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ABSTRACT

The proxy has been widely and successfully used to cache the static Web objects fetched 
by a client so tha t the subsequent clients requesting the same Web objects can be served 
directly from the proxy instead of other sources faraway, thus reducing the server’s load, 
the network traffic and the client response time. However, with the dramatic increase of 
streaming media objects emerging on the Internet, the existing proxy cannot efficiently de­
liver them  due to their large sizes and client real time requirements.

In this dissertation, we design, implement, and evaluate cost-effective and high perfor­
mance proxy-based Internet caching systems for streaming media delivery. Addressing the 
conflicting performance objectives for streaming media delivery, we first propose an efficient 
segment-based streaming media proxy system model. This model has guided us to design 
a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media 
data to clients with minimum playback jitter and a small startup latency, while achieving 
high caching performance. Second, we have implemented Hyper-Proxy by leveraging the 
existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common 
Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the 
local network environment shows it can provide satisfying streaming performance to clients 
while maintaining a good cache performance. Finally, to further improve the streaming 
delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy 
caching techniques to effectively utilize proxy’s memory. SRB algorithms can significantly 
reduce the media server/proxy’s load and network traffic and relieve the bottlenecks of the 
disk bandwidth and the network bandwidth.

The contributions of this dissertation are threefold: (1) we have studied several criti­
cal performance trade-offs and provided insights into Internet media content caching and 
delivery. Our understanding further leads us to establish an effective streaming system op­
timization model; (2) we have designed and evaluated several efficient algorithms to support 
Internet streaming content delivery, including segment caching, segment prefetching, and 
memory locality exploitation for streaming; (3) having addressed several system challenges, 
we have successfully implemented a real streaming proxy system and deployed it in a large 
industrial enterprise.

xv
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Chapter 1

Introduction

W ith the emergence of new Internet techniques, the Web contents on the Internet have 

increased substantially in two aspects: (1) the amount of the Web contents is increasing 

exponentially; (2) the Web contents are evolving from simple and static text-based pages 

to the more powerful dynamic contents and multimedia objects. Thus, the content delivery 

on the Internet becomes increasingly complex and needs effective system support from 

networking, systems and application software. This dissertation focuses on building cost- 

effective and high performance Internet caching systems for delivering streaming media 

contents.

1.1 Background

The wide deployment of the Web proxy mainly corresponded to the demand for efficient 

delivery of the Increasing amount of the static Web pages1. The proxy can cache the static 

Web pages delivered by the content server upon a client request, so that the subsequent 

clients requesting the same pages can be directly served by the data stored in the proxy

1 Proxy servers can also be used as firewalls too.

2
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CHAPTER 1. INTRODUCTION

Proxies _ Web Servers

■
Clients

Figure 1.1: Internet access infrastructures: clients access Web servers through proxies

locally, instead of going to other sources faraway (the content server, other peer proxies, 

etc.), thus reducing the server’s load, the network traffic, and the client perceived response 

time. To efficiently deliver the Web pages, normally the proxy is positioned close to the 

client2. Thus, the basic infrastructure for the content delivery has evolved from the end-to- 

end system to the server-proxy-client system, as shown on Figure 1.1. In this infrastructure, 

a client request is firstly received by the proxy, although the existence of proxy can be 

transparent to clients. If the proxy can serve the request from its local cache, the client can 

get the response instantly without contacting the content server. Otherwise, the request 

is forwarded to the content server. The response from the content server can be cached 

in the proxy to serve the subsequent requests for the same object. Therefore, the proxy 

caching strategies, other than the techniques for the server and the client, have been heavily 

studied, mainly on caching the static Web objects to reduce the network traffic and the end-

2 The proxy positioned close the content server is called reverse proxy.
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CH APTER 1. IN TRO D U CTIO N  4

to-end latency. Proxies, such as Squid [1], Harvest [14] and CERN h ttpd  [78], have been 

successfully used for caching static Web objects to reduce the Internet traffic and client 

perceived response time.

However, with more and more complicated contents, especially the streaming media 

contents, emerging on the Internet continuously, the proxy-based Internet content delivery 

faces new problem: the benefit of the existing proxy caching is significantly reduced because 

the proxy is incapable of cost-effectively handling the large amount of Internet streaming 

media contents.

Streaming media contents have already been widely used in many applications, such as 

education, entertainment, news, medical surgery cooperation, since its emergence on the 

Internet. The amount of the streaming media has increased rapidly and is still continue to 

increase: comparing the workloads of a 2002 study [99] and a 1999 study [116] in a similar 

campus environment, the portion of network bytes ascribed to audio and video increased 

by 300% and 400% [52], respectively. Being highly demanded by the society, the streaming 

media contents bring many new challenges to the existing proxy-based Internet content 

delivery networks due to the following two characteristics. (1) The size of a streaming 

media object is usually several orders of magnitudes larger compared to the text-based 

Web contents. For example, a MPEG2 video of two hours requires about 1 GB of disk 

space, while a general text-based Web page is in the range of 10 KB. Thus, to entirely cache 

several streaming media objects as caching the Web pages will quickly exhaust the cache 

space and result in poor cache efficiency. (2) The demand and requirement of continuous 

and timely delivery of the streaming media objects are more rigorous than that of the 

text-based Web pages. In receiving streaming media data, the client always expects free
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C H APTER 1. INTRO DU CTIO N  5

of jitte r playback and a small startup latency. However, existing proxies cannot satisfy 

these real-time requirements because they only provide best-effort services. Due to these 

problems, traditional proxies are not able to efficiently cache and deliver the streaming media 

contents. Currently, the Internet streaming media delivery still relies on the client-server 

model or the expensive commercial CDNs. In the client-server model, a lot of resources 

have to be reserved for streaming media delivery, in which even a relatively small number 

of client requests can overload a media server, causing bottlenecks by demanding high disk 

bandwidth on the server and high network bandwidth to the clients, or the client has to 

rely on the “progressive playback” where the quality of streaming is poor with frequently 

introduced playback jitter. In the extreme case, the client has to download the entire object 

before playback, where a large startup latency is expected.

1.2 D issertation Contributions

The objectives of this dissertation research are to design, implement, and evaluate a cost- 

effective and high performance proxy-based Internet caching system for streaming media 

delivery. We first propose an efficient segment-based streaming media proxy system model. 

This model serves a foundation for us to further design a practical streaming proxy, called 

Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum play­

back jitter and a small startup latency, while achieving high cache performance. Second, 

we implement Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy 

pushes the streaming functions from the server to the proxy, which makes the streaming 

traffic run on UDP [87] suffer from less data loss and no blocking. The evaluation of Hyper-
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C H APTER 1. INTRO D U CTIO N  6

Proxy on the global Internet environment connecting Japan and US west coast, and the 

local network environment shows it can provide satisfying streaming performance to clients 

while maintaining good cache performance. Finally, to further improve the streaming de­

livery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy 

caching techniques to effectively utilize proxy’s memory. SRB algorithms can significantly 

reduce the media server/proxy’s load and network traffic and relieve the bottlenecks of the 

disk bandwidth and the network bandwidth.

The major contributions of this dissertation are summarized as follows.

1. Studying the three major performance objectives for streaming media delivery sys­

tems, namely, byte hit ratio in the proxy, startup  latency perceived by a client, and 

client perceived playback jitter, we find tha t two pairs of conflicting performance 

objectives (byte hit ratio versus startup latency, and byte hit ratio versus playback 

jitter) exist in the current segment-based streaming proxy designs. Using heuristic 

and modeling approaches, we present effective solutions to address these two pairs 

of conflicting objectives. Comprehensively considering their trade-offs based on the 

best interests of clients, we propose an efficient segment-based streaming proxy design 

model, where a streaming proxy guarantees continuous streaming delivery subject to 

a small startup latency and high byte hit ratio. Guided by this model, we design 

a streaming proxy, called Hyper-Proxy. Through the evaluations of Hyper-Proxy on 

synthetic and real workloads, it shows th a t it can deliver the streaming media data 

to clients with minimum playback jitte r and a small startup latency, while it also 

achieves good cache performance.
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C H APTER 1. INTRO D U CTIO N 7

2. We have designed and evaluated several efficient algorithms to support Internet stream­

ing content delivery, including segment caching, segment prefetching, and memory lo­

cality exploitation for streaming sessions. We designed a method, called adaptive-lazy 

segmentation, that delays the object segmentation as late as possible so tha t online 

client access patterns can be monitored for partitioning the object into smaller seg­

ments. We proposed window based prefetching and active prefetching methods to 

ensure tha t uncached segments of an object can always be prefetched in time to elim­

inate the client side playback jitter. The Shared Running Buffers (SRB) based media 

caching algorithms are designed to efficiently handle streaming media contents in the 

proxy’s memory by exploiting the memory access locality. In SRB algorithms, subse­

quent client accesses to a same object are served through allocating a new dynamic 

running buffer and sharing the data  in existing dynamic running buffers instantly. 

Patching SRB further expands the session sharing by utilizing the client side storage. 

These algorithms have been demonstrated to significantly reduce the media server’s 

load and network traffic, relieve the bottlenecks of the disk bandwidth and the network 

bandwidth, and improve the client playback quality.

3. The implementation of Hyper-Proxy leverages the existing Internet infrastructure by 

talking to the content server via H TTP [46] while talking to the client via RTP 

[101]/RTSP [102]. Thus, it frees the media content server from streaming functions 

and pushes these functions to the proxy close to clients. Therefore, the traditional Web 

servers (e.g. Apache) now can provide real streaming service through Hyper-Proxy. 

In addition, the real streaming traffic on the UDP protocol also suffers from less data
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CHAPTER 1. IN TRO D U CTIO N  8

loss and no blocking. We evaluate Hyper-Proxy on the global Internet environment 

connecting Japan and US west coast and the local network environments (LANs). 

The results show it can provide satisfactory streaming performance to clients in both 

environments while maintaining good cache performance.

The significance and potential impacts of this dissertation are as follows.

• Since available Internet streaming services are expensive, most Internet media users 

take the downloading approach tha t generates a lot of unnecessary traffic and a large 

startup latency, or the “progressive playback” approach tha t always results in frequent 

playback jitter. Our work on streaming proxy design and implementation will provide 

low-cost and high performance proxy-based streaming services, which will significantly 

improve the Internet resource utilization.

• Our optimization model provides quantitative guidances to design an effective proxy- 

based Internet caching system for streaming delivery, which can be extended for other 

types of proxy designs, such as caching systems for other sophisticated multimedia 

contents.

•  The Hyper-Proxy has been successfully implemented and deployed in HP Company. 

We expect its lasting impact in Internet streaming community after its trial stage.

1.3 Dissertation Organization

The organization of this dissertation is as follows. The design of Hyper-Proxy is presented 

in Chapter 2. We describe the Hyper-Proxy implementation and evaluate its performance
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in various environments in Chapter 3. SRB based algorithms are presented and evaluated 

in Chapter 4. We further introduce some related work in Chapter 5. In Chapter 6, we make 

concluding remarks and briefly present the future work.
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Chapter 2

Segm ent-based High Quality  

Stream ing M edia Proxy Designs

2.1 Introduction

Proxy caching has been widely used to cache static (text/image) objects on the Internet so 

that subsequent requests to the same objects can be served directly from the proxy without 

contacting the server. However, the proliferation of Internet multimedia contents makes 

proxy caching challenging [13, 32, 68, 82, 91, 93, 104, 124]:

1. The size of media objects is usually several orders of magnitudes larger than traditional 

Web content. For example, a one-hour movie encoded using MPEG4, at desktop 

resolution, may require more than 1 GByte storage space. This limits the number 

of objects tha t can be completely stored in a caching proxy. It also results in large 

startup  latencies if the object is not already cached.

2. Multimedia objects generally have very stringent demands in terms of continuous and 

timely delivery. This is especially challenging in the current Internet, which only

10
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provides best-effort services.

3. Prior research has observed tha t most of the media objects are only partially viewed [30, 

31]. Using traditional, static Web caching techniques to cache these large objects thus 

wastes storage and causes unnecessary network traffic.

To solve the problems caused by large-sized media objects, researchers have developed a 

number of segment-based proxy caching strategies [18, 23, 92, 94, 104, 117] that cache par­

tial segments of media objects instead of their entirety. The existing segment-based proxy 

caching strategies can be classified into the following two types based on their performance 

objectives. The first type focuses on the reduction of the client perceived startup latency 

(denoted by the delayed startup ratio) by always giving a higher priority to caching the be­

ginning segments of media objects based on the observation that clients tend to watch the 

beginning portions [30, 31], For example, prefix caching [104, 111] always breaks a media 

object into a prefix segment and a suffix segment. The proxy caches the prefix segments 

only so tha t the cache can preserve prefix segments for more objects. The second type 

aims at reducing network traffic and the server workload by improving proxy caching effi­

ciency, namely the byte hit ratio. For example, uniform segmentation strategy [94] considers 

caching of fixed-sized segments of layer-encoded video objects. The exponential segmen­

tation strategy [18, 117] caches segments of media objects in a way that the succeeding 

segment doubles the size of its preceding one. The most recently proposed adaptive-lazy 

segmentation strategy [23] can achieve the highest byte hit ratio by delaying the object 

segmentation as late as possible till some real time access information is collected for this 

object so tha t the most popular part of this object can be identified. These proxy-based
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caching strategies emphasize on improving the proxy caching efficiency.

However, these segment-based proxy caching strategies cannot automatically ensure 

continuous streaming delivery to the client. In a segment-based proxy caching system, 

since only partial segments of objects are cached in the proxy, it is im portant for the proxy 

to fetch and relay the uncached segments to the client in time whenever necessary. A delayed 

fetch of the uncached segments, which we call proxy jitter, causes the discontinuous delivery 

of media content. Proxy jitter aggregates onto the playback jitte r at the client side. Once 

a playback starts, jitte r is not only annoying but can also potentially drive the user away 

from accessing the content. Thus, for the best interests of clients, the highest priority must 

be given to minimize proxy jitter, and a correct model for media proxy cache design should 

aim to minimize proxy jitte r subject to reducing the delayed startup ratio and increasing 

the byte hit ratio.

To reduce proxy jitter, one key is to develop prefetching schemes tha t can timely prefetch 

uncached segments. Some early work has studied the prefetching of multimedia objects [67, 

69, 92, 94]. For layer-encoded objects [92, 94], the prefetching of uncached layered video 

is done by always maintaining a prefetching window of the cached stream, and identifying 

and prefetching all the missing data within the prefetching window with a fixed time period 

(length of T )  ahead of their playback time. In [67], the proactive prefetch utilizes any 

partially fetched data due to the connection abortion to improve the network bandwidth 

utilization. In [69], prefetching is used to prefetch a certain amount of data so tha t caching 

is feasible. Unfortunately, little prefetching work has been found to efficiently solve the 

proxy jitter problem in the context of segment-based streaming proxy caching.
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Improving the byte hit ratio increases proxy caching efficiency, while reducing proxy 

jitte r provides clients with a continuous streaming service. Unfortunately, these two ob­

jectives conflict with each other. Furthermore, we have also observed that improving the 

byte hit ratio conflicts with reducing the delayed startup ratio [23]. These three conflicting 

objectives form two pairs of trade-offs that complicate the design model. No previous work 

has been found to address the balancing of these trade-offs, which are uniquely important 

to streaming media proxy systems.

In this chapter, we first propose a look-ahead window based prefetching method and 

an active prefetching method for the in-time prefetching of uncached segments, which not 

only gives an effective solution to address the proxy jitte r problem, but also provides in­

sights into the trade-off between improving the byte hit ratio and reducing proxy jitter. 

Second, to effectively addresses the conflicting interests between reducing startup latency 

and improving byte hit ratio, we build a general model to analyze the performance trade­

off between the second pair of conflicting performance objectives and provide an effective 

approach to balance them. Finally, considering our main objective of minimizing proxy 

jitter and balancing the two trade-offs, we propose a new streaming proxy system called 

Hyper-Proxy [25] by effectively coordinating both prefetching and segmentation techniques. 

Hyper-Proxy depends on the H TTP channel for prefetching, while it interfaces with clients 

in a RTP [101]/RTSP [102] streaming channel. Synthetic and real workloads are used to 

systematically evaluate the system. The performance results show tha t the Hyper-Proxy 

system generates minimum proxy jitte r with a low delayed startup  ratio and a small de­

crease of byte hit ratio compared to existing schemes. Our study also indicates that the 

standard objective of improving the byte hit ratio commonly used in proxy caching for Web
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objects is not suitable to streaming media delivery.

The rest of this chapter is organized as follows. Some related work is introduced in 

Section 2.2. We propose prefetching methods and provide insights into proxy jitte r in 

Section 2.3. The second pair of conflicting interests is addressed in Section 2.4. The Hyper 

Proxy system is presented in Section 2.5. We evaluate it in Section 2.6 and we make chapter 

summary in Section 2.7.

2.2 Related Work

The proxy caching strategies have been mainly studied in the context of static Web contents 

and have therefore been the focus of many studies, mainly on caching the static Web 

pages [11, 12, 16, 39, 41, 44, 49, 54, 72, 73, 75, 113, 114] and dynamic contents [15, 17, 19, 

40, 59, 63, 77, 89, 105, 122, 125] to reduce the network traffic and the end-to-end latency. 

Recently, many characterizations of media workloads [6, 9, 33, 42, 52, 56, 57, 80, 83, 84, 

109, 112] have been performed and a lot of streaming media caching systems have been 

studied in [18, 23, 30, 31, 32, 51, 104, 117]. Some researchers [30, 31] have observed that 

most of the clients intend to watch the initial parts of the media objects and there are less 

and less accesses on the later portions. Based on this observation, the segment-based proxy 

caching strategies are proposed. The segment-based caching strategies cache media objects 

in segments instead of in full to reduce the user perceived startup latency and to reduce the 

network traffic to media servers and the disk bandwidth requirement to the media server. 

Among them, the prefix caching [104] was proposed earlier to segment the media object as 

prefix segment and suffix segment. Its protocol consideration as well as partial sequence
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caching are studied in [32, 51]. More recently, two types of new segmentation strategies had 

been developed according to how the object is divided. The first is to use uniform sized 

segments. For example, Rejaie et al [94] considers the caching of fixed sized segments of 

layer-encoded video objects. In our adaptive-lazy segmentation strategies proposed in [23], 

each object has itself segmented as late as possible and has a uniform segment length 

determined according to the client access pattern. The uniform is only to each object while 

different objects may have different segment lengths. The second is to use exponential 

sized segments. In this strategy, media objects are segmented in a way that the size of 

a segment doubles that of its preceding one [117]. The intuition of this strategy is based 

on the assumption that later segments of media objects are less likely to be accessed. A 

combining use of these methods can be found in [18], in which the simple constant length 

and the exponentially increased length are both considered in RCache and Silo.

In a finer granularity for Internet video delivery, some strategies are also proposed based 

on the video frames. In video staging [124], a portion of bits from the video frames whose 

size is larger than a predetermined threshold is cut off and prefetched to the proxy to reduce 

the bandwidth on the server proxy channel. In [92, 93, 94], a similar idea is proposed for 

caching scalable videos that co-operates with the congestion control mechanism. In [79], 

the proposed approach attem pts to select groups of consecutive frames by the selective 

caching algorithm, while in [82], the algorithm may select groups of non-consecutive frames 

for caching in the proxy. The caching problem for layered encoded video is studied in [68]. 

The context-aware segmentation is studied in [74]. The cache replacement of streaming 

media is studied in [91, 106].

P2P assisted media streaming has also been studied [35, 58, 64, 85, 96, 108]. In [85, 108],
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multicast trees are studied for live media streaming, while P2P streaming schemes for 

layer-encoded media are proposed in [35, 96]. Work in [58, 64] proposes a Guntella-like 

unstructured P2P media streaming system and a structured P2P media streaming system.

