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Abstract

Large Language Models (LLMs) have the capability to model long-term
dependencies in sequences of tokens, and are consequently often utilized to gen-
erate text through language modeling. These capabilities are increasingly being
used for code generation tasks; however, LLM-powered code generation tools
such as GitHub’s Copilot have been generating insecure code and thus pose a
cybersecurity risk. To generate secure code we must first understand why LLMs
are generating insecure code. This non-trivial task can be realized through in-
terpretability methods, which investigate the hidden state of a neural network
to explain model outputs. A new interpretability method is rationales, which
obtains the minimum subset of input tokens that lead to the model’s output.
Through obtaining rationales of insecure code, we are able to investigate the
relationship between model inputs and LLM-generated insecure code tokens
to further efforts in mitigating cybersecurity risks currently posed by LLM-
generated code.

Our experiment conducts a case study on two common, pervasive, and severe
real-world weaknesses: XSS injection (CWE-79) and SQL injection (CWE-89).
We first collected data, then obtained rationales for our weak Python code
samples via the greedy rationalization algorithm and a GPT-2 model. Thus, we
were able to identify the specific tokens which lead to insecure token generation.
We also explored an aggregation function for code rationales - structural code
taxonomy - which allowed us to investigate rationales on the local and global
levels. Our prototype study found good results: rationales for CWE-79 and
CWE-89 code samples have different structural code taxonomy mappings. This
implies that each LLM-generated weakness arises from different aspects of the
code context, and thus efforts to mitigate insecure LLM-generated code must
be precisely targeted to the weakness.



Chapter 1

Introduction

You taught me language, and my profit on’t
Is I know how to curse. The red plague rid you
For learning me your language!
The Tempest
WILLIAM SHAKESPEARE

1.1 The OpenAl Effect

On November 30th, 2022, OpenAl introduced the world to ChatGPT.
By December 6th the large-language model powered chatbot - which was still a
demo at the time - had garnered one million users [1]. Machine learning is noth-
ing new, but with ChatGPT’s immense popularity came increased awareness
and application of machine learning to pretty much everything: art, predictive
analytics, admissions departments, social media, email drafting, the classroom,
and software engineering.

OpenAl launched ChatGPT with an example of a developer asking the chat-
bot for help with debugging a block of code [2]. The idea of teaching a gen-
erative large language model to code has been a pursuit of computer scientists
and researchers for years. This area of research treats programming languages
as what they are - languages. In this context, we can treat code as sequences
of tokens with varying meanings and apply language modeling techniques to
generate code based on an input sequence. Such input sequences are known as
prompts or contexts, and the deep models learning the long- and short-range
relationships between tokens are known as neural language models [3]. Have
the recent quantum leaps in the field of neural language modeling enabled the
practical realization of a code generation model? Perchance.



1.2 Where Things Can Go Wrong

A few weeks ago, a friend of mine overheard this insult outside of Swem:
”She was completely Al generated”. Evidently if GenAl is being used as an
insult it is not perfect. Some pitfalls are outputs that lack necessary nuance,
detail, or are simply downright incorrect [4]. Code generation tasks are not
exempt from these problems. Although the generation of syntactically correct
code has improved in recent years as evidenced by the rising popularity of code
generation tools [5, 6, 7, 8], other concerns have risen; most critical of these is
the security of large language models [9]. Generated code can behave in such
a manner that the security of the code is flawed - in other words, generated
code can contain insecurities [10]. Such insecure code when implemented in a
product might be exploitable by end users, which opens the door to any number
of cybercrimes potentially resulting in compromised filesystems and personally
identifiable information, hacked Facebook accounts, or malware installation [11].
Unfortunately, teaching a model to generate secure code is not an easy feat; as
such, preventing insecure code generation necessitates understanding the factors
that can lead to it.

Enter cybersecurity, which helps us categorize, understand, and fix insecure
code; interpretability, which helps us understand how a model arrives at a pre-
diction; and rationales, a new interpretability method of analyzing what input
tokens generate the aformentioned prediction. Through combining these three
concepts, we can investigate what aspects of the learned relationship between
tokens results in insecure code generation.

Our study investigates insecure code generation by LLMs through appli-
cation of a new technique called sequential rationales [12] in a case study on
two types of insecure Python code. This interpretability technique extracts
the smallest subset of tokens in model prompts which produce the output -
when applied to insecure tokens, we can create rationales for insecure code. By
aggregating and mapping these tokens to an AST-based structural code taxon-
omy, we are able to identify what types of tokens most influence generation of
CWE-T79 (XSS injection) and CWE-89 (SQL injection). We apply this technique
through the greedy rationalization algorithm after compatibalizing the GPT-2
based Codeparrot-small model.

1.3 Overview

In the next chapter we will discuss related work. Chapters 3-5 provide the
necessary background for our study. In Chapter 3, we discuss cybersecurity with
a particular focus on the two Common Weakness Enumerations (CWEs) used
for our case study. Chapter 4 delves into language modeling and its particular
use for code generation tasks, and Chapter 5 provides the theory underlying
interpretability methods in conjunction with an explanation of rationales. After
this, we discuss details of our sequential rationales implementation with the
context of interpretability in Chapter 6, followed by an exhaustive introduction



of our data in Chapter 7. We then reach our results in Chapter 8 which contains
global and local analysis of rationales and potential implications for secure code
generation efforts. Finally, Chapter 9 is our conclusion. We also include two
appendices, which contain additional exploratory data analysis on our source
datasets and general information on state of the art LLM architectures.



Chapter 2

Related Work

Language Modeling in Software Engineering Natural language refers to
languages which develop in an unplanned manner from a community or group
of people [13]. Statistical processes are able to model natural languages with
large, nuanced vocabularies because their use is typically repetitive and thus
predictable. In 2012, Hindle et al. proposed that software can be treated
as a natural language for code generation because software is also used in a
repetitive and predictable matter [14]. As the machine learning field became
more popular over the following years, more research explored the capabilities
of NLMs [3]; in 2015, White et al. explored the application of NLMs to code,
outperforming previous n-gram models [15]. From here, research interests have
diverged. One focus is use in software engineering tasks such as code completion
and translation [3]. Another focus is exploring possible representations of LMs
for code [16, 17]. Regardless of the specific LM representation, it is clear that
SOTA performance across multiple software engineering tasks is obtained by
using a LM to represent code followed by targeted finetuning for the specific
task [14, 18, 19]. This is often actualized through use of a large language model
(LLM) [3].

Security of LLM-Generated Code However, LLM-generated code can con-
tain insecurities - particularly when trained on real code which can contain bugs
or exploitable weaknesses known as vulnerabilities. This can become a perva-
sive problem for the aforementioned increasingly popular LLM-based SE tools
used for code completion and translation. Pearce et al. examine the conditions
required for insecure code generation by one such SE tool, GitHub’s AT assistant
programmer Copilot. This examination revealed that almost half of the gen-
erated code created under conditions intended to potentially lead to insecurity
contained a MITRE Top 25 CWE weakness [9]. Insecure code which impacts
downstream tasks is extremely undesirable for SE purposes; thus, He et al. in-
troduced a twofold approach to minimizing insecure code generation through
controlled code generation. This new method leverages adversarial testing and
security hardening to control the output of a model without altering the model



parameters themselves [20].

