
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Building Internet caching systems for streaming media delivery Building Internet caching systems for streaming media delivery

Songqing Chen
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, Songqing, "Building Internet caching systems for streaming media delivery" (2004). Dissertations,
Theses, and Masters Projects. William & Mary. Paper 1539623444.
https://dx.doi.org/doi:10.21220/s2-76n8-5k12

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-76n8-5k12
mailto:scholarworks@wm.edu

Building Internet Caching Systems for Streaming Media Delivery

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Songqing Chen

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

ten

Approved by the Committee, July 2004

o
Xiaodong Zhang, Chair

Phil Kearns

Dimitrios Nikolopoulos

Haining Wang

Zhen Xiao
AT&T Labs - Research

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

To my grandparents and parents.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

A cknow ledgm ents ix

List o f Tables x i

List o f Figures x ii

A bstract x v

1 Introduction 2

1.1 B ackground .. 2

1.2 Dissertation C ontributions.. 5

1.3 Dissertation Organization ... 8

2 Segm ent-based H igh Q uality Stream ing M edia P roxy D esigns 10

2.1 In troduction ... 10

2.2 Related W o rk ... 14

2.3 Prefetching Methods and Insights into Proxy J i t t e r .. 16

2.3.1 Look-ahead Window Based Prefetching Method 18

2.3.2 Active P re fe tc h in g 20

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 Segment-based Proxy Caching and Proxy Jitter Free Strategies . . . 24

2.3.4 Trade-off Between Low Proxy Jitter and High Byte Hit Ratio 25

2.4 Byte Hit Ratio vs. Delayed S tartup Ratio ... 26

2.4.1 Exponential Segmentation S tra tegy .. 27

2.4.1.1 Segmentation M e th o d .. 27

2.4.1.2 Admission Policy 28

2.4.1.3 Replacement P o l ic y .. 28

2.4.2 Adaptive-Lazy Segmentation S tr a te g y .. . 29

2.4.2.1 Aggressive Admission P o l ic y .. 29

2.4.2.2 Lazy Segmentation M e th o d ... 30

2.4.2.3 Two-Phase Iterative Replacement P o l i c y 30

2.4.3 Analytical M o d e l... 31

2.4.4 Performance Objective Analysis ... 34

2.4.4.1 Delayed Start Request R a t i o .. 34

2.4.4.2 Byte Hit Ratio 34

2.4.5 Performance Bound A n a ly s is ... 39

2.4.5.1 Delayed Start Request R a t i o ... 39

2.4.5.2 Byte Hit Ratio ... 41

2.4.6 Analytical Results 43

2.4.7 Improved Adaptive-Lazy Segmentation Strategy 44

2.5 The Hyper-Proxy S y s te m .. 45

2.5.1 Priority-based Admission P o l i c y 47

2.5.2 Active P re fe tc h in g .. 48

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.3 Lazy Segmentation P o lic y .. 49

2.5.4 Differentiated Replacement P o l i c y 50

2.6 Performance E v a lu a tio n ... 52

2.6.1 Workload S u m m a ry .. 52

2.6.2 Performance R e s u lts .. 53

2.7 S u m m a ry ... 58

3 Im plem entation and Evaluation o f a Segm ent-based Stream ing M edia

Proxy 60

3.1 In troduction ... 60

3.2 Related W o rk .. 65

3.3 Implementation of H y p e r-P ro x y 66

3.3.1 Streaming Engine 66

3.3.2 Local Content Manager and Schedu ler... 69

3.3.3 Segmentation-Enabled Cache E n g in e ... 71

3.3.4 Fast D ata P a t h 73

3.4 Performance Evaluation .. 75

3.4.1 Test Setup 75

3.4.2 Evaluation M e tric s .. 76

3.4.3 Experimental Results .. 76

3.4.3.1 Full Caching Approach 77

3.4.3.2 Effect of Segment Size 79

3.4.3.3 Effect of Proximity 81

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.3.4 Prefetching E ffec tiveness ... 85

3.4.3.5 Cache Efficiency Study Using a Real W ork load 86

3.5 S u m m a ry 89

4 Shared R unning Buffers (SR B) B ased P roxy Caching Stream ing Sessions 91

4.1 Introduction .. 91

4.2 Related W o rk .. 96

4.3 Shared Running Buffer (SRB) Media Caching A lg o rith m s............................. 97

4.3.1 SRB Algorithm: Related D efin itio n s ... 98

4.3.2 SRB Algorithm ... 100

4.3.2.1 SRB Buffer Lifecycle Management 101

4.3.2.2 SRB Buffer Dynamic Reclamation 105

4.3.2.3 SRB Buffer Replacement P o lic y .. 108

4.3.3 Patching SRB (PSRB) A lg o rith m .. 108

4.4 Performance Evaluation ... 110

4.4.1 Evaluation M e tric s .. 110

4.4.2 Performance of the WEB Workload I l l

4.4.3 Performance of the PART W o rk lo a d ... 115

4.4.4 Performance of the REAL W o rk lo ad ... 119

4.4.5 Further Analysis on the Client Channel R equirem ent.......................... 121

4.5 S u m m a ry ... 123

5 O ther R elated Work 125

5.1 Coordinating P2P System and Proxy for Streaming Media D elivery............. 125

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Detective Browser .. 126

5.3 Cooperatively Shared Proxy B ro w se rs 127

5.4 Dynamic Load Sharing W ith Unknown Memory Demands in Clusters . . . 128

5.5 Adaptive Memory Allocations in Clusters to Handle Large Data-Intensive Jobs 129

6 C onclusion and Future W ork 131

6.1 Conclusion 131

6.2 Future Work .. 133

6.2.1 Streaming Based on Proxy-assisted Transcoding 134

6.2.2 Cooperative Streaming Proxy to Support Mobile Computers 135

6.2.3 Live Streaming Enabled P r o x y .. 135

Bibliography 137

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

The past five years at William and Mary has been an exciting and challenging period
in my life. On my way to the Ph.D, I have obtained many helps from people around me. I
would like to take this opportunity to express my gratitude to them.

I would like to first thank my advisor, Dr. Xiaodong Zhang. He is a role model of hard
working, dedication, adopting a rigorous approach, and setting a high standard to research.
He has spent a lot of time on discussing the research projects with me and shaping my
research visions. He has been a constant source of inspiration whenever I need directions
and encouragement. It is with my deepest gratitude that I acknowledge him.

I also want to thank Drs. Phil Kearns, Dimitrios Nikolopoulos, Haining Wang and Zhen
Xiao to serve my committee and give me valuable input to my dissertation. I learned a
lot from Phil on systems. I also benefit from Dimitrios’s knowledgeable background across
many areas. I have known Haining and Zhen since 2001 in the ICDCS conference of the
year, and we have become collaborators on different projects.

The department of computer science at William and Mary is a great place to pursue my
graduate study. I have acquainted many people here. William Bynum and Teresa Long,
who have been reviewing many of my manuscripts, have taught me a lot on English writ
ing. They have been always encouraging and rigorous. Alumni and current members of
HPCS Lab, Zhao Zhang, Li Xiao, Zhichun Zhu, Xin Chen, Song Jiang, Lei Guo, Shansi
Ren, Xiaoning Ding, are always good sources to discuss different problems with when I
work here. Graduate students in the department are friendly to work with and have fun
together. Vanessa Godwin has always been there to take care many things for us. I feel
very happy to spend the past five years in such a nice environment.

During the summers of 2002 and 2003, I worked in HP Labs, Palo Alto, CA. I enjoyed
not only the shinning weather there, but also strong intellectual interactions with many re
searchers, including Drs. Bo Shen, Susie Wee, Yong Yan (a former HPCS member), Zhichen
Xu (a former HPCS member), Sumit Roy, Sujoy Basu, Wai-tian Tan, John Apostolopoulos,
Ackcorn John, Mitch Trott, and many others.

As an international student, I enjoyed the life in the College and the local Williamsburg
community very much. People here are warm-hearted and very helpful. Particularly, I want
to thank Dan Caprio and Carolyn Caprio, who brought me into their family five year ago
when I arrived here and keep helping me on many things.

W ithout the support from my family and friends, it would be impossible for me to
move forward to this point. The love from my grandparents, my parents, my sister and
my brother always encourages me when I am facing difficulties. The understanding and
support from many of my friends have been invaluable to my journey to the Ph.D.

Finally, I would like to thank two sources of financial support to my dissertation re-

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

search: (1) National Science Foundation under grants CCF-9812187, CNS-0098055, and
CCF-0129883, and (2) Hewlett-Packard Laboratories under a sponsored research agree
ment.

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 The notations for prefetching s tu d y 17

2.2 The items of Hyper-Proxy data structure for each object 46

2.3 The workload s u m m a ry .. 53

3.1 The content and access parameters of real workload .. 87

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Internet access infrastructures: clients access Web servers through proxies . 3

2.1 Byte hit ratio vs. delayed startup r a t io .. 43

2.2 WEB: jitte r byte ratio and delayed startup r a t i o .. 54

2.3 WEB: byte hit r a t i o ... 55

2.4 PART: jitter byte ratio and delayed startup ratio .. 55

2.5 PART: byte hit r a t i o ... 56

2.6 REAL: jitte r byte ratio and delayed startup ratio 57

2.7 REAL: byte hit ratio ... 58

3.1 Organization and protocols used in Hyper-Proxy system 63

3.2 Internal design of the Hyper-Proxy system: A client request is divided into

n sub-requests with different ranges, R] to R™, requesting different content

segments, D \ to D™. The Local Content Manager and Scheduler controls

when to send the next sub-request. The cache engine returns segment meta

data (Mg to M ”) to the Local Content Manager and Scheduler, and caches

the segments D j to D ” on the disk... 67

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 High level abstraction of an MP4 file: SDP represents the SDP information.

V-P represents video data packet while A-P represents audio-data packet. A-

H represents audio hint track information, while V-H represents video hint

track information. The media data packets axe accessed from the pointers of

SDP and hint track information in the order.................... 69

3.4 Performance of full caching approach: startup latency and miss processing 77

3.5 Performance of full caching approach: h an d sh ak e .. 78

3.6 Performance study with different segment s iz e 80

3.7 Client startup latency for local and remote ... 81

3.8 Time to handle a MISS for local and remote . .. 82

3.9 Time to handle a handshake for local and re m o te ... 83

3.10 Client perceived jitte r for local and remote ... 84

3.11 Squid handshake time and client perceived j i t t e r ... 85

3.12 Byte hit ratio and server traffic for segment-based caching strategies 87

3.13 False prefetch by Window and H a lf ... 89

4.1 Running buffer and interval caching .. 93

4.2 Greedy patching and grace p a tc h in g 95

4.3 Optimal p a tch in g 96

4.4 SRB memory allocation: the initial buffer freezes its size (1) 102

4.5 SRB memory allocation: the initial buffer freezes its size (2) 103

4.6 Data sharing among buffers in SRB algorithm .. 104

4.7 SRB memory reclamation: different situations of session term ination 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 An example of the PSRB algorithm ... 109

4.9 WEB: server traffic reduction and average client channel with 1GB Memory 112

4.10 WEB: storage requirement (%) with 1GB m e m o ry 112

4.11 WEB: bandwidth reduction and average client channel with the scale of 1/4 114

4.12 WEB: storage requirement (%) with the scale of 1 / 4 114

4.13 PART: bandwidth reduction and average client channel requirement with

1GB m e m o ry .. 115

4.14 PART: average client storage requirement (%) and client waste (%) with 1GB

m e m o ry .. 116

4.15 PART: bandwidth reduction and average client channel requirement with the

scale of 1 / 4 ... 117

4.16 PART: average client storage requirement (%) and client waste (%) with the

scale of 1 / 4 ... 117

4.17 REAL: bandwidth reduction and average client channel requirement with

1GB memory 118

4.18 REAL: average client storage requirement (%) and client waste (%) with

1GB memory 119

4.19 REAL: bandwidth reduction and average client channel requirement with the

scale of 1 / 4 ... 120

4.20 REAL: average client storage requirement (%) and client waste (%) with the

scale of 1 /4 . 120

4.21 Client channel requirement CDF: WEB and P A R T . 121

4.22 Client channel requirement CDF: R E A L . 122

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The proxy has been widely and successfully used to cache the static Web objects fetched
by a client so tha t the subsequent clients requesting the same Web objects can be served
directly from the proxy instead of other sources faraway, thus reducing the server’s load,
the network traffic and the client response time. However, with the dramatic increase of
streaming media objects emerging on the Internet, the existing proxy cannot efficiently de
liver them due to their large sizes and client real time requirements.

In this dissertation, we design, implement, and evaluate cost-effective and high perfor
mance proxy-based Internet caching systems for streaming media delivery. Addressing the
conflicting performance objectives for streaming media delivery, we first propose an efficient
segment-based streaming media proxy system model. This model has guided us to design
a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media
data to clients with minimum playback jitter and a small startup latency, while achieving
high caching performance. Second, we have implemented Hyper-Proxy by leveraging the
existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common
Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the
local network environment shows it can provide satisfying streaming performance to clients
while maintaining a good cache performance. Finally, to further improve the streaming
delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy
caching techniques to effectively utilize proxy’s memory. SRB algorithms can significantly
reduce the media server/proxy’s load and network traffic and relieve the bottlenecks of the
disk bandwidth and the network bandwidth.

The contributions of this dissertation are threefold: (1) we have studied several criti
cal performance trade-offs and provided insights into Internet media content caching and
delivery. Our understanding further leads us to establish an effective streaming system op
timization model; (2) we have designed and evaluated several efficient algorithms to support
Internet streaming content delivery, including segment caching, segment prefetching, and
memory locality exploitation for streaming; (3) having addressed several system challenges,
we have successfully implemented a real streaming proxy system and deployed it in a large
industrial enterprise.

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Building Internet Caching Systems for Streaming Media Delivery

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

W ith the emergence of new Internet techniques, the Web contents on the Internet have

increased substantially in two aspects: (1) the amount of the Web contents is increasing

exponentially; (2) the Web contents are evolving from simple and static text-based pages

to the more powerful dynamic contents and multimedia objects. Thus, the content delivery

on the Internet becomes increasingly complex and needs effective system support from

networking, systems and application software. This dissertation focuses on building cost-

effective and high performance Internet caching systems for delivering streaming media

contents.

1.1 Background

The wide deployment of the Web proxy mainly corresponded to the demand for efficient

delivery of the Increasing amount of the static Web pages1. The proxy can cache the static

Web pages delivered by the content server upon a client request, so that the subsequent

clients requesting the same pages can be directly served by the data stored in the proxy

1 Proxy servers can also be used as firewalls too.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION

Proxies _ Web Servers

■
Clients

Figure 1.1: Internet access infrastructures: clients access Web servers through proxies

locally, instead of going to other sources faraway (the content server, other peer proxies,

etc.), thus reducing the server’s load, the network traffic, and the client perceived response

time. To efficiently deliver the Web pages, normally the proxy is positioned close to the

client2. Thus, the basic infrastructure for the content delivery has evolved from the end-to-

end system to the server-proxy-client system, as shown on Figure 1.1. In this infrastructure,

a client request is firstly received by the proxy, although the existence of proxy can be

transparent to clients. If the proxy can serve the request from its local cache, the client can

get the response instantly without contacting the content server. Otherwise, the request

is forwarded to the content server. The response from the content server can be cached

in the proxy to serve the subsequent requests for the same object. Therefore, the proxy

caching strategies, other than the techniques for the server and the client, have been heavily

studied, mainly on caching the static Web objects to reduce the network traffic and the end-

2 The proxy positioned close the content server is called reverse proxy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. IN TRO D U CTIO N 4

to-end latency. Proxies, such as Squid [1], Harvest [14] and CERN h ttpd [78], have been

successfully used for caching static Web objects to reduce the Internet traffic and client

perceived response time.

However, with more and more complicated contents, especially the streaming media

contents, emerging on the Internet continuously, the proxy-based Internet content delivery

faces new problem: the benefit of the existing proxy caching is significantly reduced because

the proxy is incapable of cost-effectively handling the large amount of Internet streaming

media contents.

Streaming media contents have already been widely used in many applications, such as

education, entertainment, news, medical surgery cooperation, since its emergence on the

Internet. The amount of the streaming media has increased rapidly and is still continue to

increase: comparing the workloads of a 2002 study [99] and a 1999 study [116] in a similar

campus environment, the portion of network bytes ascribed to audio and video increased

by 300% and 400% [52], respectively. Being highly demanded by the society, the streaming

media contents bring many new challenges to the existing proxy-based Internet content

delivery networks due to the following two characteristics. (1) The size of a streaming

media object is usually several orders of magnitudes larger compared to the text-based

Web contents. For example, a MPEG2 video of two hours requires about 1 GB of disk

space, while a general text-based Web page is in the range of 10 KB. Thus, to entirely cache

several streaming media objects as caching the Web pages will quickly exhaust the cache

space and result in poor cache efficiency. (2) The demand and requirement of continuous

and timely delivery of the streaming media objects are more rigorous than that of the

text-based Web pages. In receiving streaming media data, the client always expects free

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO DU CTIO N 5

of jitte r playback and a small startup latency. However, existing proxies cannot satisfy

these real-time requirements because they only provide best-effort services. Due to these

problems, traditional proxies are not able to efficiently cache and deliver the streaming media

contents. Currently, the Internet streaming media delivery still relies on the client-server

model or the expensive commercial CDNs. In the client-server model, a lot of resources

have to be reserved for streaming media delivery, in which even a relatively small number

of client requests can overload a media server, causing bottlenecks by demanding high disk

bandwidth on the server and high network bandwidth to the clients, or the client has to

rely on the “progressive playback” where the quality of streaming is poor with frequently

introduced playback jitter. In the extreme case, the client has to download the entire object

before playback, where a large startup latency is expected.

1.2 D issertation Contributions

The objectives of this dissertation research are to design, implement, and evaluate a cost-

effective and high performance proxy-based Internet caching system for streaming media

delivery. We first propose an efficient segment-based streaming media proxy system model.

This model serves a foundation for us to further design a practical streaming proxy, called

Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum play

back jitter and a small startup latency, while achieving high cache performance. Second,

we implement Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy

pushes the streaming functions from the server to the proxy, which makes the streaming

traffic run on UDP [87] suffer from less data loss and no blocking. The evaluation of Hyper-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO D U CTIO N 6

Proxy on the global Internet environment connecting Japan and US west coast, and the

local network environment shows it can provide satisfying streaming performance to clients

while maintaining good cache performance. Finally, to further improve the streaming de

livery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy

caching techniques to effectively utilize proxy’s memory. SRB algorithms can significantly

reduce the media server/proxy’s load and network traffic and relieve the bottlenecks of the

disk bandwidth and the network bandwidth.

The major contributions of this dissertation are summarized as follows.

1. Studying the three major performance objectives for streaming media delivery sys

tems, namely, byte hit ratio in the proxy, startup latency perceived by a client, and

client perceived playback jitter, we find tha t two pairs of conflicting performance

objectives (byte hit ratio versus startup latency, and byte hit ratio versus playback

jitter) exist in the current segment-based streaming proxy designs. Using heuristic

and modeling approaches, we present effective solutions to address these two pairs

of conflicting objectives. Comprehensively considering their trade-offs based on the

best interests of clients, we propose an efficient segment-based streaming proxy design

model, where a streaming proxy guarantees continuous streaming delivery subject to

a small startup latency and high byte hit ratio. Guided by this model, we design

a streaming proxy, called Hyper-Proxy. Through the evaluations of Hyper-Proxy on

synthetic and real workloads, it shows th a t it can deliver the streaming media data

to clients with minimum playback jitte r and a small startup latency, while it also

achieves good cache performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO D U CTIO N 7

2. We have designed and evaluated several efficient algorithms to support Internet stream

ing content delivery, including segment caching, segment prefetching, and memory lo

cality exploitation for streaming sessions. We designed a method, called adaptive-lazy

segmentation, that delays the object segmentation as late as possible so tha t online

client access patterns can be monitored for partitioning the object into smaller seg

ments. We proposed window based prefetching and active prefetching methods to

ensure tha t uncached segments of an object can always be prefetched in time to elim

inate the client side playback jitter. The Shared Running Buffers (SRB) based media

caching algorithms are designed to efficiently handle streaming media contents in the

proxy’s memory by exploiting the memory access locality. In SRB algorithms, subse

quent client accesses to a same object are served through allocating a new dynamic

running buffer and sharing the data in existing dynamic running buffers instantly.

Patching SRB further expands the session sharing by utilizing the client side storage.

These algorithms have been demonstrated to significantly reduce the media server’s

load and network traffic, relieve the bottlenecks of the disk bandwidth and the network

bandwidth, and improve the client playback quality.

3. The implementation of Hyper-Proxy leverages the existing Internet infrastructure by

talking to the content server via H TTP [46] while talking to the client via RTP

[101]/RTSP [102]. Thus, it frees the media content server from streaming functions

and pushes these functions to the proxy close to clients. Therefore, the traditional Web

servers (e.g. Apache) now can provide real streaming service through Hyper-Proxy.

In addition, the real streaming traffic on the UDP protocol also suffers from less data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. IN TRO D U CTIO N 8

loss and no blocking. We evaluate Hyper-Proxy on the global Internet environment

connecting Japan and US west coast and the local network environments (LANs).

The results show it can provide satisfactory streaming performance to clients in both

environments while maintaining good cache performance.

The significance and potential impacts of this dissertation are as follows.

• Since available Internet streaming services are expensive, most Internet media users

take the downloading approach tha t generates a lot of unnecessary traffic and a large

startup latency, or the “progressive playback” approach tha t always results in frequent

playback jitter. Our work on streaming proxy design and implementation will provide

low-cost and high performance proxy-based streaming services, which will significantly

improve the Internet resource utilization.

• Our optimization model provides quantitative guidances to design an effective proxy-

based Internet caching system for streaming delivery, which can be extended for other

types of proxy designs, such as caching systems for other sophisticated multimedia

contents.

• The Hyper-Proxy has been successfully implemented and deployed in HP Company.

We expect its lasting impact in Internet streaming community after its trial stage.

1.3 Dissertation Organization

The organization of this dissertation is as follows. The design of Hyper-Proxy is presented

in Chapter 2. We describe the Hyper-Proxy implementation and evaluate its performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO D U CTIO N 9

in various environments in Chapter 3. SRB based algorithms are presented and evaluated

in Chapter 4. We further introduce some related work in Chapter 5. In Chapter 6, we make

concluding remarks and briefly present the future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Segm ent-based High Quality

Stream ing M edia Proxy Designs

2.1 Introduction

Proxy caching has been widely used to cache static (text/image) objects on the Internet so

that subsequent requests to the same objects can be served directly from the proxy without

contacting the server. However, the proliferation of Internet multimedia contents makes

proxy caching challenging [13, 32, 68, 82, 91, 93, 104, 124]:

1. The size of media objects is usually several orders of magnitudes larger than traditional

Web content. For example, a one-hour movie encoded using MPEG4, at desktop

resolution, may require more than 1 GByte storage space. This limits the number

of objects tha t can be completely stored in a caching proxy. It also results in large

startup latencies if the object is not already cached.

2. Multimedia objects generally have very stringent demands in terms of continuous and

timely delivery. This is especially challenging in the current Internet, which only

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 11

provides best-effort services.

3. Prior research has observed tha t most of the media objects are only partially viewed [30,

31]. Using traditional, static Web caching techniques to cache these large objects thus

wastes storage and causes unnecessary network traffic.

To solve the problems caused by large-sized media objects, researchers have developed a

number of segment-based proxy caching strategies [18, 23, 92, 94, 104, 117] that cache par

tial segments of media objects instead of their entirety. The existing segment-based proxy

caching strategies can be classified into the following two types based on their performance

objectives. The first type focuses on the reduction of the client perceived startup latency

(denoted by the delayed startup ratio) by always giving a higher priority to caching the be

ginning segments of media objects based on the observation that clients tend to watch the

beginning portions [30, 31], For example, prefix caching [104, 111] always breaks a media

object into a prefix segment and a suffix segment. The proxy caches the prefix segments

only so tha t the cache can preserve prefix segments for more objects. The second type

aims at reducing network traffic and the server workload by improving proxy caching effi

ciency, namely the byte hit ratio. For example, uniform segmentation strategy [94] considers

caching of fixed-sized segments of layer-encoded video objects. The exponential segmen

tation strategy [18, 117] caches segments of media objects in a way that the succeeding

segment doubles the size of its preceding one. The most recently proposed adaptive-lazy

segmentation strategy [23] can achieve the highest byte hit ratio by delaying the object

segmentation as late as possible till some real time access information is collected for this

object so tha t the most popular part of this object can be identified. These proxy-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 12

caching strategies emphasize on improving the proxy caching efficiency.

However, these segment-based proxy caching strategies cannot automatically ensure

continuous streaming delivery to the client. In a segment-based proxy caching system,

since only partial segments of objects are cached in the proxy, it is im portant for the proxy

to fetch and relay the uncached segments to the client in time whenever necessary. A delayed

fetch of the uncached segments, which we call proxy jitter, causes the discontinuous delivery

of media content. Proxy jitter aggregates onto the playback jitte r at the client side. Once

a playback starts, jitte r is not only annoying but can also potentially drive the user away

from accessing the content. Thus, for the best interests of clients, the highest priority must

be given to minimize proxy jitter, and a correct model for media proxy cache design should

aim to minimize proxy jitte r subject to reducing the delayed startup ratio and increasing

the byte hit ratio.

To reduce proxy jitter, one key is to develop prefetching schemes tha t can timely prefetch

uncached segments. Some early work has studied the prefetching of multimedia objects [67,

69, 92, 94]. For layer-encoded objects [92, 94], the prefetching of uncached layered video

is done by always maintaining a prefetching window of the cached stream, and identifying

and prefetching all the missing data within the prefetching window with a fixed time period

(length of T) ahead of their playback time. In [67], the proactive prefetch utilizes any

partially fetched data due to the connection abortion to improve the network bandwidth

utilization. In [69], prefetching is used to prefetch a certain amount of data so tha t caching

is feasible. Unfortunately, little prefetching work has been found to efficiently solve the

proxy jitter problem in the context of segment-based streaming proxy caching.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM ING P R O X Y DESIGNS 13

Improving the byte hit ratio increases proxy caching efficiency, while reducing proxy

jitte r provides clients with a continuous streaming service. Unfortunately, these two ob

jectives conflict with each other. Furthermore, we have also observed that improving the

byte hit ratio conflicts with reducing the delayed startup ratio [23]. These three conflicting

objectives form two pairs of trade-offs that complicate the design model. No previous work

has been found to address the balancing of these trade-offs, which are uniquely important

to streaming media proxy systems.