2.3 Prefetching M ethods and Insights into Proxy Jitter

Prefetching schemes can reduce proxy jitte r by fetching uncached segments before they are 

accessed. However, an efficient prefetching method should consider the following two con­

flicting interests in the proxy. On one hand, proxy jitte r occurs if the prefetching of uncached 

segments is delayed. To avoid jitter, the proxy should prefetch uncached segments as early 

as possible. On the other hand, aggressive prefetching of uncached segments requires extra 

network traffic and storage space to temporarily store the prefetched data. Even worse, the 

client session may terminate before the prefetched segments are accessed. This observation 

indicates that the proxy should prefetch uncached segments as late as possible. This contra­

diction requires that the proxy accurately decides when to prefetch which uncached segment 

in a way to minimize the proxy jitte r as well as to minimize the resource usage (network 

and storage). In this section, we propose a look-ahead window based prefetching method 

and an active prefetching method, which jointly consider both objectives. Our subsequent 

analysis further provides the insights into the conflicting interests between reducing proxy 

jitte r and improving the byte hit ratio.

In our analysis, the following assumptions are made.

• The object has been segmented and is accessed sequentially;

• The bandwidth of the proxy-client link is large enough for the proxy to stream the
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content to the client smoothly; and

• Each segment of the object can be fetched from the server (either the origin server or 

a cooperative one) in a unicast channel.

Since the prefetching is segment based, several related notations used in the analysis are 

listed in Table 2.1. Note tha t each media object has its inherent encoding rate, which is the

Table 2.1: The notations for prefetching study

B s the average encoding rate of a certain object segment
the average network bandwidth of the proxy-server link

k the to tal number of segments of the object
n the number of cached segments of the object

Si the i t>l segment of the object
Li the length of the i th segment
L b the base segment length of the object, L& =  L\

playback rate. The rate is not a constant in variable bit rate video, but we use B s to denote 

its average value. Bt may vary dynamically when different segments are accessed. The 

proxy monitors Bt by keeping records of the data transmission rate of the most recent prior 

session with the same server. The transmission rate is calculated by dividing the amount 

of transferred data by the data transmission duration.

For a requested media object, assume there are n  segments cached in the proxy. The 

goal is to determine when to schedule the prefetching of the uncached (n +  l ) th segment, 

Sn+1 , so that proxy jitte r is avoided. We denote the scheduling point as x.

Note that prefetching is not necessary when B s < Bt, so the following discussion is 

based on when B s > Bt-
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2 .3 .1  L ook -ah ead  W in d o w  B a sed  P r e fe tc h in g  M e th o d

The major action of the look-ahead window based prefetching is to prefetch the succeeding 

segment if it is not cached when the client starts to access the current one. The window 

size is thus fixed for the uniformly segmented object and is exponentially increasing for the 

exponentially segmented object.

When B s > Bt, assume the prefetching of the next uncached segment Sn+\ starts when 

the client starts to access the position x  in the current segment Sn. Thus, x  is the position 

that determines the starting time of prefetching, called the prefetching scheduling point. 

To denote y as y = L n — x  and to guarantee the in-time prefetching of the next uncached 

segment, we have

y + L n+i ^  Ln+i^ (2.1)

which means

Bs B t

Since y = L n -  x, thus

L n + 1 x (Bs -  B t) x < L n -  -2 ± i— L_i----- 12. (2.3)
t i t

We can calculate the prefetching starting point as the percentage of the current segment by 

dividing x  by L n , which leads to

f  < 1 -  ^ + 1  X  A  _  1). (2.4)
Lin  L/n  L>t

Equation (2.4) means to prefetch the next uncached segment when the client has accessed 

the 1 — x (-g4 — 1) portion of current segment. Accordingly, the size of the minimum
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buffer size is x Bt, which is Ln+1 x (1 — ^ t ). Once we know the minimum buffer size, 

we know that in the worst case, the fully buffered prefetched data may not be used by the 

client, which means the maximum amount of wasted prefetched data, W , has the same size 

as the buffer. Thus, we always give the minimum buffer size by the following analysis.

For objects segmented uniformly (e.g. by uniform segmentation or adaptive-lazy seg­

mentation) or exponentially (such as by exponential segmentation), the situations are as 

follows:

• For the uniformly segmented object, by Equation (2.3), we have < 2—jfi. It implies 

tha t B s could not be 2 times larger than Bt. The minimum size is L\ x (1 — The 

prefetching of the next uncached segment starts when the client has accessed to the 

2 ~  e f  Porti°n of the current segment.

• For the exponentially segmented object, by Equation (2.3), we have ^  < 3 - 2 x

It implies th a t B s could not be 1.5 times larger than B t . The minimum size is 

L n.|-i x (1 — ^ ), which increases exponentially. The prefetching of the next uncached 

segment starts when the client has accessed the 3 -  2 x portion of the current 

segment.

Above analysis shows that this look-ahead window based prefetching method does not 

work when B s >  1.5Bt for the exponential segmentation strategy, and it does not work 

when when B s > 2Bt for the uniform segmentation strategy.
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In addition, since B a > B t, we have

20

B s > Bt > 1

=> > 1 -  2 x

=4* 2 - f j -  > 3 — 2 x i l  
B t ‘

(2.5)

The left side of Equation (2.5) represents the prefetching scheduling point for the uniform 

segmentation strategy, while the right side denotes that for the exponential segmentation 

strategy. Thus, Equation (2.5) states tha t the prefetching of the next uncached segment for 

the exponential segmentation strategy is always earlier than that for the uniform segmen­

tation strategy, causing a higher possibility of wasted resources.

Since the condition of B s >  Bt is quite common in practice, the look-ahead window 

based prefetching method has a limited prefetching capability in reducing the proxy jitter. 

Next, we will address its limit by an active prefetching method.

2 .3 .2  A c tiv e  P re fe tch in g

If the prefetching is conducted more aggressively, we are able to further reduce proxy jitter, 

and of course, which will also consume more resources. The basic idea of our second 

method, active prefetching, is to preload uncached segments as early as when the client 

starts to access a media object.

We re-define the prefetching scheduling point, x, as the position in the first n  cached seg­

ments (instead of a position in the n th segment for the look-ahead window based prefetching
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method) that is accessed by a client. As soon as this prefetching scheduling point is accessed, 

the prefetching of n  +  1th segment must start in order to avoid the proxy jitter. Again, the 

objective of our prefetching is to determine when to prefetch which uncached segment so 

tha t proxy jitte r is minimized with the minimum amount of resource requirement.

At position x, the length of the to-be-delivered data from the cache is Xw=i — x. To 

avoid proxy jitter, the time that the proxy takes to prefetch S n + 1  must not exceed the time 

tha t the proxy takes to deliver the rest of the cached data and the fetched data. T hat is, 

the following condition must be satisfied to avoid proxy jitter:

L n + l ^  -fin-j-l
B s ~  B t

Therefore, the latest prefetching scheduling point to avoid proxy jitte r is:

* = Lra±1 * & - ? * ) .. (2.6)
i= 1 t

Refer back to our objectives, when x  is selected as the prefetching scheduling point, the 

buffer size required for the prefetched data reaches the minimum:

x B t . (2.7)
JDS

We now discuss the active prefetching method for objects segmented differently by first 

determining the prefetching scheduling point and then discussing the prefetching scheme 

and resource requirements.

• For the uniformly segmented object, Li =  Li, based on Equation 2.6, we have the
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latest scheduling point x  as

x  = (n + l ) L 1 - ^ L 1. (2.8)
Bt

Equation 2.8 states that if n  +  1 > in-time prefetching of 5n + 1  is possible with

the minimum required buffer size of

L l  x <2,9)

However, Equation 2.8 also indicates that if n  +  1 < in-time prefetching of Sn+i 

is not possible! Therefore, when n  +  1 < and the segments between n  +  1th and 

r f f  are demanded, proxy jitte r is inevitable. To minimize future proxy jitter under 

this situation, the proxy needs to prefetch the segment instead of the n +  1th

segment.

For uniformly segmented objects, active prefetching works as follows:

— n =  0: No segment is cached. Proxy jitter (in this case, startup latency) is 

inevitable. To avoid future proxy jitter, prefetching of the segment is

necessary. The minimum buffer size required is (1 — )L \ .

— n >  0 and n + 1 < The proxy starts to prefetch the segment once the 

client starts to access the object. If the segments between n  +  1th and — l] th 

are demanded, they are fetched on demand, and proxy jitte r is inevitable. The 

minimum buffer size required is (1 — ^ ) L \ .

— n > 0 and n + 1 > jg: The prefetching of Sn+1 is scheduled when the streaming 

reaches the position of (n -I-1 — %^)Li of the first n  cached segments. Proxy jitter
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can be completely eliminated in this case, and the minimum buffer size required

is (1 ~ HO-ki-

• For the exponentially segmented object, active prefetching works as follows. Here, we 

assume B s < 2Bt- When B s > 2Bt, no prefetching of the uncached segments can be 

in time for the exponentially segmented objects.

— n = 0: No segment is cached. Proxy jitte r (in this case, startup latency) is 

inevitable. To avoid future proxy jitter, the prefetching of the [1 + /og2 (^~~5 r ) ] fft
1 Bt

segment is necessary once the client starts to access the object. The minimum 

buffer size required is L \ x 2xg

— n > 0 and n  < Zog2(—^g-): The proxy starts to prefetch the [1 +  log2 (-~~wz )} th
2 ~  B t  1  B t

segment once the client starts to access this object. Proxy jitter is inevitable

when the client accesses data of the n  +  1th segment to the [1 +  log2 { ~ s z ) Y h
1 B t

segment. The minimum buffer size is L iB t /B s, where i =  [1 +  fog2 (r~gy)l-
1 Bt

— n > 0 and n  > fog2( - - ^ ) :  The prefetching of the n  +  I th segment starts when
2_ Bt

the client accesses to the 1 -  x ~  !) portion of the first n  cached 

segment. The minimum buffer size is L n+\ x and increases exponentially for 

later segments.

Our proposed active prefetching method gives the optimal prefetching scheduling point 

whenever possible with minimum resource usage. However, under certain conditions 

the prefetching of uncached segments may still be delayed as our analysis showed, 

for both uniformly and exponentially segmented objects. Furthermore, the analysis 

also finds tha t the uniformly segmented object has advantages over the exponentially
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segmented object: it offers enhanced capability for in-time prefetching and the in-time 

prefetching can always begin in a later stage.

2 .3 .3  S eg m en t-b a se d  P r o x y  C a ch in g  an d  Proxy  J it te r  Free S tra teg ie s

The previous section shows tha t active prefetching cannot always guarantee continuous

However, for any caching strategy, if there are always enough number of segments being 

cached in the proxy, prefetching of the uncached segments can always be in time. To 

evaluate this situation, we define free-of-jitter length as follows:

• free-of-jitter length: the minimum length of data  tha t must be cached in the proxy 

in order to guarantee the continuous delivery when B s > Bt- We denote m  as the 

number of segments with the aggregated length equal to the free-of-jitter length, called 

free-of-jitter segments.

In-time prefetching must guarantee, in the worst case, that the prefetching of the rest 

of segments is completed before the delivery of the whole object, tha t is:

This indicates tha t the following condition must be satisfied to guarantee in-time prefetch­

ing:

media delivery, which is one of the most im portant objectives for the streaming delivery.

(2 .10)
B s BtB t

(2 .11)
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• For the uniformly segmented object, since Lb is the base segment length, the minimum 

m  to satisfy the above condition is:

• For the exponentially segmented objects, since Li =  2Lj_i, the minimum m  to satisfy 

the condition is:

r ,  f t )  £ i = l  L * v-, . ,  / o  l O ' ,m  -  \log2{-----------------a—--- )| +  1- (2.13)
Lb

2 .3 .4  Trade-off B e tw e e n  L ow  P r o x y  J it te r  and  H ig h  B y te  H it  R a tio

We have calculated the minimum number of segments tha t must always be cached in the 

proxy to guarantee a continuous delivery of the streaming media object. Thus we can 

estimate how much cache space we need to guarantee a proxy-jitter-free delivery. However, 

in practice, we always have limited cache space and cannot cache all these segments for 

each object.

In an actual segment-based proxy caching system, popular objects are always cached 

to reduce network traffic and server load. If an object is popular enough, all its segments 

can be cached in the proxy, possibly larger than  its free-of-jitter length. If an object is not 

popular enough, some segments may get evicted and only a few of its segments are cached. 

The aggregated length of these segments may be less than its free-of-jitter length, which 

causes proxy jitte r when the uncached segments are demanded by the client. Given a higher 

priority in reducing the proxy jitter, the proxy can choose to evict segments of the object 

whose cached data length is larger than its free-of-jitter length. The released cache space 

can be used to cache more segments of the object whose cached data length is less than  its

]■ (2 .12)
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free-of-jitter length so tha t the prefetching of its uncached segment can always be in time. 

It is possible tha t segments of popular objects are evicted, which may reduce the byte hit 

ratio. However, since there are more objects with enough segments cached to avoid delayed 

prefetching, overall proxy jitte r is reduced. From this transition, we can see tha t the byte 

hit ratio can be traded for less proxy jitter.

The insights of the conflicting interests between improving the byte hit ratio and reduc­

ing proxy jitte r have motivated us to revise the principle to design a highly effective proxy 

caching system, aiming to minimize the proxy jitter.

2.4 B yte Hit Ratio vs. Delayed Startup R atio

From the previous study [23], we have observed tha t segment-based proxy caching strategies, 

typically the adaptive-lazy segmentation and exponential segmentation, always perform well 

in the byte hit ratio, but perform not so well in the delayed startup  ratio, or vice versa. 

This observation leads us to conjecture that there are some conflicting interests between the 

objectives of improving the byte hit ratio and reducing the delayed startup ratio. We must 

understand these insights before we can design a correct system according to our design 

model.

In this section, we formalize the problem and mathematically analyze this trade-off. An 

analytical model is built to analyze these two representatives: exponential segmentation 

and adaptive-lazy segmentation for the ideal situation where the objects are cached in the 

proxy in the order of their popularities. Thus the effect of other factors can be excluded 

so tha t we can understand the performance insights. Firstly, we briefly review the two
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representative strategies we will examine with the following notations.

(1) T\: the time instance the object is accessed for the first time;

(2) Tr: the last reference time of the object. It is equal to Tj when the object is accessed 

for the first time;

(3) Tc: the current time instance ;

2 .4 .1  E x p o n e n tia l S e g m e n ta tio n  S tr a te g y

The exponential segmentation strategy segments each media object exponentially. It then 

admits the segments of the object according to their relative positions in the object and 

their caching utilities by the admission policy. The segment replacement uses the LRU 

policy for the replacement of the beginning segments and always replaces the segment with 

the least caching utility for the later segments, respectively. More details can be found 

in [117].

2.4.1.1 Segm entation  M ethod

A media object is divided into multiple equal-sized blocks. Multiple blocks are then grouped 

into a segment by the proxy. The size of a segment is sensitive to its distance from the 

beginning of the media object. The number of blocks grouped in segment i is 2l~l . In 

general, segment i is twice as large as segment i — 1. The purpose of this method is to allow 

the proxy to quickly discard a big chunk of cached media objects.
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2.4.1.2 A dm ission  Policy

A two-tiered approach is used for admission control. For a segment with a segment number 

smaller than a threshold, K min, it is always eligible for caching. However, for a segment 

with a segment number equal to or larger than K min, it is determined to be eligible for 

caching only if its caching utility is larger than  some cached segments also with segment 

number equal to or larger than K min. For this purpose, a portion of the cache space is 

reserved to store the beginning segments only while the remaining of the cache space is 

used to store the later segments. W ith such a cache admission control, at least the first 

K min segments are stored for any cached objects by reserving a cache portion large enough 

for the beginning segments.

2.4.1.3 R eplacem ent Policy

The caching utility of a segment depends on the reference frequency of an object and the 

segment distance. It is defined to be the ratio of reference frequency over the segment 

distance. The reference frequency is estimated as ■ As a result, the caching utility 

of segment i of an object is defined as (y )xt-- According to the caching utility of the 

segment, two LRU stacks are maintained for the first K min segments and the later segments. 

When an object is requested for the first time, the first K min segments are always eligible 

for caching as a unit and the LRU scheme is used to find the replacement, while the later 

segments are always not cached for the first time. A later segment is eligible to cache only 

if its caching utility is greater than that of its replacement segment.
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2 .4 .2  A d a p tiv e -L a zy  S e g m e n ta tio n  S tr a te g y

We proposed adaptive-lazy segmentation for streaming media object caching in the proxy by 

always caching the popular segments depending on the real time client access patterns [23]. 

In this strategy, each object is fully cached by the aggressive admission policy when it is 

accessed for the first time. The fully cached object is kept in the cache until it is chosen as 

an eviction victim by the replacement policy. At which time, the object is segmented using 

the lazy segmentation method and some segments are evicted by the replacement policy. 

From then on, the segments of the object are adaptively adm itted or adaptively replaced 

segment by segment. The following additional notations are needed to define this strategy.

(4) Lsum' the sum of the duration of each access to the object;

(5) n a: the number of accesses to the object;

(6) Lb', the length of the base segment;

(7) n s: the number of the cached segments of the object.

Thus, at time instance Tc, the access frequency F  is denoted as T ™*T , and the average 

access duration L avg is denoted as

2.4.2.1 Aggressive A dm ission Policy

For any media object, the cache admission is considered aggressively in one of the following 

procedures whenever the object is accessed. (1) If the object is accessed for the first time, 

the whole object is subsequently cached regardless of the request’s accessing duration. The 

cache space is allocated through the replacement policy if there is no sufficient space. (2) 

If the object has been accessed and is fully cached, no cache admission is necessary. (3) If 

the object has been accessed but it is not fully cached, the proxy aggressively considers to
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cache the (ns +  1 )th  segment if L avg >  ^ x (n, +  1) x Lfc. The inequality indicates that 

the average access duration is increasing to the extent that the cached n s segments can not 

cover most of the requests while a to tal of ns +  1 segments can for a normal distribution. 

Therefore, the proxy should consider the admission of the next uncached segment.

2.4.2.2 Lazy Segm entation  M ethod

The basic idea of the lazy segmentation method is as follows. If the victim object chosen 

for replacement turns out to be fully cached, the proxy segments the object in the following 

way. The average access duration L avg at tha t time instance is calculated. It is used as the 

length of the base segment of this object, that is, Lb — L avg. Note tha t the value of Lb is 

fixed once it is determined. The object is then segmented uniformly according to Lj. After 

that, the first 2 segments are kept in cache, while the rest is evicted by the replacement 

policy.

2.4.2.3 T w o-Phase Iterative R eplacem ent Policy
Tr-T-j

j-sitm. xMIN{ 1, _}
By defining the utility function as - z~h— luxL ’•............, the two-phase iterative replacement

policy works as follows. Upon an object admission, if there is not enough cache space, the 

proxy chooses the object with the smallest utility value at tha t time as the victim, and the 

segment of this object is evicted in one of the two phases as follows. (1) First Phase: If the 

object is fully cached, the object is segmented by the lazy segmentation method. The first 

2 segments are kept and the remaining segments are evicted right after the segmentation is 

completed. Therefore, the portion of the object left in cache is of length 2 x Lb. Given that 

Lb — L aVg at this time instance, the cached 2 segments cover a normal distribution in the
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access duration. (2) Second Phase: If the object is partially cached, the last cached segment 

of this object is evicted. The utility value of the object is updated after each replacement 

and this process repeats iteratively until the required space is found.

2 .4 .3  A nalytical M o d el

Having reviewed the two representative strategies, now we formalize the problem and build 

a general analytical model for the adaptive-lazy segmentation and exponential segmentation 

strategies. We assume:

(1) The popularity of the objects follows a Zipf-like distribution [4, 38, 62], which models 

the probability set pi, where pi =  , (i =1, 2, ..., N, N  is the to tal number of objects)
X i = 1 Ji

and f i  =  Jr, where 9 >  0 and is the skew factor;

(2) The request arrival interval process follows Poisson distribution with a mean arrival rate 

A. The request arrival interval process to each individual object is independently sampled 

from the aggregate arrival interval process based on probability set pi, where Y iZ i  Pi — 1;

(3) The clients view the requested objects completely. This is to simplify the analysis and 

does not affect the conclusion.

These assumptions indicate tha t the mean arrival rate for each object is:

To evaluate the delayed startup ratio, we define the following notation:

• startup length: the length of the beginning part of an object. If this portion of the 

object is cached, no startup delay is perceived by clients when the object is accessed.

Aj =  \p i  — A x
l
¥
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We use a  to denote the percentage of the startup  length with respect to the full object 

length1.

