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HIGHLIGHTS:  42 

 43 

• Enhanced TMM advances the understanding of sea-level rise impacts on tidal marshes  44 
• TMM accounts for geomorphology, sediment supply, vegetation, and human factors 45 
• TMM elucidates the effects of coastal settings on the evolution of tidal marshes 46 
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Abstract 63 

 There is an increasing concern over how accelerated rates of sea-level rise (SLR) will 64 

impact tidal marsh ecosystems. The present study evaluates the potential impacts of SLR on 65 

marsh sustainability using the Tidal Marsh Model (TMM) with the addition of a new vegetation 66 

algorithm within the SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System 67 

Model) framework. This new functionality contributes to an improved understanding of how 68 

vegetation affects the mean flow velocity and turbulence, and consequently, the sedimentation 69 

processes. Using two SLR scenarios (intermediate and extreme SLR rates), we projected the 70 

changes in marsh extent over the next 50 years in two representative marsh systems within a 71 

subestuary of Chesapeake Bay. Each study site has marshes associated with different physical 72 

settings and anthropogenic components: Carter Creek (developed, high topography) vs. Taskinas 73 

Creek (natural, low topography, steep banks). Carter Creek experienced a net marsh loss of 7.3% 74 

and 60% in the intermediate and extreme SLR scenario, respectively. In some places, due to the 75 

local geomorphic settings, marshes were able to migrate inland and offset part of the total loss, 76 

whereas marsh transgression was truncated near development and hardened shoreline structures. 77 

In Taskinas Creek, marshes are associated with natural lands with steep upland slopes (inhibitor 78 

for marsh transgression due to SLR). Marsh net decline was 23.1% (intermediate SLR scenario), 79 

and 89.6% (extreme SLR scenario). Marsh transgression was not substantial in this site, 80 

suggesting that marsh loss can be primarily attributed to upland bank conditions which prevented 81 

marsh migration with accelerated SLR rates. The enhanced TMM provides the highly-resolved 82 

simulations of multi-scale processes needed to inform restoration, strategic planning, and 83 

monitoring activities to support marsh sustainability in an evolving system. 84 

 85 

Keywords: marshes, tidal marsh model, sea-level rise, cross-scale simulation, SCHISM 86 



4 
 

1.  Introduction 87 
 88 

Tidal marshes are among the most valuable ecosystems in terms of productivity and 89 

species diversity. They provide many ecosystem services including shoreline stabilization, water 90 

quality improvements, habitat for many organisms, and long-term carbon storage (Allen 91 

2000; Fagherazzi et al. 2004; Zedler and Kercher 2005; Barbier et al. 2011). Tidal marshes occur 92 

in a broad range of geomorphic settings with different hydrodynamics, sediment sources, and 93 

vegetative communities (Titus et al. 2009). Their establishment and persistence are influenced by 94 

environmental factors (e.g., temperature, salinity), different landscapes, coastal processes, as 95 

well as anthropogenic activities (e.g., nearshore development, shoreline armoring) (Zhu et al. 96 

2014; Fagherazzi et al. 2019). Geomorphological processes are responsible for shaping the 97 

physical structure of marshes, thus influencing movement of water, sediments, and nutrients 98 

(Leonardi and Fagherazzi 2014). These physical processes provide the framework where marsh 99 

ecological processes take place.  100 

Marsh habitats have the capacity to dynamically change in response to environmental 101 

conditions. Climate change drivers will have different effects on tidal marshes. Changes in tidal 102 

regimes, storm patterns, sea-level rise (SLR), as well as human activities that respond to climate 103 

change will affect marsh ecosystems and influence their future extent and distribution (Raposa et 104 

al. 2017; Horton et al. 2018). There is a universal consensus that global sea levels will rise at an 105 

increased rate from those in the recent past (Cazenave and Nerem 2004; Rahmstorf 2007; Boon 106 

and Mitchell 2015). Rising seas will increase the vulnerability of coastal communities and 107 

ecosystems, and as a result, the supporting services they provide (Parris et al. 2012; Hall et al. 108 

2016).  109 
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It is well established that marsh elevation changes in response to SLR (Cahoon and 110 

Guntenspergen 2010; Kolker et al. 2010). These habitats have the capacity to adapt to 111 

inundations associated with rising sea level by two mechanisms: vertical accretion and horizontal 112 

migration (Morris et al. 2002; Kirwan and Murphy 2007; Raposa et al. 2017; Horton et al. 2018). 113 

A tidal marsh will be able to persist in the same location if it builds vertically at a rate equal or 114 

higher than the rise in sea level (Reed 1995). If the sea level rises faster than the marsh elevation 115 

builds vertically, then the marsh will become submerged. 116 

Tidal marshes accrete vertically through the deposition of mineral sediments and organic 117 

matter accumulation (Morris et al 2002; Fagherazzi et al. 2012). Inorganic sediment sources to 118 

the marsh include bank erosion, sediments coming from upland runoff, and tidally delivered 119 

sediments. Mineral sediments are deposited on the marsh surface when the marsh is flooded. The 120 

inorganic suspended sediment transport and deposition on marshes will be determined by rates of 121 

particle settling, tidal range and inundation depth, and vegetation density. These parameters vary 122 

spatially; and for that reason, sediment accretion rates will vary depending on the different 123 

vegetative communities and the geomorphic settings (Titus et al. 2009). 124 

Marshes also have the capacity to respond to SLR conditions by moving horizontally to 125 

higher elevations, either to adjacent land or into adjacent waters if they are filled with sediment. 126 

In order for the marshes to migrate inland, they need to have an adjacent open space that allows 127 

transgression. This natural response of marshes is truncated in many cases due to increased 128 

coastal development which utilizes hardened shoreline structures to stabilize the shoreline and 129 

protect public lands and private properties from erosion (Titus et al. 2009; Gittman et al. 2015; 130 

Hill 2015; Enwright et al. 2016). 131 
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Marsh plants play an important role in nearshore hydrodynamics (i.e., waves, current 132 

velocity and direction, and water levels) in creeks, rivers, estuaries, and coastal regions 133 

(Temmerman et al. 2005; D’Alpaos et al. 2007a; Kiss and Jozsa 2014). The interactions between 134 

coastal vegetation and nearshore hydrodynamics have been the focus of many studies (e.g., 135 

Gedan et al. 2011; Shepard et al. 2011; Spalding et al. 2014; Sutton-Grier et al. 2015). Coastal 136 

marshes have the ability to modify the circulation pattern by being an obstacle to water motion, 137 

affecting the mean flow velocity and turbulence, as well as attenuating wave energy by reducing 138 

wave heights entering them (Roland and Douglass 2005; Leonard and Croft 2006; Costanza et al. 139 

2008; Feagin et al. 2009; Gedan et al. 2011; Anderson and Smith 2014; Marsooli and Wu 2014; 140 

John et al. 2015).  Correlation between plant density and sediment deposition rates (e.g., Morris 141 

et al. 2002; Li and Yang, 2009; Shepard et al. 2011; Ysebaert et al. 2011; Silliman et al. 2015) 142 

suggests that the greater the marsh density, the higher the concentration of suspended sediment 143 

trapped in the marsh field, and the more resilient the marsh will be to wave energy and SLR. 144 

There is an increasing interest among resource managers and decision makers in 145 

spatially-explicit assessments of potential SLR impacts on tidal marshes. To that end, different 146 

models have been developed and applied to predict marsh spatial extent and future distribution 147 

(Morris et al. 2002; McLeod et al. 2010; Mogensen and Rogers, 2018; Alizad et al. 2018). 148 

Current models are constrained by the limitations of the two modeling approaches: landscape-149 

scale models and site-specific models. For instance, landscape-scale models (e.g. Sea Level 150 

Affecting Marshes Model, SLAMM) use fixed rates during the entire simulation. They simulate 151 

general trends over large areas, but usually at a very coarse resolution. Thus, these types of 152 

models are not suitable for site-specific research and management uses because scaling down the 153 

results to local levels is not feasible, limiting their accuracy and effectiveness to local 154 

https://www.jcronline.org/doi/abs/10.2112/08-1010.1#cor1
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applications. On the contrary, site-specific models (e.g. Marsh Evolution Model, MEM) are more 155 

mechanistic. Several studies have applied site-specific models to evaluate the long-term 156 

evolution of marshes under the effect of SLR (e.g., Kirwan and Murray 2007; Mariotti and 157 

Fagherazzi, 2010; Alizad et al. 2016). They are applied to simulate responses for a specific site 158 

with a particular set of conditions and settings. One of the main limitations of these approaches is 159 

the extrapolation of model results to regional levels. Using results from an individual site to 160 

generate long-term projections at larger spatial extents is challenging due to the broad range of 161 

geomorphic settings across landscapes (Titus et al. 2009; Nunez 2020).  162 

To address and overcome many limitations that current marsh models present, we 163 

expanded the capability of an existing multi-scale, hydrodynamic marsh evolution model (Tidal 164 

Marsh Model [TMM], Nunez et al. 2020) in order to increase our current knowledge of how 165 

marshes may respond to changes in sea level in different settings. The TMM has been developed 166 

within the SCHISM framework (Semi-implicit Cross-scale Hydroscience Integrated System 167 

Model) (Zhang et al. 2016), an open-source, next-generation hydrodynamic modeling system. 168 

Some of the unique features the TMM includes are cross-scale simulations, dynamic rates (i.e. 169 

rates vary in space and time as determined by changes in the hydrodynamic conditions of the 170 

system), semi-implicit time stepping method, and incorporation of anthropogenic stressors.  171 

 The present study has two main objectives. First, develop, test, and validate via hindcast a 172 

new model component in the TMM that captures the interactions between marsh vegetation and 173 

hydro/sediment dynamics. The incorporation of a new vegetation algorithm in the TMM will 174 

allow for a more accurate simulation of the water flow and turbulence within the marsh. 175 

Modeling the feedback between marsh plants and sediment processes allows simulation of the 176 

evolution of the tidal marsh platform, calculated with reference to the relative mean-sea level 177 



8 
 

(MSL). Second, apply the enhanced version of the TMM to evaluate the primary processes 178 

affecting marsh sustainability in different geomorphic settings over the next 50 years.   179 

 180 

2.  Materials and Methods  181 

2.1 Study Area 182 

The TMM with the new vegetation algorithm (hereafter TMM_VEG) was tested and 183 

applied in two tidal creeks within the York River estuary in the southern region of Chesapeake 184 

