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Abstract

Currently, neutral recycling is a crucial contributor to fueling the plasma within

tokamaks. However, Commonwealth Fusion System’s SPARC Tokamak is expected

to be more opaque to neutrals. Thus, we anticipate that the role of neutral recycling

in fueling will decrease. Since SPARC is predicted to have a groundbreaking fusion

power gain ratio of Q ⇡ 10, we must have a concrete understanding of the opacity

and whether or not alternative fueling practices must be included. To develop said

understanding, we produced neutral density profiles via KN1DPy, a 1D kinetic neutral

transport code for atomic and molecular hydrogen in an ionizing plasma. KN1DPy

is a one-to-one recode of the IDL program KN1D, originally developed in the early

2000s. We translated KN1D from IDL to Python to increase accessibility and allow for

better coupling with other modern programs. We verified KN1DPy using Alcator C-

Mod data and comparing the Python and the IDL outputs. Using simulated profiles

for electron density (ne), ion temperature (Ti), and electron temperature (Te), we

can run KN1DPy and produce simulated neutral density profiles for SPARC. These

results can then be compared to the expectation from the empirical equation for

opacity, which states that most neutrals will ionize before crossing the separatrix.

Results consistent with these expectations will mean that neutral recycling plays a

weaker role in fueling the plasma core.
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Chapter 1

Introduction

As the world population continues to increase, an abundance of global challenges

will emerge, requiring a multitude of advancements. For context, in the next 50 years

the human population is projected to reach a peak of 9.73 billion people [1]. The

growing population paired with an unprecedented reliance on technology worldwide,

will certainly place strain on the global energy grid. From 1971 to 2019 there was

already a 260% increase in energy consumption [2]. To sustain this level of growth

and avoid potential energy shortages, an expansion of the current infrastructure is

necessary.

An increase in energy usage is not the sole issue calling for an upheaval of the

energy grid; climate concerns are also intensifying. CO2 emissions have caused the

Earth’s temperature to increase by 2�F since 1880, and fossil fuels are the leading

contributor. While fossil fuels comprise 6.6% less of the energy supply, we are burning

more fossil fuels today than in 1971 [2]. If consumption and supply patterns continue

to follow this trend, catastrophic climate e↵ects will occur. To combat the associated

problems with both increasing energy demand and climate change, there needs to be

a significant increase in clean energy sources.

Taking the above concerns into consideration, nuclear fusion energy has the po-

tential to be a sustainable substitute for fossil fuels’ role in the energy supply chain.
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Figure 1.1: A graph of the average binding energy per nucleon vs the mass number
for each element [5].

Nuclear fusion is the process that fuels stars, where two atoms collide, causing their

nuclei to combine and form a single, heavier nucleus [4]. Heavier elements have a

higher binding energy, which is the energy required to split an atom’s nucleus into

only protons and neutrons [5]. The heavier nucleus produced by a fusion reaction

requires less energy to exist. Due to conservation of energy, the excess energy is then

released. The binding energy curve is shown in Fig.1.1. Elements to the right of 56Fe

release energy during nuclear fusion. In contrast, elements to the right of 56Fe release

energy when their nuclei split into two. The splitting of an atom’s nucleus is called

nuclear fission, and it is the reaction that powers current-day nuclear power plants.

One of the most promising combinations of elements for fusion energy is deuterium

and tritium, two di↵erent hydrogen isotopes. A single fusion reaction between these

two atoms produces approximately 17.59 MeV of energy. Nonetheless, to reach a
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fusion reaction, there still must be a significant input of energy as well, and gener-

ally, temperatures in the order of 108 K are required [4]. At this temperature, any

substance will be a plasma, which is colloquially referred to as the fourth state of

matter. A plasma is an ionized gas, meaning its atoms have had at least one electron

stripped away, leaving a positively charged ion and a negatively charged free electron.

Furthermore, for an ionized gas to be considered a plasma, it must meet several other

specifications, including quasi-neutrality and collective behavior [6].

Atoms colliding within a plasma have a higher chance of scattering than going

through a fusion reaction. Therefore, it is crucial to confine the plasma to increase the

likelihood of successful reactions, allowing fusion to occur at a su�cient rate [4]. Space

plasmas, which comprise stars, are confined by gravitational fields. However, this

method is unattainable on Earth. That being said, we can achieve similar confinement

using magnetic fields. Magnetic fields exert a force called the Lorentz Force on moving

charged particles. The Lorentz Force inhibits charged particles from ever crossing a

magnetic field line as shown in Eq.1.1 [7].

F = q[E+ v⇥B] (1.1)

Where F represents the force, q represents the charge, E is the electric field, v is the

particle velocity, and B is the magnetic field. Since plasma is composed of charged

particles, closed magnetic fields will confine the plasma to the region within them.

This concept is the foundation for several current nuclear fusion reactor designs, two

of which are Tokamaks and Stellarators. For the purposes of this research, we will

focus on the tokamak, a toroidal machine with magnetic coils surrounding it. These

coils create toroidal and poloidal fields to confine the plasma.

One tokamak in particular is the framework for the following thesis — Common-

wealth Fusion Systems’ flagship tokamak, SPARC. Commonwealth Fusion Systems is
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Figure 1.2: A plot comparing numerous fusion reactors and their associated fusion
power gain ratios in relation to their triple product parameters. [10]

one of the several fusion startup companies taking advantage of the gap in sustainable

energy sources. They are headquartered in Devons, MA, where SPARC is currently

under construction and is expected to be operational in 2025 [8]. Once complete,

SPARC is expected to reach a fusion power gain of Q ⇡ 10, where Q is the ratio of

energy output to energy input [9]. Reaching Q = 1 means a machine has reached

an energy break-even point, and SPARC’s expectation would be a breakthrough in

magnetic confinement fusion energy. In Fig.1.2, we can see SPARC’s fusion power

gain compared to many other fusion systems, demonstrating the expected opera-

tional regime. Preparing adequate predictive analysis is imperative as the first run of

SPARC approaches.