Other notations used in the discussion are listed below:

• L lobj\ the full length of the ith object, where 1 < i < JV;

• the average length of the objects;

• C: the to tal cache size;

• S' the percentage of total cache space reserved for the caching of first a  percent 

(startup length) of objects;

• Cprefix'- the size of reserved cache space for caching startup  length of objects. CprefiX = 

f3 C;

• Crest' the size of the cache space other than the space reserved for caching of startup 

length of objects. Crest — C -  Cprefix  =  (1 -  fi)C.

We consider the ideal case where the cache space is always allocated to cache the most 

popular objects. If we sort the objects according to their decreasing popularities, the ideal 

case indicates tha t Cprefix is used to cache the segments (within startup length) of the first 

t  most popular objects.

Thus, ideally, for exponential segmentation, assuming the Cprefix can cache the first t 

objects’ prefix segments, t  must satisfy the following condition: 

i=t i—t+1
}  j Li X (X < Cprefix 0,nd ^  ) i j  X Ct > Cprefix■ (2.14)
i=1 i—1

^ o te  that instead of caching the first a  percent, caching a constant length of the prefix segment for each 
object leads to the same results.
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Ideally, assuming the rest of the cache size Crest can cache the first m  object’s remaining 

segments, m  must satisfy the following condition:

i=m i= m + 1

Li x (1 -  a) < Crest and Li x (1 -  a) > Crest. (2.15)
i = i  i = i

For adaptive-lazy segmentation, no cache space is allocated separately to cache the 

initial segments of the object, thus, ideally, assuming the whole cache can be used to cache 

the first k objects according to the popularity, k  must satisfy the following condition:

i=k i=k+1

Y , L i < C  and J 2  Li > C - (2.16)
i = l  i—1

To this end, we express the delayed start request ratios for exponential segmentation 

and adaptive-lazy segmentation as follows:

P tel.,-E  =  S S S Y 1 <2-17>
2j *=i

and

(2 -18)
2 _ n = 1

respectively.

W ithout considering the misses when the object is accessed for the first time, their 

corresponding byte hit ratios are:

p  — 1 _  £'*=”+1 x  Li x  a  + Y?i=m+i Aj x ^  x (1 — a) ^

hit~E E S i

and

respectively.

p _ , H \J k + 1 X L i / o on\

M,- L ~  "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 2. SEG M ENT-BASED  STREAM IN G  P R O X Y  DESIGNS  34

2 .4 .4  Perform ance O b je c tiv e  A n a ly s is

In order to find the reasons for the unbalanced performance results as we observed, we 

analyze the performance objectives one by one based on the model we have built. In this 

section, lazy segmentation is always used to mean the adaptive-lazy segmentation strategy.

2.4.4.1 D elayed Start R equest R atio

Equation 2.17 and Equation 2.18 indicate that the relationship between t  and k determines 

which technique performs better in terms of the delayed start request ratio.

Based on Equations 2.14 and 2.16, by comparing

J 2 L i<  and Y l L i - ° ’
i=i a  i= i

we can get that if ^  > 1, it will lead to t > k. Through Equation 2.17 and Equation 2.18, 

t  > k means that the exponential segmentation has a better (less) delayed start request 

ratio. Otherwise, t < k ,  and lazy segmentation will perform better.

Exponential segmentation always caches beginning segments of all objects, which leads 

to k < t. Thus, in terms of the delayed start request ratio, exponential segmentation 

normally performs better than lazy segmentation.

2.4.4.2 B yte Hit R atio

Based on Equation 2.19 and Equation 2.20, we can see the relationships among t, m,  and 

k  are deterministic to the byte hit ratio.

We now provide a thorough evaluation of all possible situations as follows.
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• m  =  t  :

Equation 2.19 can be written as:

Sfet+i a» xPhit-B = 1 —
E;=r x u

Compared with Equation 2.20, the problem once again comes to the relationship of 

t and k. If t > k, then exponential segmentation performs better. If t < k, lazy 

segmentation performs better.

When m  — t, there are m  or t objects cached by the exponential segmentation totally. 

Thus, we can get t =  k. Thus, lazy segmentation will perform the same as exponential 

segmentation in terms of the byte hit ratio.

• m  < t :

Equation 2.19 can be written as:

p _ , E i= i+1 A« x Li + E»=m+i Ai x Lj x (1 — a)
~ g f f X T i ;  •

Equation 2.20 can be written as:

E i = A : + l  A t X L i  - f  £ i = t + l  A , X L j
Ph.it-L = 1 ■

Ei=i A. X Li

Thus, we must compare YnZm+i ^  x Li x (1 -  a) and Ei=fc+i x L i■ K YnZm+i ^  x

Li x (1 -  a) > Y^i-k+i x Li, lazy segmentation performs better. Otherwise, expo­

nential segmentation performs better.

When m  < t, there are m  objects fully cached for exponential segmentation. Thus, 

for lazy segmentation, there are more objects fully cached and we can get that k > m. 

Therefore, we further analyze the case when k > m  and t  > m  as follows.
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Since
i—t i=k i—t

Xi  x L i  x (1 -  a )  =  ( 2 2  Ai x  L i  +  2 2  A, x L i )  x  (1 -  a )
* = m -f  1 i = m + l  i= fc4 -i

and
t  t t

Xi x  L i  — 2 2  Xi x  L i  x  a +  2 2  A; x  L ; x  (1 -  a ) ,
i= f e + l  i= fc-t-l

we must compare ]T)j'=m,+i Aj x Li x (1 — a) and X)i=fc+i Aj x L* x a.

From Equations 2.14, 2.15, 2.16, we have

i =  ™ = i f e x k = L > r ’ (2-21)•^ave ^ave

where L ^ e denotes the average value of Iq  to Lt, L™ve denotes the average value of 

L \ to L m, and L^ve denotes the average value of L \ to Lj-.

Assume objects are of equal length, then L lave — L™ve — L^ve = L ave. (Note tha t this 

assumption simplifies the condition. However, we have proved it does not affect the 

conclusion we will draw.) Thus

t  =  k x —,m  =  k x  ----- ~.
a  1 — a

Since \  > A,+i, we get

i — k i —k
Ai x Li x (1 — a) > *22 Afe+i x I ;  x (1 -  a) = Xh+ik(f3 — a)Lave (2.22)

i—m + l  i—rn-fl

and

t t

^ ) A, x Zyj x a  ^  2 2  Afe+i ^ 14 x ot — \k;-i-xh(il3 cxjLave' (2.23)
j=:jc4-l *=&+1

Based on Equations 2.22 and 2.23, it is clear tha t exponential segmentation performs 

worse in byte hit ratio when m  < t. This confirms the performance comparisons in 

section 2.6.
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• m  > t :

Equation 2.19 can be written as:

Equation 2.20 can be written as:

P h i t - L  =  1 —
e *=:fe+i • X L i  +  E i = m + 1 N  X Li

E Z i  A< X L i

Thus, we must compare i A* x L; x a  and Y hLk+i ^  x (Note that if k + 1 > m,

Y^ILk+i A* x ^ i is defined as — Yli=m+i x •£'»)• ^ E i = t + 1  Aj x L { X a  > Y ^ k + i  Aj xLj, 

exponential segmentation performs worse. Otherwise, lazy segmentation performs 

worse.

When m  > t, there are only t  objects tha t are fully cached for exponential segmen­

tation, so it must be k > t. Thus, the further analysis will be done when m >  t  and 

k > t as follows.

Since
i ~ m  i —k i —m

^ 2  At x Li x a — Y , N x L i X a +  ^  Xi x Li x a
i —t-f l  1 i = f e + l

and
m m  m

Xi  x L i  =  Xi x L i  x a  +  ^  A; x I,; x (1 — cc),
irsfc-j-1 i —fc+ l  i ~ f c + l

it comes to compare YnZt+i A* x Li x a  and J2iLk+ 1  At x L* x (1 — a) .

Since A, > Aj+i, with the same assumption as before tha t objects are of same length, 

it is easy to get

i = k  i —k

^  ( X i  X  L i  X  CH ^  y  '  Afc+ 1  X L i  X  QL ~  (o! f i ^ k X k + l  L a v e  ( 2 . 2 4 )

i= t + 1 »= t+ l
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and

ro m
y  Xi x Li x (1 -  a) < Afc+i x l j x ( l - a )  =  ( a - P)k\k+iL,'a ve  ’ (2.25)

i~ k - f-1

Based on Equations 2.24 and 2.25, we can get that when m  > t, lazy segmentation 

performs worse in terms of byte hit ratio under these assumptions. However, m  > t 

leads to k > t, recall the analysis conclusion in 2.4.4.1, when k > t, lazy segmentation 

will perform better in terms of the delayed start request ratio.

In reality, exponential segmentation always caches all objects’ beginning segments, 

thus, m  > t  is always true.

The results of the above analysis show tha t the performance of segment-based caching 

strategies is always a trade-off between the byte hit ratio and the delayed start request 

ratio. They are affected by the relationships of t, m, which are determined by a, /3, n  and 

Lave■ (Note that for the lazy segmentation strategy, in the sense tha t we do not reserve a 

part of the cache space for caching the beginning segments of objects, j3 =  0; however, if 

counting the cache space used for caching the beginning segments of objects, a dynamically 

changing non-zero /? is used. For the prefix caching, j3 is set to 100%.) Based on the analyis 

results, if m  is decreased, the achieved byte hit ratio is reduced. However, the decrease 

of m  leads to decrease of t, which results in a reduced delayed start request ratio. This 

seems to indicate tha t we can use the byte hit ratio to trade for delayed start request ratio. 

W hether this is true or not is critical to if we can find out an effective way to balance these 

two performance objectives. We will answer these questions heuristically after we derive 

the performance bounds for each performance objective.
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2 .4 .5  P er fo rm a n ce  B o u n d  A n a ly s is

We have learned tha t these two performance objectives are always a trade-off between 

each other. However, how much performance can be optimized is not answered yet. In 

this section, we will give performance bounds based on the model so tha t they can guide 

the performance optimization under certain conditions as our assumptions state. We also 

assume the objects are of equal length as before. That is, L lave =  L™ve =  L^ve =  L ave.

2.4.5.1 D elayed Start R equest R atio

For the exponential segmentation strategy, substituting Equation 2.14 in Equation 2.17, we

get
E i = n  \  . ,  I , x Te

i=t+1 A x y T s r l t - r  y^*=" 1
P * „ „ - E  = —  f  • (2.26)

E " , i r

Carefully using the series theory and integration on Equation 2.26,

•  0 =  1

T d e l a y  — E  —
ICLt+i I  ^ St _  In n -  In t

E S I  ~  S i + 1 \ d i  I n  ( n  +  1 ) 

and

y , i = n  1 p n + 1  . n ± l
P __ 2 ^ i = t + l  i  ^ J t + 1 i  _  1 t + 1

d e l a y - E  4  k d i  1 +  I n  71 '

Having t  =  t ^ ~  x U = -fi—, we have°  i> au e  Q! L/nn* 1

pMax ... Inn In [/ x £  o
~  In (n -f 1) (2'27)

and
pM(n In (n +  1) — In ([/ x £• +  1)

• ( 2 - 2 8 )
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For Equation 2.27 and 2.28, the larger the value of /?, the smaller the values of P ^ y - E  

and Pfotay-Ei and the smaller the value of ft, the larger the values of P ^ ^ j - E  and

pMin 
delay—E'

® 0 7̂  1

P d e l a y  — E  —

E i—\
i — \

1
t+i

e s

st ,i-e -  r
—  l - n + l  1di {n+1)1- 0 - 1 ’

and

p  _  E i = t + i  i f  ^  ft+ 1  _  ( n + D ^ ^ - f i + i ) 1- 8
* d e l a y —E  -  i = n  1 >  1 + f „  \ d i  -  n \ - A 6

E i=1 Je TJl ^

Having t — jH— x ^  U — we have
■L'ave tx '  1-rave

p M o x  X  f ) 1 '

* d e l a y  — E  ~  ( n + 1 ) l - 0 ' _ " i ... ...

and
P Mi n  ( n + 1 ) 1 6 - { U  X  f  +  1 ) 1" .
* d e l a y  — E  -  ---------   , _ 9 _ p  • (Z. cSU)

t l ~9 is an increasing function when 0 < 9 <  1, and a non-increasing function when 

9 > 1. Thus, the larger the value of /3, the smaller the values of and

and the smaller the value of /?, the larger the values of P^iay-E  an<  ̂^'delay-E•

For the lazy segmentation strategy, substituting Equation 2.14 in Equation 2.18, we get

X-’i—n \ „ 0 * JW
Ei=*+i Ei=£+i iT ,

P d e l a y - L  =  -------- ;---------------------- ~ T ---------  =  ' t 2 ' 3 1 )
V'*=" A x  -- -1L ._  E i= i i*2̂ !=1 £i="

Carefully using the series theory and integration on Equation 2.31,
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•  6  =  1

delay —L (2.32)

and
ln(n +  1) -  ln(E7 +  1) (2.33)

• 6 ^ 1
ni-° -  {vy-e
(n 4- l ) 1_fl — 1

(2.34)

and
( n + 1 ) 1- 9 - ( U  +  l ) 1- 0

(2.35)

Equations 2.27, 2.29 and Equations 2.32, 2.34 give the upper bounds for the exponential 

segmentation and the lazy segmentation strategies, respectively, with different 6 conditions. 

Equations 2.28, 2.30 and Equations 2.33, 2.35 give lower bounds for them in the ideal 

situation.

2.4.5.2 B y te  H it R atio

For exponential segmentation, based on Equation 2.19, substituting the A * from Equation 

2.14, we get

P h it-E  =  1 ~
ax£i«r+i ?+ (l-« )x£ U + i  pr (2.36)

Carefully using the series theory and integration on Equation 2.36,

m 6 = 1

1 +  Inn
(2.37)
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and
a  x ln TjfE + 0- -  Q) x ln P7T3E

p M i n  _  ,  U x a  U *T = 1 ,  ( 2  o 8 )
p hit- E  - 1  i ^ T i )  ■ 1 ’

. M a x  _  x  _  ( n + r - a x ^ x t f + r  _  a  —< * ) x ( f f 5 f } x L /  +  l ) 1- » ) ( 23g)

6 7̂  1

ryM ax    -t /
■ P w t - B - l  ( 

and

n1- 0 - a  x (& x U)1- 0 (1 -  a) x (£=£1 x■pMin _   Q X U  X ' n (1-oQ v (2 40^
(n + ! ) ! - * _ !  ( n + l ) i - e - l  1 U;

For lazy segmentation, based on Equation 2.20, substituting the A* from Equation 2.14,

we get

E i—n 1   i ^ i —k 1 /c 1
i = l  7̂ " 2 - / i = l  7̂ "   Z - a = l  /n  ,i- |\

= i ---------™ = n -I--------   W^TTTE «=n _1_ J
i = l  Z - / i = l  iTo

Carefully using the series theory and integration on Equation 2.41,

* 9 — 1
r y M a x  1 “t In U t n

Phit~L =  t a f r + I )  ( }

and
r> M in  __ l n ( £ /  ~f* 1 )

Phit~L ~  l  +  lnn'- {2

■^1
■pMax _  v _______  ̂ (o 44.’!
flwt-x. -  (n  +  i ) i - e  _ 1  1 ■ >

and
p M in  ( U  +  1 )  — 1 / o  /I CL\
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Equations 2.37, 2.39 and Equations 2.42, 2.44 give the upper bounds for the exponential 

segmentation and the lazy segmentation strategies, respectively, with different 9 conditions. 

Equations 2.38, 2.40 and Equations 2.43, 2.45 give the lower bounds for the ideal situation.

It is im portant to note tha t these upper and lower bounds are based on the model we 

built for ideal situations. Thus, the upper bounds we found here are valid upper bounds 

for general situations, while the lower bounds are only valid for ideal situations.

2 .4 .6  A n a ly tic a l R e su lts

To give an intuition into the dynamic nature of the two performance objectives, an example 

is given in Figure 2.1 based on Equation 2.29 and Equation 2.39. Here, given a total of 

10000 original objects, we assume a cache size 20% of the total object size. Thus, U is set as 

2000 object units. Furthermore, 9 and a  are set as 0.47 and 5%, respectively. As shown in

U = 2 0 0 0 ,0 = 0 .4 7 ,a = 5 %
.100

Delayed Startup Ratio 
Byte Hit Ratio

tr SO

c  70

P(%)

Figure 2.1: Byte hit ratio vs. delayed startup ratio

the figure, the decrease of the byte hit ratio is much slower than the decrease of the delayed 

startup ratio when /3 increases. Therefore, we can use a small decrease of byte hit ratio to 

trade for a significantly large reduction in the delayed startup  ratio.
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Mathematically, the partial derivative of with respective to fi yields \Az>eiay\

which denotes the change of the delayed startup ratio. The partial derivative of P ^tax with 

respective to /3 yields \Am t\ which denotes the change of the byte hit ratio. Therefore, we 

have

Nl~6 — Q
= i  x ----------------------------  zs- (2 .4 6 )

|A m «! a  ^ E| x |  +  A ) - ' + ( iSj +  1y

It can be shown tha t \ADeiay\l\Amt\ is always greater than  1 when a  and f3 are less than 

50%. For a long but complete derivation, please refer to [26].

The above analysis provides us with a solid basis to restructure the adaptive-lazy seg­

mentation strategy in [23] by giving a higher priority to caching the startup length of objects 

in the replacement policy. The objective is to effectively address the conflicting interests 

between improving the byte hit ratio and reducing the delayed startup  ratio for the best 

quality of media delivery. The analysis leads to the following improved replacement policy 

design.

2 .4 .7  Im p ro v ed  A d a p tiv e -L a z y  S e g m e n ta tio n  S tr a te g y

In order to significantly reduce the startup latency with a small decrease of the byte hit 

ratio as suggested by our previous analysis result, a three-phase iterative replacement policy 

is re-designed as follows.

Based on a utility function defined similarly as in [23], upon an object admission, if 

there is not enough cache space, the proxy selects the object with the smallest utility value 

at that time as the victim, and the segment of this object is evicted in one of the two 

phases as follows. (1) First Phase: If the object is fully cached, the object is segmented
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by the lazy segmentation method [23]. The first 2 segments are kept and the remaining 

segments are evicted right after the segmentation is completed. (2) Second Phase: If the 

object is partially cached with more than 1 segment, the last cached segment of this object 

is evicted. (3) Third Phase: If the victim has only the first segment and is to-be-replaced, 

then its startup length and the base segment length, Lb, is compared. If its startup length 

is less than the base segment length, the startup length is kept and the rest is replaced. 

Otherwise, it will be totally replaced. The utility value of the object is updated after each 

replacement and this process repeats iteratively until the required space is found.

This restructured adaptive and lazy segmentation strategy has shown its effectiveness 

in [26] by well balancing the two performance objectives.

2.5 The H yper-Proxy System

Having the answers to balance the two pairs of conflicting performance objectives in the 

previous sections, we design a high quality media streaming proxy system, called Hyper 

Proxy system, following our design model. In our design, for any media object accessed 

through the proxy, a data structure containing the following items in Table 2.2 is created 

and maintained. This data structure is called the access log of the object.

For each object, the Lthd is calculated after the segmentation (see section 2.5.3). It 

is equal to max (startup length, free-of-jitter length, 2Lb) and its value varies due to the 

dynamic nature of B s and Bt- In the system, two object lists (premium list and basic list) 

are maintained. The basic list contains all the objects whose length of cached segments 

is larger than its Lthd while the premium list contains all the objects whose cached data
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Table 2.2: The items of Hyper-Proxy data structure for each object

TX the time instance the object is firstly accessed
Tr the last reference time of the object
Tc the current time instance

Lsum the sum of each access duration to the object
na the number of accesses to the object
L b the length of the base segment
n the number of the cached segments of the object

FGadm the admission flag for adm itting segments
Lthd the threshold length used in the replacement policy
Lavg the average access duration of an object

F the access frequency

length is equal to or less than  its Lthd- F G adm is the flag used to indicate the priority of 

new segment admission. Items L avg and F  can be derived from the items above. They are 

used as measurements of access activities to each object. At time instance Tc, the access 

frequency F  is na/(T r -  T \), and the average access duration L avg is L sum/ n a.

When an object is accessed for the first time, it is fully cached and linked to the basic 

list according to the admission policy. A fully cached object is kept in the cache until 

it is chosen as an eviction victim according to the replacement policy. At tha t time, the 

object is segmented and some of its segments are evicted. The object is also transferred to 

the premium list. Once the object is accessed again, the proxy uses the active prefetching 

method to determine when to prefetch which uncached segment. Then the segments of 

the object are adaptively adm itted by the admission policy or adaptively replaced by the 

replacement policy.