Bay, Virginia, USA (Figure 1a): Carter Creek (Figure 1b), and Taskinas Creek (Figure 1c). 185 

These two creeks were selected because they are characteristic of the western shore of the 186 

Chesapeake Bay, capturing the variation in geomorphic settings common in the region. In 187 

addition, these study areas were previously evaluated using the TMM without the vegetation 188 

algorithm (Nunez et al., 2020), which allowed for direct comparison of model outputs. Carter 189 

Creek is located on the northern side of the York River, approximately 22 km from the mouth of 190 

the river. Its watershed is characterized mainly by agricultural and residential land uses. 191 

Development pressure has resulted in the presence of roads and hardened shoreline structures in 192 

direct contact with marsh habitat. The upland bank height ranges between zero and 1.5 m relative 193 

to MSL (CCRM 2018), with gentle bank slope of less than 10 degrees (Danielson and Tyler 194 

2016). The geomorphic marsh settings in this creek include fringe and embayed marshes. Fringe 195 

marshes have a much greater length than width and occur along sections of the shoreline. 196 

Embayed marshes are V-shaped marshes that form along the edges and upper reaches of creeks. 197 

The dominant marsh plant species (i.e., more than 50% of the marsh areal extent) in this system 198 

is Spartina alterniflora (CCRM 2018). The total marsh areal extent evaluated in this system was 199 

594,888 m2. 200 
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 Taskinas Creek is located on the southern side of the York River, approximately 38 km 201 

from the mouth of the river. This is a very pristine environment; it is a component of the 202 

Chesapeake Bay National Estuarine Research Reserve (CBNERR). In most of this tidal system, 203 

the upland bank height is greater than 1.5 m relative to MSL (CCRM 2018), and mostly with a 204 

bank slope greater than 30 degrees (Danielson and Tyler 2016). This creek system is 205 

characterized by embayed marshes, which are primarily associated with forested and agricultural 206 

land uses. In this system, S. alterniflora is also the dominant plant species (CCRM 2018). The 207 

total marsh areal extent evaluated in this system was 481,576 m2.  208 

 209 

2.2 Tidal Marsh Model (TMM) 210 

 The TMM integrates the physical and anthropogenic components needed to simulate and 211 

assess the evolution and persistence of tidal marshes as sea level rises. The TMM simulates 212 

marsh migration under the combined influence of tides, wind waves, sediment transport, 213 

precipitation, riparian land use, shoreline armoring (e.g., bulkhead, riprap), and roads. The model 214 

assesses marsh edge changes as well as internal marsh changes due to variations in elevation and 215 

sediment supply, which can lead to internal marsh fragmentation. 216 

 The TMM is connected to three major modules in the SCHISM system: the 217 

hydrodynamic core that serves as the foundation of the SCHISM modeling system; the 3D 218 

sediment transport model (CSTMS); and the wind wave model (WWM-III) (Figure 2). WWM-219 

III (Roland 2009; Roland et al. 2012) is a community-driven, parallel, and advanced numerical 220 

framework that can be applied to study wave-current interaction processes based on unstructured 221 

grids. CSTMS is an adaptation from Warner et al. (2008).   222 
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Unlike existing marsh models (e.g., Clough et al. 2010; Odink 2019), the TMM uses an 223 

unstructured grid in the simulations, which allows highly resolved marsh areas (e.g., 1-meter 224 

cross-shore, 5-10 meters along-shore for fringe marshes). The application of unstructured grids 225 

to coastal processes offers a great advantage. The superior boundary fitting and local refinement 226 

ability of unstructured grids make them ideally suitable for nearshore applications involving 227 

complex bathymetry, shoreline geometry, and upland slopes. Figure 3 shows the domain of the 228 

unstructured grid used for the model simulations. In addition, TMM has the capacity for a much 229 

more dynamic simulation (i.e. rates vary in space and time as determined by changes in the 230 

hydrodynamic conditions of the system). Finally, the model highly resolves marsh migration due 231 

to the incorporation of anthropogenic stressors, such as coastal development and shoreline 232 

armoring. 233 

 234 

2.3 Incorporation of a New Vegetation Algorithm in the Tidal Marsh Model  235 

 The original version of the TMM (hereafter TMM_RF) used a bottom Roughness Factor 236 

(RF) as an indicator of marsh presence (Nunez et al. 2020). Marsh areas were assigned with a RF 237 

of 50 mm, while no-marsh areas were designated with a value of 1 mm (Ye et al. 2013).  238 

To increase the functionality of the TMM_RF, we incorporated a vegetation algorithm 239 

(Appendix A) in the model to evaluate the effects of Spartina alterniflora (dominant plant 240 

species in the study areas) on currents and turbulence by modifying the barotropic core of the 241 

model. This algorithm allows a more accurate simulation of water flow and turbulence within the 242 

marsh. The algorithm was included in the model as an optional function in the simulations. 243 

When the vegetation algorithm is turned on, the bottom RF used to define marsh presence is 244 
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uniformly assigned (1 mm). This is because this factor is less important when compared to form 245 

drag from vegetation; with the latter being calculated dynamically inside the model. 246 

Vegetation is modeled as an internal source of resistant force and turbulence energy 247 

(Lopez and Garcia 2001; Su and Li 2002). The model uses a semi-implicit time stepping method, 248 

and the effect of vegetation is incorporated implicitly to maintain model stability at large time 249 

steps. Therefore, the stability is independent of the vegetation parameters, and large shears that 250 

can develop around the canopy can be efficiently simulated. In addition to the impact of 251 

vegetation on flow structure, marsh plants attenuate waves (Mendez and Losada 2004). Wave 252 

attenuation by vegetation is taken into account in the wave model inside SCHISM (Zhang et al. 253 

2019).  254 

 The inundation frequency used by the TMM_VEG is based on the water-surface level 255 

predicted by the modeling system to drive inundation and horizontal marsh migration. Relative 256 

SLR is explicitly accounted for in all components. The SLR rate is imposed via the boundary 257 

condition at the ocean boundary. The calculated elevation and velocity are shared by all 258 

components of the model. The code of the model establishes that marshes have the capability to 259 

transgress into an area if the sediment bed elevation is within the suitable elevation range, which 260 

is from MSL to 1 m above MSL in our study areas. The CSTMS is responsible to dynamically 261 

calculate at each time step the sediment bed elevation, simulating sediment deposition, erosion, 262 

and transport. Appendices A, B, and C describe the physical and numerical formulations for the 263 

TMM_VEG and the supporting models.  264 

To be consistent with the TMM_RF simulations and evaluation (Nunez et al. 2020), the 265 

TMM_VEG was also validated via hindcasting (past 40 years) using a time step of 75 seconds, 266 

and the sediment transport model was run with morphological acceleration (i.e., simulation = 1 267 
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year; morphological acceleration factor (MAF) = 40). Historic (Moore and Silberhorn 1976; 268 

Moore and Silberhorn 1980) and current (CCRM 2018) tidal marsh inventories were employed 269 

for the hindcast. The average SLR rate employed for the study areas over the simulation period. 270 

for the hindcast was 4 mm yr-1 (NOAA Tides and Currents 2018).  271 

 272 

2.4 Model Inputs and Outputs  273 

A suite of major inputs needed for the TMM_VEG and supporting models is displayed 274 

Table 1. The Tidal Marsh Inventory developed by the Center for Coastal Resources Management 275 

(CCRM), Virginia Institute of Marine Science (VIMS) was used to define the current marsh 276 

condition for the simulations. The Inventory for the York River is based on a survey conducted 277 

in 2010. Marshes were digitized (1:1000 scale) using high resolution, geo-referenced natural 278 

color imagery collected in 2009 by the Virginia Base Mapping Program. Marsh boundaries were 279 

field checked. This high-resolution dataset was a crucial input in the model to define accurate 280 

marsh boundaries.  281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 
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Table 1.  Primary input datasets used for the TMM_VEG and supporting models. 291 

Dataset Source 

Historic Tidal Marshes (1:24,000) 

Current Tidal Marshes (Scale: 1:1,000) 

Tidal Marsh Inventories – CCRM, VIMS  

 

Shoreline Structures (Scale: 1:1,000) Shoreline Inventory – CCRM, VIMS 

Riparian Land use (distance: 100 ft.) Shoreline Inventory Program – CCRM, VIMS 

LIDAR data United States Geological Survey (USGS) 

Bathymetry NOAA and CBNERR, VIMS 

Bottom Type (grain sizes) VIMS, Maryland Geological Survey (MGS), and this study -

field samples 

River Input (average daily values) United States Geological Survey (USGS)  

 
Total Suspended Solids 
(average monthly values) 

 

Chesapeake Bay Program   

Atmospheric Forcing  North American Regional Reanalysis (NARR) 

Tides US East Coast Tidal Database 

Marsh Plant Data Field Data – CCRM, VIMS 

 292 

The physical characteristics of marsh plants change seasonally and spatially. In order to 293 

reduce model complexity, an average of these characteristics was selected to represent the annual 294 

cycle. Average annual values were used because after the plant dies, the stem of Spartina 295 

alterniflora remains in place and acts as a physical barrier, interfering with the water flow and 296 

the sedimentation process until it decomposes. 297 
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To determine the dominant marsh plant species in the study areas, the Tidal Marsh 298 

Inventory was used to examine the spatial extent and distribution of marsh plant species (CCRM 299 

2018). Spatial analyses were performed in ESRI® ArcGIS 10.6.1 and ArcGIS Pro. Simulations 300 

were run using plant data of the dominant plant species in the study areas. S. alterniflora physical 301 

characteristic, mean values of density, height, and stem diameter were selected to represent the 302 

annual cycle, and were input in the vegetation algorithm within the TMM. Marsh plant data (i.e., 303 

stem diameter (mm), plant height (cm), and stem density (stem per m2) were collected to input in 304 

the vegetation algorithm (Table 2). Random sampling with quadrats (0.25 m-2) was used to 305 

measure stem diameter in the study areas within the low marsh section (Spartina alterniflora 306 

dominated), for a total of 320 counts. Stem diameter was measured with an electronic digital 307 

caliper.  Marsh plant height and density data were acquired from surveys in the study areas, as 308 

well as other S. alterniflora-dominated marshes within the York River watershed to acquire an 309 

appropriate representation of the S. alterniflora characteristics in this river system.  Plant surveys 310 

consisted of establishing six transects perpendicular to the seaward edge of the marsh at 13 311 

marshes. Four quadrats (0.25 m-2) were placed along each transect at 1‐m intervals from the 312 

marsh–estuary edge.  Within each quadrat, S. alterniflora plant stems were visually counted and 313 

the mean height of S. alterniflora was recorded for each quadrat sampled (Bilkovic et al. 2017). 314 