In this chapter, we first propose a look-ahead window based prefetching method and

an active prefetching method for the in-time prefetching of uncached segments, which not

only gives an effective solution to address the proxy jitte r problem, but also provides in

sights into the trade-off between improving the byte hit ratio and reducing proxy jitter.

Second, to effectively addresses the conflicting interests between reducing startup latency

and improving byte hit ratio, we build a general model to analyze the performance trade

off between the second pair of conflicting performance objectives and provide an effective

approach to balance them. Finally, considering our main objective of minimizing proxy

jitter and balancing the two trade-offs, we propose a new streaming proxy system called

Hyper-Proxy [25] by effectively coordinating both prefetching and segmentation techniques.

Hyper-Proxy depends on the H TTP channel for prefetching, while it interfaces with clients

in a RTP [101]/RTSP [102] streaming channel. Synthetic and real workloads are used to

systematically evaluate the system. The performance results show tha t the Hyper-Proxy

system generates minimum proxy jitte r with a low delayed startup ratio and a small de

crease of byte hit ratio compared to existing schemes. Our study also indicates that the

standard objective of improving the byte hit ratio commonly used in proxy caching for Web

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 14

objects is not suitable to streaming media delivery.

The rest of this chapter is organized as follows. Some related work is introduced in

Section 2.2. We propose prefetching methods and provide insights into proxy jitte r in

Section 2.3. The second pair of conflicting interests is addressed in Section 2.4. The Hyper

Proxy system is presented in Section 2.5. We evaluate it in Section 2.6 and we make chapter

summary in Section 2.7.

2.2 Related Work

The proxy caching strategies have been mainly studied in the context of static Web contents

and have therefore been the focus of many studies, mainly on caching the static Web

pages [11, 12, 16, 39, 41, 44, 49, 54, 72, 73, 75, 113, 114] and dynamic contents [15, 17, 19,

40, 59, 63, 77, 89, 105, 122, 125] to reduce the network traffic and the end-to-end latency.

Recently, many characterizations of media workloads [6, 9, 33, 42, 52, 56, 57, 80, 83, 84,

109, 112] have been performed and a lot of streaming media caching systems have been

studied in [18, 23, 30, 31, 32, 51, 104, 117]. Some researchers [30, 31] have observed that

most of the clients intend to watch the initial parts of the media objects and there are less

and less accesses on the later portions. Based on this observation, the segment-based proxy

caching strategies are proposed. The segment-based caching strategies cache media objects

in segments instead of in full to reduce the user perceived startup latency and to reduce the

network traffic to media servers and the disk bandwidth requirement to the media server.

Among them, the prefix caching [104] was proposed earlier to segment the media object as

prefix segment and suffix segment. Its protocol consideration as well as partial sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 15

caching are studied in [32, 51]. More recently, two types of new segmentation strategies had

been developed according to how the object is divided. The first is to use uniform sized

segments. For example, Rejaie et al [94] considers the caching of fixed sized segments of

layer-encoded video objects. In our adaptive-lazy segmentation strategies proposed in [23],

each object has itself segmented as late as possible and has a uniform segment length

determined according to the client access pattern. The uniform is only to each object while

different objects may have different segment lengths. The second is to use exponential

sized segments. In this strategy, media objects are segmented in a way that the size of

a segment doubles that of its preceding one [117]. The intuition of this strategy is based

on the assumption that later segments of media objects are less likely to be accessed. A

combining use of these methods can be found in [18], in which the simple constant length

and the exponentially increased length are both considered in RCache and Silo.

In a finer granularity for Internet video delivery, some strategies are also proposed based

on the video frames. In video staging [124], a portion of bits from the video frames whose

size is larger than a predetermined threshold is cut off and prefetched to the proxy to reduce

the bandwidth on the server proxy channel. In [92, 93, 94], a similar idea is proposed for

caching scalable videos that co-operates with the congestion control mechanism. In [79],

the proposed approach attem pts to select groups of consecutive frames by the selective

caching algorithm, while in [82], the algorithm may select groups of non-consecutive frames

for caching in the proxy. The caching problem for layered encoded video is studied in [68].

The context-aware segmentation is studied in [74]. The cache replacement of streaming

media is studied in [91, 106].

P2P assisted media streaming has also been studied [35, 58, 64, 85, 96, 108]. In [85, 108],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 16

multicast trees are studied for live media streaming, while P2P streaming schemes for

layer-encoded media are proposed in [35, 96]. Work in [58, 64] proposes a Guntella-like

unstructured P2P media streaming system and a structured P2P media streaming system.

2.3 Prefetching M ethods and Insights into Proxy Jitter

Prefetching schemes can reduce proxy jitte r by fetching uncached segments before they are

accessed. However, an efficient prefetching method should consider the following two con

flicting interests in the proxy. On one hand, proxy jitte r occurs if the prefetching of uncached

segments is delayed. To avoid jitter, the proxy should prefetch uncached segments as early

as possible. On the other hand, aggressive prefetching of uncached segments requires extra

network traffic and storage space to temporarily store the prefetched data. Even worse, the

client session may terminate before the prefetched segments are accessed. This observation

indicates that the proxy should prefetch uncached segments as late as possible. This contra

diction requires that the proxy accurately decides when to prefetch which uncached segment

in a way to minimize the proxy jitte r as well as to minimize the resource usage (network

and storage). In this section, we propose a look-ahead window based prefetching method

and an active prefetching method, which jointly consider both objectives. Our subsequent

analysis further provides the insights into the conflicting interests between reducing proxy

jitte r and improving the byte hit ratio.

In our analysis, the following assumptions are made.

• The object has been segmented and is accessed sequentially;

• The bandwidth of the proxy-client link is large enough for the proxy to stream the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 17

content to the client smoothly; and

• Each segment of the object can be fetched from the server (either the origin server or

a cooperative one) in a unicast channel.

Since the prefetching is segment based, several related notations used in the analysis are

listed in Table 2.1. Note tha t each media object has its inherent encoding rate, which is the

Table 2.1: The notations for prefetching study

B s the average encoding rate of a certain object segment
the average network bandwidth of the proxy-server link

k the to tal number of segments of the object
n the number of cached segments of the object

Si the i t>l segment of the object
Li the length of the i th segment
L b the base segment length of the object, L& = L\

playback rate. The rate is not a constant in variable bit rate video, but we use B s to denote

its average value. Bt may vary dynamically when different segments are accessed. The

proxy monitors Bt by keeping records of the data transmission rate of the most recent prior

session with the same server. The transmission rate is calculated by dividing the amount

of transferred data by the data transmission duration.

For a requested media object, assume there are n segments cached in the proxy. The

goal is to determine when to schedule the prefetching of the uncached (n + l) th segment,

Sn+1 , so that proxy jitte r is avoided. We denote the scheduling point as x.

Note that prefetching is not necessary when B s < Bt, so the following discussion is

based on when B s > Bt-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 18

2 .3 .1 L ook -ah ead W in d o w B a sed P r e fe tc h in g M e th o d

The major action of the look-ahead window based prefetching is to prefetch the succeeding

segment if it is not cached when the client starts to access the current one. The window

size is thus fixed for the uniformly segmented object and is exponentially increasing for the

exponentially segmented object.

When B s > Bt, assume the prefetching of the next uncached segment Sn+\ starts when

the client starts to access the position x in the current segment Sn. Thus, x is the position

that determines the starting time of prefetching, called the prefetching scheduling point.

To denote y as y = L n — x and to guarantee the in-time prefetching of the next uncached

segment, we have

y + L n+i ^ Ln+i^ (2.1)

which means

Bs B t

Since y = L n - x, thus

L n + 1 x (Bs - B t) x < L n - -2 ± i— L_i----- 12. (2.3)
t i t

We can calculate the prefetching starting point as the percentage of the current segment by

dividing x by L n , which leads to

f < 1 - ^ + 1 X A _ 1). (2.4)
Lin L/n L>t

Equation (2.4) means to prefetch the next uncached segment when the client has accessed

the 1 — x (-g4 — 1) portion of current segment. Accordingly, the size of the minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 19

buffer size is x Bt, which is Ln+1 x (1 — ^ t). Once we know the minimum buffer size,

we know that in the worst case, the fully buffered prefetched data may not be used by the

client, which means the maximum amount of wasted prefetched data, W , has the same size

as the buffer. Thus, we always give the minimum buffer size by the following analysis.

For objects segmented uniformly (e.g. by uniform segmentation or adaptive-lazy seg

mentation) or exponentially (such as by exponential segmentation), the situations are as

follows:

• For the uniformly segmented object, by Equation (2.3), we have < 2—jfi. It implies

tha t B s could not be 2 times larger than Bt. The minimum size is L\ x (1 — The

prefetching of the next uncached segment starts when the client has accessed to the

2 ~ e f Porti°n of the current segment.

• For the exponentially segmented object, by Equation (2.3), we have ^ < 3 - 2 x

It implies th a t B s could not be 1.5 times larger than B t . The minimum size is

L n.|-i x (1 — ^), which increases exponentially. The prefetching of the next uncached

segment starts when the client has accessed the 3 - 2 x portion of the current

segment.

Above analysis shows that this look-ahead window based prefetching method does not

work when B s > 1.5Bt for the exponential segmentation strategy, and it does not work

when when B s > 2Bt for the uniform segmentation strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS

In addition, since B a > B t, we have

20

B s > Bt > 1

=> > 1 - 2 x

=4* 2 - f j - > 3 — 2 x i l
B t ‘

(2.5)

The left side of Equation (2.5) represents the prefetching scheduling point for the uniform

segmentation strategy, while the right side denotes that for the exponential segmentation

strategy. Thus, Equation (2.5) states tha t the prefetching of the next uncached segment for

the exponential segmentation strategy is always earlier than that for the uniform segmen

tation strategy, causing a higher possibility of wasted resources.

Since the condition of B s > Bt is quite common in practice, the look-ahead window

based prefetching method has a limited prefetching capability in reducing the proxy jitter.

Next, we will address its limit by an active prefetching method.

2 .3 .2 A c tiv e P re fe tch in g

If the prefetching is conducted more aggressively, we are able to further reduce proxy jitter,

and of course, which will also consume more resources. The basic idea of our second

method, active prefetching, is to preload uncached segments as early as when the client

starts to access a media object.

We re-define the prefetching scheduling point, x, as the position in the first n cached seg

ments (instead of a position in the n th segment for the look-ahead window based prefetching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 21

method) that is accessed by a client. As soon as this prefetching scheduling point is accessed,

the prefetching of n + 1th segment must start in order to avoid the proxy jitter. Again, the

objective of our prefetching is to determine when to prefetch which uncached segment so

tha t proxy jitte r is minimized with the minimum amount of resource requirement.

At position x, the length of the to-be-delivered data from the cache is Xw=i — x. To

avoid proxy jitter, the time that the proxy takes to prefetch S n + 1 must not exceed the time

tha t the proxy takes to deliver the rest of the cached data and the fetched data. T hat is,

the following condition must be satisfied to avoid proxy jitter:

L n + l ^ -fin-j-l
B s ~ B t

Therefore, the latest prefetching scheduling point to avoid proxy jitte r is:

* = Lra±1 * & - ? *) .. (2.6)
i= 1 t

Refer back to our objectives, when x is selected as the prefetching scheduling point, the

buffer size required for the prefetched data reaches the minimum:

x B t . (2.7)
JDS

We now discuss the active prefetching method for objects segmented differently by first

determining the prefetching scheduling point and then discussing the prefetching scheme

and resource requirements.

• For the uniformly segmented object, Li = Li, based on Equation 2.6, we have the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 22

latest scheduling point x as

x = (n + l) L 1 - ^ L 1. (2.8)
Bt

Equation 2.8 states that if n + 1 > in-time prefetching of 5n + 1 is possible with

the minimum required buffer size of

L l x <2,9)

However, Equation 2.8 also indicates that if n + 1 < in-time prefetching of Sn+i

is not possible! Therefore, when n + 1 < and the segments between n + 1th and

r f f are demanded, proxy jitte r is inevitable. To minimize future proxy jitter under

this situation, the proxy needs to prefetch the segment instead of the n + 1th

segment.

For uniformly segmented objects, active prefetching works as follows:

— n = 0: No segment is cached. Proxy jitter (in this case, startup latency) is

inevitable. To avoid future proxy jitter, prefetching of the segment is

necessary. The minimum buffer size required is (1 —)L \ .

— n > 0 and n + 1 < The proxy starts to prefetch the segment once the

client starts to access the object. If the segments between n + 1th and — l] th

are demanded, they are fetched on demand, and proxy jitte r is inevitable. The

minimum buffer size required is (1 — ^) L \ .

— n > 0 and n + 1 > jg: The prefetching of Sn+1 is scheduled when the streaming

reaches the position of (n -I-1 — %^)Li of the first n cached segments. Proxy jitter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 23

can be completely eliminated in this case, and the minimum buffer size required

is (1 ~ HO-ki-

• For the exponentially segmented object, active prefetching works as follows. Here, we

assume B s < 2Bt- When B s > 2Bt, no prefetching of the uncached segments can be

in time for the exponentially segmented objects.

— n = 0: No segment is cached. Proxy jitte r (in this case, startup latency) is

inevitable. To avoid future proxy jitter, the prefetching of the [1 + /og2 (^~~5 r)] fft
1 Bt

segment is necessary once the client starts to access the object. The minimum

buffer size required is L \ x 2xg

— n > 0 and n < Zog2(—^g-): The proxy starts to prefetch the [1 + log2 (-~~wz)} th
2 ~ B t 1 B t

segment once the client starts to access this object. Proxy jitter is inevitable

when the client accesses data of the n + 1th segment to the [1 + log2 { ~ s z) Y h
1 B t

segment. The minimum buffer size is L iB t /B s, where i = [1 + fog2 (r~gy)l-
1 Bt

— n > 0 and n > fog2(- - ^) : The prefetching of the n + I th segment starts when
2_ Bt

the client accesses to the 1 - x ~ !) portion of the first n cached

segment. The minimum buffer size is L n+\ x and increases exponentially for

later segments.

Our proposed active prefetching method gives the optimal prefetching scheduling point

whenever possible with minimum resource usage. However, under certain conditions

the prefetching of uncached segments may still be delayed as our analysis showed,

for both uniformly and exponentially segmented objects. Furthermore, the analysis

also finds tha t the uniformly segmented object has advantages over the exponentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 24

segmented object: it offers enhanced capability for in-time prefetching and the in-time

prefetching can always begin in a later stage.

2 .3 .3 S eg m en t-b a se d P r o x y C a ch in g an d Proxy J it te r Free S tra teg ie s

The previous section shows tha t active prefetching cannot always guarantee continuous

However, for any caching strategy, if there are always enough number of segments being

cached in the proxy, prefetching of the uncached segments can always be in time. To

evaluate this situation, we define free-of-jitter length as follows:

• free-of-jitter length: the minimum length of data tha t must be cached in the proxy

in order to guarantee the continuous delivery when B s > Bt- We denote m as the

number of segments with the aggregated length equal to the free-of-jitter length, called

free-of-jitter segments.

In-time prefetching must guarantee, in the worst case, that the prefetching of the rest

of segments is completed before the delivery of the whole object, tha t is:

This indicates tha t the following condition must be satisfied to guarantee in-time prefetch

ing:

media delivery, which is one of the most im portant objectives for the streaming delivery.

(2 .10)
B s BtB t

(2 .11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 25

• For the uniformly segmented object, since Lb is the base segment length, the minimum

m to satisfy the above condition is:

• For the exponentially segmented objects, since Li = 2Lj_i, the minimum m to satisfy

the condition is:

r , f t) £ i = l L * v-, . , / o l O ' ,m - \log2{-----------------a—---)| + 1- (2.13)
Lb

2 .3 .4 Trade-off B e tw e e n L ow P r o x y J it te r and H ig h B y te H it R a tio

We have calculated the minimum number of segments tha t must always be cached in the

proxy to guarantee a continuous delivery of the streaming media object. Thus we can

estimate how much cache space we need to guarantee a proxy-jitter-free delivery. However,

in practice, we always have limited cache space and cannot cache all these segments for

each object.

In an actual segment-based proxy caching system, popular objects are always cached

to reduce network traffic and server load. If an object is popular enough, all its segments

can be cached in the proxy, possibly larger than its free-of-jitter length. If an object is not

popular enough, some segments may get evicted and only a few of its segments are cached.

The aggregated length of these segments may be less than its free-of-jitter length, which

causes proxy jitte r when the uncached segments are demanded by the client. Given a higher

priority in reducing the proxy jitter, the proxy can choose to evict segments of the object

whose cached data length is larger than its free-of-jitter length. The released cache space

can be used to cache more segments of the object whose cached data length is less than its

]■ (2 .12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 26

free-of-jitter length so tha t the prefetching of its uncached segment can always be in time.

It is possible tha t segments of popular objects are evicted, which may reduce the byte hit

ratio. However, since there are more objects with enough segments cached to avoid delayed

prefetching, overall proxy jitte r is reduced. From this transition, we can see tha t the byte

hit ratio can be traded for less proxy jitter.

The insights of the conflicting interests between improving the byte hit ratio and reduc

ing proxy jitte r have motivated us to revise the principle to design a highly effective proxy

caching system, aiming to minimize the proxy jitter.

2.4 B yte Hit Ratio vs. Delayed Startup R atio

From the previous study [23], we have observed tha t segment-based proxy caching strategies,

typically the adaptive-lazy segmentation and exponential segmentation, always perform well

in the byte hit ratio, but perform not so well in the delayed startup ratio, or vice versa.

This observation leads us to conjecture that there are some conflicting interests between the

objectives of improving the byte hit ratio and reducing the delayed startup ratio. We must

understand these insights before we can design a correct system according to our design

model.

In this section, we formalize the problem and mathematically analyze this trade-off. An

analytical model is built to analyze these two representatives: exponential segmentation

and adaptive-lazy segmentation for the ideal situation where the objects are cached in the

proxy in the order of their popularities. Thus the effect of other factors can be excluded

so tha t we can understand the performance insights. Firstly, we briefly review the two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 27

representative strategies we will examine with the following notations.

(1) T\: the time instance the object is accessed for the first time;

(2) Tr: the last reference time of the object. It is equal to Tj when the object is accessed

for the first time;

(3) Tc: the current time instance ;

2 .4 .1 E x p o n e n tia l S e g m e n ta tio n S tr a te g y

The exponential segmentation strategy segments each media object exponentially. It then

admits the segments of the object according to their relative positions in the object and

their caching utilities by the admission policy. The segment replacement uses the LRU

policy for the replacement of the beginning segments and always replaces the segment with

the least caching utility for the later segments, respectively. More details can be found

in [117].

2.4.1.1 Segm entation M ethod

A media object is divided into multiple equal-sized blocks. Multiple blocks are then grouped

into a segment by the proxy. The size of a segment is sensitive to its distance from the

beginning of the media object. The number of blocks grouped in segment i is 2l~l . In

general, segment i is twice as large as segment i — 1. The purpose of this method is to allow

the proxy to quickly discard a big chunk of cached media objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 28

2.4.1.2 A dm ission Policy

A two-tiered approach is used for admission control. For a segment with a segment number

smaller than a threshold, K min, it is always eligible for caching. However, for a segment

with a segment number equal to or larger than K min, it is determined to be eligible for

caching only if its caching utility is larger than some cached segments also with segment

number equal to or larger than K min. For this purpose, a portion of the cache space is

reserved to store the beginning segments only while the remaining of the cache space is

used to store the later segments. W ith such a cache admission control, at least the first

K min segments are stored for any cached objects by reserving a cache portion large enough

for the beginning segments.

2.4.1.3 R eplacem ent Policy

The caching utility of a segment depends on the reference frequency of an object and the

segment distance. It is defined to be the ratio of reference frequency over the segment

distance. The reference frequency is estimated as ■ As a result, the caching utility

of segment i of an object is defined as (y)xt-- According to the caching utility of the

segment, two LRU stacks are maintained for the first K min segments and the later segments.

When an object is requested for the first time, the first K min segments are always eligible

for caching as a unit and the LRU scheme is used to find the replacement, while the later

segments are always not cached for the first time. A later segment is eligible to cache only

if its caching utility is greater than that of its replacement segment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 29

2 .4 .2 A d a p tiv e -L a zy S e g m e n ta tio n S tr a te g y

We proposed adaptive-lazy segmentation for streaming media object caching in the proxy by

always caching the popular segments depending on the real time client access patterns [23].

In this strategy, each object is fully cached by the aggressive admission policy when it is

accessed for the first time. The fully cached object is kept in the cache until it is chosen as

an eviction victim by the replacement policy. At which time, the object is segmented using

the lazy segmentation method and some segments are evicted by the replacement policy.

From then on, the segments of the object are adaptively adm itted or adaptively replaced

segment by segment. The following additional notations are needed to define this strategy.

(4) Lsum' the sum of the duration of each access to the object;

(5) n a: the number of accesses to the object;

(6) Lb', the length of the base segment;

(7) n s: the number of the cached segments of the object.

Thus, at time instance Tc, the access frequency F is denoted as T ™*T , and the average

access duration L avg is denoted as

2.4.2.1 Aggressive A dm ission Policy

For any media object, the cache admission is considered aggressively in one of the following

procedures whenever the object is accessed. (1) If the object is accessed for the first time,

the whole object is subsequently cached regardless of the request’s accessing duration. The

cache space is allocated through the replacement policy if there is no sufficient space. (2)

If the object has been accessed and is fully cached, no cache admission is necessary. (3) If

the object has been accessed but it is not fully cached, the proxy aggressively considers to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 30

cache the (ns + 1)th segment if L avg > ^ x (n, + 1) x Lfc. The inequality indicates that

the average access duration is increasing to the extent that the cached n s segments can not

cover most of the requests while a to tal of ns + 1 segments can for a normal distribution.

Therefore, the proxy should consider the admission of the next uncached segment.

2.4.2.2 Lazy Segm entation M ethod

The basic idea of the lazy segmentation method is as follows. If the victim object chosen

for replacement turns out to be fully cached, the proxy segments the object in the following

way. The average access duration L avg at tha t time instance is calculated. It is used as the

length of the base segment of this object, that is, Lb — L avg. Note tha t the value of Lb is

fixed once it is determined. The object is then segmented uniformly according to Lj. After

that, the first 2 segments are kept in cache, while the rest is evicted by the replacement

policy.

2.4.2.3 T w o-Phase Iterative R eplacem ent Policy
Tr-T-j

j-sitm. xMIN{ 1, _}
By defining the utility function as - z~h— luxL ’•............, the two-phase iterative replacement

policy works as follows. Upon an object admission, if there is not enough cache space, the

proxy chooses the object with the smallest utility value at tha t time as the victim, and the

segment of this object is evicted in one of the two phases as follows. (1) First Phase: If the

object is fully cached, the object is segmented by the lazy segmentation method. The first

2 segments are kept and the remaining segments are evicted right after the segmentation is

completed. Therefore, the portion of the object left in cache is of length 2 x Lb. Given that

Lb — L aVg at this time instance, the cached 2 segments cover a normal distribution in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 31

access duration. (2) Second Phase: If the object is partially cached, the last cached segment

of this object is evicted. The utility value of the object is updated after each replacement

and this process repeats iteratively until the required space is found.

2 .4 .3 A nalytical M o d el

Having reviewed the two representative strategies, now we formalize the problem and build

a general analytical model for the adaptive-lazy segmentation and exponential segmentation

strategies. We assume:

(1) The popularity of the objects follows a Zipf-like distribution [4, 38, 62], which models

the probability set pi, where pi = , (i =1, 2, ..., N, N is the to tal number of objects)
X i = 1 Ji

and f i = Jr, where 9 > 0 and is the skew factor;

(2) The request arrival interval process follows Poisson distribution with a mean arrival rate

A. The request arrival interval process to each individual object is independently sampled

from the aggregate arrival interval process based on probability set pi, where Y iZ i Pi — 1;

(3) The clients view the requested objects completely. This is to simplify the analysis and

does not affect the conclusion.

These assumptions indicate tha t the mean arrival rate for each object is:

To evaluate the delayed startup ratio, we define the following notation:

• startup length: the length of the beginning part of an object. If this portion of the

object is cached, no startup delay is perceived by clients when the object is accessed.

Aj = \p i — A x
l
¥

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 32

We use a to denote the percentage of the startup length with respect to the full object

length1.

Other notations used in the discussion are listed below:

• L lobj\ the full length of the ith object, where 1 < i < JV;

• the average length of the objects;

• C: the to tal cache size;

• S' the percentage of total cache space reserved for the caching of first a percent

(startup length) of objects;

• Cprefix'- the size of reserved cache space for caching startup length of objects. CprefiX =

f3 C;

• Crest' the size of the cache space other than the space reserved for caching of startup

length of objects. Crest — C - Cprefix = (1 - fi)C.

We consider the ideal case where the cache space is always allocated to cache the most

popular objects. If we sort the objects according to their decreasing popularities, the ideal

case indicates tha t Cprefix is used to cache the segments (within startup length) of the first

t most popular objects.

Thus, ideally, for exponential segmentation, assuming the Cprefix can cache the first t

objects’ prefix segments, t must satisfy the following condition:

i=t i—t+1
} j Li X (X < Cprefix 0,nd ^) i j X Ct > Cprefix■ (2.14)
i=1 i—1

^ o te that instead of caching the first a percent, caching a constant length of the prefix segment for each
object leads to the same results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 33

Ideally, assuming the rest of the cache size Crest can cache the first m object’s remaining

segments, m must satisfy the following condition:

i=m i= m + 1

Li x (1 - a) < Crest and Li x (1 - a) > Crest. (2.15)
i = i i = i

For adaptive-lazy segmentation, no cache space is allocated separately to cache the

initial segments of the object, thus, ideally, assuming the whole cache can be used to cache

the first k objects according to the popularity, k must satisfy the following condition:

i=k i=k+1

Y , L i < C and J 2 Li > C - (2.16)
i = l i—1

To this end, we express the delayed start request ratios for exponential segmentation

and adaptive-lazy segmentation as follows:

P tel.,-E = S S S Y 1 <2-17>
2j *=i

and

(2 -18)
2 _ n = 1

respectively.

W ithout considering the misses when the object is accessed for the first time, their

corresponding byte hit ratios are:

p — 1 _ £'*=”+1 x Li x a + Y?i=m+i Aj x ^ x (1 — a) ^

hit~E E S i

and

respectively.

p _ , H \J k + 1 X L i / o on\

M,- L ~ "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 34

2 .4 .4 Perform ance O b je c tiv e A n a ly s is

In order to find the reasons for the unbalanced performance results as we observed, we

analyze the performance objectives one by one based on the model we have built. In this

section, lazy segmentation is always used to mean the adaptive-lazy segmentation strategy.