We now present the detailed description of four major modules in the Hyper-Proxy 

caching system.
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2 .5 .1  Priority -based  A d m iss io n  P o lic y

For any media object, cache admission is considered whenever the object is accessed.

• A requested object with no access log indicates that the object is accessed for the first 

time. The object is then cached in full regardless of the request’s accessing duration. 

The replacement policy (see section 2.5.4) is activated if there is not sufficient space. 

The victim is selected from objects in the basic list, or premium list when the basic 

list is empty. In the premium list, objects with P R IO R IT Y  flag are searched if no 

object with N O N -P R IO R ITY  flag is in premium list. The fully cached object is linked 

to the basic list and an access log is created for the object and the recording of the 

access history begins. If an access log exists for the object (not the first access to the 

object), but the log indicates that the object is fully cached, the access log is updated. 

No other action is necessary.

• If an access log exists for the object, and its FGadm is P R IO R IT Y  (see section 2.5.2), 

the proxy considers the admission of the next uncached segment or segments deter­

mined by its free-of-jitter length. W hether the segment (s) can be adm itted or not 

depends on if the replacement policy can find a victim or not. Victim selection is 

limited to objects in the basic list or premium list with N O N -P R IO R ITY  flag if basic 

list is empty. Note that for this admission, the system does not need to compare the 

caching utility value of this object with the victim’s, but only to find a victim with 

the smallest utility value.

• If an access log exists for the object, and its FG adm is N O N -P R IO R ITY  (see sec­

tion 2.5.2), the next uncached segment is considered for admission only if L avg >
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(n +  1)Lb/Lthd, (Note L avg is changing dynamically.). The inequality indicates that 

the average access duration is increasing to the extent tha t the cached n  segments 

cannot cover most of the requests while a to tal of n  +  1 segments can. W hether the 

next uncached segment is eventually adm itted or not depends on whether or not the 

replacement policy can find a victim whose caching utility is less than this object. 

The victim selection is limited to the basic list only.

After the admission, the object will be transferred to the basic list if it is in the premium  

list and its cached data  length is larger than its Lthd-

In summary, using the priority-based admission, the object is fully adm itted when it 

is accessed for the first time. Then the admission of this object is considered segment by 

segment with the higher priority given to the admissions tha t are necessary for in-time 

prefetching.

2 .5 .2  A c tiv e  P r e fe tc h in g

After the object is segmented and some of its segments are replaced (see section 2.5.4), the 

object becomes partially cached. Then, upon each subsequent access, active prefetching is 

activated to determine when to prefetch which segment once the object is accessed according 

to the following various conditions.

• n =  0: No segment is cached. The prefetching of the segment is considered.

The FGadm of this object is set to be PRIO RITY.

• n  > 0 and n +  1 < The proxy starts to prefetch the |~J -̂]th segment once the 

client starts to access the object. If the segments between n +  1th and — l ] th
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are demanded, proxy jitter is inevitable and the F G adm of this object is set to be 

PRIO RITY.

• n >  0 and n + 1  > | j f : The prefetching of n + 1 th segment starts when the client 

accesses to the position of (n +  1 — ^ ) L b  of the first n  cached segments. The F G adm 

of this object is set to be NO N-PRIORITY.

Note tha t B s and Bt are sampled when each segment is accessed. As a result, Lthd is also 

updated accordingly.

2 .5 .3  L azy  S e g m e n ta tio n  P o lic y

The key of the lazy segmentation strategy is as follows. Once there is no cache space 

available and replacement is needed, the replacement policy calculates the caching utility 

of each cached object (see section 2.5.4). Subsequently, the object with the smallest utility 

value is chosen as the victim if it is not active (no request is accessing it). If the victim object 

turns out to be fully cached, the proxy segments the object as follows. The average access 

duration L avg at current time instance is calculated. It is used as the length of the base 

segment, that is, Lb =  L avg. Note that the value of Lb is fixed once it is determined. The 

object is then segmented uniformly according to Lb- After that, the first segments

are kept in cache, while the rest are evicted (see section 2.5.4). The number of cached 

segments, n, is updated in the access log of the object accordingly. This lazy segmentation 

scheme allows better determination of Lb-
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2 .5 .4  D ifferen tia te d  R e p la c e m e n t P o lic y

The replacement policy is used to re-collect cache space by evicting selected victims. First 

of all, a utility function is defined below to help the victim selection process by identifying 

the least valuable object as the victim.

T r - T ,

F  x x m infl,_____ «a_______ v ’ ±c — Lt ' ^2 4 7 )
n ib

In the above equation, the caching utility value is proportional to

(1) F, which estimates the average number of future accesses;

(2 ) - ■ , which estimates the average duration of future access;

Tr-5..
(3) m in(l, ), which estimates the possibility of future accesses;

• The system compares the Tc — Tr, the time interval between now and the most recent 

access, and the the average time interval between accesses occurring in the

past. If Tc — Tr > / 'r)~7 i, the possibility tha t a new request arrives soon for this object 

is small. Otherwise, it is highly possible that a request is coming soon.

and inversely proportional to

(4) n ib  , which represents the disk space required.

Corresponding to the different situations of admission, when there is not enough space, 

the replacement policy selects the victim with the smallest utility value from different lists 

in the order as designated in section 2.5.1. Then partially cached data  of the victim is 

evicted as follows.

• If the victim is fully cached in the basic list, the object is segmented as described 

in section 2.5.3. The first [7 ^ ]  segments are kept and the remaining segments are
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evicted right after the segmentation is completed. The object is removed from the 

basic list and linked to the premium list.

• If the victim is partially cached in the basic list, the last cached segment of this object 

is evicted. After the eviction, the object will be linked to the premium list if its cached 

data length is less than or equal to its Lthd- Note this object can be selected as victim 

again if no sufficient space is found in this round.

• If the victim is in the premium list, the last cached segment of this object is evicted. 

If no data of this object is cached, it is removed from the premium list.

The utility value of the object is updated after each replacement and this process repeats 

iteratively until the required space is found.

The design of the differentiated replacement policy gives a higher priority for reducing 

proxy jitter, reduces the erroneous decision of the replacement and gives fair chances to the 

replaced segments so tha t they can be cached back into the proxy again by the aggressive 

admission policy if they become popular again.

Note that after an object is fully evicted, the system still keeps its access log. If not, 

once the object is occasionally accessed again, it should be fully cached again. Since media 

objects tend to have diminishing popularities as the time goes on, if the system caches the 

object in full again, this results in an inefficient use of the cache space. Our design enhances 

the resource utilization by avoiding this kind of situation. By setting a large enough time-out 

threshold, the proxy deletes the access logs of unpopular objects eventually.
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2.6 Performance Evaluation

2.6.1 W orkload Summ ary

To evaluate the performance of the Hyper-Proxy system, we conduct extensive simulations 

based on several workloads. Both synthetic workloads and a real workload extracted from 

enterprise media server logs are considered. We designed two synthetic workloads. These 

workloads assume a Zipf-like distribution [4, 38, 62] (Note there are some arguments to this 

distribution in recent research work [7, 9, 52].) with a skew factor 6 for the popularity of 

the media objects and request inter arrival follows the Poisson distribution with a mean 

interval A.

The first synthetic workload simulates accesses to media object in the Web environment 

in which the length of the video varies from short ones to longer ones. We use WEB as the 

name of this workload. The second simulates the Web accesses where clients accesses to 

objects are incomplete, tha t is, a started session terminates before the full media object is 

delivered. We simulate this behavior by designing a partial viewing workload based on the 

WEB workload. We use PART as its name. In this workload, 80% of the sessions terminate 

before 20% of the object is delivered.

For the real workload named as REAL, we use logs from HP Corporate Media Solutions, 

covering the period from April 1 through April 10, 2001. There is a  total of 403 objects, 

and the unique object size accounts to 20 GB. There is a total of 9000 requests during 

this period. Our analysis shows tha t about 83% of the requests only view the objects for 

less than 10 minutes and more than 56% of the requests only view less than 10% of their 

requested objects. About 10% of the requests view the whole objects.
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Table 2.3 lists some characteristics of these workloads. A detailed analysis of the overall 

characteristics of the logs from the same servers covering different time periods can be found 

in the reference [30].

Table 2.3: The workload summary

Workload
Name

Num of 
Request

Num of 
Object

Size
(GB)

A 9 Range
(minute)

Duration
(day)

WEB 15188 400 51 4 0.47 2-120 1
PART 15188 400 51 4 0.47 2-120 1
REAL 9000 403 20 - - 6 - 131 10

2 .6 .2  P er fo rm a n ce  R e su lts

In the simulation experiments, the streaming rate of accessed objects is set randomly in the 

range from half to four times that of the link capacity between the proxy and the server. We 

use the jitter byte ratio to evaluate the quality of the continuous streaming service provided 

by the proxy system. It is defined as the amount of data that is not prefetched in time 

by the proxy normalized by the total bytes demanded by the streaming sessions. Delayed 

prefetching causes potential playback jitte r at the client side. A good proxy system should 

have small jitte r byte ratio. The second metric we use is the delayed startup ratio, which 

is the number of requests tha t are served with a startup  latency normalized by the total 

number of requests. The last metric we use is the byte hit ratio, which is the amount of 

data delivered to the client from the proxy cache normalized by the total bytes the clients 

demand.

We evaluate these three metrics in three designs of a segment-based proxy caching 

system. The Proxy-Hit represents the adaptive-lazy segmentation based proxy caching
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Figure 2.2: WEB: jitter byte ratio and delayed startup ratio

system [23] with active prefetching. This scheme aims at improving the byte hit ratio. The 

Proxy-Startup-Hit represents the improved adaptive-lazy segmentation based proxy caching 

system with active prefetching. This scheme is designed to reduce the delayed startup ratio 

subjective to improving the byte hit ratio. The Proxy-Jitter-Startup-Hit represents our 

proposed Hyper-Proxy system in this study, aiming a t minimizing proxy jitte r subjective to 

minimizing the delayed startup ratio while maintaining a high byte hit ratio.

For the WEB workload, the object encoding rate ranges in the 28Kbps-256Kbps, while 

the available network bandwidth for its uncached segments prefetching is randomly selected 

in the range of half to twice of its encoding rate. Figure 2.2(a) shows that Hyper-Proxy 

always provides the best continuous streaming service to the client while Proxy-Hit system 

which aims at increasing byte hit ratio, performs worst. Specifically, when cache size is 20% 

of total object size, Hyper-Proxy reduces proxy jitte r by more than 50%.

Figure 2.2(b) shows that Hyper-Proxy achieves the lowest delayed startup ratio. Proxy-
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Figure 2.3: WEB: byte hit ratio

Startup-Hit achieves results close to Hyper-Proxy. This is expected as we have analyzed 

in [26].

Figure 2.3 shows Hyper-Proxy achieves a relatively low byte hit ratio, which indicates 

a smaller reduction of network traffic. This is the price to pay for less proxy jitte r and the 

smaller delayed startup ratio as shown in Figure 2.2(a) and (b).
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Figure 2.4: PART: jitter byte ratio and delayed startup ratio
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Figure 2.5: PART: byte hit ratio

In PART, the object encoding rate and the available network bandwidth to prefetch its 

uncached segments are set as in WEB. Similar results are observed for the PART workload 

as shown in Figure 2.4 and Figure 2.5.

As shown on Figure 2.4, when cache size is 20% of total object size, Hyper-Proxy reduces 

proxy jitte r by 50% by giving up less than 5 percentage points in the byte hit ratio. Figure 

2.4(b) shows tha t Proxy-Startup-Hit achieves the best performance in reducing the delayed 

startup ratio. The result is expected since this scheme is specifically designed to prioritize 

reducing the delayed startup ratio. On the other hand, since Hyper-Proxy proactively 

prevents proxy jitte r by keeping more segments, more cache space is used for segments that 

may not be requested due to early termination. This in turn  makes Hyper-Proxy perform 

not well in reducing the delayed startup  ratio.

Not surprisingly, Figure 2.5 the Hyper-Proxy achieves the lowest byte hit ratio when 

comparing with Proxy-Hit and Proxy-Startup-Hit.

In a more realistic setup, we use the REAL workload to evaluate performance. The 

encoding rate for an object in REAL is the same as recorded in the log, while we take
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Figure 2.6: REAL: jitter byte ratio and delayed startup ratio

the client connection link bandwidth as the available bandwidth for its uncached segment 

prefetching.

As shown in Figure 2.6 and Figure 2.7, Hyper Proxy performs best in reducing proxy 

jitter and delayed startup. The performance degradation in byte hit ratio is also acceptable. 

As shown on Figure 2.7, the byte hit ratio achieved by Proxy-Startup-Hit is larger than 

that achieved by Proxy-Hit when the available cache size is greater than  40% of the total 

object size. This is because the cache size is large enough to cache the startup lengths of 

the objects. For this evaluation, it is also interesting tha t the byte hit ratio achieved by 

the Proxy-Hit system is not as high as without considering band widths. Studying different 

situations, we find tha t in our simulation the available bandwidth of the proxy-server link 

is typically much smaller than the object encoding rate, causing a large number of byte 

misses in Proxy-Hit due to request busty, which however would not have happened without 

considering the bandwidth constrain.
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Figure 2.7: REAL: byte hit ratio

2.7 Summary

Proxy has been successfully used for caching text-based content. Using proxy to support 

media delivery is cost-effective, but challenging due to the nature of large media sizes and the 

low-latency and continuous streaming demand. Most existing studies target at improving 

the byte hit ratio tha t is commonly used in standard proxy caching. However, this is not the 

major concern for streaming media delivery, because it does not guarantee the continuous 

media delivery when the to-be-viewed object segments are not cached in the proxy, which 

causes proxy jitter. Our contributions in this study are as follows:

• We have presented an optimization model to guide designs of highly effective media 

proxy caches and ensure a high delivery quality to the clients, which aims at minimiz­

ing proxy jitte r subject to reducing the startup  latency and increasing the byte hit 

ratio.

• We have provided insights into the model by analyzing two pairs of conflicting interests 

and trade-offs inherent in this model.
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• We have proposed to build a new media proxy caching system called Hyper-Proxy. 

This system addresses the interests from the perspectives of both clients and Internet 

resource management with a high priority given to the clients. We have shown that 

the Hyper-Proxy system minimizes the amount of proxy jitte r with a low delayed 

startup ratio and acceptable low network traffic compared with other existing caching 

schemes.
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Chapter 3

Im plem entation and Evaluation of 

a Segm ent-based Stream ing M edia 

Proxy

3.1 Introduction

The delivery of diverse streaming media contents on IP networks in a cost effective manner, 

while maintaining high quality, is challenging but highly desirable for many applications. 

In a Web service environment, a continuous streaming session (often with a duration of 

minutes or hours, compared to milliseconds or seconds for traditional Web pages) keeps 

consuming network bandwidth and disk bandwidth on the hosting server. Multiple concur­

rent streaming sessions can easily exhaust the available network bandwidth and overload 

the media content server. Placing multimedia objects closer to clients is an effective solution 

that will relieve the network bottleneck and reduce the load on the media content server.

Research efforts have been made to extend existing proxy cache methods of static Web 

pages to the case of streaming media objects. Streaming media objects have some features

60
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that makes caching promising: the objects are generally static and do not change for a 

long time. Moreover, they show some degree of locality of reference. However, as stated in 

Chapter 2, proxy caching of multimedia objects is also challenging due to the typical large 

size and the low-latency and continuous streaming demand of media objects.

To handle these problems, several partial caching methods have been proposed, which 

divide media objects into smaller units, more feasible for caching. There are two types 

of partial caching approaches according to the object segmentation directions. The first 

divides objects in the time domain [94, 104, 117], which we call segment-based approaches. 

The second is to divide objects in the media quality domain [34, 70, 92, 93].

Although some algorithmic solutions and prototypes are available, today the practical 

usage and deployment of such systems are rare. Mocha [95] and QBIX [100] are prototype 

systems that divide media objects along the quality domain. Mocha is based on layered 

encoded streams, while QBIX tries to leverage MPEG4 and MPEG7 standards to do quality 

adaptation. However, they have not been widely deployed since they require extensive 

support from Internet Service Providers. For example, for Mocha, there are almost no 

layered-encoded streams provided online today. QBIX requires an online transcoding proxy, 

and does not work for videos in formats other than MPEG4 and MPEG7. Moreover, the 

quality of the media objects served in these systems is not controlled by the client, but by 

the service provider. Thus, they may not be client friendly.

When dividing media objects in the time domain (a segment-based approach), the afore­

mentioned problems do not exist. The media with the original quality can always be served 

to the client. However, there are a number of technical problems. First, multimedia objects 

are stored in container files, such as MP4 [71]. The file contains both audio and video
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tracks. In addition, it also contains indices to audio and video media packets, and may 

contain hint tracks with meta information. The flexibility of positioning these elements in 

the container file makes media aware segmentation difficult for the proxy.

Second, media content is usually streamed using the RTF protocol, running on top of 

UDP. In practice, UDP traffic is likely to be blocked by firewalls at the client side due to 

security considerations. Also, Internet wide UDP-based communication raises reliability and 

fairness concerns. UDP packets are often subject to dropping a t intermediate routers and 

switches. On the other hand, large amounts of unregulated UDP traffic unfairly throttles 

TCP traffic [61]. These concerns make it difficult to deploy the system based on UDP 

connecting the proxy and the server [13].

Finally, after the object is segmented, the coordination between the caching of discrete 

object segments and the streaming of continuous media data is challenging. For example, 

although different online prefetching algorithms have been proposed to provide continuous 

streaming to clients, few measurement results in Internet streaming have been reported. 

Precise prefetching techniques [24] can provide continuous streaming with maximum re­

source utilization. However, system support is needed to accurately estimate the available 

bandwidth of the proxy -  content-server link at runtime.

We have designed and implemented a segment-based proxy, named Hyper-Proxy, to 

address these problems. It leverages existing Internet infrastructure and is able to serve 

and cache media objects in time-domain segments. As shown in Figure 3.1, the deployment 

of Hyper-Proxy does not require modifications on either the server side or the client side. 

This design takes advantage of the prevalence of HTTP, and eliminates most of the concerns 

about UDP based communications, especially when the proxy is placed inside the firewall.
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Figure 3.1: Organization and protocols used in Hyper-Proxy system

The Hyper-Proxy system uses a segment-aware file 1 /0  system tha t enables automatic 

segmentation and intelligent prefetching techniques to guarantee continuous streaming. 

This allows Hyper-Proxy to transparently handle the complexity of media formats and 

to support continuous delivery demands. It has the following merits:

1. Hyper-Proxy handles client requests for streaming media objects via the standard 

RTSP [102] and RTF [101] protocols. It communicates with the content-server using 

the HTTP protocol. This design allows a regular Web server to serve streaming 

content, as well as regular Web documents. Thus, the existing Internet infrastructure 

is fully leveraged without any extra support.

2. A client request is processed and divided into multiple sub-requests. Each sub-request 

asks for only a small part of the whole media object. The sequence of sub-requests is 

stopped whenever the client term inates its session, which subsequently term inates the
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data transfer. This design introduces a low startup latency while providing efficient 

bandwidth utilization.

3. Prefetching techniques are implemented to assist high quality continuous streaming. 

Based on dynamically detected available bandwidths of the proxy-server link, active 

prefetching techniques are used to dynamically prefetch the data likely to be accessed 

by the client.

4. The data contained in each segment is stored as a distinct object. The existing 

popularity based replacement policy is leveraged from the traditional Web proxy, and 

applied on these segments. It is a global, segment-based replacement policy instead 

of a media object-based one, which enables better utilization of the cache space.

Actual implementation of Hyper-Proxy is evaluated under various conditions. The effect 

of different segment sizes on streaming performance is evaluated and compared with the 

performance of a full object caching approach. Different proxy-to-server network proximity 

and available bandwidth scenarios are also considered. We tested its cache performance 

based on an actual workload. Our extensive experimental results show tha t Hyper-Proxy 

consistently provides high quality streaming delivery to clients, with reduced startup latency 

and more efficient cache utilization.

The rest of this chapter is organized as follows. We review related work in Section 3.2. 