The primary objective of this thesis is to conduct predictive analysis regarding
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the opacity of SPARC. More specifically, we aim to determine if neutral particles are

predominantly ionizing outside of the separatrix. This is achieved using neutral den-

sity profiles produced via synthetic SPARC data as inputs to KN1DPy, a 1D kinetic

neutral transport code. If the profiles are largely centralized outside of the separatrix,

neutral recycling will play a weaker role in fueling thus CFS must rely on alternative

fueling practices to power SPARC. Prior to accomplishing these results, KN1DPy

was developed by translating the original version from IDL into Python. This trans-

lation allowed for increased access and ease of use. Furthermore, the structure and

development of KN1D form a substantial section of the following work.

The current chapter aims to lay the groundwork necessary to follow the subsequent

thesis, organized as follows. Chapter 2 will o↵er the theory behind neutral particles

and how they fuel the plasma core. This then leads into a discussion of opacity and

the associated neutral reactions which can a↵ect said opacity. The second half of

the chapter then gives an in-depth overview of KN1DPy, including its structure and

the process of translating KN1D from IDL into Python. Chapter 3 will then explain

the synthetic data used as inputs for KN1DPy and the various parameters we chose

to change, allowing us to analyze the opacity. This is followed by Chapter 4, which

aims to discuss the simulated neutral density profiles and their implications for the

anticipated opacity of SPARC. Lastly, in Chapter 5, we will summarize the results

and their implications, along with an outline of how future work could follow.
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Chapter 2

Plasma Opacity and it’s A↵ects on
Neutral Recycling

2.1 Tokamak Physics

In current-day tokamaks, neutral particles play a significant role in ensuring the

e�ciency of the machines [11]. Specifically, neutrals go through a cyclical process

known as neutral recycling, where plasma shifts away from the core and recombines

at the edge. This is due to a drop in temperature at the edge of the confined region

because of heat exhaust. The recombination results in “cold” neutrals, which are

approximately 3 eV and free to move through the tokamak regardless of magnetic

flux lines. As these neutrals move through the tokamak, they collide with the plasma

and other neutrals, resulting in their ionization. This cycle allows for consistent

plasma density in the core and, thus, consistent fusion reactions.

For neutral recycling to contribute to the plasma density in the core, neutral

particles must ionize inside the separatrix. The separatrix is the last closed magnetic

flux surface displayed in red in Fig.2.1. Therefore, magnetic fields confine all charged

particles inside the separatrix, while those outside are unconfined. This asserts that

neutrals ionizing outside the separatrix can not contribute to the plasma core and

will divert toward the wall instead. The region outside of the separatrix is described

6



Figure 2.1: Poloidal cross section of SPARC. The plasma separatrix is red, the central
solenoid and poloidal field coils are blue, and the divertor and first limiting surfaces
are in black. [9]

as the scrape-o↵ layer because charged particles in this region are not confined and

are left to get “scraped o↵” towards the divertor. The ability for neutrals to cross

the magnetic field lines prior to ionization is described as the opacity of the plasma.

The concept of opacity is derived from optics, where it refers to the extent to which

electromagnetic radiation photons cannot pass through a material [12]. In the context

7



of plasma physics, a similar concept is used where the substance is plasma, and instead

of photons, neutral particles penetrate. In plasma physics, opacity depends on the

plasma temperature and electron density, and the following empirical equation can

characterize it,

⌘ = �ne =
1

�d

(2.1)

Here, � represents the ionization cross section, ne is the electron density, and � is the

neutral penetration depth [13]. Since ionization cross section depends on temperature,

Eq.2.1 demonstrates that as temperature and electron density increase in the plasma,

opacity also increases. As a result neutrals in tokamaks with higher electron densities

and temperatures will have a shorter penetration depth. If the neutral penetration is

reduced, then neutral recycling will have a weaker impact on fueling the plasma core.

Another factor that impacts neutral penetration depth is the collisional reaction

called charge exchange. Charge exchange occurs when a neutral atom and an ion

collide, and an electron is exchanged between the two atoms as expressed below [14].

A+ +B �! A+B+ (2.2)

While the net charge of this reaction stays constant, the energy of the final neutral

dramatically increases. Charge exchange reactions can increase a “cold neutral” from

3 eV to often 100 eV or higher. As one can imagine, neutrals at this energy can

penetrate further into the plasma core than the “cold neutrals” passively moving

inwards. Therefore, charge exchange can a↵ect the opacity in ways Eq.2.1 does not

consider.

As previously mentioned, the next generation of tokamaks, including SPARC,

will have higher power gain, meaning higher energy output. To achieve higher energy

output, these systems maximize the fusion triple product,

n⇥ T ⇥ ⌧E (2.3)
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where n is the plasma density, T is the plasma temperature, and ⌧E is the energy

confinement time [15]. Increasing any of these three values increases the likelihood of

fusion reactions, thus increasing energy output. This relationship is further outlined in

Fig.1.2, which plots the fusion power gain in relation to the triple product parameters.

While some machines, such as ITER, are increasing confinement time by making a

larger tokamak (R0 = 6.02m), SPARC is taking a di↵erent approach [16].

The CFS team uses REBCO high-temperature superconductors to create a high

magnetic field (B0 = 12.2 T). The high magnetic field allows for a more compact

design with major radius R0 = 1.85 m and minor radius a = 0.57 m [9]. As a result,

SPARC will also have higher temperature and electron density, thus making it more

opaque to neutrals [11]. As explained above, more opaque plasma results in neutrals

ionizing outside of the separatrix; thus, neutral recycling will have a smaller e↵ect

on fueling. We can assess the opacity of SPARC using neutral density profiles. The

density profile gives insight into where neutrals are concentrated, and low density

inside the separatrix would mean low penetration depth. Resulting in a decrease in

neutral recycling’s contribution to fueling. To provide said neutral density profiles

for SPARC, we will use the Python version of KN1D.