Interpretability for LLMs Preventing insecure code generation first starts
with understanding insecure code generation; to do this, we must understand
why a given model generates its outputs. Interpretability is a collection of meth-
ods which make this possible through investigating the inner workings of the
model (i.e., hidden state h;), thereby explaining model predictions [21]. Much
recent work has investigated the importance and impact of varying granular
structural information inclusion in such methods for pre-trained NCMs. Palacio
et al. determined NCMs heavily emphasize code syntax and as such changes in
syntax influence model predictions; because code syntax is inherently structural,
this finding underscores the importance of including structural information in
interpretability methods [21]. Wan et al. concluded the same from a compre-
hensive study on two specific NCMs, CodeBERT and GraphCodeBERT. They
explored the role of word embeddings, self-attention, and induction in the mod-
els, determining that self-attention weights were similar to syntactic structures,
pre-training results in hidden state syntactic structure retention, and pre-trained
NCMs can induce syntax trees [22]. Palacio et al. expand upon this last finding
in 2023 through creation of a tool (ASTxplainer) which treats the syntax struc-
tures defined by ASTs as human-interpretable concepts. This tool allows for
practical interpretation of NCM predictions through using cross-entropy loss to
aggregate predicted tokens into their corresponding AST node type [23].

Explainability for LLMs Closely related to interpretability studies are ex-
plainability studies, which also aim to make sense of model predictions [23]. One
common explainability method is self-attention, which is easily adaptable for in-
terpretability purposes due to its inherent human-understandable nature [24].
However, the accuracy and validity of explanations provided by this method is
hotly debated. Some experiments conclude the method is reliable [25] [26], while
others argue it is not [27] [28]. Enter Bastings et al., who partially closed this
discussion by arguing attention’s easy application to explainability is merely a
coincidence and that the variety of existing post-hoc input saliency methods
are more useful [24]. Thus, using post-hoc interpretability techniques results in
more comprehensive explanations of model behavior.



Chapter 3

Cybersecurity

Broadly speaking, cybersecurity is the shield that protects technology from
malicious actors. These malicious actors commit cybercrime, which is made up
of cyber attacks intended to compromise the target computer program, system,
application, or hardware. The field of cybersecurity is defined by the prevention
of and response to cyber attacks [29]. The vulnerability theory framework sup-
plies the cybersecurity field with precise and substantive vocabulary for vulner-
ability discussions [11]. As such, it is relevant to our discussion of cybersecurity,
which depends on the definition of many terms in vulnerability theory.

3.1 Vulnerability Theory

A product is a software package, protocol design, or architecture, which
offers some main capability or feature. This product implements said features
by performing behaviors which operate on resources. Behaviors are an action
the product takes or user performs to provide the features, and resources are
an entity that is used, modified or provided by the product (such as a CPU).
Products may restrict the access of certain resources or behaviors to specific
actors or group of actors; in this case, these control spheres are implicitly or
explicitly defined by a security policy. When the product’s intended security
policy is not the same as the implemented security policy, a vulnerability could
exist. Actors are an entity which interacts with the product or other entities
who interact with it. These entities can be any combination of a product,
person, or process. When an actor attempts to violate the intended security
policy, the product has been attacked [11].

Any code that could lead to violation of its security policy is considered
insecure. Such insecure code contains weaknesses. When these weaknesses are
exploitable by an end user (actor), they are called vulnerabilities and the code
permits the violation of its security policy. A vulnerability span is the initial
and final row and column locations of the insecure tokens which constitute
the vulnerability or weakness. Extracting the vulnerability span can be done



with automated tools, but is most reliable when done by manual code review.
Vulnerabilities can be “fixed” by any software change that either completely
resolves the vulnerability or mitigates its impacts [10, 11, 30].

In sum: Code that could lead to security issues is insecure and can contain
any number of weaknesses or vulnerabilities. When deployed, exploitable weak-
nesses are fixable vulnerabilities. These vulnerabilities can result in violated
security policies, thus providing malicious actors access to certain behaviors or
resources provided by the product [10, 11, 30]. Determining if code poses a
cybersecurity risk is a complicated task. Three relevant organizations providing
tools, data, and terminology to help with this are OWASP, NIST, and MITRE.

3.2 Relevant Organizations

OWASP The Open Worldwide Application Security Project (OWASP) is a
nonprofit foundation which aims to increase software security through a num-
ber of initiatives. These initiatives are designed to raise awareness about cy-
bersecurity and mitigate cybersecurity risks, and can be anything from events
to organizing chapters of volunteers and individual projects [31]. The most
popular OWASP project is the OWASP Top 10, which raises awareness about
critical web application-related security risks through a ranked list which is up-
dated roughly every 3-4 years. This list is created with an emphasis on CWE
mappings, which are then placed into OWASP-specific categories [32]. Another
relevant project is the OWASP Top 10 for LLMs. Founded in May 2023, this
project is an analog of the OWASP Top 10: instead of focusing on web appli-
cation security risks, it tracks and ranks the most common insecurities seen in
LLM applications. The most relevant to our research is LLMO02: Insecure Out-
put Handling, which occurs when the output of an LLM is not validated and
allowed to influence downstream task. It maps to CWE-79, which is one of the
weaknesses used in our case study [33]. This underscores the recent prevalence
of LLM security concerns.

NIST The National Institute of Standards and Technology (NIST) is an
agency of the U.S. Department of Commerce which provides measurement, stan-
dards, and technology to various American products and services [34]. One focus
of NIST is advancement of IT services, which necessarily includes advancement
in cybersecurity best practices, standards, and guidelines. A product provided
by NIST enabling automation of vulnerability detection and mitigation is the
national vulnerability database (NVD). The NVD is a U.S. government-run
database chronicling known vulnerabilities and their corresponding fixes con-
taining data of known vulnerabilities in real-world applications, links to the
vulnerable GitHub files, and links to the fixing commits (if existent). These
data and their CWE mappings are obtainable in a number of ways including
APT and JSON feeds [35].



MITRE The MITRE Corporation is a nonprofit that manages six Federally
Funded Research and Development Centers (FFRDCs), including the National
Cybersecurity FFRDC. Two of MITRE’s cybersecurity initiatives that have
come from this center are the Common Vulnerabilities and Exposures (CVE)
and Common Weakness Enumeration (CWE) frameworks. Both initiatives are
sponsored by a number of governmental agencies [36].

As discussed at the beginning of this chapter, code with weaknesses which
is deployed to production might become exploitable by an end user and is thus
vulnerable. If this vulnerability comes to fruition, then its specific instance
is logged as a CVE; the original underlying weakness is a CWE. Since CVEs
are specific to the vulnerability instance, not every CWE has a corresponding
CVE. Both CWEs and CVEs identify and assign numerical IDs to insecure code;
the difference is CVE catalogs instances of vulnerabilities and CWE serves as a
common language for discussing security risks and mitigation efforts. The CWE
initiative is also used as a litmus test for assessing the scope and quality of new
security tools [36].