We present the design and implementation of Hyper-Proxy in Section 3.3. We evaluate 

the system performance through extensive experiments in Section 3.4. We summarize the 

chapter in Section 3.5.
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3.2 Related Work

65

The research on proxy caching of streaming media content has received much attention 

lately. Early efforts, e.g. Middleman [5], which has studied cluster of proxies for streaming 

media delivery, have considered little on one im portant feature of streaming media accessing. 

It is found tha t continuous media objects such as video or music clips are often partially 

accessed. Based on this observation, partial caching approaches have been proposed to 

reduce the cache space requirement. The basic strategy is to cache segments of objects 

that are divided in the viewing time domain. Typical examples include prefix caching [104], 

uniform segmentation [94], exponential segmentation [117]. Prefix caching always caches 

the prefix of the objects to minimize the startup latency. The optimal prefix length can be 

calculated according to [111]. Its protocol consideration as well as partial sequence caching 

were studied in [51]. In uniform segmentation, objects are cached in uniform-size segments, 

while in exponential segmentation, the segment size doubles along the viewing direction. 

Considering limited resources available from a single cache, the Rcache [18] considers the 

usage of multiple proxies, focusing on the memory and disk utilization. These strategies 

focus on protocol design or benefit analysis based on artificial workloads. Recently, authors 

in [123] proposed a flexible and scalable proxy testbed to support a wide and extensible set 

of next-generation proxy streaming services. Our work is based on the uniform segmentation 

caching strategy with the focus on real system implementation and evaluation of the system 

in real networking environments using real workloads.

The partial caching strategy can be extended to the quality domain. Layered caching 

techniques [92, 93] have demonstrated efficient usage of cache space by considering different
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QoS characteristics of client devices or connectivities. A comparison with multiple version 

caching is studied in [70] while a model of layered-encoded object distribution is studied 

in [6 8 ]. In [79], the proposed approach attem pts to select groups of consecutive frames by the 

selective caching algorithm, while in [82], the algorithm may select groups of non-consecutive 

frames for caching in the proxy. A different idea is proposed in video staging [124], in which 

a portion of bits from the video frames whose size is larger than a predetermined threshold 

is cut off and prefetched to the proxy a priori to reduce the bandwidth on the server proxy 

channel. Recently, a fine grained, network aware and media adaptive rate control scheme 

is used in caching of scalable streaming content [76]. Most of partial caching schemes in 

quality domain require layered encoded objects or additional support from the proxy or 

client. The work presented in this chapter does not have these requirements.

3.3 Im plem entation of H yper-Proxy

Figure 3.2 shows the architecture of a Hyper-Proxy, as well as its request handling. The 

Hyper-Proxy is composed of four main components: a streaming engine tha t interfaces 

with the client, a segmentation-enabled cache engine tha t interfaces with content servers, 

a Local Content Manager and Scheduler (LCMS) module tha t coordinates the streaming 

engine and the cache engine, and a high speed disk tha t provides a fast data-path via the 

local file system.

3 .3 .1  S trea m in g  E n g in e

The streaming engine is a multi-threaded media server. It is responsible for providing an 

interface to the client, which is described in detail in [97]. As shown in Figure 3.2, it receives
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Figure 3.2: Internal design of the Hyper-Proxy system: A client request is divided into n sub­
requests with different ranges, R] to i?” , requesting different content segments, D\ to D". The 
Local Content Manager and Scheduler controls when to send the next sub-request. The cache 
engine returns segment meta data [M] to M”) to the Local Content Manager and Scheduler, and 
caches the segments D\ to D" on the disk.

a client request for a RTSP URL and converts it to multiple segment requests, R] . . .  R™, 

that are sent to the LCMS. It uses the m eta-data information, M ] . . .  M ” , returned by the 

cache engine through the LCMS to access the raw data segments on the disk.

A typical client request for foo.mp4 is as follows.

RTSP: //s tre a m in g -p ro x y :p o r t l / / c o n te n t - s e r v e r :p o r t2 / f o o . mp4 

In this URL, RTSP denotes the protocol used. The second “/ / ” is used to specify the 

content server and the URL In the streaming engine, such a client request is normally 

processed with the following four messages sent to the proxy in the order.

• D ESCR IBE: First, a DESCRIBE message is sent. The DESCRIBE retrieves the 

description of the media object identified by the URL. The description contains the
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information about the presentation format, the static and temporal properties, etc. 

as specified in Session Description Protocol (SDP) [55].

• SETU P: After the SDP information of the requested object is fetched and processed 

correctly, the SETUP message is sent to notify the proxy to allocate corresponding 

resources for a stream and to create a RTSP session for the request. Note that the 

RTSP session for a stream includes both audio and video streams.

• PLAY: If the SETUP is successful, the PLAY message notifies the proxy to start 

data transmission for a stream on the channels allocated via SETUP.

• T E A R D O W N : When the streaming is complete or the client terminates the request, 

the TEARDOWN message is sent. Basically, it frees resources associated with the 

stream and the RTSP session is eliminated.

As shown in Figure 3.2, the streaming engine reads data segments, D \ . . .  D", from 

the disk to serve clients after the PLA Y  is received and processed. However, there is a 

problem: a randomly chosen segment length breaks the object into pieces, thus creating 

segments tha t are likely to include an incomplete media packet as shown on Figure 3.3, 

where a MP4 file is divided into incomplete pieces. If this incomplete packet is sent to the 

client, the client player would have to use error concealment or it may crash. One solution 

to this problem is to always segment the object on a packet boundary, which requires 

Hyper-Proxy to have packet boundary knowledge before segmentation can be done. This 

information could be obtained by parsing the complete media file, or by using a hint track, 

if available. However, the hint track data can be dispersed through the media file, so 

in either case, the whole file may have to be downloaded. A better solution is to allow
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segment 1,

V -p V -HSDP A -P A -H V -P A -P

segment 2

Figure 3.3: High level abstraction of an MP4 file: SDP represents the SDP information. V-P 
represents video data packet while A-P represents audio-data packet. A-H represents audio hint 
track information, while V-H represents video hint track information. The media data packets are 
accessed from the pointers of SDP and hint track information in the order.

random segment boundaries, but to always feed a complete data  packet to the client. In 

the Hyper-Proxy system, a segment-aware file I/O  system is implemented to support this 

requirement. It automatically requests the appropriate segment when reading or seeking 

beyond the boundaries of the current segment. The LCMS tries to ensure tha t the next 

segment is always available in the cache.

3 .3 .2  L ocal C o n te n t M an ager  an d  S ch ed u ler

The Local Content Manager and Scheduler (LCMS) coordinates the streaming engine and 

the segmentation-enabled cache engine. It converts the sub-requests, e.g., R ] . . .R ^ ,  to 

corresponding HTTP requests (with Range headers) and forwards them  to the cache en­

gine. It returns the appropriate cache m eta-data M ] . . .  M ” from the proxy replies to the 

streaming engine. More importantly, the LCMS schedules segment prefetching. Prefetching 

is necessary because segment-based proxy caching is a partial caching solution, in which 

only a part of the object is cached in the proxy while a client may access an object to a
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segment which is not cached in the system. To guarantee continuous media delivery, each 

segment should be available locally before the streaming engine tries to read and stream to 

the client. Otherwise, the client can experience playback jitter.

We have implemented multiple segment based prefetching modes and provided analytical 

models in [24].

In this study, the following modes are implemented and experimentally evaluated:

• OnDemand: In this mode, no prefetching is implemented. The succeeding segment 

is fetched when it is needed by the streaming engine. This mode is simple and works 

fine when the available bandwidth of HTTP channel is large enough. Otherwise, 

streaming can be interrupted due to the delay in fetching the next segment from the 

server. Some of these effects can be partially hidden by providing buffering in the 

streaming engine.

• Window: In this mode, the sub-request for the next uncached segment is always 

issued when the client starts to access the current one. Thus it provides aggressive 

prefetching with a look-ahead window size of one segment.

• Half: Intuitively, the window size is adjustable. We also implemented a Half mode, 

in which the sub-request for the next uncached segment is issued after the server has 

reached the middle of the current one. Thus, in this mode, the window size is half a 

segment length.

• Active: Active prefetching is implemented to dynamically decide when to prefetch 

an uncached segment according to the real-time band widths. It is the most precise 

online prefetching technique according to [24] and is implemented with the aid of
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Packet CAPture (PCAP) library [2]. W ith the API provided by PCAP, we period­

ically estimate the available network bandwidth between the Hyper-Proxy and the 

content-server. The prefetch schedule is then computed using the media encoding 

rate extracted from the header of the media file, which corresponds to the desired 

data transmission rate between Hyper-Proxy and the Client.

3 .3 .3  S eg m en ta tio n -E n a b led  C ach e E n g in e

The segmentation-enabled cache engine handles the sub-requests from the LCMS. In a case 

of a cache MISS, the cache engine gets the data for the sub-request from the content-server 

(or other peering proxies). The cache stores data D ” (data for segment n) on the disk, as 

well as constructing and sending a reply with meta data M ” only to the LCMS. The meta 

data includes the name and the location of the file containing the data for this sub-request 

on the local disk. In a case of a cache HIT, the cache directly constructs and sends the M " 

meta-data to the LCMS.

Currently, Hyper-Proxy uses a modified version of Squid2.3 (STABLE4) as the cache 

engine. Segmentation support is provided through the Range header in HTTP requests. 

Squid identifies objects in its cache using the MD5 hash of the request URL. Hence, in the 

original version of Squid, different ranges of a URL would have the same MD5 keys, and 

H TTP requests tha t include the Range header would be considered non-cachable. To make 

these requests cachable, our segmentation-enabled version re-writes the URL internally. For 

example, a request for: 

h t t p : //www.fo o .c o m /b a r.mp4 

with
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Range=123-890

can be re-written as:

h t t p : //www. f  o o . com/bar .mp4_123_890.

This guarantees that different ranges of the same object generate different MD5 keys. This 

mechanism enables the caching of different segments of a media object.

The re-written URL is used internally in the proxy to identify different range requests 

for the same object. If the corresponding segment is not cached, the request is forwarded 

to the content-server (or peering proxies). However, the content-server does not contain 

an object named as b a r .mp4-123-890, but only b a r ,mp4. Thus, the request restoring is 

necessary here. Since the restored request is an HTTP request, the content-server can be a 

standard server, such as h ttpd [78]. Note we use special methods in the proxy for streaming 

segment fetching as described in section 3.3.4. Thus, the method with this URL will be 

replaced to standard GET (Note if the range request is forwarded to peers, the method does 

not need the change.). Thus, the request will be re-written as follows:

GET www.foo.com/bar.mp4 HTTP/1.0

range=123-890

and sent to the content-server.

Since the re-writing of the URL provides the opportunity to cache the data for different 

segments of the same object, segment caching is enforced by saving the partial data  on disk 

without violating the HTTP protocol. In the implementation, an HTTP reply status of 

PARTIAL-CONTENT (206) indicates the reply corresponds to a range request. If the reply 

is checked to match the range request for a segment, it is stored locally, and an additional 

status (HTTP_PARTIAL-CONTENT_OK) is added to the reply to the client. This status can only
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be used by the methods (PREFETCH, LOCATEFILE, and LOCK) designed for streaming 

as to be stated in the next section.

Popularity based replacement policy has been found to be the most efficient for the mul­

timedia object caching. Hyper-Proxy leverages the existing popularity based replacement 

policy in Squid.

Additionally, cooperative proxies have been used for caching static Web objects. It is 

even more desirable for caching large streaming media objects. Hyper-Proxy also lever­

ages the existing cooperative functions in Squid. When requesting segments from neigh­

boring caches, the internally re-written URL is restored to the original version, with the 

Range header added. This allows Hyper-Proxy to interact with regular Web-proxies without 

streaming capability, as well as other streaming-enabled Squid proxies.

3 .3 .4  Fast D a ta  P a th

In the early days, storage systems for media systems have been studied in [10, 107, 115]. 

In our system, the shared local file-system provides a fast data path  between segmentation- 

enabled cache engine and the streaming engine. Traditionally, Squid transfers incoming 

data to an HTTP client over a network. For large media data files, it is more efficient to 

directly share the part of file system used as a data cache by Squid. In the Hyper-Proxy 

system, a set of new methods, PREFETCH, LOCATEFILE and LOCK, was added to Squid 

for this purpose:

1. PREFETCH is implemented as a non-blocking version of the HTTP GET method. 

Whenever a segment is required, a request with a PREFETCH  method and the corre­

sponding Range header is sent to the proxy. The proxy checks if the requested segment
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is cached or not. If it is cached, a HIT is returned. Otherwise, a MISS is returned 

and the corresponding request is re-written as a H TTP GET and forwarded to the 

content-server or the peer simultaneously. The proxy will store the reply containing 

the requested segment data on its local disk for future requests.

2. LOCATEFILE is implemented as a blocking method. The LCMS only invokes this 

method after a PREFETCH  request returns a HIT. It returns the file location of the 

requested segment in the cache file structure maintained by Squid. It blocks until the 

entire data for a range request has been written to disk.

3. LOCK is used before the streaming engine starts to stream a segment to the client. 

Since the segment is cached and the cache is managed by Squid, the replacement 

policy in Squid automatically starts the replacement when the available cache space 

is below some threshold. It does not know whether or not the to-be-replaced segment 

is being used by the streaming engine. Thus, before reading the data of a segment for 

streaming, the LCMS issues a request with a LOCK method. This ensures that the 

to-be-read file will not be a candidate for eviction. After segment access is complete, 

the LOCK is released.

The non-blocking PREFETCH  method and the blocking LOCATEFILE method effec­

tively split the original, blocking GET method into a two-phase protocol. This is critical to 

the system performance when Hyper-Proxy needs to handle a large number of concurrent 

requests or when the segment size is large. Multiple PREFETCH  methods for different 

segments can be issued without locking up the LCMS. The design of LOCK provides a tool 

to coordinate the streaming engine and cache engine.
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3.4 Performance Evaluation

In this section, we describe the test setup and evaluation metrics that we use in experiments. 

We then present detailed experimental results, including a full caching approach to provide 

baseline values. Four case studies of Hyper-Proxy are presented then.

3 .4 .1  T est S e tu p

We run tests in real network settings using actual implementation of the content-server, 

Hyper-Proxy, and media client. We use Apache Web Server (version 2.0.45 with HTTP 1.1) 

as the content-server. It is hosted on a HP Netserver lplOOOr, with a 1 GHz Pentium III 

Linux PC platform. The Hyper-Proxy system runs on a HP workstation x4000 with two 

dual 2 GHz Pentium III Xeon Linux PC, with 1 GB memory. The media client used for 

the experiments is a dummy loader that logs incoming RTP and RTSP packets.

For all tests, the network connection between Hyper-Proxy and the client machine is a 

switched 100 Mbps Ethernet. For network conditions to the content-server, three setting 

are used, namely local, remote and controlled environments. The local environment is set 

up with both the content-server and the Hyper-Proxy system connected via a switched 

100 Mbps Ethernet within HP Labs (Palo Alto, CA USA). The remote environment is 

constructed with the Hyper-Proxy system and content-server at trans-Pacific sites, where 

Hyper-Proxy is in HP Labs while the content-server is located in Takaido, Japan. The 

bottleneck bandwidth for the transoceanic link is approximately 10 Mbps. To study the 

effectiveness of the four prefetching methods in different network settings, we also construct 

a controlled environment in which the link capacity between the proxy and the content-
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server can vary. We use traffic control support in the Linux kernel via the tc(8) [3] utility 

to establish bottleneck bandwidths.

3 .4 .2  E v a lu a tio n  M etr ics

We evaluate two end-to-end statistics tha t are especially relevant to streaming media deliv­

ery, client perceived startup latency and client perceived jitter. Startup latency is measured 

as the interval between the client sending a request for a media stream (the RTSP DE­

SCRIBE method), and the arrival of the first media packet. The client jitter is the average 

of the values in the Receiver Report RTCP messages, calculated based on the algorithm in 

Appendix A .8  of RFC 1889 [101]. It represents the statistical variance of the media packet 

inter-arrival time.

To better evaluate different prefetching methods, we also record two statistics specific 

to Hyper-Proxy. We instrument the proxy system to measure time spent in handling each 

segment request. It is measured as the interval between the time when a segment is requested 

and the time the location of the segment in the cache storage is returned to the proxy. Note 

tha t every request for a segment results in a Squid handshake (to check whether it is 

in cache), while an uncached segment causes an HTTP transfer from the content-server. 

This measurement reveals whether the proxy can fetch segments in time in the middle of 

streaming sessions.

3 .4 .3  E x p e r im e n ta l R e su lts

We first perform experiments using a full object caching approach. The results provide a 

basis for comparisons with our segment-based approach. Further, to study the performance
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of our Hyper-Proxy, we conduct experiments in four different aspects. We first consider 

the effects of using different segment sizes in Hyper-Proxy, when the number of concurrent 

clients increases. Then we evaluate the performance difference when the content-server 

sits at different network distances from Hyper-Proxy. We further evaluate the effectiveness 

of each prefetching method under different Hyper-Proxy -  content-server link bandwidth 

capacities. For each of these experiments, the cache size is set large enough to store all the 

fetched content, and each client accesses a unique object. Moreover, the clients play clips in 

their entirety. Since there is no segment re-use across clients, this represents the worst case 

behavior for a cache engine. We finally validate our results with a trace driven experiment, 

using real enterprise access patterns. These traces include multiple clients accessing the 

same clip, and clients that do early termination.

3.4.3.1 Full Caching A pproach
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—  Full Caching

2000  :

0) 1500
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Figure 3.4: Performance of full caching approach: startup latency and miss processing

In the full caching approach, media objects are not segmented, but fetched in their
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entirety. In this experiment the client, Hyper-Proxy and content- server are located in the 

same local network. Experiments are performed on different video clips of length 1 , 2, 5, 

10, 20, 40 minutes, encoded at 112 Kbps. The cache size is set large enough so tha t there 

are no capacity misses, hence no replacement is necessary. The results axe averaged over 10 

runs.

Figure 3.4(a) shows tha t the startup latency perceived by the client, as expected, in­

creases linearly with the video size. Similar trends are reflected in performance in terms of 

the average time to handle a miss as shown on Figure 3.4(b).
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■0 300

250

150

E 100

40
Video Length (minute)

Figure 3.5: Performance of full caching approach: handshake

Figure 3.5 shows tha t the handshake time in the proxy for the full caching approach also 

increases linearly with the video size. Note it is substantially smaller than  the corresponding 

miss process time. In the full proxy caching approach, each media object is only fetched 

once from the content-server at the beginning, after tha t all requests hit in the proxy, thus 

the client perceived jitte r is very negligible in this situation.
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3.4.3.2 Effect o f Segm ent Size

In the previous section, where each object is accessed and stored in entirety, we have learned 

tha t the performance of the full caching approach depends on the media object length and 

degrades almost linearly with the increase of the object length. In Hyper-Proxy, objects are 

segmented and managed as smaller units. The next experiment tests the effect of segment 

size on the Hyper-Proxy performance.

In this set of experiments, increasing number of concurrent clients request unique media 

objects. The media objects are all copies of the same piece of content (the 2 minute video 

clip) with different names. This effectively disables the file buffer cache in the Operating 

System. Moreover, the media data served to each client is identical, which allows us to 

present the data as averages across each client session. The client request inter-arrival 

interval is 1 second. The Squid cache file system is re-initialized before each experiment. 

We evaluate the performance by running tests with Hyper-Proxy using different segment 

sizes for segment-based caching. These experiments are carried out in the local environment 

using the OnDemand mode. Thus, there is no explicit prefetching, so we can isolate the 

effect of the segment size.

Figure 3.6 (a) shows the client perceived startup  latency when the segment size varies 

from 100 KB to 500 KB and when the segment size is large enough to include the entire 

object. Clearly, the startup latency increases when the base segment size increases since 

Hyper-Proxy waits until the first segment is fetched from the content-server before starting 

streaming to the client. It is also expected tha t the startup  latency increases when the 

number of concurrent clients increases, since this puts a load on the streaming server.
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Figure 3.6: Performance study with different segment size

Compared to the startup latency when the entire object is fetched as one segment, the 

startup  latency in Hyper-Proxy is only about 30% to 60%. It is also found that when 

segment size increases beyond 300 KB, the client perceived startup  latency increases faster, 

while the effect is less pronounced when the segment size varies in the range of 100 KB to 

300 KB. The startup  latency is proportionally larger for clients in the remote environment.

Figure 3.6 (b) shows the client perceived jitter. It is obvious that jitte r is the smallest 

when segment size is large enough to include the entire object. Otherwise, additional jitte r
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may be perceived due to the on-demand nature of segment based fetching by Hyper-Proxy. 

