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ABSTRACT

The complexity of computer systems affects the complexity of modeling techniques 
that can be used for their performance analysis. In this dissertation, we develop a 
set of techniques that are based on tractable analytic models and enable efficient 
performance analysis of computer systems. Our approach is three pronged: first, 
we propose new techniques to parameterize measurement data with Markovian-based 
stochastic processes that can be further used as input into queueing systems; second, 
we propose new methods to efficiently solve complex queueing models; and third, we 
use the proposed methods to evaluate the performance of clustered Web servers and 
propose new load balancing policies based on this analysis.

We devise two new techniques for fitting measurement data that exhibit high 
variability into Phase-type (PH) distributions. These techniques apply known fitting 
algorithms in a divide-and-conquer fashion. We evaluate the accuracy of our methods 
from both the statistics and the queueing systems perspective. In addition, we propose 
a new methodology for fitting measurement data that exhibit long-range dependence 
into Markovian Arrival Processes (MAPs).

We propose a new methodology, ETAQA, for the exact solution of M/G/1-type pro­
cesses, GI/M/l-type processes, and their intersection, i.e., quasi birth-death (QBD) 
processes. ETAQA computes an aggregate steady state probability distribution and 
a set of measures of interest. E t a q a  is numerically stable and computationally 
superior to alternative solution methods. Apart from E t a q a . we propose a new 
methodology for the exact solution of a class of GI/G/1-tvpe processes based on 
aggregation /  decomposition.

Finally, we demonstrate the applicability of the proposed techniques by evaluating 
load balancing policies in clustered Web servers. We address the high variability in 
the service process of Web servers by dedicating the servers of a cluster to requests 
of similar sizes and propose new, content-aware load balancing policies. Detailed 
analysis shows that the proposed policies achieve high user-perceived performance 
and, by continuously adapting their scheduling parameters to the current workload 
characteristics, provide good performance under conditions of transient overload.

xxi
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Chapter 1

Introduction

As Internet continues to grow, scientists and practitioners are faced with the challenge 

to design and manage systems that keep up with the ever increasing number of users 

and complexity of services. In such an environment, analyzing and predicting the 

performance of existing and future systems is of great importance. Nevertheless, the 

task of modeling the performance of Internet-related systems is non-trivial. as their 

inherent complexity severely limits the set of available tools for their analysis.

There is ample evidence [4, 3, 7, 52] that the arrival and service processes in 

Internet-related systems exhibit long-range dependence and high variability, respec­

tively. These characteristics impact the performance of such systems [30, 14] consid­

erably and, unfortunately, increase the complexity of simulation and modeling tools 

that can be used for their analysis. Specifically, simulations need to run for long 

time to capture the effects of “rare" events associated with high variability, while the 

traditional analytic modeling techniques result in models that are intractable.

In this dissertation, we focus on the development of new analytic techniques tha t

2
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CHAPTER 1. INTRODUCTION  3

allow for the efficient and accurate performance analysis of Internet-related systems. 

We focus on models for Internet-related systems and workloads, and their interaction. 

The objective, graphically depicted in Figure 1.1, is to propose techniques and tools 

that can be used in the process of improving the performance of Internet-related 

systems. We achieve this objective by proposing Markovian-based models for the 

workload and complex queueing models for the systems. The systems performance 

is analyzed by solving efficiently the proposed queueing models. Finally, based on 

the results of our analysis, we propose new resource allocation policies that aim at 

improving the user perceived performance.

Performance Internet
SystemAnalysis J  c = 0  ^  System ^  [  ImprovementcPerformance

Figure 1.1: Our objective: improve system performance via performance analysis.

Our techniques are based on the m atrix-analytic methodology. Matrix-analytic 

methods provide flexible tractable models for the analysis of systems with complex 

behavior. The matrix analytic methodology, pioneered by Marcel Neuts [67. 69], is 

advanced by a considerable body of research [46, 75. 76, 47, 60], and is applied in 

many fields of performance evaluation of computer and communication systems [66, 

65, 44, 33, 49, 102, 103, 100, 106, 1] as well as in other scientific areas [63].
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CHAPTER 1. INTRODUCTION  I

1.1 Contributions

The focus of this dissertation is three-fold:

• to characterize and approximate the arrival and service processes in Internet- 

related systems by analytic models that allow the use of matrix-analytic meth­

ods for their performance analysis,

•  to propose neu/aggregation-based matrix analytic methodologies for the efficient 

solution of GI/M/1-type, M/G/1-tvpe. and GI/G/1-tvpe Markov processes, and

• to present a case-study where we directly apply these methodologies.

The service process in Internet-related systems is best characterized by heavy­

tailed distributions [3, 7.8, 95]. These distributions are intractable since usually their 

moment generating functions or Laplace transforms cannot be derived in closed form 

formulas. Moreover, the performance of queueing systems whose service processes 

are best described by such distributions is affected considerably, since measures like 

average queue length, average response time, and their respective distributions inherit 

the heavy-tailed behavior [30].

In this dissertation, we propose parameterization techniques to capture the high- 

variable behavior of the service process and the long-range behavior of the arrival 

process in Internet-related systems using tractable distributions such as Phase-type 

(PH) distributions and Markovian Arrival Processes (MAPs), respectively. Although 

the Markov property suggests lack of memory and independence in the stochastic
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process, MAPs and PH distributions accurately capture properties such as long-range 

dependence and high variability, respectively. Our parameterization techniques apply 

on measurement data rather than distribution functions and one of their important 

features is that they scale well with the size of data sets.

The major contribution of the dissertation is a new analytic methodology called 

ETAQA, which is an aggregation-based methodology that solves efficiently queueing 

systems whose embedded Markov chains have a repetitive structure, i.e., M /G /l- 

type and GI/M/1-type patterns. E t a q a  allows for the exact computation of an 

aggregate steady-state probability vector of such processes, as well as for the exact 

computation of a wide set of measures of interest. The aggregation process in E t a q a  

does not follow the rules of classic aggregation as described by Courtois [27]. Instead, 

we exploit the structure of the embedded Markov chain and aggregate using global 

balance equations. E t a q a  provides exact solutions that are numerically stable and 

computationally efficient, when compared with alternative solution methods.

Apart from E t a q a . we also present an aggregation-based technique that solves a 

broader class of stochastic processes whose embedded Markov chains have a repetitive 

structure of the GI/G/l-type. In this method, which applies only for a restrictive 

class of GI/G /l-type processes, we exploit the special structure of the embedded 

Markov chain and define an efficient and exact solution for the computation of the 

steady-state probability distribution of the process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER  1. INTRODUCTION  6

We devise new load balancing policies for clustered Web servers and evaluate their 

performance using the proposed analytic methodologies. We use our fitting techniques 

as well as existing ones [6, 30] to characterize and parameterize the service process 

in clustered Web servers. The models obtained from the fittings are used as inputs 

to queueing models. We use E t a q a  to solve these queueing models. The set of per­

formance metrics obtained from the solution of Web server queueing models, allows 

us to identify problems and to offer solutions to further improve cluster performance. 

We focus on load balancing policies that use the workload characteristics, e.g., vari­

ability and arrival intensity, to compute their balancing parameters. We propose two 

new load balancing policies, E q u iL o a d  and A d a p t L o a d , for clustered Web servers. 

These policies manage well cluster resources as they quickly respond to changes in 

the cluster operating conditions.

1.2 Organization

This document is organized as follows. The basic concepts on stochastic and queueing 

models, Markov chains, and aggregation solution techniques are reviewed in Chap­

ter 2. A summary of prior work on matrix analytic methods is given in Chapter 3. 

The new fitting techniques that approximate long-tailed and long-range dependent 

data sets with PH distributions and Markovian Arrival Processes, respectively, are 

presented in Chapter 4. In Chapter 5, the new aggregate matrix-analytic methodol­

ogy, E t a q a , is presented and its performance is compared with the classic matrix-
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analytic techniques. Chapter 6 presents a methodology for the exact solution of a 

class of GI/G/l-type processes. In Chapter 7, we focus on the applicability of our 

methodology in load balancing of clustered Web servers. This chapter gives a closer 

look in the characterization of the workload and demonstrates how analysis can be 

more efficient when the proposed methodology is used. Finally. Chapter 8 outlines 

our contributions and gives directions for future work.
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Chapter 2

Background

This chapter presents an overview of the basic concepts, terminology, and related 

work regarding the problems that we address in this dissertation. Since our focus is 

on matrix analytic methods, whose fundamentals are on Markov chains, we present 

basic definitions, concepts, and solution methods for Markov chains. We identify the 

infinite Markov chains with repetitive structures that we focus on. We also describe 

PH-tvpe distributions and Markovian Arrival Processes as the stochastic processes 

most commonly associated with matrix-analytic methods.

This chapter is organized as follows. In Section 2.1, we introduce basic notation. 

In Section 2.2, we define stochastic processes in general and focus on the exponential 

distribution and its variations that we use throughout this dissertation. We give 

an overview of the definition and classifications of Markov chains in Section 2.4. In 

Section 2.5, we present examples and define the infinite Markov chains with repetitive 

structures. We describe the related work on aggregation/decomposition techniques 

for solution of Markov chains in Section 2.8.

8
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2.1 Basic notation

We use:

- calligraphic letters to indicate sets (e.g., A),

- lower case boldface Roman or Greek letters to indicate vectors (e.g., a, a ) ,

- upper case boldface Roman letters to indicate matrices (e.g.. A),

- superscripts in parentheses or subscripts to indicate family of related entities 

(e.g., A(1), A ^ J ,

- square brackets to indicate vector and matrix elements (e.g., a[l], A[l,2]).

- sets of indices within square brackets to indicate subvectors or submatrices (e.g., 

a  [A], A[A61),

- RowSum(-) to indicate the diagonal matrix whose entry in position (r, r) is the 

sum of the entries on the r th row of the argument (which can be a rectangular 

matrix),

- Nomi(-) to indicate a matrix whose rows are normalized,

- 0 to indicate a row vector or a matrix of 0's of the appropriate dimensions.

- 1 to indicate a row vector of l ’s, of the appropriate dimension.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND  10

- 7r to indicate the steady state or the stationary probability distribution of a 

stochastic process1,

- P to indicate the probability transition matrix of a discrete time Markov chain 

(DTMC)2 unless differently specified, and

- Q  to indicate the infinitesimal generator matrix of a continuous time Markov 

chain (CTMC)3.

2.1.1 Kendall Notation

We use Kendall notation to describe the characteristics of the queueing systems that

we focus on. The notation is of the form:

A / S / s / c / p / D

where

- .4 stands for the description of the arrival process, (e.g., M  stands for Markovian 

interarrivals, G I  for general (any distribution) independent arrivals, M AP  for 

arrivals driven by a Markovian Arrival Process).

- 5  stands for the service time distribution, (e.g., M  stands for Markovian service, 

G for general (any distribution) service, PH  for phase-type service).

1 Definition of stationary distribution vector is given in Section 2.4.
2Definition of a  DTMC and P is given in Section 2 .1.
3Definition of a  CTM C and Q is given in Section 2.4.
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- s stands for the number of servers in the system and can be any integer equal 

or larger than 1.

- c stands for the capacity of the queue, i.e., the maximum number of jobs that 

can be queued in the system (c > 0). If this argument is missing, then, by 

default, the queue capacity is infinity.

- p stands for the system population, i.e.. the maximum number of jobs that can 

arrive in the queue. If this argument is missing then, by default, the system 

population is infinity.

- D stands for the queueing discipline, which can be FIFO (first come first serve). 

LIFO (last come first serve), or any other queueing discipline. If this argument 

is missing, then, by default, the queueing discipline is FIFO.

The simplest and the easiest queueing system to analyze is the M/M/1 queue, where 

job interarrivals and service times are Markovian and there is a single server in the 

system (missing arguments in this notation of the queuing system means that they 

take the default values). If the single server admits Markovian arrivals, but the service 

process is governed by a general distribution, then the description of the queue using 

Kendall notation is M /G /l.
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2.2 Random  variables

In practice, if the outcome of a process is not known in advance, then the process is 

nondeterministic or stochastic. A stochastic process is the set of outcomes of a random 

occurrence of a process, indexed by time [65]. State is the condition of a stochastic 

process, in a specific time, described by means of random, variables. The state space S  

is the set of ail possible states of a stochastic process. Most of the stochastic models 

are expressed in terms of random variables: the number of jobs in the queue, the 

faction of time a processor is busy, the amount of time a server is operational are 

examples of random variables. Random variables are functions that map a real value 

to every random outcome of the state space. Random variables that take a countable 

number of values are discrete, otherwise they are continuous [65].

Given that X is a random variable, there are two important functions that charac­

terize X, i.e., the cumulative distribution function (CDF) and the probability density 

function (PDF). The cumulative distribution function F(x) is nondecreasing such 

that F{—oo) =  0 and F(oo) = 1. If X is a continuous random variable, the prob­

ability density function f (x)  is nonnegative and f ^ x f(z)dz  =  1. If X is a discrete 

random variable, then the PDF /(x ) is nonnegative and YlT=-oc f ( z ) = ^  the

random variable X is discrete (continuous) then its PDF f (x)  and its CDF F(x) are 

also discrete (continuous).

The expectation of a continuous random variable X is defined by E[X\  =  zf(z)dz,

provided the integral converges absolutely. If the random variable X is discrete
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then its expectation is defined by E[X\ =  5 1 * -oo M°re generally one can

define the expectation of a function h(X)  of a continuous random variable X  by 

E[h(X)] =  h(z)f(z)dz.  The expectation of a function of the form h(x) =  xk, 

for k  > 1 is known as the ktb moment of a distribution. Similar definitions exist for 

discrete random variables.

Other metrics that are often used in performance analysis are the standard de­

viation, coefficient of variation, and median. The standard deviation (STD) and 

coefficient o f variation (CV) are two metrics that quantify the variability of a ran­

dom variable X , and are defined as STD  =  yjE[X2] — E[XY and CV  =  STDf  E[X]. 

respectively [48]. Median of a random variable, which measures central tendency in 

a random variable X,  is the smallest value x  such that the CDF F(x) > 0.5 [48].

2.2.1 Exponential distribution

One of the most studied continuous distributions is the exponential distribution. It 

is widely used to describe various stochastic processes. An important property of 

the exponential distribution is the memoryless property. This property plays an 

important role in computer system modeling since the value of an exponential random 

variable in a given moment of time t does not depend on its past values, therefore 

it allows us to analyze the system without keeping track of all past events. The 

cumulative distribution function and the probability density distribution function of
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an exponential random variable X  are:

0 x  < 0,
1 — e -Ax Q < x few  = {

where A is the parameter that characterizes the distribution, and E\ denotes an 

exponential distribution with parameter A.

2.2.2 Variations of exponential distribution

Let £a, i =  1, —, n be n independent exponential random variables each with pa­

rameter A* i =  l,...,n , where A* ^  Aj for i j .  Suppose that there are n positive 

constants i = l,.„.n such that ^ " =,p« = 1. If the random variable X  =  £ \, 

with probabiUty pi, then X  is a hyperexponential random variable with n exponential 

stages and parameters />,, A,, i = 1, n [88]. More formally, let the hyperexponential 

random variable X  be denoted by Hr{n) and define its PDF as.

The hyperexponential distribution Hr(n) has 2n—1 parameters, while the exponential 

distribution E\  has only one.

Let E\, i =  l,...,n  be n independent exponential random variables each with 

parameter A* for i = 1,..., n, such that A* /  Xj for i ^  j .  The random variable X  has

n

(2.2)
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a hypoexponential distribution if

n

X  = H y p o ( n ) = ^ 2 x i. (2.3)
t=i

The probability density function of a Hypo(n) is not trivial to compute (see [88] 

for more details). The hypoexponential distribution has only n parameters. A spe­

cial case of a hypoexponential distribution arises when A, = A. Vi =  1. . . . .  n and is 

known as the Erlang distribution. The Erlang distribution is denoted by Er(n ) and 

characterized by A and n.

It is easy to observe that the hypoexponential and hyperexponential distributions 

consist of several exponential “stages* (or “phases*). If. instead of exponential stages 

in series (hypoexponential) or stages in parallel (hyperexponential), arbitrary inter­

action among the collection of exponential stages is allowed, then the result is the PH 

distribution. We will discuss PH distributions in more detail in Section 2.6.

2.3 Heavy tailed d istributions

A class of distributions that is often used to capture the characteristics of highly- 

variable stochastic processes, i.e., more variable than the exponential distribution, is 

the class of heavy-tailed distributions.

Definition A distribution is heavy-tailed if its complementary cumulative 

distribution (CCDF), often referred to as the tail, Fc(t) = 1 — F(t). where
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F(t) is the CDF, decays slower than exponentially. i.e., there is some 7  > 0 

such that

lim exp(7 £)Fc(f) —► 0 0 . (2.4)
t—KX

A typical heavy-tailed distribution is power-tailed if Fc(t) ~  at~J as t —*• 0 0  for 

constants a  > 0 and 3 > 0.

Definition A distribution has short tail if its CCDF Fc(t), decays expo­

nentially or faster, i.e., there is some 7  > 0  such that

lim exp( 7  t )Fc(t) —► 0. (2.5)t—oc

A typical short-tailed distribution is exponentially-tailed, if F c(f) ~  ae~3t as t —► 0 0  

for constants a > 0  and 3 > 0 .

In the literature, different definitions of heavy-tailed like distributions exist. For a 

more detailed classification of heavy-tailed distributions and their properties refer to 

[95] and references therein. Throughout this dissertation, we refer to a distribution 

as heavy-tailed if its coefficient of variation is larger than the one of the exponential 

distribution. Note that we distinguish between the unbounded possible values of a 

distribution function and the bounded possible values in a data set by referring to
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high variability in a data set as long-tailed behavior and in a distribution function as 

heavy-tailed behavior.

The Pareto distribution with Eparet̂ ( t )  = t~J for f3 > 0 is a classic case of a 

distribution exhibiting power-tailed behavior in the entire range of its parameters. 

The Weibu.il distribution with = e_(t/o)c for c < 1 and a > 0 is heavy­

tailed, but not power-tailed.

Simulation of heavy-tailed distributions for estimation of steady-state measures is 

not easy, as the simulation must run exceptionally long in order to capture the effect 

of the distribution tail, i.e., the rare events, which even with small probability of 

occurrence can significantly affect the system performance. Heavy-tailed distributions 

generally have high coefficient of variation, while power-tailed distributions can have 

infinite moments. For example, in a power-tailed distribution if 0 < 3 < 1 the mean 

is infinite, while if 1 < /3 < 2 the mean of the distribution is finite but the variance 

is infinite. The infinite mean or variance in a power-tailed distribution increases the 

complexity of their analysis. The highly variable behavior in data sets or distribution 

functions can be accurately approximated by PH distributions (PH distributions are 

discussed later in this chapter), which are tractable and can be analyzed using the 

matrix-analytic methodology.
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2.4 Markov processes

A Markov process'* is a stochastic process that has a limited form of uhistorical” 

dependency [65]. Let (X(t) : t € T} be defined on the parameter set T  and assume 

that it represents time. The values that X(t)  can obtain are called states, and all 

together they define the state space S  of the process. A stochastic process is a Markov 

process if it satisfies

P[X(t0+*i) < x | X{to) = x0. X(r), - o o  < r  < t0] = P[X{tQ+ti) < x \ X{t0) = x0], Vt0, *i > 0.

(2 .6)

Let to be the present time. Eq.(2.6) states that the evolution of a Markov process at 

a future time, conditioned on its present and past values, depends only on its present 

value [65]. The condition of Eq.(2.6) is also known as the Markov property. Markov' 

chains are classified as discrete or continuous.

2.4.1 Discrete time Markov chains (DTMCs)

Consider a Markov process as defined by Eq.(2.6) and, without loss of generality, let 

the state space S  be the set of nonnegative integers. The DTMC that characterizes 

the process captures its evolution among states of S  over time t €  T. The transition 

pmbabiiity between state i to state j  at time xi — 1 is the probability P[Xn = j  | X n-i  =

4Named after A.A. Markov (1856*1922), a  Russian mathematician who made fundamental con­
tributions to probability theory.
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*]. A DTMC is time homogeneous if

19

P[Xn =  j  | X„-i =  i] =  P[Xm+n = j  | X m+n- 1 =  *], n = 1,2.....  m > 0. i . j  e  S.

(2.7)

Throughout this dissertation, we consider time homogeneous Markov chains. Fur­

ther we define Pij =f P[Xn = j  \ X„-t = t] and the one step probability transition 

matrix P:
Po.o Po.i ' • Po.j
P\.o Pi.i ' ■ Pl.j •

Pi. 0 Pi. i • • Pi.j •
. : ; * .

Each row of the probability transition matrix represents the transition flow out of the 

corresponding state. Each column of it represents the transition flow into the state. 

As the cumulative transition flow out of each state must be 1, the rows of matrix 

P must sum to 1 and have all non-negative elements (since they are probabilities). 

A matrix that has non-negative elements and its rows sum to 1 is often called a 

stochastic matrix. If S  is finite, then P has finite dimension.

The probability that the DTMC reaches, on the n*h step, state j  starting from 

state i in step 0 is given by the Chapman-Kolmogorov equation:

° s " > < "  p.9)
kes

Let 7r" =f (jtq , ff",...) be the probability vector whose element tt" denotes the 

probability that the DTMC is at state i a t step n. Since it" = 7T° • P". n = 1.2......
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then the probability of state i a t step n is simply the sum of the probabilities along 

all sample paths from j  to i in n steps weighted by the probability of starting at state 

j  [65|.

A DTMC is irreducible if for each pair of states (i,j) € S 2 there exist an integer 

n such that p"j > 0 [43]. State i  is positive recurrent if £ „ eN Pu = <x>- A state is 

periodic if p"; > 0 iff n =  k • d for some values of k  and a fixed value of d > 1. If 

a state is not periodic, then it is aperiodic. A state is called ergodic if it is positive 

recurrent and aperiodic.

The following two propositions are fundamental for the analysis of DTMCs.

Proposition [65] If P  is the probability transition matrix of an irreducible 

DTMC in an ergodic set of states, the limiting matrix lim„—«  P" has

identical rows that are equal to the stationary probability vector ir =

lim„_oc tt".

Proposition[65] The stationary probability vector of an irreducible DTMC 

in an ergodic set of states is unique and satisfies

7r =  7 r P  (2.10)

and the normalization condition

it • l r  = 1. (2.11)
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We always refer to an ergodic and irreducible Markov chain throughout this disser­

tation, and are interested on computing the stationary distribution vector it which 

characterizes the steady state probability distribution of the process. The steady 

state is reached after the process passes an arbitrary large number of steps. In steady 

state, the total Sow out of a state is equal to the total flow into the state. This 

property is called flow bidance and is expressed in the form of a flow balance equation. 

The collection of all flow balance equations for a DTMC is formally represented by 

Eq.(2.10).

2.4.2 Continuous time Markov chains (CTMCs)

In a CTMC, the process makes a transition from one state to another, after it has 

spent an amount of time on the state it starts from. This amount of time is defined 

as the state holding time. In a DTMC the holding time is geometrically distributed, 

while in a CTMC it is exponentially distributed. All DTMC definitions apply for 

CTMCs as well. In the same way that we build the probability transition matrix for 

a DTMC, we construct the infinitesimal generator matrix Q  of a CTMC. The entries 

of the infinitesimal generator matrix Q are the rates at which the process jumps from 

state to state. By definition, the diagonal entries of Q are equal to minus the total 

rate out of the state that corresponds to that row, qiti =  — Qi-j • This implies 

that the row sums of Q equal 0:
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—Qo <7o.i •' • <7o.j
Quo ~Qi ' • ■ Qi.j

(2.12)
Quo Qui ■ •' Qi.j

Similar to DTMCs, the following proposition holds for CTMCs.

Proposition[65] The stationary probability vector ir of an irreducible 

CTMC in an ergodic set of states is unique and satisfies

When the CTMC process is in steady state, the property of flow balance holds, and 

Eq.(2.13) represents all the flow balance equations of the CTMC.

2.5 Markov chains w ith repetitive structure

Markov chains with repetitive structure occur when queueing models are analyzed via 

their embedded Markov chains. The simplest queueing system is the M/M/1 queue. 

According to Kendal notation in a M/M/1 queue both arrival and service processes 

are Markovian. Since there is no restriction on the system population and queue

7T - Q = 0 (2-13)

and the normalization condition

7T • l r  = 1. (2.14)
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capacity, the state space of the embedded CTMC is infinite and its state transition 

diagram is illustrated in Figure 2.1. Usually, an M/M/1 queue is known as a birth- 

death stochastic process.

x

n (i

Figure 2.1: The state transition diagram of an M/M/1 queue.

In the CTMC of Figure 2.1, each state of the system is distinguished by the 

number of jobs in the system. The state space of the process is S  = {0.1.2....}. If 

the mean arrival rate of jobs in the system is A and the mean service rate is //. then 

the following geometric relation holds for the elements of the stationary probability 

vector tt: tt* =  Vi > 1, where 7T, is the steady state probability of state

i [43]. If we order the states of the chain in an increasing order, then the infinitesimal 

generator matrix of the M/M/1 queue is

-A A 0 0 0
-(A +  /,) A 0 0

0 -(A + n) A 0
0 0 -(A  +  /i) A

Q a//a,/i=  0 P -(A + /I) A 0 . . .  . (2.15)

2.5.1 Quasi birth-death processes

Consider now a single queue that accepts Poisson arrivals at rate A. Jobs require two 

exponential stages of service: the first at rate fii and the second at rate /i2. The service 

time distribution as described is a hypoexponential distribution with 2 phases, i.e..
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Hypo(2). This is an M/Hypo(2)/l queue. Each state is defined by (i. s), where i is the 

number of jobs in the queue and s is the stage of service for the job being served. If we 

order states lexicographically, thenS =  {(0,0), (0,1), (0.2). (1.1), (1,2), (2,1), (2,2),...} 

and the infinitesimal generator matrix Q M/Hypo(2 )/i of  the process is

QAI///tfpo(2)/l -

' -A A 0 0 0 0 0
0 Mi A 0 0 0

M2 0 - a 2 0 A 0 0
0 0 0 - « i Mi A 0
0 M2 0 0 - o 2 0 A
0 0 0 0 0 - 0 | Mi
0 0 0 Ml 0 0 ~a2

: : : '■ : : :

(2.16)

where a , =f A+/!,, j  = 1,2. The state transition diagram of this process is illustrated 

in Figure 2.2. Note that by grouping the entries of the generator matrix of Eq.(2.16) 

according to the number of jobs in the system, then the structure of the new block 

partitioned Eq.(2.16) closely resembles the structure of the generator matrix of an 

M/M/1 queue, shown in Eq.(2.15).

Figure 2.2: The state transition diagram of a M/Hvpo2/l queue.
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We define subvectors of the stationary distribution vector i f  of the process as 

ir(i) =f (ir(t.i),iT(,.2)) for i > 1, and tt(0) =f (iT(o.o)>(«'(o.i).^(o.2))- Accordingly, we 

define subsets for i > 1 and of the state space S.  We call the states on «Ŝ0) 

the boundary portion of the process and all other states are called the repeating portion 

or the repeating states of the process5. Throughout this dissertation, it is assumed 

that the cardinality of the boundary portion of the process is m and the cardinality 

of each repeating level is n, where m may be different from n. This partition of the 

stationary distribution vector i f  and state space S  of the process defines the following 

subraatrices of the infinitesimal generator in Eq.(2.16).

A 0 L = -Oi /*i B = ' 0 0 ‘
0 A 0 -«2 . ^2 0

L =
-A' A' 0 ' 0 0 ‘
0 - « i . F = A 0

t*2 0 - o 2 0 A
B = 0 0 0

0 p-i 0

(2.17)

Based on the above definitions, we can block partition the infinitesimal generator of 

Eq.(2.16) as follows

Q q d b  =

L F 0 0 0 -
B L F 0 0 -
0 B L F 0
0 0 B L F
• •

(2.18)

5 In the literature, the boundary and the repeating portion of an infinite CTMC arc also referred 
to as the non-homogcncous and the homogeneous parts of the CTMC. respectively [32|.
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where 0 is a matrix of all zeros of the appropriate dimension. The letters "L” . “F”. 

and “B” are used to denote the “local”, ‘forward”, and “backward” transition rates, 

respectively, in relation to a set of states for j  > 1. We use for matrices related 

to «S(0). The similarity of infinitesimal generator in Eq.(2.18) with the infinitesimal 

generator in Eq.(2.15) gives such processes the name “quasi birth-death” (QBD). We 

discuss the solution methods for QBD processes in Chapter 3.

2.5.2 G I/M /l-typ e processes

Consider a single server queue where failures can happen during service. The occur­

rence of failures flushes the queue. Suppose that the arrivals are Markovian with rate 

A and the service process is two exponential stages with rates /it and p2 respectively. 

Failures occur exponentially with rate / .  The state transition diagram of this pro­

cess is illustrated in Figure 2.3. The block partitioned infinitesimal generator for the

2 , 21,2

Figure 2.3: The state transition diagram of a GI/M/1 process with failures.
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process is

Qci/Hypo2/l  =

L F 0 0 0
B(1) L F 0 0
B(2) B L F 0
B<3) 0 B L F

(2.19)

where the matrices L, F, F, L. B and B*A j  > 1 are defined as follows:

F =

F =
0 0 
A 0 
0 A

B =

§<l) =

0 0 
/12 0

/  0 0 
I  H 2 o

L =
-A ' A' 0
/  Hi

Hi A f  0 —oio

B(j) = /  0 0 
/  0 0 j >

(2.20)

where Oj =f A + Hj + f ,  j  =  1.2.

The process with state transition diagram in Figure 2.3 is an example of a G I/M /1- 

tvpe or skip-free to the right process. The block partitioned infinitesimal genera­

tor Qgi/m/ i of a GI/M /l-type process resembles the infinitesimal generator of the 

GI/M/1 queue:

Q g i / m / i =

L F 0 0 0 ■

B(l) L F 0 0
§ (2) B<1) L F 0
b (3) b (2) B(l) L F

. : ;

(2.21)

Q g i /m / i is a lower Hessenberg type matrix, i.e., its blocks above the main diagonal, 

but the first one, are all zero  matrices. As illustrated in Figure 2.3, examples of 

GI/M/1 type processes include systems that allow the jobs to be served in bulks and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND  28

systems that capture failure of service nodes [34]. We elaborate on solution techniques 

for GI/M /l-type process in Chapter 3.

2.5.3 M /G /l-typ e  processes

Consider again the example of the M/Hypo(2)/1 queue. Now suppose that the arrivals 

can occur in bulk, i.e., one job arrives with rate A, two jobs arrive simultaneously with 

rate A/2, three jobs arrive simultaneously with rate A/4, i.e.. the bulk sizes decrease 

geometrically. The service process consists of two exponential phases in series. The 

state transition diagram of this process is illustrated in Figure 2.4.

m

0,0

Figure 2.4: The state transition diagram of a M/Hypo(2)l queue with bulk arrivals.

The processes with similar patterns in the embedded Markov chain are known as 

M /G/l-type or skip-free to the left processes. Their infinitesimal generator matrix
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Qjw/c/i can be block-partitioned as:

29

Qm/g/ i =

L p (D §•(2) p(3) p(-»)

B L p ( l ) p(2) p(»)
0 B L p(2)

0 0 B L p d )

0 0 0 B L

(2.22)

The infinitesimal generator Qa//c/i o f4111 M /G /l type process is an upper Hessenberg 

matrix, i.e.. the blocks below the main block-diagonal, but the first one, are all zero 

matrices. As depicted in Figure 2.4, M /G/l-type processes usually characterize bulk 

arrivals, i.e.. more than one job may arrive in the queueing system at a time [34]. We 

give details on solution methods for M /G /l-type processes in Chapter 3.

2.5.4 G I/G /l-typ e processes

Now consider a queueing system where both arrivals and service may occur in bulk. 

Using a similar example as the ones in Figures 2.4 and 2.3, the state transition diagram 

of the embedded Markov chain of such process is illustrated in Figure 2.5.

The processes with similar patterns in the embedded Markov chain are known 

as G I/G /l-type processes and are generalizations of the M /G /l and GI/M/1-type 

processes. Their infinitesimal generator matrix Q g i / g / i  can be block-partitioned as:

Qgi/g/ i =

L<°> p(») p (2) p(3) p(-«)

B(l) L(l) p (D p(2) p(2)
b (2) B(I) L pen p(2)

b (3) B (2> B(U L p(>)

§(■») b (3) B<2) B(l) L

(2.23)
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iZi
m

M l

1.1

A/2!

03 +  f 2 . 21.2

Figure 2.5: The state transition diagram of a G I/G /1 queue.

The infinitesimal generator Q g i / g / i  of a GI/G/1 type process is a f u l l  matrix. How­

ever the matrix is structured in repeating blocks. As depicted in Figure 2.5. G I/G /l- 

type processes usually characterize systems with bulk arrivals and possible failures.

2.6 Phase-type distributions

Phase-type (PH) distributions are based on the method of stages technique that was 

introduced by Erlang and generalized by Neuts [67). PH distributions consist of a 

“general’* mixture of exponentials and are characterized by a finite and absorbing 

Markov chain. The number n of phases in the PH distribution is equal to the number 

of transient states in the associated (underlying) Markov chain. A PH distribution 

represents random variables that are measured by the time X  that the underlying
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Markov chain spends in its transient portion till absorption. From this perspective, 

a row vector r  of size n is associated with the underlying Markov chain of a PH 

distribution and represents the initial probability vector for each of its transient states. 

The infinitesimal generator of the underlying Markov chain of a PH distribution is 

shown in Eq.(2.24). The zero row represent the absorbing state of the chain.

T is an n x n matrix representing the transitions among the transient states and t 

is a column vector of size n representing the transitions from the transient states to 

the absorbing state of the underlying Markov chain. Matrix T and vector t relate to 

each other as t =  —T • e. The PH distribution is fully represented by the vector r  

and the matrix T. The basic characteristics of a PH distribution are

•  the cumulative distribution function: F(x) =  1 — r e Txe.

•  the density function: f (x)  = r e Tl(— T • e),

•  the nth moment: m„ =  (-1)" • n\rT~ne ,

where e is a column vector of ones with the appropriate dimension. Observe that 

in the PDF and CDF of a PH distribution, the matrix T appears as an exponential 

coefficient. As such, PH distributions are called matrix-exponential distributions. 

The term eTr is defined as

(2.24)
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Obviously the number of parameters that define a PH distribution is n(n-F 1), however 

the cases of PH distributions that are used in practice have the majority of the values 

in t  and T  equal to zero. For the hvperexponential, hypoexponential, and Coxian6 

distributions, special cases of PH distributions, the definitions of r  and T  are as 

follows (assuming n = 4).

Hypoexponential Coxian Hvperexponential
[1. 0. 0, 0] [1, 0. 0. 0J \pi. P2• P3, P-i]

-A! A, 0 0
0 —A2 A2 0

0 0 -A 3 A3
0 0 0 -XA

-Ai A] 0 0
0 - a 2 A‘ 0
0 0 —A3 A*
0 0 0 -A4

- A i 0 0 0
0 —A*> 0 0
0 0 - A 3 0
0 0 0 A.|

Table 2.1: Structure of r  and T  for the Hypoexponential. Coxian, and Hvperexponential 
distributions.

Since the structure of the underlying Markov chain is arbitrary, a PH distribution 

captures a wide range of characteristics including high variability. The PH random 

variables are independently identically distributed because the initial probability vec­

tor r  is the same every time the Markov chain starts in its transient portion in the 

corresponding renewal process. A PH distribution with infinite number of phases 

captures exactly a power-tailed distribution [71]. There is another set of processes 

known as Markovian Arrival Processes (MAPs) that are still based on the method of 

exponential stages and capture complex characteristics such as short- and long-range 

dependence. PH distributions are a special case of MAPs [69].

6 A given exponential phase i. 0 <  i <  n, of a Coxian distribution is associated with two rates: Aj 
for reaching the next exponential phase and Xf for reaching the absorbing state of the underlying 
Markov chain. The total ra te  of leaving phase 1 is A* =  A,- +  A?.
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2.6.1 Fitting algorithms for PH distributions

The fitting techniques available for PH distributions are either based on moment 

matching or on maximum likelihood estimators (MLEs) (see [48] for more details 

in MLEs). Moment matching techniques are computationally efficient, but apply to 

somewhat more restrictive models [42]. Among the techniques that are based on 

MLEs, we distinguish the Expectation-Maximization (EM) algorithm for fitting both 

data and distributions into general PH distributions [6], MLAPH [13] which uses 

MLEs to fit continuous distribution functions into acyclic PH distributions, and a 

numerical optimization method to fit long-tailed distribution functions into Coxian 

distributions [40]. The Feldmann-Whitt (FW) algorithm [30] is a heuristic-based 

approach to fit long-tailed distribution functions such as Weibull and Pareto into 

hvperexponential distributions. In the following we discuss in more details the EM 

and FW fitting algorithms.

2.6.1.1 EM Algorithm

The Expectation-Maximization (EM) algorithm is an iterative method that aims to 

maximize the log-likelihood function of a data set. In the case of PH distributions, 

the likelihood function is given by the formula

n

L(r, T: y) = U r e T*(-Tfe). (2-25)
i=i
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where y  represents the data set to be fitted into PH distribution. The EM algorithm 

starts from an initial guess for the parameters ( r (0), T (0)). Each iteration j  generates 

a new estimate (t ° \  T ^ ), such that the value of the likelihood function with the 

new estimate is larger than the previous ones

L(t u), T°>; y) < L(t u+1), T u+1): y).

The sequence of the estimates (r*0). T (0)), ( r (1\  T (1)) . .... ( r (jV'_ T (iV)) should even­

tually converge after N  steps to the stationary point ( r ,  T) of the UkeUhood. This 

stationary point is hopefully the one to maximize the likelihood, however there are no 

guarantees, as the algorithm can get stuck in insignificant local maximums or saddle 

points. The best accuracy in the fittings is achieved when different initial values are 

tried. More details on the EM algorithm for fitting data sets into PH distributions 

as well as fitting any non-negative continuous distribution into a PH distribution can 

be found in [6 ].

EM is one of the best algorithms to approximate data sets or continuous dis­

tributions by other continuous distributions. For the case of fitting data sets with 

long-tails into PH distributions, EM may not capture the tail correctly since the pro­

cedure searches for a global maximum [40]. As an iterative procedure, its computation 

complexity depends on the size of the data set and the number of unique entries, as 

well as the number n of phases for the fitted PH distribution.
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2.6.1.2 Feldmann-Whitt (FW) Algorithm

The Feldmann-Whitt (FW) algorithm [30] is a recursive heuristic that fits complete 

monotone non-negative continuous distributions into hvperexponential distributions. 

The idea behind the algorithm is to first fit the rightmost portion of the tail into a sin­

gle exponential distribution determining its parameter and the associated probability 

(see Table 2.1 for the definition of hvperexponential distribution). Once the first pair 

of parameters is known the weight of the fitted portion is subtracted from the dis­

tribution (FW deals with the complementary cumulative distribution function) and 

again the rightmost tail of the result is fitted into another exponential distribution by 

computing the same set of parameters. The algorithm continues until the parameters 

of all phases of the hyperexponential distribution are computed.

The FW algorithm is an elegant and accurate fitting approach for distributions 

like Pareto and Weibull (for a specific range of parameters), that are characterized 

by high variability. Nevertheless, the FW fits are less accurate when the PDF of the 

distribution is not completely monotone, like in Lognormal or Weibull (for a specific 

range of parameters) distributions. Another drawback of the FW algorithm is that it 

can apply to distribution functions only and not to data sets. Hence, an additional 

step is required in the fitting procedure, i.e., to first fit the data set into a Weibull or 

Pareto, before using the FW algorithm. This step may introduces additional errors 

to the final fit. The FW algorithm is outlined in detail in Appendix A.
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2.7 Markovian Arrival Process

The Markovian Arrival Process (MAP), introduced by Neuts in [69], is a generaliza­

tion of the PH distribution. A MAP is associated with a finite absorbing Markov 

chain but instead of having only one initial probability vector r .  it requires as many 

as the number of transient states in the underlying Markov chain, i.e., one r  per 

transient state. This means that once the Markov chain has entered the absorbing 

state and a single MAP random variable is generated, the process restarts from the 

transient part again for the next random variable “remembering” the last transient 

state that reached absorption. Therefore, the MAP is formally represented by two 

matrices ( D 0 , D t ) rather than a matrix and a vector as in the PH-distribution case 

and is in general a non-renewal process. Matrix D o ,  similarly to matrix T  for a PH 

distribution, describes the interaction between the transient states of the underlying 

Markov chain. All off-diagonal entries of Do are non-negative. Matrix Di describes 

how the transient states of the underlying Markov chain are re-entered once the ab­

sorption is reached. Matrix D i  has only non-negative entries. We note that D o  +  D ( 

is an infinitesimal generator describing the transitions of the transient states in the 

underlying Markov chain.