2.2 KN1D

KN1D,Kinetic Neutral 1D Transport Code, is a 1-dimensional spatial, 2-dimensional

velocity kinetic neutral recycling algorithm for atomic and molecular hydrogen in an

ionizing plasma [17]. B. Labombard developed the program in the early 2000s, using

IDL, Interactive Data Language. Since its release, KN1D has played a strong role

in tokamak research. One example of said use, among many, can be seen in Fig.2.2.

KN1D solves for the molecular and atomic hydrogen distribution functions, fH2 and

fn. These functions describe the probability of various positions and velocities for

9



H and H2 within the plasma. Since KN1D only considers the x spatial dimension,

it is assumed that fH2 and fn are rotationally symmetrical. Therefore, they can be

described in terms of the velocity in the x direction across the minor radius from

the wall to core, vx, and the radial velocity, vr. Using the distribution functions,

KN1D then produces temperature and density profiles for neutral particles and ions,

along with the molecular hydrogen dissociation rate profiles. The numerical process

Figure 2.2: Previous KN1D simulations of the edge neutral transport of DII-D (left)
and Alcator C-MOD (right). The graphs from top to bottom: a) computed ion
density, b) resulting neutral density, c) local gradient scale lengths and d) profile
shapes for ionization [20].

begins with the overhead program KN1D, which requires inputs for 1-D geometric

dimensions (limiter, scrape-o↵ layer, core), plasma profiles (density, ion and electron

temperature), and the molecular neutral pressure at the wall. Synthetic examples

of the plasma profiles are shown in Fig.3.2. This top-level program also sets up the

10



numerical grid and the boundary conditions. Furthermore, KN1D iterates through

the two main subprograms Kinetic H2 and Kinetic H, which solve for for fH2 and

fn respectively.

To find the two distribution functions each program applies Boltzmann equation,

a partial di↵erential equation commonly used to model statistical systems that are

not in equilibrium [18].

vx
@f

@x
=


@f

@t

�

c

+ S (2.4)

Where (@f/@t)c accounts for the various collisions each species can experience, and

S is the source term. For molecular hydrogen, the source term comprises the source

distribution function from the wall, 6 electron impact ionization reactions, and the

molecular hydrogen dissociation rate. The wall source distribution function is as-

sumed to be Maxwellian, and the reaction rates are calculated via Sawada [19]. As

for the Boltzmann equation involving fn, the source term is still comprised of the

molecular hydrogen dissociation rate but is not directly a↵ected by the wall source

distribution function. Moreover, it uses 10 electron impact ionization reactions rather

than 6. The collisional term for both species consists of the collisional charge exchange

operator and three elastic collisions.

The two subprograms then solve the Boltzmann equation via the method of suc-

cessive generations [21]. This method begins by breaking the complete Boltzmann

Equation into more minor constituents that correlate to each population of neutrals.

The complete equation can then be represented in the following form,

NX

j=1

vx
@f

@x
= swallj�1 + �cxj�1 � ↵cfj�1 + !Mj�1 (2.5)

Here, swall correlates to the side wall source distribution, �cx is the charge exchange

source, ↵c is the charge exchange collisional frequency, and !M is the elastic mo-

mentum transfer frequency. These terms are calculated via direct integration, except
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that of !M . The integration to calculate the momentum transfer frequency would

take more computational power than the rest of KN1D combined. As a result, KN1D

uses the BGK model to approximate the frequency [22].

The program then solves for the individual distribution functions via integra-

tion. The numerical procedure begins with “0th generation”, which refers to the

Boltzmann equation for the first population of neutrals. This population of neutrals

correlates to the portion of the total distribution function una↵ected by ionization,

charge exchange, or elastic scattering. Therefore, the Boltzmann equation for the

“0th generation” is as follows,

vx
@f0
@x

= SH2 f̂w � ↵cf0. (2.6)

Where f̂w is a normalized Maxwellian distribution of neutral particles at the wall tem-

perature. From here, Kinetic H and Kinetic H2 iterate through the subsequent

generations, which include the ionization, charge exchange, and elastic scattering

terms. As they iterate through each generation, the various portions of the distribu-

tion function along the numerical grid are calculated. Once every generation of the

distribution function is gathered, their sum equals the total distribution function.

2.3 KN1DPy

While more accurate and advanced kinetic neutral models, such as the Monte Carlo

Transport code EIRENE, exist, KN1D’s 1-dimensional nature o↵ers distinct benefits

[23]. Due to the simplicity of the 1-dimensional Boltzmann equation, KN1D requires

less computational power and has a shorter runtime compared to other codes. These

qualities make KN1D more e�cient for predictive analysis. With shorter runtimes,

users can adjust the input parameters and receive almost immediate feedback on how

those parameters a↵ect the system.
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Furthermore, in the context of opacity, KN1D provides deeper insight than the

empirical equation (Eq. 2.1) because it accounts for charge exchange. As previously

mentioned, charge exchange results in high-energy neutrals that can penetrate further

into the plasma compared to their “cold” counterparts. Thus, KN1D can o↵er a more

comprehensive understanding while still minimizing computational time and power.

However, a significant drawback of KN1D is that it was written in IDL, an array-

based language which has declined in use since its development in the 1970’s. Not

only is IDL di�cult to couple with current major languages and programs, but it is

also not an open-source language. In response to the di�culties of IDL, we developed

a Python version of KN1D, titled KN1DPy, to produce simulated neutral density

profiles for SPARC. This Python version is a one-to-one recode of the IDL version,

thus keeping the same structure. Nonetheless, there is potential for updated atomic

physics later down the line.

