Comparative Study of Seed from Northern and Southern Hatcheries

Joshua Merritt
Paige G. Ross
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports
Part of the Aquaculture and Fisheries Commons

Recommended Citation

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Comparative Study of Seed from Northern and Southern Hatcheries
Fisheries Resource Grant #FRG-99-37
(Joshua Merritt)

Results Summary

Prepared by P.G. Ross, VIMS-Eastern Shore Lab

Nursery Phase

Seed from Northern and Southern (hereafter called local) hatcheries was procured in May 2000. Oysters delivered by the Northern hatchery were on time and of the desired size (~3 mm). Seed from the local hatchery, however, arrived several days later and were too small to go into field nursery containers and were subsequently held in upwellers and then transferred to the field nursery gear. Figure 1 shows growth as measured by mean shell height (mm) for both strains. Note that the local seed took ~20 days longer to reach grow-out size (indicated by first sieve).

Using standard aquaculture protocols, seed of each stock was sieved 3 times over the course of the summer and early fall of 2000, resulting in grades referred to as large, medium, small and runt (Figure 2). Oysters were stocked into the grow-out gear from these grades with the exception of runts, as there were too few oysters of this grade from both strains to complete the experimental design. Because seed from the 2 hatcheries progressed at different rates, it is important to note that the comparison in Figure 2 is not so much an effect of growth of different stocks as it is an effect of the timing of sieving. For example, due to logistics, holding off on sieving one stock for 3-4 days can result in a higher proportion of oysters in a given grade.

Grow-out Phase

Stocking - Oysters were stocked to grow-out using a standard industry volumetric approach consisting of counting the number of oysters in a known small volume and then using larger measured volumes to stock gear. Although not a part of this study, a by-product of the project is an informal evaluation of this technique. Target stocking densities were 400 oysters per bag. Densities achieved ranged from 333-534 oysters/bag and averaged 433 oysters/bag (Table 1).

This indicates a slight overstocking with a fairly wide range. However, although it is probably quite variable between individuals, given its speed, it is likely an appropriate commercial field technique.

Harvest - The amount of oysters harvested by the end of this study (November 16, 2001) from the various experimental categories ranged from 0.0-95.2% (Table 1). None of the oysters stocked in bags and placed directly on the bottom were harvested due to extremely high mortality and poor growth. Due to the nature of the data, harvest percentages cannot be compared statistically, however, practical differences and trends were evident. Generally, more large grade oysters were harvested than other grades for both strains in most grow-out techniques. Additionally, a higher percentage of the Northern stock was harvested than the local stock (~32% and ~21% overall, respectively). Harvest estimates are a function of both growth rates and mortality and will be addressed next.
Mortality – Mortality estimates used for this study are from 6/8/01, the last sample period before harvesting began at large. Because different strains and grades of oysters had been in the grow-out phase for varying amounts of time, percentage mortality was standardized and calculated as % mortality/year. Mortality was variable and ranged from 2.2-75.1% (Table 2). Mortality was generally less for the Northern strain versus the local strain and, for both strains grown out in floats and off-bottom trays, is comparable to those seen anecdotally in other studies and experiences. However, bags placed directly on the bottom had substantially high mortality and all oysters were dead (mainly from sedimentation) by the end of the study.

Growth – Once again, growth estimates used for this study are from 6/8/01, the last sample period before harvesting began at large. Once significant numbers of oysters were removed from a given gear, the mean size was reduced. Oysters were not unilaterally harvested from different treatments, therefore, there is no way to standardize and compare mean growth data after 6/8/01. However, size frequency distributions from 11/16/01 that include oysters harvested, combined with fore mentioned harvest estimates complete growth comparisons for the study.

Generally, the Northern stock out grew the local stock in most techniques (Figures 3-5). Additionally, with the exception of the local mediums, oysters grown on the bottom grew significantly less than those grown in floats and off-bottom trays. As would be expected, comparative growth of various grades showed that the larges (“first sieve”) were the “fast growers” and outperformed the other grades (Figures 3-5).