3.3 CWE Deep Dive

Our research uses the CWE system to categorize insecure code. Not only
is this industry standard, it is better to target the problem at the source - the
pre-production weakness level. In our case study, we investigate rationales for
CWE-79 and CWE-89 code samples. While these were the most frequent CWEs
in our data, they are also particularly prudent choices. Both are members of
Category 137 (Data Neutralization Issues), both have been in the CWE Top
25 for the past 5 years, and both have been named one of the CWE Top 25
Most Dangerous Software Weaknesses of 2023 [37, 38, 39]. Given how frequent
these weaknesses are, they are more likely to appear in training data. Moreover,
deployment of code with these weaknesses has dire implications, so identifying
generated code containing CWE-79 or CWE-89 has a higher priority than other
CWESs with less dire consequences. Therefore CWE-79 and CWE-89 provide a
good starting place for investigating LLM-generated insecurities.

3.3.1 CWE-79

Improper Neutralization of Input During Web Page Generation, or Cross-
Site Scripting (XSS), occurs when a web page implements user input without
proper neutralization in such a manner that impacts other end users. The overall
process is as follows: first, a web application collects data from an end user, then
dynamically generates a webpage containing the data without ensuring the data
is acting within its security policy does not contain browser-executable content.
When other end users access the page, their browser executes the injected script.
Since this malicious script exists in a different domain than the end user, XSS
violates the web browser security policy of same-origin [40].



The consequences of XSS attacks range in severity from having your Insta-
gram hijacked to completely losing control over your computer and all informa-
tion on it. XSS is also extremely common - for example, we have all experienced
some form of phishing. For these reasons, CWE-79 has been named as the sec-
ond most dangerous software weakness of 2023 [40, 39]. XSS can happen in one
of three ways.

Type 0

Type 0 is Document Object Model (DOM)-based XSS, where the injection
is the result of a server script processing user input and placing it into the
original webpage without proper neutralization. Because DOM does not involve
any servers, Type 0 exclusively concerns the client side. In other words, the
client can change how a webpage looks or acts in their browser by altering the
DOM environment. Given the source of the injection and lack of server-side
involvement, it is very different from the other two types.

For example, consider this HTML line which controls the color of a banner
on a webpage through its URL:

document .write(’<style>body\{color:’+
document .URL. substring(pos,document.URL.length)+’;\}

The URL displayed ends in ”profile?color=blue”. If the malicious actor
inspects the webpage and finds the URL is wrapped in a style attribute, they
could replace the last part of the url with the following:

profile?color=<style><script>alert("Execution successful")</script>

in which case the script will execute and display an alert for the user stating
"Execution successful” [41].1

Type 1

Reflected XSS occurs when the end user provides dangerous content to a
vulnerable web application. Instead of storing said data, the server dynamically
reflects the data back to the end user’s browser in a HTTP response [40]. A
classic example is phishing, which works as follows: you receive a message from
a seemingly reliable source - a bank, family member, etc - asking you to click on
a link or provide personal information of some sort in a time-sensitive, urgent
manner. If you do click on the link, any number of malicious programs could be
downloaded onto your device; if you do provide information, your information
is now compromised [42].

LA fantastic example of this is the result of Twitch connoisseurs discovering a
vulnerability during a livestream. A video of the ensuing saga is available here:
https://www.youtube.com/watch?v=2GtbY1XWGIQ



Type 2

Type 2 is Stored XSS, also known as HTML injection. The injection oc-
curs when the user provides dangerous data that is stored; thus, the weakness
persists in the system until served back to the client. Take, for example, the
following SQL code which adds a user’s information to a website’s database:

Insert Into users (username,password) Values ("\Ys","\%s","\%s")’,
$username, $password, $fullName

where username and password are gained via user input, and the website has a
page displaying all usernames of active users. Now imagine the user inputs an
HTML command as their username, and no sanitization occurs between gaining
the input and placing it into the database. When anyone visits the active users
page, the HTML contained in the username is executed [40].

3.3.2 CWE-89

Improper Neutralization of Special Elements in a SQL Command (SQL
Injection) occurs when SQL commands are built from user input without proper
neutralization to ensure the original command will not be altered by the end
user’s input. The most common way this arises is improper use of single quota-
tion marks in SQL syntax with user input, which enables the end user to inject
additional SQL code into the query [43].

For example, let us consider the following SQL query:

"SELECT * FROM items
WHERE owner = ’" + userName + "’
AND itemname = ’" + ItemName.Text + "’"

Suppose ItemName is a field obtained via user input, no input neutralization
is applied before creating the query, and no neutralization is applied before
executing the query. If the user were to provide the system with input including
single quotation marks like so:

x OR ’a’=’a

then the query will select every entry from items as the OR statement, which is
always true, has made the WHERE clause perpetually true as well [43].

The consequences of this weakness are dire: the ability of an end user to
not only access sensitive information but potentially change it. Either the in-
jected SQL grants the end user access to other accounts without a password,
or the injected SQL grants the end user the ability to change other users’ pass-
words. Furthermore, user bases are commonly subject to SQL injection attacks
because of how easy it is not only to notice but also to exploit [43]. For these
reasons, CWE-89 has been named the third most dangerous software weakness
of 2023 [39]. Additionally, this weakness has steadily climbed the ranks of the
Top 25 list from 6th to 3rd place over the past few years [44].

10



Chapter 4

Language Modeling for
Code Generation

Code generation, particularly through use of neural code models (NCMs),
is a prominent research area in software engineering (SE). NCMs often leverage
large language models (LLMs) as the vehicle for code generation; by learning
representations of input sequences, such NCMs are able to generate similar
sequences provided a history. If the input sequences are code, the generated
sequences will also be code. Thus NCMs are applicable to any number of SE
tasks including but not limited to code completion, program repair, and test
case generation [21].

4.1 Language Modeling

The end goal of a language model is to learn a representation of some
input sequence. Specific domains of sequence based data are called corpora and
can be transformed into a sequence of discrete objects through a transformation
function. The resulting tokenized sequence wy.p has conditions 1 < ¢ < T, a
granularity defined by the transformation function, and wy; € V' where V is the
set of all possible tokens - our vocabulary. For SE LM tasks, our corpora is the
software corpora, which is composed of software artifacts and our tokenizer can
decompose the software corpora into tokens, words, or sub-words [23]. We must
first represent our data in such a manner before modeling it.

Following from this discrete sequential data representation, statistical LMs
are defined by the following:

Py(S) = Pp(wiir) = Iy Py(wi|w<r) (4.1)

where Py is a probability distribution, S is a sequence with fixed granularity
obtained from our corpora C, and IT7_, Py(w|w~;) is a conditional distribution
of w; provided our input sequence w.;. Typically this conditional distribution

11



is estimated by a neural language model (NLM) with classification abilities. As
such, Py(w¢|w<y) is actually P(w¢|h:): the probability of token w; provided
some hidden state h; [23]. This latent learning approach relies on the fact that
information about input sequence w.; has been embedded in h;. The process by
which this information persists in the hidden state depends on how the model
updates the hidden state. Either it is updated with the full sequence of previous
inputs wy.;—1 and the previous hidden state, or with just the current input w;
and the previous hidden state. The former is the autoregressive approach and
the latter is the recurrent neural network approach [45].

