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Abstract

In recent years, tasks for automated software engineering have been

achieved using Large Language Models trained on source code, such

as Seq2Seq, LSTM, GPT, T5, BART and BERT. The inherent textual

nature of source code allows it to be represented as a sequence of

subwords (or tokens), drawing parallels to prior work in NLP. Although

these models have shown promising results according to established

metrics (e.g., BLEU, CODEBLEU), there remains a deeper question

about the extent of syntax knowledge they truly grasp when trained

and fine-tuned for specific tasks.

To address this question, this thesis introduces a taxonomy of syntax

errors, and a labeld set of LLM generated code containing syntax er-

rors. The taxonomy was organized into Simple and Complex errors,

describing the level of structual degredation caused by the syntax er-

rors. We explored these over three different NLP datasets: Mostly

Basic Python Problems (MBPP), the Code/Natural Language Chal-

lenge (CoNaLa), and HumanEval. With CoNaLa and MBPP having

the task ofcode generation from natural langauge, and HumanEval

having the task of code completion.

We ran a total of 4,941 prompts into the Mistral-7b-instruct-v.2 model,

and encountered 130 syntax errors, or a 2.6% error rate. When we

restirct the samples to python code only, the error rate increases to

2.9%. The most common simple error was an extra token, a space,

added to the result. The most common complex error broke the assign

relationship.
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Chapter 1

Introduction

Many different means of automatic program synthesis have been explored to date.

From foundational first order logic based systems, to state of the art natural lan-

guage based models. In recent years, the field of Machine Learning for Software

Engineering has emerged. [1] The emergence of large language models, [2] has re-

sulted in increased research into natural language to source code generation tasks.

These models have been relatively successful according to established metrics such

as BLEU and CodeBLEU. [3], [4] Several models such as CodeBERT [5] , CodeL-

lama [6], PyMT5 [7], and other models have proven effective for transfer learning

across several software engineering tasks. [1], [8] Nonetheless, despite promising

results from those metrics, there remains a deeper question of the extent of code

syntax knowledge these models truly grasp when trained and fine-tuned for soft-

ware engineering tasks. Understanding how these models understand syntax could

help provide another method for causal analysis of neural code models. [9] In this

research, we seek to systematically evaluate the propensity of syntax errors across

those tasks.

In order to answer these questions, in this paper, we introduce a curated

study of different syntax errors encountered by Large Language Models across two

software engineering tasks, natural language to source code, and code completion.

In order to facilitate syntax error understanding, we created a taxonomy of syntax

errors. This taxonomy consisted of two major categories, Simple and Complex

errors, with several subcategories each. Simple errors are defined as misspellings,

or single token mistakes.

1



Complex errors are defined as keyword misuse, multiple consecutive errors, or

breaking a syntactic relationship present in python code syntax. [10]

We tested a total of 4,941 samples over various software tasks and found an

overall error rate of 2.6%, however if we limit the samples to python code only

(4,442) our error rate increases to 2.9%. Our greatest contribution is the creation

of a taxonomy of syntax errors, which serves as a basis for future research.
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Chapter 2

Background and Related Work

We briefly discuss previous research exploring syntactical understanding in large

language models that we seek to build off of with this study. Definitions, Introduce

Topics, Previous work.

2.1 History of Deep Learning

The historical idea of ”machine learning”, or learning a function from some train-

ing data that can map new input data to output values, is at least 200 years old.

[11]. The earliest form of which, the least squares linear regression, was published

by Legendre in 1805 and Gauss in 1809. [12].

A more modern definition is: ”Machine learning (ML) is a branch of artificial

intelligence (AI) and computer science that focuses on the use of data and algo-

rithms to enable AI to imitate the way that humans learn, gradually improving

its accuracy.” [13] According to IBM, a few of the most common machine learning

algorithms are:

• Neural Networks: ”Neural networks simulate the way the human brain

works, with a huge number of linked processing nodes. Neural networks

are good at recognizing patterns and play an important role in applications

including natural language translation, image recognition, speech recogni-

tion, and image creation.”[13]

• Linear Regression: ”This algorithm is used to predict numerical values,

based on a linear relationship between different values. For example, the

3



2.1 History of Deep Learning

technique could be used to predict house prices based on historical data for

the area.”[13]