For this initial version of the TMM_VEG, we assume constant values of plant characteristics. 315 

Values of plant height, density, and stem diameter were averaged (i.e., a single value per plant 316 

feature) and input in the model. 317 

 318 

 319 

 320 
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Table 2 Plant characteristics of Spartina alterniflora used as inputs in the TMM_VEG 321 
simulations. 322 

 323 

Plant Characteristics Average Standard Deviation Count 

Density (stem m-2) 152 25.5 39 (quadrats) 

Height (cm) 76.8 36.0 162 (stems) 

Stem diameter (mm) 7.93 2.14 320 (stems) 

 324 

 A great number of outputs are generated by the model, including marsh boundary 325 

evolution, distribution of surface marsh sediments, and changes in elevation of the marsh 326 

platform. Ancillary outputs from the hydrodynamic, sediment, and wind wave modules include 327 

surface and bottom elevations, bed fraction, and wave height, among many others.  328 

 329 

2.5 Evaluation of the Enhanced TMM (TMM_VEG) 330 

Model performance with the new vegetation algorithm was assessed by conducting a 331 

hindcast (past 40 years). Historic tidal marsh inventories (Moore and Silberhorn 1976; Moore 332 

and Silberhorn 1980) and current field observations (CCRM 2018) were used for calibration and 333 

verification purposes, focusing on the following aspects: marsh boundary evolution, distribution 334 

of surface marsh sediments, and changes in elevation of the marsh platform. In addition, results 335 

were compared against the TMM_RF outputs to evaluate if there was a significant difference in 336 

model predictions when Spartina alterniflora data (TMM_VEG) were used as opposed to a 337 

bottom roughness factor (TMM_RF) for marsh presence. 338 
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 Outputs from the TMM_VEG were exported to the GIS (Geographic Information 339 

System) environment using Matlab and Fortran scripts. Spatial analyses were conducted using 340 

ESRI® ArcGIS v10.6.1, and ArcGIS Pro. 341 

 342 

2.5.1 Marsh Boundary Evolution 343 

 The code to simulate the evolution of the marsh boundaries incorporates the effects of 344 

tides, waves, sediment transport and morphology, sediment sources, riparian land use, and 345 

shoreline armoring.  To evaluate the marsh boundary model outputs, the historic Tidal Marsh 346 

Inventory generated at VIMS in the early 1970s (Moore and Silberhorn 1976, Moore and 347 

Silberhorn 1980), was used in the hindcast as the initial marsh conditions for the simulation. The 348 

TMM_VEG was run to the present time, and the marsh boundary outputs were then spatially 349 

compared with the current Tidal Marsh Inventory (CCRM 2018). In order to statistically quantify 350 

the degree to which the TMM_VEG reproduces the observed data, error matrices were created 351 

for both study areas. To be consistent with the approach taken by Nunez et al. (2020), these 352 

matrices were used to assess the overall accuracy of the model and to calculate the Kappa 353 

statistic (formulation in Appendix D), which is a measure of agreement between the model 354 

output and the reference data (i.e., the current Tidal Marsh Inventory). Kappa is a robust statistic 355 

and is the most commonly reported measure in evaluating model agreement using categorical 356 

variables with multiple levels (McHugh 2012, Tang et al. 2015). In each study area, an error 357 

matrix was developed by using 100 random sample points within the marshes. These points were 358 

used to establish if the current marsh conditions at those locations agree with the conditions 359 

predicted by the TMM_VEG. The random points to assess model performance were the same for 360 

both types of simulations (i.e., TMM_RF, and TMM_VEG). In that way, model outputs were 361 
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directly compared. In addition, the spatial extent and distribution of tidal marshes obtained from 362 

the TMM_VEG were mapped, and then compared with the spatial extent and distribution of the 363 

model output from the TMM_RF.  364 

 365 

2.5.2 Spatial Distribution of Sediments – Grain Size 366 

The spatial distribution of sediments across the marshes was evaluated in the TMM_VEG 367 

simulations to determine if including marsh plant data would modify the type of surface 368 

sediment fractions accumulated in the marshes. Marsh surface sediment core data were used to 369 

validate output from model runs with and without the vegetation component. In both study areas, 370 

sediment cores (diameter: 3.5 cm; depth 8 cm) were collected from 20 transects running 371 

perpendicular from the water's edge to the marsh-upland zone. Along each transect, three 372 

locations were sampled:  the marsh-water interface, in the middle of the marsh, and the marsh-373 

upland interface, for a total of 60 cores. Samples were analyzed for grain size employing sieves 374 

(Folk 1980, Poppe et al. 2003). Removal of organic carbon and carbonates were conducted using 375 

loss on ignition, and HCl acidification of the dried samples (Dean 1974; Heiri et al. 2001; 376 

Santisteban et al. 2004), respectively. The Wentworth scale was employed to classify grain size 377 

into gravel (2-4 mm), sand (0.062-2 mm), and mud (i.e., silt and clay) (< 0.062 mm). These 378 

sediment fractions were directly compared with model outputs.  379 

The ability of the TMM_VEG to reproduce the distribution of the observed marsh surface 380 

sediment fractions was evaluated by estimating the Willmott (1982) index of agreement (dr), the 381 

mean absolute error of measured values (MAE), the RMSE-standard deviation ratio (RSR), and 382 

the coefficient of determination (NSE). Appendix E shows the equations for these statistical 383 

performance measures.  384 
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2.5.3 Variation in Elevation of the Marsh Platform 385 

The model uses the vertical datum NAVD88 to compute all state variables (e.g., land 386 

surface elevation). The changes in elevation (deposition/erosion) were calculated with respect to 387 

the initial values. In the study areas, marshes occur within a particular tidal envelope (between 388 

MSL and 1m above MSL). MSL (represented by the free water surface) and the land surface 389 

elevation vary during the course of the simulation. MSL was adjusted at each model time step by 390 

the rate of SLR (i.e., MSL is dynamically calculated). Similarly, land surface elevation was 391 

adjusted at each time step through simulation of sediment erosion, transport, and deposition 392 

processes. Based on the new MSL and land surface elevations, inundation depth (which equals 393 

the difference between the two values) was calculated. The inundation depth was used as a 394 

criterion to determine marsh habitat suitability. A new marsh was created in a grid cell if the land 395 

surface elevation was between MSL and 1 m above MSL, and at least one adjacent cell was 396 

marsh. A marsh grid cell was considered ‘drowned’ if the land surface elevation fell below MSL.  397 

Changes in elevation of the marsh platform were computed in each study area. The 398 

TMM_VEG calculates the variation in elevation of the marsh platform during the simulation 399 

period (i.e., depth change from initial marsh surface elevation). Based on these variations, major 400 

processes (i.e., “erosion” (negative variation), “deposition” (positive variation), “no change” 401 

(variation = 0)) were defined along marsh transects.  402 

 403 

2.6  Forecasting Tidal Marsh Evolution 404 

 SLR scenarios selected for the forecasts were based on NOAA projections (Sweet et al. 405 

2017). To incorporate subsidence rates in southeast Virginia; an average subsidence rate of 3.1 406 

mm yr-1 (Eggleston and Pope 2013) was added to the projections. For this study, two SLR 407 
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scenarios were considered: “intermediate” and “extreme.” The intermediate scenario is based on 408 

semi-empirical models using statistical relationships in global observations of sea level and air 409 

temperature. The extreme scenario is based on estimated consequences from global warming 410 

combined with the maximum possible contribution from ice-sheet loss and glacial melting 411 

(worst-case scenario). For coastal planning purposes, the projection of marsh evolution in each 412 

scenario was 50 years (2020-2070). The increase in sea level by the end of the simulation was 413 

622 mm in the intermediate scenario, and 1,243 mm in the extreme scenario. These two 414 

scenarios bound reasonable expectations and provide a larger difference to examine.  415 

 The marsh evolution simulations were run with the vegetation algorithm enabled 416 

(TMM_VEG) to more accurately assess the water flow and turbulence within the marsh, as well 417 

as to better capture the feedback between presence of marsh plants and sediment processes. 418 

Vegetation was modeled as an internal source of resistant force and turbulence energy (Lopez 419 

and Garcia 2001; Su and Li 2002).  In this study, the effect of vegetation on the nearshore 420 

hydrodynamics was defined by the presence of the dominant marsh plant species in the study 421 

area, S. alterniflora. Outputs from the TMM_VEG were exported to the GIS environment using 422 

Matlab and Fortran scripts. Spatial analyses were performed using ESRI® ArcGIS 10.6.1 and 423 

ArcGIS Pro.  424 

 Using a process-based morphodynamic model to conduct long-term simulations involves 425 

intensive computational time. This is because morphological changes occur over a much longer 426 

time period than hydrodynamic changes. A morphological acceleration factor (MAF) was used 427 

to decrease the computational time. This approach was presented by Lesser et al. (2004) and 428 

Roelvink (2006), and it is widely used for coastal morphodynamic modeling. This factor was 429 

applied after all hydrodynamic and sediment transport processes had been computed for each 430 
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time step. For the present study, we employed morphological acceleration (i.e., simulation = 1 431 

year; MAF = 50) using a time step of 75 seconds (based on model calibration).  432 

 433 

3. Results  434 

3.1 Evaluation of the Enhanced TMM  435 

3.1.1 Marsh Boundary Evolution  436 

 The TMM_VEG simulated marsh boundary evolution with an overall high accuracy 437 

within both study areas (Carter and Taskinas Creeks: 83%, 82% accuracy; Kappa statistic of 438 

0.69, 0.68, respectively), which indicates "Substantial Agreement" according to Viera and 439 

Garrett (2005). Appendix D shows the error matrices comparing TMM_VEG against field 440 

observations for Carter Creek and Taskinas Creek. In addition, matrices developed by Nunez et 441 

al. (2020) are displayed to facilitate the comparison of model performances between the two 442 

different approaches. When using the vegetation algorithm, error matrices show an improvement 443 

in the overall accuracy of the model. The Kappa statistic in each study area fell inside the same 444 

category (“substantial agreement”) based on Viera and Garrett (2005). 445 

 Overall, model results were consistent with field observations. The evolution of marsh 446 

boundaries derived from both simulations (i.e., with and without the vegetation component) 447 