As previously stated, IDL is an array-based language, whereas Python is an object-

oriented language. While the most simple functions are shared between the two, their

core functionality varies. To circumvent some of the di�culties caused by these dif-

ferences, KN1DPy employs several Python libraries. The main library used to carry

out array operations is NumPy, an open-source scientific computing package. While

NumPy recreates the advanced array manipulation that is standard in IDL, the two

languages use opposite indexing methods. NumPy uses row-column indexing, whereas

IDL uses column-row indexing. Since array operations power a significant portion of

KN1D, this was a crucial distinction when writing KN1DPy. Furthermore, KN1DPy

uses SciPy, another open-source package for mathematics and science. SciPy facili-

tates the series of interpolations required for the computational method. Appendix

B provides a more in-depth look at the common translations.

While understanding the conceptual di↵erences between the two languages is cru-

13



cial, application is often not as simple. Consequently, KN1DPy underwent significant

debugging throughout its development. The primary debugging technique was a top-

down approach. This involved running the overhead KN1D program until an error

occurred. In the event of an error, we followed the Python traceback to the file that

required debugging. This approach bypassed running each file to check for errors, a

practical reality since KN1D consists of over 40 separate files.

Figure 2.3: Graph of an interpolation used in the subprogram
create kinetic h mesh.

Suppressing compilation and runtime errors is only a fraction of the required steps

to ensure a working program; verifying the accuracy of the physics is also vital. One

can verify a portion of the functionality by graphing the interpolation of internal files.

Interpolation occurs frequently in the numerical process; however, for simplicity, the

following discussion will focus on interpolation within create kinetic h mesh. This

14



Figure 2.4: A comparison of IDL and Python neutral density profiles using Alcator
C-MOD Data. The IDL results are on the left and the python results on the right,
with atomic and molecular hydrogen on top and bottom respectively.

function is the second subprogram called within KN1D, and it defines the velocity

and positional meshes for atomic hydrogen, which are later used in the method of

successive generations. To calculate said meshes, create kinetic h mesh interpo-

lates over the plasma profiles given as inputs. As seen in Fig. 2.3, the interpolated

mesh closely aligns with the data inputs. The agreement between the data and the

interpolation further verifies the accuracy of KN1DPy.

We commonly verified KN1DPy via direct comparison to the IDL outputs since

the original KN1D has already been extensively verified and validated. We used data

from the retired Alcator C-Mod Tokamak as inputs for both KN1D and KN1DPy
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to compare. During this process, it was found that the KN1DPy iterations after

the “1st generation” were not operating correctly, causing nonphysical results for

the atomic hydrogen neutral density profiles. That being said, the “0 generation”,

which does not include charge exchange or elastic collisions in the calculation, and

the “1st generation”, which does, did yield meaningful results. Unfortunately, we

were limited to only accessing the total IDL results. Therefore, we compared the

sum of the Python “0th” and “1st generations” to the sum of every IDL generation.

While this could be better, it provides a general understanding of the accuracy and

performance of KN1DPy. As shown in Fig. 2.4, the IDL and Python outputs share

similar shapes and widths. However, the Python outputs are smaller by two orders of

magnitude. This discrepancy is expected since the KN1D outputs account for more

atomic reactions, and KN1DPy does not.

Moreover, there appear to be some errors occurring in the scrape-o↵ layer, as

shown by the discrepancy of the atomic hydrogen profile left of the separatrix, x =

0.17 m. The lack of calculations for elastic collisions further compounds these errors.

Lastly, there is an issue in how KN1DPy determines the resolution of fH2 ; there are

far fewer points in this graph, and we are not seeing as much of the profile.

While we cannot currently include the later generations in the calculation, and

there seem to be errors in the scrape-o↵ layer and resolution of molecular hydrogen,

we can still gather information on how these profiles change as electron temperature

and densities increase. Depending on how the slope and maximums change, we can

extrapolate useful insights into the role of charge exchange and the opacity of SPARC.

Keeping in mind that we cannot discuss the specific values of neutral densities at

any given point due to the aforementioned errors. More specifically, we can observe

the neutral particle ionization trends and how the high electron temperatures and

densities of SPARC could a↵ect the neutral penetration depth compared to profiles
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with low electron temperatures and densities.
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Chapter 3

SPARC Predictive Analysis

Currently, the SPARC team uses code to produce models for ICRH heating,

turbulent transport, pedestal structure, edge profiles, magnetohydrodynamics (MHD)

stability, and ripple loss of fast alphas [9]. However, they lack code for predictive

neutral density profiles. Using KN1DPy, we can produce neutral density profiles and,

in turn, assess the opacity of SPARC. A majority of the KN1DPy inputs are geometric

Figure 3.1: Simulated profiles for electron temperature (left), ion temperature (center)
and electron density (right) [24].

parameters that have already been published for SPARC. These include x-values over

the minor radius a = 0.57m, the separatrix coordinate, the wall coordinate, and the

limiter. Since SPARC uses a divertor instead of a limiter, the limiter coordinate is

treated as equal to the wall coordinate. Furthermore, SPARC has not published data
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regarding their diagnostic probe geometry and pressure. Therefore, this portion of the

geometry is borrowed from Alcator C-Mod. With that said, as more information is

published, we could revise this in the future. Aside from the geometric parameters, the

principle inputs are the background profiles for electron density (ne), ion temperature

(Ti), and electron temperature (Te), where the last two are usually equal. As this is

a predictive analysis, we do not have experimental profiles; rather, the plasma profile

inputs will be synthetic approximations.

In P. Rodriguez-Fernandez et al, CFS published simulated plasma profiles, shown

in Fig. 3.1, that were simulated using TRANSP, an advanced transport code [24].

While each profile o↵ers immense detail, there are few, and they do not cover a large

range of possible temperature and densities at the edge. In response, KN1DPy will

use simplified profiles based on the modified hyperbolic tangent function. This will

allow us to better assess each parameter’s role in the plasma’s opacity.