We use the autoregressive approach (specifically transformers) because such
models are able to model long-term dependencies in the input sequence [45].
Due to this property they are often used for sequence generation tasks, where
the model generates some w; from P(w:|w<¢); since this generated token is
conditioned by the input sequence, our generated sequence maintains legibility
when compared to the input sequence as it increases in tokens over time. This
probability is often practically represented by the softmax function, which pro-
duces the distribution of probabilities over all tokens in our vocabulary. It is
influenced by cross-entropy loss, which relates the probability generated by the
hidden state to the distribution of our truth P(w|w<t) [23]. The cross-entropy
loss guides model learning through providing a metric of model performance; as
the model learns, it changes its weights to minimize this loss, thereby altering
hy and P(wq|hy) [46].

4.2 Finetuning

Finetuning is a method for making a trained model attuned to a specific
task [47]. This method continues the training and changes model parameters
through introduction of differently structured data [48] and is described as fol-
lows:

Py(S) = Palwi.r) = Folwn) Iy Fy(wiwor) (4.2)

where all variables are defined as in Eq. 4.1 except for Fy, which is the trained
model we are fine-tuning. By comparison with Eq. 4.1 we can see that the fine-
tuning process is effectively training scaled by Fy(w;) to maintain some amount
of original performance, thereby preventing model weights from changing dras-
tically.
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Chapter 5

Interpretability

Interpretability analysis interprets the learned relationship between model
weights and input sequences through providing explanations of model out-
puts [21]. As discussed in the previous chapter, NLM outputs can be described
as the conditional probability P(w¢|h:). These probabilities exist in model space
7 and are generated based on the model weights and hidden state. Herein lies
the interpretability challenge: instead of existing in 7 space, humans exist in
h space, whose domain consists of human-interpretable concepts . In other
words, hidden states and weights are inherently interpretable to the model but
not to humans. To solve this problem we apply a post-hoc function for inter-
pretability ¢ mapping ltoh [23], after which we are able to interpret P(w;|h;)
in terms of human-interpretable concepts H.

This application can occur on both local and global levels. Locally, we apply
¢ as such: ¢(S,H), where S is one input sequence. If, however, we would like
to investigate a model across many input sequences, then we require additional
steps. Thus we define a function g which aggregates ¢(S,H) over n sample
sequences. The entire global process can be described by:

B9, 5", H) = glom, 5") = = 3 ow(ST,H) (1)

where our aggregation function ¢ is defined as expected value, and the resul-
tant explanation can be targeted toward a specific human-interpretable concept.
These concepts are defined by the specific task and intended analysis [21]. See
Sec. 6.2 for a discussion on human-interpretable concepts in code.

5.1 Rationales

One such ¢ is sequential rationales, which was first proposed by Vafa et
al. in 2021. Recall Ch. 4 and in particular Eq. 4.1, which describes language
modeling through some probabilistic model Py and sequence wy.7. We can uti-
lize said model to generate sequences through repeated generation of individual
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tokens w; as a conditioned by their context window w<;. Any subset of the
context window w.; that leads to Py predicting w; is called a rationale. The
context itself is always a rationale by definition; however, it does not provide us
with any additional insight to model predictions and can be difficult to inter-
pret. Our goal is thus to find the minimum combination of tokens in the context
that result in model production of the generated token. This is known as the
optimal rationale; since at some point predicting w; depends on the optimal
rationale, we can express the conditions of this rationale through combinatorial
optimization as follows:

argming,, cr|r| : argmaz,; Py(wy|wy, ) = wy (5.2)

where R = 271 is the power set of all possible subsets of wy.7, wy is the
generated token, Py is our model, and Py (w; |w,., ) is the probability of generating
token w; given a rationale w,.,. The argmin side of Eq. 5.2 ensures our objective
of a short rationale and the argmax side ensures our constraint, namely that
the subset of the context w.; which we obtain is a valid rationale. However,
optimizing our rationale for interpretability purposes is only one third of the
challenge: actually solving Eq. 5.2 is N.P. hard, and model predictions depend on
the full context w.; while rationales depend on arbitrary subsets of the context
which are shorter than the full context and thus out of sample for the model.
To resolve these issues, we can approximate the equation’s solution through the
greedy rationalization algorithm and finetune the model for compatibility with
inputs of varying length.

Greedy Rationalization Greedy rationalization is a greedy algorithm which
builds the optimal rationale as follows: First, start with the empty set. Then
calculate the conditional probability of w; given each token in the candidate ra-
tionale context window w;. The token in w.; which has the largest probability
of producing w; is then added to the set; once the conditional probability of the
set produces the given token, the algorithm halts. In the worst case scenario we
arrive at the full rationale, thus the algorithm will always converge.

Compatibility During the training phase, most models train on the entire
context so the subsets required for intermediate calculation steps are out of
sample. Unless we train on subsets of the context, we can’t generalize to it.
We can fix this problem easily through finetuning with data of varying context
lengths. This is realized through using incomplete contexts w, from power set
R for use as inputs to trained model Fy. Since Fy is already trained, it is still
able to predict a token w, given its full context w<; once compatibalized [12].
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Chapter 6

Our Implementation

6.1 The Model

To implement sequential rationales we need not only data but also a model
for Python code generation which we can finetune for compatibalization. We
chose CodeParrot, an open-source GPT-2 model trained from scratch exclusively
for Python code generation capabilities [49]. It uses a custom tokenizer for
Python code, and effectively has the functionality of ChatGPT but exclusively
for Python code [50]. We used the small version, which has 110 million paramers
and was trained on the cleaned CodeParrot dataset. This dataset contains
roughly 50 GB of Python code from GitHub distributed over 5,361,373 files,
and is split into training and validation sets'. Furthermore, they performed
filtering on the data: the dataset only contains code samples whose average
line length is between 100 and 1000 characters. Lastly, the model’s context
size is 1024 tokens [51]. For brevity, general information on the transformer
architecture, GPT, and GPT-2 is located in Appendix B.

6.2 Syntax Aggregations for Rationales

As discussed in Ch. 5, we use rationales as our function for interpretability
¢ which can be targeted towards specific human-interpretable concepts. Such
concepts exist on the token, token aggregation, token hierarchy, and token scope
levels. This leaves us with a decision to make: which level do we analyze our
rationales on? We propose five possible human-interpretable concepts for code
rationales: H(®, code rationales without aggregation; H(!), structural code
taxonomy; H (2, identifier concepts; H®), code context scopes; and H¥ | natural
language based scopes. Of these five, we use H(? and H for our results.