• Logisitic Regression: ”This supervised learning algorithm makes predictions

for categorical response variables, such as “yes/no” answers to questions. It

can be used for applications such as classifying spam and quality control on

a production line.”[13]

• Clustering: ”Using unsupervised learning, clustering algorithms can iden-

tify patterns in data so that it can be grouped. Computers can help data

scientists by identifying differences between data items that humans have

overlooked.” [13]

• Decision trees: ”Decision trees can be used for both predicting numerical

values (regression) and classifying data into categories. Decision trees use a

branching sequence of linked decisions that can be represented with a tree

diagram. One of the advantages of decision trees is that they are easy to

validate and audit, unlike the black box of the neural network.” [13]

• Random forests: ”In a random forest, the machine learning algorithm pre-

dicts a value or category by combining the results from a number of decision

trees.” [13]

This paper will focus on the subsection of machine learning that is ”deep

learning”. This all began with Frank Rosenblatt’s perceptron. [11], [14]. These

perceptrons can adjust their output based on training data. If the intial output is

incorrect, the weights can be adjusted. These were stacked to form Artifical Neural

Networks. The intial version of these had many issues, including the inability to

learn the XOR boolean function. [11], [15].

This continued until the introduction of the backpropagation algorithm. [11]

By minimizing an error function, often called the loss function, this technique

allowed for the use of gradient descent in order to iteratively update the weights in

a multi-layer neural network. [16] The original perceptron proposed by Rosenblatt,

used a step function such that it outputs a fixed value, either a 0 or a 1. [14].

This function can be represented as:

4



2.1 History of Deep Learning

y =

0 if x < 0

1 if x ≥ 0

However, backpropagation requires that the output of the neural net be differ-

entiable. The use of activation functions, such as the sigmoid, or a more modern

function the ReLU [17], allow for the differentiation of the perceptron output. [16]

The following section is based largely on the online book written by Michael

Nielsen. While the equations are simplified for this paper, he goes much more in

depth on the specifics of the algorithm.

Let’s consider a neural network with layers indexed by l. Each layer has weights

W(l) and biases b(l). The output of each layer before activation is denoted as z(l),

and after applying the activation function σ, it is a(l) = σ(z(l)).

The process of backpropagation involves computing the gradients of a loss

(sometimes called the cost) function L with respect to the weights and biases. In

classification tasks, it is typically cross-entropy, and in regression it is typically

squared error. These gradients are used to update the parameters during training.

∇L = (
∂L

∂w1

,
∂L

∂w2

, · · · , ∂L
∂wl

)

The error at the layer (L) is given by:

δ(L) = ∇aL⊙ σ′(z(L))

where ⊙ denotes the element-wise product, and ∇aL is the gradient of the loss

function with respect to the activations of the output layer. This means that δ(L)

is a vector of length n, where n is the number of nodes at any given layer (L).

For any layer l, the error δ(l) is propagated backwards from layer l + 1:

δ(l) =
(
(W(l+1))⊤δ(l+1)

)
⊙ σ′(z(l))

This means that the previous layer’s error can be computed with the current

layer, hence backpropagation.

The gradient of the loss function with respect to the weights and biases are

5



2.2 Large Language Models

computed as follows:

∂L

∂W(l)
= δ(l)(a(l−1))⊤

∂L

∂b(l)
= δ(l)

Using these gradients, the parameters are updated using gradient descent:

W(l) = W(l) − λ
∂L

∂W(l)
, b(l) = b(l) − λ

∂L

∂b(l)

where λ is the learning rate. [16], [18], [19].

Hoowever, intial usage of this algorithm of early multi-layer neural networks

had several flaws. The larger the model, the less effective backpropagation is for

learning. This is because the gradient of the loss function is split between neurons.

This split causes the problem of a vanishing gradient. [20]

This basic architecture was expanded to fufill several use cases, such as image

classification, sequence predicition, clustering, and pattern recognition. [21]–[23].

The most important usage of neural networks relating to this work is sequence

modeling. The first recurrent neural networks were introduced in 1982 by John

Hopfield. [24]. A significant improvement came with the introduction of the

LSTM, which was designed to avoid the vanishing gradient problem. [22].

These models were foundational in the later development of Large Language

models.