When fitting data for plasma temperature and density in a tokamak, it is standard

to use a modified hyperbolic tangent function [25]. This practice dates back to the 80s

when the modified tanh approximation was empirically derived [26]. The modified

hyperbolic tangent is shown in Eq. 3.1. It pairs the hyperbolic tangent function with

the Heaviside function, resulting in the signature pedestal structure at the edge and

a steep slope at the core.

Y = A tanh (2⇥ (xSYM � x)/W ) + B

Y = Y +M(xKNEE � x), x < xKNEE (3.1)

Here, A is simply the scaling parameter, xSYM is the center of the pedestal structure,

and W is the width of the pedestal structure. Moreover, B is the o↵set, M is the

slope, and xKNEE is the position at which the steep gradient of the pedestal rounds

out [25][27].
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Figure 3.2: A synthetic ion temperature profile (left) and ion density profile (right).

Using Eq. 3.1, five temperature profiles ranging from an edge temperature of 2

keV to 10 keV were produced. In conjunction with the five temperature profiles, five

density profiles ranging from 0.6⇥1020 m�3 to 3⇥1020 m�3 at the edge were also cal-

culated. These ranges span the temperature and densities similar to those measured

in C-MOD, progressing through the expected values of SPARC, all while using the

SPARC geometry. We can then input each temperature profile into KN1DPy while

the density profile is unchanged and vice versa. The resulting neutral density profiles,

sweeping across both temperature and electron density produced, allow us to under-

stand the impact of each parameter. The profiles in the upper half of that range are

of particular interest because SPARC is expected to have edge measurements close

to 10 keV and 3 ⇥ 1020 m�3 [9]. Allowing us to develop expectations for SPARC’s

opacity.

After obtaining initial simulation results, information regarding the opacity is

determined based on the neutral penetration depth and the profile gradients. If

the neutral density is concentrated outside the separatrix, i.e., x > 0.57, or if the

profiles have steep gradients at higher temperatures and densities, then plasma in

SPARC will likely be more opaque to neutrals. Therefore, neutral recycling will play
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a weaker role. Furthermore, we can compare the profiles with charge exchange to

those without, demonstrating the degree to which charge exchange can a↵ect neutral

penetration depth and opacity. This is especially informative since Eq. 2.1 does not

account for this reaction. If the profile has a less steep slope than those with charge

exchange, one can infer that charge exchange does play a significant role in neutral

penetration depth. This could imply that SPARC will be less opaque than Eq. 2.1

predicts.
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Chapter 4

KN1DPy SPARC Profiles

Due to complications regarding iterating through the generations and the associ-

ated elastic collisions, we, unfortunately, cannot observe the complete e↵ect of charge

exchange on opacity. Furthermore, the results show that the program is not accu-

rately calculating the neutral density profile in the scrape-o↵ layer. Therefore, we

cannot determine whether more neutrals are ionizing outside the separatrix at higher

temperatures and electron densities. However, we can observe how the neutral den-

sity profiles will change as electron density and temperature increase. Additionally,

we can gain insight into how charge exchange a↵ects the neutral penetration depth

by comparing neutral penetration depths at high electron temperatures and densities

to those at low electron temperatures and densities.

Before examining theoretical data for SPARC, we examined the impact of in-

creasing these parameters on profiles, which we have shown are within the physical

expectations, keeping in mind that there are some errors. Consequently, we multi-

plied the electron density profile input from Alcator C-Mod by factors of 1 through 5.

In Fig.4.1, one can see that increasing the electron density profile did cause a steeper

gradient for molecular and atomic hydrogen compared to that of Fig.2.4. This fits the

theory outlined in Eq.2.1, which states that opacity will increase as electron density

increases.
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Figure 4.1: The neutral density profiles of molecular (left) and atomic (right) hydro-
gen based on the CMOD data sets. The profiles are labeled based on how much the
initial electron density was multiplied by. Meaning the lowest density input, was the
initial data multiplied by 1, and the highest was multiplied by 5.

After observing the e↵ect of increasing the electron density profile for the Alcator

C-Mod data, we proceeded with the synthetic data inputs. Before discussing the

final results of these runs, it is essential to consider the mesh adjustments made to

KN1DPy for the SPARC data. The initial molecular hydrogen neutral density profiles

only included 3 points, as the create kinetic h2 mesh function decided. The lack

of resolution inhibits meaningful extrapolation because few trends can be identified

with a small data set. In response, we increased the upper cuto↵ for the x coordinate

of molecular hydrogen to the maximum value, which still allows the program to run

at a reasonable timescale. This resolution error is likely because the meshes could

have been calculated based on C-MOD geometry, something we did not realize until

significantly later.

Once we made the above observation, this minor adjustment allowed for superior

results. Fig.4.2, displays the neutral density profiles for atomic and molecular hydro-

gen across a range of electron temperatures while the electron density stayed constant

with an edge value of 2 ⇥ 1020 m�3. Here, we see that at the highest temperature,

the purple plot, the neutral density at the separatrix is lowest. This aligns with ex-
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pectations since atomic collisions and ionization are more likely to occur at higher

electron temperatures, resulting in lower neutral density. Furthermore, the gradient

of the atomic hydrogen profile at high electron temperature is less steep, as evident

by its intersection with the other profiles. Based on the previous explanation, one

may expect that higher electron temperatures will result in more ionization in total.

However, this gentle gradient is caused by charge exchange. As detailed in Section 2,

charge exchange results in higher energy neutrals, allowing them to penetrate further

into the plasma prior to ionization and, thus, a smaller gradient. So, the opacity does

not align with the predictions outlined in 2.1 at high electron and ion temperatures.