2.4.4.1 D elayed Start R equest R atio

Equation 2.17 and Equation 2.18 indicate that the relationship between t and k determines

which technique performs better in terms of the delayed start request ratio.

Based on Equations 2.14 and 2.16, by comparing

J 2 L i< and Y l L i - ° ’
i=i a i= i

we can get that if ^ > 1, it will lead to t > k. Through Equation 2.17 and Equation 2.18,

t > k means that the exponential segmentation has a better (less) delayed start request

ratio. Otherwise, t < k , and lazy segmentation will perform better.

Exponential segmentation always caches beginning segments of all objects, which leads

to k < t. Thus, in terms of the delayed start request ratio, exponential segmentation

normally performs better than lazy segmentation.

2.4.4.2 B yte Hit R atio

Based on Equation 2.19 and Equation 2.20, we can see the relationships among t, m, and

k are deterministic to the byte hit ratio.

We now provide a thorough evaluation of all possible situations as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 35

• m = t :

Equation 2.19 can be written as:

Sfet+i a» xPhit-B = 1 —
E;=r x u

Compared with Equation 2.20, the problem once again comes to the relationship of

t and k. If t > k, then exponential segmentation performs better. If t < k, lazy

segmentation performs better.

When m — t, there are m or t objects cached by the exponential segmentation totally.

Thus, we can get t = k. Thus, lazy segmentation will perform the same as exponential

segmentation in terms of the byte hit ratio.

• m < t :

Equation 2.19 can be written as:

p _ , E i= i+1 A« x Li + E»=m+i Ai x Lj x (1 — a)
~ g f f X T i ; •

Equation 2.20 can be written as:

E i = A : + l A t X L i - f £ i = t + l A , X L j
Ph.it-L = 1 ■

Ei=i A. X Li

Thus, we must compare YnZm+i ^ x Li x (1 - a) and Ei=fc+i x L i■ K YnZm+i ^ x

Li x (1 - a) > Y^i-k+i x Li, lazy segmentation performs better. Otherwise, expo

nential segmentation performs better.

When m < t, there are m objects fully cached for exponential segmentation. Thus,

for lazy segmentation, there are more objects fully cached and we can get that k > m.

Therefore, we further analyze the case when k > m and t > m as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 36

Since
i—t i=k i—t

Xi x L i x (1 - a) = (2 2 Ai x L i + 2 2 A, x L i) x (1 - a)
* = m -f 1 i = m + l i= fc4 -i

and
t t t

Xi x L i — 2 2 Xi x L i x a + 2 2 A; x L ; x (1 - a) ,
i= f e + l i= fc-t-l

we must compare]T)j'=m,+i Aj x Li x (1 — a) and X)i=fc+i Aj x L* x a.

From Equations 2.14, 2.15, 2.16, we have

i = ™ = i f e x k = L > r ’ (2-21)•^ave ^ave

where L ^ e denotes the average value of Iq to Lt, L™ve denotes the average value of

L \ to L m, and L^ve denotes the average value of L \ to Lj-.

Assume objects are of equal length, then L lave — L™ve — L^ve = L ave. (Note tha t this

assumption simplifies the condition. However, we have proved it does not affect the

conclusion we will draw.) Thus

t = k x —,m = k x ----- ~.
a 1 — a

Since \ > A,+i, we get

i — k i —k
Ai x Li x (1 — a) > *22 Afe+i x I ; x (1 - a) = Xh+ik(f3 — a)Lave (2.22)

i—m + l i—rn-fl

and

t t

^) A, x Zyj x a ^ 2 2 Afe+i ^ 14 x ot — \k;-i-xh(il3 cxjLave' (2.23)
j=:jc4-l *=&+1

Based on Equations 2.22 and 2.23, it is clear tha t exponential segmentation performs

worse in byte hit ratio when m < t. This confirms the performance comparisons in

section 2.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 37

• m > t :

Equation 2.19 can be written as:

Equation 2.20 can be written as:

P h i t - L = 1 —
e *=:fe+i • X L i + E i = m + 1 N X Li

E Z i A< X L i

Thus, we must compare i A* x L; x a and Y hLk+i ^ x (Note that if k + 1 > m,

Y^ILk+i A* x ^ i is defined as — Yli=m+i x •£'»)• ^ E i = t + 1 Aj x L { X a > Y ^ k + i Aj xLj,

exponential segmentation performs worse. Otherwise, lazy segmentation performs

worse.

When m > t, there are only t objects tha t are fully cached for exponential segmen

tation, so it must be k > t. Thus, the further analysis will be done when m > t and

k > t as follows.

Since
i ~ m i —k i —m

^ 2 At x Li x a — Y , N x L i X a + ^ Xi x Li x a
i —t-f l 1 i = f e + l

and
m m m

Xi x L i = Xi x L i x a + ^ A; x I,; x (1 — cc),
irsfc-j-1 i —fc+ l i ~ f c + l

it comes to compare YnZt+i A* x Li x a and J2iLk+ 1 At x L* x (1 — a) .

Since A, > Aj+i, with the same assumption as before tha t objects are of same length,

it is easy to get

i = k i —k

^ (X i X L i X CH ^ y ' Afc+ 1 X L i X QL ~ (o! f i ^ k X k + l L a v e (2 . 2 4)

i= t + 1 »= t+ l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 38

and

ro m
y Xi x Li x (1 - a) < Afc+i x l j x (l - a) = (a - P)k\k+iL,'a ve ’ (2.25)

i~ k - f-1

Based on Equations 2.24 and 2.25, we can get that when m > t, lazy segmentation

performs worse in terms of byte hit ratio under these assumptions. However, m > t

leads to k > t, recall the analysis conclusion in 2.4.4.1, when k > t, lazy segmentation

will perform better in terms of the delayed start request ratio.

In reality, exponential segmentation always caches all objects’ beginning segments,

thus, m > t is always true.

The results of the above analysis show tha t the performance of segment-based caching

strategies is always a trade-off between the byte hit ratio and the delayed start request

ratio. They are affected by the relationships of t, m, which are determined by a, /3, n and

Lave■ (Note that for the lazy segmentation strategy, in the sense tha t we do not reserve a

part of the cache space for caching the beginning segments of objects, j3 = 0; however, if

counting the cache space used for caching the beginning segments of objects, a dynamically

changing non-zero /? is used. For the prefix caching, j3 is set to 100%.) Based on the analyis

results, if m is decreased, the achieved byte hit ratio is reduced. However, the decrease

of m leads to decrease of t, which results in a reduced delayed start request ratio. This

seems to indicate tha t we can use the byte hit ratio to trade for delayed start request ratio.

W hether this is true or not is critical to if we can find out an effective way to balance these

two performance objectives. We will answer these questions heuristically after we derive

the performance bounds for each performance objective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 39

2 .4 .5 P er fo rm a n ce B o u n d A n a ly s is

We have learned tha t these two performance objectives are always a trade-off between

each other. However, how much performance can be optimized is not answered yet. In

this section, we will give performance bounds based on the model so tha t they can guide

the performance optimization under certain conditions as our assumptions state. We also

assume the objects are of equal length as before. That is, L lave = L™ve = L^ve = L ave.

2.4.5.1 D elayed Start R equest R atio

For the exponential segmentation strategy, substituting Equation 2.14 in Equation 2.17, we

get
E i = n \ . , I , x Te

i=t+1 A x y T s r l t - r y^*=" 1
P * „ „ - E = — f • (2.26)

E " , i r

Carefully using the series theory and integration on Equation 2.26,

• 0 = 1

T d e l a y — E —
ICLt+i I ^ St _ In n - In t

E S I ~ S i + 1 \ d i I n (n + 1)

and

y , i = n 1 p n + 1 . n ± l
P __ 2 ^ i = t + l i ^ J t + 1 i _ 1 t + 1

d e l a y - E 4 k d i 1 + I n 71 '

Having t = t ^ ~ x U = -fi—, we have° i> au e Q! L/nn* 1

pMax ... Inn In [/ x £ o
~ In (n -f 1) (2'27)

and
pM(n In (n + 1) — In ([/ x £• + 1)

• (2 - 2 8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 40

For Equation 2.27 and 2.28, the larger the value of /?, the smaller the values of P ^ y - E

and Pfotay-Ei and the smaller the value of ft, the larger the values of P ^ ^ j - E and

pMin
delay—E'

® 0 7̂ 1

P d e l a y — E —

E i—\
i — \

1
t+i

e s

st ,i-e - r
— l - n + l 1di {n+1)1- 0 - 1 ’

and

p _ E i = t + i i f ^ ft+ 1 _ (n + D ^ ^ - f i + i) 1- 8
* d e l a y —E - i = n 1 > 1 + f „ \ d i - n \ - A 6

E i=1 Je TJl ^

Having t — jH— x ^ U — we have
■L'ave tx ' 1-rave

p M o x X f) 1 '

* d e l a y — E ~ (n + 1) l - 0 ' _ " i

and
P Mi n (n + 1) 1 6 - { U X f + 1) 1" .
* d e l a y — E - --------- , _ 9 _ p • (Z. cSU)

t l ~9 is an increasing function when 0 < 9 < 1, and a non-increasing function when

9 > 1. Thus, the larger the value of /3, the smaller the values of and

and the smaller the value of /?, the larger the values of P^iay-E an< ̂^'delay-E•

For the lazy segmentation strategy, substituting Equation 2.14 in Equation 2.18, we get

X-’i—n \ „ 0 * JW
Ei=*+i Ei=£+i iT ,

P d e l a y - L = -------- ;---------------------- ~ T --------- = ' t 2 ' 3 1)
V'*=" A x -- -1L ._ E i= i i*2̂ !=1 £i="

Carefully using the series theory and integration on Equation 2.31,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 41

• 6 = 1

delay —L (2.32)

and
ln(n + 1) - ln(E7 + 1) (2.33)

• 6 ^ 1
ni-° - {vy-e
(n 4- l) 1_fl — 1

(2.34)

and
(n + 1) 1- 9 - (U + l) 1- 0

(2.35)

Equations 2.27, 2.29 and Equations 2.32, 2.34 give the upper bounds for the exponential

segmentation and the lazy segmentation strategies, respectively, with different 6 conditions.

Equations 2.28, 2.30 and Equations 2.33, 2.35 give lower bounds for them in the ideal

situation.

2.4.5.2 B y te H it R atio

For exponential segmentation, based on Equation 2.19, substituting the A * from Equation

2.14, we get

P h it-E = 1 ~
ax£i«r+i ?+ (l-«)x£ U + i pr (2.36)

Carefully using the series theory and integration on Equation 2.36,

m 6 = 1

1 + Inn
(2.37)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 42

and
a x ln TjfE + 0- - Q) x ln P7T3E

p M i n _ , U x a U *T = 1 , (2 o 8)
p hit- E - 1 i ^ T i) ■ 1 ’

. M a x _ x _ (n + r - a x ^ x t f + r _ a —< *) x (f f 5 f } x L / + l) 1- ») (23g)

6 7̂ 1

ryM ax -t /
■ P w t - B - l (

and

n1- 0 - a x (& x U)1- 0 (1 - a) x (£=£1 x■pMin _ Q X U X ' n (1-oQ v (2 40^
(n + !) ! - * _ ! (n + l) i - e - l 1 U;

For lazy segmentation, based on Equation 2.20, substituting the A* from Equation 2.14,

we get

E i—n 1 i ^ i —k 1 /c 1
i = l 7̂ " 2 - / i = l 7̂ " Z - a = l /n ,i- |\

= i ---------™ = n -I-------- W^TTTE «=n _1_ J
i = l Z - / i = l iTo

Carefully using the series theory and integration on Equation 2.41,

* 9 — 1
r y M a x 1 “t In U t n

Phit~L = t a f r + I) (}

and
r> M in __ l n (£ / ~f* 1)

Phit~L ~ l + lnn'- {2

■^1
■pMax _ v _______ ̂ (o 44.’!
flwt-x. - (n + i) i - e _ 1 1 ■ >

and
p M in (U + 1) — 1 / o /I CL\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 43

Equations 2.37, 2.39 and Equations 2.42, 2.44 give the upper bounds for the exponential

segmentation and the lazy segmentation strategies, respectively, with different 9 conditions.

Equations 2.38, 2.40 and Equations 2.43, 2.45 give the lower bounds for the ideal situation.

It is im portant to note tha t these upper and lower bounds are based on the model we

built for ideal situations. Thus, the upper bounds we found here are valid upper bounds

for general situations, while the lower bounds are only valid for ideal situations.

2 .4 .6 A n a ly tic a l R e su lts

To give an intuition into the dynamic nature of the two performance objectives, an example

is given in Figure 2.1 based on Equation 2.29 and Equation 2.39. Here, given a total of

10000 original objects, we assume a cache size 20% of the total object size. Thus, U is set as

2000 object units. Furthermore, 9 and a are set as 0.47 and 5%, respectively. As shown in

U = 2 0 0 0 ,0 = 0 .4 7 ,a = 5 %
.100

Delayed Startup Ratio
Byte Hit Ratio

tr SO

c 70

P(%)

Figure 2.1: Byte hit ratio vs. delayed startup ratio

the figure, the decrease of the byte hit ratio is much slower than the decrease of the delayed

startup ratio when /3 increases. Therefore, we can use a small decrease of byte hit ratio to

trade for a significantly large reduction in the delayed startup ratio.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 44

Mathematically, the partial derivative of with respective to fi yields \Az>eiay\

which denotes the change of the delayed startup ratio. The partial derivative of P ^tax with

respective to /3 yields \Am t\ which denotes the change of the byte hit ratio. Therefore, we

have

Nl~6 — Q
= i x ---------------------------- zs- (2 .4 6)

|A m «! a ^ E| x | + A) - ' + (iSj + 1y

It can be shown tha t \ADeiay\l\Amt\ is always greater than 1 when a and f3 are less than

50%. For a long but complete derivation, please refer to [26].

The above analysis provides us with a solid basis to restructure the adaptive-lazy seg

mentation strategy in [23] by giving a higher priority to caching the startup length of objects

in the replacement policy. The objective is to effectively address the conflicting interests

between improving the byte hit ratio and reducing the delayed startup ratio for the best

quality of media delivery. The analysis leads to the following improved replacement policy

design.

2 .4 .7 Im p ro v ed A d a p tiv e -L a z y S e g m e n ta tio n S tr a te g y

In order to significantly reduce the startup latency with a small decrease of the byte hit

ratio as suggested by our previous analysis result, a three-phase iterative replacement policy

is re-designed as follows.

Based on a utility function defined similarly as in [23], upon an object admission, if

there is not enough cache space, the proxy selects the object with the smallest utility value

at that time as the victim, and the segment of this object is evicted in one of the two

phases as follows. (1) First Phase: If the object is fully cached, the object is segmented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 45

by the lazy segmentation method [23]. The first 2 segments are kept and the remaining

segments are evicted right after the segmentation is completed. (2) Second Phase: If the

object is partially cached with more than 1 segment, the last cached segment of this object

is evicted. (3) Third Phase: If the victim has only the first segment and is to-be-replaced,

then its startup length and the base segment length, Lb, is compared. If its startup length

is less than the base segment length, the startup length is kept and the rest is replaced.

Otherwise, it will be totally replaced. The utility value of the object is updated after each

replacement and this process repeats iteratively until the required space is found.

This restructured adaptive and lazy segmentation strategy has shown its effectiveness

in [26] by well balancing the two performance objectives.

2.5 The H yper-Proxy System

Having the answers to balance the two pairs of conflicting performance objectives in the

previous sections, we design a high quality media streaming proxy system, called Hyper

Proxy system, following our design model. In our design, for any media object accessed

through the proxy, a data structure containing the following items in Table 2.2 is created

and maintained. This data structure is called the access log of the object.

For each object, the Lthd is calculated after the segmentation (see section 2.5.3). It

is equal to max (startup length, free-of-jitter length, 2Lb) and its value varies due to the

dynamic nature of B s and Bt- In the system, two object lists (premium list and basic list)

are maintained. The basic list contains all the objects whose length of cached segments

is larger than its Lthd while the premium list contains all the objects whose cached data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 46

Table 2.2: The items of Hyper-Proxy data structure for each object

TX the time instance the object is firstly accessed
Tr the last reference time of the object
Tc the current time instance

Lsum the sum of each access duration to the object
na the number of accesses to the object
L b the length of the base segment
n the number of the cached segments of the object

FGadm the admission flag for adm itting segments
Lthd the threshold length used in the replacement policy
Lavg the average access duration of an object

F the access frequency

length is equal to or less than its Lthd- F G adm is the flag used to indicate the priority of

new segment admission. Items L avg and F can be derived from the items above. They are

used as measurements of access activities to each object. At time instance Tc, the access

frequency F is na/(T r - T \), and the average access duration L avg is L sum/ n a.

When an object is accessed for the first time, it is fully cached and linked to the basic

list according to the admission policy. A fully cached object is kept in the cache until

it is chosen as an eviction victim according to the replacement policy. At tha t time, the

object is segmented and some of its segments are evicted. The object is also transferred to

the premium list. Once the object is accessed again, the proxy uses the active prefetching

method to determine when to prefetch which uncached segment. Then the segments of

the object are adaptively adm itted by the admission policy or adaptively replaced by the

replacement policy.

We now present the detailed description of four major modules in the Hyper-Proxy

caching system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 47

2 .5 .1 Priority -based A d m iss io n P o lic y

For any media object, cache admission is considered whenever the object is accessed.

• A requested object with no access log indicates that the object is accessed for the first

time. The object is then cached in full regardless of the request’s accessing duration.

The replacement policy (see section 2.5.4) is activated if there is not sufficient space.

The victim is selected from objects in the basic list, or premium list when the basic

list is empty. In the premium list, objects with P R IO R IT Y flag are searched if no

object with N O N -P R IO R ITY flag is in premium list. The fully cached object is linked

to the basic list and an access log is created for the object and the recording of the

access history begins. If an access log exists for the object (not the first access to the

object), but the log indicates that the object is fully cached, the access log is updated.

No other action is necessary.

• If an access log exists for the object, and its FGadm is P R IO R IT Y (see section 2.5.2),

the proxy considers the admission of the next uncached segment or segments deter

mined by its free-of-jitter length. W hether the segment (s) can be adm itted or not

depends on if the replacement policy can find a victim or not. Victim selection is

limited to objects in the basic list or premium list with N O N -P R IO R ITY flag if basic

list is empty. Note that for this admission, the system does not need to compare the

caching utility value of this object with the victim’s, but only to find a victim with

the smallest utility value.

• If an access log exists for the object, and its FG adm is N O N -P R IO R ITY (see sec

tion 2.5.2), the next uncached segment is considered for admission only if L avg >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 48

(n + 1)Lb/Lthd, (Note L avg is changing dynamically.). The inequality indicates that

the average access duration is increasing to the extent tha t the cached n segments

cannot cover most of the requests while a to tal of n + 1 segments can. W hether the

next uncached segment is eventually adm itted or not depends on whether or not the

replacement policy can find a victim whose caching utility is less than this object.

The victim selection is limited to the basic list only.

After the admission, the object will be transferred to the basic list if it is in the premium

list and its cached data length is larger than its Lthd-

In summary, using the priority-based admission, the object is fully adm itted when it

is accessed for the first time. Then the admission of this object is considered segment by

segment with the higher priority given to the admissions tha t are necessary for in-time

prefetching.

2 .5 .2 A c tiv e P r e fe tc h in g

After the object is segmented and some of its segments are replaced (see section 2.5.4), the

object becomes partially cached. Then, upon each subsequent access, active prefetching is

activated to determine when to prefetch which segment once the object is accessed according

to the following various conditions.

• n = 0: No segment is cached. The prefetching of the segment is considered.

The FGadm of this object is set to be PRIO RITY.

• n > 0 and n + 1 < The proxy starts to prefetch the |~J -̂]th segment once the

client starts to access the object. If the segments between n + 1th and — l] th

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 49

are demanded, proxy jitter is inevitable and the F G adm of this object is set to be

PRIO RITY.

• n > 0 and n + 1 > | j f : The prefetching of n + 1 th segment starts when the client

accesses to the position of (n + 1 — ^) L b of the first n cached segments. The F G adm

of this object is set to be NO N-PRIORITY.

Note tha t B s and Bt are sampled when each segment is accessed. As a result, Lthd is also

updated accordingly.

2 .5 .3 L azy S e g m e n ta tio n P o lic y

The key of the lazy segmentation strategy is as follows. Once there is no cache space

available and replacement is needed, the replacement policy calculates the caching utility

of each cached object (see section 2.5.4). Subsequently, the object with the smallest utility

value is chosen as the victim if it is not active (no request is accessing it). If the victim object

turns out to be fully cached, the proxy segments the object as follows. The average access

duration L avg at current time instance is calculated. It is used as the length of the base

segment, that is, Lb = L avg. Note that the value of Lb is fixed once it is determined. The

object is then segmented uniformly according to Lb- After that, the first segments

are kept in cache, while the rest are evicted (see section 2.5.4). The number of cached

segments, n, is updated in the access log of the object accordingly. This lazy segmentation

scheme allows better determination of Lb-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 50

2 .5 .4 D ifferen tia te d R e p la c e m e n t P o lic y

The replacement policy is used to re-collect cache space by evicting selected victims. First

of all, a utility function is defined below to help the victim selection process by identifying

the least valuable object as the victim.

T r - T ,

F x x m infl,_____ «a_______ v ’ ±c — Lt ' ^2 4 7)
n ib

In the above equation, the caching utility value is proportional to

(1) F, which estimates the average number of future accesses;

(2) - ■ , which estimates the average duration of future access;

Tr-5..
(3) m in(l,), which estimates the possibility of future accesses;

• The system compares the Tc — Tr, the time interval between now and the most recent

access, and the the average time interval between accesses occurring in the

past. If Tc — Tr > / 'r)~7 i, the possibility tha t a new request arrives soon for this object

is small. Otherwise, it is highly possible that a request is coming soon.

and inversely proportional to

(4) n ib , which represents the disk space required.

Corresponding to the different situations of admission, when there is not enough space,

the replacement policy selects the victim with the smallest utility value from different lists

in the order as designated in section 2.5.1. Then partially cached data of the victim is

evicted as follows.

• If the victim is fully cached in the basic list, the object is segmented as described

in section 2.5.3. The first [7 ^] segments are kept and the remaining segments are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 51

evicted right after the segmentation is completed. The object is removed from the

basic list and linked to the premium list.

• If the victim is partially cached in the basic list, the last cached segment of this object

is evicted. After the eviction, the object will be linked to the premium list if its cached

data length is less than or equal to its Lthd- Note this object can be selected as victim

again if no sufficient space is found in this round.

• If the victim is in the premium list, the last cached segment of this object is evicted.

If no data of this object is cached, it is removed from the premium list.

The utility value of the object is updated after each replacement and this process repeats

iteratively until the required space is found.

The design of the differentiated replacement policy gives a higher priority for reducing

proxy jitter, reduces the erroneous decision of the replacement and gives fair chances to the

replaced segments so tha t they can be cached back into the proxy again by the aggressive

admission policy if they become popular again.

Note that after an object is fully evicted, the system still keeps its access log. If not,

once the object is occasionally accessed again, it should be fully cached again. Since media

objects tend to have diminishing popularities as the time goes on, if the system caches the

object in full again, this results in an inefficient use of the cache space. Our design enhances

the resource utilization by avoiding this kind of situation. By setting a large enough time-out

threshold, the proxy deletes the access logs of unpopular objects eventually.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 52

2.6 Performance Evaluation

2.6.1 W orkload Summ ary

To evaluate the performance of the Hyper-Proxy system, we conduct extensive simulations

based on several workloads. Both synthetic workloads and a real workload extracted from

enterprise media server logs are considered. We designed two synthetic workloads. These

workloads assume a Zipf-like distribution [4, 38, 62] (Note there are some arguments to this

distribution in recent research work [7, 9, 52].) with a skew factor 6 for the popularity of

the media objects and request inter arrival follows the Poisson distribution with a mean

interval A.

The first synthetic workload simulates accesses to media object in the Web environment

in which the length of the video varies from short ones to longer ones. We use WEB as the

name of this workload. The second simulates the Web accesses where clients accesses to

objects are incomplete, tha t is, a started session terminates before the full media object is

delivered. We simulate this behavior by designing a partial viewing workload based on the

WEB workload. We use PART as its name. In this workload, 80% of the sessions terminate

before 20% of the object is delivered.

For the real workload named as REAL, we use logs from HP Corporate Media Solutions,

covering the period from April 1 through April 10, 2001. There is a total of 403 objects,

and the unique object size accounts to 20 GB. There is a total of 9000 requests during

this period. Our analysis shows tha t about 83% of the requests only view the objects for

less than 10 minutes and more than 56% of the requests only view less than 10% of their

requested objects. About 10% of the requests view the whole objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 53

Table 2.3 lists some characteristics of these workloads. A detailed analysis of the overall

characteristics of the logs from the same servers covering different time periods can be found

in the reference [30].

Table 2.3: The workload summary

Workload
Name

Num of
Request

Num of
Object

Size
(GB)

A 9 Range
(minute)

Duration
(day)

WEB 15188 400 51 4 0.47 2-120 1
PART 15188 400 51 4 0.47 2-120 1
REAL 9000 403 20 - - 6 - 131 10

2 .6 .2 P er fo rm a n ce R e su lts

In the simulation experiments, the streaming rate of accessed objects is set randomly in the

range from half to four times that of the link capacity between the proxy and the server. We

use the jitter byte ratio to evaluate the quality of the continuous streaming service provided

by the proxy system. It is defined as the amount of data that is not prefetched in time

by the proxy normalized by the total bytes demanded by the streaming sessions. Delayed

prefetching causes potential playback jitte r at the client side. A good proxy system should

have small jitte r byte ratio. The second metric we use is the delayed startup ratio, which

is the number of requests tha t are served with a startup latency normalized by the total

number of requests. The last metric we use is the byte hit ratio, which is the amount of

data delivered to the client from the proxy cache normalized by the total bytes the clients

demand.