2.2 Large Language Models

While the idea of natural language processing can be tracked as far back as Alan

Turing and his Turing Test. [25] The first major ”language model” was the release

of the n-gram model, which modeled language as a Markov process of n-word

long sequences [26]. The aforementioned recurrent models dominated the natural

language domain, with the introduction of the GRU used for statistical translation

[27], and the Seq2Seq model. [28]

The release of the ”Attention is all you Need” paper introducing the trans-

former architecture [2] is the foundation of large language models. It marks the

6



2.2 Large Language Models

Figure 2.1 Transformer Architecture as proposed in ”Attention is All You Need”
by Vaswani et al.

shift away from recurrent based models to models solely focused on an attention

mechanism.

2.2.1 Attention

Self-Attention, at a high level, is a method to compute an ouput by considering

interactions between all words in a sentence, regardless of their position. The

impact of each word on the output is determined by the strength of its relevance

(attention) with other words. This allows the model to focus on different sections

of a sentence. [29]

It is described as ”An attention function can be described as mapping a query

and a set of key-value pairs to an output, where the query, keys, values, and output

are all vectors. The output is computed as a weighted sum of the values, where

the weight assigned to each value is computed by a compatibility function of the

query with the corresponding key” in the original paper.

Self-attention is calculated by computing the dot product of the query with

all keys, dividing by
√
dk, then obtaining the ranked weights of the corrisponding

values with a softmax function.

7



2.3 Deep Learning for Software Engineering

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1)

[2]

2.2.2 Multi-head attention

The multi-head attention function is described as:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)W
O (2.2)

where headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.3)

Multi-Head Attention involves running the attention mechanism multiple times

in parallel. Each of these parallel operations is known as a ”head.” For each head,

the input matrices Q (queries), K (keys), and V (values) are linearly transformed

with different, learned linear projections. This creates different sets of queries,

keys, and values for each head. Attention is then computed independently on each

set of queries, keys, and values, allowing the model to capture different aspects

of the information. The outputs of each head are concatenated and once again

linearly transformed to produce the final values, which combines insights from

each head.

2.3 Deep Learning for Software Engineering

Program generation has been a research goal of artificial intelligence as far back

the 1950’s. [30]–[33] This evolved from algorithmically transforming mathemat-

ical equations into machine code in the 1960’s, to rule-based systems such as C

Language Integrated Production System (CLIPS), then to UML diagram to code

programs such as IBM Rational Rose in the 1990’s. [34] With the advancement

of computational resources, a field of Deep Learning for Software Engineering has

emerged (DL4SE). The emergence of large language models and their subsequent

application on code has revolutionized this field. [35], [36]

In recent years, it has become increasingly popular to train large language

8



2.3 Deep Learning for Software Engineering

models on source code. [5]–[7] Which have shown promising results in various

software engineering tasks. [37] LLMs have increasingly been employed to generate

source code, offering significant advancements in programming assistance, code

completion, and even generating entire scripts or software modules. These models

are trained on a diverse range of internet text, including substantial volumes of

programming code across various languages, which enables them to understand

and generate code effectively. Oftentimes, the datasets used to train these models

can range from billions, to even trillions of tokens, pulled from public repositories

such as GitHub.

Various ways of evaluating these models have been explored to various degrees

of success. [1], [3], [9], [38]

9



Chapter 3

Methodology

3.1 Research Questions

To try and understand LLM syntax understanding we propose a series of research

questions:

• RQ1: What types of errors are most common in LLM generated syntax

errors?

• RQ2: Is there a specific software engineering task that causes more errors?

• RQ3: How do prompt changes affect the amount of syntax errors?

• RQ4: Is there any difference in syntax error frequency and type based on

task type?

3.2 Syntax Error Taxonomy Rational

10
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3.2 Syntax Error Taxonomy Rational

In order to study the level of code syntax understanding of large language

models, we need a classification metric for syntax error type and severity.

To this end, we propose a taxonomy of syntax errors. As seen in Figure-3.1

syntax errors are broken down into 5 main categories, Multiple Nonconsecutive

Simple, Simple, Simple and Complex, Complex, and Multiple Complex. Three

of these categories, Multiple Nonconsecutive Simple, Simple and Complex, and

Multiple Complex, are limited to single lines only. This means that a sample can

only be one of these classes, if multiple errors occur in the same line. If multiple

errors occur within the same sample, but occur on different lines, each error would

be labeled Simple or Complex. We design the taxonomy this way to draw a clearer

line between potentially random token addition or removal, and a more severe lack

of syntax understanding.