Figure 4.2: The neutral density profiles of molecular (left) and atomic (right) hydro-
gen based on the SPARC synthetic data sets with edge temperatures ranging from
2 keV to 10 keV and an edge density of 2 ⇥ 1020 (m�3). The profiles are labeled
based on how much the initial input temperature was scaled by. Meaning the lowest
temperature input was 2 keV scaled by 1, and the highest was 2 keV scaled by 5 i.e.
10 keV.

The e↵ects of charge exchange are further observed in Fig. 4.3, which compares

the atomic hydrogen neutral density profile after the “0th generation” to after the

“1st generation”. Since the “0th generation” does not include charge exchange but

the “1st generation” does, this demonstrates the e↵ect of charge exchange on neutral

penetration depth. The “0th generation”, represented via the blue line, has a steeper

gradient than that of the “1st generation”, represented via the orange line. Once
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Figure 4.3: A comparison of the atomic hydrogen neutral density profiles with charge
exchange and without.

again, the change in gradient is because charge exchange results in higher energy

neutrals, which can penetrate further before ionization.

While the temperature sweeps demonstrate a strong influence from charge ex-

change, this trend is not translated to the electron density sweeps. In Fig.4.2, we see

the neutral density profiles for atomic and molecular hydrogen across a range of elec-

tron densities while the electron temperature stayed constant with an edge value of 2

keV. In this graph, the profile with high electron density also has the highest neutral

density. High ion and electron densities require a larger source, i.e., larger neutral

densities. Furthermore, this profile has a steeper gradient than the others, which is

the opposite result shown in the temperature sweeps, Fig.4.4. In conjunction with

a steeper gradient, we can also see the neutral density global maximum occurring

closer to the separatrix. This implies that the plasma will be more opaque at higher

electron densities, so more neutrals will ionize outside the separatrix. These results

demonstrate that high electron densities have a more substantial a↵ect on the opacity

than charge exchange. Therefore, the opacity of SPARC will align closely with the
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expectations outlined in 2.1.

Figure 4.4: The neutral density profiles of molecular (left) and atomic (right) hydro-
gen based on the SPARC synthetic data sets with edge electron densities ranging from
0.6 ⇥ 1020 to 3 ⇥ 1020 m�3 and an edge electron temperature of 7 keV. The profiles
are labeled based on how much the initial input density was scaled by. Meaning the
lowest temperature input was 0.6⇥ 1020 scaled by 1, and the highest was 0.6⇥ 1020

scaled by 5, i.e. 3⇥ 1020 scaled by 5.

While the e↵ects of the high electron densities appear stronger than those of charge

exchange, the gradients are still less steep than they could be. Fig.4.5 compares the

atomic hydrogen neutral density profile after the “0th generation” to after the “1st

generation”. The “0th generation”, represented via the blue line, once again has a

steeper gradient than the “1st generation”, represented via the orange line. As before,

the change in gradient is because charge exchange results in higher energy neutrals,

which can penetrate further before ionization. So, while the high-temperature plasma

causes steeper gradients overall, charge exchange somewhat diminishes that e↵ect.

Due to the aforementioned setbacks regarding the scrape-o↵ layer, the calculations

of later generations, and elastic collision calculations, the results are somewhat incom-

plete. Still, the neutral density profiles outlined above corroborate the expectation

that increasing the electron density of the plasma makes it more opaque to neutrals.

At the same time, charge exchange can decrease the opacity at high temperatures, but

soon, high electron densities overpower its e↵ect. A higher concentration of neutrals
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Figure 4.5: A comparison of the atomic hydrogen neutral density profiles for an edge
electron density of 3⇥ 1020 m�3 with and without charge exchange.

ionizing outside of the separatrix neutral recycling will likely have a weaker role in

fueling the plasma core. As a result, we can expect that the SPARC team and other

future tokamaks will have to rely on alternative fueling methods such as gas pu�ng

and pellet injection [28].
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Chapter 5

Conclusion

The next generation of tokamaks, including CFS’s SPARC, will have higher tem-

peratures and electron densities, producing more opaque plasmas. Using KN1DPy,

we generated neutral density profiles for SPARC, an area of predictive analysis that

has yet to be explored. While the functionality to calculate the distribution functions

after the “1st generation” and the elastic collisions are not yet ready, the neutral den-

sity profiles still showed overarching trends regarding the opacity of SPARC. More

specifically, we saw in Fig.4.2 that as temperature increases, with a constant edge

electron density of 2⇥1020 m�3, the neutral density at the separatrix decreases. This

aligns with our expectations since higher temperatures result in more frequent col-

lisions and ionization. Furthermore, the higher temperature ranges had less steep

gradients, a sign that charge exchange significantly a↵ects opacity at middle-range

densities. On the other hand, Fig.4.4 demonstrated that as the electron density in-

creases, there is higher neutral density at the separatrix and steeper gradients. The

increase in neutral densities is expected because the high electron density requires

large neutral sources. Not only were the neutral densities higher — their maximum

was also closer to the separatrix. This shift, paired with the steep gradients, shows a

decrease in the e↵ect of charge exchange. So, the e↵ect of high electron densities, as

outlined in Eq.2.1, overpowers the countere↵ect associated with charge exchange.
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Combining these results, we expect the high electron densities and temperatures of

SPARC to cause a plasma with higher opacity, corroborating the prediction outlined

by Eq.2.1. While charge exchange does play a vital role in extending the neutral

penetration depth, it is not stronger than the increased ionization caused by high

electron and ion densities. The increased opacity and shortened penetration depth

imply that neutral recycling can not support fueling to the same extent that it has in

previous machines. Therefore, SPARC and other future tokamaks will need to rely

on alternative forms of fueling such as gas pu�ng and pellet injection [28].

Lastly, we could not gather su�cient data on whether more neutral particles would

ionize outside the separatrix due to errors in the scrape-o↵ layer. This requires further

investigation in future work. Moreover, the results were limited due to the lack of

calculations past the “1st generation”. To expand on the above results, it would be

ideal to revise KN1DPy further to allow for this functionality. Once revised, not

only would it give more accurate results, but it would also allow for more discussion

surrounding the role of charge exchange in determining the opacity of the plasma.