To further elucidate the comparison of stocks and the relationship between growth, mortality and harvest, Figures 6 and 7 depict the size frequency distribution of large grade oysters grown in floats from their initial stocking through June 2001. For purposes of this study, oysters > 75 mm were considered “markets”. The Northern stock (Figure 6) entered grow-out larger than the local stock (Figure 7) and achieved much larger sizes by fall 2000 that translated into a much larger proportion of market sized oysters by June 2001. The non-normal distribution seen with the local stock by 6/8/01 is likely a result of higher mortality (19.5%) that may have been size specific relative to the Northern stock mortality (7.2%).

SUMMARY

Based on the above results, the following general trends were observed regarding stock and grade comparisons:

Nursery Growth
- Northern > Local

% Harvested
- Northern > Local
- Large > Medium > Small

% Mortality
- Local > Northern
- Large > Medium > Small (Float and Tray techniques only)

Grow-out Growth
- Northern > Local
- Large > Medium > Small
Figure 1. Oyster Stock Comparison
Nursery Phase - Prior to First Sieve

Mean Shell Height, mm

Date

- Northern - Local

* These are results from the end of the nursery phase and mark the "beginning" of this grow-out project and reflect more the timing of sieving than performance of stocks. See "Results" section for details.
Table 1.
Merritt Sea Grant Project
Summary Stocking and Harvest Data

<table>
<thead>
<tr>
<th>Strain*</th>
<th>Gear</th>
<th>Grade</th>
<th>Mean # Oysters/Bag</th>
<th>Initial Total #</th>
<th>Total # Harvested**</th>
<th>Estimated % Harvested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-Bottom</td>
<td></td>
<td>Large</td>
<td>529</td>
<td>3174</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>Tray</td>
<td></td>
<td>Medium</td>
<td>407</td>
<td>2440</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small</td>
<td>333</td>
<td>2000</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td></td>
<td>Large</td>
<td>433</td>
<td>2598</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td>450</td>
<td>2700</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small</td>
<td>404</td>
<td>2424</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>417</td>
<td>2501</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>22508</td>
<td>7020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-Bottom</td>
<td></td>
<td>Large</td>
<td>472</td>
<td>2834</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Tray</td>
<td></td>
<td>Medium</td>
<td>473</td>
<td>2838</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small</td>
<td>432</td>
<td>2594</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td></td>
<td>Large</td>
<td>441</td>
<td>2646</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td>397</td>
<td>2380</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small</td>
<td>499</td>
<td>2994</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>450</td>
<td>2697</td>
<td>556</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>24274</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVERALL</td>
<td></td>
<td></td>
<td>433</td>
<td>2599</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>46782</td>
<td>12020</td>
<td></td>
</tr>
</tbody>
</table>

* Northern Strain from Blue Points Hatchery and Local Strain from Ken Kurkowski Hatchery.
** from Josh's data after July 2001 AND info related to me after June sampling.
Table 2.
Merritt Sea Grant Project
Summary Mortality Data