3.2.1 Simple Errors

We define simple errors as errors pertaining to a single token only, or a keyword

misspelling. A few examples are:

•1 de f g e ome t i r c s e r i e s n th t e rm ( f i r s t term , common ratio , n ) :

2 . . .

3 re turn f i r s t t e rm ∗ ( common ratio ∗∗ (n − 1) )

4

Listing 3.1: Extra Token

•1 merged i t e r a to r = i t e r ( ( ) ) )

2

Listing 3.2: Unclosed Paranthesis/Extra Token

•1
2

3 f o r i in range (1 << n) :

4 s = bin ( i ) [ 2 : ]

5 count [ i ] = i n t (sum ( [ i n t (b) f o r b in l i s t ( z ip ( ∗ [ l i s t (

s ) [ : : − 1 ] , l i s t ( s ) ] ) [ 0 ] ) ) ] )

6

Listing 3.3: Mistmatched Paranthesis

12



3.2 Syntax Error Taxonomy Rational

If two or more simple error occur non-consecutively in a sample, we define it

as the class Multiple Simple Errors. However, If two or more syntax errors occur

in succession, it is then classified as a complex error. Ex:

•1 de f b i nom i a l p r obab i l i t y (n , k , p ) :

2 . . .

3 n choose k = math . comb(n , k )

4 re turn n choose k ∗ pow(p , k ) ∗ pow(1 . 0 − p , n − k )

5

Listing 3.4: Multiple Simple Errors

•1 my l i s t . s o r t ( key=lambda x : i n t ( x . s p l i t ( ’ ( ’ ’ ) [ 0 ] . s p l i t ( ’

’ ) [ −1]) )

2

Listing 3.5: Complex(Multiple Consecutive Simple)

3.2.2 Complex Errors

Complex errors are based upon syntactical relationships present in python code.

[10] We are not tracking all relations or sub-relations from Shen et al. but we

have taken a sample of the relation types listed in that paper to create a basis for

our complex error types. Along with those relationship types, We added Multiple

Consecutive Simple as mentioned above, and Keyword misuse.

The reasoning for including ’Multiple Consecutive Simple’ as a complex error

is to differentiate it from single token errors. Simple errors are based on singular

tokens, so have two consecutive single token errors naturally removes it from this

classification. Therefore, instead of creating another separate category, we elect

to include it within complex errors. The presence of multiple consecutive single

token errors also shows a more severe lack of understanding.

13



3.2 Syntax Error Taxonomy Rational

Relation Example
Assign:
Target → value

target = 10

Call:
func → arg

function(args)

For:
for → body

for target in iter:
body

if:
if → else

if condition:
body1

else:
body2

if (conditional) expression: target = value if bool else value
Dictionary Creation {key: value}
List Creation [value, value, value]
Set Creation (value, value, value)

Dictionary/Set/List Comprehension

[for item in lst]

{for key in dict}

{for item in set}
Generator Expression (value for idx in iter)

Try Block

try:
body1

except Exception:
body2

else:
body3

finally:
body4

With Block
with open(’file.txt’) as f:
content(f)

While:
test → body

while condition:
body

Function Definition
def func(arg1, arg2):
body

Table 3.1: Relation Types Defined in our Taxonomy

14



3.3 Model and Datasets

3.3 Model and Datasets

We chose to use the Mistral-7b-Instruct-v2.0 for our testing. [39]

Figure 3.2 Mistral 7b Eval from [39]

We were limited in the size of model we could run due to hardware require-

ments. Given the performance level comparable to 13B parameter models, it will

provide a good basis model for testing.

We used three datasets to produce code samples.

• Mostly Basic Python Problems (MBPP)

• HumanEval

• Code/Natural Language Challenge (CoNaLa)

3.3.1 Mostly Basic Python Problems

Mostly Basic Python Problems was introduced in 2021 by a team at Google Re-

search. It consists of 974 python problems designed to be solved by beginner level

programmers, covering programming fundamentals, standard library functional-

ity, and several other basic programming paradigms. [1] In our testing, we used

the test set exclusively, which consists of 500 samples. We did not include the test

cases in the prompt, as we are not testing code functional correctness just syntax.

This dataset was used for the task of code generation from natural language. It

represents expert level prompt creation, because of it’s creation by programmers

at Google.