The PH distribution is a MAP where matrix Di has equal rows. The most popular 

case of a MAP is known as Markov Modulated Poisson Process (MMPP) where the 

matrix Di has all entries zero except the diagonal ones. Even a Poisson process is a 

MAP with only one single transient state in the underlying Markov chain.
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The concept of the Markovian Arrival Process is further extended to allow for 

simultaneous batch absorptions in the underlying Markov chain. The resulting process 

is known as the Batch Markovian Arrival Process (BMAP) [54]. Formally a BMAP 

is represented by an infinite number of matrices D* for i > 0  allowing for an arbitrary 

large batch size. Similarly to a MAP, ^  801 infinitesimal generator. The

importance of (B)MAPs lies in their ability to be more effective and powerful traffic 

models than the simple Poisson process or the batch Poisson process, as they can 

effectively capture dependence and correlation, salient characteristics of the arrival 

process in Internet-related systems [70, 38). Although in this dissertation we focus 

on systems with dependent structure only in the arrival process, we stress that the 

both the arrival and service processes in a queueing system can exhibit long-range 

dependence. Similar to a PH distribution with infinite number of phases capturing 

exactly the power-tailed behavior of a distribution, a MAP with infinite number of 

states captures exactly the long-range behavior of a stochastic process.

In our exposition, we measure the dependent behavior in a stochastic process using 

the Hurst parameter, H, as a  metric. If the Hurst parameter is larger than 0.5 then 

the stochastic process exhibits long-range dependence. The long-range dependent 

behavior in a stochastic process is stronger as the value of the Hurst parameter 

increases. For rigorous definitions and discussions on short- and long-range dependent 

processes please refer to [1 0 ].
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2.7.1 Fitting techniques for MAPs

As in the case of PH distributions, moment matching and MLE-based techniques 

exists for fitting data sets into MAPs. The moment matching methods tend to be 

computationally more efficient, but the models are somewhat restrictive with respect 

to the structure of the underlying Markov chain. The moment matching techniques 

for MAPs mainly deal with 2 state MMPPs [89, 35].

One of the early MLE-based techniques for fitting data sets into a 2-state MMPPs 

is proposed by Meier-Hellstern [56]. Optimization methods have been proposed by 

Ryden [92] as part of an MLE-based approach for MMPP parameter estimation. Hor­

vath et al. [39] develop a heuristic fitting method for MAPs based on the superposition 

of phase-type and interrupted Poisson processes. Also the EM algorithm is used as 

an estimation procedure for MAPs and their more general form. BMAPs [15. 16].

2.8 A ggregation techniques

For the analysis of complex Markov chains with large state spaces, decomposition and 

aggregation techniques are used as tools that reduce the complexity of the solution. 

The general idea behind decomposition and aggregation is to decompose (divide) the 

Markov chain in independent subchains which can be solved separately, and then 

aggregate (combine) the results back together. If a Markov chain can be divided 

into independent subchains then this Markov chain is completely decomposable. In
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practice, it is unusual to find completely decomposable Markov chains. However, 

there are cases where the condition of independent subchains almost holds. These 

type of Markov chains are called nearly completely decomposable.

A Markov chain is nearly completely decomposable if its state space S  can be 

partitioned into subsets such that within the same subset, the states interact strongly 

with one another, i.e., are strongly connected, while between different subsets the 

states interact loosely with one another, i.e., are loosely connected. For a CTMC. 

this means that the cumulative rate between states of the same subset is much higher 

than the cumulative rate between the states of different subsets [27]. The fundamental 

formal foundation of decomposition methods for the steady state analysis of queueing 

systems is due to Simon and Ando [96].

Generally speaking, aggregation and decomposition techniques yield approximate 

solutions. If they apply to the nearly completely decomposable Markov chains, the 

relative error can be maintained under a given small constant. If the conditions of 

nearly decomposable Markov chains do not hold, then the error introduced in the 

results is considerably large, with the notable exception of product-form queueing 

networks where the aggregation techniques yield exact solutions. The value of the 

decomposition and aggregation methodology is two-fold [26]:

• it provides efficient numerical solutions for complex and large Markov' chains by 

dividing the problem into smaller and more tractable subproblems, and

• provides theoretical insights regarding the structure of the process modeled bv
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the Markov chain.

40

2.8.1 Exact aggregation and decom position

The basic idea behind the aggregation/decomposition is to group states in strongly 

connected subchains that are loosely connected to each other and:

(a) analyze and solve each subchain as if there is no interaction among them.

(b) analyze the interaction among subchains, ignoring the interaction within each 

subchain.

The infinitesimal generator matrix Q s c d  of nearly decomposable Markov chains 

should be partitioned in such a way that the off-diagonal elements are very small 

compared to the elements of the diagonal blocks

\n c d  =

Qo.o Qo.i Qo.,v-i
Qi.o Qi.i Qi.,v-i

Q.V-l.O Q iV -t.l Q.V-1..V-I

(2.26)

The diagonal blocks Q, ,. for i =  0 .....N  — 1, are square with dimension n* i = 

0 ,..., N  — 1, where 53^ 1 n; = n, is the cardinality of the state space S.

The solution follows the steps outlined at the beginning of this subsection. First, 

we assume that Qatcd is completely decomposable, that is. the off-diagonals blocks 

in Eq.(2.26) are 0. We solve the N  different Markov chains defined by the diagonal 

blocks Qi.j, for i =  0,.... N  — 1 in Eq.(2.26). If any of these diagonal blocks is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND  11

not an infinitesimal generator itself, which is usually the case when Q,vcd is nearly 

completely decomposable, the sum  of the probabilities in the off-diagonal blocks is 

used as a  correction factor to the elements of the diagonal blocks of Q s c d -  This 

correction process affects the accuracy of the solution.

Let a ^  be the stationary distribution vector obtained by solving the subchain

with infinitesimal generator matrix Q *,-7 for i = 0 N  — 1. The element a (,)[y]

for i =  0,..., N  — 1 and j  =  0,.... — 1 is the probability of being in state j  of

subchain i, given that the process finds itself in subchain i. We need to compute 

||a[i]|| for i =  0,..., N  — 1 , which are the probabilities of being in subchain i for 

i = 0,..., N  — 1, such that we can eliminate the condition factor from the elements of 

the probability vectors al'K to construct the stationary probability vector rr of the 

original process with infinitesimal generator matrix Q v c d - We define an infinitesimal 

generator matrix with N  x N  elements as

Qq.o 9o.i • • • Qo.n - i

9 i .o 9 i . i  • • • 9i.JV-i

g jv - i.o  <7jv- i . i • • •  9iV -i.iV -i

(2.27)

where =  a (i)Qi.Jl r  for i ^  j , i , j  =  0,..., N  -  1 . The infinitesimal generator 

matrix Q represent a new irreducible CTMC whose stationary distribution a can be 

computed based on Eq.(2.4.2) [107]. After computing a, the stationary distribution 

jt of the original process is constructed as it =  [a[Oja(0), ..., a [ iV  — l]c*(iV_1)]. The

7Q’t means tha t the respective m atrix  Q,., is modified by adding the corresponding off-diagonal 
cumulative rate into its elements.
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infinitesimal generator Qc is known as the coupling matrix. More details on the 

coupling matrix and the coupling process are given in the following subsection.

2.8.2 Stochastic complementation

In this subsection, we outline the concept of stochastic complementation [61] which is 

another aggregation technique. Although there may be similarities with the technique 

presented in Subsection 2 .8 .1 , the methodology is different. The concept of stochastic 

complementation is formally defined for finite state spaces [61]. Here, we define it 

for the infinite case, which is a straightforward extension. Since throughout this 

dissertation we consider continuous time Markov chains, we define and state the 

concept of stochastic complementation in terms of CTMCs but they readily apply to 

DTMCs as well (via uniformization [67]).

Let partition the state space S  of an ergodic CTMC with infinitesimal generator 

matrix Q and stationary probability vector it, satisfying jtQ  =  0, into two disjoint 

subsets, A and A.

Definition [61] (S tochastic complement) The stochastic comple­

ment of A is

Q = Q[A,A\ + (2.28)

where (—Qp(, >(])_ l[r,c] represents the mean time spent in state c € A,

starting from state r  G A. before reaching any state in A , and ((—Q[X ̂ ] )_1Q[^4. «4 ])[/\ d\
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represents the probability that, starting from r  € !A, the process enters A 
through state d. □

The stochastic complement Q is the infinitesimal generator of a new CTMC which 

mimics the original CTMC but “skips over’ states in A. The following theorems 

formalizes this concept.

Theorem  [61] The stochastic complement Q of A is an infinitesimal 

generator matrix and it is irreducible if Q is. □

Theorem  [61] If a  is the stationary probability vector of Q, satisfying 

a  • Q = 0,

a  =  =  Horm{w[A]). (2.29)

□

In other words, a  gives the individual probability of being in each state of A for 

the original CTMC, conditioned on being in A. This implies that the stationary 

probability distribution a  of the stochastic complement differs from the corresponding 

portion of the stationary distribution vector of the original CTMC. ff[-4|, only by a 

constant a = it[J\ • 1T, which represents the probability of being in A in the original 

CTMC. The value a  is also known as the coupling factor of the stochastic complement 

of states in A.
Assume that we know at and a ,  the stationary' probability vectors of the stochastic 

complements of states in A and A. respectively. The stationary probability' vector of
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the original CTMC is given by

44

7T =  [a • a .  o • a |,  (2.30)

where a  and o are the two respective coupling factors. The coupling factors must 

sum to one and the following theorem holds.

Theorem  [61] (Coupling) The coupling factors a  and a  are the sta­

tionary probabilities for a new 2 -state CTMC with infinitesimal generator 

the coupling matrix Qc. where Qc[0,1] = QC[A A\ = a  • Q[«4. A\ • l r  and 

Qc[l.0 ] = QC[A A\ = a  • Q [A, A] ■ l T. □

In Subsection 6 .1 , we present more results on the coupling process. Differently 

from the above theorem, we extend the coupling process by allowing subsets A  and 

A  to be non-disjoint. Furthermore in Subsection 6.2, we present pseudo stochastic 

complementation, which is another way of implementing stochastic complementation.

There are cases where we can take advantage of the special structure of the CTMC 

and explicitly generate the stochastic complement of states in A- To consider these 

cases, we rewrite the definition of stochastic complement in Eq.(2.28) as

Q  = Q[w4, A] +  RowSum(Q[A,A\)Z, (2.31)

where Z =  JVorm(Q[,4. ̂ ?]) (-QpC,>J])~lQ[X -4]. The r th row of Z, which sums to 

one, specifies how this rate should be redistributed over the states in A  when the
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process eventually reenters it, while the r th diagonal element of Aow5um(Q[w4.<4]) 

represents the rate at which the set A is left from its r th state to reach any of the 

states in A-

(Single en try) If A can be entered from A only through a 

single state c e  A, the matrix Z defined in Eq. (2.31) is trivially com­

putable: it is a matrix of zeros except for its cth column, which contains 

all ones. a

M (b)

e

Figure 2.6: Stochastic Complementation for a finite Markov chain.

We choose the simple finite Markov chain depicted in Figure 2 .6 (a) to explain 

the concept of stochastic complementation. The state space of this Markov chain 

is S  = {a,b,c,d,e}. We construct the stochastic complement of the states in set 

A =  {a, 6 ,c} (A =  {d. e}), as shown in Figure 2 .6 (b). The matrices used in Eq.(2.28) 

for this example are:

’ - ( a  +  v) o 0 '  0 V

Q[A,A] = id - ( 7  -F 3) 0 Q [ A 3 ]  = i 0
8 0 -8 0 0

QIA'A] = A — (A ■+■ t)
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Observe that in this case A is entered from states in A only through state c and 

the stochastic complement can be trivially constructed based on the above lemma 

on single entry. There are only two transitions from states in A to states in A: the 

transition with rate 7  from state b to state d and the transition with rate u from state 

a to state e. These two transitions are folded back into A through state c, which is the 

single entry in A. The following derivation shows that because of the special single 

entry state the two folded transitions have the original rates. 7  and 1/ respectively.

Z = JVoito( Q [ A ^ ) ( - Q ( £ 2 ) ) -1Q P M  =
■ 0 1 ' r A+r 1 ■ |-

1 0 • T
T
1 -

0 0 1 r .
0 0 0
0  0  r

0  0  1

0 0 1
0 0 0

which further results in:

V 0 0 ‘ '  0 0 1 ' ■ 0 0 V

z = 0 7 0 • 0 0 I = 0 0 7
0 0 0 0 0 0 0 0 0

2.9 Chapter summary

In this chapter, we gave an overview of basic concepts and notations. We focused on 

Markov chains, their definition, classification, and solution methods. We described 

aggregation/decomposition solution techniques for Markov chains, elaborating in de­

tail on the stochastic complementation, a technique that we often refer throughout 

this dissertation. We illustrated via simple examples the structure of infinite Markov
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chains with repetitive structures. Finally, we described tractable stochastic processes 

such as PH distributions and MAPs, which we later use as inputs to queueing models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Matrix-Analytic Methods

Matrix analytic techniques provide a framework that is widely used for the exact 

analysis of a general and frequently encountered class of queueing models. In these 

models, the embedded Markov chains are two-dimensional generalizations of elemen­

tary GI/M / 1  and M /G /l queues [43], and their intersection, i.e., quasi-birth-death 

(QBD) processes. G I/M /l and M /G /l Markov chains model systems with inter­

arrival and service times characterized, respectively, bv general distributions rather 

than simple exponentials and are often used as the modeling tool of choice in modem 

computer and communication systems [65. 78. 101, 29, 53]. Alternatively, GI/M/1 

and M /G /l Markov chains can be analyzed by means of eigenvalues and eigenvec­

tors [32]. The class of models that can be analyzed using M/G/1-tvpe Markov chains 

includes the important class of BMAP/G/1 queues, where the arrival process and/or 

service process can exhibit correlation and long-tail, i.e.. salient characteristics of 

Internet-related systems.

Neuts [67] defines various classes of infinite-state Markov chains with a repet-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. MATRIX-ANALYTIC METHODS 49

itive structure, whose state space is partitioned into the boundary states «S(0) = 

{s ,°\. . . ,  Sm } and the sets of states «S(,) =  { s j '\ . . . ,  s^}, for i > 1 , that correspond 

to the repetitive portion of the chain. In Section 2.5. we identified these classes as 

G I/M /1-type, M/G/l-type, and their intersection, QBD processes. The structure of 

the infinitesimal generator for these type of processes is shown in Eqs.(2.21), (2.22), 

and (2.18), respectively.

For systems of the M/G/l-type, matrix analytic methods have been proposed for 

the solution of the basic equation ir • Q a//c/ i =  0 [69]- Key to the matrix-analytic 

methods is the computation of an auxiliary matrix called G. Traditional solution 

methodologies for M/G/l-type processes compute the stationary' probability vector 

with a recursive function based on G. Iterative algorithms are used to determine 

G [60, 47].

The solution of GI/M/l-type processes is significantly simpler than the solution 

of M /G/l-type processes because of the matrix geometric relation [67] that exists 

among the stationary probabilities of sets «S(,) for i > 1 . This property leads to 

significant algebraic simplifications resulting in the very elegant matrix-geometric 

solution technique. Key to the matrix-geometric solution is a matrix called R  which 

is used in the computation of the steady-state probability vector and measures of 

interest.

Since QBDs are special cases of both M /G /l-type processes and GI/M/1-type 

processes, either the matrix-analytic method or the matrix-geometric solution can be
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used for their analysis. The matrix-geometric solution is the preferable one because 

of its simplicity. Both matrices G and R  are defined for QBD processes.

Key to the solution of Markov chains of the M /G /l, G I/M /1 , and QBD types, 

is the existence of the repetitive structure, as illustrated in Eqs. (2.22), (2.21), and 

(2.18). This special structure allows for a certain recursive procedure to be applied 

for the computation of the stationary probability vector ir(,) corresponding to «S(l) for 

i > 1. It is this recursive relation that gives elegance to the solution for the case of 

GI/M /1 (and consequently QBD) Markov chains, but results in unfortunately more 

complicated mathematics for the case of the M/G/l-type.

3.1 M atrix geom etric solutions for G I/M /l-ty p e  

and QBD processes

In this section, we give a brief overview1 of the matrix geometric solution technique 

for GI/M /l-tvpe and QBD processes. While QBDs fall under both the M /G /l and 

the G I/M /1-type cases, they are most commonly associated with GI/M/1 processes 

because they can be both solved using the well-known matrix geometric approach 

[67].

Key to the general solution for the generator of Eqs.(2.21) and (2.18) is the as-

l In th is section and in the remainder of this dissertation, we assume continuous time Markov 
chains, o r CTMCs unless otherwise stated, but our discussion applies ju s t as well to  discrete time 
Markov chains, or DTMCs.
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sumption that a geometric relation2 holds among the stationary probability vectors 

of states in as follows:

ir<') =  ir(l) • R ‘~l Vi > 1. (3.1)

where, in the GI/M /l-type case. R  is the solution of the matrix equation

F  +  R  L + £ R fc+l B (fc) = 0 .
t=i

(3.2)

and can be computed using iterative numerical algorithms. The above equation is 

obtained from the flow balance equations of the repeating portion of the process, re ­

starting from the third column of Q g i / m / i - One can solve a GI/M / 1-type process 

starting from the flow balance equations corresponding to the first two columns of 

Q g i / m / i ■ By substituting 7T(*' for t > 2 with their equivalents from Eq. (3.1), i.e.. 

tt< l)R*~l, and adding the normalization condition as

ir(0) • l r  +  ir(l) • R ' - 1  • 1T =  1 i.e., 7T<°> • 1T + t t (1) • (I -  R ) " 1 • 1T = 1.
i=l

we obtain the following system of linear equations

(L (0))° pd)

(I — R)_I -e  ( E ^ . R ^ - B ^ ) 0 L +  • B(fc)
=  [1. 0 ], 

(3.3)

2This is sim ilar to the simplest degenerate case of a QBD process, the straight forward birth-dcath 
M /M /1 case.
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that yields a unique solution for ir(0) and w(l). The symbol indicates that we dis­

card one (any) column of the corresponding matrix, since we added a column repre­

senting the normalization condition. For i > 2, 7T(,) can be obtained numerically from 

Eq.(3 .1 ), but many useful performance metrics such as expected system utilization, 

throughput, or queue length can be expressed explicitly in closed-form using 7T(0 ). 7T(1), 

and R  only (e.g., the average queue length is simply given by tt(1) • ( I—R)~2 • 1 T) [64].

In the case of QBD processes, Eq.(3.2) simply reduces to the matrix quadratic 

equation

F + R • L + R 2 B = 0 ,

while 7T(0) and 7T(I) are obtained as the solution of the following system of linear 

equations [65]:

e (L(0))° F (1)
(I — R)~l -e (B)° L +  R  B

= [1.0], (3.4)

3.1.1 Additional measures of interest

Once the stationary probability vector i t  is known, we can obtain various performance 

measures of interest such as the average queue length which we showed in the previous 

subsection. There are additional measures of interest that one can compute knowing 

tt(0), 7T(1), and R. In particular, the tail distribution of the number of jobs in the 

system can be expressed as

OC
P[Ql>x\  =  ]jT 7T(fc)e =  7T(,)Rx(I -  R )- le, j: > 0, (3.5)

k ~ x + 1
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with the corresponding expectation given by

OO PC

E[<?/] =  tt(i) £  R*e +  ir(1) kR ke  =  ir(1)(I -  R )_le + ir<l)R(I -  R )_2e. (3.6)
fc= 0  it=o

The expected waiting time of a job in the system can then be calculated using Little’s 

law [51] and Eq.(3.6). which yields

E[[V] = A- 1  ( 7T(l)(I — R )-1e + ir(I)R (I — R )- 2e ) . (3.7)

Let T) denote the spectral radius of the matrix R, which is often called the caudal

characteristic [6 8 ]. In addition to providing the stability condition for a QBD. q is 

indicative of the tail behavior of the stationary queue length distribution. Let u  and 

v  be the left and right eigenvectors corresponding to q normalized by ue =  1 and 

uv =  1 . Under the above assumptions, it is known that [94]

R 1  =  qxv - u  + o(q1), as x  —* oo.

which together with Eq.(3.4) yields

ir(l)e =  7T(l)vq x_l -I- o(qx_I), as x  —► oo. (3.8)

It then follows that

TT^VP [Q /> x ] = -— - i f  +  o(rf), as x —* oo, (3.9)
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and thus

1 - r j ' (3.10)

or equivalently

P [Ql > x] ~   i f .  as x —* oo.
1 ~ V

(3.11)

The caudal characteristic can be obtained without having to first solve for the 

matrix R. We define the matrix A*(s) = Ao + sA i + s2A 2, for 0  < s < 1. Since the 

generator matrix A is irreducible, this matrix A*(s) is irreducible with nonnegative

under the above assumptions, q is the unique solution in (0 ,1 ) of the equation \(s) = 

0. A more efficient method is developed in [9].

3.2 W hy does a geom etric relation hold for QBD  

processes?

There is a clear intuitive appeal to the fact that a geometric relation holds for QBD 

processes. In this subsection, we first focus on the reasons for the existence of this 

relationship via a simple example. Our first example is a QBD process that models 

an M /C 0 X2 / I  queue. The state transition diagram of the CTMC that models this 

queue is depicted in Figure 3.1. The state space S  of this CTMC is divided into 

subsets S (0) =  {(0 , 0 )} and 5 (‘) =  {(j, 1), (;. 2 )} for i > 1 . implying that the sta­

tionary probability vector is also divided in the respective subvectors ir(0) =  [7r(0.0)]

off-diagonal elements. Let \(s)  denote the spectral radius of the matrix A ’(s). Then,
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and ir(,) =  [7r(i. 1 ), ir(i. 2)], for i > 1. The block-partitioned infinitesimal generator

Figure 3.1: T he C T M C  m odeling an  M / C 0 X2 / I  queue.

Qq b d  is a  infinite block tridiagonal matrix as defined in Eq.(2.18) and its component 

matrices are:

B . [ «

A) . F =  [A 0 ] , B  =
'  0 .2 / t  '

7
0  ' T _

—(A +  f i ) 0 .8  n
F  —

A 0

0
•  L  —

0 - ( A  +  ~ , ) .
« r  —

0  A

( 3 . 12)

To illustrate the existence of the geometric relationship among the various sta­

tionary probability vectors ir^ \ we use the concept of stochastic complementation 

discussed in Subsection 2.8.2. We partition the state space into two subsets: A  = 

and A  =  i.e., a set with finite number of states and a set with

an infinite number of states, respectively. The stochastic complement of the states 

in A  is a new Markov chain that “skips over” all states in A. This Markov chain 

includes states in A  only, but all transitions out of <S(,) (i.e., the boundary set) to 

S(i+1) (i.e., the first set in >C) need to be “folded back” to A  (see Figure 3.2). This 

folding introduces a new direct transition with rate r  that ensures that the stochastic
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( l )(0)

( 0,0 0 .2*1

Figure 3.2: The CTMC of the stochastic complement of A = «St» of the CTMC 
modeling an M / C 0 X2 / I  queue.

complement of the states in A  is a stand-alone process. Because of the structure of 

this particular process, i.e.. A  is entered from A  only through state (t. 1 ). x  is simply 

equal to A (see Lemma on single entry state in Subsection 2.8.2). Furthermore, be­

cause of the repetitive structure of the original chain, this rate does not depend on i 

(which essentially defines the size of set A).

The steady state probability vector W = [tt*0'. • • • . tt*'*] of the stochastic com­

plement of the states in A  relates to the steady state probability i f  a  of the original 

process with: W = i f  a / *  A ' l r - This implies that if a relation exists between 

and 7r(t). then the same relation holds for and ir(,).

The flow balance equations for states (i. 1) and (i, 2) in the stochastic complement 

of A , are:

(0 .2/1 -1- O.S/O^Hl] =  Afr<*-l)[l] -I- A7f(i)[2 ],

( 7  +  A) # 0  [2 ] =  A ^ " 1̂ ]  -f0 .8 /iif(')[l],
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which can further be expressed as:

57

This last set of equations leads us to the following matrix equation

which imphes that the relation between and 7r(l* can be expressed as

(3.13)

where matrix R  is defined as

R =  - A
0

0

A H 7 - E % r ~ p(t+p[i s])"-(3u>
Applying Eq.(3.13) recursively, one can obtain the result of Eq.(3.1). Observe that in 

this particular case an explicit computation of R  is possible (i.e., there is no need to 

compute R  [77] via an iterative numerical procedure as in the general case). Explicit 

computation of R  in this example is possible because backward transitions from 

to are directed toward a single state only. In Subsection 3.8, we give details on 

the cases when matrix R  can be explicitly computed.
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3.3 Generalization: geom etric solution for the G I/M /1  

processes

We generalize the finding in the previous example by considering a GI/M /1-queue 

with infinitesimal generator Q g i / m / i  similarly to the proof given in [45]. To evaluate 

the relation between 7r̂ ,_I' and 7T(,) for i > 1 , we construct the stochastic complement 

of the states in A  = {A =  S  — A). The stochastic complement of states in

A  has an infinitesimal generator defined by the following relation

Q = Q [A, A] +  Q [A  A\ • ( -Q [A ^ ] ) - ‘ • Q[A.A],

where

Q[A,A] =

L
g d )

F
L

Q [A, A) =

§ ( « - ! )  j j ( i - 2 )  .

g (‘) B(i_1) ■

B(i+l) B (i) 
B(‘+2) B(<+1) 
B(*+3) B(i+2)
B(,+4) b (‘+3)

0

0

0

0

L F
B<1> L

B(i) 1 
B (2)
b (3)
B(4>

Q[A.A] =

Q [A. A] =

'  0 0 0 0

0 0 0 0  •

0 0 0 0  •
F 0 0 0  •

1? 0 0L
B<‘> L
B<2) b (i

F
L

0

F
b (3) b (2) b (,) l

(3.15)

Observe that Q[A A] is the same matrix for any i > 1. We define its inverse to
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be as follows

A o .o A 0.1 A o.2 A o,3

A i .o A , . , A 1.2 A , .3

A 2.0 A 2.1 A 2.2 A 2 .3

A 3.0 A 3.1 A 3.2 A 3.3

(3.16)

From the special structure of Q [ - 4 ,  >1) we conclude that the second term in the sum­

mation that defines Q  is a matrix with all block entries equal to zero except the very 

last block row, whose block entries Xj are of the form:

X J = F - £ > 0 . * B ( j + , + t )  j  = i
Jt=0

i.

and
OC

Xj = F - J  A o j k B u + l + t ) , 0  < j <
k= o

Note that X o  =  F  • A o . f c B ( l+fc)  which means that X o  does not depend on the 

value of i > 1 . The infinitesimal generator Q  of the stochastic complement of states 

in A  is determined as

Q =

L

B (1)

F

L

g(i-l) B (i_2)
B W  +  X j  B (‘_ l )  -I- X j _ ,

0

0

0

0

L  F

B (1) +  X ,  L  +  X „

(3.17)

Let it be the stationary probability vector of the CTMC with infinitesimal generator 

Q  and the steady-state probability vector of the CTMC of states in A  in the
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original process, i.e.. the process with infinitesimal generator Qgi/m/ i • There is a 

linear relation between W and given in the following equation:

(3 1 8 )

Since TfQ = 0, we obtain the following relation

rf(0  • (L + Xo) = — • F

implying:

7T(*) -(L + X0) = -? r(‘_ l)-F.

The above equation holds for any i > 1, because their matrix coefficients do not 

depend on i. By applying it recursively over all vectors t t (,) for i > 1. we obtain the 

following geometric relation

7T(i) =  ir(,) • R T l V i > 1.

Matrix R, the geometric coefficient, has an important probabilistic interpretation: 

the entry (k. I) of R  is the expected time spent in the state I of «S(l), before the first 

visit into expressed in time unit A*, given the starting state is k in A*

is the mean sojourn time in the state k of for i > 2 [67, pages 30-35).
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3.4 W hy M /G /l  processes are more difficult

For M/G/l-type processes there is no geometric relation among the various proba­

bility vectors 7T(i) for i > 1 as in the case of QBD and G I/M /1-type processes. In 

this section, we first demonstrate via a simple example why such a geometric relation 

does not exist and then we generalize and derive Ramaswami's recursive formula, i.e.. 

the classic methodology for the solution of M /G /l chains.

3.5 Example: a B M A P 1/ C 0 X2 / I  queue

Figure 3.3 illustrates a Markov chain that models a BMAPi/Coxo/l  queue. This 

chain is very similar with the one depicted in Figure 3.1, the only difference is that the 

new chain models bulk arrivals of unlimited size. The infinitesimal generator Q m / g / i 

of the process is block partitioned according to the partitioning of the state space S  

of this CTMC into subsets «S(0) = {(0,0)} and =  {(i, 1), (<’. 2)} for i > 1. The 

definition of the component matrices of Q m / g / i  i s  3:5 follows:

L = [—2 A], B -["1 F(i) = [0.5‘_1A OJ i > 1

B = ' 0 .2 ft 0 ,  r - ( 2 a + p ) 0 .8 /t p (0  — ■ 0.5*-1A 0
7 0 • L - l  0 -  (2* +  7) .

• & -- 0 0.5*-1A

In the following, we derive the relation between 7T(,) for i > 1 and the rest of vectors 

in ir using stochastic complementation, i.e., similarly to the approach described in 

Section 3 .1 . First we partition the state space S  into two partitions A  =
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s (0) S <1) . s (2) . s <3)

xos:
: 0.25A

ra5A: 0.5A

0.2m •

0.8m 0.8m

0.5A
L25T

0.25A

Figure 3.3: The CTMC that models a B M A P 1 / C 0 X2 / I  queue.

and A  =  U°Ll+lS U) and then we construct the stochastic complement of states in 

A. The Markov chain of the stochastic complement of states in A  (see Figure 3.4), 

illustrates how transitions from states (j. 1) and O'. 2) for j  < i and state (0.0) to 

states (/. 1 ) and (/. 2 ) for / > i are folded back to state (i, 1 ), which is the single state 

to enter A  from states in A. These "back-folded" transitions are marked by x f o r  

k < i and h = 1 . 2  and represent the “correction" needed to make the stochastic 

complement of states in A, a stand-alone process. Because of the single entry state in 

A  the stochastic complement of states in A  for this example can be explicitly derived 

(see Lemma on single entry state in Subsection 2.8.2) and the definition of rates Xk.h 

is as follows:

xfc.,, =  2 • 0.5*-fcA = 0.5*-fc-lA. i > 1 . k <  i. h =  1.2.
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The flow balance equations for states (i, 1) and (i, 2) for the stochastic complement 

of states in A  are:

( 0 .2 / i  +  0.8*i)5Tw  [1] =  2 Att<*) [2]

+  2-0.5<- IA5f<o)[ll
+  2  • 0 .5 ‘" 2A5f<l) [ l ] + 0 . 5 i~ 2AW<1) [2] +  .. .

+  2  • 0 .5 i - i AW<i- I ) [ l]  +  0 .5 i“ iA?f<, - l) [2]

and

(2A  +  - r J i f W p l  =  0 .8 / i i f (i)[ l ]  +  0 .5 <_2A if (1)[2] +  .. .  +  0 .5 i - i AW(i" l ) [2 l.

(0)
aja

0,0
0 .2 |i . :

0 .8m
u

Figure 3.4: Stochastic complement of BMAPi /Coin/ 1-type queue at level i.

In the above equalities, we group the elements of tf*1' on the left and the rest of 

the terms on the right in order to express their relation in terms of the block matrices 

that describe the infinitesimal generator Q of the stochastic complement of states in
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A. By rearranging the terms, the above equations can be re-written as:

-# i* (i)[l]+2A*<i>[2] = - (2  •0.5i_lA»(0)[lI
+ 2 • 0.5‘"2AW(l) [1] + 0.5<-aA?f<l) [2J + 
+  2 • 0.5i-iA»<i- l,[ll +  0.5<_iAW(i-,)[2l)

and

0.8/iif(i)[ll -  (2A + 7)»(i)[2l =  -(0 .5‘_2A7f(l)[2] + ... +  0.5‘- iAW(i-,)[2]).

We can now re-write the above equations in the following matrix equation form:

*<0[21] • [ £  _ (2°A8+ 7) =  -(7r<o>[Ij[2-0.5‘- ‘A 0 ]
2A

!A
0

0.5‘_2A ++  [* »  [I], »<» [2JJ [ 2g°s^

+ [ * ‘-" [ l |.  W<->|2H [ J , , ] )

By substituting [1], 7f(,)[2]j with W(,) and expressing the coefficient matrices in 

the above equation in terms of the component matrices of the infinitesimal generator 

Q of the stochastic complement of states in A, we obtain3:

TfW • (L +  ] £ f (j)G) = -(7f(0) J ^ F 0)G + if(,) 'JT F(J)G + ... +  jf(,-I)^ F 0)G).
j —1 j—i 7=i-l 7=1

where G is a matrix with the following structure:

G = 1 0 
1 0

3Rccall th a t If is the stationary probability vector of the stochastic complement of states in A
and ff[.A] is the stationary probability vector of states in A  in the original M /G /l process. They
relate to each other based on the equation W =  ir[.4]/(jr[./4]lr ). which implies that any relation that
holds among subvectors W<J* for j  <  i would hold for subvectors ir<jl for j  < i as well
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Note that at this point, we have introduced a new matrix, G, that has an important 

probabilistic interpretation. In this specific example, the matrix G can be explicitly 

derived [77]. This is a direct outcome of the fact that all states in set for i > 1 

return to the same single state in set S^~l\  Equivalently, the matrix B of the 

infinitesimal generator Qm/c/i has only a single column different from zero.

3.6 Generalization: derivation o f Ramaswami’s re­

cursive formula

In this section, we investigate the relation between for i > 1 and 7r*j) for 0 < 

j  < i for the general case in the same spirit as [93]. We construct the stochastic 

complementation of the states in A = U‘=0S^ (A = S — A). We obtain

Q[A,A) =
'  L pU) . . . pO-l) p*(*) F<‘+1) p(i+2) p(i+3)

B L p(«-2) p(*-l) p(i) p(i+l) p(i+2)
I : : I : , Q[A,A) = ; ; I
0 0 ••• L F F(2) p(3) p(-*)
0 0 ••• B L p(D p(2) P<3)

0 0 •• 0 B L F(1) F(2) p(3)
0 0 - 0 0 B L F(1) p(2)

A} = 0 0 -• 0 0 Q [A  A\ = 0 B L p(D
0 0 - - • 0 0 0 0 B L
• . . * * :

The stochastic complement for states in A has an infinitesimal generator defined 

as follows

Q =  Q[A A] + Q [A 2) • (-Q [A  A ])-1 • Q P M -
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Observe that Qp(, >t] is the same matrix for any i > 1. We define its inverse to be 

as follows

( - Q P t a i ) - '  =

Ao,o A0.1 A0.2 A0.3

Ai,o A 1.1 A j.2 Ai.3
A2.0 A2,l A 2.2 A2.3

A3.0 A 3.1 A3.2 A3.3
(3.19)

From the special structure of Q[«4. *4], we conclude that the second term of the above 

summation is a matrix with all block entries equal to zero except the very last block 

column, whose block entries Xj are of the form:

X . =  £  pd+I+A:) . Ajfco . B

k-0

and

Xj =  X F ° +l+t)' Afc-° B ° - j <
t=0

The infinitesimal generator Q of the stochastic complement of states in A  is deter­

mined as

Q =

L F<i) . . . p(i-D F (*) +  X

B L p(‘-2)

0 0 L F ^ + X ,

0 0 B L  +  X o

(3.20)

We define W to be the steady-state probability vector of the CTMC with infinitesimal 

generator Q and the steady-state probability vector of the CTMC with infinites­

imal generator Qa//c/i corresponding to the states in A.  There is a linear relation 

between W and n x

*  =  — <3-21) 
I t  A  ' 1
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From the relation irQ = 0, it follows that

i—I
W *0  • ( L  +  X o )  =  - ( W < 0) • ( F (i)  +  X ,- )  +  £ w 0 ) '  +  X - > ) )  V i  ^  1

i=i

and

i —l

• (L +  X o )  = —(ir<°> • (F (i) + X i )  +  7r° ) • (F(<_J) +  X<-j )) Vi ^  L (3-22)
j =  i

The above equation shows that there in no geometric relation between vectors ir(,) for 

i > i. however it provides a recursive relation for the computation of the steady-state 

probability vector for M /G /l Markov chains. In the following, we further work on 

simplifying the expression of matrices Xj  for 0 < j  < i.

From the definition of the stochastic complementation (see Subsection 2.8.2), we 

know that an entry [r,c] in (-Q [A ^4]_1 • Q[A,>t])J represents the probability that 

starting from state r  € A  the process enters A  through state c. Since A  is entered 

from A  only through states in «S*'\ we can use the probabilistic interpretation of 

matrix G to figure out the entries in (—Q [A -4]_ l) • Q[A-4j. An entry [r,c] in GJ 

for j  > 0 represents the probability that starting from state r € S(,+j) for i > 0 the 

process enters set through state c. It is straightforward now to define

0 0 ••• 0 G
0 0 ••• 0 G l

( -Q E X an -Q C M - 0 0 0 GJ
0 0 -  0 GJ

(3.23)

4Only the entries of the last block column of (—Q[«4.>1] l ) • Q[>1.̂ 4] are different from zero.
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The above result simplifies the expression of Xj as follows

ao
Xi = £  F{i+k) ■ G k and X, = £  F0+fc) • G*. 0 < j  < i. (3.24)

This is in essence Ramaswami's recursive formula. We will return to this in the 

following section after we elaborate on matrix G, its implications, and its probabilistic 

interpretation.

3.7 General solution of M /G / 1-type processes

For the solution of M/G/1-type processes, several algorithms exist [12. 60. 69]. These 

algorithms first compute matrix G as the solution of the following equation:

The matrix G has an important probabilistic interpretation: an entry (r, c) in G

c, given that it starts from state r of «S(t) [69. page 81]5. Figure 3.5 illustrates the 

relation of entries in G for different paths of the process. From the probabilistic 

interpretation of G the following structural properties hold [69]

•  if the M /G /l process with infinitesimal generator Q a//g/ i is recurrent then G 

is row-stochastic.

5Thc probabilistic interpretation of G  is the same for bo th  DTMCs and CTMCs.

(3.25)

expresses the conditional probability of the process first entering «S*‘ 11 through state
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GV.h]

Figure 3.5: Probabilistic interpretation of G.

•  to any zero column in matrix B of the infinitesimal generator Q m / g / i - there is 

a corresponding zero column in matrix G.

The G matrix is obtained by solving iteratively Eq.(3.25). However, recent advances 

show that the computation of G is more efficient when displacement structures are 

used based on the representation of M/G/1-type processes by means of QBD pro­

cesses [60, 12, 11, 47]. The most efficient algorithm for the computation of G is the 

cyclic reduction algorithm [12].

3.7.1 Ramaswami’s formula

From Eqs.(3.22) and (3.24) and the aid of matrix G, we derive Ramaswami's recur­

sive formula [75], which is numerically stable because it entails only additions and 

multiplications6. Ramaswami's formula defines the following recursive relation among

S ubtractions on these type of formulas present the possibility of numerical instability [69. 75].
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stationary probability vectors 7r(,) for i  > 0:

ir(i) =  -  7̂T(0)S(i) +  Y  S(0)_l Vi > 1. (3.26)

where, letting F(0) =  L, matrices S(*' and are defined as follows:

3 0  3C

§(0 = F(,)G'_i. i > 1. S(i) =  Y ,  F{l)Gl~‘. i > 0. (3.27)
/=t <=«

Observe that the above auxiliary sums represent the last column in the infinitesimal 

generator Q  defined in Eq.(3.20). We can express them in terms of matrices X , 

defined in Eq.(3.24) as follows:

§(0 = $(•) +  Xi, i > 1 S(i) =  F(i) + Xi, i > 0.