Currently, the charge exchange calculations are limited by the number of generations.

With the revised code, charge exchange could likely play a more significant role,

allowing for an expanded discussion regarding the opacity of SPARC and neutral

recycling’s role in fueling the plasma core.
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Appendix A

IDL to Python

Shown below in Table A.1, are a series of commonly used translations from IDL to

Python. For ease of reading the Python libraries NumPy and SciPy are abbreviated

to np and sp respectively. Furthermore, IDL di↵erentiates a floating-point array from

a double-precision, floating-point array. This is often denoted by a function starting

with a “d” for double-precision and “f” otherwise. Python, however, does not make

this distinction and so several Python functions are repeated in the table below.

Table A.1: A table demonstrating some translations between IDL and Python, where
m and n are the dimensions of the chosen array. Furthermore, A is the array of
interest and a is simply a specified integer.

IDL Python Comments

fltarr(n,m) np.zeros(m,n)
Creates an array full of
zero with m rows and n

columns

dblarr(n,m) np.zeros(m,n)
Creates an array full of
zero with n rows and m

columns

dindgen(n) np.arange(n)
Creates a 1D array where
each element counts up

from 0 to n� 1

findgen(n) np.arange(n)
Creates a 1D array where
each element counts up

from 0 to n� 1
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lindgen(n) np.arange(n)
Creates a 1D array where
each element counts up

from 0 to n� 1

reform(a, n,m) np.shape(a, (m,n))

Reshapes the array a to
be the specified

dimensions. In this case
a ends with m rows and

n columns.

reverse(a) np.fliplr(a)
Reverses the rows of the
array a; the columns are

una↵ected.

reverse(a, 2) np.flipud(a)
Reverses the columns of
the array a; the rows are

una↵ected.

shift(a) np.roll(a)

Shifts the elements of
array a over one.

Elements that would
shift o↵ the end of a are
put at the beginning.

n elements(a) np.size(a)
Returns the number of
elements in array a.

total(a) np.sum(a)
Takes the sum of every
element in array a.

where(a > n) np.argwhere(a > n).T

Finds the indices which
satisfy the condition and
generates them in an
array. In this case the
condition is when the
element of a is greater
than the variable n.

interpol(y, x)
sp.interpolate.
interp1d(x, y)

1D interpolation over x
and y arrays.
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Appendix B

Code Sample for Synthetic Data

The following is the Python code that populates the synthetic data for a range of

temperatures using a modified hyperbolic tangent function. It then runs KN1DPy

using these data sets and plots the results.

/***********************************************************/

/* Gwendolyn R. Galleher */

from KN1D import KN1D
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from scipy.io import readsav
from scipy import interpolate
def read_sav(file_name):

# This function will print the data from an IDL .sav file
# Inputs:
# file name - the name of the .sav file
# Outputs:
# sav_data - a dictionary containing all of the data

path = ’//Users/Gwen/Desktop/Plasma_Physics/kn1d/’ + file_name
sav_data = readsav(path)
return sav_data

# Pull Cmod Data for the LC and PipeDia parameters
data_file = read_sav(’1090904018_950to1050.sav’)

keys = data_file.keys() # gets the keys from the dictionary
keys_list = list(keys) # puts the keys into a list
print(keys_list)

values = data_file.values() # gets the values from the dictionary
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values_list = list(values)

LC = values_list[14]
PipeDia = values_list[15]

# generate empty lists to save data
nH2_tot = [[], [], [], [], []]
nH_tot = [[], [], [], [], []]
xH2_tot = [[], [], [], [], []]
xH_tot = [[], [], [], [], []]

# generate text file to save data to
save_data = open("kn1d_sparc_temp_sweep_data.txt", "w")
save_data.write("Data for KN1DPy SPARC Temperature sweep: \n")
save_data.close()

for i in range(1, 6):

# synthetic data for temperature
a = i
b = a + a/20

CORE = 0.58 - 0.4
WALL = 0.58 - 0.58
X_sep = 0.58 - 0.57

WIDTH = 0.01
XSYM = X_sep + WIDTH/2
XKNEE = XSYM + WIDTH/2

SLOPE = 5*a

pts = 61
x = np.linspace(WALL, CORE, pts)
SP = round(((CORE - XKNEE) / (CORE - WALL) * pts))

x_ = np.linspace(XKNEE, CORE, SP)
y = a * np.tanh(-(2 * (XSYM - x) / WIDTH)) + b
y_ = y - np.append( np.zeros(pts - SP), SLOPE * (XKNEE - x_))

Ti = y_ * 1000
Te = y_ * 1000

# Synthetic data for density
a = 1
b = a + a/20

CORE = 0.58 - 0.4
WALL = 0.58 - 0.58
X_sep = 0.58 - 0.57
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WIDTH = 0.01
XSYM = X_sep + WIDTH/2
XKNEE = XSYM + WIDTH/2

SLOPE = 5*a

pts = 61
x = np.linspace(WALL, CORE, pts)
SP = round(((CORE - XKNEE) / (CORE - WALL) * pts))

print(SP)
x_ = np.linspace(XKNEE, CORE, SP)
y = a * np.tanh(-(2 * (XSYM - x) / WIDTH)) + b
y_ = y - np.append( np.zeros(pts - SP), SLOPE * (XKNEE - x_))

ne = y_ * 10**20

xlim = WALL
xsep = X_sep
GuageH2 = 0.100
mu = 2
vx = np.zeros(61)

print(’x’, x.size, x)
print(’xlim’, xlim)
print(’xsep’, xsep)
print(’GuageH2’, GuageH2)
print(’mu’, mu)
print(’Ti’, Ti.size, Ti)
print(’Te’, Te.size, Te)
print(’ne’, ne.size, ne)
print(’vx’, vx.size, vx)
print(’LC’, LC.size, LC)
print(’PipeDia’, PipeDia.size, PipeDia)