All concepts have varying levels of aggregation, which relies on the ability to
parse rationales and map them to some corresponding higher-level concept or

IThe split is roughly 87% training and 13% validation.
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role with semantic meaning in the given block of code, at which point we are able
to aggregate the rationale values and attribute them to the mapped concept.
Differences in this mapping define our H proposals. In other words, mapping
rationales to their semantic meaning effectively categorizes the rationales with
varying levels of granularity. This results in the ability to explain what parts
of the context result in vulnerabilities [21]. Our two concepts of choice, H(®)
and HV, provide us with the ability to extract explanations for insecure code
generation. (% is the rationale itself, and as such has already been discussed
in the previous chapter. H(1) categorizes parts of code into mappable structural
concepts such as comments or loops, and aggregation is carried out via statistical
functions. This provides us with a way to investigate rationales in terms of PL
code concepts interpretable to developers: a structural code taxonomy [21].

6.2.1 Structural Code Taxonomy

Effectively what we are doing is grouping tokens by PL concepts through
parsing the code’s AST representation and aggregating the rationale values by
node type mapping [21]. The structural code taxonomy can be divided into two
main sections, programming language (code) and natural language. Both of
these can be further divided into more categories. For programming language,
tokens can be semantic, natural language in code, syntax errors, non-semantic,
or a context window. Semantic tokens in programming languages can be data
types, e.g. float or char; exceptions, e.g. try or catch; oop, e.g. public or new;
conditionals, e.g. if/else; loops, e.g. for/while; bool, e.g. Boolean; with, e.g.
with clause; structural, e.g. attribute or module; asserts, which is only assert;
and statements, which is only assignment. Natural language in code includes
identifiers, comments, and strings - anything that is natural language contained
in code. There is also a category for tokens which are syntax errors. Non-
semantic programming language tokens can be expressions, e.g. call or async;
punctuation; operators, e.g. in or %; indentation, namely ‘\n’ or ‘\t’; return;
or functional. Lastly, programming language tokens can be part of a context
window: class, focal method, constructor, signature, or field. Natural language
tokens can be semantic or non-semantic. Semantic natural language tokens can
be verbs, nouns, or pronouns; non-semantic natural language tokens can be
prepositions, determiners, adverbs, conjunctions, cardinals, particles, modals,
or lists.
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Chapter 7

The Data

All machine learning starts with the most important element: data. To
apply greedy rationalization and draw useful interpretations from it, we require
insecure code samples with their CWE mapping and vulnerability span at bare
minimum. Without the code samples, we cannot generate rationales; without
the vulnerability span, we cannot generate rationales which lead to insecure
code generation; and without the CWE mapping, we cannot explore the extent
to which rationales depend on the CWE. There were two main options for this
study: one, create the data by hand which would be extremely time-consuming
and is thus undesirable; or two, find a dataset that already exists. In our pur-
suit of option two, we discovered that there is a chronic shortage of datasets
that have vulnerable/secure Python code pairs with corresponding vulnerabil-
ity spans. Thus we pursued Option 1.5: Combine existing datasets requiring
minimal amounts of manual analysis, thereby maximizing the amount of data
in a minimal amount of time. Our data is sourced from three existing datasets:
SecurityEval, CWE Scenarios, and CVEFixes.

In this chapter we will discuss how our data is organized; the data collec-
tion methodology our three sources use, and how we reorganized them; our full
dataset; and the data used for this case study. We will end the chapter with
exploratory data analysis of our full and case study datasets. Additional ex-
ploratory data analysis of the three source datasets can be found in Appendix

A.

7.1 Organization

Combining the datasets necessitates placing each one into a common for-
mat and system of organization beneficial for our study. Therefore, we reor-
ganized each source dataset into individual JSON objects and then combined
those JSON objects to obtain our full dataset. Each JSON object contains fif-
teen fields, seven of which are calculated based on the specific vulnerable code
sample.
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7.1.1 Abstract Syntax Trees

Our calculated fields heavily depend on abstract syntax tree (AST) repre-
sentations of code. An abstract syntax tree is a hierarchical graph representation
of source code typically used in coding language compilation [52]. This repre-
sentation stores all syntactic qualities of the original code in a tree structure
with nodes [23]. By parsing the tree with Tree-Sitter [53] we are able to extract
useful information about the source code including but not limited to the node
type, number of AST errors, the AST height, and number of nodes.

From AST properties, we can calculate particular code metrics. One such
metric is cyclomatic complexity, which measures the complexity of conditional
logic in a block of code. The higher the complexity, the higher the score, and
the lower the efficiency: cyclomatic complexity effectively measures all possible
paths through a block of code by summing the number of logical forks in the
road Using Radon’s documentation as a guide, we calculated the cyclomatic
complexity of vulnerable code samples by iterating through the sample’s de-
tected AST node types and adding one each time a node type introduced a fork
in the road [54].

7.1.2 Fields

As one might expect, the first field is a numerical ID for each entry in the
JSON object. Each file’s ID is based on the length of the file. The second is
the corresponding processed insecure code sample; for our first two sources, this
field is the insecure code generated by the model. Third is the corresponding
secure code or prompt, which is not processed. Field four is the sample’s CWE
and field five is the vulnerability span. For identification purposes, fields six and
seven are the source dataset (SecEval, Copilot, or CVEFixes) and the language
of the code samples, which is always Python. Field eight contains a short
description of the particular CWE obtained from the MITRE definition. From
the vulnerable code’s abstract syntax trees we obtain and store the number of
AST errors, nodes, and the tree height in fields 9, 12, and 15, respectively. In
addition to this information, we also calculate the vulnerable code’s number of
whitespaces, lines of code, and words. These are stored in fields 10, 11, and 12,
respectively. Lastly, we calculate the cyclo complexity for the vulnerable code
which is then placed in field fourteen.

We chose these specific measures for several reasons. First, we can investigate
the distribution of each metric by dataset which enables cross-dataset and cross-
CWE code sample comparison. Second, each metric is relevant to measuring
different aspects of the code. By investigating the code’s AST representation
and other metrics such as lines of code, we are able to obtain a well-rounded
evaluation of not only the complexity of a sample but also its use of space and
hierarchical structure. Furthermore, when we calculate rationales we define an
aggregation function which directly relates to a hierarchical representation of
code. See Ch. 6 for more on aggregation functions. The idea is by investigating
these properties of the vulnerable code and comparing to rationales, we might be
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able to explain or identify whether certain metric values are more likely to result
in insecure code generation. This capability was not necessary for this study;
as such, our calculated fields are only relevant for exploratory data analysis at
this point in time.

The vulnerability span is the most critical field in our data. This is the span
of vulnerable tokens in the code, starting with the first vulnerable token and
ending with the last vulnerable token in the format:

[[(rowl,coll),(row2,col2)],[(row]l,coll),(row2,col2)]]

and so on, with two row-column pairs per vulnerable token span. Without this
information, we are unable to generate rationales for the weakness and therefore
are unable to draw any meaningful conclusions from the rationales. Just as there
is a chronic lack of data, there is also a chronic lack of reliable and accurate
tools for automatic vulnerability span extraction. All 121 samples from the
SecEval dataset were manually reviewed to obtain the vulnerability span and
all CVEFixes samples used in our case study were also manually reviewed. The
Copilot dataset uses a tool called CodeQL to detect vulnerabilities and extract
the vulnerability span.