Given the above definition of 7T(,) for i > 1 and the normalization condition, a unique 

vector ir (0) can be obtained by solving the following system of m linear equations, 

i.e.. the cardinalitv of set <S(0):

ir<°> ( l <0) -  S (1)S (0) ‘b V  | l r - ^ S (i)
i = l  \ j = 0  /

-l
l r = [0 | 1]. (3.28)

where the symbol •‘0’' indicates that we discard one (any) column of the correspond­

ing matrix, since we added a column representing the normalization condition. Once 

7T<0) is known, we can then iteratively compute i r^  for i > 1. stopping when the ac­

cumulated probability mass is close to one. After this point, measures of interest can
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be computed. Since the relation between ir(,) for t > 1 is not straightforward, compu­

tation of measures of interest require generation of the entire stationary probability 

vector.

3.7.2 Explicit computation of G

A special case of M/G/ 1-type processes occurs when B is a product of two vectors,

i.e., B = a  ■ 0 . Assuming, without loss of generality, that 0  is normalized, then 

G =  l r  • /3. i.e., it is derived explicitly [77, 78].

For this special case, G = G". for n > 1. This special structure of matrix G 

simplifies the form of matrices S(,) for i > 1. and Ŝ** for i > 0 defined in Eq.(3.27):

St'> = F “>+  ( £ - . „  i 2 l

S<‘> = F<‘> + ( £ “ i+,FO>)-G. i> 0 ,  F™! =  L. '■ '

In this special case. G does not need to be either computed or fully stored, which is 

a considerable gain since in an M/G/1-type process computation of G is expensive 

and G needs to be stored throughout the solution procedure.

3.7.3 Fast FFT Ramaswami’s formula

Meini in [58] gives an improved version of Ramaswamrs formula. Once 7T(0) is 

known using Eq.(3.28), the stationary probability vector is computed using matrix- 

generating functions associated with block triangular Toeplitz matrices'. These matrix-

7 A Toeplitz m atrix has equal elements in each of its diagonals allowing the use of computationally 
efficient methods.
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generating functions are computed efficiently by using fast Fourier transforms (FFT).

The algorithm of the Fast FFT Ramaswami's formula is based on the fact that in 

practice it is not possible to store an infinite number of matrices to express the M /G /1- 

type process. Assuming that only p matrices can be stored then the infinitesimal 

generator Qa//g/i has the following structure

Q m / g / i =

L ptD F<2) F>(3) . . . p(p) 0 0

B L F<3' • • • ptp-1) p(p) 0
0 B L F<1> f <2) • . . p(p-2) p(p-i) p(p)
0 0 B L pW ••• p (p -3 ) p(p—2) p(p-i)

0 0 0 0 0  • p(l> p(2) F<3)

0 0 0 0 0  • L p (l> p(2)
0 0 0 0 0  • B L p(U
0 0 0 0 0 0 B L

. (3.30)

Because there are only p matrices of type F^‘- and F (l1. there are only p sums 

of type S(,) and to be computed. Therefore, the computation of for i > 

0 using Ramaswami’s formula, i.e.. Eq.(3.26), depends only on p vectors 7r(j) for 

max(0. i — p) < j  < i. Define

ir(l) = [ir(I) * w ] and * (i) = [*Wi- |,+I)...... ^p*)] for , > 2. (3.31)

The above definition simplifies the formalization of Ramaswami's formula since 7T(,) 

depends only on the values of 7r(,-1) for i > 1. If we apply Ramaswami's formula for
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vectors tt*1* to we obtain the following equations

W(i)= - irw s ( l)(s(°))-1
w (2)= _ ( i r (o)§(2) +  7r(l)S<1))(S(0))_1 
ir(3)= —(ir(0)S (3) +  ir(1)S(2) +  »®S<1>)(SW)-1

ir « = - ( » W S w  +  7r(l)S(p_,) + .. .  +  i r ^ S ^ K S * 0*)-1 

We rewrite the above equations in the following form:

^USO)
W(2)S(°) +  wtMsW 
jr<3)S(°) +  ir(2,S (1) +  ir(l)S(2)

= _^(0)§(l)
= —ir(0)S(2)
= -7 r(0)S(3)

tt̂ S ^  +  tt̂ S W  + ... +

Define

' s<°> s(l) s<2> g(p-D '
0 s(0) s(1) ••• S(P-2)

Y = 0 0 S (°) . . . g(p-3)

0 0 0 ••• S(°)

and

(3.32)

(3.33)

b =  [§(l). S(2). S(3).-- - . S(p)] .

(3.34)

The set of equations in Eq.(3.33) can be written in a compact way by using the 

definitions in Eq.(3.31) and Eq.(3.34).

*•(») = _*«>) b Y _l (3.35)

We apply Ramswami's formula for all vectors ir(jK p(i — 1) 4 - 1 < j  < pi in 7T(l) for 

i > 1.
7r(p<«-l)+l)__(1r(p(i-2)+l)g(p)+ +  ff(p(«-l))g(l)) (S(0))_l
ff0>(i-D+2)= _ (ir(p(«-2)+2)s(P)+ ...+  ^Mi-D+DsO)) (g(°))-i
,r(p(«-l)+3)__(lr(p<«-2)+3)g(p) +  +  W(P(»-1)+2)S(0) (g(°))-l

ff(p(«-l)+p)__(w(p<i-2)+p)g(p)+ +ff(p(i-l)+p-l)g(I)) (g(0))-l
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These equations can be rewritten in the following form

„.(p(i-l)+l)S(0) =_(,r(p<i-2)+l)s(p) + ... + ̂ Mi-DlSO))
, r ( p < i - l ) + 2) g « »  +  f f ( p ( i - l ) + l ) g ( l )  = _ ( 7r ( p ( i - 2)+ 2)g (p )  +  +  w .(p ( « - l ) ) g ( 2))

w 0 K i - i ) + 3) g ( 0) +  +  7r ( p ( » - i )+ i ) g ( 2) _ _ ^ 7r (p(‘- 2)+ 3)g (p )  +  +  j r O K '- i H s l 3) )

(̂rti-n+pjgco) _|_ + 7r(p(«-i)+i)g(p-i)=_ir(p(«-i))g(p)

The above set of equations can be written in a matrix form as

= _*(i-U . Z Y "1 i > 2. (3.36)

where matrix Y  is defined in Eq.(3.34) and the definition of matrix Z is given by the 

following
s(p) 0 0 0

S(p-D s M 0 0

s<2> g(3) s(p) 0
S(‘) S<2> ... s(p-l) S(p)

The Fast Ramaswami's Formula consists of the set of equations defined in Eq.(3.35) 

and Eq.(3.36). The effectiveness of the representation of the Ramaswami's formula 

in the form of Eq.(3.35) and Eq.(3.36) comes from the special structure of matrices 

Y  and Z. The matrix Y  is an upper block triangular Toeplitz matrix and the matrix 

Z is a lower block triangular Toeplitz matrix. Using fast Fourier transforms one 

can compute efficiently the inverse of a Toeplitz matrix or the multiplication of a 

vector with a Toeplitz matrix [58]. Although the use of Fourier transforms for matrix 

operations may result in numerical instabilities, in numerous test cases the above 

algorithm has not experienced instability [58. 59).
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3.8 Explicit computation o f R  for QBDs

QBD processes are defined as the intersection of M /G /l and GI/M/l-type processes. 

Hence, both matrix G  (characteristic for M /G /l) and matrix R  (characteristic for 

GI/M/1) can be defined for a QBD process as solutions of the following quadratic 

equations [47]:

B + LG + FG2 =  0, F +  RL + R 2B - 0.

If matrix-geometric is used to solve a QBD process then the relation between 7T(,) and 

for i > 1 is expressed in terms of R

7T(,) = 7T(i-lR,

If matrix-analytic is the solution method then the relation between 7r(l1 and is 

based on Ramaswami's recursive formula:

=  —7r(‘- l)S(I)(S(0))-1,

where S(1) =  F  and S*0) = (L + FG), i.e., the only auxiliary sums (see Subsec­

tion 3.7.1) used in the solution of M /G /l processes that are defined for a QBD pro­

cess. The above equations allow the derivation of the fundamental relation between 

R  and G [47, pages 137-8],

R = -F (L  +  FG )-1. (3.38)
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Obviously, for the case of QBD processes, knowing G (or R) implies a direct computa­

tion of R  (or G). Computing G is usually easier than computing R: G 's computation 

is a prerequisite to the computation of R  in the logarithmic reduction algorithm, the 

most efficient algorithm to compute R  [47j. If B can be expressed as a product of 

two vectors

B =  a  0 ,

where, without loss of generality /3 is assumed to be a normalized vector, then G and 

R  can be explicitly obtained as

G = 1-(3. R  = -F (L  + F I

Representative examples, where the above condition holds, are the queues M /C ox/1. 

M / H r / 1, and M / E r / 1. whose service process is Coxian, Hvperexponential, and Er­

lang distribution respectively.

The other case of explicit computation of R  in QBD processes is when the matrix 

F  of the infinitesimal generator matrix in Eq.(2.18) is given by

F = w-/3. (3.39)

where w is a column vector and /3 is a row vector, and without loss of generality it

is assumed that 0  • l r  =  1. In this case, the rate matrix R  can be computed from

R  =  -F (L  + nB)~x =  w £ .  (3.-10)
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where £ = —0 • (L +  »?B)-1. and q is the spectral radius, or the maximal eigenvalue of 

R. There are at least two algorithms to compute q, one is given by Neuts [67, pages 

36-40], and the other which explores the special structure of R  is given in [77].

3.9 Conditions for stability

We briefly review the conditions that enable us to assert that the CTMC described by 

the infinitesimal generator Q a / /g / i  in E q .(2 .2 2 ) is stable, that is. admits a probability 

vector satisfying irQjf/c/i =  0 and 7rlr  =  1.

First observe that the matrix Q =  B +  L + J ^ t i  F (j) is an infinitesimal generator, 

since it has zero row sums and non-negative off-diagonal entries. The conditions for 

stability depend on the irreducibility of matrix Q.

If Q is irreducible then there exists a unique positive vector n  that satisfies the 

equations ttQ  =  0 and ic lT =  1. In this case, the stability condition for the M /G /l- 

tvpe process with infinitesimal generator Qa//g/i [69] is given by the following in­

equality

ir(L +  +  l)F 0)) l r  =  if(L + ^ F 0)) l r  + j E u ) l T < 0.
j=i j=i j=i

Since B + L + 5I°11 F 0) is an infinitesimal generator, then (B-f L +  5Z* t F(j)) l r  =  0. 

By substituting in the condition for stability the term (L-t-JIjli F (j)) l r  with its equal
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(—B lr ), the condition for stability can be re-written as:

< nBl
i=i

(3.41)

As in the scalar case, the equality in the above relation results in a null-recurrent 

CTMC.

In the example of the BM APi/Cox2f l  queue depicted in Figure 3.3. the infinites­

imal generator Q and its stationary probabiUty vector are

Q =

1 1 o bo "S: O bo «■»
i

and 7T = 7 0.8/i
1 7  + 0.8/i ’ 7  + 0.8/i

while

X > u, = U «i L

The stability condition is expressed as

7 0.8/i
7 -I- 0.8/i 7 +  0.8/i

4A 
0 4A. " H i

7 0-8/i
7+0.8/t* 7 + 0 .8 /i

which can be written in the following compact form

4A <
/ i -7

0.8/i +  7

If Q is reducible, then the stability condition is different. By identifying the
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absorbing states in Q, its state space can be rearranged as follows

c , 0 •• 0 0
0 c 2 0 0
: ; ; 0
0 0 c* 0

d 2 Djk Do

where the blocks Q, for 1 < h < k  are irreducible and infinitesimal generators. Since 

the matrices B, L and F (,) for i > 1 have non-negative off-diagonal elements, they 

can be restructured similarly and have block components B ch. Bp,, Lev Lq,- and 

F£*. F f o r  1 < h < k. 0 < / < k. and i > 1.

This implies that each of the sets «S*‘* for i > 1 is partitioned into subsets that 

communicate only through the boundary portion of the process, i.e.. states in «S(0). 

The stability condition in Eq.(3.41) should be satisfied by all the irreducible blocks 

identified in Eq.(3.12) in order for the M/G/l-tvpe process to be stable as summarized 

below:

w(h) j h  j 'F g l T < & h)B chl T VI < h < k. (3.43)
j=i

3.10 Chapter summary

In this chapter, we derived the basic matrix analytic results for the solution of M /G /1- 

tvpe. GI/M/l-type, and QBD processes. Via simple examples and from first prin­

ciples, we illustrated why the solution of QBD and GI/M /l-type processes is sim­

pler than the solution of M/G/1-type processes. We presented the classic solution 

techniques for such processes, the elegant matrix-geometric and the matrix-analytic
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methods. We gave an overview of the recent advances in matrix-analytic method­

ology, concentrating on the most efficient algorithms for computation of G and R  

and the FFT Ramamswami's formula. We direct the interested reader in the two 

books of Neuts [67, 69] for further details, as well as to the book of Latouche and 

Ramaswami [47].
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Chapter 4

Data Fitting Algorithms

In this chapter, we present three new fitting techniques which approximate data 

sets with PH distributions and Markovian arrival processes, i.e.. stochastic processes 

that are tractable. Our objective is to fit data sets that exhibit long-tailed behav­

ior and long-range dependence into PH distributions and MAPs, respectively. In 

our approach, we strive for both accuracy and efficiency. We achieve these goals by 

developing divide-and-conquer and hierarchical fitting algorithms. The fitting algo­

rithms leverage the use of the matrix-analytic methodology (see Chapter 3). for the 

performance analysis of Internet-related systems. We evaluate the accuracy of our fit­

ting techniques not only statistically but also from the queueing systems perspective, 

because the intention is to use our fitted models as inputs in queueing models.

This chapter is organized as follows. In Section 4.1, we elaborate on the complexity 

of systems with highly variable service process, commonly encountered in Internet 

systems. In Section 4.2, we present a new technique for fitting long-tailed data sets 

into PH distributions by partitioning the data into smaller subsets of equal variability.

81
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fitting each of the subsets into PH distributions, and combining results together. 

In Section 4.3, we propose a similar fitting technique with the exception that the 

partitioning of the data is based on the expected value of each subset. In Section 4.4, 

we devise a technique for fitting long-range dependent data sets into MAPs. We 

conclude with a summary of chapters contributions.

4.1 Long-tailed behavior

There is abundance of evidence [3, 50) that the service process in Internet-related sys­

tems is heavy-tailed. This characteristic affects the complexity of such systems (e.g.. 

Web servers, routers). As a motivation, we first present the effects of high variability 

on user perceived performance by analyzing the behavior of an elementary queueing 

system whose service process is long-tailed. We use an M/G/1-tvpe queue, i.e.. a 

single server queue with general service process, admitting Markovian arrivals. We 

run several experiments, that are distinguished from each other by the characteristics 

of the service process only: the mean of the service process, i.e.. the first moment, is 

fixed, while the coefficient of variation, i.e., the second moment, varies within a cer­

tain range. The M /G /l queue is solved using the matrix-geometric method outlined 

in Chapter 3.

Figure 4.1 illustrates the effects of the service process variability on the expected 

mean slowdown1 as a function of the arrival rates. As the arrival rate in the system 

‘The mean slowdown metric is computed by dividing the average waiting time in the queue with
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increases, the average slowdown for the M /G /l queue with the highest variability in 

the service process increases much faster than the average slowdown of the queues 

with less variability in their service process. The same behavior is also observed in 

Figure 4.1(b), where we plot the average queue length as a function of the variability 

in the service process. We observe that for high arrival rates the effect of the highly 

variable service process on performance is more severe than for the case of low arrival 

rates. This simple example clearly shows that capturing the variability in the service 

process is essential for accurate performance analysis.

highest variability 

lowest variability
o 250

«  150

(a) Low
Arrival Rate

- highest arrival rate

HighLow
Workload Variability

Figure 4.1: Effects in the performance of queuing system with highly variable service 
process.

Long-tailed behavior in a data set is commonly approximated by distributions 

such as Lognormal, Weibull, and Pareto. The analysis of queueing systems that ad­

mit these distributions as either arrival or service process is complex and, usually, 

intractable. PH distributions (along with their special case of Coxian and hvperexpo-

the average service time.
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nential distributions) offer an attractive alternative that can capture variability via 

a tractable distribution. Their only ‘‘drawback’’ is that they require more param­

eters than Lognormal or Weibull distributions, making their estimation procedures 

more complex. To avoid the complicated fitting algorithms and yet benefit from their 

tractability. modelers often use Coxian or hyperexponential distributions with only 

two phases. In such cases, there are only few, i.e., 2 or 3, parameters to estimate, and 

the fitting is usually done by matching the first and the second moments only [43. 

pages 141-143]. Below we show that a simple PH distribution, such as a two-phase 

hyperexponential model, does not capture the complex behavior of the service process 

in Internet-related systems.

To fit an empirical distribution with a certain mean and CV into a 2-phase hv- 

perexponential distribution, which is a mixture of two exponentials only, we need to 

calculate the following parameters: p (0 < p < 1). Ai, and A2 , as the probability 

density function of a hyperexponential distribution is given by:

One can match the mean irij and the coefficient of variation cvd of the data set with 

the mean m/, and the coefficient of variation c i\  of the hyperexponential distribution, 

using the following formulas [43, pages 141-143]:

h2(x) = pA,e-A‘x -I- (1 -  p)X2e~X2X.x > 0, A,, A2 > 0.

mj  =  rrih = :
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This is a classic case of a system of two equations and three unknowns. This system 

can be solved by guessing one of its unknowns (in this case the easiest one to guess is p 

since 0 <  p < 1). To illustrate that such a simple model does not capture the complex 

behavior of the queueing systems with heavy-tailed service process, we fit a data set 

into a two-phase hyperexponential using the above method. The data consists of the 

sizes of the requested files processed by a Web server (i.e., one entire day of server logs 

from the 1998 World Soccer Cup site, whose characteristics we evaluate in more detail 

later in this dissertation). Assuming that the requests arrive to the system according 

to a Poisson process and the service process is determined by the sizes of the requested 

files, we model the Web server as an M/H2 / I  queue. To assess the accuracy of the 

results obtained from the analytic solution of this queueing model (solved using the 

matrix-geometric method outlined in Chapter 3), we simulate the same single server 

queue using an identical arrival process but now the service process is driven by the 

original trace data. We present our findings in Figure 4.2. First, in Figure 4.2(a). 

we present the average queue length in the server as function of the arrival rate. We 

observe that for different guessed values of p the models compute exactly the same 

average queue length for each arrival rate and match the respective simulations result. 

Note that for performance metrics such as the average queue length, simple models 

are sufficient. We go a step further and analyze the queue length distribution. We 

present the body and the tail of the queue length distribution (measured for high 

server utilization) in Figures 4.2(b) and (c), respectively. None of the queue length
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distributions of the analytic models follows the shape of the queue length distribution 

obtained by the trace-driven simulation.
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Figure 4.2: Average queue length, the body, and the tail of the queue length distribution 
(80% server utilization).

With the examples presented in this section, we emphasize the complexity in the 

behavior of systems that operate under a highly variable service process and the 

importance of capturing it correctly for accurate performance analysis results. In the 

following sections, we present fitting techniques that capture correctly the long-tailed 

behavior of the data sets and the respective queueing systems.

4.2 D&C EM

In this section, we present a new technique for fitting highly variable data sets into 

hyperexponential distributions. The hyperexponential distribution is characterized 

by the number of exponential phases ph, the mean A*, and probability p* associated 

with each phase (as defined in Section 2.6). The proposed methodology applies the 

EM algorithm, described in Subsection 2.6.1.1, in a divide and conquer fashion over 

the initial data set. We call our approach D&C EM (Divide-and-Conquer-EM).
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The high level idea of the proposed method (see Figure 4.3) is based on the 

observation that for data sets that exhibit long-tailed behavior, it may be beneficial 

to partition their entire range of values so as to ensure that each partition exhibits 

significantly reduced variability in comparison to the variability of the entire data 

set. The data set of each partition is then fitted into a hyperexponential distribution 

using the EM algorithm [72] and the final fit for the entire data set is generated bv 

combining together the fitting results for all partitions.

The divide and conquer approach increases the accuracy of the EM algorithm be­

cause the portion of the data set belonging to the tail of its continuous data histogram 

(CDH) [48] could possibly fit in one or more partitions, reducing the possibility that 

the EM algorithm does not capture it correctly while searching for the global optimal 

solution. The approach is efficient because each partition has less data entries and 

less variability than the entire data set, facilitating an accurate fit in a few phases 

only.

I 11st partition 
I 12nd partition 

3rd partition 
H  4th partitionco3O'

fib.

Sorted data set values

Figure 4.3: Splitting of the continuous data histogram (CDH).

VVe start by building the CDH with only one pass through the data. One addi­

tional pass through the CDH is required to define the "splits". Since we are interested
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to split the CDH such that each partition has reduced variability, we use the coef­

ficient of variation (CV) to determine the partition boundaries. For each partition, 

we accumulate bins until the accumulated coefficient of variation for that partition. 

CVacc, is larger than a threshold, CVmax. The value of CVmax determines the number 

of partitions for a given data set. We select CVmax to be between 1.2 and 1.5, i.e.. 

slightly higher than the CV of the exponential distribution, in order to fit each par­

tition into a hyperexponential distribution with few phases only using EM. The EM 

algorithm requires as input only the number of phases, ph. and the actual data. In 

our experiments, we use ph = 4 since it captures well the properties of data sets with 

CVs as high as CV\tax and strikes a good balance between efficiency and accuracy.

We generate the final result by combining together the weight of each partition 

to the entire CDH with its respective fitted hvperexponential distribution. Since the 

total number of phases is obtained as the sum of phases over all partitions, the final 

number of phases from the fitting is not known until the fitting procedure is complete. 

From numerical experiments, we observe that data sets with high CV may contain as 

many as 6 partitions, while data sets with not-as-high CVs may contain as low as 3 

partitions. Figure 4.4 summarizes the D&C EM algorithm.

4.2.1 D&C EM experimental results

In this section, we present results obtained by fitting five different data sets into 

hvperexponential distributions using the D&C EM algorithm. We first describe the
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1. Build CDH from the data set.
2. while (there are still CDH bins to be considered)

a  include data of current bin into current partition i 
b update CVAcc 
C if {CVAcc > CVmax)

Use EM to fit partition i into ph phases 
Obtain p*- and A* . 1 < j  < ph 
Compute weight Wi for partition i 
CVAcc =  0.

3. if (CVlast partition < CVmax)
a  Merge last two partitions and perform step 2c

4. Generate final result
for i from 1 to #  of partitions 

for j from 1 to ph
p‘j=p)-u>i

Figure 4.4: D&C EM fitting algorithm, 

characteristics of the selected data sets.

4.2.1.1 TVaces

We have selected five highly variable data sets to test our approach. The first data 

set (indicated as “Trace 1”) is a trace from the 1998 World Soccer Cup Web site-2. It 

contains the sizes of the files requested by clients from this Web site in the course of 

an entire day. The other four traces are synthetically generated from analytic models 

that closely approximate Web server traffic [3]. Traces 2 and 3 are generated from 

Lognormal distributions with shape parameters 1.85 and 1.5, respectively, and the 

same scale parameter 7.0. Traces 4 and 5 are generated from Weibull distributions

Available a t h t t p : / / i t a . e e . l b l . g o v / .
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with shape parameters 0.25 and 0.35. respectively, and the same scale parameter 9.2. 

The statistical characteristics of these data sets are shown in Table 4.1. The number

Trace Entries Unique Mean CV
1 16045065 12122 4407.81 7.28
2 25000 25000 6358.23 5.87
3 25000 25000 3459.86 3.13
4 25000 22969 227.27 7.36
5 25000 24298 47.50 3.86

Table 4.1: Statistical characteristics of the data sets.

of entries and the number of unique entries for each data set are significant for the 

performance of the D&C EM since the running time of the EM algorithm depends 

on these parameters [72]. Observe that the real trace has less unique entries than the 

synthetically generated data sets.

4.2.1.2 D&C EM statistical analysis

The size of the data sets precludes using goodness-of-fit tests such as the Kolmogorov- 

Smimov and x 2 tests [48]. Therefore, we evaluate the accuracy of D&C EM by 

checking the matching of statistical properties such as the moments and the median, 

and by plotting PDFs, CDFs, and CCDFs (Complimentary Cumulative Distribution 

or Survival function).

Table 4.2 illustrates the means and the CVs of the original data sets, plus var­

ious hyperexponential fittings using the EM, FW, and D&C EM algorithms. In 

Table 4.2, ph” means that the EM or FW algorithms fit the entire data set into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. DATA FITTING ALGORITHMS 91

a hyperexponential with x phases. Observe that the D&C EM models match the 

mean of the traces with maximal error of 4%. The coefficient of variation is more 

difficult to match, since it is obtained using both the first and the second moments. 

Nevertheless, D&C EM models match it with a maximal error of 20% (TVace 2). The 

EM algorithm alone could not generate results for TVaces 4 and 5 within reasonable 

amount of computation time (less than a week) in a Pentium III 800MHz processor 

with 1GB of memory. Since TVaces 4 and 5 are synthetically generated from a Weibull 

distributions, we fit the same distribution functions into hvperexponential distribu­

tions using the FW algorithm and compare them with the D&C EM fits. The results 

of Table 4.2 show that D&C EM technique matches better the statistical properties 

of the data sets, when compared to the EM and FW algorithms.

D&C EM fits match better even the higher moments of the data sets. We present 

in Table 4.3 the relative errors of fitted third moments from the actual third moments 

of all five data sets (we omit the absolute values because they are too large and not 

easy to read).

Figure 4.5 plots the PDH, CDF, and CCDF for each data set and the D&C EM. 

EM, and FW models. The PDF plots for all five data sets are shown in the first 

column of graphs in Figure 4.5 (note the logscale of the x-axis). The PDF of Trace

1 is heavily jagged, characteristic of real trace data, which makes matching the PDF 

more challenging. D&C EM offers accurate fits for all traces. The fits for Traces

2 and 3, both D&C EM and EM ones, do not match well the body of the data
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Data EM 8  ph FW 15 ph D&C EM
Trace 1

Mean 4407.81 4402.35 n /a 4393.56
CV 7.28 3.44 n /a 7.86

Median 938.00 961.51 n /a 950.59
Trace 2

Mean 6358.23 6196.27 n /a 6164.50
CV 5.87 4.13 n /a 5.13

Median 1082.91 1063.12 n /a 1061.25
Trace 3

Mean 3459.86 3425.72 n /a 3391.06
CV 3.13 2.69 n /a 2.82

Median 1085.32 1084.13 n /a 1086.59
Trace 4

Mean 227.27 n/a 221.34 2 2 0 .2 1

CV 7.36 n/a 8 . 1 2 7.14
Median 2 .2 0 n/a 2.06 2.27

Trace 5
Mean 47.50 n/a 46.40 46.61

CV 3.86 n/a 3.95 3.87
Median 3.32 n/a 3.14 3.35

Table 4.2: Statistical evaluation of the fittings.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
EM 8  ph 75% 91% 70% n/a n/a

FW 15 ph n/a n/a n /a 106% 27%
D&C EM 60% 60% 6 6 % 25% 1 1 %

Table 4.3: Relative error of the third moment.

PDFs. This happens because Traces 2 and 3 do not have monotone PDFs, while the 

hyperexponential distribution has a completely monotone PDF [30].

The CDF plots for all traces (middle column of graphs in Figures 4.5) illustrate
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Figure 4.5: PDF, CDF, and CCDF of the real data and the fitted models.

that the D&C EM provides a good match for the body of the distribution for all 

traces. In order to investigate the accuracy of the fittings for the tail of the distribu­

tion. we present the CCDF plots in log-log scale (third column of graphs in Figure
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4.5). Note that even for the tail of the distribution, which reflects the observed vari­

ability of the data sets, D&C EM generates models that closely match the data set 

characteristics.

4.2.2 D&C EM queueing system  analysis

Because we want to provide a methodology that allows for performance analysis of 

Internet-related systems, we also examine the accuracy of the D&C EM from a 

queueing systems perspective. We consider an M /H r/ l  server queue with exponen­

tially distributed interarrival times and service times drawn from a hyperexponential 

distribution. The hvperexponential model for the service process is generated from 

the test data sets using the D&C EM, EM, or FW algorithms. We opt for expo­

nential interarrival times in order to concentrate on the effects of the service process 

only on queueing behavior.

To analyze the M /H r/ l  queue that resulted from our fittings, we used the matrix- 

geometric method presented in Section 3.1. The matrix-geometric solution provides 

the entire stationary probability distribution for the queueing system under study, the 

average queue length, and the queue length distribution. In our analysis, we focus on 

both the average queue length and the queue length distribution. The queue length 

distribution is an important metric because it can guide system design and at the 

same time is a strong indicator of model accuracy. Furthermore, because our focus 

are long-tailed data sets, we need to demonstrate that the proposed hvperexponential
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server captures well the tail of the queue length distribution.
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Figure 4.6: Queue length, body and tail of queue length distribution for 80% system 
utilization.

To examine the accuracy of the fitting algorithm, we compare the above perfor-
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mance measures, that are analytically derived using the M /H r/ 1 queue, with those 

obtained from trace-driven simulations. The simulation model consists of a single 

server queue with the same arrival process as in the A// Hr/ 1 model and service times 

from the data sets of Table 4.1. Results are presented in Figure 4.6. For all data 

sets, we plot the average queue length as function of the arrival rate (first column of 

graphs in Figure 4.6), the body of the queue length distribution (middle column in 

Figure 4.6), and the tail of the queue length distribution (last column in Figure 4.6). 

We obtain the queue length tail distribution by plotting the queue length distribution 

in a log-log scale. The queue length distributions in Figure 4.6 correspond to 80% 

system utilization levels.

Observe that the models obtained from D&C EM fittings generate queueing sys­

tem results that are close to the simulation results. The M f Hr/ 1 queueing system 

captures accurately the performance metrics of interest. Consistent with the discus­

sion in [30], we note that for Traces 4 and 5, whose CDH is completely monotone, the 

hyperexponential distribution is a better approximation, than for Traces 1 . 2. and 3. 

whose CDH is not completely monotone.

4.2.3 Computational efficiency of D&C EM

In this section, we report on the computational efficiency of D&C EM for fitting data 

sets into hvperexponential distributions. In Figure 4.7, we illustrate the computation 

time needed to obtain fittings for the data sets indicated in Table 4.1 using the D&C
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EM 4 =  EM 8

Trace 4

Figure 4.7: CPU time for running EM and D&C EM on all the traces.

EM and EM algorithms. The experiments were conducted in a Linux machine with 

Pentium III 800MHz processor and 1GB of memory. D&C EM is much faster than 

EM. even for fittings that consist of few phases only. The efficiency of D&C EM 

increases as the complexity of the data set increases, i.e., longer tails and more unique 

entries. Note that for Traces -1 and 5. we could not obtain results even for 4-phase 

models within a time frame of a week, while we obtained the D&C EM fits in a 

matter of seconds.

4.2.4 Refined D&C EM fitting algorithm

The hyperexponential distribution has a complete monotone PDF. Hence it provides 

better fits for data sets and distribution functions whose PDFs are complete mono­

tone. Example of distribution functions with complete monotone PDFs are Pareto 

and Weibull distribution (with parameters as in Traces 4 and 5). Traces 1 , 2. and 3 

do not have complete monotone CDHs (equivalent to PDF of a distribution). For the
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data sets with non-monotone CDHs, the hyperexponential distribution is not the best 

choice among the special cases of PH distributions. A PH distribution constructed 

as a mixture of an Erlang and a hyperexponential distribution is a better fit for data 

sets with CDH shapes similar to Traces 1, 2, and 3, i.e., non-monotone with only one 

spike in the PDF [98] (shown also in Figure 4.8).

I 11st partition 
I I 2nd partition 
H  3rd partition 
■  4th partition

u
E

Sorted data set entries

Figure 4.8: Splitting of the non-monotonc continuous data histogram (CDH).

In order to fit the data set into a mixture of Erlang and hvperexponential distri­

butions, we first determine the portion of the data set CDH that we need to fit into 

an Erlang. We start from the first bin of the CDH and accumulate bins, in the same 

fashion described in Section 4.2, until we take into consideration approximately 0.5% 

of the data set entries. The value 0.5% accounts for just a “smalP portion in the 

beginning of the CDH3. We denote the index of the last bin of this accumulation with 

Max. In Figure 4.8, the first two bins marked with UE” illustrate how we accumulate 

bins for the Erlang fitting. In the example of Figure 4.8, Max is equal to 2. The 

accumulated data is fitted into a 2-phase Erlang. Since the Erlang distribution with

3Thc fitting algorithm is not sensitive to the amount of collected bins for the Erlang fitting, since 
we tried values in (0.1%. 1%) and obtain similar results.
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2  phases has only one parameter, i.e., the mean Af> of each of the exponential phases, 

we use the moment matching method [43] rather than the EM algorithm to determine 

this parameter.

1. Build CDH from the data set.
2. Find bin index Max such that:

a  entries upto bin Max account for 0.5% of all entries, 
b bin frequencies increase.

3. if {Max > 0)
a  Fit the first Max CDH bins into a 2 -phase Erlang 
b Obtain A £r

4. while (there are still CDH bins to be considered)
a  include data of current bin into current partition i 
b update CVAcc 
c if (CVAcc > CVmax)

Use EM to fit partition i into ph phases 
Obtain p‘ and A*, 1 <  j  < ph 
Compute weight «/* for partition i 
CVAcc = 0.

5. if (CVfjjf partition  ^  CVmax)
a  Merge last two partitions and perform step 4c

6 . Generate the final hvperexponential fit
for i from 1 to #  of partitions 

for j from 1 to ph
P j = P j  ’ w i

7. if (Max > 0)
a  Obtain the final PH fit by merging 
the Erlang and the hyperexponential fits

Figure 4.9: Refined D&C EM fitting algorithm.

Once the parameter of the Erlang distribution is determined, we continue with 

the D&C EM algorithm as described in Figure 4.4 to fit the entire data set into a 

hvperexponential distribution. Upon completion of the fitting procedure, we merge
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the Erlang and hyperexponential fits by letting the Erlang fit proceed the hvperexpo- 

nential one in the final PH distribution. We illustrate the structure of vector r  and 

matrix T  for the PH distribution in Eq.(4.1). assuming 3-phase hyperexponential and 

2-phase Erlang fits. Recall that r  and T  are the parameters of a PH distribution as 

defined in Subsection 2.6.

r  =  [1 . 0, 0 . 0. 0] and T  =

—A £ r  ^ E r  0 0 0
0 —A Er Pl^Er Pz^Er Pz^Er
0  0  -A 3 0  0

0 0  0 -A4 0
0  0  0  0  -A 5

• (4-1)

where pi for 1 < i < 3 are the probabilities associated with each phase of the hyper­

exponential distribution.

Figure 4.9 summarizes the refined D&C EM algorithm that allows for fitting data 

sets with not completely monotone CDHs into PH distributions. Observe that while 

we introduce three new steps, i.e.. S tep 2. 3. and 7. we adjust the refined D&C 

EM algorithm to accommodate both cases of monotone and non-monotone densities. 

Step 2 determines if the CDH is non-monotone and an Erlang fit is required. We 

emphasize that the refined D&C EM algorithm provides improvements in fitting 

the body of the CDH and preserves the tail-matching accuracy and computational 

efficiency of the original D&C EM.

4.2.4.1 R esults w ith the refined D&C EM

In this subsection, we present experimental results obtained by applying the refined 

D&C EM algorithm to fit Traces 1 , 2. and 3. whose CDHs are not completely mono-
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tone. In Figure 4.10. we present the probability densities for Traces 1, 2, and 3, and 

the D&C EM fits obtained using both versions of D&C EM algorithm. The first row 

represent the hyperexponential fits and the second row the Erlang-hyperexponential 

fits. Observe that the refined D&C EM algorithm captures better the shape of the 

body of the CDH even for Trace 1 which is heavily jagged. We illustrate the moment
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Figure 4.10: PDFs of the fittings for Traces 1 . 2, and 3 using D&C EM (first row) and 
the refined D&C EM (second row).

and median matching for the refined D&C EM algorithm in Table 4.4. Observe that 

the means of the fitted models and data sets are better matched with the refined 

D&C EM (a direct outcome from better matching of the CDHs). There is no im­

provement in matching the second or any of the higher moments using the refined 

D&C EM, since we follow the same approach to capture the tail of the CDHs: the 

most significant property of the data sets under investigation. Note that matching 

the median is less accurate with the refined D&C EM algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. DATA FITTING ALGORITHMS 102

Data D&C EM Refined D&C EM
Trace 1

Mean 4407.81 4393.56 4407.74
CV 7.28 7.86 7.80

Median 938.00 950.59 967.33
Trace 2

Mean 6358.23 6164.50 6349.25
CV 5.87 5.13 5.04

Median 1081.14 1061.25 1268.19
Trace 3

Mean 3459.86 3391.06 3441.82
CV 3.13 2.82 2.79

Median 1085.43 1086.59 1126.60

Table 4.4: Statistical evaluation of the D&C EM and refined D&C EM fittings.

The effect of the refined D&C EM algorithm is less obvious in the performance 

analysis of queueing systems. Because the first moment of the data sets are better 

matched, the average queue lengths of the queueing systems described in Subsec­

tion 4.2.2 are more accurate than what is shown in Figure 4.6 (first column). We 

stress that the accuracy of capturing the queue length distribution (body and tail) is 

maintained, emphasizing again that capturing the tail is critical for highly variable 

data sets.

4.3 D&C MM

We extend the idea of D&C EM by dividing the data set based on the expected 

value of each partition rather than the coefficient of variation. In this approach, we
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fit the data of each partition into FH distributions using methods of moment matching 

rather than the EM algorithm. This technique applies moment matching techniques 

in a divide and conquer fashion, hence we call it D&C MM.

Again, we base our technique on the analysis of the data set CDH. Contrary 

to D&C EM, D&C MM requires determining the number of partitions N  before 

splitting the data into subsets. Partition boundaries are determined such that the 

expected value of each partition is M j/N . where Md is the expected value of the 

entire data set. Once the data set is partitioned, we compute the CV of each subset 

of data. If the CV of a subset of data is less than 1.0, i.e.. the CV of the exponential 

distribution, we fit that subset of data into a hypoexponential distribution. If the CV 

is greater than 1.0, we fit that subset of data into a hyperexponential distribution. We 

fit each subset of data into a PH distribution using the Newton-Raphson method of 

moment matching, which is described in details in Appendix C and [98]. The resulting 

PH distribution is a mixture of hypoexponential and hyperexponential distributions. 

We formally present the D&C MM algorithm in Figure 4.11.

To illustrate the fitting methodology, we selected a data set containing the sizes 

of the requested files, i.e., the service process, measured during one entire day at 

the World Cup’98 Web site. We split the data set into four partitions and present 

in Figure 4.12 the PH distribution resulting form the merging of the four individual 

fittings; of those, the first one is a two-stage hyperexponential, while the other three 

are hypoexponential, with the last one very close to an Erlang (the numbers written
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1 . Build CDH from the data set.
a  Compute expected value of the data set, Md-

2 . while (there are still CDH bins to be considered)
a  include data of current bin into current partition i 
b  update expected value, Macc, of current partition 
c if (A/4cc > Md/N)

Compute CV  of the partition 
if (CV < 1)

Use Newton-Raphson method to fit partition i into a hypoexponential 
else

Use Newton-Raphson method to fit partition i into a hyperexponential 
Macc =  0 .

3. Generate final PH result
Combine results of all PH fittings

Figure 4.11: D&C MM fitting algorithm.

inside each stage are the rates of the corresponding exponential distributions, while 

those on the arcs describe probabilistic splittings). To assess the quality of the overall 

PH fitting, we plot the PDF and CDF of the data and of our fit in Figure 4.134. We 

also evaluate the accuracy of the fitting from the queueing system perspective, and 

present the results in Table 4.5 (we assume a M/PH/1 server with Poisson arrivals 

and the fitted PH distribution for service process). We conclude that D&C MM is 

a fast and accurate approach to fit data sets into PH distributions.

4Tracc 1 in the analysis of D & C  EM comes from the same server logs as the data set we use for 
analysis of D&C MM. The PD F of Trace 1 in Figure 4.5 is more jagged than the PDF presented 
in Figure 4.13 because in the former case we use shorter bins for our plots.
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Figure 4.12: The resulting overall phase-type distribution.
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Figure 4-13: Comparing the empirical and fitted data: pdf (left) and CDF (right).

4.4 MAP fitting algorithm

In this section, we develop a technique for fitting highly correlated data into MAPs. 