(Figures 4 and 5) reflected the marsh response expected for the study areas during the past 40 448 

years.  Marsh migration into open areas was well captured, as were the negative effect of 449 

shoreline structures and development on marsh persistence as sea level rises. Marsh loss was 450 

significant in areas with high fetch and wave energy in Carter Creek, and outside the mouth of 451 

Taskinas Creek, by the main stem of the York River. Nevertheless, including the vegetation 452 

algorithm led to a predicted marsh loss of about half of what was predicted without the 453 
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vegetation component. In Carter Creek, the TMM_RF simulated a marsh loss of 91,459.0 m2 (net 454 

loss 10.2%), while the TMM_VEG simulated a loss of 43,706.1 m2 (net loss 1.9%). In Taskinas 455 

Creek, the TMM_RF simulated a marsh loss of 49,776.3 m2 (net loss 7.6%) while the 456 

TMM_VEG simulated a marsh loss of 26,709.3 m2 (net loss 3.5%) (Table 3).  457 

 458 

Table 3. Marsh areal extent (m2) after a 40-year simulation (hindcast) using the TMM_RF and 459 
the TMM_VEG in Carter Creek and Taskinas Creek. 460 
 461 

 
Simulations  

 
Marsh Boundary Categories 

  Marsh Gain 
(m2) 

No Change 
(m2) 

Marsh Loss 
(m2) 

Carter Creek - TMM_RF 24,685.8 56,9797.4 91,459.0 

Carter Creek - TMM_VEG 31,160.8 61,7,550.3 43,706.1 

Taskinas Creek - TMM_RF 11,735.9 452,033.9 49,776.3 

Taskinas Creek - TMM_VEG 9,307.8 475,100.9 26,709.3 

 462 

 463 

3.1.2 Spatial Distribution of Sediments – Grain size 464 

 The TMM_VEG sediment outputs had a strong agreement with field observations for 465 

both study areas.  Similar to the TMM_RF simulation, outputs derived from the TMM_VEG had 466 

a good model performance based on the Willmott Modified Index of Agreement and the MAE. 467 

The NSE and RSR statistics fall within the satisfactory agreement category based on Singh et al. 468 

(2004), and Moriasi et al. (2007) (Appendices E and F). There was not a significant difference 469 

between the two model approaches when considering the spatial distribution of grain size 470 

throughout the marsh surface. In the case of this particular model output, adding information 471 

about the physical characteristics of the marsh plant (plant density, plant height, and stem 472 
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diameter) in the simulation did not substantially change the predictions about the type of marsh 473 

surface sediment fractions (i.e., proportion of gravel, sand, and mud throughout the marsh 474 

platform).  475 

3.1.3 Variation in Elevation of the Marsh Platform 476 

The simulation with the vegetation algorithm had an overall lower variation in elevation of the 477 

marsh platform in both study areas. In Carter Creek, sites along the marsh transects identified 478 

with eroded marsh platform had higher values in the TMM_RF simulation than the TMM_VEG 479 

simulation (Figure 6), indicating that the vegetation algorithm more successfully captured the 480 

reduction of turbulence, and the capacity of the plants to trap sediments, stabilizing the marsh 481 

platform. Appendix G displays the change in elevation of the marsh platform along the marsh 482 

transects in Carter Creek when using the TMM_RF and the TMM_VEG, respectively. In some 483 

of the sites, the amount of marsh platform lost predicted by the TMM_RF was double or higher 484 

than the amount estimated when using the TMM_VEG (e.g., site number 7, 13, 28). Inclusion of 485 

vegetation led to reductions in both predicted areal marsh loss and vertical loss of the marsh 486 

platform. TMM_RF uses an increased bottom roughness factor (Ye et al. 2013) to assign marsh 487 

presence. This uniform bottom roughness (used as marsh plant proxy) interferes with the water 488 

mean flow velocity and turbulence, affecting sediment deposition patterns. However, the 489 

incorporation of marsh plant data in the vegetation algorithm allowed to better capture the 490 

deposition of sediment by marsh plant, stabilizing the marsh platform and resulting in a lower 491 

erosion. The incorporation of the physical characteristics of the marsh plants from the study 492 

areas provided a more realistic environment affecting the hydrodynamics and the sediment 493 

processes, producing a better agreement with the field observations. Most of this behavior occurs 494 

in the low-marsh sites (i.e., near the marsh-water interface). These sites are exposed to more 495 
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frequent and prolonged inundation, allowing more exposure to sediment particles. Nevertheless, 496 

a considerable difference in the elevation of the marsh platform was also found in one high-497 

marsh site (site 18). This site is located about 20 meters from the marsh-water edge. The 498 

TMM_RF simulation estimated almost a three times higher loss in elevation of the marsh 499 

platform. In this case, the difference in model outputs can be related to the higher capacity of the 500 

marsh plants to capture sediments coming from the upland-marsh interface due to erosion and/or 501 

runoff. In the sites where the dominant process was defined as “deposition,” the magnitude of 502 

increase in marsh platform elevation did not exhibit a considerable difference between the two 503 

model outputs, except for one location (site 20). This site is situated in the middle of a narrow 504 

fringe marsh (approximate 5 m wide). The TMM_RF simulation estimated a deposition of 20.2 505 

mm in the 40-year simulation, whereas the model output using the vegetation algorithm 506 

predicted an erosion of 2 mm during the same simulation period. This discrepancy in model 507 

outputs can be attributed to what was happening to the edge of the marsh (i.e., site 19; low-marsh 508 

site) during each of the simulations. In the site 19, the simulation using the roughness factor 509 

yielded an erosion of the marsh platform of 106.9 mm in the 40-years simulation, whereas the 510 

TMM_VEG simulation projected a loss of 41.1 mm. The TMM_RF simulation produced a 511 

greater amount of erosion; hence, more sediments were locally available. These sediments could 512 

have been then redeposited in the “new” marsh edge, or further into the existing marsh due to the 513 

inundation that reached higher elevations (Friedrichs and Perry 2001; FitzGerald and Hughes 514 

2019; Wiberg et al. 2020;). As mentioned before, deposition of inorganic sediments by marsh 515 

plants plays a critical role in maintaining the marsh platform. Incorporating detailed plant 516 

information in the vegetation algorithm provided a higher accuracy in the simulation of sediment 517 



24 
 

movement within the marsh, helping to identify areas where erosion or deposition throughout the 518 

marsh platform occurred. 519 

 A similar pattern was also observed in Taskinas Creek between both simulations. 520 

Taskinas Creek presents different hydrodynamics than Carter Creek due to the meandering 521 

channels, which result in a particular sedimentation pattern (asymmetrical channel with the 522 

deepest part of the channel on the outside of each bend). Both model approaches predicted 523 

mostly the same dominant process on the marsh platform (i.e., erosion, deposition, or no change) 524 

along the marsh transects. The main exception to this pattern was site 16, located in the low 525 

marsh. The simulation using the TMM_RF produced a deposition of 7.0 mm per year, whereas 526 

the simulation with TMM_VEG generated a vertical erosion of 11.5 mm per year (Figure 7). 527 

Sediment fluxes are not linear functions, so the difference in sediment distribution near this site 528 

could have been very different between the two simulations, affecting the local deposition and 529 

erosion of the marsh platform. In addition, site 16 is located close to the concave bank, where the 530 

stream erodes the sediments, and deposits these and other sediments downstream on the convex 531 

bank. This would be the point bar located to the left of site 16. The particular spatial location of 532 

this site, as well as differences in sediment fluxes and water flow are some of the reasons that 533 

can explain this unique discrepancy. In the case of the deposition process, the magnitude of 534 

sediment deposition during the simulation period was either the same for both simulations or a 535 

little higher (e.g., site 10) when using the TMM_VEG (due to the enhanced simulation using the 536 

vegetation algorithm).  Nonetheless, this pattern was not found in sites 13 and 14. This could be 537 

attributed to the heterogeneity of the system (i.e., terrain depressions, very narrow marsh 538 

channels), which affects plant marsh growth and soil conditions. This particular difference in 539 

marsh plant characteristics was not captured by the model due to the underlying assumptions of 540 
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using only one type of marsh plant community, and assigning constant plant characteristics along 541 

the entire marsh. The values of elevation change along the marsh platform in Taskinas Creek are 542 

detailed in Appendix G.  543 

 544 

3.2  Forecasting Tidal Marsh Evolution 545 

 In both study areas, the marsh boundary evolution output was a function of the rate of 546 

SLR and the subsequent topographic changes resulting from marsh platform accretion. In many 547 

cases, especially in the extreme SLR scenario, the overwhelming extent of inundation damped 548 

the impact of topography and flow resistance, and the new marsh patterns were mostly 549 

dependent on the rate of SLR. The forecast maps (Figures 8 and 9) show that some marshes had 550 

good opportunities to increase their extent by migrating into natural areas that today are not 551 

regularly inundated, but that are expected to become inundated in the future. 552 

 In Carter Creek, the intermediate SLR scenario projected a marsh loss of 24.2 %. 553 

Nevertheless, several marshes were able to migrate inland (16.9 %) and offset part of this loss; 554 

hence, yielding a net marsh loss of 7.3% over the next 50 years. The capacity of marshes to 555 

transgress was truncated in some areas due to anthropogenic pressure (development, shoreline 556 

structures, and roads). The projected marsh response in the extreme SLR scenario was 557 

considerably different. By the end of the simulation period, the initial marsh areal extent was 558 

reduced by 89.6%. However, due to the local topography and natural riparian upland, many 559 

marshes were able to migrate to higher elevations (29.6%) mainly in areas where forested and 560 

scrub shrubs have become inundated, resulting in a net marsh loss of 60.0% (Table 4).  561 

 In Taskinas Creek, under the intermediate SLR scenario about a quarter of the marshes 562 

will be lost, while the vast majority of marshes are expected to be lost under the extreme SLR 563 
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scenario. The intermediate SLR scenario predicted a marsh loss of 28.8% from the initial marsh 564 

coverage. In few areas, marshes were able to transgress (5.7%). This resulted in a net marsh loss 565 

of 23.1%. The scenario with the extreme SLR rate projected a major extent of inundation. The 566 

initial marsh areal extent decreased by 94.4%. This loss was slightly compensated by some 567 

marsh transgression (5.2%), yielding a net loss of 89.2% (Table 4). 568 

 569 

Table 4. Projected marsh areal extent (m2) after a 50-year simulation using an intermediate and 570 
extreme scenario of SLR. 571 
 572 