We evaluate these three metrics in three designs of a segment-based proxy caching

system. The Proxy-Hit represents the adaptive-lazy segmentation based proxy caching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 54

100 100
Proxy-Hit
Proxy-Startup-Hit
Proxy-Jitter-Startup-Hit

Proxy-Hit
Proxy-Startup-Hit

_s~ Proxy-Jitter-Startup-Hit
g 80

.9 70

r 50O 50

m 40

E 30 S ' 30

Q 20

100
Cache Size (Percentage of the Total Object Size)Cache Size (Percentage of the Total Object Size)

(a) (b)

Figure 2.2: WEB: jitter byte ratio and delayed startup ratio

system [23] with active prefetching. This scheme aims at improving the byte hit ratio. The

Proxy-Startup-Hit represents the improved adaptive-lazy segmentation based proxy caching

system with active prefetching. This scheme is designed to reduce the delayed startup ratio

subjective to improving the byte hit ratio. The Proxy-Jitter-Startup-Hit represents our

proposed Hyper-Proxy system in this study, aiming a t minimizing proxy jitte r subjective to

minimizing the delayed startup ratio while maintaining a high byte hit ratio.

For the WEB workload, the object encoding rate ranges in the 28Kbps-256Kbps, while

the available network bandwidth for its uncached segments prefetching is randomly selected

in the range of half to twice of its encoding rate. Figure 2.2(a) shows that Hyper-Proxy

always provides the best continuous streaming service to the client while Proxy-Hit system

which aims at increasing byte hit ratio, performs worst. Specifically, when cache size is 20%

of total object size, Hyper-Proxy reduces proxy jitte r by more than 50%.

Figure 2.2(b) shows that Hyper-Proxy achieves the lowest delayed startup ratio. Proxy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 55

100

.2 60

K 50

00 30

- Proxy-Hit
>- Proxy-Startup-Hit
< - Proxy-Jitter-Startup-Hit

Cache Size (Percentage of the Total Object Size)

Figure 2.3: WEB: byte hit ratio

Startup-Hit achieves results close to Hyper-Proxy. This is expected as we have analyzed

in [26].

Figure 2.3 shows Hyper-Proxy achieves a relatively low byte hit ratio, which indicates

a smaller reduction of network traffic. This is the price to pay for less proxy jitte r and the

smaller delayed startup ratio as shown in Figure 2.2(a) and (b).

100 100
Proxy-Hit
Proxy-Startup-Hit
Proxy-Jitter-Startup-Hit

Proxy-Hit
Proxy-Startup-Hit

- s - Proxy-Jitter-Startup-Hit

£ 70
o
5 60

t: 50

£30
D 20

100
Cache Size (Percentage of the Total Object Size)Cache Size (Percentage of the Total Object Size)

(a) (b)

Figure 2.4: PART: jitter byte ratio and delayed startup ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 56

100

.9 60

K 50

CO 30

Proxy-Hit
Proxy-Startup-Hit

~o~ Proxy-Jitter-Startup-Hit

Cache Size (Percentage of the Total Object Size)

Figure 2.5: PART: byte hit ratio

In PART, the object encoding rate and the available network bandwidth to prefetch its

uncached segments are set as in WEB. Similar results are observed for the PART workload

as shown in Figure 2.4 and Figure 2.5.

As shown on Figure 2.4, when cache size is 20% of total object size, Hyper-Proxy reduces

proxy jitte r by 50% by giving up less than 5 percentage points in the byte hit ratio. Figure

2.4(b) shows tha t Proxy-Startup-Hit achieves the best performance in reducing the delayed

startup ratio. The result is expected since this scheme is specifically designed to prioritize

reducing the delayed startup ratio. On the other hand, since Hyper-Proxy proactively

prevents proxy jitte r by keeping more segments, more cache space is used for segments that

may not be requested due to early termination. This in turn makes Hyper-Proxy perform

not well in reducing the delayed startup ratio.

Not surprisingly, Figure 2.5 the Hyper-Proxy achieves the lowest byte hit ratio when

comparing with Proxy-Hit and Proxy-Startup-Hit.

In a more realistic setup, we use the REAL workload to evaluate performance. The

encoding rate for an object in REAL is the same as recorded in the log, while we take

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. SEG M ENT-BASED STREAM IN G P R O X Y DESIGNS 57

100100
« - Proxy-Hit
a - Proxy-Startup-Hit
a - Proxy-Jitter-Startup-Hit

Proxy-Hit
Proxy-Startup-Hit
Proxy-Jitter-Startup-Hit

£ , 70

t 50

£ 30 5? 30

Q 20

100
Cache Size (Percentage of the Total Object Size)Cache Size (Percentage of the Total Object Size)

(a)

Figure 2.6: REAL: jitter byte ratio and delayed startup ratio

the client connection link bandwidth as the available bandwidth for its uncached segment

prefetching.

As shown in Figure 2.6 and Figure 2.7, Hyper Proxy performs best in reducing proxy

jitter and delayed startup. The performance degradation in byte hit ratio is also acceptable.

As shown on Figure 2.7, the byte hit ratio achieved by Proxy-Startup-Hit is larger than

that achieved by Proxy-Hit when the available cache size is greater than 40% of the total

object size. This is because the cache size is large enough to cache the startup lengths of

the objects. For this evaluation, it is also interesting tha t the byte hit ratio achieved by

the Proxy-Hit system is not as high as without considering band widths. Studying different

situations, we find tha t in our simulation the available bandwidth of the proxy-server link

is typically much smaller than the object encoding rate, causing a large number of byte

misses in Proxy-Hit due to request busty, which however would not have happened without

considering the bandwidth constrain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 58

100

.9 60

CQ 30

Proxy-Hit
- a - Proxy-Startup-Hit
-o ~ Proxy-Jitter-Startup—Hit

Cache Size (Percentage of the Total Object Size)

Figure 2.7: REAL: byte hit ratio

2.7 Summary

Proxy has been successfully used for caching text-based content. Using proxy to support

media delivery is cost-effective, but challenging due to the nature of large media sizes and the

low-latency and continuous streaming demand. Most existing studies target at improving

the byte hit ratio tha t is commonly used in standard proxy caching. However, this is not the

major concern for streaming media delivery, because it does not guarantee the continuous

media delivery when the to-be-viewed object segments are not cached in the proxy, which

causes proxy jitter. Our contributions in this study are as follows:

• We have presented an optimization model to guide designs of highly effective media

proxy caches and ensure a high delivery quality to the clients, which aims at minimiz

ing proxy jitte r subject to reducing the startup latency and increasing the byte hit

ratio.

• We have provided insights into the model by analyzing two pairs of conflicting interests

and trade-offs inherent in this model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. SEGM ENT-BASED STREAM IN G P R O X Y DESIGNS 59

• We have proposed to build a new media proxy caching system called Hyper-Proxy.

This system addresses the interests from the perspectives of both clients and Internet

resource management with a high priority given to the clients. We have shown that

the Hyper-Proxy system minimizes the amount of proxy jitte r with a low delayed

startup ratio and acceptable low network traffic compared with other existing caching

schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Im plem entation and Evaluation of

a Segm ent-based Stream ing M edia

Proxy

3.1 Introduction

The delivery of diverse streaming media contents on IP networks in a cost effective manner,

while maintaining high quality, is challenging but highly desirable for many applications.

In a Web service environment, a continuous streaming session (often with a duration of

minutes or hours, compared to milliseconds or seconds for traditional Web pages) keeps

consuming network bandwidth and disk bandwidth on the hosting server. Multiple concur

rent streaming sessions can easily exhaust the available network bandwidth and overload

the media content server. Placing multimedia objects closer to clients is an effective solution

that will relieve the network bottleneck and reduce the load on the media content server.

Research efforts have been made to extend existing proxy cache methods of static Web

pages to the case of streaming media objects. Streaming media objects have some features

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 61

that makes caching promising: the objects are generally static and do not change for a

long time. Moreover, they show some degree of locality of reference. However, as stated in

Chapter 2, proxy caching of multimedia objects is also challenging due to the typical large

size and the low-latency and continuous streaming demand of media objects.

To handle these problems, several partial caching methods have been proposed, which

divide media objects into smaller units, more feasible for caching. There are two types

of partial caching approaches according to the object segmentation directions. The first

divides objects in the time domain [94, 104, 117], which we call segment-based approaches.

The second is to divide objects in the media quality domain [34, 70, 92, 93].

Although some algorithmic solutions and prototypes are available, today the practical

usage and deployment of such systems are rare. Mocha [95] and QBIX [100] are prototype

systems that divide media objects along the quality domain. Mocha is based on layered

encoded streams, while QBIX tries to leverage MPEG4 and MPEG7 standards to do quality

adaptation. However, they have not been widely deployed since they require extensive

support from Internet Service Providers. For example, for Mocha, there are almost no

layered-encoded streams provided online today. QBIX requires an online transcoding proxy,

and does not work for videos in formats other than MPEG4 and MPEG7. Moreover, the

quality of the media objects served in these systems is not controlled by the client, but by

the service provider. Thus, they may not be client friendly.

When dividing media objects in the time domain (a segment-based approach), the afore

mentioned problems do not exist. The media with the original quality can always be served

to the client. However, there are a number of technical problems. First, multimedia objects

are stored in container files, such as MP4 [71]. The file contains both audio and video

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 62

tracks. In addition, it also contains indices to audio and video media packets, and may

contain hint tracks with meta information. The flexibility of positioning these elements in

the container file makes media aware segmentation difficult for the proxy.

Second, media content is usually streamed using the RTF protocol, running on top of

UDP. In practice, UDP traffic is likely to be blocked by firewalls at the client side due to

security considerations. Also, Internet wide UDP-based communication raises reliability and

fairness concerns. UDP packets are often subject to dropping a t intermediate routers and

switches. On the other hand, large amounts of unregulated UDP traffic unfairly throttles

TCP traffic [61]. These concerns make it difficult to deploy the system based on UDP

connecting the proxy and the server [13].

Finally, after the object is segmented, the coordination between the caching of discrete

object segments and the streaming of continuous media data is challenging. For example,

although different online prefetching algorithms have been proposed to provide continuous

streaming to clients, few measurement results in Internet streaming have been reported.

Precise prefetching techniques [24] can provide continuous streaming with maximum re

source utilization. However, system support is needed to accurately estimate the available

bandwidth of the proxy - content-server link at runtime.

We have designed and implemented a segment-based proxy, named Hyper-Proxy, to

address these problems. It leverages existing Internet infrastructure and is able to serve

and cache media objects in time-domain segments. As shown in Figure 3.1, the deployment

of Hyper-Proxy does not require modifications on either the server side or the client side.

This design takes advantage of the prevalence of HTTP, and eliminates most of the concerns

about UDP based communications, especially when the proxy is placed inside the firewall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 63

Client

Hyper
Proxy

InternetH T T P

Web Server

No Changes No Changes

Figure 3.1: Organization and protocols used in Hyper-Proxy system

The Hyper-Proxy system uses a segment-aware file 1 /0 system tha t enables automatic

segmentation and intelligent prefetching techniques to guarantee continuous streaming.

This allows Hyper-Proxy to transparently handle the complexity of media formats and

to support continuous delivery demands. It has the following merits:

1. Hyper-Proxy handles client requests for streaming media objects via the standard

RTSP [102] and RTF [101] protocols. It communicates with the content-server using

the HTTP protocol. This design allows a regular Web server to serve streaming

content, as well as regular Web documents. Thus, the existing Internet infrastructure

is fully leveraged without any extra support.

2. A client request is processed and divided into multiple sub-requests. Each sub-request

asks for only a small part of the whole media object. The sequence of sub-requests is

stopped whenever the client term inates its session, which subsequently term inates the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 64

data transfer. This design introduces a low startup latency while providing efficient

bandwidth utilization.

3. Prefetching techniques are implemented to assist high quality continuous streaming.

Based on dynamically detected available bandwidths of the proxy-server link, active

prefetching techniques are used to dynamically prefetch the data likely to be accessed

by the client.

4. The data contained in each segment is stored as a distinct object. The existing

popularity based replacement policy is leveraged from the traditional Web proxy, and

applied on these segments. It is a global, segment-based replacement policy instead

of a media object-based one, which enables better utilization of the cache space.

Actual implementation of Hyper-Proxy is evaluated under various conditions. The effect

of different segment sizes on streaming performance is evaluated and compared with the

performance of a full object caching approach. Different proxy-to-server network proximity

and available bandwidth scenarios are also considered. We tested its cache performance

based on an actual workload. Our extensive experimental results show tha t Hyper-Proxy

consistently provides high quality streaming delivery to clients, with reduced startup latency

and more efficient cache utilization.

The rest of this chapter is organized as follows. We review related work in Section 3.2.

We present the design and implementation of Hyper-Proxy in Section 3.3. We evaluate

the system performance through extensive experiments in Section 3.4. We summarize the

chapter in Section 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N

3.2 Related Work

65

The research on proxy caching of streaming media content has received much attention

lately. Early efforts, e.g. Middleman [5], which has studied cluster of proxies for streaming

media delivery, have considered little on one im portant feature of streaming media accessing.

It is found tha t continuous media objects such as video or music clips are often partially

accessed. Based on this observation, partial caching approaches have been proposed to

reduce the cache space requirement. The basic strategy is to cache segments of objects

that are divided in the viewing time domain. Typical examples include prefix caching [104],

uniform segmentation [94], exponential segmentation [117]. Prefix caching always caches

the prefix of the objects to minimize the startup latency. The optimal prefix length can be

calculated according to [111]. Its protocol consideration as well as partial sequence caching

were studied in [51]. In uniform segmentation, objects are cached in uniform-size segments,

while in exponential segmentation, the segment size doubles along the viewing direction.

Considering limited resources available from a single cache, the Rcache [18] considers the

usage of multiple proxies, focusing on the memory and disk utilization. These strategies

focus on protocol design or benefit analysis based on artificial workloads. Recently, authors

in [123] proposed a flexible and scalable proxy testbed to support a wide and extensible set

of next-generation proxy streaming services. Our work is based on the uniform segmentation

caching strategy with the focus on real system implementation and evaluation of the system

in real networking environments using real workloads.

The partial caching strategy can be extended to the quality domain. Layered caching

techniques [92, 93] have demonstrated efficient usage of cache space by considering different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 66

QoS characteristics of client devices or connectivities. A comparison with multiple version

caching is studied in [70] while a model of layered-encoded object distribution is studied

in [6 8]. In [79], the proposed approach attem pts to select groups of consecutive frames by the

selective caching algorithm, while in [82], the algorithm may select groups of non-consecutive

frames for caching in the proxy. A different idea is proposed in video staging [124], in which

a portion of bits from the video frames whose size is larger than a predetermined threshold

is cut off and prefetched to the proxy a priori to reduce the bandwidth on the server proxy

channel. Recently, a fine grained, network aware and media adaptive rate control scheme

is used in caching of scalable streaming content [76]. Most of partial caching schemes in

quality domain require layered encoded objects or additional support from the proxy or

client. The work presented in this chapter does not have these requirements.

3.3 Im plem entation of H yper-Proxy

Figure 3.2 shows the architecture of a Hyper-Proxy, as well as its request handling. The

Hyper-Proxy is composed of four main components: a streaming engine tha t interfaces

with the client, a segmentation-enabled cache engine tha t interfaces with content servers,

a Local Content Manager and Scheduler (LCMS) module tha t coordinates the streaming

engine and the cache engine, and a high speed disk tha t provides a fast data-path via the

local file system.

3 .3 .1 S trea m in g E n g in e

The streaming engine is a multi-threaded media server. It is responsible for providing an

interface to the client, which is described in detail in [97]. As shown in Figure 3.2, it receives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATION AND EVALU ATIO N 67

RTSP
Streaming

Engine
Client R T P

Local Content
Manager

& Scheduler

H T T P Segmentation-
Enabled

Cache Engine
Internet H T T P

Hyper-Proxy

Fast
Data
Path

Figure 3.2: Internal design of the Hyper-Proxy system: A client request is divided into n sub
requests with different ranges, R] to i?” , requesting different content segments, D\ to D". The
Local Content Manager and Scheduler controls when to send the next sub-request. The cache
engine returns segment meta data [M] to M”) to the Local Content Manager and Scheduler, and
caches the segments D\ to D" on the disk.

a client request for a RTSP URL and converts it to multiple segment requests, R] . . . R™,

that are sent to the LCMS. It uses the m eta-data information, M] . . . M ” , returned by the

cache engine through the LCMS to access the raw data segments on the disk.

A typical client request for foo.mp4 is as follows.

RTSP: //s tre a m in g -p ro x y :p o r t l / / c o n te n t - s e r v e r :p o r t2 / f o o . mp4

In this URL, RTSP denotes the protocol used. The second “/ / ” is used to specify the

content server and the URL In the streaming engine, such a client request is normally

processed with the following four messages sent to the proxy in the order.

• D ESCR IBE: First, a DESCRIBE message is sent. The DESCRIBE retrieves the

description of the media object identified by the URL. The description contains the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 68

information about the presentation format, the static and temporal properties, etc.

as specified in Session Description Protocol (SDP) [55].

• SETU P: After the SDP information of the requested object is fetched and processed

correctly, the SETUP message is sent to notify the proxy to allocate corresponding

resources for a stream and to create a RTSP session for the request. Note that the

RTSP session for a stream includes both audio and video streams.

• PLAY: If the SETUP is successful, the PLAY message notifies the proxy to start

data transmission for a stream on the channels allocated via SETUP.

• T E A R D O W N : When the streaming is complete or the client terminates the request,

the TEARDOWN message is sent. Basically, it frees resources associated with the

stream and the RTSP session is eliminated.

As shown in Figure 3.2, the streaming engine reads data segments, D \ . . . D", from

the disk to serve clients after the PLA Y is received and processed. However, there is a

problem: a randomly chosen segment length breaks the object into pieces, thus creating

segments tha t are likely to include an incomplete media packet as shown on Figure 3.3,

where a MP4 file is divided into incomplete pieces. If this incomplete packet is sent to the

client, the client player would have to use error concealment or it may crash. One solution

to this problem is to always segment the object on a packet boundary, which requires

Hyper-Proxy to have packet boundary knowledge before segmentation can be done. This

information could be obtained by parsing the complete media file, or by using a hint track,

if available. However, the hint track data can be dispersed through the media file, so

in either case, the whole file may have to be downloaded. A better solution is to allow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 69

segment 1,

V -p V -HSDP A -P A -H V -P A -P

segment 2

Figure 3.3: High level abstraction of an MP4 file: SDP represents the SDP information. V-P
represents video data packet while A-P represents audio-data packet. A-H represents audio hint
track information, while V-H represents video hint track information. The media data packets are
accessed from the pointers of SDP and hint track information in the order.

random segment boundaries, but to always feed a complete data packet to the client. In

the Hyper-Proxy system, a segment-aware file I/O system is implemented to support this

requirement. It automatically requests the appropriate segment when reading or seeking

beyond the boundaries of the current segment. The LCMS tries to ensure tha t the next

segment is always available in the cache.

3 .3 .2 L ocal C o n te n t M an ager an d S ch ed u ler

The Local Content Manager and Scheduler (LCMS) coordinates the streaming engine and

the segmentation-enabled cache engine. It converts the sub-requests, e.g., R] . . .R ^ , to

corresponding HTTP requests (with Range headers) and forwards them to the cache en

gine. It returns the appropriate cache m eta-data M] . . . M ” from the proxy replies to the

streaming engine. More importantly, the LCMS schedules segment prefetching. Prefetching

is necessary because segment-based proxy caching is a partial caching solution, in which

only a part of the object is cached in the proxy while a client may access an object to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 70

segment which is not cached in the system. To guarantee continuous media delivery, each

segment should be available locally before the streaming engine tries to read and stream to

the client. Otherwise, the client can experience playback jitter.

We have implemented multiple segment based prefetching modes and provided analytical

models in [24].

In this study, the following modes are implemented and experimentally evaluated:

• OnDemand: In this mode, no prefetching is implemented. The succeeding segment

is fetched when it is needed by the streaming engine. This mode is simple and works

fine when the available bandwidth of HTTP channel is large enough. Otherwise,

streaming can be interrupted due to the delay in fetching the next segment from the

server. Some of these effects can be partially hidden by providing buffering in the

streaming engine.

• Window: In this mode, the sub-request for the next uncached segment is always

issued when the client starts to access the current one. Thus it provides aggressive

prefetching with a look-ahead window size of one segment.

• Half: Intuitively, the window size is adjustable. We also implemented a Half mode,

in which the sub-request for the next uncached segment is issued after the server has

reached the middle of the current one. Thus, in this mode, the window size is half a

segment length.

• Active: Active prefetching is implemented to dynamically decide when to prefetch

an uncached segment according to the real-time band widths. It is the most precise

online prefetching technique according to [24] and is implemented with the aid of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATION AND EVALUATIO N 71

Packet CAPture (PCAP) library [2]. W ith the API provided by PCAP, we period

ically estimate the available network bandwidth between the Hyper-Proxy and the

content-server. The prefetch schedule is then computed using the media encoding

rate extracted from the header of the media file, which corresponds to the desired

data transmission rate between Hyper-Proxy and the Client.

3 .3 .3 S eg m en ta tio n -E n a b led C ach e E n g in e

The segmentation-enabled cache engine handles the sub-requests from the LCMS. In a case

of a cache MISS, the cache engine gets the data for the sub-request from the content-server

(or other peering proxies). The cache stores data D ” (data for segment n) on the disk, as

well as constructing and sending a reply with meta data M ” only to the LCMS. The meta

data includes the name and the location of the file containing the data for this sub-request

on the local disk. In a case of a cache HIT, the cache directly constructs and sends the M "

meta-data to the LCMS.

Currently, Hyper-Proxy uses a modified version of Squid2.3 (STABLE4) as the cache

engine. Segmentation support is provided through the Range header in HTTP requests.

Squid identifies objects in its cache using the MD5 hash of the request URL. Hence, in the

original version of Squid, different ranges of a URL would have the same MD5 keys, and

H TTP requests tha t include the Range header would be considered non-cachable. To make

these requests cachable, our segmentation-enabled version re-writes the URL internally. For

example, a request for:

h t t p : //www.fo o .c o m /b a r.mp4

with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.foo.com/bar.mp4

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 72

Range=123-890

can be re-written as:

h t t p : //www. f o o . com/bar .mp4_123_890.

This guarantees that different ranges of the same object generate different MD5 keys. This

mechanism enables the caching of different segments of a media object.

The re-written URL is used internally in the proxy to identify different range requests

for the same object. If the corresponding segment is not cached, the request is forwarded

to the content-server (or peering proxies). However, the content-server does not contain

an object named as b a r .mp4-123-890, but only b a r ,mp4. Thus, the request restoring is

necessary here. Since the restored request is an HTTP request, the content-server can be a

standard server, such as h ttpd [78]. Note we use special methods in the proxy for streaming

segment fetching as described in section 3.3.4. Thus, the method with this URL will be

replaced to standard GET (Note if the range request is forwarded to peers, the method does

not need the change.). Thus, the request will be re-written as follows:

GET www.foo.com/bar.mp4 HTTP/1.0

range=123-890

and sent to the content-server.

Since the re-writing of the URL provides the opportunity to cache the data for different

segments of the same object, segment caching is enforced by saving the partial data on disk

without violating the HTTP protocol. In the implementation, an HTTP reply status of

PARTIAL-CONTENT (206) indicates the reply corresponds to a range request. If the reply

is checked to match the range request for a segment, it is stored locally, and an additional

status (HTTP_PARTIAL-CONTENT_OK) is added to the reply to the client. This status can only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.foo.com/bar.mp4

CHAPTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 73

be used by the methods (PREFETCH, LOCATEFILE, and LOCK) designed for streaming

as to be stated in the next section.

Popularity based replacement policy has been found to be the most efficient for the mul

timedia object caching. Hyper-Proxy leverages the existing popularity based replacement

policy in Squid.

Additionally, cooperative proxies have been used for caching static Web objects. It is

even more desirable for caching large streaming media objects. Hyper-Proxy also lever

ages the existing cooperative functions in Squid. When requesting segments from neigh

boring caches, the internally re-written URL is restored to the original version, with the

Range header added. This allows Hyper-Proxy to interact with regular Web-proxies without

streaming capability, as well as other streaming-enabled Squid proxies.

3 .3 .4 Fast D a ta P a th

In the early days, storage systems for media systems have been studied in [10, 107, 115].

In our system, the shared local file-system provides a fast data path between segmentation-

enabled cache engine and the streaming engine. Traditionally, Squid transfers incoming

data to an HTTP client over a network. For large media data files, it is more efficient to

directly share the part of file system used as a data cache by Squid. In the Hyper-Proxy

system, a set of new methods, PREFETCH, LOCATEFILE and LOCK, was added to Squid

for this purpose:

1. PREFETCH is implemented as a non-blocking version of the HTTP GET method.

Whenever a segment is required, a request with a PREFETCH method and the corre

sponding Range header is sent to the proxy. The proxy checks if the requested segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 74

is cached or not. If it is cached, a HIT is returned. Otherwise, a MISS is returned

and the corresponding request is re-written as a H TTP GET and forwarded to the

content-server or the peer simultaneously. The proxy will store the reply containing

the requested segment data on its local disk for future requests.

2. LOCATEFILE is implemented as a blocking method. The LCMS only invokes this

method after a PREFETCH request returns a HIT. It returns the file location of the

requested segment in the cache file structure maintained by Squid. It blocks until the

entire data for a range request has been written to disk.

3. LOCK is used before the streaming engine starts to stream a segment to the client.

Since the segment is cached and the cache is managed by Squid, the replacement

policy in Squid automatically starts the replacement when the available cache space

is below some threshold. It does not know whether or not the to-be-replaced segment

is being used by the streaming engine. Thus, before reading the data of a segment for

streaming, the LCMS issues a request with a LOCK method. This ensures that the

to-be-read file will not be a candidate for eviction. After segment access is complete,

the LOCK is released.

The non-blocking PREFETCH method and the blocking LOCATEFILE method effec

tively split the original, blocking GET method into a two-phase protocol. This is critical to

the system performance when Hyper-Proxy needs to handle a large number of concurrent

requests or when the segment size is large. Multiple PREFETCH methods for different

segments can be issued without locking up the LCMS. The design of LOCK provides a tool

to coordinate the streaming engine and cache engine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 75

3.4 Performance Evaluation

In this section, we describe the test setup and evaluation metrics that we use in experiments.

We then present detailed experimental results, including a full caching approach to provide

baseline values. Four case studies of Hyper-Proxy are presented then.

3 .4 .1 T est S e tu p

We run tests in real network settings using actual implementation of the content-server,

Hyper-Proxy, and media client. We use Apache Web Server (version 2.0.45 with HTTP 1.1)

as the content-server. It is hosted on a HP Netserver lplOOOr, with a 1 GHz Pentium III

Linux PC platform. The Hyper-Proxy system runs on a HP workstation x4000 with two

dual 2 GHz Pentium III Xeon Linux PC, with 1 GB memory. The media client used for

the experiments is a dummy loader that logs incoming RTP and RTSP packets.