We extended this dataset with a basic test for prompt engineering. We added

the phrase ’Generate code only.’ to either the front or the end of the prompt. For

example, given a prompt in the MBPP dataset:

’Write a python function to find the missing number in a sorted array.’

15



3.4 Evaluation Setup

We add the phrase ’Generate code only.’ to the front:

’Generate code only. Write a python function to find the missing number in a

sorted array.’

Or to the end:

’Write a python function to find the missing number in a sorted array. Generate

code only.’

3.3.2 HumanEval

HumanEval is a dataset released alongside Codex, a GPTmodel trained on GitHub

source code. It contains 164 hand-written samples containing a function signature,

docstring, body, and several unit tests. [40] In our testing, we use the function

signature and docstring only. We do not use HumanEval for its intended evaluation

purpose, but rather as a basis from which to generate code samples from unseen

docstrings. We do not use the provided test cases or reference code in the original

dataset. Instead, we pass the provided function definition and docstring through

our model to act as the code completion task. Although, we cannot verify that

HumanEval was not included in the training set of our model.

3.3.3 Code/Natural Language Challenge

The Code/Natural Language Challenge is a dataset compiled in 2018 crawled from

Stack Overflow. It includes 2,739 train and 500 test samples in it’s curated version.

[41] We use both the train and test datasets in our testing as a basis for generating

code samples. We used both the intent, the original natural language crawled from

stack overflow, and the rewritten intent, a crowd-sourced rewritten version of the

original intent. We only used the test set of the original intent prompt.

3.4 Evaluation Setup

In order to extract syntax errors from Python code we use an Abstract Syntax

Tree. This works because programming languages follow PEGs or a parsing ex-

pression grammar. These are similar to context-free grammars, in that it can

break down a language into a parse tree. The main difference between a CFG and
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3.4 Evaluation Setup

a PEG, is that a PEG has exactly one correct parse tree, or none. This means

that by parsing the code, we can detect syntax errors according to the grammar.

The limitations of normal Python syntax error detection present in most com-

mon IDEs is that it will stop parsing on the first syntax error encountered. In

order to detect all present syntax errors in our generated samples, we created a

simple Abstract Syntax Tree parser using the tree-sitter library. The reason we

chose the py-tree sitter library is because it has the functionality to continue pars-

ing even after encountering a syntax error. It reports whenever there is an error

node in the tree, and the relevant string, line and character numbers, as well as

the number of child nodes the error node has.

For each dataset, and prompt engineered version, we generated a subsequent

response from our model. We then extracted all code from the responses, and

verified the language. This extracted Python code was then passed into our AST

parser, and the errors were reported.

Then we removed all errors that contained obvious console output, in the form

of ’ ’. All other errors in the samples were maintained.

These were then saved as the ’raw errors’. These raw errors were then hand

classifed based on the syntax taxonomy, and any errors that came about from text

not intended to be code were removed. These hand-curated errors were called the

’true errors’.
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Results
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Dataset MBPP MBPP-Front MBPP-End CoNaLa Rewritten Train/Test CoNaLa Intent Test HumanEval
Samples 500 500 500 2777 500 164
Python Samples 495 484 489 2335 475 N/A
Raw Error Samples 16 32 28 59 19 2
True Error Samples 14 29 19 52 12 1
Sum of Errors 18 36 27 68 13 1
Error Rate 3.64% 5.8% 3.8% 2.22% 2.4% 0.61%
Simple 14 25 21 28 8 0
Complex 4 3 6 40 5 1
Most Common Error Class Simple Simple Simple Complex Simple Complex
Most Common Error Type Indentation Error Indentation Error Extra Token, \ Assign Extra Token, \ List Comprehension

Table 4.1: Basic summary of results, showing key data points, such as simple and complex error counts, most common error type, and
error rates per dataset.
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4.1 Cleaning and Validation

4.1 Cleaning and Validation

As mentioned in the methods section, after we generated our samples, they went

through a phase of intial parsing and then cleaning. In order to pass the prompts

into the model properly, an instruction template provided by Mistral was used.

This included instruction tags: <s >and <\s \>as well as [INST] and [ \INST].

[39] The remnants of this template was included in the model output, so it was

removed. Then, any escaped newline or ’\’ characters were replaced with their

unescaped versions. Then all code surrounded by ’ ` ` ` ’ or some variation of this

pattern, was extracted. This is saved in the ’code’ column in the raw data. This

code was then joined into a single string. This is saved in the ’all code’ column.