  Marsh Boundary Categories 

  Marsh 
Gain (m2) 

No Change 
(m2) 

Marsh Loss 
(m2) 

Carter Creek – Intermediate Scenario 100,766.7 450,819.8 144,068.2 

Carter Creek – Extreme Scenario  176,442.9 61,512.2 533,375.8 

Taskinas Creek – Intermediate Scenario 27,518.6 342,768.7 138,807.3 

Taskinas Creek – Extreme Scenario 25,090.5 26,709.3 454,866.7 

 573 
 574 

4 Discussion  575 

4.1 Evaluation of the Enhanced TMM (TMM_VEG) 576 

We presented a new functionality for a high-resolution and highly predictive marsh 577 

evolution model that incorporated physical characteristics of marsh vegetation, topography, 578 

sediment dynamics, hydrodynamics, changing sea levels, and human features. The incorporation 579 

of a vegetation algorithm into the original version of the TMM (TMM_RF) enhanced the 580 

accuracy and predictive capabilities of the model in the majority of the sites evaluated. The effect 581 

of marsh plants on the nearshore hydrodynamics provided a different pattern of sediment 582 

distribution when compared with the TMM_RF simulations, reflecting an improved agreement 583 
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between model outputs and field observations. The simulation with marsh plant data better 584 

captured sediment deposition and erosion by marsh edges, as shown in the marsh boundary 585 

evolution analysis. This type of simulation better reflects the current observed marsh extent and 586 

distribution. Moreover, the marsh platforms were more stable due to the effect of marsh plants 587 

on sedimentation, as indicated in the elevation change analysis. The type of sediment fractions 588 

(i.e., proportion of gravel, sand, mud) throughout the marshes did not differ with the 589 

incorporation of the vegetation algorithm, which suggests that the type of inorganic sediments 590 

deposited on the marsh platform depends more on the type of sediments available in the system 591 

rather than the physical characteristics of the marsh plant, and their capacity to capture 592 

sediments. 593 

The enhanced version of the TMM was tested on typical salt marshes dominated by 594 

Spartina alterniflora. We have demonstrated that using only plant data of the dominant plant 595 

species explains the majority of the variability in the salt marsh systems studied. The vegetation 596 

algorithm can be modified to incorporate other plant species with different physical 597 

characteristics to represent marshes with a different dominant plant species or marshes with a 598 

variety of plant species (e.g., freshwater marshes). Spatially assessing and mapping these plant 599 

communities and incorporating these data as inputs in the simulations would likely increase the 600 

accuracy of the model outputs for those systems.  601 

The development of the model within the SCHISM framework allows for unique model 602 

capabilities to be naturally incorporated into the simulations (Nunez et al. 2020). In the original 603 

version of the TMM, the authors focused on a 2D barotropic model configuration due to large 604 

uncertainties that exist in some marsh process inputs. For processes as complex as marsh 605 

migration, it is important to start from a simple approach, investigate the relative importance of 606 
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contributing factors, and gradually build up model complexity. While the polymorphism in 607 

SCHISM allows efficient simulation of marshes in hybrid 2D-3D mode (Liu et al. 2018), the 608 

current 2D model already incorporates most of the physics. At this stage, we have achieved with 609 

the TMM_VEG an enhanced simulation of changes in marsh position over a 40-year period of 610 

observation (hindcast) based on physical processes and factors. A 3D (baroclinic) model that 611 

includes salinity and temperature together can further improve the model’s predictive capability 612 

for the fate of certain marsh species under climate change. Although some sensitivity to grid 613 

resolution has been carried out, more analyses on this in the larger context of other uncertainties 614 

need to be explored further. 615 

The drag coefficient of marsh vegetation increases in a non-linear way with increasing 616 

plant density (Nepf, 1999; Meijer 2005), causing attenuation of wave energy and modification of 617 

turbulence. The form drag is dependent on the Reynolds number and on the shape, rigidity and 618 

orientation of the object. The TMM_VEG simulations assume a constant value for the drag 619 

coefficient. The model code could be modified by adding a varying drag coefficient in the 620 

vertical column, which accounts for flexible stems.  In the absence of site-specific vegetation 621 

data, model results show that implementing a constant value for the drag coefficient is a 622 

reasonable approach to evaluate marsh evolution at large scales.  623 

The main limitation of the current version of the model is the application of the model in 624 

areas where the current marsh vertical accretion is dominated by organic deposition. Different 625 

plant communities have different photosynthetic and decomposition rates, which can directly 626 

affect the plant structure and size as well as the root size and distribution. These characteristics 627 

will directly affect the capture of sediments and stabilization of the marsh platform by the roots. 628 

Due to the variability of marsh plant communities, primary production, and decomposition rates, 629 
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along with the lack of widespread spatially explicit biological data, we assume biological 630 

processes to be constant. While the current version of TMM_VEG does not include biological 631 

processes at the moment in the simulations, when considering scenarios with high rates of SLR 632 

and long-term projections, the accelerated rates of SLR will surpass the maximum rates of 633 

organic deposition by marsh plants, and the fate of marshes will depend only on the availability 634 

of inorganic sediments. The focus of this work was to improve the original TMM performance 635 

by incorporating the effect of marsh plants on the nearshore hydrodynamics, leaving the 636 

assessment of the biological processes for our next stage of model development. 637 

 638 

4.2. Forecasting Tidal Marsh Evolution 639 

This study represents an enhanced modeling approach that integrates anthropogenic 640 

barriers to marsh migration within a highly-resolved marsh evolution model to simulate realistic 641 

marsh sustainability outcomes. The primary drivers of marsh change in different geomorphic and 642 

human settings were elucidated from our modeled systems. The application of the TMM with the 643 

vegetation algorithm allowed us to develop detailed projections of marsh sustainability in 644 

multiple geomorphic settings under different rates of SLR. Across the scenarios evaluated, 645 

projections of marsh areal extent vary in both study areas. Major differences in marsh response 646 

are mainly attributed to the geomorphic settings, sediment supply, and anthropogenic factors 647 

associated with marsh habitats in those tidal systems.   648 

Tidal marshes in Carter Creek occur in a higher topography compared to the ones in 649 

Taskinas Creek (Danielson and Tyler 2016). Marshes located at a high topography have more 650 

time to offset changes in water levels due to SLR through vertical accretion and horizontal 651 

migration, which make them more resilient to SLR (Alizad et al. 2018; Fagherazzi et al. 2019). 652 
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The persistence of marsh habitat in Carter Creek in the intermediate scenario can be attributed to 653 

the local topography and the sufficient sediment supply in this region, as well as the capacity of 654 

the marsh plants to successfully capture and deposit the available sediments onto the marsh 655 

platform, increasing its elevation and offsetting the rate of SLR. In the extreme scenario, the 656 

accelerated rate of SLR surpassed the rate of vertical accretion by marsh plants in most of the 657 

marshes, leading to marsh loss where landward migration was not possible.  658 

In Taskinas Creek, projections of marsh response over the next 50 years were 659 

significantly different between the intermediate and extreme scenarios. This can be attributed 660 

mainly to the geomorphic setting of this area. Topographic limitations to marsh expansion were 661 

more important for this system.  Currently, marshes are not only present in a very low elevation, 662 

but also are associated with high upland bank height (more than 1.5 m in the majority of the 663 

places) and steep slopes, which create an obstacle to inland migration with high rates of SLR. 664 

Even though the adjacent upland areas of these marshes are natural, and no anthropogenic 665 

stressors are present in this site, the elevated rates of SLR and the physical environment did not 666 

allow marshes to migrate horizontally in the majority of places. The estimated area of marsh 667 

transgression was almost the same in both forecast scenarios. This suggests that marsh inland 668 

migration was mainly truncated by upland bank conditions under accelerated SLR rates. In the 669 

extreme SLR scenario, a widespread marsh drowning was observed because migration was 670 

limited. The projected sediment supply for this area over the course of the simulation period was 671 

not sufficient to increase marsh elevation and to keep pace with SLR.  672 

These projections do not take into account changes in land use and shoreline erosion 673 

control structures over the next 50 years, which could significantly change the response of tidal 674 

marshes with respect to migrating inland as sea level increases. The conflict between marsh 675 
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inland migration and human activities near the shoreline is likely to become more significant in 676 

the future. Coastal zones are densely populated with an increasing trend of development (Small 677 

and Nicholls 2003; Neumannet al. 2015), which will directly affect marsh migration pathways. 678 

Shoreline erosion control structures located on the landward edge of the marsh not only act as 679 

obstacles for marsh transgression, but also represent barriers for sediment exchange between the 680 

marsh and the adjacent upland.  Sediment supply is a major factor in marsh response to SLR 681 

(Van Proosdij et al. 2006; Cahoon and Guntenspergen 2010; Kolker et al. 2010; Mariotti and 682 

Fagherazzi 2010) and a key parameter in modeling marsh evolution (Temmerman et al. 2003b; 683 

D’Alpaos et al. 2007a; Kirwan et al. 2016), Lateral and vertical marsh changes can be very 684 

sensitive to suspended sediment concentrations. In some settings, small differences in sediment 685 

supply can lead to marsh accretion, erosion, progradation, or retreat (Mariotti and Carr 2014; 686 

Fagherazzi et al. 2012; Kirwan et al. 2010). The ability of marsh plants to trap sediments 687 

increases their resiliency to SLR by maintaining an appropriate surface elevation. Nevertheless, 688 

the presence of shoreline armoring to protect private properties from erosion as well as damming 689 

of rivers have resulted in a decreased suspended sediment concentration in coastal waters (Willis 690 

and Griggs 2003; Weston 2014; Currin et al. 2015). High resolution data sets containing the 691 

spatial location of shoreline structures should be included as a model input in the TMM_VEG in 692 

order to more accurately simulate sediment deposition by marsh plants and marsh transgression. 693 

The code of the TMM_VEG has the capacity to be modified in order to incorporate changes in 694 

projections of anthropogenic stressors. If these data are available, we recommend including this 695 

information in the forecast to more accurately estimate the future location of marsh habitat.  696 

The projections obtained in our study sites provide a framework of how other marshes 697 

might respond under similar geomorphic settings and human activity. This TMM_VEG is 698 
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exportable; end users are able to easily access the model and tutorials.  It can be used in any 699 

marsh system to better predict marsh responses under different sea-level rise scenarios, including 700 

estuaries, back-barrier islands, fluvially-dominated deltas, and lagoons. For instance, 701 