We show in Figure 3.6 (c) and (d) the average time consumed for the proxy to handle a MISS 

and a Squid handshake, respectively. It is clear tha t the average consumed time to handle 

both a MISS and a handshake increases with the segment size. Comparing Figure 3.6 (a) 

and (c), we note tha t the client perceived startup latency is usually larger than the time 

to handle a cache MISS- This is because the startup latency includes the time to setup the 

streaming session in addition to the time of fetching the first segment.

This set of experiments shows tha t Hyper-Proxy outperforms the full caching approach 

in terms of the client perceived startup latency and the average time to handle a miss, while 

it causes comparable amount of playback jitte r even without prefetching support.

3.4.3.3 Effect o f P roxim ity
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Figure 3.7: Client startup latency for local and remote

Another factor tha t affects the scalability of Hyper-Proxy is the proximity: the distance 

between the content-server and Hyper-Proxy. We evaluate the performance by running

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. IM PLEM ENTATION AND  EVALUATIO N 82

tests with the content-server located in the local environment as well as in the remote 

environment. Segment size of 100 KB is used for this set of experiments. For fairness we 

run the Local-Ondemand again with others. Its results slightly differ from those in the 

previous subsection.
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Figure 3.8: Time to handle a MISS for local and remote

Figure 3.7 (a) shows the startup latency for local accesses, while Figure 3.7 (b) shows 

this metric for remote accesses. In the local case, it varies from 96 ms to 169 ms, while 

for remote accesses, the startup latency is much larger, with a much bigger dynamic range, 

from 2 s to 11 s. The startup latency in both environments shows only a small variation 

across different prefetching methods. This is an intuitive result, since the value would be 

dominated by the access time for the first segment accessed. It is also seen tha t the startup  

latency generally increases when there are more concurrent requests. The results indicate 

tha t more concurrent requests can be served in local networks, and tha t more concurrent 

requests can lead to a longer startup latency in wide area networks. This figure also shows 

tha t our design and implementation of Hyper-Proxy can support the delivery of media
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objects with reasonable startup latency in both intranet and Internet environments.

Another im portant aspect of streaming media delivery is whether the proxy can provide 

rigorous continuous streaming. Figures 3.8 (a) and (b) show the average time that the proxy 

consumes to process a cache MISS in each environment. The average time to handle a MISS 

in the local testing environment is less than 23 ms. In a wide area network, the average 

consumed time can reach 6.5 seconds. The results justify that prefetching for content from 

remote content servers is necessary, since such a large delay may potentially cause playback 

jitter at the client side.
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Figure 3.9: Time to handle a handshake for local and remote

Figures 3.9 (a) and (b) show the average time for the proxy to handle a Squid hand­

shake, whether a HIT or a MISS, for the local and remote environment, respectively. A 

good prefetching method will have a higher percentage of HIT cases, which leads to a cor­

respondingly smaller average time. Comparing Figure 3.9 with Figure 3.8, we can see that 

a handshake consumes much less time than a MISS on average. Note tha t QnDemand does 

not do any prefetching. It shows some HIT cases, since the file format parser might request
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the same segment multiple times, e.g., first for parsing the hint track, and then for reading 

media data. As shown in the remote case of Figure 3.9, QnDemand always consumes more 

Squid handshake time and other prefetching methods reduce the Squid handshake time 

somewhat. It seems tha t a simple Window mode performs the best in this set of tests. We 

have shown in [25] tha t Active should perform best if an accurate real-time measurement 

of the proxy-server link bandwidth is in place. Our current implementation of Active may 

have been limited by PC A P’s capability.
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Figure 3.10: Client perceived jitter for local and remote

Figures 3.10 (a) and (b) show the client perceived jitter in both local and remote envi­

ronments. In both cases, the absolute client perceived jitte r is small, which indicates that 

our Hyper-Proxy can successfully serve a large number of clients with rigorous continuous 

streaming demand. Note tha t the client jitte r tends to increase when more concurrent 

requests are served, especially in the remote environment. This indicates that accurate 

prefetching is very im portant especially when the Hyper-Proxy -  content-server link band­

width resource becomes scarce. Active prefetching achieves better performance as shown in
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the remote case.
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3.4.3.4 P refetch ing Effectiveness

The preceding experiments have evaluated the system performance in local and remote 

network settings. To further study the effectiveness of the different prefetching methods in 

different network settings, we test the system in a controlled environment, as described in 

Section 3.4.1. For each bandwidth setting, a video clip with an encoding rate of 75 Kbps is 

served from the content-server to the client through Hyper-Proxy. We collect the Squid 

handshake time and client jitter statistics for each prefetching method. Note tha t all 

prefetching methods except Active schedule prefetching regardless of the link bandwidth 

(in this test, the bottleneck link bandwidth).
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Figure 3.11: Squid handshake time and client perceived jitter

As shown in Figure 3.11 (a) and (b), both the Squid handshake time and the client 

perceived jitte r decrease when the bandwidth increases. Note that the Squid handshake time 

here is generally much longer than the result in the proximity study since the bottleneck
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link bandwidth is much smaller. The Active prefetching can be seen to have the shortest 

Squid handshake time, especially when the link bandwidth is low. The differences in client 

perceived jitte r are less obvious although Active and Window methods perform better with 

a low bottleneck link bandwidth.

3.4.3.5 C ache Efficiency Study U sing a R eal W orkload

Even though we use segmentation-enabled Squid as the cache engine in our Hyper-Proxy, it 

is im portant to evaluate its performance on cache efficiency in conjunction with prefetching 

methods. For this purpose, we use a trace extracted from real enterprise media server logs 

to drive a 24-hour run of the actual system in the local environment. These traces include 

clients tha t access the same clip, and clients tha t term inate a clip prematurely, or start 

playing a clip from the middle. Thus we would expect better caching behavior, but also 

wasted bandwidth consumed due to segments tha t are pre-fetched and never used.

The trace contains 16,238 requests with the access duration varies from 1 to 50 minutes. 

In these 16,238 requests, 92% of them are demanding the same video clip, most of which are 

with premature terminations. Thus, the caching performance is expected to be very high. 

We select such a workload because we also want to test whether the system can survive a 

large number of concurrent requests in a long time period. There are a total of 70.775 GB 

data accessed. The unique object size amounts to 5.358 GB. Based on the file length and 

streaming rate of the objects requested, we have created matching video clips in MP4 file 

format. Specifically, a content pool is created as follows using the parameters as shown in 

Table 3.1. As shown on the table, video objects are created with 6  b itrate (28 - 256 Kbps) 

versions, each with a maximum of 7 possible file length (1 - 100 minute). Each created
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object is replicated multiple times so tha t they can be accessed as unique objects.

Table 3.1: The content and access parameters of real workload

Rate (Kbps) File length (minute) Max access duration (minute)
28 1, 10, 20, 50 1

56 50 1 2

1 1 2 1, 2 , 5, 10, 20, 50 14
156 1, 20, 50 14
180 2 , 5, 10, 20, 50, 100 50
256 1, 2, 5, 10, 20, 50, 100 25

Based on this real enterprise media access trace, we first run the trace through the 

Hyper-Proxy system to evaluate the caching performance in terms of the byte hit ratio. 

Then we use a cache simulator to evaluate these segment-based caching strategies with 

various prefetching methods and different segment sizes. We use simulator since some 

metrics, such as false prefetch, is very difficult to measure in the real runs.

m  OnDemand
f ~ l  Window

OnDemand
Window
Half
Active

Cache Size (Percentage of Total Object Size) C ache Size (Percentage of Unique Object Size)

(a) (b)

Figure 3.12: Byte hit ratio and server traffic for segment-based caching strategies

Figure 3.12 (a) shows the byte hit ratio achieved by Hyper-Proxy with different prefetch­

ing methods with the increase of the cache size when the segment size is set to 100 KB. It
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is expected tha t Active achieves the best byte hit ratio since active prefetching can always 

prefetch uncached segments in time. The byte hit ratio is very high even with a small cache 

space. This is due to the high access locality in this 24 hour trace as we have mentioned. In 

addition, some segments, such as segments containing hint track information, are repeat­

edly accessed in segment-based caching approaches to increase the byte hit ratio. Except 

for the repeatedly accessed segments, some prefetched segments may not actually be used 

by the clients due to early terminations, thus the byte hit ratio cannot precisely reflect the 

server traffic reduction. Figure 3.12 (b) shows the corresponding traffic reduction based on 

simulations for segment-based caching with different prefetching methods when the segment 

size is of 100 KB. Figure 3.12 (b) shows tha t OnDemand generates the least server traffic 

since it does not do any prefetch; Half and Window methods, with increased aggressiveness 

in prefetching, generate more and more server traffic. This is a small penalty Hyper-Proxy 

pays to improve continuous streaming of media content. Active prefetching is not simulated 

here since it is difficult to simulate a dynamic estimation of the channel bandwidth between 

content-server and Hyper-Proxy. The server traffic generated by Active prefetching would 

depend on the time-varying nature of the channel bandwidth.

However, not all prefetched segments will be used by the clients. We define false prefetch 

as the size of the segments tha t are prefetched and cached but have never been streamed 

to clients before they are evicted. Figure 3.13 shows for this 24 hour trace, Half method 

produces about 50% of the false prefetches compared to Window. Thus, for real traces, 

the Window method is too aggressive, since many clients term inate clips early (i.e., before 

accessing half of a segment). Also, since the prefetching granularity is segment, smaller 

segment size produces less false prefetch. We study these in detail in [98].
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Figure 3.13: False prefetch by Window and Half

3.5 Summary

Recent years have seen a large amount of research work in segment-based proxy caching 

for streaming media delivery. However, its implementation and deployment are hindered 

by several factors. One is the complexity of media file formats. The other concern comes 

from UDP, which is the base for RTP, the base for real streaming. Additionally, system 

support is demanded to guarantee continuous streaming. We have designed, implemented, 

and tested tha t it is possible to push the streaming capability to the edge of the network 

and couple it with a caching proxy to efficiently serve a large number of clients. This 

design fundamentally frees the content provider from serving constraints. Specifically, our 

contributions are:

i. We have designed and implemented a segment-based caching proxy that supports 

streaming of multimedia content with rigorous latency and continuity constraints.

ii. The design and implementation leverage the existing Internet infrastructure. The
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content-server needs only to be a simple Web server, yet its contents are served through 

Hyper-Proxy in a scalable and efficient fashion.

iii. We have thoroughly evaluated different prefetching methods which are closely coupled 

with the segment-based caching. We have shown that segment-based access inherently 

reduces the client perceived startup latency and various prefetching methods can 

provide continuous streaming in various network conditions.

iv. We have tested the full system with real network conditions and with a real workload. 

We believe this is the first work of this kind.

Currently, the Hyper-Proxy system is deployed at a site for large scale deployment tests 

and at many sites of a large enterprise for one-year trial stage.
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Chapter 4

Shared Running Buffers (SRB) 

Based Proxy Caching Streaming 

Sessions

4.1 Introduction

Currently the basic infrastructure of the Internet content delivery network is a server-proxy- 

client system. In this system, the server delivers the content to the client through a proxy. 

The proxy can choose to cache the object so tha t subsequent requests to the same object can 

be served directly from the proxy without contacting the server. But the high performance 

and high quality delivery demand of the vast amount of streaming media contents presents 

several challenges to this infrastructure since the existing proxy cannot efficiently delivery 

streaming media data due to two facts. On one hand, the size of a media object is normally 

much larger than tha t of a Web object, making it infeasible to cache the entirety of the 

media object. On the other hand, the delivery of streaming media objects is constrained 

by the real-time requirements from clients as stated in previous chapters. W ithout the

91
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proxy caching assisting the streaming media delivery, a lot of resources have to be reserved 

for delivering the streaming media data  to a client. In practice, even a relatively small 

number of clients can overload a media server, creating bottlenecks by demanding high disk 

bandwidth on the server and high network bandwidth to the clients.

To address these challenges, researchers have proposed different methods to utilize the 

available resources in the proxy for caching streaming media objects. The caching ap­

proaches [32, 43, 51, 65, 74, 81, 94, 104, 117] always utilize the storage (mainly the disk) in 

the proxy to cache either a prefix or a certain number of segments of a media object.

More recently, researchers have paid attention to the temporal caching of media objects 

in the proxy memory. W ith the falling prices of memories, the magnitude of Gbytes mem­

ory of a server/proxy is not uncommon. So to temporarily cache the media data in the 

server/proxy memory while delivering to the client so that the later requests could benefit 

from the cached data in the memory is feasible. Similar to the proxy caching based on disk, 

to cache the entire media object in the memory is unrealistic, while randomly caching a 

fraction of the media objects statically is not useful because normally the media objects 

are requested sequentially. So when and how to cache the media objects, when and how to 

allocate/reclaim the memory buffers so tha t the media data can be delivered to as much 

as possible from the limited memory space to as many clients as possible become an in­

teresting and challenging problem. There was some work discussing this problem. The 

fixed-sized running buffer caching [13] and the interval caching [36, 37] are two major run­

ning (memory) buffer based caching techniques. The basic working principle of the running 

buffer based caching technique is as follows: when a request arrives, a fixed-sized buffer of 

a predetermined length is allocated to cache the media data fetched by the proxy, hoping
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that closely followed requests could reuse the data in the memory instead of obtaining it 

from other sources (the disk, the origin server or other caches). In contrast, the interval 

caching technique uses a different approach. It considers two requests immediately followed 

as a request pair, and incrementally orders the arrival intervals of all request pairs (the 

arrival interval of a request pair is defined as the difference in their arrival times). In the 

memory allocation, the interval caching gives preference to smaller intervals, expecting more 

requests can be served for a given amount of memory. Figure 4.1 illustrates basic ideas of 

the running buffer caching and the interval caching techniques.

Media Position Media Position

Access Time Access Time

(a) (b)

Figure 4.1: Running buffer and interval caching

In Figure 4.1, the Media Position indicates a time position in a streaming media where 

the media object is delivered to the client. The solid slope represents a delivery session. 

In Figure 4,1 (a), a fixed-sized buffer B l  is allocated upon the arrival of the request R l.  

Subsequently, requests R2, R3, R4 are served by the data cached in this buffer since they 

arrive in time. The request R5 does not arrive in time, so a new buffer B 2 of the same
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length is allocated, which benefits the request R6 .

In Figure 4.1 (b), upon the arrival of R2, an interval is formed between R l  and R2, 

and a buffer of the interval size is allocated to cache data read by R l  from now on. So the 

request R2 only needs to read the first part of data from the proxy/server while receiving the 

rest data from the buffer. The situation changes until the arrival of request R5, where we 

assume the interval between R4  and R5 is smaller than tha t between R3 and R4. Since the 

interval between R4  and R5 is smaller than tha t between R3 and R4, the buffer allocated 

for the interval between R3 and R4  is deallocated, and the space is re-allocated to the new 

interval between R4  and R5.

However, the running buffer caching does not take consideration of user access patterns, 

resulting in the inefficient usage of the memory resource. For example, in Figure 4.1 (a), 

the size of buffer B l  is larger than the amount needed to serve the requests of Ri through 

R4 , the size of buffer B 2 is larger than the amount needed to serve the request R5 and 

the request R6 - The interval caching approach does consider the client access pattern in 

the buffer allocation. However, it shares another limit with the running buffer caching 

approach: data sharing among different buffers has not been considered. For example, B 2 

in Figure 4.1 (b) does not need to run to the end of the media if the data cached in buffer 

B l  are shared by the later requests.

In this chapter, we propose a new memory-based caching algorithm for streaming media 

objects using Shared Running Buffers (SRB). In this algorithm, the memory space on the 

proxy is allocated adaptively by considering the client access patterns and the requested 

media objects themselves. More importantly, the data cached in different running buffers 

are fully shared. When requests are terminated, the algorithm efficiently reclaims the idle
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memory space and does near-optimal buffer replacement at runtime.
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Media Position ‘Media Position

Access Time
(a)

Figure 4.2: Greedy patching and grace patching

By further looking into the patching approaches that were heavily studied in the VQD 

environment [38, 48], we found tha t patching algorithms, such as the greedy patching, the 

grace patching and the optimal patching [60], take advantage of the client-side storage 

resource to buffer data in multiple channels without delay. The greedy patching as shown 

on Figure 4.2 (a) always patches to the existing complete stream while the grace patching 

restarts a new complete stream at some appropriate points as shown on Figure 4.2 (b). 

Furthermore, the optimal patching [103] considers how to re-use the limited storage on 

the client side to receive as many data as possible while listening to as many channels 

as possible. Figure 4.3 shows the basic idea of the optimal patching. Motivated by this, 

we propose another enhanced media delivering algorithm: Patching SRB (PSRB), which 

further improves the performance of the media data  delivery.

Finally, we evaluated our algorithms through an intense set of simulations based on both
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Media Position

Access Time

Figure 4.3: Optimal patching

synthetic workloads and a real access trace of an enterprise media server. The simulation 

results show that the performance of our algorithms is superior comparing with previous 

solutions. More details are presented in the [21].

The rest of this chapter is organized as follows. Some related work is introduced in Sec­

tion 4.2. Section 4.3 describes the memory-based SRB algorithms we proposed. Simulation 

based performance evaluation results are presented in Section 4.4. We then summarize this 

study in Section 4.5.

4.2 Related Work

The delivery of a streaming media object takes time to complete. We call this delivery 

process a streaming session. Session sharing is possible among sessions that overlap with 

each other. In addition, proxy buffering can be used. Batching is a special type for session 

sharing [38, 47]. In this approach, requests are grouped and served simultaneously via
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multicast [48]. Therefore, requests arrived earlier have to wait. Hence, some delays have 

to be introduced to the early arrived requests. Session sharing and proxy buffering for 

streaming media delivery have also been studied with other techniques, such as multicast, 

broadcasting, and proxy caching. In [111], the batching, patching and streaming merging 

are combined with proxy caching. Multicast [121] is considered with caching in [90] and [50]. 

Staggered multicast is proposed in [45], A circular buffer is used in [20], while in [2 2 ], a set of 

existing techniques are evaluated and the running buffer is efficiently utilized together with 

patching for efficiently delivering the media content. A number of different broadcasting 

strategies have also been proposed to be used separately or together with other techniques, 

such as skyscraper broadcasting [62], pyramid broadcasting (PB) [110] and permutation- 

based pyramid broadcasting (PPB) [8 ], harmonic broadcasting [6 6 ] and its variant [8 6 ], 

variable bandwidth broadcasting (VBB) [8 8 ].

4.3 Shared Running Buffer (SR B) Media Caching Algorithms

It has been shown tha t two current memory caching approaches of the media objects: the 

running buffer caching and the interval caching approaches, do not take effective use of the 

limited memory resource.

Motivated by the limits of the current memory buffering approaches, we design a Shared 

Running Buffer (SRB) based caching algorithm, briefly called SRB algorithm, for the 

streaming media with the aim to maximize the effective utilization of the memory. In 

this section, with the introduction of several new concepts, we first describe our basic SRB 

media caching algorithm in detail. Then, we characterize the SRB media caching algorithm
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and present an extension to the SRB: Patching SRB (PSRB).
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4 .3 .1  S R B  A lg o r ith m : R e la te d  D efin it io n s

The algorithm first considers buffer allocation in a time span T  starting from the first

following concepts are defined to capture the characteristics of the user request pattern.

consists of a group of intervals. W ithin the time T, if n  =  1, the interval 1/ is defined 

as oo; otherwise, it is defined as:

Since I f  represents the time interval between the last request arrival and the end of 

the investigating time period, it is called as the Waiting Time.

2. Average Request Arrival Interval (ARAI): The A R A I  is defined as ]C5c=i t f / i 71 ~  1) 

when n > 1. ARAI does not exist when n  =  1 since it indicates only one request 

arrival within time frame T  and thus we set it as oo.