For all tests, the network connection between Hyper-Proxy and the client machine is a

switched 100 Mbps Ethernet. For network conditions to the content-server, three setting

are used, namely local, remote and controlled environments. The local environment is set

up with both the content-server and the Hyper-Proxy system connected via a switched

100 Mbps Ethernet within HP Labs (Palo Alto, CA USA). The remote environment is

constructed with the Hyper-Proxy system and content-server at trans-Pacific sites, where

Hyper-Proxy is in HP Labs while the content-server is located in Takaido, Japan. The

bottleneck bandwidth for the transoceanic link is approximately 10 Mbps. To study the

effectiveness of the four prefetching methods in different network settings, we also construct

a controlled environment in which the link capacity between the proxy and the content-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATION AND EVALUATIO N 76

server can vary. We use traffic control support in the Linux kernel via the tc(8) [3] utility

to establish bottleneck bandwidths.

3 .4 .2 E v a lu a tio n M etr ics

We evaluate two end-to-end statistics tha t are especially relevant to streaming media deliv

ery, client perceived startup latency and client perceived jitter. Startup latency is measured

as the interval between the client sending a request for a media stream (the RTSP DE

SCRIBE method), and the arrival of the first media packet. The client jitter is the average

of the values in the Receiver Report RTCP messages, calculated based on the algorithm in

Appendix A .8 of RFC 1889 [101]. It represents the statistical variance of the media packet

inter-arrival time.

To better evaluate different prefetching methods, we also record two statistics specific

to Hyper-Proxy. We instrument the proxy system to measure time spent in handling each

segment request. It is measured as the interval between the time when a segment is requested

and the time the location of the segment in the cache storage is returned to the proxy. Note

tha t every request for a segment results in a Squid handshake (to check whether it is

in cache), while an uncached segment causes an HTTP transfer from the content-server.

This measurement reveals whether the proxy can fetch segments in time in the middle of

streaming sessions.

3 .4 .3 E x p e r im e n ta l R e su lts

We first perform experiments using a full object caching approach. The results provide a

basis for comparisons with our segment-based approach. Further, to study the performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 77

of our Hyper-Proxy, we conduct experiments in four different aspects. We first consider

the effects of using different segment sizes in Hyper-Proxy, when the number of concurrent

clients increases. Then we evaluate the performance difference when the content-server

sits at different network distances from Hyper-Proxy. We further evaluate the effectiveness

of each prefetching method under different Hyper-Proxy - content-server link bandwidth

capacities. For each of these experiments, the cache size is set large enough to store all the

fetched content, and each client accesses a unique object. Moreover, the clients play clips in

their entirety. Since there is no segment re-use across clients, this represents the worst case

behavior for a cache engine. We finally validate our results with a trace driven experiment,

using real enterprise access patterns. These traces include multiple clients accessing the

same clip, and clients that do early termination.

3.4.3.1 Full Caching A pproach

7000 4000
— Full Caching

2000 :

0) 1500

1000

<1000 <jj 500

40
Video Length (minute) Video Length (minute)

(a) (b)

Figure 3.4: Performance of full caching approach: startup latency and miss processing

In the full caching approach, media objects are not segmented, but fetched in their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. IMPLEMENTATION AND EVALU ATIO N 78

entirety. In this experiment the client, Hyper-Proxy and content- server are located in the

same local network. Experiments are performed on different video clips of length 1 , 2, 5,

10, 20, 40 minutes, encoded at 112 Kbps. The cache size is set large enough so tha t there

are no capacity misses, hence no replacement is necessary. The results axe averaged over 10

runs.

Figure 3.4(a) shows tha t the startup latency perceived by the client, as expected, in

creases linearly with the video size. Similar trends are reflected in performance in terms of

the average time to handle a miss as shown on Figure 3.4(b).

400
— - Full Caching

■0 300

250

150

E 100

40
Video Length (minute)

Figure 3.5: Performance of full caching approach: handshake

Figure 3.5 shows tha t the handshake time in the proxy for the full caching approach also

increases linearly with the video size. Note it is substantially smaller than the corresponding

miss process time. In the full proxy caching approach, each media object is only fetched

once from the content-server at the beginning, after tha t all requests hit in the proxy, thus

the client perceived jitte r is very negligible in this situation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 79

3.4.3.2 Effect o f Segm ent Size

In the previous section, where each object is accessed and stored in entirety, we have learned

tha t the performance of the full caching approach depends on the media object length and

degrades almost linearly with the increase of the object length. In Hyper-Proxy, objects are

segmented and managed as smaller units. The next experiment tests the effect of segment

size on the Hyper-Proxy performance.

In this set of experiments, increasing number of concurrent clients request unique media

objects. The media objects are all copies of the same piece of content (the 2 minute video

clip) with different names. This effectively disables the file buffer cache in the Operating

System. Moreover, the media data served to each client is identical, which allows us to

present the data as averages across each client session. The client request inter-arrival

interval is 1 second. The Squid cache file system is re-initialized before each experiment.

We evaluate the performance by running tests with Hyper-Proxy using different segment

sizes for segment-based caching. These experiments are carried out in the local environment

using the OnDemand mode. Thus, there is no explicit prefetching, so we can isolate the

effect of the segment size.

Figure 3.6 (a) shows the client perceived startup latency when the segment size varies

from 100 KB to 500 KB and when the segment size is large enough to include the entire

object. Clearly, the startup latency increases when the base segment size increases since

Hyper-Proxy waits until the first segment is fetched from the content-server before starting

streaming to the client. It is also expected tha t the startup latency increases when the

number of concurrent clients increases, since this puts a load on the streaming server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. IM PLEM ENTATIO N AND EVALUATIO N 80

Wm 100KB
—1 200KB
r~ l 800KB
r~1 400KB
ED 00KB

Fuli2min

<0 300
0}<D

Number of Concurrent Client Requests

(a)

10 20 40 60 80 100
Number of Concurrent Client Requests

■ i 100KB
— I 200KB
m 300KB
r~l 400KB
■ 1 500KB
BUB Full2min

10 20 40 60 80 100
Number of Concurrent Client R equests

(b)

100KB
200KB

m 300KB
m 400KB

500KB
Full2min

© 90w 3 5 0

©250 C3 60

2 50

Q> 30

r* 20

S i 100KB
SHI 200KB
r ~ l 300KB
r ~ l 400KB
■ I 500KB
S i Full2min

10 20 40 60 80 100
Number of Concurrent Client Requests

(c) (d)

Figure 3.6: Performance study with different segment size

Compared to the startup latency when the entire object is fetched as one segment, the

startup latency in Hyper-Proxy is only about 30% to 60%. It is also found that when

segment size increases beyond 300 KB, the client perceived startup latency increases faster,

while the effect is less pronounced when the segment size varies in the range of 100 KB to

300 KB. The startup latency is proportionally larger for clients in the remote environment.

Figure 3.6 (b) shows the client perceived jitter. It is obvious that jitte r is the smallest

when segment size is large enough to include the entire object. Otherwise, additional jitte r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATIO N AND EVALUATION 81

may be perceived due to the on-demand nature of segment based fetching by Hyper-Proxy.

We show in Figure 3.6 (c) and (d) the average time consumed for the proxy to handle a MISS

and a Squid handshake, respectively. It is clear tha t the average consumed time to handle

both a MISS and a handshake increases with the segment size. Comparing Figure 3.6 (a)

and (c), we note tha t the client perceived startup latency is usually larger than the time

to handle a cache MISS- This is because the startup latency includes the time to setup the

streaming session in addition to the time of fetching the first segment.

This set of experiments shows tha t Hyper-Proxy outperforms the full caching approach

in terms of the client perceived startup latency and the average time to handle a miss, while

it causes comparable amount of playback jitte r even without prefetching support.

3.4.3.3 Effect o f P roxim ity

g '2°
13100
Q.
I 80
I 6°

I 40
20

■ i Local-On Demand
f~~1 Local-Window
r~1 Local-Half
■ I Local-Active

1

10 20 40 60 80 100
Number of Concurrent Client Requests

(a)

12000

“ 10000

S'
g 8000

3
§■ 6000

§
O 4000O)co
Ô 2000

B S Remote-OnDemand
m Remote-Window
r~1 Remote-Half
SB Remote-Active

10 20 40 60 80 100
Number of Concurrent Client Requests

(b)

Figure 3.7: Client startup latency for local and remote

Another factor tha t affects the scalability of Hyper-Proxy is the proximity: the distance

between the content-server and Hyper-Proxy. We evaluate the performance by running

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATION AND EVALUATIO N 82

tests with the content-server located in the local environment as well as in the remote

environment. Segment size of 100 KB is used for this set of experiments. For fairness we

run the Local-Ondemand again with others. Its results slightly differ from those in the

previous subsection.

Local-On Demand
ETZ3 Local-Window

Local-Half
IBB Local-Active

o> 5

10 20 40 60 80 100
Number of Concurrent Client R equests

(a)

7000

w 6000U)W
^5 0 0 0(0G)

4000cQ
I
0 3000
o
£
[Z2000
Q)05
S1000

3

H i Remote-On Demand
m Remote-Window
r~1 Remote-Half
H i Remote-Active

10 20 40 60 80 100
Number of Concurrent Client Requests

(b)

Figure 3.8: Time to handle a MISS for local and remote

Figure 3.7 (a) shows the startup latency for local accesses, while Figure 3.7 (b) shows

this metric for remote accesses. In the local case, it varies from 96 ms to 169 ms, while

for remote accesses, the startup latency is much larger, with a much bigger dynamic range,

from 2 s to 11 s. The startup latency in both environments shows only a small variation

across different prefetching methods. This is an intuitive result, since the value would be

dominated by the access time for the first segment accessed. It is also seen tha t the startup

latency generally increases when there are more concurrent requests. The results indicate

tha t more concurrent requests can be served in local networks, and tha t more concurrent

requests can lead to a longer startup latency in wide area networks. This figure also shows

tha t our design and implementation of Hyper-Proxy can support the delivery of media

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATION 83

objects with reasonable startup latency in both intranet and Internet environments.

Another im portant aspect of streaming media delivery is whether the proxy can provide

rigorous continuous streaming. Figures 3.8 (a) and (b) show the average time that the proxy

consumes to process a cache MISS in each environment. The average time to handle a MISS

in the local testing environment is less than 23 ms. In a wide area network, the average

consumed time can reach 6.5 seconds. The results justify that prefetching for content from

remote content servers is necessary, since such a large delay may potentially cause playback

jitter at the client side.

1 14

CD

■£12sz
V)TJ
£10CO
X
* a © o
■o
c
X 6

CD o O) *
CO

5 0 <

SHI Locai-OnDemand
□ Local-Window
m Local-Half
U S Local-Active

10 20 40 60 80 100
Number of Concurrent Client R equests

(a)

1 3500

Q>
1§3000

X
o>2G00
•o

1500

1 1000

ft 500
cO
9?
3 0

■ Remote-OnDemand
m Remote-Window
r"1 Remote-Half
SH Remote-Active

IDEMli
10 20 40 60 80 100
Number of Concurrent Client Requests

(b)

Figure 3.9: Time to handle a handshake for local and remote

Figures 3.9 (a) and (b) show the average time for the proxy to handle a Squid hand

shake, whether a HIT or a MISS, for the local and remote environment, respectively. A

good prefetching method will have a higher percentage of HIT cases, which leads to a cor

respondingly smaller average time. Comparing Figure 3.9 with Figure 3.8, we can see that

a handshake consumes much less time than a MISS on average. Note tha t QnDemand does

not do any prefetching. It shows some HIT cases, since the file format parser might request

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATIO N 84

the same segment multiple times, e.g., first for parsing the hint track, and then for reading

media data. As shown in the remote case of Figure 3.9, QnDemand always consumes more

Squid handshake time and other prefetching methods reduce the Squid handshake time

somewhat. It seems tha t a simple Window mode performs the best in this set of tests. We

have shown in [25] tha t Active should perform best if an accurate real-time measurement

of the proxy-server link bandwidth is in place. Our current implementation of Active may

have been limited by PC A P’s capability.

80

70
'tn
E60

a>
£ 5 0

O
Q>30o>cti
§ 2 0
<

10

UN Local-On Demand
CZ3 Local-Window
r~1 Local-Half
■ t Local-Active

10 20 40 60 80 100
Number of Concurrent Client R equests

(a)

Remote-On Demand
m Remote-Window
r~U Remote-Half

Remote-Active

10 20 40 60 80 100
Number of Concurrent Client R equests

(b)

Figure 3.10: Client perceived jitter for local and remote

Figures 3.10 (a) and (b) show the client perceived jitter in both local and remote envi

ronments. In both cases, the absolute client perceived jitte r is small, which indicates that

our Hyper-Proxy can successfully serve a large number of clients with rigorous continuous

streaming demand. Note tha t the client jitte r tends to increase when more concurrent

requests are served, especially in the remote environment. This indicates that accurate

prefetching is very im portant especially when the Hyper-Proxy - content-server link band

width resource becomes scarce. Active prefetching achieves better performance as shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AN D EVALU ATIO N

the remote case.

85

3.4.3.4 P refetch ing Effectiveness

The preceding experiments have evaluated the system performance in local and remote

network settings. To further study the effectiveness of the different prefetching methods in

different network settings, we test the system in a controlled environment, as described in

Section 3.4.1. For each bandwidth setting, a video clip with an encoding rate of 75 Kbps is

served from the content-server to the client through Hyper-Proxy. We collect the Squid

handshake time and client jitter statistics for each prefetching method. Note tha t all

prefetching methods except Active schedule prefetching regardless of the link bandwidth

(in this test, the bottleneck link bandwidth).

1100
— OnDemand

Window
--*•••• Half

Active

-+~ OnDemand
Window

- a - Half
Active

1000

w 900

X 800

© 700 -a
x 600
B 500

®14

2 J:

p 4 0 0 -
0
g» 300-

1 2%o 900 1000700 800
Bottleneck Bandwidth (Kbps)

600 800 900 1000 500 600500 700
Bottleneck Bandwidth (Kbps) BottleneckBottleneck

(a) (b)

Figure 3.11: Squid handshake time and client perceived jitter

As shown in Figure 3.11 (a) and (b), both the Squid handshake time and the client

perceived jitte r decrease when the bandwidth increases. Note that the Squid handshake time

here is generally much longer than the result in the proximity study since the bottleneck

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 86

link bandwidth is much smaller. The Active prefetching can be seen to have the shortest

Squid handshake time, especially when the link bandwidth is low. The differences in client

perceived jitte r are less obvious although Active and Window methods perform better with

a low bottleneck link bandwidth.

3.4.3.5 C ache Efficiency Study U sing a R eal W orkload

Even though we use segmentation-enabled Squid as the cache engine in our Hyper-Proxy, it

is im portant to evaluate its performance on cache efficiency in conjunction with prefetching

methods. For this purpose, we use a trace extracted from real enterprise media server logs

to drive a 24-hour run of the actual system in the local environment. These traces include

clients tha t access the same clip, and clients tha t term inate a clip prematurely, or start

playing a clip from the middle. Thus we would expect better caching behavior, but also

wasted bandwidth consumed due to segments tha t are pre-fetched and never used.

The trace contains 16,238 requests with the access duration varies from 1 to 50 minutes.

In these 16,238 requests, 92% of them are demanding the same video clip, most of which are

with premature terminations. Thus, the caching performance is expected to be very high.

We select such a workload because we also want to test whether the system can survive a

large number of concurrent requests in a long time period. There are a total of 70.775 GB

data accessed. The unique object size amounts to 5.358 GB. Based on the file length and

streaming rate of the objects requested, we have created matching video clips in MP4 file

format. Specifically, a content pool is created as follows using the parameters as shown in

Table 3.1. As shown on the table, video objects are created with 6 b itrate (28 - 256 Kbps)

versions, each with a maximum of 7 possible file length (1 - 100 minute). Each created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATION AND EVALUATIO N 87

object is replicated multiple times so tha t they can be accessed as unique objects.

Table 3.1: The content and access parameters of real workload

Rate (Kbps) File length (minute) Max access duration (minute)
28 1, 10, 20, 50 1

56 50 1 2

1 1 2 1, 2 , 5, 10, 20, 50 14
156 1, 20, 50 14
180 2 , 5, 10, 20, 50, 100 50
256 1, 2, 5, 10, 20, 50, 100 25

Based on this real enterprise media access trace, we first run the trace through the

Hyper-Proxy system to evaluate the caching performance in terms of the byte hit ratio.

Then we use a cache simulator to evaluate these segment-based caching strategies with

various prefetching methods and different segment sizes. We use simulator since some

metrics, such as false prefetch, is very difficult to measure in the real runs.

m OnDemand
f ~ l Window

OnDemand
Window
Half
Active

Cache Size (Percentage of Total Object Size) C ache Size (Percentage of Unique Object Size)

(a) (b)

Figure 3.12: Byte hit ratio and server traffic for segment-based caching strategies

Figure 3.12 (a) shows the byte hit ratio achieved by Hyper-Proxy with different prefetch

ing methods with the increase of the cache size when the segment size is set to 100 KB. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALUATION 88

is expected tha t Active achieves the best byte hit ratio since active prefetching can always

prefetch uncached segments in time. The byte hit ratio is very high even with a small cache

space. This is due to the high access locality in this 24 hour trace as we have mentioned. In

addition, some segments, such as segments containing hint track information, are repeat

edly accessed in segment-based caching approaches to increase the byte hit ratio. Except

for the repeatedly accessed segments, some prefetched segments may not actually be used

by the clients due to early terminations, thus the byte hit ratio cannot precisely reflect the

server traffic reduction. Figure 3.12 (b) shows the corresponding traffic reduction based on

simulations for segment-based caching with different prefetching methods when the segment

size is of 100 KB. Figure 3.12 (b) shows tha t OnDemand generates the least server traffic

since it does not do any prefetch; Half and Window methods, with increased aggressiveness

in prefetching, generate more and more server traffic. This is a small penalty Hyper-Proxy

pays to improve continuous streaming of media content. Active prefetching is not simulated

here since it is difficult to simulate a dynamic estimation of the channel bandwidth between

content-server and Hyper-Proxy. The server traffic generated by Active prefetching would

depend on the time-varying nature of the channel bandwidth.

However, not all prefetched segments will be used by the clients. We define false prefetch

as the size of the segments tha t are prefetched and cached but have never been streamed

to clients before they are evicted. Figure 3.13 shows for this 24 hour trace, Half method

produces about 50% of the false prefetches compared to Window. Thus, for real traces,

the Window method is too aggressive, since many clients term inate clips early (i.e., before

accessing half of a segment). Also, since the prefetching granularity is segment, smaller

segment size produces less false prefetch. We study these in detail in [98].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. IMPLEMENTATION AND EVALUATION 89

0.3

CO
O 0.2

0)o
C L
O
■=0-1Co

\!.........

__--Q-—LL~'.'i£:

-+~ 100KB
200KB

-® 300KB
 400KB

500KB

5 10 15 20 25 30
Cache Size (Percentage of Total Object Size)

0.15
100KB
200KB
300KB
400KB
500KB

.2 0.05

5 10 15 20 25 30
Cache Size (Percentage of Total Object Size)

(a) Window (b) Half

Figure 3.13: False prefetch by Window and Half

3.5 Summary

Recent years have seen a large amount of research work in segment-based proxy caching

for streaming media delivery. However, its implementation and deployment are hindered

by several factors. One is the complexity of media file formats. The other concern comes

from UDP, which is the base for RTP, the base for real streaming. Additionally, system

support is demanded to guarantee continuous streaming. We have designed, implemented,

and tested tha t it is possible to push the streaming capability to the edge of the network

and couple it with a caching proxy to efficiently serve a large number of clients. This

design fundamentally frees the content provider from serving constraints. Specifically, our

contributions are:

i. We have designed and implemented a segment-based caching proxy that supports

streaming of multimedia content with rigorous latency and continuity constraints.

ii. The design and implementation leverage the existing Internet infrastructure. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. IM PLEM ENTATIO N AND EVALU ATIO N 90

content-server needs only to be a simple Web server, yet its contents are served through

Hyper-Proxy in a scalable and efficient fashion.

iii. We have thoroughly evaluated different prefetching methods which are closely coupled

with the segment-based caching. We have shown that segment-based access inherently

reduces the client perceived startup latency and various prefetching methods can

provide continuous streaming in various network conditions.

iv. We have tested the full system with real network conditions and with a real workload.

We believe this is the first work of this kind.

Currently, the Hyper-Proxy system is deployed at a site for large scale deployment tests

and at many sites of a large enterprise for one-year trial stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Shared Running Buffers (SRB)

Based Proxy Caching Streaming

Sessions

4.1 Introduction

Currently the basic infrastructure of the Internet content delivery network is a server-proxy-

client system. In this system, the server delivers the content to the client through a proxy.

The proxy can choose to cache the object so tha t subsequent requests to the same object can

be served directly from the proxy without contacting the server. But the high performance

and high quality delivery demand of the vast amount of streaming media contents presents

several challenges to this infrastructure since the existing proxy cannot efficiently delivery

streaming media data due to two facts. On one hand, the size of a media object is normally

much larger than tha t of a Web object, making it infeasible to cache the entirety of the

media object. On the other hand, the delivery of streaming media objects is constrained

by the real-time requirements from clients as stated in previous chapters. W ithout the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS 92

proxy caching assisting the streaming media delivery, a lot of resources have to be reserved

for delivering the streaming media data to a client. In practice, even a relatively small

number of clients can overload a media server, creating bottlenecks by demanding high disk

bandwidth on the server and high network bandwidth to the clients.

To address these challenges, researchers have proposed different methods to utilize the

available resources in the proxy for caching streaming media objects. The caching ap

proaches [32, 43, 51, 65, 74, 81, 94, 104, 117] always utilize the storage (mainly the disk) in

the proxy to cache either a prefix or a certain number of segments of a media object.

More recently, researchers have paid attention to the temporal caching of media objects

in the proxy memory. W ith the falling prices of memories, the magnitude of Gbytes mem

ory of a server/proxy is not uncommon. So to temporarily cache the media data in the

server/proxy memory while delivering to the client so that the later requests could benefit

from the cached data in the memory is feasible. Similar to the proxy caching based on disk,

to cache the entire media object in the memory is unrealistic, while randomly caching a

fraction of the media objects statically is not useful because normally the media objects

are requested sequentially. So when and how to cache the media objects, when and how to

allocate/reclaim the memory buffers so tha t the media data can be delivered to as much

as possible from the limited memory space to as many clients as possible become an in

teresting and challenging problem. There was some work discussing this problem. The

fixed-sized running buffer caching [13] and the interval caching [36, 37] are two major run

ning (memory) buffer based caching techniques. The basic working principle of the running

buffer based caching technique is as follows: when a request arrives, a fixed-sized buffer of

a predetermined length is allocated to cache the media data fetched by the proxy, hoping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS 93

that closely followed requests could reuse the data in the memory instead of obtaining it

from other sources (the disk, the origin server or other caches). In contrast, the interval

caching technique uses a different approach. It considers two requests immediately followed

as a request pair, and incrementally orders the arrival intervals of all request pairs (the

arrival interval of a request pair is defined as the difference in their arrival times). In the

memory allocation, the interval caching gives preference to smaller intervals, expecting more

requests can be served for a given amount of memory. Figure 4.1 illustrates basic ideas of

the running buffer caching and the interval caching techniques.

Media Position Media Position

Access Time Access Time

(a) (b)

Figure 4.1: Running buffer and interval caching

In Figure 4.1, the Media Position indicates a time position in a streaming media where

the media object is delivered to the client. The solid slope represents a delivery session.

In Figure 4,1 (a), a fixed-sized buffer B l is allocated upon the arrival of the request R l.

Subsequently, requests R2, R3, R4 are served by the data cached in this buffer since they

arrive in time. The request R5 does not arrive in time, so a new buffer B 2 of the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 94

length is allocated, which benefits the request R6 .

In Figure 4.1 (b), upon the arrival of R2, an interval is formed between R l and R2,

and a buffer of the interval size is allocated to cache data read by R l from now on. So the

request R2 only needs to read the first part of data from the proxy/server while receiving the

rest data from the buffer. The situation changes until the arrival of request R5, where we

assume the interval between R4 and R5 is smaller than tha t between R3 and R4. Since the

interval between R4 and R5 is smaller than tha t between R3 and R4, the buffer allocated

for the interval between R3 and R4 is deallocated, and the space is re-allocated to the new

interval between R4 and R5.

However, the running buffer caching does not take consideration of user access patterns,

resulting in the inefficient usage of the memory resource. For example, in Figure 4.1 (a),

the size of buffer B l is larger than the amount needed to serve the requests of Ri through

R4 , the size of buffer B 2 is larger than the amount needed to serve the request R5 and

the request R6 - The interval caching approach does consider the client access pattern in

the buffer allocation. However, it shares another limit with the running buffer caching

approach: data sharing among different buffers has not been considered. For example, B 2

in Figure 4.1 (b) does not need to run to the end of the media if the data cached in buffer

B l are shared by the later requests.

In this chapter, we propose a new memory-based caching algorithm for streaming media

objects using Shared Running Buffers (SRB). In this algorithm, the memory space on the

proxy is allocated adaptively by considering the client access patterns and the requested

media objects themselves. More importantly, the data cached in different running buffers

are fully shared. When requests are terminated, the algorithm efficiently reclaims the idle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS

memory space and does near-optimal buffer replacement at runtime.

95

Media Position ‘Media Position

Access Time
(a)

Figure 4.2: Greedy patching and grace patching

By further looking into the patching approaches that were heavily studied in the VQD

environment [38, 48], we found tha t patching algorithms, such as the greedy patching, the

grace patching and the optimal patching [60], take advantage of the client-side storage

resource to buffer data in multiple channels without delay. The greedy patching as shown

on Figure 4.2 (a) always patches to the existing complete stream while the grace patching

restarts a new complete stream at some appropriate points as shown on Figure 4.2 (b).

Furthermore, the optimal patching [103] considers how to re-use the limited storage on

the client side to receive as many data as possible while listening to as many channels

as possible. Figure 4.3 shows the basic idea of the optimal patching. Motivated by this,

we propose another enhanced media delivering algorithm: Patching SRB (PSRB), which

further improves the performance of the media data delivery.

Finally, we evaluated our algorithms through an intense set of simulations based on both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SHARED RUNNING BUFFERS 96

Media Position

Access Time

Figure 4.3: Optimal patching

synthetic workloads and a real access trace of an enterprise media server. The simulation

results show that the performance of our algorithms is superior comparing with previous

solutions. More details are presented in the [21].