TMM_VEG has the capacity to model horizontal migration that occurs in marshes behind barrier 702 

islands. These systems respond to SLR by migrating toward the mainland when sand is 703 

overwashed from the barrier island and rolls over onto the back-barrier marsh. The overwash 704 

deposition allows marshes to increase in elevation and migrate (Finkelstein and Ferland 1987; 705 

Fitzgerald et al. 2007; Walters et al. 2014). However, at rapid and high rates of SLR, barrier 706 

island migration can outpace marsh migration toward the mainland, yielding a significant marsh 707 

loss (Deaton et al. 2017). The interactions between back barrier marshes and barrier islands play 708 

a significant role in determining how coastal systems will evolve in the future due to SLR. 709 

Application of the TMM_VEG to this type of systems as well as other regions, and with different 710 

marsh plant species, will be mainly limited by the available input data for the target areas. The 711 

refinement of the original version of the TMM to simulate marsh evolution will offer coastal 712 

managers and other stakeholders a detailed assessment of the fate of tidal marshes in different 713 

settings as sea level rises.  714 

The findings produced with the TMM_VEG have other management implications for the 715 

Chesapeake Bay region and beyond. Maintaining water quality is one vital service that marshes 716 

provide. It is well established that tidal marshes affect water quality by taking up nutrients and 717 

trapping sediments (Fisher and Acreman 2004; Mitsch and Gosselink 2007). Excessive loadings 718 

of nitrogen, phosphorus, and sediment are of major concern and the focus of the Chesapeake Bay 719 

Program, which established total maximum daily loads (TMDLs) (U.S. EPA 2010). To that end, 720 

protecting and creating marshes has become especially important for managers trying to achieve 721 
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water quality goals. Effectiveness in these efforts requires an understanding of how local 722 

conditions influence marshes, in particular how the temporal and spatial variation in sediment 723 

supply, deposition, and surface erosion can affect the sustainability of these habitats. Because 724 

these factors are quite variable in many coastal and estuarine systems, application of a dynamic 725 

simulation of marsh evolution with a fine spatial resolution, such as the TMM_VEG, is 726 

important for informed management of current and future marsh resources. Furthermore, 727 

sedimentation and turbidity are two of the main factors responsible for the decline in populations 728 

of North American aquatic organisms (Henley et al. 2010). The capacity of marshes to retain 729 

sediments is directly related to their spatial extent and distribution. Understanding how SLR will 730 

impact marsh habitats and modify sediment inputs in the system is crucial to maintain and 731 

improve water quality and healthy aquatic food webs.  732 

There is an increasing trend from coastal managers and planners to assess the cost-benefit 733 

of applying different management strategies to protect marsh habitats and the services that they 734 

provide (Kassakian et al. 2017; Reguero et al. 2018; Propato et al. 2018; Rezaie et al. 2020). 735 

Another important TMM_VEG application is the identification of areas for marsh conservation 736 

that contribute to coastal resilience over longer time frames (e.g., protecting a marsh to reduce 737 

coastal erosion, flooding, and/or storm surge impacts). TMM_VEG predictions can be combined 738 

with ecosystem-valuation assessments to estimate the most cost-effective strategy to support the 739 

physical and ecological services that these critical habitats offer. Model outputs can be used to 740 

determine areas at high risk to marsh habitat conversion, as well as potential opportunities for 741 

marsh preservation and restoration where upland conditions currently allow transgression. 742 

Preserving lands that allow marsh transgression should be a high conservation priority. Coastal 743 

managers and decision-makers can use these model outputs to improve the long-term 744 
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effectiveness of conservation and restoration strategies by maximizing the amount of marsh 745 

habitat in high-sediment regions, prioritizing sediment allocation, and identifying and prioritizing 746 

key upland transitional sites. 747 

 748 

5 Conclusion 749 

A new vegetation component was successfully developed, tested, and incorporated into 750 

the Tidal Marsh Model (TMM) to provide an improved simulation of how marsh plants modify 751 

the circulation pattern by being an obstacle to water motion, affecting the mean flow velocity and 752 

turbulence, and consequently, sedimentation processes. The application of the TMM with the 753 

vegetation algorithm advances the spatial modeling and understanding of dynamic SLR effects 754 

on tidal marsh vulnerability. Running the TMM with the vegetation algorithm (TMM_VEG) 755 

more effectively captures the lateral and vertical changes of tidal marshes, supporting more 756 

accurate assessments of the vulnerability of these important resources under present and future 757 

conditions. The new version of the TMM is exportable; it can be used in any marsh system to 758 

better predict marsh responses under different SLR scenarios. The model code and technical 759 

documentation are publicly available via direct download from the SCHISM website:  760 

http://ccrm.vims.edu/schismweb/. 761 

Managing shoreline systems to sustain the capacity of marshes to provide multiple 762 

ecosystem services entails an understanding of the conditions that will affect their survival. 763 

Accelerated rates of SLR will stress the ability of marshes to compensate for rising water levels, 764 

and marsh drowning may become more widespread. To better understand the effects of SLR and 765 

human pressure on marsh evolution, we projected the changes in marsh extent over the next 50 766 

years in two representative marsh systems within the Chesapeake Bay using the TMM_VEG to 767 
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incorporate in the simulations the effects of marsh vegetation on the nearshore hydrodynamic. 768 

Model outputs show how different coastal settings, such as nearshore topography, sediment 769 

supplies, and anthropogenic factors determine the evolution of tidal marshes as the rates of sea 770 

level accelerate.   771 

 This modeling approach can be used to inform forward-looking management efforts to 772 

identify and protect areas where marsh habitats are most likely to be sustainable, as well as 773 

preserve opportunities for migration of marsh habitats in an evolving system. These projections 774 

provide valuable and necessary information for restoration, strategic planning, and monitoring 775 

activities to support marsh sustainability. 776 
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APPENDICES 1269 

Appendix A - TMM (RF &VEG) Physical Formulation – Governing 1270 
equations:  1271 
 1272 

 SCHISM solves the 3D Reynolds-averaged Navier-Stokes equation in its hydrostatic form: 1273 

 Momentum equation: Fuu
+∇−
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 Transport equation: 1278 
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 1280 
 Equation of state:                                                                                                                           1281 
  𝜌𝜌 = 𝜌𝜌(𝑆𝑆, 𝑇𝑇, 𝑝𝑝) 1282 
 1283 
  where  1284 

∇  
,

x y
 ∂ ∂
 ∂ ∂   1285 

D/Dt material derivative (s-1) 1286 
(x,y) horizontal Cartesian coordinates (m) 1287 
z  vertical coordinate, positive upward (m) 1288 
t  time (s) 1289 

),,( tyxη  free-surface elevation (m) 1290 
),( yxh  bathymetric depth (m) 1291 

( , , , )x y z tu  horizontal velocity, with Cartesian components (u,v) 1292 
w  vertical velocity 1293 
F  other forcing terms in momentum (baroclinic gradient (− 𝑔𝑔

𝜌𝜌0
∫ ∇𝜌𝜌𝜌𝜌𝜌𝜌𝜂𝜂

𝑧𝑧 ),  1294 

                         horizontal  viscosity, Coriolis, earth tidal potential, atmospheric pressure,  1295 
                     radiation stress) 1296 
g  acceleration of gravity, in (ms-2) 1297 
C  tracer concentration (e.g., salinity, temperature, sediment, etc.) 1298 
ν  vertical eddy viscosity, in (m2s-1) 1299 
κ  vertical eddy diffusivity, for tracers, in (m2s-1) 1300 
Fh  horizontal diffusion and mass sources/sinks 1301 
 1302 
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As previously stated, a simpler 2D barotropic configuration was used in this study. 1303 
 1304 
 1305 
Particular Case – Evaluation of Marsh Pants on Nearshore Hydrodynamics (TMM_VEG) 1306 

Based on Zhang et al. (2019) the Reynold’s Averaged Navier-Stokes equations are modified by 1307 

adding a form drag term due to vegetation: 1308 

 1309 
𝐷𝐷𝐷𝐷 
𝜌𝜌𝑑𝑑

= 𝑓𝑓 − 𝑔𝑔∇𝜂𝜂 + 𝑚𝑚𝑧𝑧 − 𝛼𝛼⌈𝐷𝐷⌉𝐷𝐷𝑢𝑢 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 1310 

 1311 
𝛼𝛼(𝑥𝑥, 𝑦𝑦) = 𝐷𝐷𝐷𝐷𝑣𝑣 𝑁𝑁𝑣𝑣𝐶𝐶𝐷𝐷𝐷𝐷/2 1312 

 1313 
 1314 

Where: 1315 

u = horizontal velocity 1316 

D/dt = material derivative 1317 

             𝑔𝑔 = gravitational acceleration 1318 

             η = surface elevation 1319 

             α = vegetation related variable 1320 

            𝑚𝑚𝑧𝑧= vertical eddy viscosity term 1321 

            L = vegetation term  1322 

             𝐷𝐷𝐷𝐷𝑣𝑣 = stem diameter 1323 

            𝑁𝑁𝑣𝑣 = vegetation density (number of stems per m2) 1324 

            𝐶𝐶𝐷𝐷𝐷𝐷 = bulk form drag coefficient (Nepf and Vivoni, 2000) (value used = 1.13) 1325 

            𝑓𝑓 = includes a number of explicitly treated terms (e.g., Coriolis, baroclinic pressure  1326 

                  gradient, horizontal viscosity). 1327 

 1328 

Since SCHISM allows ‘polymorphism’ with mixed 2D and 3D cells in a single grid (Zhang et al. 2016), 1329 
there are different forms for the vertical eddy viscosity term (𝑚𝑚𝑧𝑧). 1330 
 1331 

 1332 
 1333 

 1334 

 1335 
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The vegetation term: 1336 

 1337 
 1338 

ν = eddy viscosity 1339 
 1340 
τw = the surface wind stress 1341 
 1342 
H=h+η is the total water depth (with h being the depth measured from a fixed datum) 1343 
 1344 

= the bottom drag coefficient 1345 
 1346 

 = the z-coordinate of the canopy.  1347 
    Note that u denotes the depth-averaged velocity in a 2D region. 1348 