For the buffer management, three buffer states and three timing concepts are defined as 

follows, respectively.

request. We denote R \ as the j-th  request to media object i, and T? as the arrival time of 

this request. Assume tha t there is n  request arrivals within the time T  and R f  is the last 

request arrived in T. For the convenience of representation without losing precision, T f  is 

normalized to 0 and T f (where 1 < j  < n) is a time relative to T f.  Based on the above, the

1. Interval Series: An interval is defined as the difference in time between two consecutive

request arrivals. We denote I f  as the j-th  interval for object i. An Interval Series

Z f+ 1  -  I f ,  if 1 < j < n  

T  — Tp,  i f ;  =  ra.
(4.1)
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1 . Construction State & Start- Time: when an initial buffer is allocated upon the arrival 

of a request, the buffer is filled while the request is being served, expecting tha t the 

data cached in the buffer could serve the closely followed requests for the same object.

are called as the resident requests of this buffer and the buffer is called as the resident 

buffer of these requests.

2. Running State & Running-Distance: after the buffer freezes its size it will serve as a 

running window of a streaming session and moves along with the streaming session. 

Therefore, the state of the buffer is called the Running State.

The Running-Distance of a buffer is defined as the distance in terms of time between 

a running buffer and its preceding running buffer. We use D \ to denote the Running- 

Distance of B l. Note that for the first buffer allocated to an object i, D j is equal 

to the length of object i : L i. Here, we assume a complete viewing scenario initially. 

Since we are encouraging the sharing among the buffers, the buffer B j needs only to 

run to the end point of B\~~l . Mathematically, we have:

3. Idle State & End-Time: when the running window reaches the end of the streaming

The size of the buffer may be adjusted to cache less or more data before it is frozen.

Before the freezing happens, the buffer is in the Construction State.

Thus, the Start-Time of a buffer B f,  the j-th  buffer allocated for object i, is defined as 

the arrival time of the last request before the buffer is frozen. We use S j to denote the 

Start-Time of the buffer B j. The requests arriving in a buffer’s Construction State

(4.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 4. SH ARED RUNNING BUFFERS 100

session, the buffer enters the Idle State, which is a transient state tha t allows the 

buffer to be reclaimed.

rplatest d en o te  the arrival time of the most recent request to the object i. Here, the

4 .3 .2  S R B  A lg o r ith m

W ith these related definitions, the SRB algorithm works as follows: for an incoming request 

for the object i, the SRB algorithm works as follows:

1. If the latest running buffer of the object i is caching the prefix of the object i, the 

request will be served directly from all the existing running buffers of the objects.

2. Otherwise,

(a) if there is enough memory, a new running buffer of a predetermined size T  is 

allocated. The request will be served from the new running buffer and all existing 

running buffers of the object i.

(b) if there is no enough memory, the SRB buffer replacement algorithm (see 4.3.2.3) 

is called to either re-allocate an existing running buffer to the request or serve 

this request without caching.

The End- Time of a buffer is defined as the time when a buffer enters idle state and is

ready to be reclaimed. The End- Time of the buffer B j,  denoted as E j is defined as:

if j  — 1 

i f j > l .
(4.3)

rpiaust dynamically changes with the coming of new requests and so does the E j . The 

detailed updating procedure of E j is described in the following section.
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3. Update the End- Times of all existing buffers of the object i based on Equation 3.

During the process of the SRB algorithm, parts of a running buffer could be dynamically 

reclaimed as described in 4.3.2.2 due to  the request termination and the buffer is dynamically 

managed based on the user access pattern  through a lifecycle of three states as described 

in 4.3.2.1.

4.3.2.1 SR B Buffer Lifecycle M anagem ent

Initially, a running buffer is allocated with a predetermined size of T. Starting from the 

Construction State, it then adjusts its size by going through a three-state lifecycle manage­

ment process as described in the following.

• Case 1: the buffer is in the Construction State. The proxy makes a decision at the 

end of T  as follows.

-  If A R A I  — oo, which indicates tha t there is only one request arrival so far, 

the initial buffer enters the Idle State (case 3) immediately. For this request, the 

proxy will serve as a bypass server, i.e., the content is passed to the client without 

caching. This scheme gives preference to more frequently requested objects in 

the memory allocation. Figure 4.4 (a) illustrates this situation. The shadow 

indicates the allocated initial buffer, which is reclaimed at T.

-  If In 0 * A R A I  (Ifi is the wmtmg tim ej, the initial buffer is shrunk to the extent 

that the most recent request can be served from the buffer. Subsequently, the 

buffer enters the Running State (case 2). This running buffer will serve as a 

shifting window and run to the end. Figure 4.4 (b) illustrates an example. Part
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Media Position

Access Time

Media Position

A if;/

(a)

T Access Time

(b)

Figure 4.4: SRB memory allocation: the initial buffer freezes its size (1)

of the initial buffer is reclaimed at the end of T. This scheme performs well for 

periodically arrived request groups.

If I n < A R A I, the initial buffer maintains the construction state and continues 

to grow to the length of T ', where T ' = T  -  I n + A R A I,  expecting that a new 

request arrives very soon. At T ', the A R A l' and l'n are recalculated and the 

above procedure repeats. Eventually, when the request to the object becomes 

less frequent, the buffer will freeze its size and enter the Running State (case 2). 

In the extreme case, the full length of the media object is cached in the buffer. In 

this case, the buffer also freezes and enters the running state (a static running). 

For most frequently accessed objects, this scheme ensures tha t the requests to 

these objects are served from the proxy directly. Figure 4.5 (a) illustrates this 

situation. The initial buffer has been extended beyond the size of T  for the first 

time.
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Media Position

Access Time

(a)

Media Position
A

A
A

A

f ' /

T Access Time

(b)

Figure 4.5: SRB memory allocation: the initial buffer freezes its size (2 )

The buffer expansion is bounded by the available memory in the proxy. When the 

available memory is exhausted, the buffer freezes its size and enters the running 

state regardless of future request arrivals.

-  If T  > A R A I  > Th {Th is a threshold specified by the client, say T /2), the initial 

buffer is shrunk to the extent tha t the most recent request can be served from 

the buffer. Subsequently, the buffer enters the Running State (case 2). This 

running buffer will serve as a  shifting window and run to the end. Figure 4.5 

(b) illustrates an example. Part of the initial buffer is reclaimed at the end of T. 

This deals with scattered requests for an object. The idea of a threshold is not 

a must for our algorithm, but for the better resource utilization.

Case 2: the buffer is in the Running State. After a buffer enters the running state, 

it has run away from the beginning of the media object and subsequently arrived 

requests can not be served completely from the running buffer. In this case, a new
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buffer of an initial size T  is allocated and subsequent requests are served from the 

new buffer as well as the first running buffer.

In addition, the End-Time of the new running buffer needs to be determined and the 

End- Times of its preceding running buffers E {~1, E f  need to be modified according

to the arrival time of the latest request, as shown in Equation 4.3.

Access Time

,k k+l1 _2 ,n

Figure 4.6: Data sharing among buffers in SRB algorithm

Figure 4.6 illustrates the maximal data sharing in the SRB algorithm. Here, since 

we consider the request and delivery of one object. The requests R” to Rf+1 are 

receiving data  simultaneously from Bj and B?. Late requests could receive data from 

all existing preceding running buffers. N o te  that except for the first buffer, 

other buffers do  not have to  run to  th e  end o f th e  ob ject. When the buffer 

runs to its End-Time, it enters the Idle State (case 3).

•  Case 3: the buffer is in the Idle State. When a buffer enters the Idle State, it is ready 

for reclamation.
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In the above algorithm, the time span T  (which is the initial buffer size) is determined 

based on the object length. Typically, a Scale factor (say, 1/2 to 1/32) of the origin length 

is used. To prevent an extremely large or small buffer size, the buffer size is bounded by 

a upper bound: High-Bound and a lower bound: Low-Bound. It can be adjusted by the 

streaming rate to allow the initial buffer to cache a reasonable length (e.g., 1 minute to 1 0  

minutes) of media data.

The algorithm requires the client be able to listen to multiple channels at the same 

time: once a request is posted, it should be able to receive data from all the ongoing 

running buffers of that object simultaneously.

4.3.2.2 SR B  Buffer D ynam ic R eclam ation

The memory reclamation in a running buffer is triggered in two different types of session 

terminations: complete session termination and premature session termination. In the 

complete session termination, a session terminates only when the delivery of the whole 

media object is completed, which only happens when the buffer is in the Running State. 

In this case, assume tha t R j is the first request being served by a running buffer. When 

R j  reaches the end of the media object, the following two scenarios happen for the resident 

buffer of Rj;

1. If the resident buffer is the only running buffer for the media object, the resident 

buffer enters the idle state. In this state, the buffer maintains its content until all the 

resident requests reach the end of the session. On that time, the buffer is released.

2. If the resident buffer is not the only running buffer, that is, there are succeeding
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running buffers, the buffer enters the idle state and maintains its content until its 

end-time. Note that the end-time may be updated by succeeding running buffers.

In the premature session termination, the thing is much more complicated. Here, the 

request arriving later may term inate earlier, which can happen when a buffer is in the 

Construction State or the Running State. Considering a group of consecutive requests R \ 

to R f  tha t are being served by a running buffer, the session for one of the requests, say R j , 

where 1 < j  < n, terminates before everyone else. The situation is handled as follows.

1. If R j is served from the middle of its resident buffer, tha t is, there are preceding and 

succeeding requests served from the same running buffer, the resident buffer maintains 

its current state and the request R j gets deleted from all its associated running buffers. 

Figure 4.7 (a) and (a’) show the buffer situation before and after R j is terminated, 

respectively.

2. If Rj is served from the head of its resident buffer, the request is deleted from all of its 

associated running buffers. The resident buffer enters the idle state for a time period 

of I. During this time period, the content within the buffer is moved from R j+1 to 

the head. At the end of the time period I , the buffer space from the tail to the last 

served request is released and the buffer enters the running state again. The figures 

of (b) and (b)’ in Figure 4.7 show this situation.

3. II Rj is served at the tail of a running buffer, two scenarios are further considered.

• After deleting the R j from the request list of its resident buffer, if the request list 

is not empty, then do nothing. Otherwise, the algorithm can choose to shrink
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Figure 4.7: SRB memory reclamation: different situations of session termination

the buffer to the extent tha t R j~ l can still be served from the buffer (assuming 

H i-1 is a resident request of the same buffer). In this case, the End-Times of 

the succeeding running buffers need to be adjusted. The figures of (c) and (c)’ 

in Figure 4.7 illustrate this situation.

• If R j is at the tail of the last running buffer, as shown in Figure 4.7 (d), the 

buffer will be shrunk to the extent tha t R j_ 1  is just served from the buffer. Rj 

is deleted from the request list. Subsequently, the buffers run as shown in Figure 

4.7 (d’)-
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4.3 .2 .3  SR B  Buffer R eplacem ent Policy

The replacement policy is important in the sense th a t the available memory is still scarce 

compared to the size of video objects. So to efficiently use the limited resources is critical to 

achieve the best performance gain. In this section, we propose popularity based replacement 

policies for the SRB media caching algorithm. The basic idea is described as follows:

• When a request arrives while there is no available memory, all the objects tha t have 

on-going streams in the memory are ordered according to their popularities calculated 

in a certain past time period. If the object being demanded has a higher popularity 

than  the least popular object in the memory, then the latest running buffer of the least 

popular object will be deallocated, and the space is re-allocated to the new request. 

Those requests without running buffers do not buffer their data at all. In this case, 

theoretically, they are assumed to have no memory consumption.

We have precisely analyzed our popularity based replacement policies by both the mod­

eling and the simulation in [2 1 ].

4 .3 .3  P a tc h in g  S R B  (P S R B ) A lg o r ith m

Since the proxy has a finite amount of memory space, it is possible tha t the proxy serves as 

a bypass sever to transiently cache concurrent sessions. In the SRB algorithm, concurrent 

sessions are not shared, which may lead to excessive proxy load when there are huge number 

of requests to different objects. Motivated by this, the SRB algorithm is extended to a 

Patching SRB (PSRB) algorithm which enables the sharing of concurrent sessions.
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Media Position

RiRiBiRiRi Ri RiR?

Figure 4.8: An example of the PSRB algorithm

Figure 4.8 illustrates a PSRB scenario. The first running buffer B j  has been formed for 

requests R j to i?f. No buffer is running for R% since it does not have a close neighboring 

request. However, a patching session has been started to retrieve the absent prefix in B} 

from the content server. At this time, request Rf is served from both the patching session 

and B \  until the missing prefix is patched. Then, R® is served from B] only (the solid line 

for R® ends).

When R j  and R® arrive and form the second running buffer B f,  they are served from 

B} and B \  as described in the SRB algorithm. In addition, they also receive data from 

the patching session initiated for R®. Note tha t the patching session for R® is transient, or 

we can think of it as a running buffer session with zero buffer size. As evident from the 

figure, the filling of B f  does not cause server traffic between position a and b (no solid line 

between a and b) since B f  is filled from the patching session for R®. Sharing the patching 

session further reduces the the number of server accesses for R j  and R f. In general, the 

PSRB algorithm is a combination of the SRB algorithm with the optimal patching algorithm 

proposed in [103]. By taking advantage of the client-side storage, PSRB tries to maximize
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the data sharing among concurrent sessions in order to minimize the traffic in the content 

server.

4.4 Performance Evaluation

To evaluate the performance of the proposed algorithms and to compare them  with prior 

solutions, we conduct event-driven simulations based on the same synthetic and real work­

loads we used in section 2.6 of Chapter 2. The Tow-Bound and High-Bound for the initial 

buffer size are 2 Mbytes and 16 Mbytes in simulations.

4 .4 .1  E v a lu a tio n  M etr ics

We have implemented an event-driven simulator to model a proxy’s memory caching be­

haviors. Since the object hit ratio or hit ratio is not suitable for evaluating the caching per­

formance of the streaming media, we use the server traffic reduction (shown as bandwidth 

reduction in the figures) to evaluate the performance of the proposed caching algorithms. If 

the algorithms are employed on a server, this parameter indicates disk I/O  traffic reduction.

Using SRB or PSRB algorithms, a client needs to listen to multiple channels for the 

maximal sharing of the cached data in the proxy’s memory. We measure the traffic between 

the proxy and the client in terms of the average client channel requirement. This is an 

averaged number of channels the clients are listening to during the sessions. Since the 

clients are listening to earlier on-going sessions, storage is needed at the client to buffer the 

data before its presentation. We use the average client storage requirement in percentage 

of the full size of the media object to indicate the storage requirement on the client side.
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The effectiveness of the algorithms is studied by simulating different scale factors for the 

allocation of the initial buffer size and varying memory cache capacities. The streaming rate 

is assumed to be constant for simplicity. The simulations are conducted on HP workstation 

x4Q00, with 1 GHz CPU and 1 GB memory.

For each simulation, we compare a set of seven algorithms in three groups. The first 

group contains buffering schemes which include the running buffer caching and the interval 

caching. The second group contains patching algorithms, specifically the greedy patching, 

the grace patching and the optimal patching. The third group contains the two sharing 

running buffer algorithms proposed in this study.

In the following subsections, we present the simulation results. We consider complete 

viewing scenario for streaming media caching in the Web environment and the partial 

viewing scenario in Web environment first. The evaluation results on a real workload are 

presented then.

4 .4 .2  P er fo rm a n ce  o f  th e  W E B  W ork load

First, we evaluate the caching performance with respect to the initial buffer size. W ith a 

fixed memory capacity of 1GB, the initial buffer size varies from 1 to 1/32 of the length 

of the media object. For each scale factor, the initial buffer of different sizes is allocated 

if the length of the media object is different. The server traffic reduction, the average 

client channel requirement and the average client storage requirement are recorded in the 

simulation. The results are plotted in Figure 4.9.

Figure 4.9 (a) shows the server traffic reduction achieved by each algorithm. Notice 

that PSRB achieves the best reduction and SRB achieves the next best reduction after
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Figure 4.9: WEB: server traffic reduction and average client channel with 1GB Memory

the optimal patching. RB caching achieves the least amount of reduction. As expected, 

the performance of the three patching algorithms does not depend on the scale factor for 

allocating the initial buffer. Neither does tha t of the interval caching since the interval 

caching allocates buffers based on access intervals.
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Figure 4.10: WEB: storage requirement (%) with 1GB memory

For the running buffer schemes, we observe some variation in performance with respect to 

the scale factor. In general, the variations are limited. To a certain extent, the performance
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gain of the bandwidth reduction is a trade-off between the number of running buffers and the 

sizes of running buffers. A larger buffer implies tha t more requests can be served from the 

proxy buffer. However, a larger buffer also indicates that less memory space is left for other 

requests. This in turn  leads to a larger number of server accesses since there is no available 

memory. On the other hand, a smaller buffer may serve a smaller number of requests but 

it leaves more memory space for the system to allocate for other requests.

Figure 4.9 (b) and Figure 4.10 show the average channel and storage requirement on the 

client. Notice tha t the optimal patching achieves a better server traffic reduction by paying 

the penalty of imposing the biggest number of client channels required. Comparatively, 

PSRB and SRB require 30 to 60% fewer client channels while achieving a better or closer 

server traffic reduction ratio.

PSRB allows the session sharing even when memory space is not available. It is therefore 

expected that PSRB achieves the highest rate of server traffic rate reduction. In the mean­

time, it also requires the largest client side storage. On the other hand, SRB achieves about 

6 % less traffic reduction, but the requirement on client channel and storage is significantly 

lower.

We now investigate the performance of different algorithms with respect to various 

memory capacities on the proxy. In this simulation, we use a fixed scale factor of 1/4 for 

the initial buffer size.

Figure 4.11 (a) shows an unchanged traffic reduction rate for the three patching algo­

rithms. This is expected since no proxy memory resource is utilized in the patching. On the 

other hand, all the other algorithms investigated achieve higher traffic reduction rates when 

the memory capacity increases. It is im portant to note tha t the proposed SRB algorithms
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achieve a better traffic reduction ratio than the interval caching algorithm and the running 

buffer algorithm.

In Figure 4.11 (b), the client channel requirement decreases for the PSRB algorithm 

when the memory capacity increases. This is again expected since more clients are served 

from the proxy buffer instead of proxy patching session.
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When the cache capacity reaches 4GB, PSRB only requires 30% of the client channel
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needed for the optimal patching scheme. PSRB also requires less client storage at this point 

as indicated in Figure 4.12. And yet, PSRB achieves more than 10 percentage points of 

traffic reduction comparing to the optimal patching scheme. For the SRB algorithm, it 

generally achieves the second best traffic reduction with even less penalty on client channel 

and storage requirements.

4 .4 .3  P er fo rm a n ce  o f  th e  PA RT W ork load
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Figure 4.13: PART: bandwidth reduction and average client channel requirement w ith  1GB m em ­
ory

In streaming media delivery over the Internet, it is possible tha t some clients terminate 

the session after watching for a while from the beginning of the media object. It is im portant 

to evaluate the performance of the proposed algorithm under this situation. Using the 

PART workload, we perform the same simulations and evaluate the same set of parameters. 

Figure 4.13 (a) shows similar characteristics as that in Figure 4.9. PSRB and SRB still 

achieve better traffic reduction. The conclusion holds tha t PSRB uses 60% of the client 

channel to achieve 5 percentage point better traffic reduction compared with the optimal
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patching.

In the event tha t a session terminates before it reaches the end of the requested media 

object, it is possible tha t the client has already downloaded future part of the media stream 

which is no longer needed. To characterize this wasted delivery from the proxy to the 

client, we record average client waste. It is the percentage of wasted bytes versus the total 

prefetched data. Figure 4.14 shows the client waste statistic. Note tha t for PART and 

REAL workloads, since both contain premature session terminations, the prefetched data 

which is not used in the presentation are not counted as bytes hit in the calculation of the 

server traffic reduction.
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As shown in Figure 4.14 (b), PSRB and SRB have about 42% and 15% of prefetched 

data wasted comparing with 0% for interval caching. Since the wasted bytes are not counted 

as hit, this leads to the lowered traffic reduction rate for PSRB and SRB comparing to that 

of interval cache. From another perspective, interval caching does not promote sharing 

among buffers, hence the client listens to one channel only and there is no buffering of
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future data. Thus, there is no waste in proxy-to-client delivery in the event of premature 

session termination.
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We now again start investigation of the caching performance with a fixed scale factor for 

the initial buffer size in Figure 4.15. Comparing with Figure 4.9 (a), the distances between
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the traffic reduction curves between PSRB, SRB and interval caching become much smaller 

in general. This reinforces the observation above tha t PSRB and SRB may lead to more 

wasted bytes in the partial viewing cases. In addition, the grace patching achieving almost 

no traffic reduction shows its incapability in dealing with the partial viewing situation. The 

reason might be tha t the new session started by the grace patching, which is supposed to 

be a complete session, often terminates when 20% of the media object is delivered. Since 

the duration of the session is short, it is less likely tha t a new request to the same media 

object is received.