The rest of this chapter is organized as follows. Some related work is introduced in Sec

tion 4.2. Section 4.3 describes the memory-based SRB algorithms we proposed. Simulation

based performance evaluation results are presented in Section 4.4. We then summarize this

study in Section 4.5.

4.2 Related Work

The delivery of a streaming media object takes time to complete. We call this delivery

process a streaming session. Session sharing is possible among sessions that overlap with

each other. In addition, proxy buffering can be used. Batching is a special type for session

sharing [38, 47]. In this approach, requests are grouped and served simultaneously via

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS 97

multicast [48]. Therefore, requests arrived earlier have to wait. Hence, some delays have

to be introduced to the early arrived requests. Session sharing and proxy buffering for

streaming media delivery have also been studied with other techniques, such as multicast,

broadcasting, and proxy caching. In [111], the batching, patching and streaming merging

are combined with proxy caching. Multicast [121] is considered with caching in [90] and [50].

Staggered multicast is proposed in [45], A circular buffer is used in [20], while in [2 2], a set of

existing techniques are evaluated and the running buffer is efficiently utilized together with

patching for efficiently delivering the media content. A number of different broadcasting

strategies have also been proposed to be used separately or together with other techniques,

such as skyscraper broadcasting [62], pyramid broadcasting (PB) [110] and permutation-

based pyramid broadcasting (PPB) [8], harmonic broadcasting [6 6] and its variant [8 6],

variable bandwidth broadcasting (VBB) [8 8].

4.3 Shared Running Buffer (SR B) Media Caching Algorithms

It has been shown tha t two current memory caching approaches of the media objects: the

running buffer caching and the interval caching approaches, do not take effective use of the

limited memory resource.

Motivated by the limits of the current memory buffering approaches, we design a Shared

Running Buffer (SRB) based caching algorithm, briefly called SRB algorithm, for the

streaming media with the aim to maximize the effective utilization of the memory. In

this section, with the introduction of several new concepts, we first describe our basic SRB

media caching algorithm in detail. Then, we characterize the SRB media caching algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SH ARED RUNNING BUFFERS

and present an extension to the SRB: Patching SRB (PSRB).

98

4 .3 .1 S R B A lg o r ith m : R e la te d D efin it io n s

The algorithm first considers buffer allocation in a time span T starting from the first

following concepts are defined to capture the characteristics of the user request pattern.

consists of a group of intervals. W ithin the time T, if n = 1, the interval 1/ is defined

as oo; otherwise, it is defined as:

Since I f represents the time interval between the last request arrival and the end of

the investigating time period, it is called as the Waiting Time.

2. Average Request Arrival Interval (ARAI): The A R A I is defined as]C5c=i t f / i 71 ~ 1)

when n > 1. ARAI does not exist when n = 1 since it indicates only one request

arrival within time frame T and thus we set it as oo.

For the buffer management, three buffer states and three timing concepts are defined as

follows, respectively.

request. We denote R \ as the j-th request to media object i, and T? as the arrival time of

this request. Assume tha t there is n request arrivals within the time T and R f is the last

request arrived in T. For the convenience of representation without losing precision, T f is

normalized to 0 and T f (where 1 < j < n) is a time relative to T f. Based on the above, the

1. Interval Series: An interval is defined as the difference in time between two consecutive

request arrivals. We denote I f as the j-th interval for object i. An Interval Series

Z f+ 1 - I f , if 1 < j < n

T — Tp, i f ; = ra.
(4.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SH ARED RUNNING BUFFERS 99

1 . Construction State & Start- Time: when an initial buffer is allocated upon the arrival

of a request, the buffer is filled while the request is being served, expecting tha t the

data cached in the buffer could serve the closely followed requests for the same object.

are called as the resident requests of this buffer and the buffer is called as the resident

buffer of these requests.

2. Running State & Running-Distance: after the buffer freezes its size it will serve as a

running window of a streaming session and moves along with the streaming session.

Therefore, the state of the buffer is called the Running State.

The Running-Distance of a buffer is defined as the distance in terms of time between

a running buffer and its preceding running buffer. We use D \ to denote the Running-

Distance of B l. Note that for the first buffer allocated to an object i, D j is equal

to the length of object i : L i. Here, we assume a complete viewing scenario initially.

Since we are encouraging the sharing among the buffers, the buffer B j needs only to

run to the end point of B\~~l . Mathematically, we have:

3. Idle State & End-Time: when the running window reaches the end of the streaming

The size of the buffer may be adjusted to cache less or more data before it is frozen.

Before the freezing happens, the buffer is in the Construction State.

Thus, the Start-Time of a buffer B f, the j-th buffer allocated for object i, is defined as

the arrival time of the last request before the buffer is frozen. We use S j to denote the

Start-Time of the buffer B j. The requests arriving in a buffer’s Construction State

(4.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SH ARED RUNNING BUFFERS 100

session, the buffer enters the Idle State, which is a transient state tha t allows the

buffer to be reclaimed.

rplatest d en o te the arrival time of the most recent request to the object i. Here, the

4 .3 .2 S R B A lg o r ith m

W ith these related definitions, the SRB algorithm works as follows: for an incoming request

for the object i, the SRB algorithm works as follows:

1. If the latest running buffer of the object i is caching the prefix of the object i, the

request will be served directly from all the existing running buffers of the objects.

2. Otherwise,

(a) if there is enough memory, a new running buffer of a predetermined size T is

allocated. The request will be served from the new running buffer and all existing

running buffers of the object i.

(b) if there is no enough memory, the SRB buffer replacement algorithm (see 4.3.2.3)

is called to either re-allocate an existing running buffer to the request or serve

this request without caching.

The End- Time of a buffer is defined as the time when a buffer enters idle state and is

ready to be reclaimed. The End- Time of the buffer B j, denoted as E j is defined as:

if j — 1

i f j > l .
(4.3)

rpiaust dynamically changes with the coming of new requests and so does the E j . The

detailed updating procedure of E j is described in the following section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 101

3. Update the End- Times of all existing buffers of the object i based on Equation 3.

During the process of the SRB algorithm, parts of a running buffer could be dynamically

reclaimed as described in 4.3.2.2 due to the request termination and the buffer is dynamically

managed based on the user access pattern through a lifecycle of three states as described

in 4.3.2.1.

4.3.2.1 SR B Buffer Lifecycle M anagem ent

Initially, a running buffer is allocated with a predetermined size of T. Starting from the

Construction State, it then adjusts its size by going through a three-state lifecycle manage

ment process as described in the following.

• Case 1: the buffer is in the Construction State. The proxy makes a decision at the

end of T as follows.

- If A R A I — oo, which indicates tha t there is only one request arrival so far,

the initial buffer enters the Idle State (case 3) immediately. For this request, the

proxy will serve as a bypass server, i.e., the content is passed to the client without

caching. This scheme gives preference to more frequently requested objects in

the memory allocation. Figure 4.4 (a) illustrates this situation. The shadow

indicates the allocated initial buffer, which is reclaimed at T.

- If In 0 * A R A I (Ifi is the wmtmg tim ej, the initial buffer is shrunk to the extent

that the most recent request can be served from the buffer. Subsequently, the

buffer enters the Running State (case 2). This running buffer will serve as a

shifting window and run to the end. Figure 4.4 (b) illustrates an example. Part

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 102

Media Position

Access Time

Media Position

A if;/

(a)

T Access Time

(b)

Figure 4.4: SRB memory allocation: the initial buffer freezes its size (1)

of the initial buffer is reclaimed at the end of T. This scheme performs well for

periodically arrived request groups.

If I n < A R A I, the initial buffer maintains the construction state and continues

to grow to the length of T ', where T ' = T - I n + A R A I, expecting that a new

request arrives very soon. At T ', the A R A l' and l'n are recalculated and the

above procedure repeats. Eventually, when the request to the object becomes

less frequent, the buffer will freeze its size and enter the Running State (case 2).

In the extreme case, the full length of the media object is cached in the buffer. In

this case, the buffer also freezes and enters the running state (a static running).

For most frequently accessed objects, this scheme ensures tha t the requests to

these objects are served from the proxy directly. Figure 4.5 (a) illustrates this

situation. The initial buffer has been extended beyond the size of T for the first

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SH ARED RUNNING BUFFERS 103

Media Position

Access Time

(a)

Media Position
A

A
A

A

f ' /

T Access Time

(b)

Figure 4.5: SRB memory allocation: the initial buffer freezes its size (2)

The buffer expansion is bounded by the available memory in the proxy. When the

available memory is exhausted, the buffer freezes its size and enters the running

state regardless of future request arrivals.

- If T > A R A I > Th {Th is a threshold specified by the client, say T /2), the initial

buffer is shrunk to the extent tha t the most recent request can be served from

the buffer. Subsequently, the buffer enters the Running State (case 2). This

running buffer will serve as a shifting window and run to the end. Figure 4.5

(b) illustrates an example. Part of the initial buffer is reclaimed at the end of T.

This deals with scattered requests for an object. The idea of a threshold is not

a must for our algorithm, but for the better resource utilization.

Case 2: the buffer is in the Running State. After a buffer enters the running state,

it has run away from the beginning of the media object and subsequently arrived

requests can not be served completely from the running buffer. In this case, a new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 104

buffer of an initial size T is allocated and subsequent requests are served from the

new buffer as well as the first running buffer.

In addition, the End-Time of the new running buffer needs to be determined and the

End- Times of its preceding running buffers E {~1, E f need to be modified according

to the arrival time of the latest request, as shown in Equation 4.3.

Access Time

,k k+l1 _2 ,n

Figure 4.6: Data sharing among buffers in SRB algorithm

Figure 4.6 illustrates the maximal data sharing in the SRB algorithm. Here, since

we consider the request and delivery of one object. The requests R” to Rf+1 are

receiving data simultaneously from Bj and B?. Late requests could receive data from

all existing preceding running buffers. N o te that except for the first buffer,

other buffers do not have to run to th e end o f th e ob ject. When the buffer

runs to its End-Time, it enters the Idle State (case 3).

• Case 3: the buffer is in the Idle State. When a buffer enters the Idle State, it is ready

for reclamation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 105

In the above algorithm, the time span T (which is the initial buffer size) is determined

based on the object length. Typically, a Scale factor (say, 1/2 to 1/32) of the origin length

is used. To prevent an extremely large or small buffer size, the buffer size is bounded by

a upper bound: High-Bound and a lower bound: Low-Bound. It can be adjusted by the

streaming rate to allow the initial buffer to cache a reasonable length (e.g., 1 minute to 1 0

minutes) of media data.

The algorithm requires the client be able to listen to multiple channels at the same

time: once a request is posted, it should be able to receive data from all the ongoing

running buffers of that object simultaneously.

4.3.2.2 SR B Buffer D ynam ic R eclam ation

The memory reclamation in a running buffer is triggered in two different types of session

terminations: complete session termination and premature session termination. In the

complete session termination, a session terminates only when the delivery of the whole

media object is completed, which only happens when the buffer is in the Running State.

In this case, assume tha t R j is the first request being served by a running buffer. When

R j reaches the end of the media object, the following two scenarios happen for the resident

buffer of Rj;

1. If the resident buffer is the only running buffer for the media object, the resident

buffer enters the idle state. In this state, the buffer maintains its content until all the

resident requests reach the end of the session. On that time, the buffer is released.

2. If the resident buffer is not the only running buffer, that is, there are succeeding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 106

running buffers, the buffer enters the idle state and maintains its content until its

end-time. Note that the end-time may be updated by succeeding running buffers.

In the premature session termination, the thing is much more complicated. Here, the

request arriving later may term inate earlier, which can happen when a buffer is in the

Construction State or the Running State. Considering a group of consecutive requests R \

to R f tha t are being served by a running buffer, the session for one of the requests, say R j ,

where 1 < j < n, terminates before everyone else. The situation is handled as follows.

1. If R j is served from the middle of its resident buffer, tha t is, there are preceding and

succeeding requests served from the same running buffer, the resident buffer maintains

its current state and the request R j gets deleted from all its associated running buffers.

Figure 4.7 (a) and (a’) show the buffer situation before and after R j is terminated,

respectively.

2. If Rj is served from the head of its resident buffer, the request is deleted from all of its

associated running buffers. The resident buffer enters the idle state for a time period

of I. During this time period, the content within the buffer is moved from R j+1 to

the head. At the end of the time period I , the buffer space from the tail to the last

served request is released and the buffer enters the running state again. The figures

of (b) and (b)’ in Figure 4.7 show this situation.

3. II Rj is served at the tail of a running buffer, two scenarios are further considered.

• After deleting the R j from the request list of its resident buffer, if the request list

is not empty, then do nothing. Otherwise, the algorithm can choose to shrink

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 107

Stream of Object Qi Stream of Object Oi

m u m - ' t - t
Rs Rj Rn Rt Rk Rl Rm

(a)

Stream of Object Oi
I -----------------------------

t - t
Rs Rj Rn Rt Rk Rl Rm

(b)

Stream of Object Oi

,y Bj
t - t

Rs Rj Rn Rk Rl Rm

(a)’

Stream of Object Oi

Bj+1 i BJ

h

tyo& r bj
t

Rs Rj Rn Rt Rk Rm

(c)

Stream of Object Oi
I ---------- ------ ---------------

mmmmm B j+L ,.<^ Bj

t - t
Rn Rt Rk Rl Rm

(d)

Rs Rj Rn Rt Rl Rm

(b)’

Stream of Object Oi
1

Rs Rj Rn Rt Rk

(c)’

Stream of Object Oi

Bj+1...<™. Bj

t . . ^ t - t
Rt Rk Rl Rm

(d)’

Figure 4.7: SRB memory reclamation: different situations of session termination

the buffer to the extent tha t R j~ l can still be served from the buffer (assuming

H i-1 is a resident request of the same buffer). In this case, the End-Times of

the succeeding running buffers need to be adjusted. The figures of (c) and (c)’

in Figure 4.7 illustrate this situation.

• If R j is at the tail of the last running buffer, as shown in Figure 4.7 (d), the

buffer will be shrunk to the extent tha t R j_ 1 is just served from the buffer. Rj

is deleted from the request list. Subsequently, the buffers run as shown in Figure

4.7 (d’)-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SHARED RUNNING BUFFERS 108

4.3 .2 .3 SR B Buffer R eplacem ent Policy

The replacement policy is important in the sense th a t the available memory is still scarce

compared to the size of video objects. So to efficiently use the limited resources is critical to

achieve the best performance gain. In this section, we propose popularity based replacement

policies for the SRB media caching algorithm. The basic idea is described as follows:

• When a request arrives while there is no available memory, all the objects tha t have

on-going streams in the memory are ordered according to their popularities calculated

in a certain past time period. If the object being demanded has a higher popularity

than the least popular object in the memory, then the latest running buffer of the least

popular object will be deallocated, and the space is re-allocated to the new request.

Those requests without running buffers do not buffer their data at all. In this case,

theoretically, they are assumed to have no memory consumption.

We have precisely analyzed our popularity based replacement policies by both the mod

eling and the simulation in [2 1].

4 .3 .3 P a tc h in g S R B (P S R B) A lg o r ith m

Since the proxy has a finite amount of memory space, it is possible tha t the proxy serves as

a bypass sever to transiently cache concurrent sessions. In the SRB algorithm, concurrent

sessions are not shared, which may lead to excessive proxy load when there are huge number

of requests to different objects. Motivated by this, the SRB algorithm is extended to a

Patching SRB (PSRB) algorithm which enables the sharing of concurrent sessions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 109

Media Position

RiRiBiRiRi Ri RiR?

Figure 4.8: An example of the PSRB algorithm

Figure 4.8 illustrates a PSRB scenario. The first running buffer B j has been formed for

requests R j to i?f. No buffer is running for R% since it does not have a close neighboring

request. However, a patching session has been started to retrieve the absent prefix in B}

from the content server. At this time, request Rf is served from both the patching session

and B \ until the missing prefix is patched. Then, R® is served from B] only (the solid line

for R® ends).

When R j and R® arrive and form the second running buffer B f, they are served from

B} and B \ as described in the SRB algorithm. In addition, they also receive data from

the patching session initiated for R®. Note tha t the patching session for R® is transient, or

we can think of it as a running buffer session with zero buffer size. As evident from the

figure, the filling of B f does not cause server traffic between position a and b (no solid line

between a and b) since B f is filled from the patching session for R®. Sharing the patching

session further reduces the the number of server accesses for R j and R f. In general, the

PSRB algorithm is a combination of the SRB algorithm with the optimal patching algorithm

proposed in [103]. By taking advantage of the client-side storage, PSRB tries to maximize

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

C H APTER 4. SH ARED RUNNING BUFFERS 110

the data sharing among concurrent sessions in order to minimize the traffic in the content

server.

4.4 Performance Evaluation

To evaluate the performance of the proposed algorithms and to compare them with prior

solutions, we conduct event-driven simulations based on the same synthetic and real work

loads we used in section 2.6 of Chapter 2. The Tow-Bound and High-Bound for the initial

buffer size are 2 Mbytes and 16 Mbytes in simulations.

4 .4 .1 E v a lu a tio n M etr ics

We have implemented an event-driven simulator to model a proxy’s memory caching be

haviors. Since the object hit ratio or hit ratio is not suitable for evaluating the caching per

formance of the streaming media, we use the server traffic reduction (shown as bandwidth

reduction in the figures) to evaluate the performance of the proposed caching algorithms. If

the algorithms are employed on a server, this parameter indicates disk I/O traffic reduction.

Using SRB or PSRB algorithms, a client needs to listen to multiple channels for the

maximal sharing of the cached data in the proxy’s memory. We measure the traffic between

the proxy and the client in terms of the average client channel requirement. This is an

averaged number of channels the clients are listening to during the sessions. Since the

clients are listening to earlier on-going sessions, storage is needed at the client to buffer the

data before its presentation. We use the average client storage requirement in percentage

of the full size of the media object to indicate the storage requirement on the client side.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 111

The effectiveness of the algorithms is studied by simulating different scale factors for the

allocation of the initial buffer size and varying memory cache capacities. The streaming rate

is assumed to be constant for simplicity. The simulations are conducted on HP workstation

x4Q00, with 1 GHz CPU and 1 GB memory.

For each simulation, we compare a set of seven algorithms in three groups. The first

group contains buffering schemes which include the running buffer caching and the interval

caching. The second group contains patching algorithms, specifically the greedy patching,

the grace patching and the optimal patching. The third group contains the two sharing

running buffer algorithms proposed in this study.

In the following subsections, we present the simulation results. We consider complete

viewing scenario for streaming media caching in the Web environment and the partial

viewing scenario in Web environment first. The evaluation results on a real workload are

presented then.

4 .4 .2 P er fo rm a n ce o f th e W E B W ork load

First, we evaluate the caching performance with respect to the initial buffer size. W ith a

fixed memory capacity of 1GB, the initial buffer size varies from 1 to 1/32 of the length

of the media object. For each scale factor, the initial buffer of different sizes is allocated

if the length of the media object is different. The server traffic reduction, the average

client channel requirement and the average client storage requirement are recorded in the

simulation. The results are plotted in Figure 4.9.

Figure 4.9 (a) shows the server traffic reduction achieved by each algorithm. Notice

that PSRB achieves the best reduction and SRB achieves the next best reduction after

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 112

RB Caching
~e~ Interval Caching

SRB Caching
- e - Greedy Patching
- ® - Grace Patching
■-* Optimal Patching

Patching SRB

1/Scale

- 15c
CD
E
&
'5
crffl
OC10
0)cc
(0
J3o
c
J 5
O
0D)
2ffl
1

- + - RB Caching
- a - Interval Caching
- v - SRB Caching

Greedy Patching
-® - Grace Patching

Optimal Patching
Patching SRB

_

16 32
1/Scale

(b)

Figure 4.9: WEB: server traffic reduction and average client channel with 1GB Memory

the optimal patching. RB caching achieves the least amount of reduction. As expected,

the performance of the three patching algorithms does not depend on the scale factor for

allocating the initial buffer. Neither does tha t of the interval caching since the interval

caching allocates buffers based on access intervals.

Co-60O''

§ 5 0
Ou
g"40
DC
ffl
<030
o*->
CO

C20ffl
O
§>10
<s

I< ol

RB Caching
- a - Interval Caching

SRB Caching
Greedy Patching
Grace Patching

' Optimal Patching
Patching SRB

1/Scale
16 32

Figure 4.10: WEB: storage requirement (%) with 1GB memory

For the running buffer schemes, we observe some variation in performance with respect to

the scale factor. In general, the variations are limited. To a certain extent, the performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS 113

gain of the bandwidth reduction is a trade-off between the number of running buffers and the

sizes of running buffers. A larger buffer implies tha t more requests can be served from the

proxy buffer. However, a larger buffer also indicates that less memory space is left for other

requests. This in turn leads to a larger number of server accesses since there is no available

memory. On the other hand, a smaller buffer may serve a smaller number of requests but

it leaves more memory space for the system to allocate for other requests.

Figure 4.9 (b) and Figure 4.10 show the average channel and storage requirement on the

client. Notice tha t the optimal patching achieves a better server traffic reduction by paying

the penalty of imposing the biggest number of client channels required. Comparatively,

PSRB and SRB require 30 to 60% fewer client channels while achieving a better or closer

server traffic reduction ratio.

PSRB allows the session sharing even when memory space is not available. It is therefore

expected that PSRB achieves the highest rate of server traffic rate reduction. In the mean

time, it also requires the largest client side storage. On the other hand, SRB achieves about

6 % less traffic reduction, but the requirement on client channel and storage is significantly

lower.

We now investigate the performance of different algorithms with respect to various

memory capacities on the proxy. In this simulation, we use a fixed scale factor of 1/4 for

the initial buffer size.

Figure 4.11 (a) shows an unchanged traffic reduction rate for the three patching algo

rithms. This is expected since no proxy memory resource is utilized in the patching. On the

other hand, all the other algorithms investigated achieve higher traffic reduction rates when

the memory capacity increases. It is im portant to note tha t the proposed SRB algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SHARED RUNNING BUFFERS 114

100r

90
RB Caching
interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

~ 15c
®
E
8D
cr®
CE10
®Cc
(0
s:
O

O
®O)
a
><

RB Caching
Interval Caching

- 'r - SRB Caching
Greedy Patching

- e - Grace Patching
• Optimal Patching

~a Patching SRB

0.5 1 2
Memory Cache Size (Gbytes)

8.% 0.5 1 2
Memory Cache Size (Gbytes)

(a) (b)

F ig u r e 4 .1 1 : W EB: bandwidth reduction and average client channel w ith the scale o f 1 /4

achieve a better traffic reduction ratio than the interval caching algorithm and the running

buffer algorithm.

In Figure 4.11 (b), the client channel requirement decreases for the PSRB algorithm

when the memory capacity increases. This is again expected since more clients are served

from the proxy buffer instead of proxy patching session.

§40

?60

c
§ 6 0

2
3
%tr
®
g30
o
55
c 20
.2
6
§>io
<0

RB Caching
- ~ a - Interval Caching

. SRB Caching
Greedy Patching
Grace Patching

..■ Optimal Patching
-«-■ Patching SRB

, . -----------— V ------------------
T----------- ------------ -

& 0.5 1 2
Memory Cache Size (Gbytes)

F ig u r e 4 .1 2 : WEB: storage requirement (%) with the scale of 1/4

When the cache capacity reaches 4GB, PSRB only requires 30% of the client channel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 115

needed for the optimal patching scheme. PSRB also requires less client storage at this point

as indicated in Figure 4.12. And yet, PSRB achieves more than 10 percentage points of

traffic reduction comparing to the optimal patching scheme. For the SRB algorithm, it

generally achieves the second best traffic reduction with even less penalty on client channel

and storage requirements.

4 .4 .3 P er fo rm a n ce o f th e PA RT W ork load

c 50o
o
-2 4 0

RB Caching
- a - Interval Caching

SRB Caching
Greedy Patching
Grace Patching

> Optimal Patching
Patching SRB

<-12c
(33

S?10
'5
O ’0
CL 8

*5cc
1 6 O
c

. 0 4

O <
<13
O) „
2 2

I '

* - RB Caching
Interval Caching
SRB Caching

- a - Greedy Patching
- e - Grace Patching
-> Optimal Patching

Patching SRB

___ .

4 8
1/Scale

16 32

(a)
1/Scale

(b)

16 32

Figure 4.13: PART: bandwidth reduction and average client channel requirement w ith 1GB m em
ory

In streaming media delivery over the Internet, it is possible tha t some clients terminate

the session after watching for a while from the beginning of the media object. It is im portant

to evaluate the performance of the proposed algorithm under this situation. Using the

PART workload, we perform the same simulations and evaluate the same set of parameters.

Figure 4.13 (a) shows similar characteristics as that in Figure 4.9. PSRB and SRB still

achieve better traffic reduction. The conclusion holds tha t PSRB uses 60% of the client

channel to achieve 5 percentage point better traffic reduction compared with the optimal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SH ARED RUNNING BUFFERS 116

patching.

In the event tha t a session terminates before it reaches the end of the requested media

object, it is possible tha t the client has already downloaded future part of the media stream

which is no longer needed. To characterize this wasted delivery from the proxy to the

client, we record average client waste. It is the percentage of wasted bytes versus the total

prefetched data. Figure 4.14 shows the client waste statistic. Note tha t for PART and

REAL workloads, since both contain premature session terminations, the prefetched data

which is not used in the presentation are not counted as bytes hit in the calculation of the

server traffic reduction.

q-40O'*
§ 3 5

E

D
C7
$25
fflO)
<02
o*->

CO

cffl
q io
<D ui

15

RB Caching
Interval Caching

- v - SRB Caching
Greedy Patching

- a - Grace Patching
- Optimal Patching

, Patching SRB

£70
fflcoffl
cffl
o 4
ffl

ffl

1/Scale

(a)

16 32

RB Caching
- e - Interval Caching
- T - SRB Caching

•>- Greedy Patching .
- s - Grace Patching

- Optimal Patching
Patching SRB

1 4

- ^ —----------- y—-------- v ■

1/Scale

(b)

F ig u r e 4 .14 : PART: average client storage requirem ent (%) and client w aste (%) w ith 1GB memory

As shown in Figure 4.14 (b), PSRB and SRB have about 42% and 15% of prefetched

data wasted comparing with 0% for interval caching. Since the wasted bytes are not counted

as hit, this leads to the lowered traffic reduction rate for PSRB and SRB comparing to that

of interval cache. From another perspective, interval caching does not promote sharing

among buffers, hence the client listens to one channel only and there is no buffering of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SH ARED RUNNING BUFFERS 117

future data. Thus, there is no waste in proxy-to-client delivery in the event of premature

session termination.