7.2 Our Sources

7.2.1 SecurityEval Dataset

The SecurityEval dataset was created to help developers evaluate the
security of LLM-generated code by Siddiq and Santos in 2022 [55]. The dataset
consists of 121 pairs of LLM prompt/generated insecure Python code pairs and
covers 61 CWEs. Their data collection process is similar to what we have done:
they mined samples of vulnerable code with a CWE mapping from 4 sources,
obtaining 36 samples from CodeQL, 11 samples from the CWE website, 34
samples from SonarRules, and 4 samples from the CWE Scenarios dataset. To
round out the number of CWEs represented in the dataset and increase the
number of prompt/insecure code pairs, they created the remaining 45 samples.

CodeQL is a tool created by GitHub for identifying and inspecting vulnera-
bilities in source code [56]. The samples in SecEval are taken from the CodeQL
documentation. SonarSource is a company that provides a static code analy-
sis tool, SonarRules [57]. These rules include CWEs and the documentation
provides sample insecure and secure code pairs, which were extracted and con-
sequently used for SecEval. Lastly, the CWE Scenarios dataset was released as
part of Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s
Code Contributions (Pearce et al., 2021). As this is one of our dataset sources,
we leave discussion to the next section.

This dataset aligns almost perfectly with our research goals; the only missing
field is vulnerability span. Since the dataset is available on their Github repos-
itory as a JSON file!, we exported the data to Excel for manual review. Our

! Available at https://github.com/s2e-lab/SecurityEval/blob/main/dataset.jsonl
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manual review was for quality and vulnerability span extraction. We denoted
the vulnerability span in the source code itself by placing an asterisk before
the first vulnerable token and after the last vulnerable token. By doing this,
we were able to extract the vulnerability span by locating the asterisks. Sam-
ples which include SQL may contain an asterisk, so for these samples we used
an exclamation mark as our delimiter instead. For simplicity we refer to both
delimiters as asterisks in this thesis. We only kept samples that had a clear
vulnerability span.

Reorganization Process and Vulnerability Span The bulk of our reor-
ganization process is ensuring the vulnerability span was extracted correctly,
and adjusting the vulnerability span after code cleaning. The process is as fol-
lows: After loading in the Excel file, we iterate through each row. At every row,
we first check if the code sample has an asterisk - if it does, we continue with
reorganization, and if it doesn’t, we move to the next row. Next, we split the
code into a list of lines and filter out empty lines and lines only containing com-
ments. Then we obtain the vulnerability span by iterating through the lines of
code until we reach a line with an asterisk. Once at this line, we iterate through
tokens in the line until we reach the asterisk location. If our line iterator is “i”
and our token iterator is “j”, then the start of the vulnerability happens at row
i and column j. This (i,j) is appended to our vulnerability span list. We keep
iterating through the tokens as before until we reach the second asterisk, which
may be on the next line. Once we have reached the second asterisk, we append
(i,j) to our vulnerability span list and return the list. We then filter out the
asterisk. This requires adjusting the vulnerability span by subtracting one from
the second column. To ensure this worked, we check that the new vulnerability
span returns the same tokens as the original span with the unfiltered code. If it
is the same, we recombine the list of lines into a string and inspect it to obtain
our calculated fields. The SecEval dataset contains the ownership information
in its ID field; we give the samples an ID corresponding to the length of the list
and simply call the source SecEval instead. Lastly, we obtain the CWE, prompt,
and description from the original file. We combine these into a dictionary and
append the dictionary to a list.

After reorganizing and cleaning the data, we had 72 prompts for 39 CWEs.
While the content of the data is fantastic for our purposes, there were only one
or two samples per CWE. Thus the data was too broad in CWE scope and we
would not be able to generalize our results. We needed more data.

7.2.2 CWE Scenarios Dataset

Copilot is GitHub’s AT assistant programmer, which can autofill and com-
plete code for users. The tool employs a proprietary code-scanning process to
extract context from the existing code, which is then used as the input to a
code generating LLM. For all intents and purposes this is effectively an auto-
generated prompt created from preexisting code written by the programmer.
Since the LLM Copilot relies on is trained on a large dataset of real-world code
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which might contain bugs or insecurities, there are concerns around the quality
and security of Copilot-generated code [9].

Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code
Contributions (Pearce et al, 2021) conducts an empirical security evaluation of
Copilot-generated code. They used GitHub’s security-oriented semantic code
analysis tool, CodeQL, to detect insecurities. This tool utilizes its unique QL
language to build and query code databases; since there are pre-written queries
for many CWEs, it is a convenient way to detect insecurities across many code
samples. CodeQL results are stored in a CSV file which contains the detected
CWE ID, vulnerability span, the filename which contains the weak code, and
the CWE’s short description from the MITRE website.

Pearce et al.’s evaluation was carried out as follows. First the authors gath-
ered scenarios, which serve as the context for Copilot-powered code completion.
These scenarios are incomplete in such a manner that can easily lead to an inse-
curity, and were gathered from 1) the CodeQL documentation; 2) the MITRE
CWE database; or 3) handwritten by the authors. Copilot then completes the
code in up to 25 ways. These resultant code blocks are then analyzed by Cod-
eQL to determine whether they contain the intended insecurity. Samples which
CodeQL was not able to evaluate (e.g., the generated code would not compile)
were manually evaluated by the authors. While the scenarios are intended to
generate a specific insecurity, it is always possible for Copilot to generate code
with some other, unintended weakness. As generated code samples were only
evaluated for their intended weakness, lack of identified weakness does not en-
sure the generated code was secure. With this being said, 40% of the generated
code samples contained the intended insecurity.

This evaluation was carried out through three experiments: diversity of
prompt (DOP), diversity of weakness (DOW), and diversity of domain (DOD).
DOD investigates whether the PL impacts vulnerability frequency in generated
code; our study uses Python code exclusively, so this experiment is wholly ir-
relevant to our purposes and we only extracted data from the other two exper-
iments. DOW investigates whether Copilot is more prone to generating certain
types of weaknesses through a variety of scenarios based on the MITRE Top 25.
DOP investigates the impact certain elements of code context have on Copilot
generation of CWE-89. The DOP scenario premise we investigated was asking
Copilot to complete code allowing a user to unsubscribe to a service.

The results of these experiments are contained in a dataset available on
Zenodo?. It contains 1,189 programs across 89 CWEs. These data are organized
into three folders corresponding to the study’s three experiments. To extract
data from the DOP and DOW experiments, we had to parse the file system, and
in doing so extracted the insecure code and its corresponding scenario, CWE
information, and vulnerability span.