 1349 
= the Heaviside step function 1350 
 1351 

 1352 
 1353 
 1354 

 1355 

Appendix B - TMM Numerical Formulation: Geometry and Discretization  1356 

 SCHISM-TMM is a finite-element model that uses a flexible unstructured grid (UG). For 1357 

the horizontal grid, hybrid triangular-quadrangular (quads) elements are employed to take 1358 

advantage of the superior boundary-fitting capability of triangles as well as efficiency/accuracy 1359 

of quads in representing certain features (e.g., channels) as needed.  1360 

 The basic 3D computational unit in SCHISM is a triangular prism or quad prism. Surface 1361 

elevations (η) are defined at the nodes, and the horizontal velocities (u, v) are defined at the side 1362 

centers and whole levels. The vertical velocity (w) is defined at the element centers and whole 1363 

levels, and the tracer concentration (C) is defined at prism center, as it is solved with a finite 1364 

volume method. The conformal and non-conformal linear shape functions (Le Roux 2012) are 1365 

used for elevations and velocities respectively. 1366 
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Boundary Conditions.  The differential equations previously described require initial 1367 

conditions (I.C.) and boundary conditions (B.C.). Generally, all state variables (η,u,C) are 1368 

specified at t=0 as I.C. In addition, some variables are specified at all open lateral boundary 1369 

segments (e.g. open ocean, rivers, etc.). At the sea-surface interface, SCHISM enforces the 1370 

balance between the internal Reynolds stress and the applied shear stress: 1371 

 𝜈𝜈 𝜕𝜕𝜕𝜕 𝜕𝜕𝑧𝑧 = 𝝉𝝉𝑤𝑤,   𝑧𝑧 = 𝜂𝜂                                                                                                           1372 

Since the bottom boundary layer is typically not well resolved in ocean models, the no-1373 

slip condition at the sea or river bottom (u = w = 0) is replaced by a balance between the internal 1374 

Reynolds stress and the bottom frictional stress, 1375 

  𝜈𝜈 𝜕𝜕𝜕𝜕 𝜕𝜕𝑧𝑧 = 𝝉𝝉𝑏𝑏, 𝑎𝑎𝑑𝑑 𝑧𝑧 = −ℎ.                                               1376 

For a turbulent boundary layer, the bottom stress is defined as: 1377 

  𝝉𝝉𝑏𝑏 = 𝐶𝐶𝐷𝐷|𝜕𝜕𝑏𝑏|𝜕𝜕𝑏𝑏                           1378 

 where 𝜕𝜕𝑏𝑏 is the near bottom velocity. 1379 

 1380 

Turbulence closure. The momentum equation and transport equation are not closed and 1381 

must be supplemented by turbulence closure equations for the viscosity/diffusivity. SCHISM 1382 

uses the Generic Length-Scale (GLS) model of Umlauf and Burchard (2003) with proper I.C. 1383 

and B.C. for each differential equation. 1384 

 1385 

 1386 

 1387 

 1388 

 1389 

 1390 
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Appendix C. Main Equations for Supporting Models 1391 

 Suspended Sediment Transport. Suspended sediment concentrations are computed as 1392 
follows (Pinto et al. 2012):  1393 
 1394 

 1395 

                                                                                                                                                                                         1396 

cj  - volume concentration of suspended sediment in class j 1397 
 u - horizontal velocity 1398 
 𝜿𝜿 - eddy diffusivity 1399 
 wsj - settling velocity 1400 
 𝑭𝑭𝒉𝒉 - horizontal mixing 1401 
 1402 
Spectral Wave Model (WWM-III). Governing equation for wave action is defined as (Ronald et al. 1403 
2012): 1404 
 1405 

 1406 
 where: 1407 
 1408 
 𝑁𝑁

(𝑡𝑡,𝑋𝑋,𝜎𝜎,𝜃𝜃) =  
𝐸𝐸(𝑡𝑡,𝑋𝑋,𝜎𝜎,𝜃𝜃)

𝜎𝜎

 1409 

 E = variance density of the sea level elevations 1410 
 σ = relative wave frequency 1411 
 θ = wave direction 1412 
 X = Cartesian coordinate vector (x, y) in the geographical space 1413 
 1414 
 1415 
 1416 
 1417 
 1418 
 1419 
 1420 
 1421 
 1422 
 1423 
 1424 
 1425 

𝜕𝜕𝑐𝑐𝑗𝑗
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Appendix D. Error matrices (TMM_REF and TMM_VEG) 1426 
 1427 
Table D.1 Error matrices for Carter Creek based on 100 random sample points. The upper 1428 
matrix displays the model results using the vegetation algorithm (TMM_VEG); the lower matrix 1429 
display model outputs using a roughness factor (TMM_RF). Each point was used to evaluate if 1430 
the current marsh conditions at that location agree with the conditions predicted by the model. 1431 
Bold numbers in the diagonal represents the counts where model outputs and current conditions 1432 
agree. 1433 
  1434 

CARTER 
CREEK 

  CURRENT TIDAL MARSH 
INVENTORY 

    

    No Change Marsh Gain Marsh Loss TOTAL Commission 
Error 

  No Change 45 2 7 54 0.17 

TIDAL 
MARSH 
MODEL 

Marsh Gain 2 8 0 10 0.20 

(TMM_RF)   Marsh Loss 8 0 28 36 0.22 

  TOTAL 55 10 35 100   

  Omission Error 0.18 0.20 0.20   0.19 

 1435 

 1436 

 1437 

 1438 

 1439 

 
CARTER CREEK  

   CURRENT TIDAL MARSH INVENTORY     

    No Change Marsh Gain Marsh Loss TOTAL Commission 
Error 

  No Change 52 2 9 63 0.17 

TIDAL MARSH 
MODEL 

Marsh Gain 1 9 0 10 0.10 

(TMM_VEG)  Marsh Loss 5 0 22 27 0.19 

  TOTAL 58 11 31 100   
  Omission Error 0.10 0.18 0.29   0.17 
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Table D.2 Error matrices for Taskinas Creek based on 100 random sample points. The upper 1440 
matrix displays the model results using the vegetation algorithm (TMM_VEG); the lower matrix 1441 
display model outputs using a roughness factor (TMM_RF). Each point was used to evaluate if 1442 
the current marsh conditions at that location agree with the conditions predicted by the model. 1443 
Bold numbers in the diagonal represents the counts where model outputs and current conditions 1444 
agree. 1445 
  1446 
  1447 

TASKINAS 
CREEK 

        CURRENT TIDAL MARSH 
INVENTORY 

    

    No Change Marsh Gain Marsh Loss TOTAL Comission 
Errror 

  No Change 50 5 7 62 0.19 

TIDAL MARSH 
MODEL 

Marsh Gain 1 19 0 20 0.05 

(TMM_VEG)  Marsh Loss 5 0 13 18 0.28 

  TOTAL 56 24 20 100   

  Omission 
Error 

0.11 0.79 0.35   0.18 

 1448 

Where Kappa statistic (K): 1449 
 1450 

 K = N ∑ xii− 
k
i=1 ∑ (x1+X x+1)k

i−1
N2−∑ (xi+

k
i=1 X x+1)

 1451 

 1452 
 1453 
 1454 
 1455 
 1456 

TASKINAS 
CREEK 

        CURRENT TIDAL MARSH 
INVENTORY 

    

    No Change Marsh Gain Marsh Loss TOTAL Commission 
Error 

  No Change 48 5 6 59 0.19 

TIDAL MARSH 
MODEL 

Marsh Gain 3 16 0 19 0.16 

(TMM_RF)  Marsh Loss 8 0 14 22 0.36 

  TOTAL 59 21 20 100   

  Omission Error 0.19 0.24 0.30   0.22 
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Appendix E.  Marsh sediment fraction distributions 1457 

Comparison between model outputs and field observations using the roughness factor (RF) to 1458 
determine marsh presence, and the vegetation algorithm (VEG). 1459 
 1460 

    
Mean 

Absolute Error 
(MAE) 

Observations 
Standard 

Deviation Ratio 
(RSR) 

Nash Sutcliffe 
Efficiency 

(NSE) 

Willmott 
Modified 
Index of 

Agreement 

  RF / VEG RF / VEG RF / VEG RF / VEG 
Carter 
Creek 

Sand 0.08 / 0.08 0.43 / 0.43 0.81 / 0.82 0.86 / 0.87 
Mud 0.08 / 0.08 0.43 / 0.43 0.81 / 0.82 0.86 / 0.87 

Taskinas 
Creek 

Sand 0.1 / 0.1 0.61 / 0.62 0.62 /0.62 0.83 / 0.82 
Mud 0.1/0.1 0.61/0.62 0.62 / 0.62 0.83 /0.82 

 1461 

Where:    1462 

Mean Absolute Error 
(MAE) 

𝐌𝐌𝐌𝐌𝐌𝐌 =
𝟏𝟏
𝒏𝒏
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𝑛𝑛

𝑖𝑖=0

𝑛𝑛

𝑖𝑖=0
𝑐𝑐 ∑ |𝑂𝑂𝑖𝑖 −  𝑂𝑂�|n

i=1
∑ |𝑃𝑃𝑖𝑖 −  𝑂𝑂𝑖𝑖|n

i=1
− 1 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒

�|𝑃𝑃𝑖𝑖 −  𝑂𝑂𝑖𝑖|  > 𝑐𝑐 �|𝑂𝑂𝑖𝑖 −  𝑂𝑂�|
𝑛𝑛

𝑖𝑖=0

𝑛𝑛

𝑖𝑖=0

   

c=2 

 

Nash_Sutcliffe Efficiency 
(NSE) 

NSE = 1 −  
� (𝑂𝑂𝑖𝑖 −  𝑃𝑃𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

� (𝑂𝑂𝑖𝑖 −  𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

 

 

 

Observations Standard 
Deviation Ratio (RSR) 

𝑅𝑅𝑆𝑆𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅

𝑆𝑆𝑇𝑇𝐷𝐷𝑅𝑅𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠
=

��∑ (𝑂𝑂𝑖𝑖 −  𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 �

��∑ (𝑂𝑂𝑖𝑖 −  𝑂𝑂�)2𝑛𝑛
𝑖𝑖=0 �
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Appendix F. Interpretation of the model performance measures – Levels of 1464 
agreements. 1465 
 1466 

                                        
 

Less than chance 
agreement 

Slight 
 agreement 

Fair 
agreement 

Moderate 
agreement 

Substantial 
agreement 

Almost perfect 
agreement 

Kappa Statistic 1 <0 0.01-0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-0.99 
 

 Unsatisfactory Satisfactory Good Very Good 
NSE 2  < 0.50 0.50 < NSE < 0.65 0.65 < NSE < 0.75 0.75 < NSE < 1.0 
RSR3   > 0.70 0.60 < RSR < 0.70 0.50 < RSR < 0.60 0.00 < RSR < 0.50 