<table>
<thead>
<tr>
<th>Strain*</th>
<th>Gear</th>
<th>Grade</th>
<th>Date To Grow Out</th>
<th>% Mortality 6/8/2001</th>
<th># Days from Grow-out to June Mort. Measurement</th>
<th>% Mortality/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>Float</td>
<td>Large</td>
<td>07/31/2000</td>
<td>6.2</td>
<td>312</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/12/2000</td>
<td>2.6</td>
<td>269</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>10/11/2000</td>
<td>1.4</td>
<td>240</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Off-Bottom Tray</td>
<td>Large</td>
<td>07/31/2000</td>
<td>6.9</td>
<td>312</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/12/2000</td>
<td>2.4</td>
<td>269</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>10/11/2000</td>
<td>2.7</td>
<td>240</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Large</td>
<td>07/31/2000</td>
<td>20.7</td>
<td>312</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/12/2000</td>
<td>31.6</td>
<td>269</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>10/11/2000</td>
<td>11.5</td>
<td>240</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>9.5</td>
<td>-</td>
<td>12.5</td>
</tr>
<tr>
<td>Local</td>
<td>Float</td>
<td>Large</td>
<td>08/17/2000</td>
<td>15.8</td>
<td>295</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/27/2000</td>
<td>5.5</td>
<td>254</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>11/09/2000</td>
<td>6.0</td>
<td>211</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>Off-Bottom Tray</td>
<td>Large</td>
<td>08/17/2000</td>
<td>9.7</td>
<td>295</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/27/2000</td>
<td>5.5</td>
<td>254</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>11/09/2000</td>
<td>5.3</td>
<td>211</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Large</td>
<td>08/17/2000</td>
<td>14.1</td>
<td>295</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
<td>09/27/2000</td>
<td>30.3</td>
<td>254</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>11/09/2000</td>
<td>43.4</td>
<td>211</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>15.1</td>
<td>-</td>
<td>22.6</td>
</tr>
<tr>
<td>OVERALL</td>
<td>AVERAGE</td>
<td></td>
<td></td>
<td>12.3</td>
<td>-</td>
<td>17.5</td>
</tr>
</tbody>
</table>

* Northern Strain from Blue Points Hatchery and Local Strain from Ken Kurkowski Hatchery.
Figure 3.

Merritt Sea Grant Project
"Large" Grade Oysters

NOTE: Size decrease due to harvest of 800 oysters just prior to 6/8/01

NOTE: Size lower due to harvest of 400 oysters just prior to 6/8/01

Date:
- Local Float
- North Float
- Local Tray
- North Tray
- Local Bottom
- North Bottom
Figure 4.

Merritt Sea Grant Project
"Medium" Grade Oysters

NOTE: Size decrease of oysters directly on the bottom attributed to high mortality.
Figure 5.

Merritt Sea Grant Project
"Small" Grade Oysters

Mean Shell Ht., mm (+/- SE)

Date
7/15/00 9/3/00 10/23/00 12/12/00 1/31/01 3/22/01 5/11/01 6/30/01

Local Float
North Float
Local Tray
North Tray
Local Bottom
North Bottom
Figure 6. Merritt Sea Grant Project
Size Frequency Distribution
Northern “Larges” in Floats

Size Interval (mm)
Figure 7. Merritt Sea Grant Project
Size Frequency Distribution
Local "Larges" in Floats

% Oysters

Size Interval (mm)
Quarterly Progress Report
Fishery Resource Grants Program

Project Title:
Project Investigator:
Period Covered by this Report:

Summary of Progress / Work Accomplishments For this Quarter:
If necessary complete or continue the report on an additional sheet of paper and send by the end of the month which follows the end of the calendar quarter.

1. Describe Work scheduled for this quarter from proposal:
 - Making of new equipment
 - Maintenance on old equipment
 - Changing of bass
 - Cleaning of all equipment

2. Describe Work accomplished this quarter:
 - All work is completed on time
 - Measurements & counting of oysters
 - All equipment is finished
3. Explain any special problems or differences between work scheduled and actually accomplished:

MAJOR SPONGE STRIKE THIS SUMMER, CHANGING OF BASS ON A WEEKLY SCHEDULE. THINGS I LOST AN NUMBER OF OYSTERS TO SPONGE STRIKE THIS YEAR, BUT THE GOOD THINGS WAS I LEARNED HOW TO DEAL WITH THE PROBLEM. BOTTOM CASES ARE A GREAT IDEA.

[Signature]
Principal Investigator

[Date] 12-29-01

Please send completed Progress Report to:

Thomas J. Murray
Marine Business Specialist
Virginia Institute of Marine Science
P.O. Box 1346
Gloucester Point, Virginia 23062
Telephone: 804-684-7190
Fax: 804-684-7161