In Figure 4.15 (b), PSRB demonstrates monotonic decreasing of average client channel 

requirement when memory capacity increases. This is due to the fact that there is a fewer 

number of zero-sized running buffers with increasing proxy memory capacity. Similarly, as 

shown in Figure 4.16, the client storage requirement and average client waste also decrease 

since a fewer number of patching is required.
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Figure 4.17: RFAL: bandwidth reduction and average client channel requirement with 1GB mem­
ory
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4 .4 .4  Perform ance o f  th e  R E A L  W ork load

Based on a real video delivering workload captured from corporate intranet, the same 

simulations are conducted to evaluate the caching performance. We start first by evaluating 

the caching performance versus varying scale factor for the initial buffer size.

Comparing Figure 4.17 (a) with Figure 4.9 (a), it is clear tha t changing scale factor has 

a much more significant impact on the behavior of the proposed SRB and PSRB algorithms 

for REAL. This could be due to the burst nature of the accesses logged in the workload. 

To a certain degree, this result indicates the effectiveness of the adaptive buffer allocation 

scheme we proposed in the algorithms.
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Figure 4.18: REAL: average client storage requirement (%) and client waste (%) with 1 GB memory

Setting the initial buffer size as 1/4 of the requested media objects, we again evaluate 

the caching performance with increasing amount proxy memory available. Figure 4.19 and 

4.20 show the server traffic reduction and the client side statistics.

Compared with the simulation results obtained with synthetic workloads, Figure 4.19 

(a) shows a flat gain when memory capacity increases. It seems to indicate tha t memory
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Figure 4.19: REAL: bandwidth reduction and average client channel requirement w ith  the scale 
of 1 /4

capacity is less of a factor. Once again, the burst nature of the request arrival may play a 

role here. In addition, the volume of the burst may also be low which leads to the fact that 

limited amount of memory space suffices the sharing of sessions.
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The simulation results for the real workload provide the following understanding for the
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studying of caching of streaming media: C ontrary to  th e  in tu ition  that caching o f  

stream ing m edia requires large m em ory space, in telligent allocation  o f the avail­

able m em ory resource is probably m ore im portant than  th e m em ory resource  

itself. This is also the motivation of the proposed SRB and PSRB algorithms. More details 

on the performance analysis can be referred in the [21].

4 .4 .5  F u rth er  A n a ly s is  o n  th e  C lie n t C h a n n el R eq u irem en t
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F ig u r e  4 .2 1 : Client channel requirem ent CDF: W E B  and PART

The performance analysis in the previous section indicates tha t SRB and PSRB algo­

rithm achieve superior server traffic reduction by utilizing the memory resource on the proxy 

and sufficient bandwidth resource between the proxy and the clients. In most cases, the 

proxy streams data from multiple buffers to the client through multiple channels. To have 

a better understanding on the client channel requirement, we collect additional statistics 

that illustrates the distribution of the number of client channels required. Figure 4.21 and 

4.22 show the CDF of the client channel requirement for simulations on the workloads. In
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these simulations, the proxy has 1GB memory capacity and the scale factor for the initial 

buffer size is fixed at 1/4.

For simple running buffer caching, since no session sharing is happening, only one chan­

nel is required for clients. Greedy and grace patching algorithms need at most 2 client 

channels. For the WEB workload, approximately 60% of greedy patching sessions and 40% 

of grace patching sessions require only one client channel. Interval caching also requires at 

most 2 client channels with 78% of the sessions requiring only one channel.

Optimal patching needs the largest number of client channels. It is not surprising since 

requests arrive later always try  to patch to as many earlier on going sessions as possible. 

For all four workloads, the number of client channel required could exceed nine.

For the proposed SRB and PSRB algorithms, the number of the required client channel 

often falls in between the optimal patching and the group of algorithms containing greedy, 

grace patching and interval caching. Note further tha t for SRB algorithm, very few sessions 

require more than  3 client channels with around 98% of session requires no more than 2. 

The statistics shown for in the REAL workload as in Figure 4.22 verifies further that 94% of
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the PSRB session only needs no more than 2 client channels. On the other hand, more than 

10% of the optimal patching sessions needs 3 or more client channels. Referring back to 

Figure 4.19 (a), it is clear that SRB and PSRB achieve better server traffic reduction than 

the optimal caching. This analysis enhances the advantages of the proposed algorithms.

In addition, these observations are useful when limited bandwidth resource is available 

between the proxy and client. In this case, the proxy system can choose to execute a 

session sharing algorithm which achieves better caching performance without exceeding the 

capacity of link between the proxy and clients.

4.5 Summary

In this chapter, we proposed two new algorithms for caching of streaming media objects 

by utilizing the proxy memory. Shared Running Buffers (SRB) caching algorithm is pro­

posed to dynamically cache media objects in the proxy memory during delivery. Patching 

SRB (PSRB) algorithm is proposed to further enhance the memory utilization in the proxy. 

The adaptiveness of the two algorithms are analyzed and exploited. Simulations based on 

both synthetic and real work load are conducted. The simulation results show the efficiency 

of the proposed algorithms. Both algorithms require the client be capable of listening to 

multiple channels at the same time. Comparing with previous solution which also require 

multiple client channels, the proposed algorithm achieves better server traffic reduction with 

less or similar load on the link between the proxy and the client.

SRB algorithms have been evaluated without considering the effect of the disk based 

proxy caching. The proposed algorithms can also be applied to any streaming server to
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reduce the disk bandwidth requirement. Now we are considering to combine the memory 

based caching and disk based caching together. We are also investigating the performance 

of the algorithms when the client side storage is limited and the streaming rate is varying. 

As SRB algorithms can further improve the streaming delivery performance when applying 

in the streaming proxy, the implementation of these algorithms in our Hyper-Proxy system 

is under investigation.
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Chapter 5

Other R elated Work

Besides the studies performed on the Internet caching systems for delivering streaming 

media objects, I have also looked into the P2P assisted proxy-based streaming, Internet 

caching problems related to the static objects and dynamic objects, as well as the problems 

in the cluster computing. Following is a brief summary for each of them.

5.1 Coordinating P 2P  System  and P ro x y  for Streaming M e­

dia Delivery

As the demand of delivering streaming media content in the Internet has become increasingly 

high for scientific, educational, and commercial applications, three representative technolo­

gies have been developed for this purpose, each of which has its merits and serious limita­

tions. Infrastructure-based CDNs with dedicated network bandwidths and powerful media 

replicas can provide high quality streaming services but at a high cost. Server-based proxies 

are cost-effective but not scalable due to the limited proxy capacity and its centralized con­

trol. Client-based P2P networks are scalable but do not guarantee high quality streaming 

service due to the transient nature of peers. To address these limitations, we propose a novel

125
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and efficient design of a scalable and reliable media proxy system supported by P2P net­

works. This system is called PROP, abbreviated from our technical theme of “collaborating 

and coordinating PRQxy and its P2P clients” . Our objective is to address both scalability 

and reliability issues of streaming media delivery in a cost-effective way. In the PROP sys­

tem, the clients’ machines in an intranet are self-organized into a structured P2P system to 

provide a large media storage and to actively participate in the streaming media delivery, 

where the proxy is also embedded as an im portant member to ensure quality of streaming 

service. The coordination and collaboration in the system are efficiently conducted by our 

P2P management structure and replacement policies. We have comparatively evaluated 

our system by trace-driven simulations with synthetic workloads and with a real workload 

extracted from the media server logs of an enterprise network. The results show that our 

design significantly improves the quality of media streaming and the system scalability [53].

5.2 D etective Browser

The amount of dynamic Web contents and secured e-commerce transactions has been dra­

matically increasing [19, 105, 122] on the Internet where proxies between clients and Web 

servers are commonly used for the purpose of sharing commonly accessed data and reducing 

the Internet traffic. A significant and unnecessary Web access delay is caused by the over­

head in the proxy to process two types of requests, namely dynamic Web content requests 

and secured transaction requests, not only increasing response time, but also raising some 

security concerns. Conducting experiments on Squid proxy 2.3STABLE4, we have quan­

tified the unnecessary processing overhead to show their significant impact on increased
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client access response times. We have also analyzed the technical difficulties in eliminating 

or reducing the processing overhead and the security loopholes based on the existing proxy 

structure. In order to address these performance and security concerns, we propose a simple 

but effective technique from the client side tha t adds a detector interfacing with a browser. 

W ith this detector, a standard browser, such as the Netscape/Mozilla, will have simple de­

tective and scheduling functions, called Detective Browser. Upon an Internet request from 

a client, the Detective Browser can immediately determine whether the requested content 

is dynamic or secured. If so, the browser will bypass the proxy and forward the request 

directly to the Web server; otherwise, the request will be processed through the proxy. We 

implemented a Detective Browser prototype in Mozilla version 0.9.7, and tested its func­

tionality and effectiveness. Since we simply move the necessary detective functions from a 

proxy to a browser, the Detective Browser introduces little overhead to Internet accessing, 

and our software can be patched to existing browsers easily [29].

5.3 Cooperatively Shared Proxy Browsers

Proxy hit ratios tend to decrease as the demand and supply of Web contents are becoming 

more diverse. By case studies, we quantitatively confirm this trend, and observe signif­

icant document duplications among a proxy and its client browsers’ caches. One reason 

behind this trend is tha t the client/server Web caching model does not support direct re­

source sharing among clients, causing the Web contents and the network bandwidths among 

clients being relatively under-utilized. To address these limits and improve Web caching 

performance, we have extensively enhanced and deployed our browsers-aware framework,
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a peer-to-peer Web caching management scheme. We make the browsers and their proxy 

share the contents to exploit the neglected but rich data locality in browsers, and reduces 

document duplications among the proxy and browsers’ caches to effectively utilize the Web 

contents and the network bandwidth among clients. The objective of our scheme is to im­

prove the scalability of proxy-based caching both in the number of connected clients and 

in the diversity of Web documents. We show tha t building such a caching system with 

considerations of sharing contents among clients, minimizing document duplications, and 

achieving data integrity and communication anonymity, is not only feasible but also highly 

effective [120].

5.4 Dynam ic Load Sharing W ith Unknown M emory Dem ands 

in Clusters

A compute farm is a pool of clustered workstations to provide high performance computing 

services for CPU-intensive, memory-intensive, and I/O-active jobs in a batch mode. Exist­

ing load sharing schemes with memory considerations assume jobs’ memory demand sizes 

are known in advance or predictable based on clients’ hints. This assumption can greatly 

simplify the design and implementation of load sharing schemes, but is not desirable in 

practice. In order to address this concern, we present three new results and contributions 

in this study. (1) Conducting Linux kernel instrumentation, we have collected different 

types of workload execution traces to quantitatively characterize job interactions, and mod­

eled page fault behavior as a function of the overloaded memory sizes and the amount of 

jobs’ I/O  activities. (2) Based on experimental results and collected dynamic system infor­
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mation, we have built a simulation model which accurately emulates the memory system 

operations and job migrations with virtual memory considerations. (3) We have proposed 

a memory-centric load sharing scheme and its variations to effectively process dynamic 

memory allocation demands, aiming at minimizing execution time of each individual job 

by dynamically migrating and remotely submitting jobs to eliminate or reduce page faults 

and to reduce the queuing time for CPU services. Conducting trace-driven simulations, we 

have examined these load sharing policies to show their effectiveness. Results of this study 

have been published in [27, 118].

5.5 Adaptive M emory Allocations in Clusters to Handle Large 

Data-Intensive Jobs

In a cluster system with dynamic load sharing support, a job submission or migration 

to a workstation is determined by the availability of CPU and memory resources of the 

workstation at the time. In such a system, a small number of runningjobs with unexpectedly 

large memory allocation requirements may significantly increase the queuing delay times of 

the rest of jobs with normal memory requirements, slowing down executions of individual 

jobs and decreasing the system throughput. We call this phenomenon as the job blocking 

problem because the big jobs block the execution pace of majority jobs in the cluster. Since 

the memory demand of jobs may not be known in advance and may change dynamically, 

the possibility of unsuitable job submissions/migrations to cause the blocking problem is 

high, and the existing load sharing schemes are unable to effectively handle this problem. 

We propose a software method incorporating with dynamic load sharing, which adaptively
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reserves a small set of workstations through virtual cluster reconfiguration to provide special 

services to the jobs demanding large memory allocations. This policy implies the principle 

of shortest-remaining-processing-time policy. As soon as the blocking problem is resolved by 

the reconfiguration, the system will adaptively switch back to the normal load sharing state. 

We present three contributions in this study. (1) We quantitatively present the conditions to 

cause the job blocking problem. (2) We present the adaptive software method in a dynamic 

load sharing system. We show tha t the adaptive process causes little additional overhead.

(3) Conducting trace-driven simulations, we show tha t our method can effectively improve 

the cluster computing performance by quickly resolving the job blocking problem. The 

effectiveness and performance insights are also analytically verified. Results of this study 

have been published in [28, 119].
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Internet technologies have greatly changed our life in the recent years, where all kinds 

of contents are available through the widely deployed Web sites. The contents on Web 

sites have evolved from the simple text-based Web pages to complicated dynamic contents 

and streaming media objects. Their applications in many areas, such as education, medical 

treatment, and entertainment, demand cost-effective and high performance delivery strate­

gies. The research of efficient Internet content delivery strategies has been the focus of 

many studies from both industry and academia.

In the early stage, the proxy caching approach has been very successfully used for 

delivering static text-based contents by storing them  locally closer to the client after a 

client access, so that subsequent client requests for a  same object can be directly served 

from the proxy instead of the server. W ith the proliferation of streaming media objects on 

the Internet today, the traditional proxy caching approach faces new challenges due to the 

following two facts. The first is that the size of a media object is generally much larger 

than a text-based object. Thus, caching the entire media objects as caching static Web
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objects can quickly exhaust the proxy cache space, making it infeasible. The second is 

tha t the client requesting streaming media objects always demands continuous streaming 

delivery and a small startup latency. Occasional delays of the data transferring over the 

Internet may be acceptable for text-based Web browsing, however, the streaming media 

data transferring delay always results in playback jitter at the client side. The jitter not 

only is annoying, but also can drive clients away from the streaming service. A large startup 

latency have the same effect to clients.

In this dissertation, we built cost-effective and high performance proxy-based Internet 

caching systems for delivering streaming media objects, with minimum playback jitte r and 

a small perceived startup latency at the client side. At the same time, it can achieve 

reasonable good cache performance so tha t the Internet traffic and the disk bandwidth 

requirement to the media server are reduced.

We first examined the performance objectives of the existing streaming proxy designs, 

and found that conflicting performance objectives exist in current schemes. Through heuris­

tic and modeling approaches, we provided effective solutions to balance these conflicting per­

formance objectives. By comprehensively considering the objectives from the client point of 

view, we proposed a streaming proxy design model: a streaming proxy should provide con­

tinuous streaming delivery to the client subject to a small startup  latency and high byte hit 

ratio. Guided by this model, we designed Hyper-Proxy. Our evaluation based on synthetic 

and real workloads shows that Hyper-Proxy can deliver streaming media data to clients 

with minimum playback jitter and small startup  latency, while it also achieves good cache 

performance. As far as we know, this is the first system considering all three performance 

objectives comprehensively.
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Second, we implemented Hyper-Proxy and evaluated it in the global Internet environ­

ment and the local network environment. The implementation leverages the existing Inter­

net infrastructure: Hyper-Proxy talks to the media content server via HTTP while it talks 

to the client via RTP/RTSP. Thus, the streaming functions are pushed from the streaming 

server to the proxy close to the client. Therefore, the traditional Web servers, such as 

Apache, can now provide real streaming service through Hyper-Proxy. The evaluation with 

the Hyper-Proxy and content server located in the LAN and connected between Japan and 

USA demonstrated it can provide satisfying streaming results to clients while maintaining 

good cache performance. To the best of our knowledge, this is the first system of this kind. 

Now Hyper-Proxy has been deployed in a large industrial environment for trials.

Finally, considering the client access locality in the memory of the proxy when sub­

sequent clients request the same object successively, we proposed a group of the Shared 

Running Buffers (SRB) based techniques to exploit this locality. In SRB based techniques, 

streaming data are not only shared among subsequently arrived sessions served by a running 

buffer, but also among different running buffers. Even more, the Patching SRB (PSRB) 

further utilizes the client side storage to increase the number of possibly shared sessions. 

Our evaluation shows that SRB based techniques further reduce the media server’s load, 

the amount of the network traffic and the client perceived response time.

6.2 Future Work

W ith Hyper-Proxy, now the new proxy-based Internet caching systems can cache the stream ­

ing media as well as static Web pages on the Internet, the proxy-assisted content delivery
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to all kinds of devices (such as PDAs, wireless phones, etc.) becomes necessary and promis­

ing. Proxy-assisted transcoding only shadows a light on this problem. Provided tha t each 

proxy only has a limited computing power, cache space and memory, how it can deal with 

the mobility is im portant and how cooperative proxies work together to provide such kind 

of services will attract more attention from academia and industry. W ith the availability 

of streaming proxy to support the on-demand streaming, how the existing proxy provides 

support to live streaming is another interesting direction. We think to research and provide 

solutions to these problems has great potentials. Therefore, I will continue the research on 

the following directions in the future.

6 .2 .1  S trea m in g  B a sed  on  P r o x y -a ss is te d  T ran scod in g

Today a client can use PDA, cell-phone or other mobile devices to browse the Internet 

besides the desktop or laptop computers. The usage of these devices complicates the Internet 

streaming media delivery problem because a media object tha t is appropriate to a computer 

may not be appropriate to a PDA. They have different screen sizes and different color 

depths. The object has to be customized for different client devices. Thus, the media 

delivery network must be able to distinct and adapt to different client devices by conveying 

an appropriate version of a media object to a corresponding client. The problem is how. 

There are different solutions. One is to store multiple versions of an object statically, which 

we call as offline-transcoding. That is, to prepare different versions for all kinds of devices 

before the streaming is available. It consumes a huge amount of storage to store all versions 

of an object. The other is online-transcoding. That is to do transcoding and delivering 

simultaneously. This approach demands a large amount of CPU cycles on the fly. Except
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for these two approaches, we are looking for if there is any other approach and whether it 

is possible to develop some new approaches based on media segments.

6 .2 .2  C o o p e r a tiv e  S trea m in g  P r o x y  to  S u p p o rt M o b ile  C o m p u ters

The usage of mobile-computers not only incurs the aforementioned transcoding problem, 

but also incurs the mobility problem. When a client holding a PDA or cell-phone reads the 

video-based news, the client may be in a moving train  (a typical practice in big cosmopolitan 

cities, such as Tokyo, Hong Kong), or may walk on the street. Thus, the media delivery 

network should provide a nomadic streaming service. This implies one streaming proxy 

is not capable of providing such a continuous streaming. The cooperation among multiple 

proxies is a must. However, how different proxies cooperate among themselves is not an easy 

problem, since a continuous streaming service must be guaranteed. The hand-off between 

the proxy and the client is not only expensive, but also can cause the interrupted services. 

This problem is related to a lot of research issues I am interested in.

6 .2 .3  L ive S trea m in g  E n a b led  P r o x y

Currently, we are working on the streaming proxy for delivering on-demand streaming 

media objects. On the Internet, there is another stream type, called live stream. Video 

conferencing is such an example. To transport live events to clients, live streaming has to 

be relied on. This is not a new problem, as a lot of multicast research has been done and 

is still undergoing. However, whether it can work smoothly with a segment-based proxy 

is not clear yet. The previous transcoding and mobility problems are also related to this 

issue, since a client may use a PDA to watch the Oscar’s Annual Academy Awards, while
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walking on the street. For this application, the offline-transcoding does not work. How to 

do online-transcoding for live events streaming cost-effectively remains open.
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