70r

60-

r
r50

RB Caching
«■- Interval Caching
v - SRB Caching
-9- Greedy Patching

Grace Patching
Optimal Patching
Patching SRB

■M12rc
0

ffl 10

RB Caching
-<•- Interval Caching

SRB Caching
- s ~ Greedy Patching
- e - Grace Patching

Optimal Patching
Patching SRB

0.5 1 2
Memory Cache Size (Gbytes)

0.5 1 2
Memory Cache Size (Gbytes)

(a) (b)

F ig u r e 4 .1 5 : PART: bandwidth reduction and average client channel requirement with the scale of
1/4

•40
0s

§ 3 5

E
.® 30

g-
t r 2 5
<D
<020

M15

100
CD05 _
CO 5

1

RB Caching
--B-- Interval Caching

SRB Caching
Greedy Patching

• Grace Patching
«..Optimal Patching

Patching SRB

; \ ;
—__

25 0.5 1 2

90

0 w € co
^50
C
0

5
<u
05(0

1 <

40

Memory Cache Size (Gbytes)

(a)

RB Caching
Interval Caching
SRB Caching

~ 3 - Greedy Patching
Grace Patching

-* Optimal Patching
Patching SRB

■

■

•

■

-

---- $-----------■$—-----------<
25 0.5 1 2

Memory Cache Size (Gbytes)

(b)

F ig u r e 4 .1 6 : PART: average client storage requirement (%) and client waste (%) with the scale of
1/4

We now again start investigation of the caching performance with a fixed scale factor for

the initial buffer size in Figure 4.15. Comparing with Figure 4.9 (a), the distances between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SHARED RUNNING BUFFERS 118

the traffic reduction curves between PSRB, SRB and interval caching become much smaller

in general. This reinforces the observation above tha t PSRB and SRB may lead to more

wasted bytes in the partial viewing cases. In addition, the grace patching achieving almost

no traffic reduction shows its incapability in dealing with the partial viewing situation. The

reason might be tha t the new session started by the grace patching, which is supposed to

be a complete session, often terminates when 20% of the media object is delivered. Since

the duration of the session is short, it is less likely tha t a new request to the same media

object is received.

In Figure 4.15 (b), PSRB demonstrates monotonic decreasing of average client channel

requirement when memory capacity increases. This is due to the fact that there is a fewer

number of zero-sized running buffers with increasing proxy memory capacity. Similarly, as

shown in Figure 4.16, the client storage requirement and average client waste also decrease

since a fewer number of patching is required.

c 50o
o
= 40
a
DC

j 30

520
1

10'

Or

RB Caching
-® - interval Caching
- i f - SRB Caching
~o~ Greedy Patching
- e - Grace Patching

' Optimal Patching
- a - Patching SRB

1/Scale

(a)

16 32

c
0)
E
<3)5

'5O’o
DC 4

Oc
c
« 3
u
c
.3? 2
0

| ;
1

o.

RB Caching
- s - Interval Caching
- v - SRB Caching
- * Greedy Patching

Grace Patching
« Optimal Patching

- o - Patching SRB

4 8
1/Scale

16 32

(b)

Figure 4.17: RFAL: bandwidth reduction and average client channel requirement with 1GB mem
ory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SHARED RUNNING BUFFERS 119

4 .4 .4 Perform ance o f th e R E A L W ork load

Based on a real video delivering workload captured from corporate intranet, the same

simulations are conducted to evaluate the caching performance. We start first by evaluating

the caching performance versus varying scale factor for the initial buffer size.

Comparing Figure 4.17 (a) with Figure 4.9 (a), it is clear tha t changing scale factor has

a much more significant impact on the behavior of the proposed SRB and PSRB algorithms

for REAL. This could be due to the burst nature of the accesses logged in the workload.

To a certain degree, this result indicates the effectiveness of the adaptive buffer allocation

scheme we proposed in the algorithms.

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching

- Optimal Patching
Patching SRB

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

1/Scale
4 8

1/Scale

Figure 4.18: REAL: average client storage requirement (%) and client waste (%) with 1 GB memory

Setting the initial buffer size as 1/4 of the requested media objects, we again evaluate

the caching performance with increasing amount proxy memory available. Figure 4.19 and

4.20 show the server traffic reduction and the client side statistics.

Compared with the simulation results obtained with synthetic workloads, Figure 4.19

(a) shows a flat gain when memory capacity increases. It seems to indicate tha t memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SH ARED RUNNING BUFFERS 120

£4

0 2

0.50.5

RB Caching
- e~ Interval Caching
- a - SRB Caching

Greedy Patching
- e - Grace Patching

«- Optimal Patching
~q~ Patching SRB

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching

- * Optimal Patching
-« Patching SRB

Memory Cache Size (Gbytes)

(a)
Memory Cache Size (Gbytes)

(b)

Figure 4.19: REAL: bandwidth reduction and average client channel requirement w ith the scale
of 1 /4

capacity is less of a factor. Once again, the burst nature of the request arrival may play a

role here. In addition, the volume of the burst may also be low which leads to the fact that

limited amount of memory space suffices the sharing of sessions.

0)50

030
o>
§20

0.5

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching

< Optimal Patching
Patching SRB

RB Caching
- a - Interval Caching
- v - SRB Caching
--i> ~ Greedy Patching
- e - Grace Patching

» Optimal Patching
~a~ Patching SRB

Memory Cache Size (Gbytes)

(a)
Memory Cache Size (Gbytes)

(b)

Figure 4.20: REAL: average client storage requirement (%) and client w aste (%) w ith th e scale of
1 /4

The simulation results for the real workload provide the following understanding for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 121

studying of caching of streaming media: C ontrary to th e in tu ition that caching o f

stream ing m edia requires large m em ory space, in telligent allocation o f the avail

able m em ory resource is probably m ore im portant than th e m em ory resource

itself. This is also the motivation of the proposed SRB and PSRB algorithms. More details

on the performance analysis can be referred in the [21].

4 .4 .5 F u rth er A n a ly s is o n th e C lie n t C h a n n el R eq u irem en t

1001 100

U_ 70

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

RB Caching
Interval Caching

-~®~ SRB Caching
Greedy Patching

- v - Grace Patching
Optimal Patching
Patching SRB

9
Average Number of Different ChannelsAverage Number of Different Channels

(a) (b)

F ig u r e 4 .2 1 : Client channel requirem ent CDF: W E B and PART

The performance analysis in the previous section indicates tha t SRB and PSRB algo

rithm achieve superior server traffic reduction by utilizing the memory resource on the proxy

and sufficient bandwidth resource between the proxy and the clients. In most cases, the

proxy streams data from multiple buffers to the client through multiple channels. To have

a better understanding on the client channel requirement, we collect additional statistics

that illustrates the distribution of the number of client channels required. Figure 4.21 and

4.22 show the CDF of the client channel requirement for simulations on the workloads. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SH ARED RUNNING BUFFERS 122

io o r

D 75
RB Caching
Interval Caching

- e - SRB Caching
Greedy Patching

- v - Grace Patching
* - Optimal Patching

Patching SRB

Average Number of Different Channels

F ig u r e 4 .2 2 : Client channel requirem ent CDF: REAL

these simulations, the proxy has 1GB memory capacity and the scale factor for the initial

buffer size is fixed at 1/4.

For simple running buffer caching, since no session sharing is happening, only one chan

nel is required for clients. Greedy and grace patching algorithms need at most 2 client

channels. For the WEB workload, approximately 60% of greedy patching sessions and 40%

of grace patching sessions require only one client channel. Interval caching also requires at

most 2 client channels with 78% of the sessions requiring only one channel.

Optimal patching needs the largest number of client channels. It is not surprising since

requests arrive later always try to patch to as many earlier on going sessions as possible.

For all four workloads, the number of client channel required could exceed nine.

For the proposed SRB and PSRB algorithms, the number of the required client channel

often falls in between the optimal patching and the group of algorithms containing greedy,

grace patching and interval caching. Note further tha t for SRB algorithm, very few sessions

require more than 3 client channels with around 98% of session requires no more than 2.

The statistics shown for in the REAL workload as in Figure 4.22 verifies further that 94% of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. SHARED RUNNING BUFFERS 123

the PSRB session only needs no more than 2 client channels. On the other hand, more than

10% of the optimal patching sessions needs 3 or more client channels. Referring back to

Figure 4.19 (a), it is clear that SRB and PSRB achieve better server traffic reduction than

the optimal caching. This analysis enhances the advantages of the proposed algorithms.

In addition, these observations are useful when limited bandwidth resource is available

between the proxy and client. In this case, the proxy system can choose to execute a

session sharing algorithm which achieves better caching performance without exceeding the

capacity of link between the proxy and clients.

4.5 Summary

In this chapter, we proposed two new algorithms for caching of streaming media objects

by utilizing the proxy memory. Shared Running Buffers (SRB) caching algorithm is pro

posed to dynamically cache media objects in the proxy memory during delivery. Patching

SRB (PSRB) algorithm is proposed to further enhance the memory utilization in the proxy.

The adaptiveness of the two algorithms are analyzed and exploited. Simulations based on

both synthetic and real work load are conducted. The simulation results show the efficiency

of the proposed algorithms. Both algorithms require the client be capable of listening to

multiple channels at the same time. Comparing with previous solution which also require

multiple client channels, the proposed algorithm achieves better server traffic reduction with

less or similar load on the link between the proxy and the client.

SRB algorithms have been evaluated without considering the effect of the disk based

proxy caching. The proposed algorithms can also be applied to any streaming server to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SHARED RUNNING BUFFERS 124

reduce the disk bandwidth requirement. Now we are considering to combine the memory

based caching and disk based caching together. We are also investigating the performance

of the algorithms when the client side storage is limited and the streaming rate is varying.

As SRB algorithms can further improve the streaming delivery performance when applying

in the streaming proxy, the implementation of these algorithms in our Hyper-Proxy system

is under investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Other R elated Work

Besides the studies performed on the Internet caching systems for delivering streaming

media objects, I have also looked into the P2P assisted proxy-based streaming, Internet

caching problems related to the static objects and dynamic objects, as well as the problems

in the cluster computing. Following is a brief summary for each of them.

5.1 Coordinating P 2P System and P ro x y for Streaming M e

dia Delivery

As the demand of delivering streaming media content in the Internet has become increasingly

high for scientific, educational, and commercial applications, three representative technolo

gies have been developed for this purpose, each of which has its merits and serious limita

tions. Infrastructure-based CDNs with dedicated network bandwidths and powerful media

replicas can provide high quality streaming services but at a high cost. Server-based proxies

are cost-effective but not scalable due to the limited proxy capacity and its centralized con

trol. Client-based P2P networks are scalable but do not guarantee high quality streaming

service due to the transient nature of peers. To address these limitations, we propose a novel

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. O TH ER RELATED W O RK 126

and efficient design of a scalable and reliable media proxy system supported by P2P net

works. This system is called PROP, abbreviated from our technical theme of “collaborating

and coordinating PRQxy and its P2P clients” . Our objective is to address both scalability

and reliability issues of streaming media delivery in a cost-effective way. In the PROP sys

tem, the clients’ machines in an intranet are self-organized into a structured P2P system to

provide a large media storage and to actively participate in the streaming media delivery,

where the proxy is also embedded as an im portant member to ensure quality of streaming

service. The coordination and collaboration in the system are efficiently conducted by our

P2P management structure and replacement policies. We have comparatively evaluated

our system by trace-driven simulations with synthetic workloads and with a real workload

extracted from the media server logs of an enterprise network. The results show that our

design significantly improves the quality of media streaming and the system scalability [53].

5.2 D etective Browser

The amount of dynamic Web contents and secured e-commerce transactions has been dra

matically increasing [19, 105, 122] on the Internet where proxies between clients and Web

servers are commonly used for the purpose of sharing commonly accessed data and reducing

the Internet traffic. A significant and unnecessary Web access delay is caused by the over

head in the proxy to process two types of requests, namely dynamic Web content requests

and secured transaction requests, not only increasing response time, but also raising some

security concerns. Conducting experiments on Squid proxy 2.3STABLE4, we have quan

tified the unnecessary processing overhead to show their significant impact on increased

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. O TH ER RELATED W O RK 127

client access response times. We have also analyzed the technical difficulties in eliminating

or reducing the processing overhead and the security loopholes based on the existing proxy

structure. In order to address these performance and security concerns, we propose a simple

but effective technique from the client side tha t adds a detector interfacing with a browser.

W ith this detector, a standard browser, such as the Netscape/Mozilla, will have simple de

tective and scheduling functions, called Detective Browser. Upon an Internet request from

a client, the Detective Browser can immediately determine whether the requested content

is dynamic or secured. If so, the browser will bypass the proxy and forward the request

directly to the Web server; otherwise, the request will be processed through the proxy. We

implemented a Detective Browser prototype in Mozilla version 0.9.7, and tested its func

tionality and effectiveness. Since we simply move the necessary detective functions from a

proxy to a browser, the Detective Browser introduces little overhead to Internet accessing,

and our software can be patched to existing browsers easily [29].

5.3 Cooperatively Shared Proxy Browsers

Proxy hit ratios tend to decrease as the demand and supply of Web contents are becoming

more diverse. By case studies, we quantitatively confirm this trend, and observe signif

icant document duplications among a proxy and its client browsers’ caches. One reason

behind this trend is tha t the client/server Web caching model does not support direct re

source sharing among clients, causing the Web contents and the network bandwidths among

clients being relatively under-utilized. To address these limits and improve Web caching

performance, we have extensively enhanced and deployed our browsers-aware framework,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. OTHER RELATED W O RK 128

a peer-to-peer Web caching management scheme. We make the browsers and their proxy

share the contents to exploit the neglected but rich data locality in browsers, and reduces

document duplications among the proxy and browsers’ caches to effectively utilize the Web

contents and the network bandwidth among clients. The objective of our scheme is to im

prove the scalability of proxy-based caching both in the number of connected clients and

in the diversity of Web documents. We show tha t building such a caching system with

considerations of sharing contents among clients, minimizing document duplications, and

achieving data integrity and communication anonymity, is not only feasible but also highly

effective [120].

5.4 Dynam ic Load Sharing W ith Unknown M emory Dem ands

in Clusters

A compute farm is a pool of clustered workstations to provide high performance computing

services for CPU-intensive, memory-intensive, and I/O-active jobs in a batch mode. Exist

ing load sharing schemes with memory considerations assume jobs’ memory demand sizes

are known in advance or predictable based on clients’ hints. This assumption can greatly

simplify the design and implementation of load sharing schemes, but is not desirable in

practice. In order to address this concern, we present three new results and contributions

in this study. (1) Conducting Linux kernel instrumentation, we have collected different

types of workload execution traces to quantitatively characterize job interactions, and mod

eled page fault behavior as a function of the overloaded memory sizes and the amount of

jobs’ I/O activities. (2) Based on experimental results and collected dynamic system infor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. OTHER RELATED W O R K 129

mation, we have built a simulation model which accurately emulates the memory system

operations and job migrations with virtual memory considerations. (3) We have proposed

a memory-centric load sharing scheme and its variations to effectively process dynamic

memory allocation demands, aiming at minimizing execution time of each individual job

by dynamically migrating and remotely submitting jobs to eliminate or reduce page faults

and to reduce the queuing time for CPU services. Conducting trace-driven simulations, we

have examined these load sharing policies to show their effectiveness. Results of this study

have been published in [27, 118].

5.5 Adaptive M emory Allocations in Clusters to Handle Large

Data-Intensive Jobs

In a cluster system with dynamic load sharing support, a job submission or migration

to a workstation is determined by the availability of CPU and memory resources of the

workstation at the time. In such a system, a small number of runningjobs with unexpectedly

large memory allocation requirements may significantly increase the queuing delay times of

the rest of jobs with normal memory requirements, slowing down executions of individual

jobs and decreasing the system throughput. We call this phenomenon as the job blocking

problem because the big jobs block the execution pace of majority jobs in the cluster. Since

the memory demand of jobs may not be known in advance and may change dynamically,

the possibility of unsuitable job submissions/migrations to cause the blocking problem is

high, and the existing load sharing schemes are unable to effectively handle this problem.

We propose a software method incorporating with dynamic load sharing, which adaptively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. O TH ER RELATED W O RK 130

reserves a small set of workstations through virtual cluster reconfiguration to provide special

services to the jobs demanding large memory allocations. This policy implies the principle

of shortest-remaining-processing-time policy. As soon as the blocking problem is resolved by

the reconfiguration, the system will adaptively switch back to the normal load sharing state.

We present three contributions in this study. (1) We quantitatively present the conditions to

cause the job blocking problem. (2) We present the adaptive software method in a dynamic

load sharing system. We show tha t the adaptive process causes little additional overhead.

(3) Conducting trace-driven simulations, we show tha t our method can effectively improve

the cluster computing performance by quickly resolving the job blocking problem. The

effectiveness and performance insights are also analytically verified. Results of this study

have been published in [28, 119].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Internet technologies have greatly changed our life in the recent years, where all kinds

of contents are available through the widely deployed Web sites. The contents on Web

sites have evolved from the simple text-based Web pages to complicated dynamic contents

and streaming media objects. Their applications in many areas, such as education, medical

treatment, and entertainment, demand cost-effective and high performance delivery strate

gies. The research of efficient Internet content delivery strategies has been the focus of

many studies from both industry and academia.

In the early stage, the proxy caching approach has been very successfully used for

delivering static text-based contents by storing them locally closer to the client after a

client access, so that subsequent client requests for a same object can be directly served

from the proxy instead of the server. W ith the proliferation of streaming media objects on

the Internet today, the traditional proxy caching approach faces new challenges due to the

following two facts. The first is that the size of a media object is generally much larger

than a text-based object. Thus, caching the entire media objects as caching static Web

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 6. CONCLUSION AND FU TURE W O RK 132

objects can quickly exhaust the proxy cache space, making it infeasible. The second is

tha t the client requesting streaming media objects always demands continuous streaming

delivery and a small startup latency. Occasional delays of the data transferring over the

Internet may be acceptable for text-based Web browsing, however, the streaming media

data transferring delay always results in playback jitter at the client side. The jitter not

only is annoying, but also can drive clients away from the streaming service. A large startup

latency have the same effect to clients.

In this dissertation, we built cost-effective and high performance proxy-based Internet

caching systems for delivering streaming media objects, with minimum playback jitte r and

a small perceived startup latency at the client side. At the same time, it can achieve

reasonable good cache performance so tha t the Internet traffic and the disk bandwidth

requirement to the media server are reduced.

We first examined the performance objectives of the existing streaming proxy designs,

and found that conflicting performance objectives exist in current schemes. Through heuris

tic and modeling approaches, we provided effective solutions to balance these conflicting per

formance objectives. By comprehensively considering the objectives from the client point of

view, we proposed a streaming proxy design model: a streaming proxy should provide con

tinuous streaming delivery to the client subject to a small startup latency and high byte hit

ratio. Guided by this model, we designed Hyper-Proxy. Our evaluation based on synthetic

and real workloads shows that Hyper-Proxy can deliver streaming media data to clients

with minimum playback jitter and small startup latency, while it also achieves good cache

performance. As far as we know, this is the first system considering all three performance

objectives comprehensively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSION AND FU TURE W O RK 133

Second, we implemented Hyper-Proxy and evaluated it in the global Internet environ

ment and the local network environment. The implementation leverages the existing Inter

net infrastructure: Hyper-Proxy talks to the media content server via HTTP while it talks

to the client via RTP/RTSP. Thus, the streaming functions are pushed from the streaming

server to the proxy close to the client. Therefore, the traditional Web servers, such as

Apache, can now provide real streaming service through Hyper-Proxy. The evaluation with

the Hyper-Proxy and content server located in the LAN and connected between Japan and

USA demonstrated it can provide satisfying streaming results to clients while maintaining

good cache performance. To the best of our knowledge, this is the first system of this kind.

Now Hyper-Proxy has been deployed in a large industrial environment for trials.

Finally, considering the client access locality in the memory of the proxy when sub

sequent clients request the same object successively, we proposed a group of the Shared

Running Buffers (SRB) based techniques to exploit this locality. In SRB based techniques,

streaming data are not only shared among subsequently arrived sessions served by a running

buffer, but also among different running buffers. Even more, the Patching SRB (PSRB)

further utilizes the client side storage to increase the number of possibly shared sessions.

Our evaluation shows that SRB based techniques further reduce the media server’s load,

the amount of the network traffic and the client perceived response time.

6.2 Future Work

W ith Hyper-Proxy, now the new proxy-based Internet caching systems can cache the stream

ing media as well as static Web pages on the Internet, the proxy-assisted content delivery

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. CONCLUSION AND FU TURE W O RK 134

to all kinds of devices (such as PDAs, wireless phones, etc.) becomes necessary and promis

ing. Proxy-assisted transcoding only shadows a light on this problem. Provided tha t each

proxy only has a limited computing power, cache space and memory, how it can deal with

the mobility is im portant and how cooperative proxies work together to provide such kind

of services will attract more attention from academia and industry. W ith the availability

of streaming proxy to support the on-demand streaming, how the existing proxy provides

support to live streaming is another interesting direction. We think to research and provide

solutions to these problems has great potentials. Therefore, I will continue the research on

the following directions in the future.

6 .2 .1 S trea m in g B a sed on P r o x y -a ss is te d T ran scod in g

Today a client can use PDA, cell-phone or other mobile devices to browse the Internet

besides the desktop or laptop computers. The usage of these devices complicates the Internet

streaming media delivery problem because a media object tha t is appropriate to a computer

may not be appropriate to a PDA. They have different screen sizes and different color

depths. The object has to be customized for different client devices. Thus, the media

delivery network must be able to distinct and adapt to different client devices by conveying

an appropriate version of a media object to a corresponding client. The problem is how.

There are different solutions. One is to store multiple versions of an object statically, which

we call as offline-transcoding. That is, to prepare different versions for all kinds of devices

before the streaming is available. It consumes a huge amount of storage to store all versions

of an object. The other is online-transcoding. That is to do transcoding and delivering

simultaneously. This approach demands a large amount of CPU cycles on the fly. Except

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION AND FUTURE W O RK 135

for these two approaches, we are looking for if there is any other approach and whether it

is possible to develop some new approaches based on media segments.

6 .2 .2 C o o p e r a tiv e S trea m in g P r o x y to S u p p o rt M o b ile C o m p u ters

The usage of mobile-computers not only incurs the aforementioned transcoding problem,

but also incurs the mobility problem. When a client holding a PDA or cell-phone reads the

video-based news, the client may be in a moving train (a typical practice in big cosmopolitan

cities, such as Tokyo, Hong Kong), or may walk on the street. Thus, the media delivery

network should provide a nomadic streaming service. This implies one streaming proxy

is not capable of providing such a continuous streaming. The cooperation among multiple

proxies is a must. However, how different proxies cooperate among themselves is not an easy

problem, since a continuous streaming service must be guaranteed. The hand-off between

the proxy and the client is not only expensive, but also can cause the interrupted services.

This problem is related to a lot of research issues I am interested in.

6 .2 .3 L ive S trea m in g E n a b led P r o x y

Currently, we are working on the streaming proxy for delivering on-demand streaming

media objects. On the Internet, there is another stream type, called live stream. Video

conferencing is such an example. To transport live events to clients, live streaming has to

be relied on. This is not a new problem, as a lot of multicast research has been done and

is still undergoing. However, whether it can work smoothly with a segment-based proxy

is not clear yet. The previous transcoding and mobility problems are also related to this

issue, since a client may use a PDA to watch the Oscar’s Annual Academy Awards, while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 6. CONCLUSION AND FUTURE W O RK 136

walking on the street. For this application, the offline-transcoding does not work. How to

do online-transcoding for live events streaming cost-effectively remains open.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] h ttp ://www.squid-cache.org/.

[2] http://w w w .tcpdum p.org/.

[3] Linux advanced routing & traffic control, h ttp :/ /lartc .o rg /.

[4] Video store magazine, h ttp :/ /www.videostoremag.com, March 2000,

[5] S. A c h a r y a A N D B. S m i t h . Middleman: A video caching proxy server. In Proceed
ings of AC M Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), Chapel Hill, NC, June 2000.

[6] S. A c h a r y a , B. S m i t h , a n d P. P a r n e s . Characterizing user access to videos on
the World Wide Web. In Proceedings of A C M /S PIE Multimedia Computing and
Networking (MMCN), San Jose, CA, January 1998.

[7] S. A c h a r y a , B . S m it h , a n d P . P a r n e s . Characterizing user access to videos
on the World Wide Web. In Proceedings of A CM /SPIE Conference on Multimedia
Computing and Networking (MMCN), San Jose, CA, January 2000.

[8] C. C. A g g a r w a l , J.L . W o l f , A N D P.S . Yu. A permutation-based pyramid broad
casting scheme for video-on-demand systems. In Proceedings of the International
Conference on Multimedia Computing and Systems, Hiroshima, Japan, June 1996.

[9] J . M . A lm e id a , J . K r u e g e r , D . L. E a g e r , a n d M . K . V e r n o n . Analysis of ed
ucational media server workloads. In Proceedings of ACM Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV), Port Jefferson,
NY, June 2001.

[10] D. P . A n d e r s o n , Y. Q s a w a , a n d R. G o v i n d a n . A file system for continuous me
dia. In AC M Transactions on Computer Systems (TOCS), volume 10 (4), November
1992.

[11] M. A r l i t t a n d C. W i l l i a m s o n . Web server workload characterization. In Proceed
ings o f ACM SIGM ETRICS International Conference on Measurement and Modelling
of Computer Systems (SIG M ETRICS), Philadelphia, PA, May 1996.

[12] L. B e n t , M. R a b i n o v ic h , G. M. V o e l k e r , a n d Z. X ia o . Characterization of a
large Web site population with implications for content delivery. In Proceedings of
WWW, New York City, NY, May 2004.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.squid-cache.org/
http://www.tcpdump.org/
http://lartc.org/
http://www.videostoremag.com

BIBLIOGRAPHY 138

[13] E . B o m m a ia h , K . G u o , M. H o f m a n n , a n d S . P a u l . Design and implementation
of a caching system for streaming media over the Internet. In Proceedings of IEEE
Real Time Technology and Applications Symposium (RTAS), Washington, DC, May
2000.