The fitting technique that we propose is a hierarchical approach, based on the ob­

servation that a MAP essentially consists of a set of control states with arbitrary 

interactions among them, each representing an i.i.d. interarrival-time process. Each 

of the i.i.d. interarrival-time processes can exhibit long-tailed behavior, introducing 

additional states in the underlying Markov chain of the MAP process. YVe refer to 

these additional states as phase-type states.

YVe first employ standard Hidden Markov Model (HMM) methods to identify the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. DATA FITTING ALGORITHMS 106

Arrival rate
Real data 

(trace-driven simulation)
Fitted data 

(analytical solution)
E[queue length] E[slowdown] E[queue length] E[slowdown]

0.0000250 0.84 6.51 0.83 6.41
0.0000375 1.92 9.96 1.92 9.81
0.0000500 3.60 14.01 3.60 13.84
0.0000625 6.05 18.82 6.06 18.60
0.0000750 9.51 24.65 9.52 24.38
0.0000875 14.37 31.92 14.40 31.60
0 .0 0 0 1 0 0 0 2 1 .2 2 41.24 21.26 40.82
0.0001125 30.99 53.54 31.10 53.09
0.0001250 45.34 70.49 45.44 69.81
0.0001375 67.42 95.29 67.41 94.14
0.0001500 104.22 135.02 103.95 133.07

Table 4.5: Comparing the empirical and fitted data: performance results.

set of control states and define the interactions among these states, at a  coarser 

time scale than the data set, in an attempt to capture the correlations among the 

data set points as well as some of the variability. Then we either use these results 

directly to construct an MMPP (recall that an MMPP is a special case of MAP. see 

Subsection 2 .7 ), or we exploit these results together with an additional statistical 

analysis of the data set and the EM algorithm for fitting PH distributions in order to 

construct a more general MAP.

An overview of the basic steps of our hierarchical fitting methodology is provided 

in Figure 4.14. The algorithm input consists of the data set, few assumptions, and 

initial values (discussed in Subsection 4.4.1). We stress that our methodology does not
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place any restrictions on the structure of the underlying Markov chain of the MAP. 

The first step produces the set of outputs described in lb under the assumption of 

either exponential or hyperexponential sojourn time distributions for each control 

state. In the latter case, we have /ij =  .. •, for each control state i.

1 < i < m e , where me denotes the number of control states and m u  denotes the 

number of phases in the hyperexponential distributions: otherwise, is a scalar. 

The corresponding MMPP is constructed directly from the output of step 1. whereas 

the remaining steps are used together with the output of step 1  to construct the 

corresponding MAP. In step 3, the fitting of the data set sequence } for control 

state i into a Coxian distribution uses a slightly modified version of an implementation 

of the EM algorithm [6 , 72j. The remaining details of the basic steps in Figure 4.14 

are explained in Subsections 4.4.1 and 4.4.2.

4.4.1 Hidden Markov model for parameter estim ate

A hidden Markov model (HMM) with explicit state duration is a doubly stochastic 

process, whose intensity is controlled by a finite-state discrete-time Markov chain 

[Jn : n € Z+} on the state space {i : 1 < i < m e} representing the set of control 

states. The time that has been spent in state J„ is denoted by r„, and the number 

of arrivals per time unit is denoted by r„, which is the observable output associated 

with state J„. It is usually assumed that the control states {«/„} and the observations 

{r„} are conditionally independent with the conditional distribution of r„ dependent
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1. Use HMM methods to construct the control states and their interactions
a. Input

- data set with N  data entries
- desired number of control states
• assumption for the arrivals per control state

- Poisson
- assumption for the sojourn times per control state

- Exponential
- Hypcrcxponcntial : desired number of phases

b. Output
- number of control states m e
- transition probability matrix P  for the control states: P = [P..j]. i < i-j < mc
- mean intcrarrival times A“ * for 1 < i < m e ■ A = [Aj.......Amc.]
- (vector of) mean sojourn times p ~ l for 1 < / < m e:  M — [/•*[• Pmc  1
- sojourn time probability vectors pf* for 1 < i <  m e .  if using 

hypcrcxponcntial distribution: p ^  =  [p{* Pmc \: pf* =  [P u -■
- mapping {./„ } of each data entry to its corresponding control state

2. Construct a data set sequence {«!>*} per control state i using mapping
{Jn} from step 1 and the original data set

3. Feed each sequence (5;} to EM alg. to generate a Coxian
distribution for the intcrarrival process of each control state

4 . Compute the probability of state change upon arrival using mapping {J n }
5. Construct Do using:

- transition probability matrix from step 1
- model for sojourn times from step 1
- Coxian model for intcrarrivals from step 3

6 . Construct D i using:
- Coxian model for intcrarrivals from step 3
• transition probability matrix from step 1
- model for sojourn times from step 1
- probability vector computed in step 4

Figure 4.14: Overview of our MAP parameter estimation methodology, 

on J„ only.

Since this semi-Markov chain is not directly observable, the state sequence {J„, r„} 

and the model parameters (i.e., the transition probability matrix P  for the control 

states, the mean interarrival time A” ', the vector of mean sojourn times ft~ l. the
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sojourn time probability vector pf4 for each control state i. and the control state 

sequence {Jn] of the data set) are estimated from the observed sequence {r„}.

The main steps of the standard procedure for HMM with explicit state duration 

are summarized as follows:

•  Given an initial set of assumptions for the HMM model parameters (e.g.. based 

on an a posteriori knowledge of the empirical workload), obtain refined estimates 

of the model parameters by applying the HMM re-estimation algorithm with 

explicit state duration [74] to the given observation sequence {r„}.

•  Apply an HMM forward-backward algorithm with explicit state duration [74] 

to find the maximum a posteriori state estimate, Jn, for the given observation 

sequences {r„}.

We refer the interested reader to [74] for an overview of the details on these standard 

HMM algorithms. Additional technical details can be found in [97, 108. 110] and the 

references cited therein.

Following the above procedure, we can obtain the maximum likelihood model pa­

rameters for the given observation sequence {r„} and the state space {1 , —  mc }- 

Let Hi(r) denote the estimated non-parametric probability mass function for the so­

journ time r  of state i, and let Ot(r) denote the estimated non-parametric probability 

mass function for the observation r of state i.

The total number of model parameters can be further reduced if the observation 

distribution or the state sojourn time distribution is approximated by some parametric
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distributions such as Gaussian, Poisson or gamma distributions [91, 62], In this case, 

one only needs to estimate a few parameters that specify the selected distribution 

functions. Ferguson [31] has shown that the parameters for the parametric sojourn 

time distribution /f,(r) and the parametric observation distribution Oj(r) for state 

* can be found by maximizing Hi(r) ln(f/j(r)) and $2r O*(r) ln(Oi(r)) subject to 

the stochastic constraints $Zr^«(r ) ~  * 5 Zr^*(r ) =  *•

If the arrival process for each control state is Poisson and the control state sojourn 

times follow a hvperexponential distribution, i.e..

Oi(r) = ^ e - ^ .  (4.2)r!

^ ( r )  =  £ p { * / i i je-/4-A-*)i (4 .3)
j=i

where A, > 0 . Hij > 0  and Ylj Pij = then the arrival rate A* of the Poisson process 

for state i can be estimated by A, = Ot(r)r [31, 91|. The parameters pf* and /iu 

of the hyperexponential distribution can be determined numerically via Eq. (4.3).

Finally, as part of the initialization step, we set the total number of control states 

to a pre-specified input parameter (which is analyzed in our experiments). If this 

parameter is a sufficiently large integer, in the re-estimation procedure, we delete the 

states that are never visited. As such the value of me is reduced to a smaller number

of control states. This led to a maximum of 20 control states for the data sets used in

our study. We also need to initialize the elements of the transition probability matrix, 

the control state sojourn time distributions, and the initial control state probability
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vector. An often used choice is to assume that these initial values for the model 

parameters are uniformly distributed. In addition, we assume the initial values of 

the control-state arrival rates to be proportional to the state index, i.e., A, =  rmox̂  

where i is the index of the control state, rmax is the maximum value of r, and me is 

the total number of control states.

4.4.2 Generation of M AP from HMM output

The above HMM methods produce the output described in Figure 4.14. which includes 

the sequence {J„}, 1 < n < N , representing the mapping of the entries in the data 

set to the set of control states. That is, as part of the HMM analysis, each interarrival 

time in the data set is assigned to one of the m e  control states. We first construct 

a new data set sequence {«&}, 1 < i < m e . that consists of all of the interarrival 

times from the data set with Jn = i. in the same relative order as in the original data 

set. We also compute from the sequence {«/„}, 1 < n < N,  the probability vector p 

of dimension mc . where the element p< denotes the probability that upon an arrival 

from control state i the process switches to another control state. Specifically, we 

have

5 =  _________________________________   . .
H* r  v - > ,Y  .  '

2 _»j= 2  Z-,j= 2

where / 4  denotes the indicator function for event A  having the value 1 if .4 occurs, 

and the value 0 otherwise. Thus, with probability 1 — Pi the process immediately 

returns to the same control state <.
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To help facilitate the description of the procedure for generating MAPs from the 

above set of variables, we need the following definitions:

•  A =  diag(A|,. . . ,  Amc) is a diagonal matrix of order mc  whose diagonal ele­

ments are the elements of vector A:

•  Pf* is the mu x matrix whose rows are all equal to p f, 1 < i < me-

•  $  =  d iag($ i,. . .  .^ mc) is a (block) diagonal matrix of order me • mu- where 

# ,  =  diag(/i,, , . . . ,  is a diagonal matrix of order mw:

•  I fc is the order k  identity matrix:

•  col(il/. k .j)  is a matrix function that partitions the columns of the matrix M

into blocks of size k  and then extracts the j th such block of columns of size k 

from matrix M  (the resulting matrix has the same number of rows as M  and k 

columns);

•  row (M. k .j)  is a matrix function that partitions the rows of the matrix M  into 

blocks of size k  and then extracts the j %h such block of rows of size k  from matrix 

M  (the resulting matrix has k rows and the same number of columns as M);

•  V  =  [Vt V2 . -. v mc], where Vj = col(P. 1 , i) <g> P f4. 1 < i < mc .

The off-diagonal elements of the matrix Dqimpp and the matrix DJ'MPP for an 

MMPP with exponential interarrival times and hyperexponential sojourn times per
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control state can be expressed as

113

D r pp =  * V . D r pp = A ® ImH. (4.5)

Then the diagonal element of each row of Dqmpp is computed as the negative sum 

of the non-diagonal elements on the same row in the matrix Dqimpp + DiIMPP. The 

number of states in this MMPP is me • rn^- During the numerical experiments, we 

observed that some of the values in vectors pf*. 1 < i < me- are very small, i.e.. 

less than a desired tolerance of accuracy. The states that are represented by these 

probabilities are removed from the set of states during the generation of Do and Di 

to avoid numerical problems in the solution of the MAP/PH / 1 queues. We note that 

the size of the state space is decreased by up to 30% with this simple state reduction 

technique.

From the HMM output, we can also construct a more general MAP by using the 

same matrix Do from the above MMPP and modifying the matrix Di by making

use of the probability vector p. Define P =  diag(pt Pmc ) to be the order me

diagonal matrix corresponding to the vector p. We then have

DMAP f-̂ MMPP
0 — *-*0

D r  = -d iagfU P SU .W e)1') + (P * Im„)v) DJ“ ".

We compute from the sequence {J fl}. 1 < n <  N, only the probability of leaving a 

control state upon arrival. The probability of reaching any other control state is not
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computed from this sequence, but rather from the probability transition matrix V 

since it is estimated using a similar analysis (which is reflected in the definition of 

matrix Di'AP in Eq.(4.6)).

Another set of MAP processes is obtained by incorporating the results of fitting 

the data in each of the data set sequences {«£}, 1 <  i < me, to a Coxian distribution 

using the EM algorithm. [6 J This computes for each control state i the vector a ,  and 

the matrix T , ,  1 < i < me, both of order m_\. We define

U i  =  row(D SAP. mHJ ) ® T .

X, = row(I„,c.m„ -  diag(((P *  Im„ |V e)r ) + (P ®  I,„„ )V. m H.i)  T ^a,

u  = [ u r , - , u u r . x = [ x r , - , x i c ]r .

Then the matrices DoIAP C and Di'AP C, where MAP-C stands for the MAP with Coxian 

interarrival processes for each control state, can be expressed as follows

Dqapc = U, D iIAP-c = X. (4.6)

The total number of states for this MAP is m e * m h ’ mx ■ In the same manner as 

described above, the states with probabilities that are very close to 0  are removed 

from the final version of the MAP.
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4.4.3 Experimental results

Our objective in proposing the algorithm of Figure 4.14 is to be able to fit data 

sets that exhibit long-range dependence into MAPs and consequently analyze the 

performance of queueing systems that operate under such correlated arrival processes. 

Analysis of data measured at Web servers show that the request arrivals at a Web 

server are correlated, while the service process is i.i.d. [105J. Further, we assume 

that the arrival and the service process are mutually independent. Hence, we model 

a Web server as a MAP/PH/1 queue and investigate the accuracy of the algorithm 

of Figure 4.14 only from the queueing system's perspective. Appendix B describes 

how to generate the MAP/PH/1 queueing system once the parameters of the MAP 

and PH distributions are known.

4.4.3.1 Traces

We use Web servers measurement data for our experiments. Each access log contains 

the time epoch of the n'h request and the number of bytes comprising the n,h request. 

The unit of time in the access logs available to us is one second, which is quite 

standard. Since there are typically tens or even hundreds of requests within a second, 

we use the method developed in [111) to provide a finner arrivals time scale. The 

coarser time granularity directly provides us with the discrete-time batch process for 

the number of client requests per second.

We have selected three representative data sets to be used in our experimental
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analysis. Each of the data sets exhibit correlation, whose indicator is the value of 

the Hurst parameter [10]. A data set with Hurst parameter higher than 0.5 is said 

to be long-range dependent. The first data set. denoted as Trace A, represents the 

peak traffic period for one of the Web sites of interest. This data set is long-range 

dependent with a Hurst parameter HA of approximately 0.78. The second data set, 

Trace B, represents the off-peak traffic period for one of the Web sites, which is long- 

range dependent with a Hurst parameter H b *  0.64. The third data set. Trace C. 

is somewhat artificial but included here to represent a more extreme case where the 

Hurst parameter He is around 0.9. Each of these data sets consist of traffic periods 

whose lengths are on the order of five hours and consist of more than 500,000 data 

points.

4.4.3.2 Experimental setting

We consider fitting the interarrival times of each data set with a wide variety of 

models that can be obtained from our methodology under the following assumptions:

•  an exponential (Exp) or x-phase Coxian (Coxx) distribution for the interarrival 

times associated with each control state:

•  an exponential or x-phase hyperexponential (Hrx) distribution for the sojourn 

times of each control state.

To facilitate the presentation of results, we shall use the notation MMPP(.s.d) and 

MAP(s.a.d) where s denotes the number of control states, d denotes the distribution
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of sojourn times for each control state, and a denotes the distribution that models 

the interarrival times associated with each control state.

In order to evaluate the accuracy of our approach, we compare various steady-state 

performance measures of the MAP/PH/1 queue against the corresponding measures 

obtained via trace-driven simulations. We assume that requests are served in a FCFS 

manner, and that the server depletes work at rate C. where C is a deterministic 

constant. By varying the parameter C, different server loads are obtained. The value 

ofC can only be reduced up to points that still maintain a stable regenerative G/G/ l  

queue (in the sense that the system empties with probability 1 and that there are a 

sufficiently large number of such regeneration points).

4.4.3.3 Peak Traffic Period (Trace A)

We vary the number of control states used by the HMM algorithm as part of our 

methodology for fitting the interarrival times of Trace A  to various MAPs. This 

makes it possible for us to examine the impact of the size of the underlying Markov 

chain on the accuracy of the model fitting. We start with 2 control states, and 

then increase to 5 and 1 0  states. The mean response times under a small subset 

of these MAPs as a function of the traffic intensity p are plotted in Figure 4.15(a). 

together with the corresponding simulation results for Trace A. Our results clearly 

demonstrate that the accuracy of the fitting improves significantly with increases in 

the number of control states, as expected. (Note that the MAP(5,Exp,Exp) results are
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somewhat more accurate than the MAP(2,Exp,Exp) results, which are not shown.) 

This is because more control states in the underlying Markov chain provide greater 

flexibility which makes it possible to better capture not only the dependence structure 

but also the variability of the arrival process. The output of the HMM algorithm for 

larger numbers of control states exhibit small probabilities for entering a few of the 

control states, together with small transition rates for leaving these control states 

once entered. This suggests that such control states improve the ability of the MAP 

to capture the tail of the interarrival process, and that the degree to which this is 

possible improves with increases in the number of control states.

In order to isolate, to some extent, the impact of the dependence structure on mean 

response time measures, we have ignored such dependencies and fitted the interarrival 

times of Trace A  to a PH distribution. The mean response time measures for this 

PH/PH/1 queue are also provided in Figure 4.15(a). It can be clearly observed from 

these results that the PH/PH/1 fitting is poor and, with the exception of light traffic 

intensities, the PH/PH / 1 queue is simply not capable of capturing the performance 

of the queueing system under Trace A. Conversely, the MAP models that capture 

the dependence structure do a much better job of matching the queueing system 

performance, particularly at heavier loads, where the accuracy increases with the 

complexity of the MAP.

In a similar manner, our methodology is used for fitting Trace .4 to various 

MMPPs, and the corresponding mean response times under a small subset of these
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MMPPs are plotted in Figure 4.15(b). The results from simulation are also included 

in the figure for comparative purposes. We continue to observe that the larger the 

number of control states, the more accurate the fitting. Once again, more control 

states in the underlying Markov chain provide greater flexibility that makes it possi­

ble to better capture both the dependence structure and the variability of the arrival 

process, for the reasons described above.

We observe that one of the MMPP models provides the most accurate results in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I. DATA FITTING ALGORITHMS 120

comparison with simulation for light loads. Under heavier loads, however, one of the 

MAPs tends to provide the most accurate results. Specifically, MAP(10.Cox2.Exp) 

provides the best accuracy with a relative error always less than 20%. We further 

observe that the models using Coxian distributions for the interarrival time process of 

each control state tend to provide better fits. Based on a simple statistical analysis of 

the sequence { Jn } defined in Subsection 4.4.1, we further observe that the interarrivals 

for each control state are not exponential, which is why we use the Coxian distribution 

to model each of these control-state interarrival processes.

We also study the tail behavior of the queue length distribution, using Eq.(3.5). 

for the best MAP and MMPP models, i.e., MAP(10.Cox2,Exp) and MMPP(10,Exp). 

The asymptotic queue length tail distributions corresponding to MAP(10.Cox2,Exp) 

model, based on the caudal characteristic q via Eq.(3.11). and the tail of the queue 

length distribution from the direct simulation of Trace .4 are used for comparison. 

Figure 4.15(c) plots these five queue length tail distributions for the traffic intensity 

p =  0.77, which represents a case where the system is moderately loaded. The 

corresponding set of results for a traffic intensity of p = 0.90. which represents a 

heavily loaded system, are presented in Figure 4.15(d). Note that in each of these 

figures we only plot the asymptotic queue length tail distribution for the MAP model 

because the corresponding curve for the MMPP model is quite close to that of the 

MAP model.

We observe that the queue length tail distributions obtained under the MAP and
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MMPP models provide a reasonably close match with the corresponding tail distri­

bution obtained from simulation over a relatively wide range. In the case of moderate 

load, i.e., p =  0.77, the tail distribution from the MMPP model closely matches the 

simulation results for small queue length values, which helps to explain the low rela­

tive error values at light to moderate loads. Conversely, the tail distribution from the 

MAP model overestimates the simulation results for all but very large queue length 

values. This causes the MAP to yield poorer relative errors at light to moderate 

loads, although still always less than 20%. In the case of heavier load. i.e.. p =  0.90. 

the tail distribution from the MMPP model continues to provide a close match with 

the simulation results but only for very small queue length values. The tail distri­

bution from the MAP model continues to overestimate the simulation results over a 

relatively large range of queue length values, crossing at around a queue length of 

140. In fact, the accuracy of the expected response time under the MAP model is 

achieved in part by pushing this crossover point relatively far to the right (to larger 

queue lengths). This further explains why the expected response times under the 

MAP model underestimate those obtained from simulation at heavier loads. More 

accurate response times under the MAP model at heavier loads can be obtained by 

increasing the number of (control and/or phase-type) states in the underlying Markov 

chain.

We also observe that the asymptotic queue length tail distribution based on the 

caudal characteristic q dominates all other tail distributions, for both p =  0.77 and
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p =  0.90, across a relatively wide range of queue length values. The tail of the queue 

length distribution from simulation eventually crosses the asymptotic tail distribution, 

as expected due to the dependence structure and variability in Trace A, but these 

crossover points occur at queue length values greater than 250 which can be considered 

to be a relatively high value of queue length. We note that the maximum response 

time value plotted for the MAP(10,Cox2,Exp) model represents p =  0.9, p =  0.94 

and tj = 0.99. This illustrates and quantifies how the latter two variables provide a 

better measure of effective system load than the standard traffic intensity p.

4.4.3.4 Off-Peak Traffic Period (Trace B)

The same set of experiments and analysis as those described in Subsection 4.4.3.3 

are performed on Trace B. Since the results in Subsection 4.4.3.3 demonstrate that a 

model with 10 control states fits the interarrival process much more accurately than 

the corresponding models with fewer control states, here we focus solely on models 

with 10 control states in the analysis of Trace B.

Based on Eqs.(4.5), (4.6), (4.6), and (4.6), several different MAP and MMPP 

models are fitted to the interarrival process of Trace B. The mean response times 

under these MAPs and MMPPs as a function of the traffic intensity p are respec­

tively plotted in Figures 4.16(a) and 4.16(b). In Figure 4.16(a) we observe that the 

PH/PH/1 model does not perform much worse than some of the MAP and MMPP 

models. This is directly related to the weaker long-range dependence of the interar­
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rival process of TVace B. From among the set of MAP models, MAP( 10.Cox2.Exp) 

performs the best with a relative error always less than 12%. On the other hand, 

the MMPP(10,Exp) model performs slightly better with a worst case relative error of 

10%. This supports the notion that the MMPP is a good model for data sets which 

have a relatively weak long-range dependence structure, or a short-range dependence 

structure.
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Figure 4.16: Response time as function of traffic intensity for (a) MAP models, (b) MMPP 
models and queue length tail distribution of fitted models for (c) moderate, (d) high system 
loads for TVace B

The queue length tail distributions for the models MMPP( 10.Exp) and MAP( lO.Cox2.Exp)
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as well as the asymptotic behavior (as characterized by Eq.(3.11) in terms of the cau­

dal characteristic q) for model MAP(10,Cox2,Exp), are compared with the queue 

length tail distribution obtained from the simulation of Trace B  in Figure 4.16(c) for 

a traffic intensity of 0.88. The same curves for traffic intensity of 0.95 are shown in Fig­

ure 4.16(d). These plots illustrate that for both moderate and relatively heavy traffic 

intensities MMPP(10,Exp) is a slightly better fit than MAP(10.Cox2,Exp). However, 

for heavier traffic intensities, the MAP(10.Cox2.Exp) curve follows the simulation 

curve for larger values of queue length than does the MMPP(lO.Exp) curve. Note 

that the maximum response time value plotted for the MAP(10.Cox2,Exp) model 

represents p =  0.97, p = 0.99 and q =  0.99.

4.4.3.5 Strong Long-Range Dependence (Trace C)

We perform the same set of experiments and analysis on the Trace C data set as 

those considered in Subsections 4.4.3.3 and 4.4.3.4. Figure 4.17(a) presents the mean 

response time as a function of the traffic intensity for all of the fitted MAP models 

compared against the simulation curve for Trace C. We note that the MAPs do a very 

good job of accurately capturing the queueing system performance even though the 

dependence structure of TVace C is much stronger than that found in TVaces .4 and B. 

It is this strong long-range dependence in Trace C that causes the MAP models with 

hyperexponential sojourn time distributions for the control states to perform better 

than the cases where the sojourn times are assumed to be exponentially distributed.
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Moreover, unlike the 2-phase Coxian distributions that are used to fit the interarrival 

process for each of the control states for Traces A  and B , we choose a 4-phase Coxian 

distribution for fitting the interarrival process of each control state for Trace C. These 

4-phase Coxian distributions are essentially Erlang distributions because we find that 

the coefficient of variation for each of the constructed control-state trace sequences 

(see Subsection 4.4.2) is less than 0.5.
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Figure 4.17: Response time as function of traffic intensity for (a) MAP models, (b) MMPP 
models and queue length tail distribution of fitted models for (c) moderate, (d) high system 
loads for Trace C

Figure 4.17(b) is similar to Figure 4.17(a) but for all of the fitted MMPP models
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and shows that the MMPP models only roughly approximate the simulation curve. 

The best fit for TVace C  is provided by the MAP(10,Cox4,Hr4) model with relative 

error less than 12%.

The queue length tail distributions for the two best fitting models, MAP(10,Cox4,Hr4) 

and MAP(10,Exp,Hr4), are plotted in Figure 4.17(c) for the moderate traffic intensity 

of 0.69, and in Figure 4.17(d) for the high traffic intensity of 0.83. These plots illus­

trate that the tail of the queue length distribution for Trace C  obtained by simulation 

is heavy and that the MAP(10,Cox4,Hr4) model does a much better job of captur­

ing the characteristics of this heavy tail up to a relatively large queue length value 

under both moderate and high traffic intensities. However, at high traffic intensities, 

the heavier tail of the simulation results eventually crosses from below that of the 

MAP(10,Cox4,Hr4) model, beyond which it decays much more slowly than all other 

tail distribution curves. This further explains why the expected response times under 

the MAP model underestimate those obtained from simulation at heavier loads. On 

the other hand, as previously noted, the range of traffic intensities that cover mean 

response time values from ES to 100 x ES represent by far the set of traffic intensities 

that might be of interest in practice. We note that the maximum response time value 

plotted for the MAP(10,Cox4,Hr4) model represents p — 0.83, p =  0.84 and r) =  0.99. 

This illustrates and quantifies how the latter two variables provide a better measure 

of effective system load than the standard traffic intensity p.
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4.5 Chapter summary

In this chapter, we proposed three new techniques for fitting data sets that exhibit 

high variability and long-range dependence into PH distributions and MAPs, respec­

tively. We presented D&C EM, a divide-and-conquer implementation of the EM 

algorithm, for fitting highly variable data sets into hyperexponential and more gen­

eral PH distributions. We demonstrated via experimental results that D&C EM 

provides fits that accurately match the major statistical properties of the data sets 

such as median, first, second, and third moments. We tested the accuracy of D&C 

EM from the queueing system’s perspective as well. The queueing systems, that used 

as service process the D&C EM fits, captured closely the behavior of the systems, 

matching the behavior evaluated via trace-driven simulations. We showed that, as 

a fitting technique. D&C EM assures both accuracy and efficiency. Using a similar 

approach as in D&C EM, we also developed D&C MM, which fits data sets into 

PH distributions by partitioning them, and using the method of moment matching 

to fit each partition into a PH distribution. Apart from D&C EM and D&C MM, 

we proposed a technique for fitting correlated data sets into MAPs. The technique 

uses basic knowledge of Hidden Markov models, statistical analysis, and the EM algo­

rithm to generate a MAP. We tested the accuracy of the technique from the queueing 

system’s perspective via numerous experiments using Web server measurement data.
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Chapter 5

Etaqa M ethodology

In this chapter, we outline Etaqa , the methodology that we propose for solving 

and computing various measures of interests for GI/M/1-. M /G /l-tvpe processes 

and their intersection, i.e., QBD processes. Etaqa stands for Efficient Technique 

for Analyzing QBD processes by Aggregation. Although we present E taqa as a 

generalized methodology, it started as a technique to solve a special case of QBD 

processes [24]. Etaqa  has a simple formalization, it is computationally efficient, 

numerically exact, vet provides enough information to conduct detailed analysis of 

the given process.

The traditional solution algorithms, described in Chapter 3, compute the station­

ary probability vector with a recursive function based on G  (for the case of M /G/l- 

type processes) or R  (for the case of GI/M/l-type processes), and iterative procedures 

are used for determining G or R. Alternative algorithms for the computation of G or 

R  have been proposed (e.g., the work of Latouche [46] for the efficient computation 

of R  and of Meini [60] for the efficient computation of G).

128
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Distinctively from the classic techniques of solving M /G/ 1-type and GI/M/ 1-type 

processes, we recast the problem into solving a finite system of m-l-2n linear equations, 

where m is the number of states in the boundary portion of the process and n is the 

number of states in each of the repetitive “levels”. The proposed methodology uses 

basic, well-known results for Markov chains. Assuming that the state space S  is 

partitioned into sets j  > 0. instead of evaluating the probability distribution of 

all states in each S ^ . we calculate the aggregate probability distribution of n classes 

of states T (,). 1 < i < n, appropriately defined (see Figure 5.1).

We note that our approach does not require any restriction on the form of the 

chain's repeating pattern, thus can be applied to any type of M /G /l. GI/M/1. or 

QBD chain. The proposed methodology' is both efficient and exact, but also numeri­

cally stable. E taqa does not require the calculation of steady state probabilities in 

explicit recursive form, yet it provides the means for calculating a rich set of measures 

of interest such as the expected queue length and any of its higher moments. Detailed 

comparisons with the traditional methods show that the proposed methodology’ re­

sults in significantly more efficient solutions for the case of M/G/1-type and QBD 

processes. For the case of GI/M / 1-tvpe processes, our methodology exhibits the same

Figure 5.1: Aggregation of an infinite S  into a finite number of states.
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complexity as the traditional one for the computation of the stationary probability 

vector, but it results in more complex formulas when computing measures of interest.

This chapter is organized as follows. In Section 5.1, we present E taqa for M /G /l- 

type processes, derive the computation of measures of interest, and analyze the com­

plexity of the method with respect to both storage and computation requirements. 

Section 5.2 outlines E taqa  for GI/M /l-type processes, its computation of measures 

of interest, and its complexity analysis. In Section 5.3. we present E taqa for QBD 

processes, show how to compute measures of interest, and conclude with its complex­

ity analysis. Section 5.4 presents experimental results that demonstrate the compu­

tational efficiency of E taqa  for solution of M/G/1-type processes. In Section 5.5, we 

evaluate the numerical stability of E taqa  for M /G/l-type processes by comparing 

its performance with numerical stable matrix-analytic algorithms. In Section 5.6. 

we describe M AM So lv er , a matrix-analytic methods tool that provides software 

implementations for E taqa  as well as the other existing state-of-the-art algorithms 

for the solution of M /G/l-type, GI/M/1-type and QBD processes. We conclude the 

chapter with a summary of the results.

5 . 1  E t a q a - M / G / 1

In Subsection 3.4 we outlined the matrix analytic method for the solution of M /G /l- 

type processes. Here we introduce an aggregated technique that computes only 7T(0), 

7T(1) and the aggregated stationary probabilities of n classes of states. The first
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step toward the solution of an M/G/1-tvpe process is the computation of matrix 

G. We assume that G  is available, i.e., it has been computed using an efficient 

iterative method, e.g., the cyclic reduction algorithm [12], or that it can be explicitly 

obtained [78].

Recall that, as defined in Eq.(2.22), for the case of M/G/1-tvpe processes the 

block-partitioned infinitesimal generator has the following form:

Q m / g / i =

L p (D §*(2) p(3) pt-*) . *

B L F(l) p(2) F(3) .

0 B L p (D p(2) .

0 0 B L p ( ! )  .

0 0 0 B L
: '

The block partitioning of the infinitesimal generator defines a block partitioning of 

the stationary probability vector t t  as 7 r  =  [ t t ( 0 ) .  7T( l ) . 7 t ( 2 ) . ...] with 7 r (0 * € Rm and 

7T(') € R". for i > 1. Furthermore, we can rewrite the matrix equality t t  -Qa//g/i = 0

as:
f 7T(0)-L  +  7T( l ) - B = 0

+ f (».L + t t ( 2 ) - B  = 0
tt( 0 ) - F (2) + 7 T ( l ) - F (l) + t t ( 2 ) - L  +ir<3>-B = 0 .  (5.1)
, t (o) .f <3) +  w (t) .p (2 )  +  ,r ( 2 ) .F (i) +  w (3).l  +  »(•«).B  =  0

Theorem  Given an ergodic CTMC with infinitesimal generator Q m/g/ i 

having the structure shown in Eq.(2.22), with stationary probability vec­

tor t t  =  [ i r ( 0 ) . ? r ( 2 ) , . . . ] ,  the system of linear equations

x - X  =  [1,0]. (5.2)
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where X € R(m+2n>x(m+2n) jg defined as follows

I T L F(l) — Y i i L - s  s (i> • G ( £ ~ 2F(,) + £ ~ 3s w .G r  '

x  = 1 T B l - £ ~ 2s (<) g ( E * iF ^  + E ” 2s (i)- G r
1 T 0 B -  S(0 • G (ESiFW + L + E S iS W - G r  .

(5.3)

admits a unique solution x  =  x (1). where 7T(,) =  5 1 ^ 2

Proof. We first show that [ir*°*. 7T(,)] is a solution of Eq.(5.2) by

verifying that it satisfies four matrix equations corresponding to the four 

sets of columns we used to define X.

(i) The first equation is the normalization constraint:

7T(0) • 1T +  7T(1) • 1T +  IT1*’ • l r  = 1. (5.4)

(ii) The second set of m equations is the first line in Eq. (5.1):

w(0) • L + 7T(l) B = 0. (5.5)

(iii) The third set of n equations is derived beginning from the second line 

in Eq.(5.1):

7r ( 0 ) . F ( l ) + 7 r ( D . L  +  7r( 2 ) . B = 0

Further we rewrite jt(2\  such that it is expressed in terms of 7T(0), 7T(l) 

and x (,) only, because our solution does not compute explicitly x (2). By
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substituting ir (2) in the above equation we obtain:

3 0

7T(0) • F(1) +  ir (1) • L + ir(,) B -  ir (i) B =  0. (5.6)
i=3

To compute the sum we use Ramaswami's recursive formula,

i.e., Eq.(3.26). and obtain:

*(3> =  — (7r(0)-S(3) + ir(l)-S(2) + ir(2)-S(l)) • (S<°>)-‘
*(•»> =  + tt(2)-S(2) +  7r(3)- S ( l ) ) • ( S ^ ) - 1
*.(5) =  _ ( W(0).§(5) +  » ( I ) . S (-«) +  7T(2)- S (3) +  7T ^-S<2) +  W(4)-S<l >M S<0 )) - 1 •

(5.7)

where the matrices Ŝ *'. for i > 3, and S ^ , for j > 1 are determined using 

the definitions in Eq.(3.27).

From the definition of matrix G in Eq.(3.25), it follows that

X

B = _(L +  5 ^  F (i)G*) • G = - S (0) • G.
1=1

After summing all equations in (5.7) and multiplying by B, we obtain the 

sum 5 1 * 3  7r(l)' B:

^  *r(i)-B =  ( n w  • j r ,  S(i) + ir(,) • j r  S(i) + £  n {i) • S U) j  .(S(0))"l-S(0,-G.
t= 3  \  1=3 <=2 i- 2 7 = 1  /

which further results in:

oc ac

^ 2  w(0-B = 1T(0)- S(i)-G+7T(1)-J 2  S(,) G + ^ 2  ttw S(,)G. (5.8)
i=3 i- 3 t= 2 i=2 i= l
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Substituting Eq.(5.8) in Eq.(5.6) we obtain the third set of equations as 

a function of ir(0), tt*1* and only:

*.«>). ̂ f (1) -  £ S(i) • +ir(l)- S(‘) • +ir(,)- s(° = 0

(5.9)

(iv) Another set of n equations is obtained by summing all the remaining 

lines in Eq.(5.1):

ir(°) • ^  F(i) + tt(1) • F (i) + ̂  ir(<) • ( L + ^  F (j) ) + * (0 • B = 0.
i-1 i=l t=2 V i—j ) i=3

Since 7T(,) • B can be expressed as a function of 7r(0), 7t(1). and ir(’) 

only, the above equation can be rewritten as:

tt(0) • f ^ F (0 + f >  • G^ + ( f S ’W + £ > «  • G
\t=2 i=3 /  \i=l t=2

• ( L + £ > (i) + £ ] S «  • G ) = 0 .
\  i=l i=l /

(5.10)

In steps (i) through (iv), we showed that the vector [ir̂ 0', i r^ ,  7T**’] 

satisfies Eqs. (5.4), (5.5), (5.9), and (5.10), hence it is a solution of (5.2).

Now we have to show that this solution is unique. For this, it is enough 

to prove that the rank of X  is m +  2n by showing that its m +  2n rows 

are linearly independent.

Since the process with the infinitesimal generator Q aj/g/ i is ergodic, we

know that the vector 1T and the set of vectors corresponding to all the
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colum ns of Q a //c /i  except one. any of them, are linearly independent. We 

also note that by multiplying a block column of the infinitesimal generator 

Qm/g/ i with a matrix, we get a block column which is a linear combina­

tion of the columns of the selected block column. In our proof we use 

multiplication of the block columns with the powers of matrix G.

Uy(o) v* 1* V*2' V '3' •••
L p t1) p(2) ji(3) ---
B L F<1) p (2)
0 B L F<1)
0 0 B L ---
0 0 0 B

;

E “ 2F(i)
E ~ , f <°

L + E ~ iF (,)
B + L + £ « ,  F<*> 
B + L + FW

w < !> W<2' W (3)
s (3) - G S(4) • G S<5) • G
S<2) • G S(3) • G S(4) • G
S(1) • G S<2) • G S(3) - G

- B S ^ - G S<2) • G
0 -B S( , ) -G

F (l) G E ~ 2f (0 + E ~ 3 s (,)-g

L -  $2*2 S(l* • G* E ^ i F ^  + e ^ s ^ - g *
B - E ^ i S ^ - G 4 I' + E “ i F (i) +  E “ 2S( 0 -G i
B -  E ~  i • G* l  + E * i F (,) +  E * 2s ( 0 - g ‘
B -  E r ^ i  S(i) • G ‘ L + E * i F (0 +  E “ 2S(i)-G*

Figure 5.2: The blocks of column vectors used to prove linear independence.

In the following, we define all block columns that we use in our proof 

and, for the benefit of the reader, we show them in Figure 5.2. We label 

the original block columns of Q m / g / i as V (l) for i  > 0. We define block 

column U as the sum of all V (‘* for i > 2:

u  = £ v * > .
i=2

We obtain blocks W (,) for i > 1 by multiplying the block columns V (j) for
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j  > i -1-2 with the ith power of matrix G  and summing them all together

W (i) =  ^ 2  V u) • G ‘, <>1.
J =  3

Blocks W (,) for i > 1 are further used to define

Y = V (l) — 5Z  W W
i=l

and

Z = U +  ^ W (i
■Xi

)

i=l

In the matrix X defined in Eq.(5.3), we make use of the three upper blocks 

of V (0). Y, and Z. We argue that the rank of the matrix [V(0)|Y|Z] is 

rn+2n—l because we obtained Y. and Z respectively as linear combination 

of blocks V (l) and V (2) with the blocks W (l) for i > 1. and none of the 

columns used to generate for i > 1 is from either V*1' or V*2*. 

Recall that Q m / g / i  is an infinitesimal generator, therefore the defect is 

one. Therefore, the rank of [V(0)|Y|Z] is exactly m + 2n -  1. Substituting 

one (any) of these columns with a column of Is, we obtain the rank of 

m + 2 n. D
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5.1.1 Computing measures o f interest for M /G /l-ty p e  pro­

cesses

We now consider the problem of obtaining stationary measures of interest once 7T(0\  

ir*l\  and tt*** have been computed. We consider measures that can be expressed as 

the expected reward rate:

j = 0 jgSU)

where pjj) is the reward rate of state s[j) . For example, if we wanted to compute the 

expected queue length in steady state for a model, where «S(j) contains the system 

states with j  customers in the queue, we would let pjj) = j .  while, to compute the 

second moment of the queue length, we would let p/' = j 2.

Since our solution approach computes ir(0K tt(1). and irtj\  we rewrite r as

r  =  1r(0)p(0)T +  tt< V l)r +  * U)PU)T.
j —~

where p (0) =  [p(,0)....... p™*] and p (j) =  [p /1. -----Pn’], for j  > 1. Then, we must show

how to compute the above summation without explicitly using the values of 7T^ for

j  > 2. We can do so if the reward rate of state s ^ \  for j  > 2 and i = 1.........n, is a

polynomial of degree k in j  with arbitrary coefficients af*, aj1'— , ajfc':

Vj > 2 , Vi G {1,2.......n}, p ^  =  a f1 + a|l,j  H + a f 1/'-  (5.11)

The definition of p[j) illustrates that the set of measures of interest that we can
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compute includes any moment of the probability vector ir as long as the reward rate 

of the tth state in each set has the same polynomial coefficients for all j  > 2.