Then a respective json and csv file were saved as the ’raw errors’.

Then, all these raw errors were classified based on the proposed taxonomy,

and any extraneous samples that were not meant to be executable code (such as

console output, or example usage) were removed. The remaining errors were saved

as the ’true errors’.

Figure 4.1 Prompt and Result length for samples that contained errors in each
dataset.
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4.1 Cleaning and Validation

Figure 4.2 Error class count breakdown over all error samples.
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Figure 4.3 Error type breakdown over all error samples, color designated error class.
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4.2 MBPP

Out of 500 samples generated, 495 were python code. There were a total of 16

raw error samples, after manual verification there were 14 true error samples. The

total amount of errors, counting samples with multiple errors as multiple, was 18

with 12 Simple, 2 Complex, 1 Multiple Nonconsecutive Simple, and 1 Multiple

Complex as shown in Figure 4.4. The most common error class was Simple, and

the most common error type was Indentation Error as shown in Figure 4.5.

Figure 4.4 Error class count breakdown for Mostly Basic Python Problems, show-
ing that simple errors contributed to 75% of all errors.
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4.2 MBPP

Figure 4.5 Error type count breakdown for Mostly Basic Python Problems, show-
ing the most common error was an indentation error. Color designates error class.

4.2.1 Front Prompt Treatment

Out of the 500 samples tested, there were 484 python samples. There were 32 raw

errors, and 29 true error samples. When we account for samples wtih multiple

errors, there was a total of 36 errors overall as shown in Figure 4.7. This means

the prompt caused a 100% and 107% increase in errors respectively.
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4.2 MBPP

Figure 4.6 Error class count breakdown for the front prompt treatment test. This
shows an overall increase in error numbers, but the errors are still overwhelmingly
simple. (69.4%)

Figure 4.7 Error Type Count breakdown for the front prompt treatment test.
This shows that the most common error type was Indentation error, and the most
common complex error was ’Call’.

4.2.2 End Prompt Treatment

Out of the 500 samples tested with this treatment, there were 489 python samples.

There were 28 raw errors, and 19 true errors. This means the prompt cause a 75%
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and 58.3% increase respectively.

Figure 4.8 Error Class Count breakdown for the end prompt treatment. There
are a lower number of errors that occured compared to the front treatment.

Figure 4.9 Error Type Count breakdown for the end prompt treatment. We find
that the most common error is an extra ’ \’ token.
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4.2.2.1 Statistical Significance

We computed a two-sample proportion z-test on the two prompt treatments. Keep

in mind, the sample size we are comparing is the number of python code samples,

rather than the MBPP size. The results of the two-sample proportion z-test

comparing the error rates between the control and treatment groups are presented

below:

Null Hypothesis: p1 = p2

Alternative Hypothesis: p1 ̸= p2

• Control group:

– Sample size: n1 = 495

– Number of errors: x1 = 14

– Error rate: p̂1 =
x1

n1
= 14

500
= 0.028

• Front Prompt:

– Sample size: n2 = 484

– Number of errors: x2 = 29

– Error rate: p̂2 =
x2

n2
= 29

484
= 0.0599

• Two-sample proportion z-test:

– Test statistic: Z = (p̂1−p̂2)√
p̂(1−p̂)( 1

n1
+ 1

n2
)

– P-value: 0.0157

Based on the calculated p-value, we can conclude that the difference in error

rates between the control and treatment groups is significant at the 0.05 level,

indicating a statistically significant difference.

Null Hypothesis: p1 = p3

Alternative Hypothesis: p1 ̸= p3

• End Prompt:

– Sample size: n3 = 489
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4.3 CoNaLa

– Number of errors: x3 = 19

– Error rate: p̂3 =
x3

n3
= 19

489
= 0.0389

• Two-sample proportion z-test:

– Test statistic: Z = (p̂1−p̂3)√
p̂(1−p̂)( 1

n1
+ 1

n3
)

– P-value: 0.357

Based on the calculated p-value, we can conclude that the difference in error

rates between the control and treatment groups is not significant at the 0.05 level,

indicating no statistically significant difference.

4.2.3 Samples of Interest and Removed Samples

This section will discuss samples that were removed and the reason why, as well

as any especially interesting samples.

4.3 CoNaLa

4.3.1 Rewritten

During our testing, we removed duplicate samples from the rewritten intent dataset.