[14] C.M. B o w m a n , P.B D a n z ig , d .R . H a r d y , U. M a n b e r , M .F. S c h w a r t z , a n d
D .P. W ESSELS. Harvest: A scalable, customizable discovery and access system. In
Tech. Re. CU-CS-732-94, University of Colorado, Boulder, CO, 1994.

[15] K . S . C a n d a n , W . L i, Q . L u o , W . H s iu n g , a n d D . A g r a w a l . Enabling dynamic
content caching for database-driven Web sites. In Proceedings o f ACM SIGMOD,
Santa Barbara, CA, May 2001.

[16] P . C A O A N D S. I R A N I . Cost-aware www proxy caching algorithms. In Proceedings of
USENIX Symposium on Internet Technology and Systems (USITS), Monterey, CA,
December 1997.

[17] P . C a o , J . Z h a n g , a n d K. B e a c h . Active cache: Caching dynamic contents on
the Web. In Proceedings of IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, The Lake District, England, September
1998.

[18] Y. C h a e , K. G u o , M. B u d d h i k o t , S. S u r i , a n d E. Z e g u r a . Silo, rainbow, and
caching token: Schemes for scalable fault tolerant stream caching. In IEEE Journal
on Selected Areas in Communications, September 2002.

[19] J. C h a l l e n g e r , A. I y e n g a r , a n d P. D a n t z i g . A scalable system for consistently
caching dynamic Web data. In Proceedings of IEEE INFOCOM, New York City, NY,
March 1999.

[20] S.-H. G. C h a n a n d F. A. T o b a g i . Distributed server architectures for networked
video services. In IE E E /A CM Transactions on Networking, volume 9(2), April 2001.

[21] S. C h e n , B. S h e n , S. B a s u , a n d Y. Y a n . SRB: The Shared Running Buffer based
proxy caching of streaming sessions. Technical report, Hewlett-Packard Laboratories,
2003.

[22] S. C h e n , B. S h e n , S. B a s u , Y . Y a n , a n d X . Z h a n g . SRB: Shared Running Buffers
in proxy to exploit memory locality of multiple streaming sessions. In Proceedings
of the 24th International Conference on Distributed Computing Systems (ICDCS),
Tokyo, Japan, March 2004.

[23] S. C h e n , B. S h e n , S. W e e , a n d X. Z h a n g . Adaptive and lazy segmentation
based proxy caching for streaming media delivery. In Proceedings o f A CM Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Monterey, CA, June 2003.

[24] S. C h e n , B. S h e n , S. W e e , a n d X. Z h a n g . Streaming flow analyses for prefetch
ing in segment-based proxy caching strategies to improve media delivery quality. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 139

Proceedings o f the International Workshop on Web Content Caching and Distribution
(W CW), Hawthorne, NY, September 2003.

[25] S. C h e n , B. S h e n , S. W e e , a n d X. Z h a n g . Designs of high quality streaming
proxy systems. In Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004.

[26] S. C h e n , B. S h e n , S. W e e , a n d X. Z h a n g . Investigating performance insights
of segment-based proxy caching of streaming media strategies. In Proceedings of
A C M /SP IE Conference on Multimedia Computing and Networking (MMCN), San
Jose, CA, January 2004.

[27] S. C H E N , L. X i a o , a n d X. Z h a n g . Dynamic load sharing with unknown memory
demand of jobs in clustered compute farms. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS), Phoenix, AZ, April 2001.

[28] S. C h e n , b ■ X i a o , a n d X. Z h a n g . Adaptive and virtual reconfigurations for ef
fective dynamic resource allocations in cluster systems. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS), Vienna, Aus
tria, July 2002.

[29] S. C h e n A N D X. Z h a n g . Detective browsers: A software technique to improve Web
access performance and security. In Proceedings of the 7th International Workshop
on Web Content Caching and Distribution (W CW), Boulder, CO, August 2002.

[30] L . C h e r k a s o v a AND M. G u p t a . Characterizing locality, evolution, and life span
of accesses in enterprise media server workloads. In Proceedings of AC M Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Miami, F L , May 2002.

[31] M. C h e s i r e , A. W o l m a n , G . V o e l k e r , a n d H. L e v y . Measurement and analysis
of a streaming media workload. In Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems (USITS), San Francisco, CA, March 2001.

[32] M. Y. C h i u A N D K. H. Y e u n g . Partial video sequence caching scheme for vod
systems with heterogeneous clients. In Proceedings of the International Conference
on Data Engineering (ICDE), Birmingham, United Kingdom, April 1997.

[33] C. C o s t a , I. C u n h a , A. B o r g e s , C . R a m o s , M. R o c h a , J. A l m e i d a , a n d

B. RiBEIRO-NETO. Analyzing client interactivity in streaming media. In Proceedings
of WWW, New York City, NY, May 2004.

[34] P . D. C u e t o s , D. S a p a r i l l a , a n d K. W . R o s s . Adaptive streaming of stored
video in a tcp-ffiendly context: Multiple versions or multiple layers? In Proceedings
of Packet Video Workshop, Kyongju, Korea, April 2001.

[35] Y . Cui AND K . N a h r s t e d t . Layered peer-to-peer streaming. In Proceedings of
ACM Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), Monterey, CA, June 2003.

with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 140

[36] A. D a n a n d D. S i t a r a m . Buffer management policy for an on-demand video server.
In IB M Research Report 19347, 1993.

[37] A . D a n AND D . S i t a r a m . A generalized interval caching policy for mixed interactive
and long video workloads. In Proceedings o f A C M /SP IE Conference on Multimedia
Computing and Networking (MMCN), San Jose, CA, January 1996.

[38] A. D a n , D. S i t a r a m , a n d P. S h a h a b u d d in . Scheduling policies for an on-demand
video server with batching. In Proceedings o f AC M Multimedia, San Francisco, CA,
October 1994.

[39] F. D o u g l i s , A. F e l d m a n n , B. K r i s h n a m u r t h y , a n d J . M o g u l . Rate of change
and other metrics: A live study of the World Wide Web. In Proceedings of USENIX
Symposium on Internet Technology and Systems (USITS), Monterey, CA, December
1997.

[40] F. D q u g l i s , A. H a r o , a n d M. R a b i n o v i c h . Hpp: Html macropreprocessing
to support dynamic document caching. In Proceedings o f USENIX Symposium on
Internet Technologies and Systems (USITS), Monterey, CA, December 1997.

[41] B . M . D u s k a , D . MARWOOD, a n d M . J . F e e l e y . T h e m ea su red a ccess ch aracter
is t ic s o f W o r ld -W id e-W eb c lien t p roxy cach es. In Proceedings of USENIX Symposium
on Internet Technology and Systems (USITS), M on terey , C A , D ecem b er 1997.

[42] D. E a g e r , M . V e r n o n , a n d J. Z a h o r j a n . Bandwidth skimming: A technique for
cost-effective video-on-demand. In Proceedings of A C M /SP IE Multimedia Computing
and Networking (MMCN), San Jose, CA, January 2000.

[43] D . L. E a g e r , M. C. F e r r i s , a n d M. K. V e r n o n . Optimized regional caching for
on-demand data delivery. In Proceedings o f A C M /SP IE Conference on Multimedia
Computing and Networking (MMCN), San Jose, CA, January 1999.

[44] L . F a n , P . C a o , J. A lm e id a , a n d A . Z . B r o d e r . Summary cache: A scalable wide-
area Web cache sharing protocol. In Proceedings of the AC M SIGCOMM, Vancouver,
Canada, September 1998.

[45] Z . F e i , M . H. A m m a r , I. K a m e l , a n d S . M u k h e r j e e . Providing interactive
functions for staggered multicast near video-on-demand systems. In Proceedings of
the International Conference on Multimedia Computing and Systems, Florence, Italy,
June 1999.

[46] R. F i e l d i n g , J . G e t t y s , J . M o g u l , H. F r y s t y k , L . M a s i n t e r ,
P. L E A C H , A N D T. B e r n e r s - L e e . Hypertext transfer protocol - http/1.1.
http://www.faqs.org/rfcs/rfc2616.html, June 1999.

[47] N .L .F F o n s e c a a n d R.A e F a C a n h a . The look-ahead-maximize-batch batching
policy. In IEEE Transactions on Multimedia, volume 4 (1), March 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.faqs.org/rfcs/rfc2616.html

BIBLIOGRAPHY 141

[48] L. G a o a n d D. T o w s l e y . Supplying instantaneous video-on-demand services using
controlled multicast. In Proceedings o f IEEE International Conference on Multimedia
Computing and Systems, Florence, Italy, June 1999.

[49] S. G R I B B L E a n d E . B r e w e r . System design issues for Internet middleware service:
Deduction from a large client trace. In Proceedings of USENIX Symposium on Internet
Technology and Systems (USITS), Monterey, CA, December 1997.

[50] C. G r i w o d z , M. Z i n k , M. L i e p e r t , G. O n , a n d R . S t e i n m e t z . Multicast for
savings in cache-based video distribution. In Proceedings of AC M /SP IE Conference
on Multimedia Computing and Networking (MMCN), San Jose, CA, January 2000.

[51] S. G r u b e r , J. R e x f o r d , a n d A . B a s s o . Protocol considerations for a prefix-
caching proxy for multimedia streams. In Computer Network, volume 33(1-6), pages
657-668, June 2000.

[52] K. P . G u m m a d i , R. J. D u n n , S. S a r q i u , S. D- G r i b b l e , H. M. L e v y , a n d

J . Z A H O R J A N . Measurement, modeling and analysis of a peer-to-peer file-sharing
workload. In Proceedings of the 19th AC M Symposium on Operating Systems Princi
ples (SOSP), Bolton Landing, NY, October 2003.

[53] L. G uo, S. C h e n , S. R e n , X. C h e n , a n d S.J i a n g . Prop: A scalable and reli
able p2p assisted proxy streaming system. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan, March 2004.

[54] J. G w e r t z m a n a n d M. S e l t z e r . World-Wide-Web cache consistency. In Proceed
ings of USENIX Annual Technical Conference, San Diego, CA, January 1996.

[55] M. H a n d l e y a n d V. J a c o b s e n . SDP: Session Description Protocol. RFC 2327,
April 1998.

[56] H. H a r e l , V. V e l l a n k i , A. C h e r v e n a k , G- A b o w d , a n d U. R a m a c h a n d r a n .

Workload of a media-enhanced classroom server. In Proceedings o f 2nd Annual Work
shop on Workload Characterization, Austin, TX, October 1999.

[57] L. He, J. G r u d i n , a n d A. G u p t a . Designing presentations for on-demand view
ing. In Proceedings of A CM Conference on Computer Supported Cooperative Work,
Philadelphia, PA, December 2000.

[58] M. H e f e e d a , A. H a b i b , B. B o t e v , D. X u , a n d B. B h a r g a v a . Promise: A peer-
to-peer media streaming system. In Proceedings of the AC M Multimedia, Berkeley,
CA, November 2003.

[59] V. H o l m e d a h l , B. S m i t h , a n d T. Y a n g . Cooperative caching of dynamic content
on a distributed Web server. In Proceedings of the 7th IEEE International Symposium
on High Performance Distributed Computing (HPDC), Chicago, IL, July 1998.

[60] K. A. H u a , Y. C a i , a n d S. S h e u . Patching : A multicast technique for true video-
on-demand services. In Proceedings o f AC M Multimedia, Bristol, United Kingdom,
September 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 142

[61] L. H u a n g , U. H o r n , F. H a r t u n g , a n d M. K a m p m a n n . Proxy-based tcp-friendly
streaming over mobile networks. In Proceedings of the Fifth International Workshop
on Wireless Mobile Multimedia, Atlanta, GA, September 2002.

[62] K.A. Hus AND S. SHEU. Skyscraper broadcasting: a new broadcasting scheme for for
metropolitan video-on-demand systems. In Proceedings o f A C M SIGCOMM, Cannes,
France, September 1997.

[63] A. I y e n g a r a n d J . C h a l l e n g e r . Improving Web server performance by caching
dynamic data. In Proceedings of the USENIX Symposium on Internet Technologies
and Systems (USITS), Monterey, CA, December 1997.

[64] X. JlANG, Y. D o n g , D. X u, a n d B. B h a r g a v a . Gnustream: A p2p media stream
ing system prototype. In Proceedings of the 4 th International Conference on Multi-
media and Expo (ICME), Baltimore, MD, July 2003.

[65] S. J in , A. B e s t a v r o s , AND A. I y e n g e r . Accelerating Internet streaming media
delivery using network-aware partial caching. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002.

[66] L. JUHN AND L. TSENG. Harmonic broadcasting for video-on-demand service. In
IEEE transactions on Broadcasting, volume 43(3), Sept. 1997.

[67] J . J u n g , D. L e e , a n d K. C h o n . Proactive Web caching with cumulative prefetching
for large multimedia data. In Proceedings of WWW, Amsterdam, Nether land, May
2000 .

[68] J . K a n g a s h a r j u , F. H a r t a n t o , M. R e i s s l e i n , a n d K. W. R o s s . Distributing
layered encoded video through caches. In Proceedings of IEEE INFOCOM, Anchorage,
AK, April 2001.

[69] J. I. KHAN a n d Q. T a o . Partial prefetch for faster surfing in composite hypermedia.
In Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems
(USITS), San Francisco, CA, March 2001.

[70] T . K im a n d M . H. A m m a r . A comparison of layering and stream replication video
multicast schemes. In Proceedings of AC M Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Port Jefferson, NY, June
2001 .

[71] R . K o e n e n . Overview of the mpeg-4 version 1 standard,
http://w w w am .hhi.de/m peg-video/standards/mpeg-4.htm, March 2001.

[72] B . K r i s h n a m u r t h y a n d C- E . E l l i s . Study of piggyback cache v a lid a tio n for proxy
caches in the World Wide Web. In Proceedings of USENIX Symposium on Internet
Technology and Systems (USITS), Monterey, CA, December 1997.

[73] T . M . K r o e g e r , D. D. E. L o n g , a n d J. C. M o g u l . Exploring the bounds of
Web latency reduction from caching and prefetching. In Proceedings of USENIX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwwam.hhi.de/mpeg-video/standards/mpeg-4.htm

B IBLIO G RAPH Y 143

Symposium on Internet Technology and Systems (USITS), Monterey, CA, December
1997.

[74] S. L e e , W . M a, a n d B. S h e n . An interactive video delivery and caching system
using video summarization. In Computer Communications, volume 25, pages 424-435,
March 2002.

[75] C. Liu a n d P . C a o . Maintaining strong cache consistency for the World-Wide-
Web. In Proceedings of the 17th International Conference on Distributed Computing
Systems (ICDCS), Baltimore, MD, May 1997.

[76] J . Liu, X. C h u , a n d J. Xu. Proxy cache management for fine-grained scalable video
streaming. In Proceedings o f IEEE INFOCOM, Hong Kong, China, March 2Q04.

[77] Q. Luo, R. K r i s h n a m u r t h y , Y. Li, P . C a o , a n d J . F . N a u g h t o n . Active query
caching for database Web servers. In Proceedings of the 3rd International Workshop
on the Web and Databases, Madison, WI, June 2000.

[78] A. L u o t o n e n , H. F r y s t y k N i e l s e n , a n d T. B e r n e r s - L e e . Cern httpd.
http://ww w.w3.org/Daem on/Status.htm l.

[79] W .H. MA a n d H.C. Du. Reducing bandwidth requirement for delivering video over
wide area networks with proxy server. In Proceedings of International Conferences on
Multimedia and Expo (ICME), New York City, NY, July 2000.

[80] A. M e n a a n d J . H e id e m a n n . An empirical study of real audio traffic. In Proceedings
of IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[81] Z. MlAO a n d A. O r t e g a . Proxy caching for efficient video services over the Internet.
In Proceedings o f Packet Video Workshop, New York City, NY, April 1999.

[82] Z. M ia o a n d A. O r t e g a . Scalable proxy caching of video under storage constraints.
In IEEE Journal on Selected Areas in Communications, September 2002.

[83] J . N i c h o l s , M. C l a y p o o l , R . K i n i c k i , AND M. L i. Measurements of the conges
tion responsiveness of windows streaming media. In Proceedings of A CM Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
County Cork, Ireland, June 2004.

[84] J. PADHYE AND J . KUROSE. An empirical study of client interactions with a continu
ous media courseware server. In Proceedings of ACM Workshop on Network and Op
erating System Support for Digital Audio and Video (NOSSDAV), Cambridge, United
Kingdom, July 1998.

[85] V. P a d m a n a b h a n , H. W a n g , P. C h o u , a n d K. S r i p a n i d k u l c h a i . Distribut
ing streaming media content using cooperative networking. In Proceedings of A CM
Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Miami, FL, May 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/Daemon/Status.html

BIBLIO G RAPH Y 144

[86] J .F . P a r i s , S.W . C a r t e r , a n d D .D .E . L o n g . E ffic ien t b ro a d ca stin g p ro to co ls for
video on d em a n d . In Proceedings of the Sixth International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS),
Montreal, Canada, July 1998.

[87] J . P o s t e l . U ser d a ta g r a m p ro to co l, http://www.faqs.org/rfcs/rfc768.html, August
1980.

[88] J .-F . P r i s a n d D. D. E. L o n g . A variable b a n d w id th b ro a d ca stin g protocol for
video-on-demand. In Proceedings of AC M /SP IE Conference on Multimedia Comput
ing and Networking (MMCN), San Jose, CA, January 2003.

[89] M. R a b i n o v i c h , Z. X ia o , F. D o u g l i s , a n d C. K a l m a n e k . Moving edge side
includes to the real edge - the clients. In Proceedings of the 4 th USENIX Symposium
on Internet Technologies and Systems (USITS), Seattle, WA, March 2003.

[90] S . RAMESH, I. RHEE, a n d K. G u o . Multicast with cache (mcache): An adaptive
zero-delay video-on-demand service. In Proceedings o f IEEE INFOCOM, Anchorage,
AK, April 2001.

[91] M. R e i s s l e i n , F. H a r t a n t o , a n d K. W. R o s s . Interactive video streaming with
proxy servers. In Proceedings o f the First International Workshop on Intelligent Mul
timedia Computing and Networking, Atlantic City, NJ, February 2000.

[92] R . R e j a i e , M. H a n d e l y H . Y u , AND D . E s t r i n . Multimedia p roxy caching mech
anism for quality adaptive streaming applications in the Internet. In Proceedings of
IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[93] R. R e j a i e , M. H a n d e l y , a n d D. E s t r i n . Quality adaptation for congestion con
trolled video playback over the Internet. In Proceedings of A C M SIGCOMM, Cam
bridge, MA, September 1999.

[94] R. R e j a i e , M. H a n d l e y , H. Yu, a n d D. E s t r i n . Proxy caching mechanism for
multimedia playback streams in the Internet. In Proceedings of International Web
Caching Workshop (W CW), San Diego, CA, March 1999.

[95] R . R e j a i e a n d J . KANGASHARJU. Mocha: A quality adaptive multimedia proxy
cache for Internet streaming. In Proceedings of AC M Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV), Port Jefferson,
New York, June 2001.

[96] R . R e j a i e a n d A. O r t e g a . Pals: Peer-to-peer adaptive layered streaming. In
Proceedings of A C M Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), Monterey, CA, June 2003.

[97] S. R o y , J. A n k c o r n , a n d S. W EE . Architecture of a modular streaming media
server for content delivery networks. In Proceedings of IEEE International Conference
on Multimedia and Expo (ICME), Baltimore, MD, July 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.faqs.org/rfcs/rfc768.html

BIBLIOGRAPHY 145

[98] S . R o y , B. S h e n , S . C h e n , a n d X . Z h a n g . Empirical study of a segment-based
streaming proxy in an enterprise environment. In Proceedings of the International
Workshop on Web Content Caching and Distribution (W CW), Beijing, China, Octo
ber 2004.

[99] S. S a r q iu , K. P. G u m m a d i, R. J . D u n n , S. D. G r i b b l e , a n d H. M. L e v y . An
analysis of Internet content delivery systems. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI), Boston, MA, December
2002.

100] P . S c h o j e r , L. B o s z o r m e n y i , H. H e l l w a g n e r , B. P e n z , a n d S. P o d l i p n i g .
Architecture of a quality based intelligent proxy (qbix) for mpeg-4 videos. In Pro
ceedings of WWW, Budapest, Hungary, May 2003.

101] H. S c h u l z r i n n e , S. C a s n e r , R. F r e d e r i c k , a n d V . J a c o b s o n . Rtp: A trans
port protocol for real-time applications, http://w w w .ietf.org/rfc/rfcl889.txt, January
1996.

102] H. S c h u l z r i n n e , A. RAO, a n d R. L a n p h ie r . Real time streaming protocol (rtsp).
http://www.ietf.org/rfc/rfc2326.txt, April 1998.

103] S. S e n , L. G a o , J . REXFORD, a n d D. TOWSLEY. Optimal patching schemes for
efficient multimedia streaming. In Proceedings of AC M Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV), Basking Ridge,
NJ, June 1999.

104] S. S e n , J . R e x f o r d , a n d D. T o w s l e y . Proxy prefix caching for multimedia
streams. In Proceedings of IEEE INFOCQM, New York City, NY, March 1999.

105] B. S m it h , A . A c h a r y a , T . Y a n g , a n d H. Z h u . Exploiting result equivalence
in caching dynamic Web content. In Proceedings o f Second USENIX Symposium on
Internet Technologies and Systems (USITS), Boulder, CO, October 1999.

106] R. T e w a r i , A. D a n H. V in , a n d D- S i t a r a m . Resource-based caching for Web
servers. In Proceedings AC M /SP IE Conference on Multimedia Computing and Net
working (MMCN), San Jose, CA, January 1998.

107] F . TOBAGI, J . PANG, R. B a i r d , a n d M. G a n g . Streaming raid: A disk array
management system for video files. In Proceedings o f the first ACM international
conference on Multimedia, Anaheim, CA, August 1993.

108] D. T r a n , K. H u a , AND T. Do. Zigzag: An efficient peer-to-peer scheme for media
streaming. In Proceedings of IEEE INFOCOM, San Francisco, CA, April 2003.

109] E . V e l o s o , V . A lm e id a , W . M e i r a , A . B e s t r a v o s , a n d S. J in . A hierarchical
characterization of a live streaming media workload. In IE E E /A CM Transactions on
Networking, September 2004.

110] S. VlSWANATHAN a n d T. I m ie l in s k i . M etropolitan area video-on-demand service
using pyramid broadcasting. In Multimedia Systems, volume 4(4), August 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ietf.org/rfc/rfcl889.txt
http://www.ietf.org/rfc/rfc2326.txt

BIBLIOGRAPHY 146

[111] B. W a n g , S. S e n , M. A d l e r , a n d D- T o w s l e y . Proxy-based distribution of
streaming video over unicast/ multicast connections. In Proceedings of I E E E INFO
COM, New York City, NY, June 2002.

[112] Y. W a n g , M. C l a y p o o l , a n d Z. Z u q . An empirical study of realvideo performance
across the Internet. In Proceedings of the AC M SIGCOMM Internet Measurement
Workshop (IMW), San Francisco, CA, November 2001.

[113] S. W i l l i a m s , M . A b r a m s , C.R. S t a n b r i d g e , G . A b d u l l a , a n d E.A. F o x .
Removal policies in network caches for World-Wide-Web documents. In Proceedings
of the AC M SIGCOMM, Stanford University, CA, August 1996.

[114] C- E . WILLS a n d M. M i k h a i l o v . Towards a better understanding of Web resources
and server responses for improved caching. In Proceedings of W W W , Toronto, Canada,
May 1999.

[115] J . L. WOLF, P . S . Y u , a n d H . S h a c h n a i . Disk load balancing for video-on-demand
systems. In ACM Transaction on Multimedia Systems, volume 5 (6), December 1997.

[116] A. W o lm a n , G. V o e l k e r , N . S h a r m a , N . C a r d w e l l , M . B r o w n , T . L a n d r a y ,
D. P i n n e l , A. K a r l i n , a n d H. L e v y . Organization-based analysis of Web-object
sharing and caching. In Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems (USITS), Boulder, CO, October 1999.

[117] K. W u, P . S. Y u , AND J . W OLF. Segment-based proxy caching of multimedia
streams. In Proceedings of W W W , Hong Kong, China, May 2001.

[118] L . X ia o , S . C h e n , a n d X . Z h a n g . Dynamic cluster resource allocations for jobs
with known and unknown memory demands. In IEEE Transactions on Parallel and
Distributed Systems, volume 13 (3), 2002.

[119] L . X lAO , S . C h e n , a n d X . ZHANG. Adaptive memory allocations in clusters to
handle unexpectedly large data-intensive jobs. In IEEE Transactions on Parallel and
Distributed Systems, volume 15 (7), 2004.

[120] L. X ia o , X. Z h a n g , A. A n d r z e j a k , a n d S. C h e n . Building a large and efficient
hybrid peer-to-peer Internet caching system. In IEEE Transactions on Knowledge
and Data Engineering, volume 16 (6), 2004.

[121] Z. XlAO a n d K. P . B ir m a n . Providing efficient, robust error recovery through ran
domization. In Proceedings of the International Workshop on Applied Reliable Group
Communication (Jointly held with the 21st International Conference on Distributed
Computing Systems), Phoenix, AZ, April 2001.

[122] J . Y in , L . A l v i s i , M. D a h l i n , a n d A . I y e n g a r . Engineering server-driven con
sistency for large scale dynamic Web services. In Proceedings of WWW, Hongkong,
China, May 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y 147

[123] X. Z h a n g , M. B r a d s h a w , Y. G u o , B. W a n g , J. K u r o s e , P. S h e n o y , a n d
D. TOWSLEY. Amps: A flexible, scalable proxy testbed for implementing stream
ing services. Technical report, Department of Computer Science, University of Mas
sachusetts, Amherst, MA, 2004.

[124] Z .L . Z h a n g , Y . W a n g , D .H .C . D u , AND D. S u . Video staging: A proxy-server
based approach to end-to-end video delivery over wide-area networks. In IEEE Trans
actions on Networking, volume 8, August 2000-

[125] H. ZHU AND T . Y a n g . Class-based cache management for dynamic W eb content. In
Proceedings of IEEE INFOCOM, Anchorage, AK, April 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Songqing Chen

Songqing Chen was born in Yancheng, Jiangsu Province, China. He obtained his BS and

MS in computer science from Huazhong University of Science and Technology, Wuhan,

China in 1997 and 1999, respectively. Since August 1999, he started to pursue his Ph.D. in

computer science at the College of William and Mary, Williamsburg, Virginia. His research

interests include distributed computing and Internet systems. He is a student member of

IEEE and ACM.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Building Internet caching systems for streaming media delivery
	Recommended Citation

	tmp.1539734415.pdf.ZedI5