We compute $3°12 it^pUW  as follows

^  7r(j)p (j)T = ^ irU) (a^  +  H 1- a ^ j k)T
j=2 j=2

=  ^  i r ^ a ^ l7, +  ^  j7T(j)al1'7’ H------- h ^  j fc7r(j)aW7’
J —2 j= 2  J = 2

=  r [ola [oir +  r [ila [iir +  . . .  +  r lfcla l*IT>

and the problem is reduced to the computation of for I =

0 k.

We show how r ^ ,  k > 0, can be computed recursively, starting from which 

is simply Multiplying the equations in (5.1) from the second line on by the

appropriate factor j k results in

2fcir(o) F (l) +  2*7T(l) L(1) +  2*ir<2) B = 0
3fcir(0) F (2) +  3fc7r(1) F (l) +  3fc7r(2) L + 3*ir<3) B =  0 .

Summing these equations by parts we obtain

ir<0) +  l)fcF (j) +  *r(l) ( 2*L +  +  2)kF(i)J +
j=i \  j=i /

i t  *w ( f l u + h + i)fcF°)+(/i+i)feL) + i t  *{h)hk b = °’
fc=2 \j= l /  fc=2
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which can then be rewritten as

Exchanging the order of summations we obtain

= - f - f .

E  ( / )  E  * (h)hk~l ( L +E o + +  rlfclB
1=0 ^  '  h = 2  \  J = 1 /

= - f  -  f.

Finally, isolating the case / = 0 in the outermost summation we obtain

r [fcl + L + ^  F(j) j = - f - f - E ( / )  r(fc_<l (L + E (j + 1)'F<J) j •

which is a linear system of the form r^ (B  + L + 53* j F*J*) =  b ^ . where the right- 

hand side bW is an expression that can be effectively computed from ir(0), 7r(l). and 

the vectors through rtfc-lL However, the rank of (B + L + 53*i F ^ )  is n — 1. This 

is true because (B + L+5Z^i is an infinitesimal generator with rank n — 1, so the 

above system is under-determined. We drop any of the columns of B + L + , F^*,

resulting in
3C

r lfci(B + L + 5 ^  F 0 *)0 = (bW)°. (5.12)
i=i

and obtain one additional equation for by using the flow balance equations between 

U/=05 (,) and U*J+1«S(,) for each j  > 1 and multiplying them bv the appropriate factor
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A

2*ir(0) j r F (,)l r +2*ir(l> ^ F (,)l r  =  2*ir<2> B lr
/= 2  / = I

3fc7r(°) ^ F (')l r + 3 M 1> f V '> l r +3‘ir<2> £ f (,)1t =  3fcir<3> B lr  '
/ =3  1=2 1=1

(5.13)

We introduce the following notation

F M = 5 Z ' * - g ™ * ,M = E (‘ - F " )- j ' L  ( 5 U )
l=j l-j

We then sum all lines in Eq.(5.13) and obtain:

ir(0) Y t t  + l ) % W l lT + * (,) &  + 2)*F[0J+1Il r+
j=i j=o

£  = £ / » w b i 7\
1=2 j=l j—2

which, with steps analogous to those just performed to obtain Eq.(5.12). can be

written as

rW(F[,.i, -  B)1T = cM (5.15)

where is, again, an expression containing ir(0). tt(1). and the vectors through

Note that the n x n matrix

[(B + L + F [0.i|)°|(F[ul -  B ) lr ] (5.16)
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has full rank. This is true because (B + L + Fp.ij) is an infinitesimal generator with 

rank n — 1 . thus has a unique stationary probability vector 7  satisfying 7 (B + L + 

F[o.i]) =  0. However, this same vector must satisfy 7 B l r  >  7 F [i.i]1 t  to ensure that 

the process has a positive drift toward «S(0', thus is ergodic. hence 7 (F[i.j| — B ) lr  < 0, 

which shows that (Fp.q — B )lr  cannot be possibly obtained as Unear combination of 

columns in (B -F L +  F[0.j|), therefore the n x n matrix defined in Eq.(5.16) has fuU 

rank.

Hence, we can compute using Eqs. (5.12) and (5.15). i.e.. solving a linear 

system in n unknowns (of course, we must do so first for / =  1  k — 1).

As an example, we consider rW, which is used to compute measures such as the 

first moment of the queue length. In this case,

OO X  X

bW = - 7T(0' ^ ( j  +  1 )F(J) -  t t(1)(2L + + 2)FU)) -  7r(*>(L + J j j  + 1 )FW).
j = 1 j = 1 j = 1

cl" = + l)F|0Jll T -
j=2 j=l j=l

We conclude by obsei-ving that, when the sequences (F (j) : j  > 1} and {F(j) : j  > 

1 } do have a nicer relation, Uke a geometric one. the treatment in this section can be 

modified appropriately to simplify the different sums introduced here, and give closed 

form formulas.

In the general case, that was considered here, some measures might be infinite. 

For example, if the sequences are summable but decrease only Uke 1/ j h for some 

h > 1 . then the moments of order h — 1 or higher for the queue length do not exist
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(are infinite). From the practical point of view, we always store a finite set of matrices 

from the sequences { F ^  : j  > 1} and {Fw : j  > 1}, so the sums of type F[t.j] and 

F[*.j] for j  >  1. k > 0 are always finite.

5.1.2 Time and storage com plexity

In this section, we present a detailed comparison of our aggregate solution for M /G /l- 

type processes with the matrix-analytic method outlined in Subsection 3.4. The 

complexity analysis is within the accuracy of O-notation. In our analysis. O l (x ) 

denotes the time complexity of solving a linear system described by x  nonzero entries, 

and fj{A} denotes the number of nonzero entries in matrix A. In the general case. 

r){F} and rj{F} should be taken to mean r/{Uj=1F (j)} and //{U^_1F (j)}, respectively.

Since practically, we cannot store an infinite number of matrices, in our analysis, 

we store up to p matrices of type F ^ '. and F ^ \  j  > 1. assuming that these matri­

ces capture the behavior of the entire system. In addition for the matrix analytic 

method, to reach the necessary accuracy, we compute up to s block vectors 7r(,) of 

the stationary probability vector ir.

We outline the required steps for each method and analyze the computation and 

storage complexity of each step up to the computation of the expected queue length 

of the process. In our analysis we do not include the cost to compute the matrix G 

since in both methodologies it is required to be computed. G should be computed 

with an efficient method like the cyclic-reduction algorithm [12).
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The following summarizes the analysis of computation and storage requirements 

for Etaqa-M/G/1:

•  Computation of the aggregate stationary probability vector 7^°*, 7T*l\  7^*'

-  0(p  • (m - f/{F, G} -F n ■ q{F, G})) to compute sums of the form S(,) for 

i > 1, and S**' for i > 0. whose sparsity depends directly on the sparsity 

of G, and F*'* for i > 1,

-  0(p-(q{F}+q{F})) to compute sums of the form $^1, F(j). and 51* 2 ^ <J)-

-  0^(/j{B,L.L.F, F,G}) for the solution of the system of m + 2n linear 

equations.

•  Storage requirements for computation of Tr^.Tr^'.Tr^1

-  0(m • n +  n2) to store the sums 5Z^i and S(,).

-  m + 2n to store the probability vectors 7T(0). 7t(,) and 7T**1.

•  Computation of the expected queue length

-  0(p  • (q{F} + q{F})) to compute sums of the form YL%iJk ' and 

Y^ .% 2  Jk ' where A: is a constant,

-  0 L(r}{F, L, B}) for the solution of the sparse system of n Unear equations.

•  No additional storage requirements.

The following outlines the computational and storage complexity analysis for 

matrix-analytic solution for M /G /l-type processes presented in Section 3.7:
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•  Computation of boundary stationary probability vector ir(0)

-  0(p  • (m  • t/{F,G} + n • i/{F,G})) to compute the sums of the form S(,) 

for i > 1, and for i >  0,

-  0(n 3 -I- m • ̂ {F. G} + n • rp{B}) for the computation of the inverses of S(0). 

and 51* o SU] and additional full-matrix multiplications.

-  0 L(m2) for the solution of the system of m linear equations.

•  Storage requirements for computation of 7T(0*

-  0(p ■(m-n + n1)) to store all sums of form for i > 1. and S(l* for i > 0,

-  0(rri2) for storing the matrix of the system of linear equation.

-  m to store ir(0*.

• Computation of the expected queue length

-  0(pn3 -f sri2 + p logp) based on [58), since we assume that the FFT-based 

version of Ramaswamis recursive formula is used to compute the s vectors 

of the stationary probability vector,

-  0(s  • n) to compute the queue length.

•  Storage requirement: s -n  to store vectors 7T(l) for i > 1.

Tables 5.1 and 5.2 summarize the discussion in this section.
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Computation of ir(0) (matrix-analytic) or ir(0), tt(*) (Etaqa-M/G/1)
Etaqa-M /G /1 0 L(V{B, L, L, F. F. G}) + 0 ( p  • (m • rj{F, G} -1- n • q{F. G}))
Matrix-analytic 0 L{m2) +  0 ( p  - (m  - q{F,  G} +  n • q{F, G}) +  n3 +- m • »j{F. G} + n ■ rj{B})
First moment measures
Etaqa-M /G /1 Ol (q{B ,  L, F}) + 0 ( p  ■ q(F) + p  • rj(F»
Matrix-analytic 0 ( p n 3 + sn2 + plogp)

Thble 5.1: Computational complexity of the Etaqa-M /G /1  solution and the matrix- 
analytic method.

Additional storage Storage of the probabilities
Com putation of (matrix-analytic) or ir(0\  7r(l*, it*** (Etaqa-M /G /1)
Etaqa-M /G /1 0{m ■ n + n2) m + 2n
Matrix-analytic 0(m2 + p - (m - n-1- n2)) m
First moment measures
Etaqa-M /G/1 none none
Matrix-analytic none s ■ n

Thble 5.2: Storage complexity of the Etaqa-M /G /1 solution and the matrix-analytic 
method.

Concluding our analysis, we point out that the aggregate solution is a more effi­

cient approach, both computation- and storage-wise. In comparison to the matrix- 

analytic solution, it entails only a few steps and is thus much easier to implement. 

Since we do not need to generate the whole stationary probability vector, in our com­

plexity analysis the term s does not appear for Etaqa-M /G /1 which in comparison 

with the value of p or n is several times higher.

Furthermore, since the aggregate solution does not introduce any matrix inverse 

or matrix multiplication, the sparsity of the original process is preserved resulting 

in significant savings with respect to both computation and storage. We stress that 

the sparsity of G  is key for preserving the sparsity of the original process in both
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methods. There are special cases where G is very sparse (e.g.. G is a single column 

matrix if B is a single column matrix). In these cases, the sums of the form S(,) 

for i > 1, and for i >  0 almost preserve the sparsity of the original process and 

reduce the computation and storage cost.

5 . 2  E t a q a - G I / M / 1

In this section, we apply the same aggregation technique, introduced in Section 5.1. 

for the exact solution of GI/M/1-type processes. Recall that in Eq.(2.21) we defined 

the block partitioned infinitesimal generator of GI/M/1-tvpe processes as:

Qd/xf/i —

' L F 0 0 0 “

§(D L F 0 0 •
§<2) B(l) L F 0 -
§ (3) b (2) B(l) L F

; I I *• .

The respective block partitioning of the stationary probability vector i t  allows us to 

rewrite the matrix equality t t  • Q g i / m / i  — 0 as:

7t<°>L +
ir(°) F  -I- ir<«L +  B(,-1)

, ffU )F  +  n (2) L +  b<‘- 2>
*<2)F  + w(3)L + ^ ff(ilBN )

Assuming that matrix R  is available, we apply the same steps as for the case of 

M /G /l-type processes and formulate the following theorem:

0
0
0
0

(5.17)
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Theorem  Given an ergodic CTMC with infinitesimal generator Qct/nr/i 

having the structure shown in Eq.(2.21), with stationary probability vec­

tor it = [tt(°\ 7T(l), 7T<2), ...], the system of linear equations

x -X  =  [1,0], (5.18)

where X € R(m+in)x(m+2n) is defined as follows

■ 1T L F 0°
X = 1T B<n L F°

1T ( i - R ) E ^ R - 2 -B(i) ( l - R ) E " i R i_l -B(0 (F + L + E *  i ’ B (i))°
(5.19)

admits a unique solution x = [ir(0\  ir(1). 7T(,)]. where ir(,) =

Proof. The steps to derive Eq.(5.19) are outlined as follows.

(i) The first equation is the normalization constraint:

w(0) • l r  +  tt(1) • l r  +  7r(’> • l r  =  1. (5.20)

(ii) From the first line in Eq.(5.17) we have:

n W  . £ +  w<l> • B(l) + f ;  i r ( i )  ■ B(,) = 0.
i=2

The sum 7r '̂) ' B*‘* can be expressed as:

jt(,) • B(0 = * 0) “  S  ' ®<0
i~ ‘l  i—2 j —t j  — i+l
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and after simple derivations that exploit the geometric relation of the 

stationary probability vectors for j  > 2, we obtain m equations:

ir(0) • L + ir(1) • B(1) + irw (I -  R) £ R i  2  ■ B(0.
i=2

(iii) From the second line of Eq.(5.17) and using similar derivations as in 

step (ii) we get the third set of n equations:

*
ir(0) • F + ir(1) • L + ir(,)(I -  R) £  Ri_l ’ B(0-

i=l

(iv) Another set of n equations is obtained by summing all the remaining 

lines in Eq.(5.17):

7T(1) - F  + 7r(,) • (L + F) + 5 ^  7T(j)B(i- 2)
i= 3  j-=i

and by expressing the sum tt̂ B *1-2* as a function of we

obtain an additional set of n equations:

ir(1) • F + *<*> + F + J !  R i  ‘ B(° j

The matrix X  has full rank. This follows from the fact that the infinites­

imal generator Q gi/m/ i has a defect of one. We obtained the second and 

the third block columns in X by keeping their respective first two upper
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blocks in the first block column of Q g i /m / i and substituting the remain­

ing lower blocks with one block that results as a linear combination of the 

remaining lower blocks within the same block column of Q g i / m / i - We ob­

tained the fourth block column in X  by keeping the first two upper blocks 

from the third block column of Q g i /m / i and substituting the rest with one 

block tha t results as a linear combination of the remaining lower blocks of 

the third block column in Q g i / m / i plus all remaining blocks in Qc//w/i 

(i.e., from the fourth block column of Q g i /m / i onward). Substituting one 

(any) of these columns with a column of Is, we obtain the rank of m  4-2/1.

□

5.2.1 Computing measures of interest for G I/M /l-ty p e pro­

cesses

Similarly to the M /G /l case, our methodology allows the computation of the reward

rate of state for j  > 2  and i =  1 . n.  if it is a polynomial of degree k  in j  with

arbitrary coefficients a f '.a j1'  a f ':

Vj > 2 , Vi € {1.2....... n}. p ?  =  a f 1 +  a |!,j  +  • • • +  a f 1/ -
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We follow the exact same steps as those presented in Section 5.1.1. is obtained 

by solving the system of linear equations

a c  oc

rW[F +  L +  J^ R B * 0)0 | ((I -  R J ^ T r ^ R  • B u+2) +  J ^ R J l B0) -  F) • l r )
i= l i= 2 j=l «=1 j=i

= [(bW)° | cW].

(5.21)

where

and

CW =  rM • -  2)k~lI  -  (i -  l)fc-'R )^R *' • Su+2) +
1=0 '  '  \«=2 j = l

f ;  f ;  i*-1 • r - ^ V
i=lj=i+2 /

The n x n matrix used in Eq.(5.21) has full rank. The proof follows the same steps 

as those used for the proof of Theorem (5.2).

5.2.2 Time and storage complexity

In this section, we present a detailed comparison of our Etaqa-GI/M /1 solution for 

GI/M /l-type processes with the matrix geometric solution outlined in Subsection 3.1. 

The complexity analysis is within the accuracy of O-notation. We assume that up to 

p of the B (j), and B ^ , j  > 1 matrices are stored. The notation in this section follows 

the one defined in section 5.1.2.
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We outline the required steps for each method and analyze the computation and 

storage complexity of each step up to the computation of the expected queue length. 

Since both methods require R, we do not include this cost in our analysis and assume 

that is computed using an efficient method.

In the following, we summarize the complexity analysis of Etaqa-G I/M /1 solu­

tion method:

•  Computation of the aggregate stationary probability vectors ir(0).ir ll).7T(*)

-  0(p ■ (m • q{B, R} + n • //{B. R})) for computation of sums of the form

£ * 2R ,_-'B<,) for j  = 1.2. and R ‘ JB (,) for j  = 0 .1.

-  Ol (rj{L. F. B, L. B, R}) for the solution of a system of m + 2n linear equa­

tions.

•  Storage requirements for computation of 7r(0). 7T(1) and 7T(,)

-  0(m  ■ n +  n2) to store sums of form 5Z*2R 1--'B(,) for j  = 1.2 and 

E Z i  R i_2BW for j  =  0,1,

-  n2 to store matrix R,

-  m + 2n to store 1T(0\  t t(1) and 7r(,).

• Computation of the queue length

-  O l (tj{F, L, B, R}) to solve a system of n linear equations,
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-  • n{B, R} + n • q(B, R}) for the sums required to construct the

matrices of the system of linear equations.

•  Storage requirements for computation of queue length

-  No additional requirements.

In the following, we summarize the complexity of matrix-geometric solution out­

lined in Section 3.1:

•  Computation of the boundary stationary probability vectors ir(0> and 7T(,)

-  0(p (m r/{B, R}+nr/{B.R})) to compute sums of the form 53*2R ,-J’B(,) 

for j  = 1,2 and j R -^B ^  for j  =  0.1,

-  0(n3) to compute of (I -  R)-1,

-  0 L{q{L. F, B. L, F. B. R}) for the solution of a system of m + n linear 

equations.

•  Storage requirements for computation of tt*0' and tt*1'

-  0(m • n -1- n2) to store sums of the form R'~JB ^  for j  — 1.2 and

i R ,_JB (‘) for j  = 0,1,

-  0 (n2) to store R  and (I -  R )- \

-  m +  n to store ir(0) and

•  Computation of queue length

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ETAQA METHODOLOGY 153

-  0 (n2) to compute the closed-form formula for queue length: 7T(,) • R  • (I — 

R )-2 - l r .

•  Storage requirements for computation of queue length

-  No additional requirements.

Tables 5.3 and 5.4 summarize the computational and storage costs of the two methods.

Computation of jt*0*, ir^  (matrix geometric) or ir(0*, ir^'1 (Etaqa-GI/M /1)
Etaqa-GI/M/1 0 L(n{ i .F. B. L, F. B, R}) + 0(p • (m • r;{B, R} + n ■ //{B. R}))
Matrix-gcomctric 0 L(n{L, F. B. L. B. R}) + 0{p • (m • q {B. R) + n • r;{B. R})) + n3)
First moment measures
Etaqa-GI/M/1 0 L{t]{F. L. B. R}) + 0(p2(m ■ n{B, R) + n • r/{B. R})
Matrix-gcomctric 0(n2)

Table 5.3: Computational complexity of the Etaqa-GI/M/1 solution and the matrix 
geometric method.

Additional storage Storage of the probabilities
Computation of 7T̂°* (matrix-geometric) or 7r(0), i r ^  (E taqa-G I/M /1)
Etaqa-GI/M/1 0(m ■ n -I- n2) m + 2 n
Matrix-gcomctric 0(m  • n + n2) m + n
First moment measures
Etaqa-GI/M/1 none none
Matrix-gcomctric none none

Ihble 5.4: Storage complexity of the Etaqa-GI/M /1 solution and the matrix geometric 
method.

The two tables indicate that the classic matrix geometric method is the preferable 

method for solving GI/M/l-tvpe processes. The major advantage of the matrix- 

geometric solution is its simplicity. The geometric relation between the vectors of
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the stationary probability distribution allows for simple closed form formulas for the 

computation of measures of interest such as the system queue length. Our Etaqa- 

G I/M /1 method may perform better when we are only interested in the computation 

of the probability vectors, depending on the system sparsity, the  size of matrices, and 

the number of stored matrices th a t capture the behavior of the whole process but has 

higher complexity when used to  compute measures of interest.

5 . 3  E t a q a - Q B D

In Chapter 3, we noted that quasi-birth-death (QBD) processes are an intersection of 

M/G/1-type and GI/M/1-type processes while in Eq.(2.18) we defined the blocked- 

partitioned infinitesimal generator for a QBD process as follows

'  L F 0 0 0
B L F 0 0 •
0 B L F 0 -
0 0 B L F

QBDs can be solved with either matrix analytic or matrix-geometric method. Of 

the two methods, the method of choice for the solution of QBD processes, is matrix 

geometric because of its simplicity and ability to provide closed form formulas for 

measures of interest such as the average queue length. In contrary to the matrix 

analytic methods that solve QBDs using matrix geometric solution, we choose to 

solve QBDs using the E taqa-M /G /1  since it is more efficient than E taqa-G I/M /1.
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The first step toward the solution of the QBD process is the computation of 

matrix G. Recall that the logarithmic reduction algorithm [47], the most efficient 

algorithm for the computation of R  requires first the computation of G. Assuming 

the knowledge of matrix G  for a QBD process with the infinitesimal generator as 

shown in Eq.(2.18), the proposed aggregate solution for the QBD process is stated 

from the following theorem:

Theorem  Given an ergodic CTMC with infinitesimal generator Q q b d  

having the structure shown in Eq.(2.18), with stationary probability vec­

tor 7T =  [ir(0\  7r(I). 7T(2'. ...]. the system of linear equations

x • X = [1.0], 

where X € R("*+2">*(m+2„) is defined as follows

(5.22)

l r L F 0°
x  = 1T B L F°

l T 0 B - F  G (L + F + F • G)° .
(5.23)

admits a unique solution x = [ir*°\ ir(l). 7r(,)], where 7T(,) = ir(‘K

Proof. The steps in the proof are identical to the steps in the Proof of 

Theorem 5.1 since QBDs are special case of M /G/l-tvpe processes. □

5.3.1 Computing measures of interest for QBD processes

Similarly to the M /G /l case, our methodology allows the computation of the reward 

rate of state s ^ \  for j  > 2 and i =  1 n. if it is a polynomial of degree k in j  with
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arbitrary coefficients a f'.aj1' , . . . ,

156

Here, we follow the exact same steps as in Section 5.1.1, albeit significantly simplified. 

Observe that that rl°l is simply ir(,) while, for k > 0, can be computed after having

The rank of the system of linear equations depicted in Eq.(5.24) is n, since it QBD 

is a special case of M /G /l-type processes and we have discussed them in section 5.1.

We conclude by reiterating that in order to compute the kth moment of the queue 

length we must solve k Unear systems in n unknowns each and. in particular, the 

expected queue length is obtained by solving just one linear system in n unknowns.

obtained for 0 < I < k. by solving the system of n Unear equations:

(5.24)

where

’)
and
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5.3.2 Time and storage com plexity

In this section, we present a detailed comparison of our aggregate solution for QBD 

processes with the matrix geometric method for QBDs. The notation in this sec­

tion follows the one defined in section 5.1.2. We outline the required steps for each 

method and analyze the computation and storage complexity of each step up to the 

computation of the expected queue length. We assume that the algorithm of choice 

for computation of R  in the matrix geometric solution for QBDs is logarithmic re­

duction as the most efficient one. Therefore in our analysis we do not include the 

cost to compute matrix G. which is the first matrix to be computed by logarithmic 

reduction [47].

In the following, we summarize the complexity analysis for E ta q a -QBD

•  Computation of the aggregate stationary probability vector [ir(0'. 7r(l). 7T(,)]

-  0 (n  • q{F. G}) to compute FG.

-  Ol (L. F. B. B. L. F, G) to solve the system of m -I- 2n linear equations.

•  Storage requirements for computation of [ir(0). 7r(l). 7r(,)]

-  0 (n 2) for matrix FG,

-  m -t- 2n for the vector [ir*°\

•  Computation of the queue length

-  0(r;{F. L. B}) to compute F  + L + B and F — B.
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-  0 L(q{F. L. B}) to solve a system of n linear equations.

•  Storage requirements for the computation of the queue length

-  No additional storage.

In the following, we summarize the complexity analysis for QBDs assuming that 

matrix-geometric is used for their solution:

• Computation of the boundary stationary probability vector [tt(0). 7T(1)]

-  0 (n 3) to compute R  from G (last step of the logarithmic reduction algo­

rithm) using the relation R  =  —F(L -I- FG)-1.

-  0 (n 3) to compute (I — R )-1,

-  0 (n  • //{R, B} to compute RB,

-  Ol {L, F. B. L, B. R) for the solution of the system of m+n  linear equations 

to obtain 7T̂0), tr(l). The required storage for the probability vectors ir(0K 

tt*1* is exactly m +  n.

•  Storage requirements to compute [7T(0), it*1']

-  0 (n 2) for matrix R  and (I — R )-1,

-  m +  n to store ir̂ 0) and it*1*.

•  Computation of the queue length

-  0 (n 2) to compute queue length from ir(l* • R • (I — R )-2 • l r .
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•  Storage requirements to compute queue length 

— No additional storage

Tables 5.5 and 5.6 summarize the discussion in this section.

C om putation  o f ir(0\  ir(l) (m atrix geom etric) or 7r(0), tt(*) (Etaqa-QBD)
E t a q a - Q B D Ol{r/{L, B, F, L, F. B, G}) + 0 (n  • //{F. G}))
Matrix geometric 0 L(i){L. B, F. L. B, R}) + 0{n3) + 0 (n  • rj{R, B}
F irst m om ent m easures
E t a q a - Q B D 0 L[rj{D, L. F}) +- 0(i/(B. L, F))
Matrix geometric 0(n2)

Table 5.5: Computational complexity of the Etaqa-QBD solution and the matrix geo­
metric method.

Additional storage Storage of the  probabilities
C om putation  of ir(I) (m atrix geom etric) or ir(0), (Etaqa-QBD)
E t a q a - Q B D 0 (n 2) m + 2n
Matrix geometric 0{n2) m + n
F irst m om ent measures
E t a q a - Q B D none none
Matrix geometric none none

Table 5.6: Storage complexity of the Etaqa-QBD solution and the matrix geometric 
method-

We emphasize the fact that the sparsity of G is key to preserving the sparsity 

of the original process in the Etaqa-QBD method, while the R  that is required in 

matrix-geometric is usually full.

Concluding our analysis, we stress that the Etaqa-QBD solution is an efficient 

tool for solving QBD processes since it is easier to implement and results in signifi­

cant gains with respect to computation. We note that even storage-wise we do gain
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(although this gain is not obvious using O-notation) because the aggregate solution 

requires only temporal storage of the matrix F -G, while the matrix geometric method 

needs persistent storage of R  and (I — R )_ l.

5.4 C om putational efficiency

In the previous section, we argue using O-notation about the the computational and 

storage efficiency of E taqa-M /G /1 . Here, we present further numerical evidence that 

E taq a -M /G /1  is more efficient than other methods. For our comparisons, we use 

the classic Ramaswami's formula and the fast FFT implementation of Ramaswami's 

formula, the most efficient known algorithm for solving M /G /l-tvpe processes [58]. 

We used Meini's implementation1 for the cyclic reduction for the computation of G 

that is required in all three solution algorithms. We also used Meini's code for the 

fast FFT implementation of Ramaswami's formula that was made available to us via 

a personal communication [57]. VVe implemented the E t a q a -M /G /1  method and the 

classic Ramaswami’s formula in C. All experiments were conducted on a 450 MHz 

Sun Enterprise 420R server with 4 GB memory.

The chain we selected for our experiments represents a general BMAP/M/1 queue. 

Recall that in practice, it is not possible to store an infinite number of F(,) and F (,) 

matrices, 1 < i < oo. One should stop storing when all entries of F^1’ and F (,) for 

i > p are below a sufficient threshold (i.e., very close to zero in a practical implemen­

lCode available a t h t tp : / /w v v .d n .u n ip i . i t /~ D e i t i i / r ic .h tB l .
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tation) [47]. As illustrated in the previous section, computation time does depend 

on the size (i.e., parameters m and n) and the number (of stored) matrices (i.e., 

parameter p) that define the infinitesimal generator Q .  Finally, one last parameter 

that affects computation time is the number s of vector probabilities that should be 

computed so as the normalization condition $2i=i7r(l) =  1*0 reached (again, within 

a sufficient numerical threshold).
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F ig u re  5.3: Execution tim e (in seconds) for Etaqa-M /G /1, the classic implementation of 
Ramaswami’s formula, and the fast FFT implementation of Ramaswami's formula. The fig­
ure illustrates timings for the computation of the stationary probability vector (left column) 
and the computation of the queue length (right column).
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In our experiments, we vary the parameters n, p. and s (for the case of BMAP/M/1 

queue m = n) and provide timing results for the computation of the stationary vector 

7T using the classic Ramaswami implementation and the fast FFT implementation, 

and the computation of (7r(0\  ir**)) using Etaqa-M /G/1. We also provide tim­

ings for the computation of the queue length for both methods. Results are presented 

in Figure 5.3.

The first experiment, considers a BMAP/M/1 queue with n = 16 and p = 32. a 

relatively small case. The timings2 of the three algorithms are shown as a function of s. 

Figure 5.3(a) depicts the computation cost of the probability vector and Figure 5.3(b) 

illustrates the computation cost the queue length. Observe that the (/-axis is in log- 

scale. Note that the value of s does affect the execution time of both Matrix-analytic 

approaches, but does not have any affect on Etaqa-M /G /1. A s expected, for the 

computation of the stationary vector, the FFT implementation is superior to the 

classic Ramaswami formula, behavior that persists when we increase p and n (see 

Figures 5.3(c) and 5.3(e)). Etaqa-M/G/1 consistently outperforms the other two 

methods, plus its performance is insensitive to s (see figures Figures 5.3(a), 5.3(c) 

and 5.3(e)).

Figures 5.3(b), 5.3(d) and 5.3(f) illustrate the computation cost of the queue 

length for the three algorithms for various values of n, p, and s. Note that the two 

implementations of Ramaswami's formula have the same cost, since the same classic

2Wc point out that our timing results do not take into consideration the computation of G, which 
is used in all three methods
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formula is used for the computation of queue length: first weight appropriately and 

then sum the probability vector which is already computed. The figures further 

confirm that the cost of solving a small system of Unear equations that E t a q a - 

M /G /l requires for the computations of queue length is in many cases preferable to 

the classic methods. If this linear system increases and s is also smaU. then the classic 

methods may offer better performance.

5.5 N um erical stability of the m ethod

The algorithm proposed in Section 5.1 results in a finite system of linear equations 

that can be solved with numerical methods. Because the Unear system is a result 

of matrix additions, subtractions, and multiplications, its numerical stability should 

be examined. However, because of the presence of a Unear system, and because our 

matrices are not M-matrices, an analytic examination of the numerical stability is 

not easily feasible. In this section we argue via experimentation that E taqa-M /G /1 

is numerically stable and compare its stability behavior with Ramaswami's recursive 

formula. Ramaswami's recursive formula for the computation of the steady state 

probabiUty vector of an M/G/1-type process consists of matrix additions of non­

negative matrices and these computations are known to be numericaUv stable 3.

In the foUowing, we focus on the stability of the method used to solve the original

3We opt not to  compare Etaqa-M /G /1 with the Fast F F T  Ramaswami's formula because the 
FFTs may be the source of numerical instabilities [58|.
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problem, rather than the stability of the problem itself. The latter is measured by 

a condition number (or conditioning), which depends on a specific instance of the 

problem, but not on the method used.

The stability of a method .4 : 5R'V — ► 3?A/. given an input x €  RN. is determined 

as follows:

||A(x) -  A(x  +  <S)|| < k ( x ) ■ ||£||

where S € is a small perturbation of the input, and k ( x )  is the conditioning of 

the problem with input x. Any norms of the corresponding vector spaces can be 

used, but in the following we limit our discussion to the infinity (maximum) norm. 

[109] states that a stable algorithm gives nearly the right answer to nearly the right 

question. In other words, if we change the input of a stable algorithm by a small S 

we should obtain an output that is perturbed, within the constant factor k ( x ) ,  by a 

corresponding amount.

We follow the above definition to examine experimentally the stability of Etaqa- 

M /G /l versus that of Ramaswami's formula. The output of the aggregate scheme is a 

probability vector of m  +  2n elements and is denoted as A(x). where x  belongs to the 

domain of the method, i.e., it is a choice of all the elements of the input matrices. The 

output of Ramaswami's is again a probability vector of m+2n elements and is denoted 

as R(x). Note that Ramaswami's original output is post-processed to produce the 

same aggregate probabilities that .4(x) produces. We run two sets of experiments, 

one for a well conditioned instance of the problem, and one for an ill-conditioned
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instance. This is performed via the following steps:

1. Select a CTMC and solve it using both Etaqa-M /G /1  and Ramaswami's for­

mula and check the closeness of the results.

2. Perturb the input of the selected CTMC by small random numbers. We select 

three different perturbation magnitudes: 10~12. 10- l ° and 10-6, and solve the 

CTMC with the perturbed input.

3. Repeat the perturbation experiment 50 times with different sets of random 

perturbation values within the same magnitude range to achieve statistical ac­

curacy.

4. Calculate the perturbation of output for each randomly perturbed input for 

E taqa-M /G /1  solutions considering as base case the output obtained by using 

E taqa-M /G /1  to solve the CTMC without any perturbation of input, i.e.. 

||.4(x) — A{x +  <5j)||. for each experiment i. Calculate the same for the set of 

perturbed solutions using Ramaswami's formula, where the base case is the 

solution obtained using Ramaswami's formula on the im-perturbed input, i.e.. 

||fl(x) -  R(x + for each experiment /..

5. Calculate the absolute difference between the solution obtained by using Etaqa- 

M /G /l and Ramaswami’s formula, i.e., ||.4(x-f-6,) — R(x + 5,)||, for each exper­

iment i.
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Figure 5.4: Numerical behavior of algorithms under well-conditioned input. Graphics 
(a), (c). and (c) plot ||A(x) -  A(x -F £,)|| for Etaqa-M/G/1 and ||/?(x) -  R(x + <t,)|| for 
Ramaswami's reclusive formula for different perturbation magnitudes and for 1 < i < 50 
distinct experiments. Graphics (b), (d), and (f) illustrate ||/l(x + Si) — R(x + for the 
same perturbation magnitudes and the same 1 < i < 50 distinct experiments.

For our experiments, we selected a CTMC that models a bursty hyper-exponential 

server with burst sizes ranging from 1 to p =  64. The dimension of matrices B, L 

and F ^  for 1 < i < p is 16 x 16 and matrices L, B a F**) for 1 < i < p are of 

dimensions 1 x 1, 16 x 1 and 1 x 16 respectively. Since the corresponding G matrix
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for the process as well as matrices and for 1 < i < p are full, we consider the 

case to a representative one.4 All experiments are conducted on a Pentium III with 

64-bit double precision arithmetic, and 10“ 16 machine precision.

Our first set of experiments considers well-conditioned input matrices, where the 

values of their elements differ at most by two orders of magnitude. Figure 5.4 

illustrates the behavior of E taqa-M /G /1 and Ramaswami's formula under well- 

conditioned input for 50 distinct experiments. Each experiment corresponds to a 

different ^  but within the same magnitude range. Figure 5.4(a) shows the pertur­

bation of solution for each of 50 experiments for E taqa-M /G /1  and Ramaswami’s 

formula, is within the same magnitude range of 10-9. Observe that Figure 5.4(a) does 

present two lines, one for E taqa-M /G /1 and one for Ramaswami's formula but the 

lines are almost indistinguishable at this level. The proximity of the two solutions is 

better illustrated in Figure 5.4(b) where the difference between the solutions obtained 

by the two different methods is plotted and is in the range of [0.0.10"l6]. The two 

methods are equal for all numerical purposes. Figures 5.4(c) and 5.4(e) illustrate the 

perturbation of solution for both methods with St's in the range of 10“10 and 10-12. 

respectively. Across the three experiments, the degree of perturbation in the solu­

tion (i.e., the conditioning of the problem) is within three orders of magnitude less 

than Consistently with Figure 5.4(b), Figures 5.4(d) and 5.4(f) illustrate that the

4Wc conducted a large number of stability experiments but due to  space restrictions we only 
present a  few experiments here. We note however that all of our experiments did produce consistent 
results with those presented in this section.
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two methods agree to machine precision. Regardless of the magnitude of the input 

perturbation, the differences between the solutions are consistently within the same 

range, i.e., 10“ l6.

Next, we turn to a worse conditioned problem, where the elements within the 

various input matrices vary significantly. We use the same CTMC as the one in the 

previous set of experiments but the entries in all input matrices vary in magnitude up 

to 10u with the largest element in the range of 102 and the smallest in the range of 

10-9 . Therefore, by increasing the stiffness of the problem the possibility of numerical 

errors increases. Again, we perturb the input with random values within ranges of 

10“ 12, 10_l°. and 10-6. Results are presented in Figure 5.5.

The perturbation of input matrices with values at the level of 10-6 introduces a 

perturbation of the solution in the range of 10-7. higher than the perturbation of 

solution in the well-conditioned case (compare Figures 5.5(a) and 5.4(a)). We point 

out that there are two lines on top of each-other in Figure 5.5(a) corresponding to 

E ta q a -M /G /1  and Ramaswami's output respectively. The differences between the 

solutions obtained by both methods for each experiments are presented in Figure 

5.5(b) and are in the range of [0.0,1.8 x 10- u ). Comparing to the results of the well- 

conditioned case we note an increase on the difference among the two solutions, but 

still very small and clearly less than the perturbation value. Figures 5.5(c) and 5.5(e) 

illustrate the perturbation of solutions for perturbation of inputs in the ranges of 10“ 10 

and 10“ 12 respectively. Comparing to the results of Figure 5.4, we observe that the
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Figure 5.5: Numerical behavior of the two algorithms with ill-conditioned input. Graphics 
(a), (c). and (c) plot ||A(x) — A(x + <Sj)|| for E ta q a -M /G /1  and ||f?(x) -  f?(x + <5j)|| for 
Ramaswami's recursive formula for different perturbation magnitudes and for 1 < / < 50 
distinct experiments. Graphics (b), (d), and (f) illustrate ||.4(x -I- Si) — R(x + <Sj)|| for the 
same perturbation magnitudes and the same 1 < i < 50 distinct experiments.

conditioning of the problem increases. The degree of perturbation remains constant 

for all three experiments and is one order of magnitude less than Si, consistently 

across experiments. The difference of solutions between the two methods in the case 

of input perturbation ranges of 10“ 10 and 10“ 12 are presented in Figures 5.5(d) and
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5.5(f). The differences are within the same range as for the experiment depicted in 

Figure 5.5(b).

The results presented in Figures 5.4 and 5.5 show that both methods, E taqa- 

M /G /l and Ramaswami’s formula behave very similarly under different numerical 

scenarios. Since for nearly the same input we obtain, in both cases, nearly the same 

output, we argue that the stability of Ramaswami’s recursive formula is re-confirmed. 

Our experiments also illustrate that ETAQA-M/G/1 and Ramaswami's recursive for­

mula are in good agreement.

5.6 MAMSoIver

MAMSolver is a software tool that provides efficient implementations of the state- 

of-the-art algorithms of the matrix-analytic methodology including the matrix-analytic 

and matrix-geometric solution techniques for M/G/ 1-type and G I/M / 1-type pro­

cesses, respectively. M AM Solver  also provides an implementation of the E taqa 

methodology. Although, this exposition of matrix-analytic methods and E taqa  con­

siders only CTMCs, M AM Solver  provides solutions for both DTMCs and CTMCs.

The matrix-analytic algorithms that we take into consideration are defined in 

terms of matrices, making matrix manipulations and operations the basic elements 

of the tool. The input to MAMSolver, in the form of a structured text file, is the 

finite set of matrices that accurately describe the process to be solved. Since there are 

different algorithms that provide solution for the same process, the user specifies the
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method to be used. However, several tests are performed within the tool to insure that 

special cases are treated separately and therefore more efficiently. M A M SO L V E R  is 

implemented in C++, and classes define the basic components of the type of processes 

under consideration.