There are a few preliminary qualifications to identifying usable data. First,
not all programs resulted in insecurities; in these cases, the corresponding Cod-
eQL CSV file was empty and we did not use the code samples. Second, we

2 Available at https://zenodo.org/records/5225651 or https://zenodo.org/records/6975069
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exclusively extracted data where the program was written in Python. Third,
CodeQL results provide the name of the file containing the detected weakness
but not the filepath itself. While this is not an issue with the DOW setup, the
DOP setup is more complicated and thus finding the correct filepath can be
challenging. There were 15 files containing CodeQL-detected insecurities that
we could not find in the original data - these are not included in our dataset,
but they could be manually located and added in the future.

Filesystem Details The DOP results are located in experiments_dop/cwe-
89/unsubscribe. This folder has a number of CSV files containing CodeQL
results for individual scenarios as well as the original Python scenarios before
Copilot completion. The CodeQL results relate to a generated Python file con-
taining an instance of CWE-89, and are located in folders starting with ”gen_”
which contain all samples completed by CodeQL. The DOW results are located
in the experiments_dow folder. Since each DOW scenario is specific to a partic-
ular CWE in the MITRE Top 253, this folder is further organized into folders
for each CWE. Within each of these CWE folders are folders for the results
of particular scenarios; lastly, within these scenario folders is the scenario file,
CodeQL results in CSV format, and a folder containing all Copilot-completed
code samples. Not all scenarios are written in Python.

Reorganization Process Our reorganization process for the DOW experi-
ment is as follows: For each folder in the DOW folder, obtain the CWE from the
folder’s name. Then for each experiment contained in the CWE folder, obtain
the scenario file. If this file is not a Python file, we ignore the sample and con-
tinue on. If the file is a Python file, read it as a string to extract the scenario.
Next, we locate the CodeQL results and read the CSV into a DataFrame. Some-
times, there will be no such file, the file is empty, or the DataFrame is empty
- in these cases, we ignore the scenario and continue on. For each row in the
DataFrame, we obtain: the CWE description, vulnerability span, and filename
containing the insecurity. From the filename we create the filepath and read
in the insecure code. Then we remove empty lines and extraneous comments
from the insecure code. Lastly, we obtain our calculated fields and append the
dictionary to our list, where the sample’s ID is the current length of the list.
The DOP experiment reorganization process only differs in file traversal, and
the fact that there are only samples for CWE-89.

Vulnerability Span Difficulties The main challenge with reorganization
was vulnerability span extraction. While obtaining the span detected by Cod-
eQL was simple, most of the time this span was not accurate to the location of
the vulnerability. More specifically, the indicated row(s) were incorrect. This
was discovered because the column index would be greater than the length of
the specified line of code in some cases. Thus, we had to add functionality to

3CWEs 20, 22, 78, 79, 89, 119, 125, 190, 200, 306, 416, 434, 476, 502, 522, 732, 787, and
798
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relocate the correct row and fix the span. We did this by iterating through the
lines of code until the length of the line was greater than or equal to the column
value. Once we had found the correct row, we updated the span and confirmed
it updated correctly by comparing to the original manually adjusted span.

Notes on code cleaning On investigation of the insecure code samples them-
selves, we noticed there was additional extraneous information contained in
comments that should not be included in calculation of rationales as they were
not used by Copilot for code completion. These are authorship attribution and
Copilot mean probability scores. Thus we filtered these out in addition to empty
lines.

After extracting, cleaning, and consolidating the data from both experiments
we had 285 samples for 5 CWEs, the vast majority of which were samples of
CWE-89 likely sourced from the DOP experiment. This data and the SecEval
data were reorganized in the same notebook; thus once we had completed reor-
ganizing the CWE Scenarios dataset we had completed reorganizing our data
and consequently saved these two combined datasets to a JSON file.

7.2.3 CVEFixes

Our study exclusively investigates insecure code generation; however, it
could also be useful to investigate the differences between secure and insecure
code generation. For this we need pairs of insecure and secure code instead
of prompts and generated code. We can still apply greedy rationalization on
secure/insecure code pairs by treating the sequence of code tokens before the
insecurity as the prompt.

CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from
Open-Source Software (Bhandari et al, 2021) introduces a method of obtain-
ing such code pairs by leveraging the national vulnerability database (NVD)
in concert with GitHub repository scraping. CVEFixes extracts vulnerability
and corresponding fix data from the NVD JSON vulnerability feeds, which are
updated daily. From these feeds we can obtain the mapping between CWE and
CVE, the observed vulnerability, a link to the corresponding GitHub repository,
and a link to the associated fixing commit (if existent). The links are then used
to scrape the GitHub repository on both the file and method levels to extract
more commit information and the corresponding code for the vulnerability and
fix. CVEFixes only collects vulnerabilities with fixes [58].

The collected data is then placed into a SQL database with 8 tables. Three
tables are dedicated to CVE and CWE information, both in general and in rela-
tion to the particular vulnerable code. One table connects the three CVE/CWE
tables with the remaining four, which are dedicated to information about the
source repository and both method and file level changes to the code on a com-
mit basis. From this database we can obtain the CWE;, its description, and the
programming language. We then have to extract our vulnerable and secure code
samples from the method and file level tables. Some metrics such as number
of lines of code and complexity are included in the database. However, because
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we employ additional code processing such as removing comments and empty
lines, we must create all of our calculated fields.

There are two ways to use CVEFixes: recreate the database from a SQL
dump of the initial release created in 2021, or create the database from scratch.
The initial release did not contain enough Python samples, so we recreated
the database from scratch. We utilized CVEFixes to collect 11,997 samples
covering 9,148 CVEs which correspond to 263 CWEs. Of these, there are only
2,122 Python samples covering 778 CVEs which correspond to 116 CWEs.

Reorganization Process The reorganization process is as follows: We began
by creating a view with the CWE name, id, and description from the CWE table,
CVE id from the CWE Classification table, and hash (ID for a particular code
fix) from the Fixes table. This view was grouped by the CVE ID and hash,
and only contains entries for named CWEs. Next, we used this view to create
another view connecting CWE mappings to method and file changes. This
was made possible by first combining the previous view with the File Change
table using the hash. We only considered entries written in Python and with
a valid file change id. Then we performed a left join with the Method Change
table using the file change id. For both views we grouped by CVE and method
with granularity in mind - one CWE can map to many CVEs, and one file can
have many method changes. Next, we implemented this second view to obtain
the insecure and secure code through leveraging the before change Boolean
field. We end with two dataframes, both containing the same fields: CWE ID,
CWE name, CWE description, filename, code after, code before, file change id,
method change id, start line, end line, code, and before change. The insecure
code dataframe is where before change is true, and the secure code dataframe
is where before change is false. The method before or after fixing the insecurity
is contained in the code field. Both are grouped by method change id. From
here we combined the two dataframes, obtained the insecure and secure code,
filtered out comments and imports on both, obtained our calculated fields, and
added to our JSON object.

After completing our extensive reorganization and cleaning process, we have
812 pairs of insecure/secure Python code samples across 86 CWEs. Note that
there is no vulnerability span associated with any of these samples. Manual
review of this many samples would be extremely time-consuming; thus we leave
it as is for later extraction.