This caused our total sample count to drop to 2777 samples. Of which there were

2300 train samples, and 477 test samples.

4.3.1.1 Train

Of the 40 errors encountered in the 2300 training samples (1.74% error), 18 were

Simple, 18 were Complex, 3 were Multiple Nonconsecutive Simple, and 7 were

Multiple Complex as shown in Figure 4.12.
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4.3 CoNaLa

Figure 4.10 Error Class Count for the CoNaLa rewritten train samples. This is
the only dataset where total complex errors were greater than total simple errors,
including multiple error types.

Figure 4.11 Error Type Count for the CoNaLa rewritten train samples. We
found that the four most common error types were complex, this is unique to this
dataset, and is the only dataset where a complex error was the most common.
Color designates error class.

4.3.1.2 Test

Of the 11 errors in the test set, 8 were Simple and 5 were Complex.
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4.3 CoNaLa

Figure 4.12 Error Class Count breakdown for the CoNaLa rewritten test set.
This follows the typical pattern of the most common error being simple.

Figure 4.13 Error Type Count breakdown for the CoNaLa rewritten test set.
Simple and Complex errors were tied for the most common error types. Color
designates error class.
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4.3.2 Intent

We only tested the test set of the CoNaLa intent prompt. There were 500 original

samples. In our results, we had 475 python samples, which contained 19 raw errors

and 12 true errors. (2.4% Error Rate) There were 8 Simple, 4 Complex, and 1

Multiple Complex as shown in Figure 4.14.

Figure 4.14 Error Class Count breakdown for the CoNaLa intent test set. This
follows the typical pattern of the most common error being simple.
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4.4 HumanEval

Figure 4.15 Error Type Count breakdown for the CoNaLa intent test set. Simple
and Complex errors were tied for the most common error types. Color designates
error class.

4.4 HumanEval

The HumanEval dataset was to cover the task of code completion. All of the code

snippets provided were python code. There were 2 raw errors, and 1 true error.

This was a complex error, breaking the relation type of list comprehension.

This is the code containing the error:

1 de f even odd count (num) :

2 ’ ’ ’ Given an i n t e g e r . r e turn a tup l e that has the number o f even

and odd d i g i t s r e s p e c t i v e l y .

3

4 Example :

5 even odd count (−12) ==> (1 , 1)

6 even odd count (123) ==> (1 , 2)

7 ’ ’ ’

8

9 # Convert the number to a l i s t o f d i g i t s us ing l i s t comprehension

10 d i g i t s = [ abs (num % 10) f o r num in abs (num) // 10 ∗ 10 downTo 1 ]

11

12 # I n i t i a l i z e counter v a r i a b l e s
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4.4 HumanEval

13 even count = 0

14 odd count = 0

15

16 # I t e r a t e through the l i s t o f d i g i t s and increment the r e s p e c t i v e

counter

17 f o r d i g i t in d i g i t s :

18 i f d i g i t % 2 == 0 :

19 even count += 1

20 e l s e :

21 odd count += 1

22

23 # Return a tup l e with the number o f even and odd d i g i t s

24 re turn ( even count , odd count )

25

26 python

27 pr in t ( even odd count (−12) ) # Output : (1 , 1)

28 pr in t ( even odd count (123) ) # Output : (1 , 2)

29

Listing 4.1: HumanEval error

The error occurs at line 10, with the call to downTo. This is not supported in

python, and seems to be closer to other programming languages like Kotlin.
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Chapter 5

Discussion

5.1 Main Findings

We found that most syntax errors generated by an LLM are caused by a single

token (60.53%). Only 25% of errors broke a syntactical relationship. [10] The most

common syntactical relationship broken by an LLM was the assign relationship,

closely followed by list comprehension.

We also found that adding ”Generate code only.” to the front of the prompt

increased the error rate by 107%, a statistically significant difference, while adding

the same string to the end only produced a 58.3% increase which is not significant.

Perhaps this is because adding the treatment to the front of the prompt causes

the model to focus more on the code aspect, rather than solving the problem first.

5.1.1 RQ1: Common Error Types

As seen in 4.2, the most common error class was simple. The most common error

type 4.3, was Indentation Error, followed by an extra space, then multiple consec-

utive simple. The most common complex error was multiple consecutive simple.