M atrix  is the module that implements all the basic matrix operations such as 

matrix assignments, additions, subtractions, multiplications, and inversions. For com­

putational efficiency, we use well known and heavily tested routines provided by the 

Lapack and BLAS packages5. Since solving a finite system of linear equations is a 

core function in matrix-analytic algorithms, MAMSolver provides several numerical 

methods depending on the size of the problem, i.e., the size of the coefficient matrices. 

For small-size problems exact methods such as LU-decomposition are used, otherwise 

the Lapack implementation of iterative methods such as GMRES and BiCGSTAB. 

are chosen.

M atrix-analytic modules handle both CTMC and DTMC processes. First these 

modules provide storage for the input matrices. In addition, these modules provide all 

the routines necessary for the implementation of the algorithms outlined in Chapter 3. 

Both the data structures and routines of the matrix-analytic modules are based on the 

data-structures and routines provided by the matrix module. The high-level structure 

of M A M S o l v e r  is illustrated in Figure 5.6.

The solution of QBD processes, requires computation of the R  (and sometimes

5Available from http://www.netlib.org.
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Figure 5.6: MAMSolver structure

of G depending on the solution algorithm). First the matrix R  is computed using the 

logarithmic reduction algorithm[47). For completeness, we provide also the classic 

numerical algorithm. To guarantee that there is no expensive (and unnecessary) 

iterative computation of G (and R), the tool first checks if the conditions for explicit 

computation hold [77]. The available solution methods for QBD processes are matrix- 

geometric and E taqa-QBD.

G I/M /1  processes require the computation of the matrix R. The classic matrix 

geometric solution is implemented to solve this type of processes. First the algorithm 

goes through a classic iterative algorithm to compute R  (to our knowledge, there is 

no alternative more efficient than the classic algorithm). Then, the tool computes 

the boundary part of the stationary probability vector. Since a geometric relation 

exist between vectors ir(i) for i >  1, there is no need to compute the whole stationary 

probability vector.

M /G / l  processes require the computation of the matrix G which is calculated
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using the classic iterative algorithm or the cyclic-reduction algorithm or the explicit 

one (if applied). The stationary probability vector is computed recursively using either 

the recursive Ramaswami formula or its fast FFT version. E taqa-M /G /1  is also 

implemented as an alternative for the solution of M /G /l processes. A brief summary 

of the most important matrix-analytic algorithms implemented in M AM So lver  is 

depicted in Figure 5.7.

QBD

J
R from G 

Logarithmic.-reduction

Ramaswam's Formula 
Fast FFT Formula

CTMC or DTMC

M/G/l Gl/M/I

Cyclic-reduction Iterative

ETAQA Matnx- ETAQA Matrix-
Geometric

F igu re  5.7: MAMSolver algorithms

5.6.1 MAMSolver input and output

The input to M AM So lv er  is stored in an ASCII file and given via redirection. All 

input matrices are stored by rows and they include even the zero entries. The input 

file has the following structure:

•  size m of the boundary portion of the process,

• size n of the repeating portion of the process,

•  number I of matrices that accurately define the infinite set of matrices that 

describe the repeating portion of the process,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ETAQA METHODOLOGY 174

• desired solution accuracy c,

• the matrix that describes the interaction among states of the boundary portion, 

L,

• the matrix that describes the interaction between states of the boundary portion 

and states of the first inter-level for GI/M/1 (F) and vice-versa for QBD and 

M /G /l processes (B),

•  the matrices that describe the interaction between states of the ith inter-level 

and states of the boundary portion for GI/M/1 processes (B(,)) and vice-versa 

for QBD and M /G /l processes (F*1*); there are I such matrices,

•  for GI/M/1-type processes only, the matrices that correspond to the interaction 

between the first inter-level and the rest of the repeating portion of the process: 

there are / +  1 such matrices,

• the matrix that describes the forward (F) or backward (B) transitions in the 

repeating portion of the GI/M/1 or QBD and M /G /l processes respectively.

•  the matrix that describes the local transitions in the repeating portion of the 

process (L),

•  the matrices that describe the backward (B^*') or forward transition F (,) in the 

repeating portion of GI/M/1 or QBD and M /G /l processes respectively; there 

are I such matrices.
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The output from M A M Solver consist of several ASCII files as follows:

• "probability* stores the stationary probability vector, ir. For a QBD or G I/M /1 

process it stores only rr(0) and ir(l) because the rest of tt is computed using R  

and 7T(l'. For an M /G /l process the entire ir is stored in file ■'probability"’.

• "R-matrix* stores the matrix R  if a QBD or G I/M /1 process is solved.

• "G-matrix* stores the matrix G if a QBD or M /G /l process is solved.

• "QL-length* stores the average queue length from the solution of the queueing 

system. Momentarily MAMSolver computes a customized average queue length, 

i.e., first moment of ir. of the form:

in f ly

r =  ir(0) • p<0) + - p<*> +  Y ,  ^ ( a 101 +  a[l' •
i= 2

The coefficient vectors p<°\ p^K a'0', a '1' are to be read from the text file 

"queue*. In case of failure to open file "queue* their default values are: p (0) =  0. 

p*1* =  1, at°l =  0, at1' =  1. Computation of higher moments can be achieved 

by introducing additional coefficient vectors a ^  in the above formula.

• “QL-dist” stores the queue length distribution of the queueing system. "QL- 

dist* is a two-column file where the first column represents the values of the 

queue length and the second column their respective steady-state probabilities 

of occurrence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ETAQA METHODOLOGY 176

•  "drift-conditions" stores the queue stability condition and the value of the cau­

dal characteristic for QBD processes.

Examples of the input to M A M S o l v e r  for simples Markov chains are given in Ap­

pendix D . The entire source code for M A M S o l v e r  is available at the tool's website: 

http://www.cs.wm.edu/ 'riska/MAMSoIver.html.

5.7 Chapter summary

In this chapter, we presented a new aggregate approach for the exact solution of 

M /G/ 1-type. GI/M /l-type. and QBD processes. Our exposition focuses on comput­

ing efficiently the exact probabilities of the boundary states of the process and the 

aggregate probability distribution in each of the classes of states corresponding to a 

specific partitioning of the remaining infinite portion of the state space. Although the 

method does not compute the probability distribution of all states, it still provides 

enough information for the ‘‘mathematically exact” computation of a wide variety 

of Markov reward functions such as the expected queue length or any of its higher 

moments.

We presented detailed analysis of the computation and storage complexity of our 

method. We conclude that for the case of M/G/1-type and QBD processes our 

methodology requires a few simple steps that provide significant savings with respect 

to both computation and storage when compared with the traditional matrix analytic 

and matrix geometric methods, respectively. For M /G /l processes our methodology
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results in a much simpler, thus easy to implement, algorithm comparing to matrix 

analytic. We showed, via numerical experiments, that ETAQA is not only computa­

tional efficient but also numerically stable. For the case of GI/M /l-type processes, 

our methodology has the same complexity as the classic matrix geometric method 

for the computation of the stationary probability vector, albeit the classic method 

results in less expensive and more intuitively appealing formulas for the computation 

of measures of interest such as the expected queue length.
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Chapter 6 

Aggregate Solutions of 

G I/G /1-type Processes

In this chapter, we study a class of CTMCs with G I/G /l-tvpe patterns in their 

repetitive structure, that is they exhibit both M/G/1-type and GI/M /l-tvpe patterns. 

G I/G /l-tvpe processes cannot be solved exactly by existing techniques, but can alter­

natively be approximated by QBDs [34]. Such processes occur when modeling open 

systems that accept customers from multiple exogenous sources (i.e.. accepting bulk 

arrivals) and are also subject to failures and repairs (i.e., the system may empty-out in 

a single step when a catastrophic failure occurs or only parts of it may be operational 

when a non-catastrophic failure occurs).

Recall that, as defined in Eq.(2.23), the infinitesimal generator Q can be block-

178
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partitioned as
L<°> p d ) p (2 ) p (3 ) p(-«)

B(l> L(l) p U ) p (2 ) p ( 3 )

B<a> BU> L p(D p ( 2 )

b (3) b (2) B(l) L p(D
b (4) b (3) b <2) B(l) L

Our approach focuses on separating the GI/M /l-tvpe behavior of the system from 

the M/G/l-type behavior by defining new decomposed CTMCs using stochastic com­

plementation and pseudo-stochastic complementation techniques. The decomposed 

CTMCs of the M /G /l and GI/M / 1  type can be solved using matrix analytic meth­

ods. The solution of the original G I/G /1-type CTMC is then obtained by coupling 

the solutions of the decomposed CTMCs of M /G /1-tvpe and GI/M/l-type.

The chapter is organized as follows. In Section 6.1, we outline some additional 

results on stochastic complementation. In Section 6.2. we define pseudo-stochastic 

complementation as a variation of stochastic complementation. We give the high level 

idea of our approach in Section 6.3. The general approach is outlined in Section 6.4, 

followed by formalization of the algorithm in Sections 6.4, 6.5. 6 .6 . 6.7, 6 .8 . 

The case when multiple M /G/l-type and GI/M/1-tvpe subchains can be identified 

within the original GI/G/1-type CTMC is analyzed in Section 6.9. In Section 6.10. 

the applicability of the technique is illustrated by solving a G I/G / 1-type CTMC that 

arises in the area of parallel processor scheduling. We conclude the chapter with a 

summary of the results.
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6.1 N on-disjoint coupling

In this section, we further discuss stochastic complementation, introduced in Subsec­

tion 2.8.2. As defined in [61], to apply stochastic complementation in a Markov chain 

its state space S  is partitioned into two disjoint subsets, A  and A. Observe that, 

if the stationary probability vector, a .  of the stochastic complement of states in A  

is known, we can compute the stationary distribution of states in a subset B  of A  

conditioned on being in B , as:

_ o J B L  (62 )

and this allows us to extend the concept of stochastic complementation to cases where 

we use a covering, not a partitioning, of the state space, that is. S  = *4i UA 2 , but the 

subsets Ai and A /  are not necessarily disjoint. This is motivated by the fact that, 

in certain cases, it may be advantageous to compute the stochastic complement for 

subsets of states that are not disjoint (see Lemma 2.8.2).

Definition (S ingular states) Consider a covering of the state space 

S  =  A i U A 2 . Any state h € S  that belongs to more than one subset in 

the covering is said to be a singular state.

Lemma (N on-disjoint coupling) Consider an ergodic CTMC with 

state space S  covered by the subsets A i and A i-  Let ati and a .2 be their 

stationary probability vectors for the respective stochastic complement,

1 We use indices in the  case of stochastic complementation on non-disjoint subsets to distinguish 
from the case when the subsets arc disjoint
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also assumed to be ergodic. Let s be the number of singular states in 

the covering, and assume, without loss of generality, that the sets B< 

and & 2 of non-singular states in A i and A 2 respectively are not empty. 

Compute /3t and /32, the stationary probabilities for the states in B\ and 

B2  conditioned on being in B\ and B? for the stochastic complements of 

states in A \ and A 2 , respectively, as in Eq.(6.2). Define a new “coupled" 

CTMC with state space given by two macro states, for B\ and B2 , plus the 

s singular states. For ease of notation, let B?+l denote the set containing 

the ith singular state only and let its conditional stationary probability

f3o+i =  1. for i  = 1 s. Let the infinitesimal generator matrix C of this

CTMC be:

C[i.j] = 0 r Q[Bi.Bj \ - l T. (6.3)

Then, the stationary probability vector a  of this CTMC gives the correct 

coupling factors corresponding to this covering, that is (after an appro­

priate reordering of the entries in 7r):

a[i] = n[Bi] • 1 T, i =  1, —  2  + s (6.4)

which then implies

it =  [a[l] • a[2) • /32, a[2],. . . ,  a[2 -I- s]\. (6.5)
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Proof: From its definition, it follows that the off-diagonal elements of C are non­

negative and its rows sum to zero because the diagonal elements are defined to be 

the negative of the row sums.

Matrix C  is clearly irreducible, this follows directly from its probabilistic interpre­

tation and the fact that the original process is irreducible. Assuming that C is also 

aperiodic, hence ergodic, we now need to show that the stationary probability vector 

a  =  [a[l],. . . ,  a[s +  2)j satisfies Eq.(6.4). Since the stationary probability vector a* of 

the stochastic complement of At satisfies a , = ir[.4 ]/(7r[.4 ] • l r ) i = 1.2 , we get that

while 0i =  1 =  7r[0 ,]/(7r[Si] • e) by definition for / =  3 ,....  2 + s. We want to prove 

that the stationary probability vector a  of the CTMC with infinitesimal generator C

is [ir[Bi] • e . . . . ,  rr[Sfc+s] • e] and so Eq.(6.5) holds. For j  = 1........ 2 + s. recalling that

7T • Q = 0, we have:

(6.6)
' oti[Bj] • e 7r[Bi]/(7r[.Ai] • e) • e it[Bt] • e

(aC)[t'l =  5 ^ a [/]-C [/\i]
j=i
2+a
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Thus, [7r[£?i] • e    ir[Bit+s] • e] is a solution of a  • C = 0 . and. since its entries sum

to one, it is the stationary probability vector of the coupled CTMC. □

It is important to note that the effectiveness of stochastic complementation is 

based on divide-and-conquer: computing the stationary distribution of each stochastic 

complement of the original CTMC must be easier than computing the stationary' dis­

tribution of the original CTMC. Computing the product Q[A«4](—Q [ A ^ ) _lQ [A, A] 

in Eq.(2.28) can be costly since is effectively an inverse, thus often full.

However, there are cases where we can take advantage of the special structure of the 

CTMC and short-circuit this computation such as the "single-entry” case as defined 

and described in Lemma 2.8.2 of Subsection 2.8.2.

6.2 Pseudo-stochastic com plem entation

T heorem  (Pseudo-stochastic complement) Given an ergodic CTMC 

with infinitesimal generator matrix Q and stationary probability vector 

ir, whose state space is partitioned into two disjoint sets A  and A  the 

pseudo-stochastic complement of A  as is defined as:

A = Q[A A] + Q [A  A] • 1T • Norm{a • Q[A A ]), (6.7)

where a  =  ir(A]/(7r[A] • 1T) is the stationary conditional distribution of 

the states in A  for the original CTMC. Then, the CTMC with tran-
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sition probability matrix A is irreducible with stationary distribution 

a  =  *r[A]/(jr[A] ■ 1T).

Proof: It is easy to see that A is an infinitesimal generator: its off-diagonal entries 

are non-negative by construction, and its rows sum to zero because:

A 1T = = (Q[A, A] +  Q [A. A] • 1 T • Norm(n{A} • Q[A, A])) • l r  

= Q[A. A] - 1T + Q[A, A] ■ 1T ■ Norm(n[A] • Q[A, A}) ■ l T = 

=  Q [A ,A l- lr +  Q[A,A]-lr =

= Q [ A 5 J - l r =  0 (6.8)

That the pseudo stochastic complement of A is irreducible follows directly from its 

probabilistic interpretation and the fact that the original process is irreducible. We 

now need to show that a  • A =  0 . when a  = 7t[A]/(7t[A] • 1T). Starting from the 

definition of pseudo stochastic complement, we have:

a  A = ;?^ d L _  (Q [A ^l + q [A 3 | l r W«T»(1r[3]-QiX>t|))

-  S P J R T '  H ' Q | A A |  +  '- Q M •

= S |^ n T r-W > t]-Q [A ^ | + *[a]-Q [a ,> ii)= o . (6.9)

where the last two steps are obtained considering that ir[A] • Q[A. A] • l r =  ir[A] • 

Q[A, A] • 1 T, (they represent the flow from A to A  and from A to A, respectively) 

and that 7t[A] • Q[A, AJ + *“[A] • Q[A, A] = 0 (since ir is the stationary probability 

vector). This completes the proof. □
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Comparing the definitions of stochastic and pseudo-stochastic complementation, 

we see that the former is naturally based on considering all paths starting and ending 

in A  (given the interpretation of the inverse as an infinite sum over all possible paths), 

while the latter makes use of the conditional stationary probability vector for A. What 

is interesting though, is that, even if the two complements are described by different 

matrices, Theorems 2.8.2 and 6.2 imply that they have the same stationary probability 

vector a . The intuition behind this property is given by the stochastic meaning of 

the matrix (—Q[,4,.4) - 1  used in the definition of stochastic complement. Its entry 

in row r and column c represents the expected amount of time spent in state c G A  

starting from state r € A  before entering A . a quantity that is of course related to the 

stationary probability vector ir[«4]. used in the formulation of the pseudo-stochastic 

complement.

A way to use both stochastic and pseudo-stochastic complementation is as follows. 

If we can locate one subset of states A  in S  having a single entry state, we can apply 

the idea of stochastic complementation, obtain a smaller CTMC corresponding only 

to A , and solve it for its stationary distribution, which is then the stationary con­

ditional distribution of A  in S. Then we apply pseudo-stochastic complementation 

over the complementary state space A, and analogously find its stationary condi­

tional distribution in S . The computation is efficient as it consists only of matrix 

multiplications that preserve the sparsity of the original matrices.
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6.3 G I/G /1  solution (H igh-level idea)

In this section, we present the high-level idea of our algorithm and outline the at­

tributes of the structure of the CTMCs that we can solve. We observe that the 

pattern of interaction among states of a CTMC with infinitesimal generator Q given 

by Eq.(6.1) is the union of the patterns for GI/M /l-type and M /G /1-tvpe processes, 

thus it is more general than either. Based on this observation, we propose the follow­

ing solution steps:

1 . We partition the union of the level sets , S^K  into two disjoint sets U

and £  such that U captures the GI/M /l-type behavior of Q and £  captures 

the M /G/l-type behavior of Q. We elaborate on the exact meaning of this 

statement in Section 6.4.

2. We use the well-known concept of stochastic complementation [61] to define two 

new processes (stochastic complements), one containing all states in U (plus a 

finite number of states Q+ C  S (0)) and one containing all states in £  (plus a 

finite number of states Q~ C  5 (0*).

3. We solve each new process using well-known techniques, and obtain the condi­

tional stationary probabilities for all states in U U Q+ (or £  U Q~) given that 

the original process Q is in U U Q+ (or £  U Q~, respectively). In particular, 

the stochastic complement of the set U U G+ is a GI/M /l-type process that is
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solved with the matrix geometric method [67] and the stochastic complement2 

of C U  Q~ is an M/G/l-type process that is solved using the matrix analytic 

method [69, 47J.

4. Finally, we ‘‘couple’* the two solutions in order to scale back the conditional 

stationary probabilities of all states in U U Q+ and C U Q~ and obtain the 

stationary probabilities of the original process.

Figure 6.1 illustrates the main structure of the CTMC required by the above steps, 

while the corresponding block structure of Q is shown in Table 6.1. YVe observe a 

‘‘two-level” repetitive structure, where each level set j  > 1 . is partitioned into 

two disjoint classes d e n o t e d ( f o r  "upper) and £ (j) (for ‘‘lower’*). For the moment, 

we opt not to discuss any partitioning of the boundary portion of the process S (0K 

Let U =  U £ ,W 0) and C = (J°l, CU). The following list summarizes the interactions 

within each set and across the two sets.

• Within set U, forward transitions are allowed from any W(j) only toward the 

next level Backward transitions are allowed from set to any lower

level sets U^k\  k < j.

• Within set C. forward transitions are allowed from any £ (j) toward any higher 

level £ (fc\  k > j .  Backward transitions are allowed from set £ (j) to £ (J_1* only.

• Arbitrary local transitions (not shown) are allowed within each U ^  and

2Actually wc apply the pseudo stochastic complement to generate the M/G/l process with set 
of states C U Q ~ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. AGGREGATE SOLUTIONS OF G I/G /1-TYP E PROCESSES 188

•  Transitions from to any C(k\  k > I are allowed.

•  There is strictly no interaction from C toward U (except, of course, through the 

boundary portion «S(0)).

•  There is a special “gate” state g in «S(0) such that any path from £  to U must 

visit state g. In practice, such a gate might exist in <S(l) but not in <S(0); in this 

case, we simply redefine a new «S^ as the union of the original sets «Ŝ°* and 

S ( and “shift all levels to the left by one”.

The gated structure for the interaction of U and £  is critical for our algorithm, 

as it allows us to apply stochastic complementation in a special setting (see Subsec­

tion 2.8.2). Furthermore, in conjunction with the upper/lower interaction between 

sets U and £, it ensures that (a) the stochastic complement of the upper set of states 

is a GI/M /l-type CTMC and (b) the pseudo stochastic complement of the lower set 

of states is a M/G/l-type CTMC. As it will be explained in Subsection. 6.4. the 

actual algorithm can recursively apply to chains where multiple upper or lower sets 

are identified. We elaborate on this topic in Subsection 6.9.

Figure 6.1: The two-lcvcl interaction between states and the gated structure of our CTMC.
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Table 6.1: The nonzero pattern in our matrix Q.

6.4 G I/G /1  solution - G eneral approach

We now outline and then describe in detail the new approach we propose for the 

stationary study of a CTMC with infinitesimal generator Q having the structure of 

(6.1), provided certain conditions apply. The step-by-step outline of our algorithm is: 

(Upper-lower aggregation of Q)

Step 1: D eterm ine the upper and  lower classes.

The partition is defined by splitting each into an upper set and a lower

set £ (j). consistent with a partition of the set of state indices M  =  { 1 ___ ,n )

within a level set into Afu and Mi, that is:

Vj > 1, Uu) = £ 0) = {s|j) : i € JN/i} .

Let U = U°L, and £ =  (J jti £ (j). The key conditions this partition must 

satisfy are (refer to Figure 6.1):
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-  There is a special "gate” state g € such that any path from states in 

C to states in U must visit state g. Let Q~ be the set of states in «Ŝ°* that 

can be reached from £ (1) without visiting g first, and let Q~ = Q~ U {</}. 

Let G+ =  «S(0) \  Gg and Gg = G+ U {5 }, i.e., g is not included in neither 

Q~ nor G+, but it is included in both Gg and Gg-

-  Q[Gg \JU,GgOU\, is of the GI/M /l-type (or a special case of it. such as 

Q B D ) .

-  Q [G~ U £ , a 3- U£ ]  is of the M /G /1-tvpe (or a special case of it, such as 

Q B D ) .

-  The submatrix Q[£/, £] can contain nonzero entries, that is. it might be 

possible to go from upper states to lower states.

-  All other submatrices are zero. In particular. Q[£,W] = 0. that is. there 

are no transitions from lower states to upper states. These states can 

communicate only through the boundary states.

If any of the above conditions is not satisfied by the partition, then we cannot 

apply the following steps of our algorithm. If instead the conditions are satisfied, 

then we proceed with the following steps.

Step 2: Generate and solve the “upper CTM C” .

Using stochastic complementation, define a new CTMC observing the behavior 

of the original CTMC only in the states of Gg U U. This is a GI/M/l-type
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CTMC. so we can solve for steady state using the matrix geometric method. 

Step 3: G enerate  and solve th e  “lower C T M C ” .

Generate the pseudo-stochastic complement corresponding to the states in Q~ u  

£. This is an M /G/l-type CTMC, so we can solve it for steady state using the 

matrix analytic method.

Step 4-' C om pute the  coupling factors.

At this point, we know the conditional stationary probabilities of all states in 

Gg U W  and Gg U £. Note that state g appears at both Gg U£/ and Gg U £. 

Therefore, g is considered to be a singular state and we apply Lemma 6.1 in 

order to derive the coupling factors of {<7}, G+ OlA and G~ U £.

Step 5: G enerate  the  sta tionary  d istribu tion  o f th e  original process.

The expressions for the stationary probability of the original process can then 

be obtained by multiplying the conditional stationary probabilities of all states 

in G+ U U  and G~ U £ by their respective coupling factors.

In the following subsections, we describe in detail steps 1 , 2, and 3.

6.5 D eterm ining the upper and lower sets

Our methodology is based on decomposition, where, informally, we relegate the 

GI/M/l-type behavior into the upper CTMC and the M /G /1-tvpe behavior into 

the lower CTMC. Thus the first step is the definition of these CTMCs in such a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. AGGREGATE SOLUTIONS OF G I/G / 1-TYPE PROCESSES 192

way that, first of all, they are individually solvable by known methods, and just as 

important, the results of their analysis are meaningful within the original process. 

We stress that we can achieve a GI/M /l-type structure in the upper CTMCs and 

a M /G /l-type structure in the lower CTMCs even if, in the original CTMC, each 

upper state can have arbitrarily long forward transition and backward transitions to 

lower states.

The upper CTMC is obtained by considering 14 together with the set (?+. We 

eliminate all other states by using stochastic complementation, hence the single entry 

condition must be satisfied if we are to do so efficiently: this is the reason for requiring 

the existence of the gate g and for all transitions between U and £  to exist only from 

14 toward £. Given these requirements, the blocks composing Q in Eq.(6.1) can be 

decomposed accordingly to the upper and lower sets. For example, if we have a single 

upper and a single lower set, we have:

We could instead partition the original CTMC into U upper subchains and L lower 

chains that are still compliant to the basic requirement that all transitions between 

the subchains exist only from the upper to the lower chains, and. in addition, the

L =
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corresponding diagonal blocks (i.e., F ^ .  F ^ .  Luu, Lee, B ^ ,  and B ^ .  for j  > I) 

are themselves block diagonal. We return to this issue in Subsection 6.9, where we 

present a recursive version of our uupper-Iower aggregation’’ algorithm, that deals 

efficiently with this case.

No restrictions exist for the off-diagonal blocks (i.e., F^-, Fjjj-, Luc, B ^ .  and 

B ^ ,  for j  > 1 ). Further restrictions in the structure of L(0). F (1). and B(1). exist to 

reflect the requirement of being able to find the gate state and are discussed in the 

following section.

6.6 D eterm ining a gate state

A gate state g for set U must exist among the states in «S(0' (as discussed earlier, if 

we do not find such a state in £ (0) but we find it in «S(1). we can shift all levels by 

one toward the boundary portion, with the only drawback that the size of <S(0) grows 

by an additional n states). Figure 6.2 shows the essential structure of the relevant 

portion of the infinitesimal generator. Q[5(0) u«S(1).«S(0) U«S(1)]. We already know 

that the definition of the upper and lower sets implies that block Q[£(l\W(,)] is zero. 

We now discuss the additional structure imposed by the need to have a gate state g 

for U.

Consider the partition of <S*0) into Gg, which of course includes g, and Q~. Any 

state in Gg can have transitions to and from any state in U ^ .  States in Gg can 

also have transitions to G~ and to £ (1). but only g can have transitions from them.
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5 (0) UW £<U

g + g  g ~

Figure 6.2: The structure implied on Q by the existence of the gate g.

Finally, can have transitions to Q~ (and to of course). but it cannot have 

transitions from them.

6.7 G eneration of the new “upper” process

The connectivity of U with C coupled with the existence of the gate state g ensures 

that there is an efficient way to obtain the stochastic complement of U by applying 

Lemma 2.8.2. The state space of the new process is g* U H. The infinitesimal 

generator of this new stochastic process is:

Qr+GJ uW

T (0)

UG*
S(20) 

UGt 
S(30) 

UGt
B ! l

S(l)
Giu

I ^'-‘uu

0
rd)
v uu

0

0
0

0
d (1)a uu Luu pU)*uu 0
d (2)
°uu

d (1)a uu Uuu p(l)t uu
o(3)
a uu

n(2)
°uu

R(l)a uu

Matrices FJiL Luu, and B ^ ,  j  > 1, are defined in Section 6.5

(6 .10)

contains the
Gg Gg

rows and columns of L(0) corresponding to states in Gg. except that the diagonal ele-
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ment g] might differ from the corresponding one in L(0). since any transition
Sf g  V g

?(«from g to C is rerouted back to g itself, hence ignored. F^+w contains the entries 

of F(1) that represent the transitions from states in &+ to U. What remains to be 

defined are the matrices B ^ . ,  j  > 1 .

Since g is a single entry state for U. all transitions from the states in U to £  are 

"folded back” into g. Let

where B ^ + represents the portion of corresponding to transitions from U to Q/. 

B ^ 1 is a matrix of zeros except for the </th column, which is obtained by applying 

Eq.(2.31) and Lemma 2.8.2:

BU)[JV.,9| = ( E C + L „ £ + B ^ _ + ^ B ^ ) e  j  > 1 .
\ / =  I 1=1 /

where e is a row vector of one with the appropriate dimension.

The result is a GI/M/l-type process that is solved using the matrix-geometric 

method outlined in Section 3.1. Note that the computation of the sum
/ j \

is not required: since B is a matrix that contains only one nonzero column that 

is added to the 3 th column of B ^ +, we opt to discard this particular column when 

using Eq.(3.3).

After applying the matrix-geometric method, we obtain an expression for the 

stationary probabilities of the states in G+ U U  conditioned on the original process

E*e)
i= l /
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being in any of these states. These conditional probabilities are needed to formulate 

the pseudo-stochastic complement of Q~ U C according to Theorem 6.2, as explained 

in the following section.

6.8 G eneration o f th e new “lower” process

After applying Theorem 6.2, the infinitesimal generator of the new process with state 

space Q~ U £  is given by:

C

■ I  (00)
Gg C

w f i )
**CC

F fi>t cc

F ™

p (2) 
*  ce

£ (0 4 )
G~ C

p %
*  ec

0 R (l)a cc Lee u»( 1)
t  ee

p (2 )
v ec

0 0 R (i)
u c c Lee u>( 1)

*  cc
0 0 0 R (i)a cc Lee

(6 . 11)

Matrices for j  > 1, L ^ ,  Lee, and B(£l)£ are defined in Section 6.5. B ^ _  contains 

the entries of B^1* that correspond to transitions from Q~ to C. What remains to be 

defined are the matrices j  > 1 , and lA00’ .Gg *>» yy Gg

Since all interaction of the "lower' process with states in U is done through Q~. 

it follows that only the rates out of g need to be altered. Indeed, by applying Theo­

rem 6 . 2  we see:

= L < ° >  + L
Q g G g Gg Gg

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. AGGREGATE SOLUTIONS OF G I/G /1-TYPE PROCESSES 197

The new terms L and F0) are introduced by pseudo-stochastic complementation and 

represent how states from G+ and U enter the new process, respectively.

Let a  =  [a*01, ^ 11__ ] be conditional stationary distribution of Q+ UU. This can

be derived by normalizing the stationary distribution of the stochastic complement 

of Gg U U. Since the stochastic complement of the ‘‘upper" process is solved with the 

matrix geometric method, it follows that

£g(j) _  qC) . j  > 1 .

Recall that the application of pseudo-stochastic complementation adds only a com­

ponent Q [Gg U C.G+ UU\ • e  • Norm(a • Q[(/+ UU.Gg U £]) to the first row-block 

of Qe- u£. Since we allow transitions from any level in U to all levels in C, matrix 

Q[£/+ UU.G~ U C] can be full:

q [G+ u u . g: u c \ =

r t<0) 
e + s ,

«■»( 1) 
*Q+C

S (2 )
*Q+C

£<(3)
*g+c

P<(4)
*g+C

£i(5)
VG+C

B (l)ug-
I  (I)

•̂uc
p(i)
v uc

i?(2)
*uc

«?(•’*)
*uc

r ( 2)
ug;

Tj(l)a uc Luc El(l)
*uc

p (2 )
t UC r uc

b (3)UQZ
d (2)
a uc

TjU)
°uc Luc B'(l) I?(2)

*UC
§ (4) ug-

tj(2)
UUC

d(2)
a uc ii(i)°uc Luc u>{ 1)

t uc

(6 . 12)

Matrix Q[(/g U C .  G +  U U\ represents the communication pattern of states in G ; u c  

to states in G +  U U and it is a matrix of zeros except for a finite portion of its gth 

row that corresponds to entries from g to states in G+ Let o be a scalar that

represents the rate with which state g is left to enter Q+ U U and can be defined as 

the sum of all entries on the gth row of Q[(?g U C . G +  UU\.
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Next, we compute Norm(a • Q[Q+ Ult,Q~  U £]). From Eq.(6.12), it follows that:

is bounded by a constant, because of the nature of the infinitesimal generator defined 

in Eq.(6.1). The RowSum(B^^ +  i Bwc) ^  strictly less than the RowSum(—L — 

F ^ ) ,  since it is a portion of the positive sum B ^  + B*,_1* + .... +  B(l* This 

results in a finite value of T.

Furthermore, we define

00

a  • Q[G+ U t f , £ (,)] = o<0) • Fg+£ + a 0 1  • a<i+l) • B ^ ,  (6.14)

j - 1 oc

a -Q[g+ UUXu)] =a<0).F ^ £ +  5 3 s(,')-F^ <)+“ O’)-L^ +  L  5<<)-Bw^) J  >  1-
i=l •=j+l

(6.15)

Let T  =  a  • Q[C?+ U U. Q~  U £] • e, therefore

The term

p  = Norm(a • Q[(?+ L)U,Qg U £ ] )  =
a - Q [ Q + U U , G - u C ]

T
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This vector sums to one (because of the normalization) and can be partitioned ac­

cording to the levels of £  as:

P - l p P V 1̂ . . . . ] .

It follows that

L = o • p (0)

and

F U)= o - p U) j >  1.

Therefore, the siun F(j) = o • 5^°!, p (j) converges.

The new process, defined by Eq.(6.11) is ergodic and can be solved using the 

M /G /l algorithm outlined in Subsection 3.4. But, in order to apply the algorithm, it 

is necessary for the sums ^cc  anc  ̂ ^g~c to conver6 e- HjLi fe e  converges 

by definition (see the definition of Q in Eq.(6.1)). Similarly, converges

since its component sums are finite. By the definition of Q in Section 6 . the sum 

IZ jli ^cc  is finite.

6.9 M ultiple upper-lower classes

In our exposition, we have restricted ourselves to a single pair of upper and lower 

sets. Here, we present an extension of our upper-lower aggregation algorithm based 

on reciusion that allows us to deal with multiple upper and lower partitions.
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The partition is defined by splitting each j  > 1. into U upper sets 1 < 

t < U, and L lower sets £ |j), 1 < t < L consistent with a partition of the set of state in­

dices { 1  n} within a level set «S(j) into U+L classes A T \, — A f y , . S f u + h  - - ■ u + l ,

that is:

Vj > 1. u ij) =  {»“ ’ : i € ^ }  4 "  =  { ^ '  : i 6 JV„+,} .

Let Ut = ( J * ,  U(tj). Uu) = U f= ,^0). and U = analogously. Ct = \J%i AU)-

£0) = Uf=iAu).awir = uf=i^
Given that L lower sets and U upper sets exist that satisfy the main conditions, 

i.e.. there are no transitions among sets of the same type (except, of course, through 

the boundary set), there are transitions only from the upper sets to the lower sets, 

and communication from the lower sets to the upper sets can occur only through the 

boundary set «S(0), we can apply Algorithm 6.4 in a recursive manner.

(Recursive aggregation of Q given U upper and L lower classes)

Step I: Determine the upper and lower classes in Q.

Select one lower set £ t. 1 < t < L and redefine U — u  .j^t £ j)

and £  = Ct, so as to obtain a new partition of the state space that consists of 

only one upper set U and one lower set £  such that there is a special "gate" 

state g in «S(0) such that all paths from £  to U must first visit g. Sets Q+. Q//. 

G~. and Gg are defined as in Algorithm 6.4.

If no such partitioning exists, then the algorithm first attempts to solve Q with 

a known method, if this is not possible then the algorithm exits. Otherwise, the
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algorithm continues with step 2 .

Step 2: Generate and solve the “upper CTMC” . Using stochastic comple­

mentation identify a new CTMC observing the behavior of the original CTMC 

only in the states Q+ U U. The infinitesimal generator of the new process is 

Qejuw- Observe that the new “upper CTMC is composed by the U upper sets 

and L — 1 lower sets of the original partitioning.

Step 2a: If (L — 1) > 1 . then call Recursive aggregation of Qg.+U/ 

given U upper and L — 1 lower classes

Step 2b: If (L — 1 ) = 0 . i.e.. if the new "upper CTMC” is composed 

only of the “upper” sets of the original process, then the process defined 

by Qg+uu is of the GI/M /l-type. This process can be solved using the 

matrix geometric method, or by applying stochastic complementation to 

each of its U sets.

Step 3: Generate and solve the “lower CTMC”. Same as in Algorithm 6 . 1. 

Step 4-' Compute the coupling factors. Same as in Algorithm 6.4.

Step 5: Generate the stationary distribution of the original process.

Same as in Algorithm 6.4.

Remarks: We assume that there are U upper sets. Because there is strictly no 

connection among their infinite parts (except, of course, through the boundary set).
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applying stochastic complementation to these U sets in the CTMC that results in Step 

2b is an easy problem. We observe that the single entry condition must be satisfied 

for each of the stochastic complements to be solved efficiently, that each stochastic 

complement results in a process of the G I/M / 1-type, and that more than one of the 

new processes may share the same gate state.

To illustrate the idea of the multiple lower and upper sets, we give an example 

of applying Algorithm 6.9. The CTMC in Figure 6.3(a) has a gate state gd which 

we use to construct the pseudo-stochastic complement of the states in Cj. This is 

Step I of Algorithm 6.9. We proceed with Step 2 of Algorithm 6.9 and construct the 

stochastic complement of the rest of the CTMC, which by itself is an independent 

CTMC as shown in Figure 6 .3 (b). We continue with Step 2a of Algorithm 6.9 and 

in the new CTMC of Figure 6.3(b) identify a new lower subchain and since Step 

2a is satisfied we recursively continue with Step 1 of Algorithm 6.9. The gate state 

for the second lower subchain is gc. We built the CTMC of the pseudo-stochastic 

complement (sets in Cc). We go on with Step 2 of Algorithm 6.9 and generate the 

stochastic complement as shown in Figure 6.3(c). Now the Step 2a of Algorithm 6.9 is 

not satisfied and we continue with Step 2b by identifying upper sets of the CTMC in 

Figure 6.3(c). We find the gate states ga and and built the stochastic complements 

for the states in £„ and Cb respectively as shown in Figure 6.3(d). After solving these 

two stochastic complements, we can apply the classic aggregation on the sets of the 

chain in Figure 6.3(c), as shown in Figure 6.3(d). This completes Step 2b of Algorithm
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6.9 and we continue to Step 3, namely solving the lower subsets identified in recursive 

Step 1 of Algorithm 6.9. Since we have computed the conditional probabilities of the 

whole set of upper states, we can proceed with the solution of the pseudo-stochastic 

complements. Finally, we can apply Step 4 and Step 5 of Algorithm 6.9 to complete 

the solution of the given CTMC.

(g jX S g ):
(1) II /i(2)

(1) X  />(2)

4 l)A 4 2y :

Figure 6.3: Example of a CTMC with two lower and two upper sets.

We close this section with the following observation. Given the stationary prob­

abilities, we can compute various performance measures of interest such as the ex­

pected queue length or its higher moments. The performance measures of interest 

are computed at Step 2 and Step 3 of both Algorithm 6.4 and Algorithm 6.9, where
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the conditional stationary probabilities of the stochastic complements or the pseudo- 

stochastic complements are computed and then scaled back according to the coupling 

factors as defined by Step 4-

6.10 Application: parallel scheduling in the pres­

ence o f  failures

We now employ our method to solve a system that can be modeled as a GI/G/1- 

tvpe CTMC. A popular way to allocate processors among competing applications in 

a parallel system environment is bv space-sharing: processors are partitioned into 

disjoint sets and each apphcation executes in isolation on one of these sets. Space 

sharing can be done in a static, adaptive, or dynamic way. If a job requires a fixed 

number of processors for execution, this requires a static space-sharing policy [99]. 

Adaptive space-sharing policies [2 0 ] have been proposed for jobs that can configure 

themselves to the number of processors allocated by the scheduler at the beginning of 

their execution. Dynamic space-sharing policies [55] have been proposed for jobs that 

are flexible enough to allow the scheduler to reduce or increase the number of pro­

cessors allocated to them as they run, in response to environment changes. Because 

of their flexibility, dynamic policies can offer optimal performance: however they are 

the most difficult to implement because they relocate resources while applications are 

executing.
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Modeling the behavior of scheduling policies in parallel systems often results in 

CTMCs with matrix geometric form [104]. In these models, neither failures, nor 

arrivals from multiple exogenous sources are considered. To illustrate the applicabil­

ity of our methodology, we present instead a CTMC that models the behavior of a 

scheduling pohcv in a cluster environment subject to software and hardware failures. 

Our system is a cluster composed of two sub-clusters connected via a high speed 

medium (e.g.. Gigabit Ethernet), while the nodes in each sub-cluster are connected 

via a lower speed switch (e.g., ATM switch). For simplicity, we present a small system 

composed of two sub-clusters only, where a limited number of possible partitions is 

allowed, but our methodology readily applies to larger systems with multiple parti­

tions. The arrival process is Poisson with parameter A but each arrival may be a bulk 

of arbitrary size governed by a geometric distribution with parameter p. For clarity's 

sake, we only draw arcs corresponding to bulks of size one and two only, labeled with 

the rates Ai =  Xp and A2 =  A(1  — p)p, respectively.