                                            

 Possible values Optimal value Preferred values 

MAE 4 0 to ∞ 0 Low values 
Willmott index of agreement 4 5 0 to 1 1 0.5 to 1.0 6 

> 0.8 7 

 1467 

Based on:  1Viera and Garret, 2005; 2Moriasi et al. 2007; 3Singh et al. 2004; 4Bennett et al.2013; 1468 
5Willmott et al. 2012; 6Machiwal and Jha 2015; 7De Jager 1994. 1469 
 1470 

 1471 

 1472 

 1473 

 1474 

 1475 

 1476 

 1477 
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Appendix G – Change in Elevation of the Marsh Platform  1478 

Table G.1 Change in elevation of the marsh platform computed at each sampled point in Carter 1479 
Creek using the TMM_RF. The dominant process is identified in each point along the transects 1480 
(i.e., high marsh = H; medium marsh = M, and low marsh = L). 1481 
 1482 

ID                     
(Marsh 
Cores) 

Elevation 
Change in 

40 yrs (mm) 

Elevation 
Change 
per year 
(mm/yr) 

Location of 
the core 

Dominant 
Process 

1 0.0 0.0 L no change 
2 0.0 0.0 M no change 
3 0.0 0.0 H no change 
4 0.0 0.0 L no change 
5 0.0 0.0 M no change 
6 0.0 0.0 H no change 
7 -1131.8 -28.3 L erosion 
8 4.2 0.1 M deposition 
9 0.7 0.0 H deposition 

10 -134.1 -3.4 L erosion 
11 -861.5 -21.5 M erosion 
12 -710.7 -17.8 H erosion 
13 -832.8 -20.8 L erosion 
14 -300.4 -7.5 M erosion 
15 -687.3 -17.2 H erosion 
16 -253.4 -6.3 L erosion 
17 -223.0 -5.6 M erosion 
18 -529.9 -13.2 H erosion 
19 -106.9 -2.7 L erosion 
20 20.2 0.5 M deposition 
21 0.0 0.0 H no change 
22 149.8 3.7 L deposition 
23 0.0 0.0 M no change 
24 0.0 0.0 H no change 
25 0.0 0.0 L no change 
26 0.0 0.0 M no change 
27 0.0 0.0 H no change 
28 -776.1 -19.4 L erosion 
29 -5.0 -0.1 M erosion 
30 -118.8 -3.0 H erosion 
31 234.7 5.9 L deposition 
32 -0.2 0.0 M erosion 
33 0.0 0.0 H no change 
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Table G.2 Change in elevation of the marsh platform computed at each sampled point in Carter 1483 
Creek using the TMM_VEG. The dominant process is identified in each point along the 1484 
transects (i.e., high marsh = H; medium marsh = M, and low marsh = L). 1485 
 1486 

ID                     
(Marsh 
Cores) 

Elevation 
Change in 

40 yrs 
(mm) 

Elevation 
Change per 

year 
(mm/yr) 

Location 
of the 
core 

Dominant 
Process 

1 0.0 0.0 L no change 
2 0.0 0.0 M no change 
3 0.0 0.0 H no change 
4 0.0 0.0 L no change 
5 0.0 0.0 M no change 
6 0.0 0.0 H no change 
7 -418.5 -10.5 L erosion 
8 4.4 0.1 M deposition 
9 -4.3 -0.1 H erosion 

10 -23.5 -0.6 L erosion 
11 -611.1 -15.3 M erosion 
12 -603.1 -15.1 H erosion 
13 -313.3 -7.8 L erosion 
14 -258.0 -6.4 M erosion 
15 -552.6 -13.8 H erosion 
16 -175.6 -4.4 L erosion 
17 -110.3 -2.8 M erosion 
18 -170.5 -4.3 H erosion 
19 -41.1 -1.0 L erosion 
20 -2.1 -0.1 M erosion 
21 0.0 0.0 H no change 
22 119.2 3.0 L deposition 
23 0.0 0.0 M no change 
24 0.0 0.0 H no change 
25 0.0 0.0 L no change 
26 0.0 0.0 M no change 
27 0.0 0.0 H no change 
28 -255.6 -6.4 L erosion 
29 -6.2 -0.2 M erosion 
30 -74.4 -1.9 H erosion 
31 238.6 6.0 L deposition 
32 -0.1 0.0 M no change 
33 0.0 0.0 H no change 

 1487 
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Table G.3 Change in elevation of the marsh platform computed at each sampled point in 1488 
Taskinas Creek using the TMM_RF simulations. The dominant process is identified in each 1489 
point along the transects (i.e., high marsh = H; medium marsh = M, and low marsh = L).  1490 

ID                     
(Marsh Cores) 

Elevation 
Change in 40 yrs 

(mm) 

Elevation 
Change 
per year 
(mm/yr) 

Location of 
the core 

Dominant 
Process 

1 -5.4 -0.1 L erosion 
2 -5.2 -0.1 M erosion 
3 17.3 0.4 H deposition 
4 0.0 0.0 L no change 
5 0.0 0.0 M no change 
6 0.0 0.0 H no change 
7 0.0 0.0 L no change 
8 0.0 0.0 M no change 
9 0.0 0.0 H no change 

10 492.2 12.3 L deposition 
11 0.0 0.0 M no change 
12 0.0 0.0 H no change 
13 305.0 7.6 L deposition 
14 177.0 4.4 M deposition 
15 0.0 0.0 H no change 
16 279.6 7.0 L deposition 
17 0.0 0.0 M no change 
18 0.0 0.0 H no change 
19 -387.5 -9.7 L erosion 
20 0.0 0.0 M no change 
21 104.6 2.6 H deposition 
22 -0.5 0.0 L erosion 
23 0.0 0.0 M no change 
24 0.0 0.0 H no change 
25 -559.9 -14.0 L erosion 
26 0.0 0.0 M no change 
27 0.0 0.0 H no change 

 1491 

 1492 

 1493 

 1494 
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Table G.4 Change in elevation of the marsh platform computed at each sampled points in 1495 
Taskinas Creek using the TMM_VEG simulation. The dominant process is identified in each 1496 
point along the transects (i.e., high marsh = H; medium marsh = M, and low marsh = L).  1497 

1498 

ID              
(Marsh 
Cores) 

Elevation 
Change in 

40 yrs 
(mm) 

Elevation 
Change per 

year 
(mm/yr) 

Location 
of the 
core 

Dominant 
Process 

1 -1.9 0.0 L erosion 
2 -4.3 -0.1 M erosion 
3 6.9 0.2 H deposition 
4 0.0 0.0 L no change 
5 0.0 0.0 M no change 
6 0.0 0.0 H no change 
7 0.0 0.0 L no change 
8 0.0 0.0 M no change 
9 0.0 0.0 H no change 

10 608.7 15.2 L deposition 
11 0.0 0.0 M no change 
12 0.0 0.0 H no change 
13 157.2 3.9 L deposition 
14 68.0 1.7 M deposition 
15 0.0 0.0 H no change 
16 -460.2 -11.5 L erosion 
17 0.0 0.0 M no change 
18 0.0 0.0 H no change 
19 -432.3 -10.8 L erosion 
20 0.0 0.0 M no change 
21 112.6 2.8 H deposition 
22 0.1 0.0 L deposition 
23 0.0 0.0 M no change 
24 0.0 0.0 H no change 
25 -307.8 -7.7 L erosion 
26 0.0 0.0 M no change 
27 0.0 0.0 H no change 

1499 
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Fig. 1 a) York River system; b) Carter 
Creek and c) Taskinas Creek: study 
areas in the York River. Bright green 
areas represent tidal marshes. 
Background Image: 
VBMP2017/VBMP2017 WGS - 
Virginia Geographic Information 
Network (VGIN). 

FIGURES



Fig. 2 SCHISM modeling system. The dashed box indicates key components of the TMM. The 
hydrostatic core serves as the pillar of the system to provide hydrodynamic variables to other 
models, as well as to facilitate exchange of variables between models in a parallel software 
environment 



Fig. 3 Domain of the unstructured TMM_VEG grid used for the simulations in Carter Creek and 
Taskinas Creek. Background Image: ESRI world imagery 



Fig. 4 Comparison of the marsh boundary evolution outputs for Carter Creek – Hindcast outputs: 
changes in marsh boundary after 40 years of simulation with a sea level rise of 4 mm/yr.  Upper 
panel: TMM_VEG, Lower panel: TMM_RF simulations. Background image: 
VBMP2017/VBMP2017_WGS - Virginia Geographic Information Network (VGIN). 

Simulation using vegetation algorithm 

Simulation using roughness factor 



Fig. 5 Comparison of the marsh boundary evolution outputs for Taskinas Creek – Hindcast 
outputs: changes in marsh boundary after 40 years of simulation with a sea level rise of 4 mm/yr.  
Upper panel: TMM_VEG; Lower panel: TMM_RF simulations. Background image: 
VBMP2017/VBMP2017_WGS - Virginia Geographic Information Network (VGIN) 

Simulation using vegetation algorithm 

Simulation using roughness factor 



 

 

 

Fig. 6 Comparison of the changes in elevation of the marsh platform between the two 
simulations using the roughness factor (RF) and the vegetation algorithm (VEG) during the 
study period in Carter Creek. Positive numbers denote deposition, negative numbers correspond 
to erosion, and zero values indicate no change. 

 

 

 

 

 

 

 

 

 



 

Fig. 7 Comparison of the changes in elevation of the marsh platform between the two 
simulations using the roughness factor (RF) and the vegetation algorithm (VEG) during the 
study period in Taskinas Creek. Positive numbers denote deposition, negative numbers 
correspond to erosion, and zero values indicate no change. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Marsh boundary evolution output for Carter Creek. Forecast: 50-year simulation (2020-
2070). Upper panel intermediate SLR scenario (an example of barriers for marsh landward 
migration is highlighted: presence of a road at the marsh-upland interface).  Lower panel:  
extreme SLR scenario.  Background image: VBMP2017/VBMP2017_WGS - Virginia 
Geographic Information Network (VGIN). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Marsh boundary evolution output for Taskinas Creek. Forecast: 50-year simulation (2020-
2070). Upper panel intermediate SLR scenario. Lower panel:  extreme SLR scenario.  
Background image: VBMP2017/VBMP2017_WGS - Virginia Geographic Information Network 
(VGIN). 
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