# KN1D(x, xlimiter, xsep, GaugeH2, mu, Ti, Te, n, vxi, LC, PipeDia, \
# truncate = 1.0e-3, refine = 0, File = ’’, NewFile = 0, ReadInput = 0, \
# error = 0, compute_errors = 0, plot = 0, debug = 0, debreif = 0, pause = 0, \
# Hplot = 0, Hdebug = 0, Hdebreif = 0, Hpause = 0, \
# H2plot = 0, H2debug = 0, H2debreif = 0, H2pause = 0)

xH2, nH2, GammaxH2, TH2, qxH2_total, nHP, THP, SH, SP, \
xH, nH, GammaxH, TH, qxH_total, NetHSource, Sion, QH_total, SideWallH, \
Lyman, Balmer = KN1D( x, xlim, xsep, GuageH2, mu, Ti, Te, ne, vx, LC, PipeDia)

# save data to lists
nH2_tot[i - 1] = nH2.tolist()
nH_tot[i - 1] = nH.tolist()
xH2_tot[i - 1] = xH2.tolist()
xH_tot[i - 1] = xH.tolist()

# calculate gradient
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f_H2 = np.array([xH2, nH2])
f_H = np.array([xH, nH])

grad_H2 = np.gradient(f_H2)
grad_H = np.gradient(f_H)
print(grad_H2)

#normalized gradient
nH2_sep = interpolate.interp1d(xH2, nH2, fill_value=’extrapolate’)(xsep)
ngrad_H2 = grad_H2/nH2_sep

nH_sep = interpolate.interp1d(xH, nH, fill_value=’extrapolate’)(xsep)
ngrad_H = grad_H/nH_sep

# save data into txt file
save_data = open("kn1d_sparc_temp_sweep_data.txt", "a")

data = [f"xH2_{i}: {xH2} \n", f"nH2_{i}: {nH2} \n", \
f"xH_{i}: {xH} \n", f"nH_{i}: {nH} \n"]
save_data.writelines(data)

save_data.writelines("Gradient Data \n")

grad_data = [f"grad_H2{i}: {grad_H2} \n", f"grad_H{i}: {grad_H} \n", \
f"ngrad_H2{i}: {ngrad_H2} \n", f"ngrad_H{i}: {ngrad_H} \n"]
save_data.writelines(grad_data)
save_data.close()

print(’nH2’, nH2)
print(’GammaxH2’, GammaxH2)
print(’TH2’, TH2)
print(’qxH2_total’, qxH2_total)
print(’nHP’, nHP)
print(’THP’, THP)
print(’SH’, SH)
print(’SP’,SP)
print(’xH’, xH)
print(’nH’, nH)
print(’GammaxH’, GammaxH)
print(’TH’, TH)
print(’qxH_total’, qxH_total)
print(’NetHSource’, NetHSource)
print(’Sion’, Sion)
print(’QH_total’, QH_total)
print(’SideWallH’, SideWallH)
print(’Lyman’, Lyman)
print(’Balmer’, Balmer)

print(’Press any key to continue’)
input()
print(’continuing’)
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nH2_mins = []
nH2_maxs = []
xH2_mins = []
xH2_maxs = []
nH_mins = []
nH_maxs = []
xH_mins = []
xH_maxs = []

for i in range(0, 5):
nH2_mins.append(min(nH2_tot[i]))
nH2_maxs.append(max(nH2_tot[i]))
xH2_mins.append(min(xH2_tot[i]))
xH2_maxs.append(max(xH2_tot[i]))
nH_mins.append(min(nH_tot[i]))
nH_maxs.append(max(nH_tot[i]))
xH_mins.append(min(xH_tot[i]))
xH_maxs.append(max(xH_tot[i]))

plt.figure(constrained_layout=True)
for i in range(1, 6):

plt.plot(xH2_tot[i - 1], nH2_tot[i - 1], linestyle = ’solid’, \
label = f’input scaled by {i}’)

plt.plot(np.full(10, 0.01), np.linspace(min(nH2_mins), max(nH2_maxs), 10), \
linestyle = ’:’, color = ’green’, label = ’sep’)
plt.xlabel(’Distance from Wall (m)’)
plt.ylabel(’Density (m$^{-3}$)’)
plt.yscale("log")
plt.ylim(min(nH2_mins), max(nH2_maxs))
plt.xlim(min(xH2_mins), max(xH2_maxs))
plt.title(f’Python SPARC Density Profile for H$_2$ (temp amp)’)
plt.legend()
plt.savefig(f’/Users/Gwen/Desktop/KN1DPy-Nick/Plots/nH2_sparc_temp_py_HR.png’, dpi = 800)
plt.show()

print(’Press any key to continue’)
input()
print(’continuing’)

plt.figure(constrained_layout=True)
for i in range(1, 6):

plt.plot(xH_tot[i - 1], nH_tot[i - 1], linestyle = ’solid’, \
label = f’input scaled by {i}’)

plt.plot(np.full(10, 0.01), np.linspace(min(nH_mins), max(nH_maxs), 10), \
linestyle = ’:’, color = ’orange’, label = ’sep’)
plt.xlabel(’Distance from Wall (m)’)
plt.ylabel(’Density (m$^{-3}$)’)
plt.yscale("log")
plt.ylim(min(nH_mins), max(nH_maxs))
plt.xlim(min(xH_mins), max(xH_maxs))
plt.title(f’Python SPARC Density Profile for H (temp amp)’)
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plt.legend()
plt.savefig(f’/Users/Gwen/Desktop/KN1DPy-Nick/Plots/nH_sparc_temp_py_HR.png’, dpi = 800)
plt.show()
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