The system employs a space-sharing policy that allows up to two parallel jobs 

to run simultaneously. A parallel job may execute across the whole cluster (i.e.. on 

both sub-clusters) or occupy only one sub-cluster: the service time is exponentially 

distributed with rate /i2 in the former case, or pi in the latter. The pohcv is as 

follows. Upon arrival

•  while there are no jobs in the system:

-  if the arrival is of a single job. that is, the bulk size equals one. the whole
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Figure 6.4: The CTMC for our pcrformability study 

cluster is assigned to that job,

-  otherwise, if multiple jobs arrives simultaneously, that is, the bulk size is 

greater than one, two jobs are scheduled, one on each sub-cluster, while 

the remaining jobs in the bulk, if any are queued:

•  while there are already jobs in the system and one job running using the whole 

cluster:

-  if the bulk size equals one the job is simply queued,

-  otherwise, if the bulk size is greater than one, the arriving jobs are en­

queued, the current job is stopped and restarted on a single sub-cluster, 

and one of the queued jobs is also started, on the other sub-cluster;
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•  while there are jobs in the system already and two jobs are running, each on 

one sub-cluster:

— we simply enqueue arriving jobs, regardless of the bulk size.

Upon a completion (departure)

•  of a job that was using the entire system:

-  if there is only one job waiting, it is assigned the entire system.

-  if there are multiple jobs waiting, two of them are assigned a sub-cluster 

each;

•  of a job that was using only one sub-cluster:

— one of the jobs in the queue, if any. is assigned the sub-cluster just released 

(if there are no jobs waiting, the other job running, if any, is not reassigned 

to the entire system).

The rationale behind these decisions is that, under bursty conditions, we would 

like to reach our goal of having smaller partitions quickly, even at the cost of killing 

a running job and rescheduling it on a smaller partition [90].

We consider the performance of our scheduling policy under the following failure 

scenarios. Each of the two subclusters can experience a local hardware failure inde­

pendently of each other; in this case only the affected sub-cluster must be brought
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down for repair, and the system can still accept arrivals. In addition, when a par­

allel job is assigned the entire cluster, it makes use of software whose execution can 

cause the entire system to crash. After such a failure, each sub-cluster must be 

brought down for reboot; consequently, the system's queue is flushed and no arrivals 

are accepted until repairs are completed. We assume that all event durations are 

exponentially distributed. The rate for a hardware failure is fh- for a software failure 

f s. for a repair after a hardware failure is r/,, and for a repair (reboot) after a software 

failure is r,.

State Description
0 Empty system, no failures

os Empty system, rebooting after a software failure
k \ V k  >  0 jobs in the queue, one job executing on the whole system
O H 0 jobs in the queue, one sub-cluster idle, one other running a job

k H H k  >  0 jobs in the queue, each sub-cluster running a job
O F 0 jobs in the queue, one sub-cluster idle, the other failed

k H F k  >  0 jobs in the queue, one sub-cluster running a job. the other failed
k F F k  >  0 jobs in the queue, both sub-clusters failed

Table 6.2: State description of the CTMC.

Figure 6.4 depicts a CTMC modeling the behavior of our system and the Table 6.10 

describes the meaning of the system states. The infinitesimal generator of this CTMC 

has a GI/G / 1  structure consistent with the requirements of our solution algorithm, 

since we can immediately specify state 0 as the gate state, states k\V plus 05 as the 

upper states, and the states OH, kHH, OF, kHF  and kFF  as the lower states. Note 

that the model assumes that hardware failures do not occur during reboot; if this were 

not true we could add a transition from 05 to OF with rate 2/*, and the structure
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required by our approach would still be present, since there can be transitions from 

i/j0' (i.e.. OS) to any state in Cg.

The numerical values used for our numerical parameters are: f h = 10-6, ..., 10-3,

f„ =  10-f h, rh =  10~ 3 or 10~l, rs = 10-rA, =  3.0 or 6.0, p2 =  18/ii. A =  10- 5 ........5.

and p =  0 .8 .

Figure 6.5(a) and Figure 6.5(b) show that long term availability of the system, 

that is. its ability of accepting arrivals, computed as the stationary probability of 

being in any of the states except 05 and kFF. for k > 0 . for a given choice of rh 

and two choices of /i t, and for a given choice of /q and two choices of r/,. respectively, 

as a function of //, and A (note that the arrival rate A) does affect the availability, 

since it affects the probability of the system being in the k\V states, hence of software 

failures. Figure 6.5(c) and Figure 6.5(d) are analogous, except that they focus on the 

probability on not being unavailable due to a software failure, that is. they plot the 

complement of being in state 05. Figure 6.5(e) and Figure 6.5(f) focus instead on 

the system power, defined as the ratio of the system throughput over the average job 

response time, also as a function of fh and A and for various choices of r/, and m.\. It 

is apparent that there is a significant correlation between the above parameters and 

the workload that the system can handle. Note that, in all plots, the missing data 

points correspond to parameter combinations for which the system becomes unstable.
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Figure 6.5: Performance results.

6.11 Chapter sum m ary

In this chapter we presented an aggregation-based algorithm for the exact analysis 

of a class of G I/G /1-type Markov chains with repetitive structure. Such chains ap-
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pear when modeling systems with failures and repairs that also accept arrivals from 

multiple exogenous sources. The algorithm also applies to systems that are purely of 

the M /G/l-type. or GI/M/l-type, or their intersection, that is quasi-birth-death pro­

cesses. Consequently, it extends both the applicability and efficiency of well-known 

techniques for the solution of M /G/l-type and GI/M /l-type processes including the 

matrix geometric and matrix analytic methods through an intelligent partitioning of 

the repetitive portion of the state space into subsets, according to its connectivity. 

This partitioning allows us to define smaller CTMCs related to the original CTMC. 

then solve their stochastic complements using established techniques.

Our algorithm does not apply to all GI/G/1-tvpe CTMCs. Here, we describe the 

exact conditions that must be satisfied to allow application of our algorithm but we 

do not present a partitioning algorithm of the process state space required to apply 

our method. This is a graph partitioning problem and is subject of future work. We 

note, however, that the nature of the system under examination may guide us into 

easily identifying the possible partitioning of the state space.
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Chapter 7 

Load Balancing on Clustered Web 

Servers

Popular Internet sites are experiencing continuous increase in the number of users 

and amount of requests they serve [17]. In such conditions, maintaining high user- 

perceived performance is challenging, but important for the commercial success of the 

site. A common solution is implementation of Web sites as distributed systems with 

several mirrored Web servers, transparent to the user, known as clustered Web servers. 

They are popular because they allow Web sites to scale as customer population grows 

and also ensure Web site availability and reliability.

In a distributed environment, the management of resources, i.e.. the load bal­

ancing policy, has ample importance, because it significantly affects user perceived 

performance. The load balancing policy in a cluster of Web servers assigns the stream 

of incoming requests to the servers of the cluster, striving for fast processing time per 

request and maintaining equally utilized servers. Since the load balancing policy deals

212
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with the stream of requests, its performance highly depends on the characteristics of 

the cluster workload.

Throughout this dissertation, we stressed that in a Web server the request in­

terarrival process exhibits long-range dependence, and the request processing time is 

highly variable. Detailed analysis of the effects of these characteristics on the per­

formance of the load balancing policy, allows us to develop policies that are aware 

of the cluster workload, and improve user perceived performance. In the following 

sections, we describe how we characterize the service process in a Web server by PH 

distribution and model it as a queueing system for performance analysis purposes. 

Such analysis guides us on the design of new load balancing policies that maintain 

low request slowdown even under dynamically changing workload characteristics.

This chapter is organized as follows. In Section 7.1. we give an overview of different 

Web cluster architectures. Section 7.2 outlines load balancing policies associated with 

clustered Web servers. Section 7.3 outlines the analytic models that we propose to 

analyze the performance of load balancing policies in Web server clusters. In Section 

7.4, we describe a sized-based load balancing policy for clustered Web servers, and 

analyze its performance using analytic models. In Section 7.5. we propose EquiLoad 

that is a refinement of the sized-based policy. In Section 7.6. we propose A daptLoad. 

a load balancing policy that continuously adapts its parameters to the characteristics 

of the cluster workload. We conclude the chapter with a summary of the presented 

results.
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7.1 C lustered Web servers architectures

Web server clusters are classified based on the assignment of the incoming requests 

to the various servers of the cluster [17] as follows:

• C lient-based approach. In this approach, the client host itself routes the 

request to one of the servers in the cluster. This can be done by the Web- 

browser or by the client-side proxy-server. The client communicates with the 

servers in order to decide which server will eventually serve the request. The 

range of load balancing policies that can be implemented is limited, but this 

approach is scalable and provides high availability.

•  DN S-based approach. The DNS server for the domain of the clustered server 

is the responsible device to distribute the incoming requests among servers of the 

cluster. This approach allows various load balancing policies to be implemented 

in the cluster. Nevertheless, DNS has a limited control on the requests reaching 

the Web cluster. After the client has resolved the IP address of the server in the 

cluster, the intermediate name servers between the client and the cluster cache 

the logical name for the IP address and save it for a specific amount of time 

(Time-To-Live, TTL). Any request that goes through any of these intermediate 

servers, does not reach the DNS server of the cluster. Two algorithms exist that 

implement the DNS approach depending on the value of TTL. constant TTL 

and dynamic TTL algorithms.
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•  Dispatcher-based approach (at network level). This is an alternative to 

DNS-based approach, that provides full control on client requests and masks 

the request routing among multiple servers. The cluster has only one virtual 

IP address, the IP address of the dispatcher. The dispatcher identifies the 

servers through unique private IP addresses, which are used by the dispatcher 

for scheduling purposes. The routing of request can be done either via packet 

rewriting or with HTTP redirection. The dispatcher controls all the incoming 

requests, so its involvement on the load balancing algorithm is kept at a mini­

mum. A simple high-level design of a dispatcher-based architecture is depicted 

in Figure 7.1.

.-firmirg tasks

F igure  7.1: Model of a distributed server.

•  Server-based approach. This approach uses a two-level dispatching mech­

anism. Client requests are initially assigned by the DNS server to a server in 

the cluster but each server may reassign a received request to any other server 

in the cluster. This approach solves some of the problems that arise with the 

DNS approach. The server based approach may use either packet rewriting or 

HTTP redirection to reroute requests among servers.
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For the remaining of this chapter, we focus on dispatcher-based and server-based Web 

server cluster architectures.

7.2 Load balancing policies on clustered Web servers

One of the most compelling problems that arises on distributed Web server clusters 

is the selection of an efficient load balancing policy. The load balancing policy should 

strive to evenly utilize servers in the cluster, and achieve minimum response time 

for each request. The simplest load balancing policies are random and round robin 

policies. The former assigns an incoming request to a uniformly randomly selected 

server, while the latter assigns the requests to the servers of the cluster in a “cyclic" 

fashion. Round robin is widely used because it is easy to implement and implies only 

a m in im u m  overhead. A  common variation of the round robin policy is the weighted 

round robin policy [25. 41, 73). In the weighted round robin policy, the incoming 

requests are distributed among the servers in a round robin fashion, weighted by 

some measure of the load on each of the servers. Policies like join shortest queue and 

shortest remaining processing time are cases of the weighted round robin pohcv, where 

the front-end dispatcher requires detailed information about the load and operation 

of each server in order to assign incoming requests to servers of the cluster.

In addition to the traditional load balancing policies, more sophisticated policies 

exist. They take into consideration the special characteristics of both the architecture 

and the workload of clustered Web servers. A priori knowledge of the characteristics
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of the incoming stream of requests, such as the size of the requested files, their location 

(i.e., in disk or memory) is incorporated in recently proposed load balancing policies 

for clustered Web servers [17, 5, 36, 73, 19, 112]. Such load balancing policies are 

called “content-aware* policies.

Among the content-aware policies, we distinguish the locality aware load balanc­

ing policies [73. 19, 112]. Locality-aware policies improve cluster’s performance by 

distributing incoming requests based on the cache content of each server, since a re­

quest is served much Lister if it fetched from the cache of the Web server than from 

its local disk.

Other policies incorporate knowledge of the variability in the service process into 

the load balancing policy [36]. SITA-E (Size Interval Task Assignment with Equal 

Load) assigns the incoming requests into servers based on the request size, assuming 

that the requested file sizes follow a bounded Pareto distribution.

The characteristics of the server-based architecture are used to propose additional 

load balancing policies by redirecting the requests among servers of the cluster ac­

cording to a "domain-based* partition of the servers [18, 2]. This partition changes 

dynamically as a function of changes in the cluster service demands. These policies 

are further extended by allowing quality-of-service requirements to define the set of 

servers that serves an incoming request [115].
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7.3 W orld Cup 1998 workload

The workload, we use to analyze load balancing policies in clustered Web servers, 

consist of the server logs of the 1998 World Soccer Cup Web site1. The World Cup 

site server was composed of 30 low-latency platforms distributed across four geo­

graphically distributed locations. Client requests were dispatched to a location via a 

Cisco Distributed Director, and each location was responsible for load balancing of 

incoming requests among its available servers. The traces provide information about 

each request received by the site during 92 days, from April 26, 1998 to July 26, 1998. 

TYace data were collected for each day during the total period of time that the Web 

server was operational.

The traces provide information about each request received by each server. For 

each request the following information is recorded: the IP address of the client issuing 

the request, the date and time of the request, the URL requested, the HTTP response 

status code, and the content length (in bytes) of the transferred document. TYace 

data were collected for each day during the total period of time that the Web server 

was operational. Since the focus of this work is on load balancing, irrespective of 

possible caching policies at the server, we only extracted the content length of the 

transfered document from each trace record assuming that the service time of each 

request is a Unear function of the size of the requested document. Analysis of the 

unique file size distribution across all 92 days indicated that the service process in 

‘Available at http://ita.ee.lbl.gov/.
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the Web server is heavy-tailed. This trend persists also if the empirical distribution 

of the sizes of requests files is analyzed on a day by day basis. For a detailed analysis 

of the World Cup workload see [3).

7.3.1 Fitting request sizes into a distribution

Analysis of Internet traffic at different levels of the communication infrastructure 

shows that many processes in Internet-related systems are highly variable and best 

characterized by heavy-tailed distributions [7. 8 , 4. 3. 30]. Detailed analysis of server 

logs [7. 3] shows that file-size requests are best described by hybrid distributions, where 

the body is best described by lognormal distribution and the tail by a power-tailed 

distribution [3].

To check for the heavy-tail property, we used Boston University’s ae s t tool that 

verifies and estimates the heavy-tail portion of a distribution [28]2. Using the scaling 

estimator methodology, the tool helps identify the portion of the data set that exhibits 

power-tailed behavior by demonstrating graphically the tail of the distribution where 

the heavy-tailed behavior is present. The selection of the point where the power-tailed 

behavior starts is significant because it affects the computation of the parameters of 

the distribution. Figure 7.2 shows the results of the scaling analysis for the service 

process of a representative day of the dataset, i.e., day 80. Considering the tail 

portion of the plots, for requests larger than 1 MByte, we see that they are close

2http://www.cs.bu.edu/facultv/crovella/aest.html.
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to linear, suggesting that the heavy-tailed portion of the dataset begins at around 

1 MByte. Based on this observation, we conclude that the empirical distribution is 

best approximated by a hybrid model that combines a lognormal distribution for the 

body of the data with a power-tailed distribution for its tail [3]. After identifying the
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Figure 7.2: Tail characterization for day 80. The various curves in the figure show the ccdf 
of the dataset on a log-log scale for successive aggregations of the dataset by factors of two. 
The figure illustrates that the shape of the tail (i.e., for size > 10s) is close to linear and 
suggests the parameter for its power-tailed distribution. The *+' signs on the plot indicate 
the points used to compute the a  in the distribution. The elimination of points for each 
successive aggregation indicates the presence of a long tail.

two portions of the trace, we need to compute the parameters of each of its portions. 

The body of the distribution is considered lognormal with PDF:

,,  ̂ 1 (lnx — a)2\

We compute b > 0 (i.e.. the shape parameter), and a € (—oo. oo) (i.e.. the scale
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parameter) using the maximum likelihood estimators [48]:

b =
n

E lU O n X -a )*

where X, for 1 < i < n are the sample data. The trace is heavy-tailed with tail index 

a  if its CDF is:

P[X >  x] ~  x~a. x  —* oo, 0  < a  < 2.

where X  is the random variable describing the request size. In our study, we compute 

a  via the a e s t tool.

Once the data is approximated by a hybrid distribution, we apply the FW3 al­

gorithm [30] for approximating a heavy-tailed distribution with a hyperexponential 

one. Since the body and the tail of the hybrid distribution are heavy-tailed, yet de­

scribed by different distribution functions, we apply the algorithm to each component 

separately and finally combine both fittings into a single hyperexponential, weighting 

each part accordingly. The weights of the two hyperexponential distributions, cor­

responding to the lognormal and the power-tailed portions of the original data, are 

given by the probability that a request is for a file with size less or equal to. or greater 

than, 1 Mbyte, respectively. These weights are computed from the empirical data. 

The final result is a hyperexponential distribution fitting for the entire data set.

3Wc choose FW algorithm to  fit the hybrid distribution into a  hypcrcxponcntial because here 
we arc dealing with distribution functions and FW performs well. i.e.. it is fast and accurate, when 
fitting heavy-tailed distribution functions.
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7.3.2 Fittings using FW algorithm

We use the FW algorithm to fit the data representing the request sizes from two 

representative days of the World Cup 98 site, day 57 and day 80, into hyperexponen­

tial distributions. Figures 7.3 and 7.4 illustrate the CDFs of the actual data, their 

fittings into a hybrid distributions (lognormal and power-tail), and the fittings of 

the hybrid distribution into a hyperexponential one. We observe that the resulting 

hvperexponential distribution closely matches the behavior of the original data.
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Figure 7.3: Fitted data of day 57

Table 7.1 illustrates the parameters of the lognormal and the power-tailed portions 

of the distribution for each day. For both days, we see that the bulk of the data 

lies in the lognormal portion of the data set, while only a very small part (albeit 

with very large file sizes) lies in the power-tailed part. Table 7.1 also shows the 

parameters that the FW algorithm suggests for the fitting of the above distributions
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Figure 7.4: Fitted data of day 80

into hyperexponentials. In both cases, a total of seven exponential phases, four for 

the lognormal portion and three for the power-tailed portion, are sufficient to achieve 

an excellent approximation of the original data.

Data from Day 57 Data from Day 80
Lognormal(a, b) 

a = 7.033358 
b =  1.509296

Powcr(o) 
a  = 0.82

Weight for 
Lognormal 

0.99935

Lognormal(a. 6) 
a =  7.43343 
b =  1.42824

Power (a) 
a  = 0.89

Weight for 
Lognormal 
0.999977

Parameters of the Hrf/ij, A : 1 < i < 7) fitting
/*. A

Parameters of the Hrf/x,. A : 1 < i < 7) fitting
P. A

0.000000008469532 0.000000000438327 0.000000013708911 0.000000000190479
0.000000106031775 0.000000002331229 0.000000215667700 0.000000001569731
0.000011317265198 0.000649997230444 0.000043293323498 0.000569998239790
0.000001510047810 0.000014700266903 0.000005312880260 0.000744062014933
0.000018914686309 0.014450795383216 0.000029646684825 0.039321723492673
0.000190007539767 0.443701366678877 0.000150999863822 0.367916087712180
0.001235615667834 0.541183137671004 0.000870285230628 0.591448126780214

Table 7.1: Workload parameters for day 57 and day 80
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Because our objective is to analyze the performance of load balancing policies 

under variable service process, we also considered synthetically-generated data sets 

that exhibits different variabilities. We base our synthetic service process generation 

on the properties of day 57. Since the power-tailed portion of each of the selected 

days is very small, we turn our attention to the lognormal portion which also exhibits 

heavy-tailed behavior. By changing simultaneously both the a and b parameters of 

a lognormal distribution, we change both the scale and shape of the distribution so 

as to vary the variance of the distribution and at the same type keep the mean of 

the distribution constant (equal to the mean of day 57, i.e., 3629 Bytes). This way, 

we can examine the sensitivity of our load balancing policies to the variability of the 

service process. Figure 7.5 illustrates how the CDF changes when we change the
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Figure 7.5: Shape of the CDF when changing the variability of the lognormal portion of 
the data set

variability in the data set (the fitting technique resulted in three, four, or five stages
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for the lognormal fitting, thus a total of six. seven, or eight stages were used to fit the 

mixture of the lognormal and power-tailed distribution). We evaluate the sensitivity 

of the policy as a  function of variability in the service process in Section 7.4.

7.4 Sized-based load balancing policy

We consider the following model of a  distributed server environment. We assume 

a fixed number c of back-end servers with the same processing power, each serving 

requests in first-come-first-serve order. We further assume that each server has an 

imbounded queue. Requests arrive to the dispatcher according to a Poisson process. 

The dispatcher is responsible for distributing the jobs among the various back-end 

servers according to a scheduling policy. We also assume that the dispatcher can 

derive the request duratiou (the size of the file) from the name of the file requested. We 

consider the following two load balancing policies (in neither case the dispatcher uses 

feedback from the individual back-end servers to better balance the load, measured 

in "bytes to be transferred’', among them):

Random: The dispatcher assigns the incoming request to a randomly selected server, 

with probability 1/c.

Size-based: The dispatcher assigns requests to servers according to their size. This 

policy is motivated by the desire to separate large from small requests, to avoid 

the significant slowdowns that small requests would experience when queued
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behind large ones. A policy based on the same principle has been examined 

in [36] and compared very favorably to a dynamic policy where the dispatcher 

assigns requests to servers according to the server's load at the time of request 

arrival.

We first consider the performance of the random policy under Poisson arrivals and 

service process that is driven by the entries of the synthetically-generated requested 

file sizes described in Subsection 7.3.2. Recall that one of the curves in Figure 7.5 

corresponds to the actual stream of requested file sizes corresponding to day 57 of 

the World Cup server logs. In the analysis of this section, we assume that the overall 

arrival rate to the dispatcher is A, and that there are eight back-end servers. Since the 

processing time for each request is linear to request size, we approximate the service 

process at the Web server by the hvperexponential distribution of requested file sizes 

and model its performance using an M/Hr/1 queue. In the case of the random policy, 

each Web server in the cluster is model by the same M/Hr/1 queue with arrival rate 

A/8 . An M /H r/1 queue results in a QBD which we analyze using Etaqa-QBD (see 

Section 5.3).

In most of our experiments, slowdown is the metric of interest that we choose for 

evaluation of cluster performance. Average request slowdown, the ratio of response 

time to service time for a job, is a fundamental measure of responsiveness in Web 

servers, since users are more willing to wait for “large” requests than for "small” ones. 

We start our evaluation by analyzing the performance of the random load balancing
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policy. Our objective is to be able to understand how the variable service process 

affects the performance of the random policy and identify possible improvements.

The average request slowdown for the random policy is illustrated in Figure 7.6(a). 

Although the system saturates at the same value of A regardless of the variability in 

the service process (recall that all data sets have the same mean request size), the 

average request slowdown differs dramatically from service process to service process, 

especially in the range of medium-to-high system utilization. Figure 7.6(b) illustrates 

the average queue length at each server as a function of the variability in the service 

process for various arrival rates4. The figure further confirms that the higher the 

variability in the service process, the more dramatic the average queue build-up is.
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Figure 7.6: Average request slowdown as a function of the overall request arrival rate A 
for high-to-low variability in their request service times (a), and average queue length as a 
function of the variability in the service process for various arrival rates (b).

■*For presentation clarity, the x-axis of Figure 7.6(b) shows only the value of the b parameter of 
the lognormal distribution for the corresponding d ata  set. but we remind the reader that a  different 
\alue of b implies also a different value of a. to keep the sam e mean request size across all data sets.
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To further understand the behavior of the system under the random balancing 

policy, we look closer at the range of request sizes that contribute to the queue build­

up and consequently to the performance degradation. Our analytical model allows 

us to further explore the system behavior by analyzing how the queue length builds 

up. Figure 7.7 sketches the CTMC that models a back-end server, an M/Hr7 / 1  server 

(for presentation clarity, not all arcs are illustrated in the picture, but the reader can 

visualize the shape of the Markov chain and, most importantly, identify the parts 

of the CTMC that correspond to the power-law portion of the workload and the 

lognormal portion of the workload).

Lognormal Portion

The stage of Lognormal with 
large request sizes

Power Tail Portion

Figure 7.7: The CTMC that models one host.

The model of Figure 7.7 is analyzed using Etaqa-QBD  which allows the exact 

computation of the stationary system queue length. Figure 7.8 illustrates the contri­

bution to the overall queue length from the instances when short requests get stuck 

behind long ones, i.e.. behind requests for files larger than 1MB (files that are part of 

the power-tailed portion of the distribution) and 100 KBytes (the tail part of the log­
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normal distribution together with the power-tailed part of the distribution). Since the 

FW algorithm “splits" the distribution (each portion corresponding to one phase of 

the hyperexponential distribution), it is possible to calculate approximately the con­

tribution to the queue length of instances of queue built-ups because short requests 

wait for longer ones to be served. Figure 7.8(a) illustrates that, at medium-to-high 

load, the queue built-up due to requests from the power-tailed portion begin served is 

about 2 0 % of the overall system queue length (even if the frequency of these requests 

is almost negligible). This percentage is much larger at smaller arrival rates.

We also note that if the lognormal portion has low variability, the queue build­

up is dominated by instances of short requests waiting behind long ones, which we 

call power-tailed queue. This can be explained by examining the contribution to the 

queue build-up by the tail of the lognormal distribution. Figure 7.8(b) shows that 

the requests from the tail of the lognormal distribution play an important role on the 

performance (requests for files larger than 1 0 0  KBytes dominate the queue across the 

entire range of arrival rates) and illustrates that for higher variabilities in the service 

process, the system queue length due to large yet rare requests is significant.

These last observations suggest that it may be appropriate to assign requests 

to specific servers according to their sizes. We conjecture that by reserving servers 

for scheduling requests of similar sizes, we ensure that no severe imbalances in the 

utilization of each of the servers occur.
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Figure 7.8: Ratio of queue built up behind requests of files greater than 1 MByte (a), and 
of files greater than 1 0 0  KBytes (b).

The fitting provided by the FW algorithm for the requested files sizes prorides a 

hyperexponential distribution with a special property: each exponential phase corre­

sponds to a certain range of request (file) sizes. Thus, we use the hyperexponential 

distribution to make an educated guess on distributing the incoming requests across 

the back-end servers, ensuring that the variance of the service time distribution of 

the requests served by each server is kept as low as possible. Figure 7.9 illustrates 

this size-based policy.

By applying the size-based policy to our data sets with the stream of requested 

files sizes, we notice that a single server suffices to serve the power-tailed portion 

and the tail of the lognormal portions of the request file sizes distribution. The 

body of the lognormal portion must instead be served by the remaining seven servers. 

Figure 7.10 illustrates the average queue length of the hosts using either the size- 

based or the random policy for two fixed arrival rates. A = 0.0012 and A = 0.0016,
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1. Compute the expected service time 5,- for each phase of the 
hyper-exponential distribution, weighted by its probability $ :

$  = £ , 1 < i < k
2. Normalize S, to compute each stage's contribution to the 

overall expected mean service time of the distribution:
Si = 1 <  1 <  k

3. If c servers are available, then phase i should be served by
Ci = Si -c servers

(the specific server for the request is chosen randomly among the c, servers)
4. Treat heavy-tail differently from the body of the distribution:

a . Vcj <  1, 1 <  i <  k ,  (i.e., for stages corresponding to 
the heavy tail) such that Y1 c> < 1-5, are to be served 
the same single server.

b. Vq > 1 ,  1 < i < k, (i.e.. for stages corresponding to 
the body), assign [c, -I- 0 .5 J  servers and schedule
jobs within these servers using the random policy. Attention 
should be paid so as to ensure that the total server assignment 
across all stages of the hyper-exponential does not exceed c.

Figure 7.9: Our size-based scheduling policy.

representing medium and high load, respectively.

In contrast to the random policy, the average queue length with the size-based 

policy does not increase as the variability in the service process increases. This 

indicates that the size-based policy, being aware of the heavy-tailed behavior in the 

service process, sustains better the variability effects in the Web server performance. 

Figure 7.10 shows similar results with respect to the expected request slowdown. 

We conclude that taking into consideration the properties of the service process in 

the load balancing policy, as we do in the sized-based policy, insures better overall 

performance of the Web server cluster.
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Figure 7.10: Policy comparisons as a function of the workload variability.

7.5 EquiLoad

The results presented in Section 7.4 show that classifying the requests that arrive 

into a cluster of Web servers according to their processing time (assuming linear 

dependence with the size of the requested file) improves cluster performance and 

handles well the variability in the service process.
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Nevertheless, the policy has two drawbacks: (a) the front-end dispatcher does 

not always know the file sizes of each request in advance and (b) several servers may 

serve jobs within the same size-class, which further compUcates the policy bv requiring 

efficient scheduling within this subcluster of servers.

VVe address these two problems and propose a load balancing policy for clustered 

Web servers, which we call E q u iLo a d . This policy requires partitioning the possible

request sizes into N  intervals. [s0 =  0 . s (), [si. s>)....... [s.v-i. s.v =  oo), so that server

i is responsible for processing requests of size between s,_i and st. In practice, the size 

corresponding to an incoming URL request might not be available to the front-end 

dispatcher, but this problem can be solved using a two-stage allocation policy. First, 

the dispatcher assigns each incoming request very quickly to one of the N  back-end 

servers using a simple policy such as uniform random (or round-robin. which is even 

easier to implement in practice). Then, when server / receives a request from the 

dispatcher, it looks up its size s and, if s,_ i <  s < s*, it puts the request in its queue, 

otherwise it redirects it to the server j  satisfying Sj_i < s < Sj (of course any request 

that server i receives from another server is instead enqueued immediately, since it 

is guaranteed to be in the correct size range). This policy looks to be similar with 

the server-based architecture described in Subsection 7.1, but we propose to have 

a front-end dispatcher not a DNS server that handles the incoming requests. Such 

policies that are based on redirecting requests among servers in a cluster have been 

implemented [2 , 18].
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Letting the back-end servers reallocate requests among themselves is sensible, 

since the size information is certainly available to them. The potential advantages of 

such policy are clear:

•  Partitioning the stream of requested files into N  class sizes and assigning each 

to a different server maximizes the homogeneity of request sizes within each 

queue, thus improves the overall response time.

• The dispatcher does not need to be aware of the sizes of the incoming requests, 

nor of the load of each back-end server.

• Requests must be reallocated at most once: indeed, if the dispatcher uses a 

simple random or round-robin allocation, the probability that a request must 

be reallocated is exactly

• Except for the small reallocation overhead, no server’s work is wasted.

•  As there is no overlapping on size ranges of the N  classes, there is no sub­

clustering of the servers.

• The cache behavior is guaranteed to be close to optimal5, since requests for the 

same file are assigned to the same server.

but so are the challenges:

5All our experiments arc driven by the servers logs at the World CUP 1998 Web site. Using this 
workload, we always achieved with EquiLoaD almost optimal caching behavior. In the remainder 
of this chapter, whenever we claim close to optimal behavior for EquiLoad. wc assume that the 
Web cluster operates under similar workload as the one measured at the World CUP 1998 Web site.
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• The value of the N — 1 size boundaries S[. s-j, s,v-i is critical, since it affects

the load seen by each server; the mechanism used to choose these boundaries 

must achieve the desired performance goals, in our case, maintaining a equal 

expected load, measured in “bytes to be transferred". at each server.

•  As the workload changes over time, we must dynamically readjust these bound­

aries, but the cost for doing so must be small.

For the first challenge, the objective is to provide each back-end server with (ap­

proximately) the same “load" by choosing the intervals [s;_i. s,) so that the requests 

routed to server i contribute a fraction l /N  of the mean 5  of the distribution size. 

In other words, we seek to determine si, s?,. . . .  s,v_i such that, for 1 < i < N,

r* i r *  sJ  x d F { x ) z s — j  x-dF(x)  = —.

where F(x)  is the CDF of the requested file sizes. Given a trace of R  requests and their 

sizes, the s, boundaries can be determined using the algorithm outlined in Figure 7.11. 

Eq u iLo a d  builds a discrete data histogram (DDH) [48] encoding the empirical size 

distribution of the trace requests. We can think of the DDH as a vector of (6 . c) 

pairs, where b is a particular size of requests encountered in the trace (in bytes), c 

counts the number of times requests of this size appear in the trace, and the vector 

entries are sorted by increasing values of b. From the DDH, we can easily compute 

the expected request size, S. We scan the DDH and accumulate the sizes and their
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frequencies, recording the points si , s -2 -s/v-i at which we reach a fraction

. . . ,  of R ■ S. We address the second challenge in Section 7.6.

1 . compute the DDH of the sizes of the R  requests for F  different files:

bf indicates size in bytes 
Cf indicates size frequency

2. compute the total requested bytes: B *— Cfbf
3. initialize the accumulated size and DDH index: A *— 0 and f  *— 0
4. for i =  1 to N  — 1 compute «i, s-i, . . . ,  ss~\ by scanning the DDH:

a. while A <  B ■ i/N  do
I. increment .4 by the contribution of entry /  of the DDH: A <— A + c/bf
II. move to the next entry of the DDH: f  *— f  + 1

b. set the i'th  boundary so that £^ '=, Cfbf = B  • i /N:  s, *— /

Figure 7.11: Setting the boundaries si,S2 s.v-i with EquiLoad.

7.5.1 Performance of EquiLoad

Eq u iLoad needs to identify the boundaries of the request sizes assigned to each 

server, and it does this by partitioning the set of possible sizes, from 0  to oo. into 

N  disjoint intervals, such that the same expected load is seen by all servers. Since 

we intend to analyze EquiLoad using analytical models, we fit the measured stream 

of requested file sizes into PH distributions. In particular, we require that the data 

falling in a given interval, i.e., the load in a single server, be fitted in a PH distribution 

so as to be able to analyze the performance of individual servers using matrix-analytic 

techniques. The D&C MM fitting method, proposed in Section 4.3. is an appropriate 

fitting technique, since it divides the data set into N  partitions with equal expected
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value and fits each of them into a PH distribution.

The PH fitting for the request sizes allows us to model the Web server as an 

M/PH/1 queue. These type of queueing systems can be analyzed using E ta q a  

(proposed in Chapter 5). In particular, a general M/PH / 1  queue is a QBD process 

and we use E ta q a -Q BD  to solve it. Hence, we evaluate the performance of the 

entire cluster by analyzing the performance of individual servers. In the case of the 

random policy, we adapt the M/PH / 1  queueing model of the entire cluster to each 

server by correcting the arrival rate to reflect only 1 /N  of the overall cluster arrival 

rate. Performance of each server under E q u iL o a d  is analyzed using the respective 

M/Hr/1 or M/Hvpo/1 queueing model for that particular server.

We first compare E q u iL oad  performance with that of the random policy. We 

based our analysis in the synthetically-generated stream of requested file sizes de­

scribed in Figure 7.5. Recall that one of the curves in Figure 7.5 corresponds to 

the measured stream of requested file sizes during day 57 of the World Cup 1998 

logs. In all experiments of this subsection, we assume that the requests arrive to the 

cluster following a Poisson distribution with rate A and that there are four back-end 

servers. Thus, the arrival rate to each individual server under the random policy is 

A/4. The results presented here are obtained as solutions of queueing models using 

E t a q a -QBD. We note that whenever possible, i.e.. for the case of day 57. the analytic 

performance measures are validated via trace driven simulation and are in excellent 

agreement.
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We compare the expected queue build-up of the Random and E q u iLoad  policies 

as a function of variability in the service process. We concentrate on performance 

figures for medium and high arrival intensity into the system (see Figure 7.12). Con­

trary to the Random policy, the expected queue length with E q u iL o a d  does not 

increase as a function of the variability in the service process. E q u iL o a d  exhibits a 

remarkable ability to select the size range boundaries for each server so as to keep the 

expected queue build-up to a minimum, thus offers a simple and inexpensive solution 

that is significantly better than the Random policy.

(fc=0.0004) (k=0.0006)

Random —•— 
EquiLoad -■-*•••

■5 60

<u so

3  30

0.8 U  1.4 1.6 1.8 2
Workload V ariab ility^

Random —»— 
EquiLoad

4 -

1.2 1.4 1.6 1.8 2
W orkload Variability#)

0.8

F igure 7.12: Average queue length of Random and EquiLoad policies as a function of 
the variability in the service process for medium arrival rate (A — 0.0004) and high arrival 
rate (A =  0.0006).

To assess the performance of E q u iLo a d  with respect to the variability in the 

service process and system load, we compare it with the SRPT and JSQ load balanc­

ing policies. SRTP assigns each incoming request to the server that is expected to 

finish first the requests already assigned to it. The dispatcher makes this assignment
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decision based on detailed information about the completion time for each request in 

all servers of the cluster. The performance of SRPT under Web-related service pro­

cesses is analyzed in detail in [37], where it is shown that SRPT outperforms typical 

scheduling policies currently in use for Web servers, such as processor sharing. JSQ 

assigns each incoming request to the server with the shortest queue. In this policy, 

the front-end dispatcher must know only the size of the waiting queue for each server 

in the cluster. In a distributed environment, this policy handles the system load 

reasonably well [113, 114].

We compare E q u iLoad  with SRPT and JSQ via trace-driven simulations. Figure 

7.13 illustrates the expected queue length in each server of the cluster as function of 

variability in the service process, for a medium (A =  0.0004) or heavy- (A = 0.0006) 

system load. The expected task slowdown (not shown) closely follows the observed 

behavior for system queue length. SRPT handles well both the variability of the ser­

vice process and the load of the cluster. JSQ performs slightly worse than SRPT but 

it does not require as much information to be available to the front-end dispatcher. 

When the variability in the service process or the system load are not very high, both 

SRPT and JSQ perform slightly better than Eq u iL o ad  (the ‘jagged’' E q u iLoad  

curve is an artifact of the fittings). In more critical cases for the operation of the 

cluster, such as higher variability in the service process or higher system load. Eq u i­

Load  performs better than SRPT and JSQ (note the scale difference of the y-axis 

between Figures 7.13(a) and 7.13(b)).
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Observing that the performance of Eq u iLoad  is comparable to that of SRPT 

and JSQ in non-critical cases, but substantially better in critical ones. Furthermore. 

E q u iL o a d  does not require the front-end dispatcher to have any additional knowl­

edge about the processing and the load of each server in the cluster, while both SRPT 

and JSQ require the front-end dispatcher to know in detail (SRPT even in more detail 

than JSQ) the status of operation for each server in the cluster.

(3l = 0.0006)(31 = 0.0004)

I I J  1.4 1.6 1.8 2 I I J  1.4 1.6 1.8
Workload Variability (b) Workload Variability

Figure 7.13: Average queue length of SRPT. JSQ and EquiLoad policies as a function 
of variability in the service process for medium arrival rate (A =  0.0004) and high arrival 
rate (A =  0.0006).

We conclude that E quiLoad does not perform as well as SRPT or JSQ for lightly 

loaded system, or low variability in the service process, because in these situations 

the servers assigned to "short” jobs are more loaded than those assigned to "long” 

jobs: with low variability in the service process or system load, “long” requests are 

infrequent.
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7.5.2 Locality awareness of EquiLoad

A  fundamental property of E q u iLo ad  is that files within a specific size range are 

sent to the same server. This increases the chances that a given request can be 

satisfied from the local cache, resulting in a service time that is considerably less 

than when the requested file is not currently in the cache but only in the disk. In 

the previous performance analysis, we assumed that files are always fetched from the 

disk, i.e., that the service time of each request is linearly related to the actual file 

size. However, the effect of local caching in load balancing of clustered web servers 

significantly affects performance. LARD is a “locality-aware" scheduling policy that 

takes into consideration the cache contents of the back-end servers [73] and offers 

significant performance advantages versus non locality-aware policies.

Bv its nature, we expect the cache behavior of the back-end servers with E q u i­

L o a d  to be close to optimal, since requests for the same file are assigned to the same 

server. To examine E q u iL o a d 's performance with respect to caching, we adjust our 

simulation implementation and ensure that the service time for each request is com­

puted according to the storage location (cache or disk) from where the requested file 

is fetched. We assume that the service time is two orders of magnitude smaller if the 

file is fetched from cache instead of local disk. We stress that even in this version of 

E q u iL oad  the dispatcher does not require any information about the status of the 

back-end servers.