The most common relationship violated was assign, followed by list comprehen-

sion.
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5.1.2 RQ2: Difficultly of Software Engineering Tasks

We found that the model struggled the most with natural language to code tasks,

and excelled at code completion. The highest error rate occurred in the MBPP

front prompt treatment, with an error rate of 5.99%. The lowest error rate oc-

curred in the HumanEval dataset, with only 1 error; an error rate of 0.61%.

5.1.3 RQ3: Prompt Changes

We found that adding ”Generate code only.” cause a 100% increase of true errors,

from 14 to 32 on the MBPP dataset, while adding the same string to the end only

caused a 58.3% increase.

5.1.4 RQ4: Task Differences

While there was only one error in the HumanEval test, it was a complex error, list

comprehension specifically. As for the natural language to code task, we saw an

abundance of simple errors, except for in the CoNaLa intent train dataset. This

dataset had an equal amount of complex and simple errors.

5.2 Research Implications

Several previous studies have examined LLM syntax understanding by having the

LLM examine the code. [10], [42] We have expanded on their work by exploring

the way this internal AST understanding affects code generation. We have helped

begin to open the black box of LLM internal code representation.

This exploratory study has shown that LLMs do seem to struggle with syntac-

tical relationships in code generation to an extent. We provide a basis for future

research to build upon in their experiments on code syntax understanding.

We have also shown that the same string, added in different places, can have

a significant difference in quality of prompt generation. This has very significant

prompt engineering potential. We suggest increasing prompt variance, and at-

tempting to identify exactly why adding the string to the front increases errors

significantly.
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5.3 Study Limitations

There are several limitations on our experiments. While there are papers that

include references to syntax error classification [43], [44], we were unable to find

any previous literature exploring the classification of syntax errors to study LLM

understanding. Therefore, the syntax error taxonomy is very experimental, and

may have flaws. It was iterativelly updated as we conducted experiments, as many

taxonomies are, which also could have introduced inconsistencies or contradictions.

There are two main extensions that can be made to this study. Expansion of

the number and size of models tested. This is important because at the moment

we cannot draw a conclusion on if the rate of syntax errors is caused by our model,

or LLM architecture in general. Right now our results can only be applied to the

mistral-7b-instruct model. As well as covering more machine learning for software

engineering tasks. We do not cover code translation, or code correction. There are

several questions that remain. How can models effectively correct syntax errors if

they lack syntax understanding?

Of the software engineering tasks we did cover, the number of samples tested

was extremely imbalanced. We tested 4,777 samples of natural language to code

tasks, but only 164 of code completion. Given this imbalance, we cannot draw ac-

curate conclusions about code completion, it needs to be explored further. We also

only included python code in our study, which has less syntactical relationships

than other languages, [10] due to its dynamically-typed interpreted nature.

We also only used two versions of the prompt engineering, and while they

showed interesting results, the extent to which prompt engineering affects syntax

errors in the generated code has yet to be fully explored.

5.4 Future Research

There are various directions future researcher can take. The limitations of our

study mean that code completion, and other software engineering tasks, have yet to

be explored in this way. We also only used one model due to hardware constraints,

so the difference in model size is another avenue of exploration. Another potential

subject of future work is the exploration of different coding languages. This could
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5.4 Future Research

also be included in the prompt engineering treatments. We propose a research

question such as:

RQ: Does requesting a different programming language change the amount of

syntax errors produced?

Given the lack of a literature background in syntax taxonomies used for this

task, a reworked taxonomy could be used to repeat this study. Perhaps future work

can explore the use of error classification methods used in syntax error correction

and explanation tools. [43], [44]

As mentioned above, causal and empirical analysis of the way prompts affect

syntax errors in generated code is another potential extension of this study.

Overall, every aspect of our study can be expanded on in some way, such as

increased sample sizes, different models, different datasets, more software engi-

neering tasks, and different prompt engineering treatments.
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Chapter 6

Conclusions

In this paper, we conducted an exploratory study on LLM syntax error under-

standing in various software engineering tasks. In particular, we examine LLMs

ability to generate syntax error free python code on 4,941 prompt samples, over

two software engineering tasks. Overall, the results of this study indicated that

LLMs have decent code syntax understanding, but do struggle at times. We found

that the most common errors have to do with white-space, a key part of python

syntax. We believe our study provides a basis for future research into LLM un-

derstanding of various software engineering tasks.
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