radius). The map image is from the University of Texas at Austin’s Perry-Cas-

tañeda Library (PCL) Map Collection and is in the public domain: http://legacy.lib.utexas.edu/

maps/africa/cape_verde_physio-2004.jpg. The background satellite data is from NASA Visible

Earth’s “Blue Marble” true-color global image mosaic and is in the public domain. The geodata

used to render country outlines (in white) and roads (in yellow) is from ©Natural Earth data

and is in the public domain.

(PNG)

S3 Fig. Iran country map. Automatically georeferenced map and control points overlaid on

satellite imagery. Map resolution = 2000 x 2001 pixels. ModelMaxLOO = 2.1 pixels (0.15% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: http://legacy.lib.utexas.edu/maps/

middle_east_and_asia/iran_physio-2001.jpg. The background satellite data is from NASA Vis-

ible Earth’s “Blue Marble” true-color global image mosaic and is in the public domain. The

geodata used to render country outlines (in white) and roads (in yellow) is from ©Natural

Earth data and is in the public domain.

(PNG)

S4 Fig. Liberia country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 1984 x 2452 pixels. ModelMaxLOO = 2.4 pixels (0.15% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: http://legacy.lib.utexas.edu/maps/

africa/liberia_physio-2004.jpg. The background satellite data is from NASA Visible Earth’s

“Blue Marble” true-color global image mosaic and is in the public domain. The geodata used

to render country outlines (in white) and roads (in yellow) is from ©Natural Earth data and is

in the public domain.

(PNG)

S5 Fig. Indonesia country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 1389 x 939 pixels. ModelMaxLOO = 1.4 pixels (0.16% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

middle_east_and_asia/indonesia_pol_2002.jpg. The background satellite data is from NASA
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Visible Earth’s “Blue Marble” true-color global image mosaic and is in the public domain. The

geodata used to render country outlines (in white) and roads (in yellow) is from ©Natural

Earth data and is in the public domain.

(PNG)

S6 Fig. Denmark country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 1275 x 1036 pixels. ModelMaxLOO = 8.3 pixels (1.0% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

europe/denmark_pol81.jpg. The background satellite data is from NASA Visible Earth’s “Blue

Marble” true-color global image mosaic and is in the public domain. The geodata used to ren-

der country outlines (in white) and roads (in yellow) is from ©Natural Earth data and is in the

public domain.

(PNG)

S7 Fig. Equitorial Guinea country map. Automatically georeferenced map and control points

overlaid on satellite imagery. Map resolution = 1355 x 1657 pixels. ModelMaxLOO = 10.9 pixels

(1.0% of image radius). The map image is from the University of Texas at Austin’s Perry-Cas-

tañeda Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.

edu/maps/africa/equatorial_guinea_pol_1992.jpg. The background satellite data is from

NASA Visible Earth’s “Blue Marble” true-color global image mosaic and is in the public

domain. The geodata used to render country outlines (in white) and roads (in yellow) is from

©Natural Earth data and is in the public domain.

(PNG)

S8 Fig. Portugal country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 1042 x 1318 pixels. ModelMaxLOO = 8.8 pixels (1.04% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

europe/portugal.jpg. The background satellite data is from NASA Visible Earth’s “Blue Mar-

ble” true-color global image mosaic and is in the public domain. The geodata used to render

country outlines (in white) and roads (in yellow) is from ©Natural Earth data and is in the

public domain.

(PNG)

S9 Fig. Ecuador country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 2023 x 2692 pixels. ModelMaxLOO = 17.8 pixels (1.05%

of image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

americas/txu-pclmaps-oclc-785902207-ecuador_pol-2011.jpg. The background satellite data is

from NASA Visible Earth’s “Blue Marble” true-color global image mosaic and is in the public

domain. The geodata used to render country outlines (in white) and roads (in yellow) is from

©Natural Earth data and is in the public domain.

(PNG)

S10 Fig. Mexico country map. Automatically georeferenced map and control points overlaid

on satellite imagery. Map resolution = 1248 x 1010 pixels. ModelMaxLOO = 64.3 pixels (8.0% of

image radius). The map image is from the University of Texas at Austin’s Perry-Castañeda

Library (PCL) Map Collection and is in the public domain: https://legacy.lib.utexas.edu/maps/

americas/mexico.gif. The background satellite data is from NASA Visible Earth’s “Blue Mar-

ble” true-color global image mosaic and is in the public domain. The geodata used to render
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country outlines (in white) and roads (in yellow) is from ©Natural Earth data and is in the

public domain.