For comparison, we simulate a LARD-like load balancing policy where the dis­
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patcher knows the cache contents of each server in the cluster and assigns each in­

coming request to the least-loaded server that has already the requested file in its 

local cache, if there is one, otherwise to the least-loaded server. To avoid the possi­

bility of extreme load unbalances, if all servers that have the requested file in their 

local cache are heavily loaded compared to those that don't have it. the dispatcher 

assigns the request to the server with the lightest load (more precisely, this happens 

if the difference between the loads of the least-loaded server among those with the 

request in the cache and the least-loaded server among those without the request in 

the cache exceeds a given threshold T). In our experiments, we use different values 

of the threshold T, to investigate the values yielding the best performance.

The simulations run on a real trace, the day 57 of the World Soccer Cup. Figures 

7.14(a), and Figure 7.14(b), illustrate the average system queue length and the average 

system cache hit ratio respectively, as function of the arrival rate6. We note that 

EquiLoad handles the increasing load in the system very well and has the highest 

and constant cache hit ratio. EquiLoad outperforms the LARD-like policy for all 

threshold values T, and ail system loads. The LARD-like policy, although not as good 

as E quiLoad , also performs well. The higher the values of threshold T, the better 

the performance of the system for high system loads, while for low system loads the 

smaller the threshold values the better the performance. However, the LARD policy

6Notc that the system can sustain higher arrival intensities comparing to the results of previous 
subsections. This is a direct outcome of the fact that the service rates arc much higher (by two 
orders of magnitude) if the file resides in cache.
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does not sustain a high cache-hit ratio as the system load increases.

23
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Figure 7.14: Average queue length and cache hit-ratio of LARD-like and EquiLoad 
policies as a function of the arrival rate.

7.5.3 Behavior of EquiLoad policy in a dynamic environment

We have established the fact that EquiLoad is an effective policy for clustered Web 

servers. It is important to note that the effectiveness of EquiLoad is related to the 

selection of the intervals [sj_|,Si), i.e., the range of request sizes allocated to server

i. Our policy determines these intervals so that the requests routed to each of the iV 

servers contribute a fraction 1 /N  of the mean S  of the distribution size. The policy 

effectiveness is ultimately tied to determining appropriately these intervals. Given 

that there is clear evidence that the workload changes not just from day to day but 

could also change from hour to hour, it becomes increasingly important to be able to 

dynamically adjust the size intervals accepted by each server.

To assess the importance of selecting the appropriate endpoints for each of the 

.s, intervals, we selected six traces from the World Cup 1998 web site, each trace
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Figure 7.15: Optimal boundaries for the various workloads.

representing a distinct day. The means of the distribution of each trace are equal 

to 2,995, 3,989, 5,145, 5,960, 7,027, and 8,126 bytes for days a, 6 , c, d. e. and / ,  

respectively. Figure 7.15 illustrates the values of the sj, s>, and S3 size boundaries of 

a four servers cluster operating under the requests of the six traces.

Figure 7.16 shows the system expected queue length as a function of the arrival 

intensity for days 6 , c. d. and / .  The solid curve in each graph (labeled “optimar) 

corresponds to the queue length curve when the optimal partitioning for the particular 

trace data is used as defined by the E quiLoad algorithm. Figures 7.16(a) and (b) 

show that if the computed intervals correspond to a past portion of the trace that 

is close enough to the current portion then the expected behavior is close to the 

optimal. If instead the computed intervals correspond to a trace portion with very 

different behavior than the current portion (e.g., day f in comparison to days b and
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Figure 7.16: Average queue lengths for various size boundaries for days 6, c. d. and e .

c), then the system reaches saturation much faster. Since dav f has a much higher 

mean than  both days b and c. its intervals are shifted toward the right and favor load 

unbalancing in each host's queue.

Figures 7.16(c) concentrates on the queue build-up when the stream of requested 

file sizes is from day d  and  the policy parameters are com puted using the portion of 

the trace th a t corresponds to days a, c, e, f. the trace th a t results when merging the 

trace portions of days a, b, and c, as well as the trace the th a t results when merging
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the trace portions of days b and c. Under the assumption that day a strictly precedes 

days b, that day b strictly precedes day c, and that day c strictly precedes day d, we 

see that computing the policy parameters from the very immediate past (i.e., only 

days c portion) may be more beneficial than using a more extended past history. The 

same behavior is further confirmed in Figure 7.16(d). Overall, Figure 7.16 highlights 

the need for a dynamic on-line algorithm that intelligently adjust its parameters based 

on the characteristics of the current workload in the cluster.

7.6 AdaptLoad

In Section 7.5. we proposed EquiLoad. a scheduling policy that balances the load in a 

cluster of Web servers by using the size of each incoming request for server assignment. 

EquiLoad advocates dedicating servers to requests of similar sizes. Exact a priori 

knowledge of the request size distribution is an essential requirement for Eq uiLoad 

performance, and its main weakness as well, since such knowledge may not always be 

available. For example, special events may drastically alter the relative popularity of 

the Web server documents or result in new documents being offered. In this section, 

we leverage EquiLoad by providing an on-line mechanism that continuously adapt 

the policy parameters to changes in the incoming request pattern. The load balancing 

policy we propose, called A daptLoad, dynamically re-adjusts its parameters based 

on system monitoring and on-the-fly characterization of the incoming workload.

We evaluate A d a ptLoad via trace-driven simulation using real trace data from
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the 1998 World Cup Soccer Web site. The selected trace data contains significant 

fluctuations in the workload arrival pattern, thus is a good means to evaluate the 

performance of a policy that strives to adapt to changing workload behavior. Our 

simulations indicate that knowledge of a finite portion of the past workload can be 

used as a good indicator of future behavior. Using a geometrically discounted history 

of the workload starting from the immediate past, we tune the values of the N  — 1 

interval boundaries and show that an intelligent adaptation of these boundaries is not 

only feasible but it can also provide excellent performance.

7.6.1 Transient characteristics o f World Cup workload

As A daptLoad adjusts its parameters exclusively according to the distribution of 

the incoming workload, detailed knowledge of the workload statistical characteristics 

is essential to policy effectiveness. Thus, we first present the salient characteristics of 

the workload used in our analysis, the traces of the 1998 World Soccer Cup (described 

in Section 7.3).

Figure 7.17 focuses on the arrival and service characteristics of eight "busy ' days 

with high total traffic intensity for the 1998 World Cup. namely from June 23 1998 to 

June 30, 1998. In all four plots, data is collected at 5-minute intervals. Figure 7.17(a) 

illustrates the arrival rate into the system as a function of time and shows that there 

is a clear periodic pattern on a per-day basis. Six out of the eight days show a 

sharp increase (two spikes) in the arrival intensity during the evening hours, a direct
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outcome of posting the results of distinct soccer games. This effect is observed also 

during the other two days, June 27 and June 28, although not as markedly as with 

the rest of the selected days. Figure 7.17(b) illustrates the total volume of transferred 

data for the same 8 -day period.

To investigate the correlation between the arrival intensity and the size of each 

request, we plot the average request size experienced by the site during the same 

period, and observe that there is negative correlation between the arrival intensity and 

the request size: peaks in Figures 7.17(a) and (b) correspond to dips in Figure 7.17(c). 

suggesting that the most popular files during the busy evening periods have a small 

size. Figure 7.17(d) plots the coefficient of variation of the request size, and further 

confirms that the requests during the high arrival intensity periods are more uniform 

in size than the rest of the day. However, coefficients of variation as high as ten 

indicate the presence of highly variable, i.e., long-tailed, behavior.

This analysis illustrates the difficulty of policy parameterization. The policy pa­

rameters need to swiftly adapt to changes in the request distribution, which can vary' 

dramatically from an hour to the next within the course of a day. Consequently, 

these parameters must be tuned carefully, especially when high arrival intensities are 

expected.

7.6.2 AdaptLoad: the algorithm

E q u iLo a d  is based on the observation  th a t  directing tasks of sim ilar size to  th e
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(a) Arrival intensity: number of requests per 5 minute period
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Figure 7.17: Arrival and service characteristics of a “busy” week of the 1998 World Cup 
trace.

same server reduces the request slowdown in a  Web server. In a cluster of N  web 

servers, E q u iLoad requires partitioning the possible request sizes into N  intervals.
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[s0 =  0 ,si). [st, s2), up to [sat-i.sjv =  oo), so that server i. 1 < i < N , is responsible 

for satisfying the requests with size falling in the ith interval. E q u iL o a d  relies on 

accurate computation of its parameters and, in Subsection 7.5.3, we demonstrated 

that E q u iLo ad  performance degrades if its parameters do not reflect the current 

workload characteristics. In Subsection 7.6.1, we discussed how the workload can 

change its characteristics across not only successive days but also within a single 

day. Therefore, a dynamic adjustment of the s, boundaries is imperative for high 

performance.

One simple solution to the above problem is to use the system history, more pre­

cisely the last K  requests seen by the system, to build the DDH needed to determine 

the boundaries for the allocation of the next K  requests (recall that E q u iL o a d  de­

termines the policy parameters using the DDH of the request sizes). K  must be 

chosen wisely: it should be neither too small (since it must ensure that the computed 

DDH is statistically significant) or too large (since it must allow adapting to workload 

fluctuations). In Section 7.6.3, we provide a refined algorithm and use the requests 

history in a geometrically-discounted fashion as a better prediction technique.

An additional algorithmic modification is necessary to ensure good performance, 

given that the boundaries are computed using an empirical distribution. If a signifi­

cant portion of the requests consists of a few popular files, it may not be possible to 

select N  distinct boundaries and still ensure that each interval [sj_i,s,) corresponds 

to a fraction -h of the load.
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To solve this problem, we introduce "fuzzy” boundaries. Formally, we associate 

a probability pt to every "fuzzy” boundary point si? for i  = 1. • • • , N  — 1, expressing 

the portion of the requests for files of size s, that is to be served by server i. The 

remaining portion 1 — Pi of requests for this file size is served by server i +  1 , or even 

additional servers (for the 1998 World Cup data, sometimes we had to extend a fuzzy 

boundary beyond two servers to accommodate a very popular file).

Figure 7.18 illustrates AdaptLoad which, unlike the algorithm EquiLoad of 

Figure 7.11, uses past requests information to determine (fuzzy) boundary points for 

the future. Also, since A daptLoad is an online algorithm, it must manipulate DDHs 

efficiently (in linear time). Thus, instead of storing a DDH with a vector of size equal 

to the number of files, we use a vector with a constant number F  of bins, so that, for 

1 < f  < F, bin /  accumulates the total number of bytes t/  due to requests for files 

with size between C*~l and Cf , in the (portion of the) trace being considered'. Thus 

a DDH is now expressed simply as { (/,!/)  : 1 < /  < F}. Accordingly, the (possibly 

fuzzy) boundaries are expressed in terms of bin indices, not actual file sizes.

7.6.3 Performance analysis o f AdaptLoad

This subsection presents a detailed performance analysis of A d ap tL oad  via trace- 

driven simulation. We selected traces for two consecutive days, June 26 and 27. as

~C is some real constant greater than one. Using a value close to  one results in a  fine DDH 
representation, but also in a larger value for F . since C F must exceed the size of the largest file that 
may be requested.
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1 . set fuzzy boundaries (si. 1 ), (s2 , 1) .  (sjv-i. 1 ) to •‘reasonable guesses"
2 . initialize:

a. request counter: R  «— 0
b. total requested bytes: B *— 0

c. DDH: V/, 1 < /  < F, t f  *—0
3. while R  <  K

a. get new request, let its size be s, and increment R
b. assign request to a server based on s and («i,pi). («2iP2)< —  (s.v-i,p,v-i)
c. insert request size into the DDH bin /  such that C?~l < s < C*: t f  *— t f  + s
d. increment B  by the new request size: B  «— B  +  s

4. initialize the server index i *— 1 and the accumulated weight .4 <— 0
5. for /  =  1 to F  scanning the DDH bins to update («i,pi), («2 *P2 )> • • • > (s.v-i.p.v-i):

a. increment accumulated weight .4 with the weight of the / th bin: A *— A + tf
b. while A > B /N

I. set boundary s, for server i to the current / :  s, «— /
II. decrement .4 by B/N : A  <— .4 — B /N
III . set fraction pi for server i to be: p, <— 1 — .4 ///
IV . increment server index i: i *— i +  1

6 . go to 2 . and process the next batch of K  requests

F ig u re  7.18: Setting the fiizzy boundaries (» i,p i),(S 2 -P2 )*----- ( .s .v -i.p y -i)  with A d a p t­
Load.

representative (see Figure 7.17). During these two days. 52 and 18 million requests 

were served, respectively. From each trace record we select two values, the request 

arrival time and the size of the requested file (in bytes).

As described in the previous section, A daptLoad balances the load on the back­

end servers using its knowledge of the past request sizes distribution. Specifically, the 

algorithm of Figure 7.18 schedules the tth batch of K  requests according to boundaries 

computed using the (*—l)th batch of K  requests8. As expected, the performance of the

8For the first batch, previous history is not available. In our simulation we simply discard its 
corresponding performance data, so we use the first K  requests just to compute the first DDH. In a 
practical implementation, instead, we would simply guess boundaries to be used for the first batch.
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policy is sensitive to the value of K . For the World Cup 1998 data, we experimented 

with several values for K  and K  =  50,000 appears to be a good choice. Indeed, 

values between 25,000 and 75,000 results in almost indistinguishable performance, 

while values in the hundred of thousands are poor due to the high variability over 

time in the arrival process. In Section 7.6.6, we elaborate on alternative ways to use 

previous requests to predict the future ones.

We compare A daptLoad against the Join Shortest Weighted Queue (JSWQ) 

policy, where the length of each queue in the system is weighted by the size of queued 

requests9. We focus on the following questions:

Can A d a ptLoad respond quickly to transient overload? To answer this question, 

we report performance metrics as a function of time, i.e., we plot the average slowdown 

perceived by the end user during each time interval corresponding to K  requests. 

Since the system operates under transient overload conditions and is clearly not in 

steady state, our experiments focus on examining A d a ptLoad's ability to respond to 

sudden bursts of arrivals and quickly serve as many requests as possible, as efficiently 

as possible.

What is the policy sensitivity to different hardware speeds? To address the common 

belief that replacing the servers with much faster ones solves the problem of transient 

overloads, we run our simulations assuming either “fast” or “slow servers”. This is 

equivalent, in turn, to considering “low” and "high” load, respectively, and allows us

9\Vc also experimented using the Join Shortest Queue (JSQ) policy but we do not report the 
results because they arc consistently inferior to those for JSWQ.
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to  com m ent on A d a p t L o a d 's ability  to quickly flush backed-up queues.

Does the policy achieve equal utilization across servers? Since A d a p t Load  bases 

its  boundaries on knowledge o f the  distribution o f requested file sizes, we exam ine 

th e  per-server u tilization as a  function of tim e and  com m ent on the policy's ab ility  

to  d istribu te  load effectively.

Does A d a p t Load  treat short jobs differently from long jobs? This question refers 

to the policy's fairness. To measure the responsiveness of the system, we report 

the average request slowdown of the classes of requests defined by the request sizes 

intervals.

Does A d a p t Load  scale well with respect to the cluster size? Since A d a p t Lo a d 's 

ability to balance the load is a function of an effective mapping of different file sizes 

to specific servers, we explore the algorithm's scalability by running simulations using 

the same trace data but on an increased number of back-end servers.

Can we improve A d a p t L o a d 's performance with smarter parameterization ? We 

address this issue by elaborating on alternative ways to use previous requests to 

predict the future ones. VVe introduce a new version of the algorithm based on a 

geometrically discounted history of the request sizes and report on its effectiveness.

7.6.4 A d a p t L o a d  v s . JWSQ

For the first set of experiments we considered a cluster consisting of four back-end 

servers. Results are reported for JSWQ and A d a p t Lo a d  with K  = 50,000. Figure
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7.19 shows the average request slowdown in the cluster during the two-day trace 

under “low’’ and "high" load in the system. The average request slowdown closely 

follows the arrival intensities of Figure 7.17(a)-(b). During the “quiet” early morning 

to early afternoon hours, JSWQ does better than A daptLoad, especially under low 

load. This is because the load in the system is so low that there is always an idle 

server for an incoming request. A daptLoad , whose scheduling decisions are instead 

based exclusively on precomputed boundaries, may direct a request to a server that 

is already busy even when an idle server is available. During the periods of transient 

overload, however, we see a very different behavior: A daptLoad greatly outperforms 

JSWQ and it consistently achieves lower average slowdowns (a log-scale is used for 

the vertical axis of the average request slowdown plots). During the most overloaded 

times, A daptLoad is able to return faster to acceptable slowdown levels (see Figure 

5(b)).

Figure 7.20 shows the utilization of each server across time for AdaptLo ad  and 

JSWQ, under high load and for the same two-days period as in Figure 7.19. JSWQ 

achieves a more uniform utilization across the four servers, while the per-server uti­

lization of A daptLoad has more variability, a direct effect of the algorithm's pa­

rameterization. Yet. even though the boundaries used are not optimal, A d a ptLoad 

still achieves significantly better performance during overload periods.

Next, we consider the question of which requests are penalized most under A d a pt ­

Load  and JSWQ. Figure 7.21 illustrates the slowdown for various ranges of requests
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Figure 7,19: Average slowdown for Ad a ptLoad and JSWQ as a function of time, under 
cither low or high load (four servers).

sizes for June 26. at 22:42:22. for the two policies, under either low or high load. The 

bar graph confirms that, with JSWQ, short requests (which account for the major 

portion of the requests) are penalized most because they tend to get blocked in the 

queue behind large ones. This effect is apparent under either load, but is more pro­

nounced under high load, as apparent from Figure 7.21(b). Instead, A d a p t L o a d  

manages to consistently maintain small slowdowns for nearly all classes of requests, 

improving the overall system performance.
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Figure 7.20: Server utilization with A d a p t L o a d  or JSWQ as a function of time, under 
high load (four servers).

7 .6 .5  S ca la b ility  o f  A d a p t Load

To examine A d a p t L o a d 's scalability as a function of the number of back-end servers, 

we double the number of servers from four to eight. We focus on the policy perfor­

mance using the trace data of June 27 alone, a day showing more uniform arrival 

intensity but also more variable service demands when compared with June 26.

Figure 7.22 shows the request slowdown with the A d a p t L o a d  and JSWQ poli­

cies as a function of time, under either low or high load. In either case, JSWQ cannot 

process the requests effectively, resulting in an expected slowdown curve with more 

•‘spikes” than A d a p t L o a d . The system reaches saturation around 6  pm with either
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(a) Low system load (msasurad on Juno 26, at 22:42:22)
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Figure 7.21: Slowdown by class of request sizes under cither low or high load (four servers).

policy, but A daptLoad recovers much faster than JSWQ. JSWQ is marginally bet­

ter than A daptLoad when the overall load is low, but substantially worse imder 

overloads.

Figure 7.23(a) illustrates the request slowdown over the spectrum of request sizes 

with eight servers, for June 27 at 11:43:18, under low load. In this case, JSWQ 

performs slightly better than A da ptLoad , but note that the range of the y-axis is 

very narrow, from 0 to 2.5. This is a direct effect of the fact that the largest requests 

are quite rare, but our conservative estimation of boundaries allocates ‘Too many”
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F igu re  7.22: Average request slowdown of A d a ptLoad and JSWQ policies under cither 
low or high load (eight servers).

resources for the large requests, resulting in a reduction of the resources available to 

satisfy requests smaller than 1 MByte.

Figure 7.23(b) presents the per-class slowdown for June 27 at 20:37:32, under 

high load. Because of the presence of the whole range of requests in the K  requests 

that correspond to the selected measurement point, A daptLoad greatly outperforms 

JSWQ for all request ranges with the exception of the [0.1 -1] MByte range. Even for 

cases where the number of servers per cluster is large but only few popular files in the 

discrete data histogram contribute to the majority of the distribution, these few files 

are served by multiple servers, and A d a ptLoad still maintains high performance.
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(a) Low system load (msasursd on Juno 27,11:43:18)
2 .5 --------- 1-------------1-------------1-------------1------------ 1------

§ I®0
1  1w

0.5

AdaptLoad ■■■ 
JSWQ

0.1-1K 1K-10K 10-100K 0.1-1M overIM

(b) High system load (moasurad on Juno 27,20:37:32)
50 ----------r—--- —-—r-------------- 1-------------1------------- '------
45

AdaptLoad m  
JSWQ

I
0.1-1K 1K-10K 10-100K 0.1-1M overIM

Figure 7.23: Slowdown by class of request sizes under either low or high load (eight 
servers).

7 .6 .6  Im p ro v in g  A d a p tL oad

Recall that A d a p t L o a d 's ability to balance the load is heavily influenced by the 

ability of predicting the distribution of the upcoming requests, based on knowledge 

about the past K  requests. In this section, we propose an alternative approach that 

uses information about the entire past to increase policy responsiveness.

As w ith the basic A d a p tLo a d  algorithm , we partition the  flow of requests into
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batches of K  requests and use a DDH to recompute the boundaries of every batch. 

However, instead of considering only the last batch, we now use information about 

all batches seen so far. Let 0,- be a vector representing the DDH observed in the 

ith batch. Then, the DDH Ui used to allocate a batch is obtained as a geometrically 

discounted weighted sum of all the previously observed batches:

rr _ Z U ai'J° j  _ a - a ) O i  +
‘+l i - * * 1

Where the positive coefficient a, 0 <  a  < 1, controls the rate at which memory of 

the past decreases in importance (the case o  = 0  corresponds to the algorithm previ­

ously presented, where only the last batch i is used to compute Ut+i: the case a = 1 

corresponds to giving the same weight to all batches). Since this version of A d a pt­

Lo ad  takes into consideration the whole history of the workload, K  can be smaller 

comparing to the basic version of the policy, thus allowing for faster adaptations to 

workload changes. For any given trace and value of K. it is possible to find an a 

posteriori value of a  providing nearly optimal performance: obviously, as a trend, the 

larger K, the smaller o. The a  values determine how much of the past should be 

used to predict the future load.

A d a p t L o a d  proves not to be very sensitive to (AT, a) pairs. Table 7.2 reports o 

values that result in the lowest maximum observed queue length, for various K  values 

and under either low or high load. For the computation of K  we used the same two 

days of the trace as in the previous experiments. These values were found using an
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exhaustive search. Our exhaustive search indicated that it is possible to find a range 

of a ’s providing nearly-optimal performance. Experimenting with a fixed K  =  512 

and values within the range [a — 0 .2 , a  +  0 .1] indicated that performance is very close 

to that with optimal a.

K a  for low load a  for high load

32768 0.2986328 0.0750000
8192 0.6998535 0.6228516
1024 0.9835938 0.9374023
512 0.9820313 0.9750000
256 0.9281250 0.9875000

Table 7.2: Optimal a  values as a function of K.  under high or low load.

Finally, we turn to the performance improvements with geometrically discounted 

history. Figures 7.24 illustrates the expected slowdown as a function of time for two 

versions of A d a ptL oad: the basic one that considers only the immediate previous 

history, and one that uses all prior history using the optimal value of a. The selected 

time period are the peak hours of June 26, and we explored both low and high load. 

In both cases, the version of A d a p t Load  with geometrically discounted history 

performs much better.

7.7 Chapter summary

In this chapter, we described how to analyze performance of Web servers using matrix- 

analytic methods. We fitted the service process of a Web server into a PH distribution 

and modeled the Web server as an M /PH/1 queue, which allowed us to use ETAQA
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Figure 7.24: Average request slowdown for A dap tL oad  under cither low or high load 
(eight servers) with (K  =  512, a  =  0.92).

for its performance analysis. Based on the  results th a t we obtained from o u r anal­

ysis, we proposed E q u iLo a d , a  content-aware load balancing policy for clustered 

Web servers, and A d a p t Lo a d , its adaptive version. O u r policies ensures th a t  the  

expected load in each server, m easured in “bvtes to  be transferred". is th e  same. 

Both E q u iLoad  and A d a p t L o a d  achieve the desirable objective o f m aintain ing 

high-degree of homogeneity in  the  requests allocated to  each distinct server, hence 

operating as locality-aware policies. O ur analysis showed th a t our poUcies susta in  

well the  high load and the high variability in the cluster. A d a p t Load  perform s well 

even under swift fluctuations o f th e  workload characteristics.
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Chapter 8

Conclusions and future work

In this dissertation, we presented a set of modeling techniques for performance anal­

ysis of complex computer systems. In the following, we summarize the contributions 

of this dissertation.

• We proposed the D&C EM and D&C MM [79, 80. 23] parameterization tech­

niques that approximate highly-variable data sets with PH distributions. First, 

we partition the data sets into subsets based on either their first moment (i.e.. 

expected value) or their second moment (i.e.. coefficient of variation), then we fit 

each subset into PH distributions using either the EM algorithm or the method 

of moments. The divide-and-conquer approach that we apply in both D&C 

EM and D&C MM increases their fitting accuracy and their computational 

efficiency. We evaluated the accuracy of D&C EM and D&C MM from the 

statistics and the queueing systems perspective.

• We captured long-range dependence in data sets using Hidden Markov models

and PH distributions in a hierarchical fashion [8 6 ]. We evaluated the accuracy

26-1
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of this fitting method from the queueing system perspective.

•  We prepared a survey on matrix-analytic techniques for solution of M/G/l-type, 

G I/M /1-type, and QBD processes [83]. We derived the matrix-analytic solution 

methods from first principles using stochastic complementation and illustrated 

the main concepts via simple examples.

•  We developed E t a q a . a new aggregate matrix-analytic technique, that provides 

exact solutions for QBD, M /G/l-type. and GI/M /l-typee processes [21,22.81]. 

E t a q a  computes an exact aggregate steady state probability distribution and a 

set of exact measures of interest. Detailed complexity analysis and experimental 

results demonstrate the computational efficiency and the numerical stability of 

the method.

•  We developed and made available to the community a software tool. MAM- 

Solver1, which provides implementations of classic and recent matrix-analytic 

methods, including the E t a q a  methodology, for the solution of QBD, G I/M /1- 

type, and M /G /1-tvpe processes [82].

•  We developed a new technique for the exact solution of a restricted class of 

G I/G /l-type Markov processes [85]. Such processes exhibit both M /G/l-type 

and GI/M /l-type patterns and cannot be solved exactly with existing tech­

niques. The proposed methodology uses decomposition to separate the M /G /1-

1 Details available at http://iiw v.cs.H m .edu/M A N Solver/
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type and GI/M/1-type patterns, solves them independently, and aggregates the 

results to generate the final solution, i.e., the stationary probability vector.

•  We demonstrated the applicability of our modeling techniques by evaluating the 

performance of load balancing policies in clustered Web servers. We proposed 

a size-based policy that assigns the incoming requests to the cluster based on 

their sizes [84].

•  We proposed E quiL oad, a load balancing policy in clustered Web servers [23]. 

E qu iL oad  assigns each server of the cluster to serve a different pre-determined 

range of request sizes. Numerous experiments demonstrate that EquiLoad 

outperforms traditional load balancing policies and improves user perceived 

performance.

• We improved E qu iL oad  to adapt to the transient load conditions commonly 

experienced by clustered Web servers and proposed A d a p tL o a d  [87]. A d a p t­

L o ad  maintains good performance under conditions of transient overloads.

8.1 Future directions

Future plans consists of extensions of the work presented in this dissertation, as well 

as exploration of new problems raised while developing our new modeUng techniques 

and load balancing policies. In the following, we outline future research plans:
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•  D&C EM and D& C MM, proposed in Chapter 4. fit data sets into PH distri­

butions in a divide and conquer fashion. The major differences between these 

two techniques are

— the fitting algorithms used, i.e., D&C EM uses the EM algorithm and 

D&C MM uses the moment matching techniques

-  the criteria for partitioning the data set, i.e., D&C EM partitions the data 

in equally variable subsets and D&C MM partitions the data  in subsets 

with equal expected value.

We plan to work on a rigorous comparison between these two techniques and 

identify which are the benefits of using the available partitioning criteria and 

specific fitting algorithms. Based on such analysis, we intend to propose fitting 

techniques that are fast and accurate on capturing complex data characteristics.

•  In addition to providing fitting techniques for data sets with complete and non- 

complete monotone CDHs, we will investigate the possibility of fitting multi­

modal workloads into PH distributions. Evidence shows that such multi-modal 

workloads exist in communication systems.

•  The Etaqa methodology, proposed in Chapter 5, presents an aggregation-based 

matrix-analytic technique for the solution of Markov processes with repetitive 

structure. We demonstrated via initial experimenting that E ta q a  is numer­

ically stable. We plan to further work in this direction and design numerical
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experiments that aim to the systematic evaluation of the numerical stability of 

matrix-analytic methods.

•  Currently E ta q a  provides solution for infinite Markov chains with repetitive 

structure. We plan to extend E ta q a  for the solution of M /G /l/K -tvpe pro­

cesses, i.e.. finite Markov chains with repetitive structure. With this extension, 

we aim to use E ta q a  for the analysis of queueing systems with finite buffers, 

commonly encountered in computer systems.

• We will investigate the possibility of using the same aggregation technique as 

in Etaqa for the exact and/or approximate solution of queueing models with 

multiple job classes and/or multiple servers in the service center.

• We will modify A d ap tL o ad  to also consider dynamic requests in the clustered 

Web server. VVe will evaluate different ways to assign requests of unknown sizes 

to servers of the cluster while maintaining high system performance.

• We plan to extend A d ap tL o ad  to accommodate requests for different classes 

of service. Our objective is to evaluate if it is more beneficial to partition the 

servers of the cluster in dedicated subclusters for specific classes of requests, or 

differentiate service within a single server by allowing high priority requests to 

use more resources within the server than low priority requests.

• Currently the A daptLoad algorithm is centralized, i.e., we collect all the in­

formation about the requests in the cluster in one single device (i.e.. either
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dispatcher or a Web server). This device determines the A d ap tL o ad 's  pa­

rameters and distributes them to the servers of the cluster. We will propose 

a variation of A d ap tL o ad  that allows distributed computation of its param­

eters, i.e., each server will exchange information only with its pre-determined 

neighbors and adapt its own size boundaries based on the workload seen by the 

server itself and its neighbors.
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Feldman-Whitt Fitting Algorithm

The Feldmann-Whitt algorithm [30| attempts to fit various regions of the distribution 

with exponential phases in a recursive manner. At each step, the fitted exponential 

component is subtracted from the distribution, such that each component focuses on 

a specific portion of the random variable values, increasingly closer to 0. If there 

are enough exponential components, the algorithm manages to closely approximate 

a heavy-tail distribution in the area of primary interest. The algorithm takes a 

heavy-tail distribution with cumulative distribution (cdf) F(x) and complementary 

cumulative distribution (ccdf) Fc(x) over a sufficiently large range [cfc.ci] and fits it 

to a hyperexponential distribution Hk- The steps of the fitting algorithm are:

s tep  1: Choose a number k of exponential components and k arguments so as to 

match the distribution quantiles, 0 < c* < c/t-i < ... < ct. The ratios e ,/c ,+ i 

are assumed to be sufficiently large, such that 1 < b < c i/c l+l for all i.
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s te p  2: Hi and px should match the ccdf F c(x) at the arguments cx and 6ct , therefore

px =  Fc(cx) e ~ ^ .

In this procedure it is assumed that Pi is sufficiently larger than pi for all i >  2, 

that the final approximation satisfies

w pxe > c\.
« = i

s te p  3: For 2 <  i <  k, the following are defined:

j = i

i —I

Fr{b*) = FUibci) -
j =  i

where Ftc(x) =  Fc(x). As in step 2. p, and p, for 2 <  i <  A; — 1 are defined as

( o  -  l )C i

Pi =  F/r(ci)e~',,c'. 

s te p  4: The last parameter pair (pk,p*) is computed using:

At-  1

P k =  1 - J ^ P j .
J = l
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/ifc =  — In (pk/F£{ck)).
Ck

The Feldmann-Whitt algorithm is suitable for distributions, whose PDF is com­

plete monotone decreasing, but, generally, it works for any other distribution. This 

algorithm is proposed for fitting one continuous distribution into another.
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(B )M A P /P H /1 queues

A M A P/PH /1 represents a single server queue that has MAP arrival process and 

PH service process. The MAP/PH/1 queue is a quasi birth-death process whose 

matrices can be computed using the matrix parameters tha t define the MAP and the 

PH processes of the MAP/PH/1 queue. Let the MAP describtors to be (D0,D i) 

of order mA and the PH service time parameters to be ( t .T )  of order mg. The 

infinitesimal generator matrix Q m a p / p h / i  f°r the corresponding MAP/PH/1 queue 

has a structure given by

Q m a p / p h / i =

L F  0 0 0
B L F 0 0
0  B L F 0
0  0  B L F
0 0  0 B L

(B.l)

where each of its matrices is defined as follows

It =  Do. It — ImA & T  ■+■ Do <8 Imc •
B  =  Im<l® T°, B  =  ImA T °t.
F  =  D i® r .  F  =  D i«5 lmB.

(B.2)
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where I*., is the order k identity matrix, T° =  —T  • e. and ® denotes the Kroneker 

product.

A BM AP/PH/1 represent a single server queue that has BMAP arrival process 

and PH service process. The BM AP/PH/1 queue results in a M /G /l-type process. 

Let the BMAP parameteres be D,- for i >  0 and PH parameters be ( r ,  T) of order 

m .4  and m e, respectively. The infinitesimal generator matrix Q b m a p / p h / i  for the 

corresponding BMAP/PH/1 queue is given by

Q b A /.4 P /P ///1  =

L p(i) p(2) p(-'h p(-»
B L p(2) p(a)
0 B L p(U p(2)
0 0 B L p(i)
0 0 0 B L

(B.3)

where each of its matrices is defined as follows

L  =  D 0.
B =  Im„.g>T°, 
F (i) =  D i ® r .

L  =  I mA ® T  +  D 0 ® I mBr 
B =  Im.4 ® T °r,
F (i) =  Di <8>Im0, i > l .

(B.4)

where I* is the order k identity matrix, T° =  —T  • e, and ® denotes the Kroneker 

product.
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Newton-Raphson Fitting 

Technique

This methodology' can be used to describe one distribution with exponential phases 

by matching the moments of the distribution functions [98]. The Newton-Raphson 

technique is based on an iterative algorithm. The initial guessed solution is used to 

generate the series of intermediate solutions which eventually converge to the exact 

one.

Fitting data into a distribution means that the PDF, CDD. and the moments 

of the distribution should closely approximate the empirical distribution, the cumu­

lative empirical distribution, and any of the moments of the data set. respectively. 

Analoguously a distribution can be fitted into another distribution. The resulting 

distribution, commonly called the estimated distribution is determined once its pa­

rameters are known. If we fit a data set into an hyperexponential distribution, //*• we 

need to  estimate 2k — 1 parameters. The technique of matching the moments solves
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2k — 1 different equations in order to compute these parameters. It is assumed that 

from the data, or the original distribution we can compute at least the first 2k — I 

moments, which we denote by A/; i =  1,..., 2k — 1 =  r.

If the goal is to  match r  moments then the following r  functions are computed in 

each step of the algorithm:

where X is the column vector (x[.x2, ...xr)T of the r parameters that need to be 

computed and mj(X) is the itil moment of the phase-type distribution. The conditions 

of exact match of the first r  moments are

Let X* =  (x'pXj, —xj.)r  be the vector of parameters on the i'th stage of approx­

imation, and $  the column vector $  =  (0 i,0 2. -■■<t>‘r)T- The correction vector for 

parameter AX* =  {A x \,A x ‘2, ...Ax|.)r  is computed from the matrix equation

01 =  0,(X) =  m ,( X ) - A / ,
02 =  02(X) =  m2(X ) — A/2 (C.l)

0p = 0r(X) =  mr(X) — Mr

0 1  — 0 2  =  ••• =  0 r  =  0 . (C.2)

♦ ( X 4) +  ♦ '( X O A X 4 =  0 . (C.3)

where ^ ( X 1) is the Jacobian matrix of $  at X*

(C.4)
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Eq.(C.3) is solved using Gaussian elimination [107]. The unproved parameter values 

are obtained by X  =  X ‘+ A X ‘. # (X ‘) is calculated directly from the first r  moments 

of the phase-type distribution when X  =  X*. The above steps are repeated until the 

a solution is obtained within a certain accuracy.
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Appendix D

Examples of MAMSolver input

In this Appendix we present MAMSOLVER input examples for simple Markov chains 

of QBD, G I/M /1, and M /G /l type, to illustrate how to use our matrix-analytic 

methods tool. In the following we characterize each of the queueing systems, whose 

MAMSOLVER inputs we present here.

1. M/M/1 queue, embeded in a CTMC, with arrival rate 2.0 and service rate 3.0 

(Table D.l).

2. M/Coxo/l queue, embeded in a CTMC, with arrival rate 2.0 and 2-phase Coxian 

service process (Table D.2). The parameters ( r ,T )  of the Coxian distribution, 

defined in Table 2.1, in this particular example are:

3. M/BMAPi/1 queue, embeded in a CTMC of G I/M /l-tvpe. with arrival rate 

2.0 and BMAPi service process (Table D.3). The BMAPi service process in
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r  =  [ 1, 0]
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this example has batch size 3, which means that the BMAPi is defined by 

(Do, D i, D 2 , D3) as follows

D o  =  [-6.0], D i  =  [3.0], D 2  =  [2.0], D s  =  [1.0].

4. B M A Pi/H ra/l queue, embeded in a CTMC of M /G /l-type, with Batch Marko­

vian Arrival process and 3-phase hyperexponential service (Table D.4). The 

BMAPi arrival process in this example has batch size 4, which means that the 

BMAPi is defined by ( D 0 , D ( , D 2 . D 3 , D 4 )  as follows

D o  =  [-3.75], D ,  =[2.0], D j  =  [1.0], D 3  =  [0.50], D 3 = [0.25],

The 3-phase hyperexponential is defined by ( r .  T ) as follows

r  =  [0.75. 0.2, 0.05] T  =
- 10.0 0.0 0.0

0.0 - 12.0 0.0
0.0 0.0 -16.0

The matrices L ,  B ( ‘\  F ( , ) , L ,  B ( , ) . F (<) for 1 < i <  I are determined using the rules 

outlined in Appendix B. We note that the explanations given on the right column of 

each input example table are not part of the actual input file.
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1
1
1

0.000000000001
-2.0
3.0
2.0
3.0 

-5 .0
2.0

size of boundary' portion rn 

size of repetitive portion n  

batch length 1
numerical accuracy of solution 
£
B
F
B
L
F

Table D .l: Input for an M/M/1 queue

1
2
1

0.000000000001
-2 .0
6.0
3.0

size of boundary portion m 
size of repetitive portion n 

batch length I
numerical accuracy of solution
L
B

2.0 0.0 F

6.0 0.0 
3.0 0.0

B

-12.0 4.0 
0.0 -5.0

L

2.0 -0.0 
0.0 -2.0

F

Table D.2: Input for an M/C0 X2 / I  queue
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1 size of boundary portion m
1 size of repetitive portion n
3 batch length /

0.000000000001 numerical accuracy of solution
-2 .0 L

2 .0 F
6 .0 B (l)
3 .0 § (2)
1.0 b (3)

-8 .0 V "
3 .0 B (1)
2 .0 b (2)
1.0 B (:{)

2 .0 F
-8 .0 L
3 .0 B (1)
2 .0 b (2)
1.0 b (3)

Table D.3: Input for an DTMC of GI/M/l-typc
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1 size of boundary portion m

3 size of repetitive portion n

4 batch length /
0.000000000001 numerical accuracy of solution
-3.75 L
10.0 B
12.0
16.0

2.0 0.0 0.0 pU)

1.0 0.0 0.0 P<2)

0.5 0.0 0.0 p(3)

0.25 0.0 0.0 p(^)

7.5 2.0 0.5 B
9.0 2.4 0.6

12.0 3.2 0.8

-13.75 0.0 0.0 L
0.0 -15.75 0.0
0.0 0.0 -19.75

2.0 0.0 0.0 p(D

0.0 2.0 0.0
0.0 0.0 2.0

1.0 0.0 0.0 p(2)

0.0 1.0 0.0
0.0 0.0 1.0

0.5 0.0 0.0 p(3)

0.0 0.5 0.0
0.0 0.0 0.5

0.25 0.0 0.0 p(-»)

0.0 0.25 0.0
0.0 0.0 0.25

Thble D.4: Input for an BMAPi/Hrj/l queue
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