(PNG)
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92. Gonçalves H, Gonçalves JA, Corte-Real L. Measures for an objective evaluation of the geometric cor-

rection process quality. IEEE Geoscience and Remote Sensing Letters. 2009; 6(2):292–296. https://

doi.org/10.1109/LGRS.2008.2012441

93. Havlı́ček J, Cajthaml J. The influence of the distribution of ground control points on georeferencing.

14th International Multidisciplinary Scientific Geoconference SGEM. 2014; p. 965972.

94. Natural Earth. 1:10m Cultural Vector Datasets; 2020. Available from: https://www.naturalearthdata.

com/downloads/10m-cultural-vectors/.

95. Uhl J, Leyk S, Chiang YY, Duan W, Knoblock C. Map archive mining: visual-analytical approaches to

explore large historical map collections. ISPRS international journal of geo-information. 2018; 7

(4):148. https://doi.org/10.3390/ijgi7040148 PMID: 31061817

96. University of Texas. University of Texas at Austin Map Collection—Country Sites; 2020. Available

from: http://legacy.lib.utexas.edu/maps/map_sites/country_sites.html.

97. Ahlers D. Assessment of the accuracy of GeoNames gazetteer data. In: Proceedings of the 7th work-

shop on geographic information retrieval; 2013. p. 74–81.

98. CIESIN-SEDAC. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extent Poly-

gons; 2017. Available from: https://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-

rev02/data-download.

99. Bayer T. Advanced methods for the estimation of an unknown projection from a map. GeoInformatica.

2016; 20(2):241–284. https://doi.org/10.1007/s10707-015-0234-x

100. Gelbukh A, Levachkine S, Han SY. Resolving ambiguities in toponym recognition in cartographic

maps. In: International Workshop on Graphics Recognition. Springer; 2003. p. 75–86.

101. Budig B, Dijk TCV, Wolff A. Matching labels and markers in historical maps: an algorithm with interac-

tive postprocessing. ACM Transactions on Spatial Algorithms and Systems (TSAS). 2016; 2(4):1–24.

https://doi.org/10.1145/2994598

102. Inoue R, Wako M, Shimizu E. A new map transformation method for highly deformed maps by creating

homeomorphic triangulated irregular network. In: XXIII International Cartographic Conference. Mos-

cow, Russia. DVD; 2007.

103. Howe NR, Weinman J, Gouwar J, Shamji A. Deformable part models for automatically georeferencing

historical map images. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems; 2019. p. 540–543.

104. Nagaraj A, Stern S. The economics of maps. Journal of Economic Perspectives. 2020; 34(1):196–221.

https://doi.org/10.1257/jep.34.1.196

PLOS ONE Toponym-assisted map georeferencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0260039 November 18, 2021 24 / 24

https://doi.org/10.1007/s10707-007-0033-0
https://doi.org/10.1559/152304063941199
https://doi.org/10.1179/1752270614Y.0000000115
https://doi.org/10.3390/s19051191
https://doi.org/10.3390/s19051191
http://www.ncbi.nlm.nih.gov/pubmed/30857205
https://doi.org/10.1109/LGRS.2008.2012441
https://doi.org/10.1109/LGRS.2008.2012441
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://doi.org/10.3390/ijgi7040148
http://www.ncbi.nlm.nih.gov/pubmed/31061817
http://legacy.lib.utexas.edu/maps/map_sites/country_sites.html
https://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev02/data-download
https://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev02/data-download
https://doi.org/10.1007/s10707-015-0234-x
https://doi.org/10.1145/2994598
https://doi.org/10.1257/jep.34.1.196
https://doi.org/10.1371/journal.pone.0260039

	Toponym-assisted Map Georeferencing: Evaluating the Use of Toponyms for the Digitization of Map Collections
	Recommended Citation

	Toponym-assisted map georeferencing: Evaluating the use of toponyms for the digitization of map collections