7.3 Full Dataset

Once we had cleaned and placed each dataset into a common format, it
was child’s play to combine them into one JSON object - the only field that
qualitatively changed was the ID number, and the name of the SecEval/Copilot
dataset’s code sample fields changed from source_code to insecure_code and
from prompt to fixed_code. Our full dataset consists of 1,169 vulnerable code
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samples distributed over 117 CWEs. It is important to note that the majority*
of samples are from the CVEFixes dataset, which does not have vulnerability
span information; thus, the dataset is currently incomplete.

7.4 Case Study Data

When determining how to investigate the rationales of our data, it quickly
became apparent that an in-depth study of the rationales for a small number
of weaknesses would be most beneficial. Due to the limited nature of our data,
conducting a case study on the two CWEs with the most code samples is the
best approach as it can provide us with insight on whether rationales for the
two CWEs are similar or different. As seen in Fig. 7.3, the full dataset is
dominated by samples of CWE-89. Given its salience in real-world code and
dire consequences as discussed in Sec. 3.3, CWE-89 is a prudent choice for an
inital analysis. The CWE with the second highest number of samples is CWE-
79. Equally as frequent and consequential as CWE-89, its weak code is very
different than CWE-89’s as it involves web processes while CWE-89 is defined
by SQL use. Therefore CWE-79 is a clear choice for our second weakness of
interest, particularly since it also arises from improper input processing.

To shorten the greedy rationalization algorithm runtime we conducted more
processing on the insecure code samples to further limit the number of input
tokens. First, we removed all tokens following the last vulnerable token; since
these are after the vulnerability, they are irrelevant for vulnerable token gen-
eration. Second, we removed all imports and comments. This necessitated
vulnerability span adjustment and code metric recalculation.

The case study data is not simply the subset of our full dataset containing
CWE-89 and CWE-79 samples. Notice that the case study data includes data
from CVEFixes, which does not have vulnerability spans. This was remedied by
an expedited manual review process of the original 99 CVEFixes code samples
of our two CWEs. For some samples, the location of the vulnerability was
obfuscated due to high complexity and a drastically different fixing commit;
these were removed from the case study data.

Expedited Manual Review for Vulnerability Span Extraction The
process is as follows: After removing comments, we identified the potentially
insecure lines and their potential fixes through obtaining lines from the insecure
code that were not in the secure code, and lines from the secure code that were
not in the insecure code. The row location of these candidate insecurities are
then added to the vulnerability span. From here, we investigated the potential
fixes and vulnerabilities to determine whether they were, in fact, vulnerable. If
so, we determined the numerical value of coll and col2. These were entered as
user input and used to complete the span. Some insecurities had more than one
span, and some code pairs warranted manual review of the full method. Two

4 Approximately 76%.
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special user input cases in this process are 0 to move on to the next sample,
and -1 to make that particular span an empty list which would be deleted later,
denoting the sample as secure or too complex.

7.5 Exploratory Data Analysis

Fig. 7.3 displays the distribution of CWE samples in our full dataset by
source in order from highest to lowest number of samples. It is clear that our full
dataset is overwhelmingly dominated by samples of CWE-89 from the combined
SecEval/Copilot source dataset, with CWE-79 as the runner-up. This bar plot
also displays the wide spread of CWE samples in our dataset, serving as a visual
justification for our decision to choose the two CWEs with the most samples for
our case study. Figure 7.4 further investigates this CWE distribution through
providing a breakdown of the number of CWEs, total code samples, samples of
CWE-79, and samples of CWE-89 for all three source datasets as well as our
full dataset and our case study dataset. Similarly, Figure 7.5 provides a break-
down of CWEs in our case study data’s CWE through the number of samples
contributed by source datasets. The boxplots investigate the distribution of
code metric fields in our full dataset and case study data by case study CWEs.
Because our dataset has very limited size, we performed bootstrapping on code
metric fields.

Bootstrapping is a statistical method enabling generalization of statistics
obtained from small sample sizes to larger, more representative sample sizes
through resampling with replacement. Through resampling, bootstrapping ar-
tificially generates more data based on a statistical function. Once we have
resampled our data many times, we can calculate confidence intervals for a de-
scriptive statistical function such as the mean or variance [59]. We used the
mean as our function to resample with; we resampled 10,000 times and cal-
culated 97% and 2.5% confidence intervals for the mean. This is true for our
exploratory data analysis and our global results analysis.

Comparing the right subplots of Fig. 7.1 and Fig. 7.2, we can see that the
mean number of words, number of lines of code, and number of whitespaces are
much smaller for the case study dataset than the full dataset. This is expected
since our case study dataset involves removing all imports and comments from
the code in the full dataset. Comparing the left subplots we observe the opposite
trend for AST errors: values for the case study dataset are generally larger than
the full dataset in both CWE-79 and 89, indicating our case study data has (on
average) more syntax errors than the full dataset. This is also expected, due
to the number of samples from CVEFixes in the full dataset as compared to
the case study dataset. The AST height and cyclomatic complexity for the case
study dataset are slightly lower than the full dataset, which indicates that our
case study data is logically similar to the full dataset. AST nodes has the most
drastic difference between the datasets; there is a broader range of nodes for
CWE-T79 in the case study data, and there are much less nodes for CWE-89 in
the case study data. This can be explained by the prevalence of CVEFixes data
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for CWE-89 in the full dataset. From Fig. 7.4 and Fig. 7.5 we can see there
are 99 CVEFixes samples in the full dataset for CWE-79 and 89, 49 of which
were used for CWE-79 samples in the case study dataset and 7 of which were
used for CWE-89 samples in the case study dataset. The 13 CWE-89 samples
from CVEFixes excluded from the case study dataset were exceedingly long,
had nonsensical fixes, or did not contain an identifiable insecurity. Again, this
makes sense; CVEFixes contains real-world insecurities instead of cultivated,
short, easily identifiable examples. Overall, the code used for our case study
is relatively short (method level), with easily spotted insecurities and relatively
simple syntactic structure.
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Chapter 8

Results

We first created a paired box plot to investigate rationale probability dis-
tributions by code taxonomy and CWE (Fig. 8.1). As detailed in the previous
section, we applied bootstrapping with 10,000 resamples to individual CWE
taxonomies; the text represents 97% and 2.5% bootstrapping confidence inter-
vals, rounded to four decimal places. From these initial results we conducted
further analysis on the 3 taxonomies for each CWE that had the highest values.
These were return, asserts, and exceptions for CWE-79 and exceptions, types,
and conditionals for CWE-89. Lastly, we investigated the top rationales for each
CWE via bar charts. These are Fig. 8.2 for CWE-79, Fig. 8.3 for CWE-89, and
Fig. 8.4 for both. The y axis is count; the individual CWE plots are color coded
by taxonomy, and the overall plot is color coded by CWE.

8.1 Global Analysis

By first glance of Fig. 8.1, we can immediately identify that the syntax
taxonomies of CWE-79 and CWE-89 rationales are different. Furthermore, the
rationales did not map to every syntax taxonomy; there are 25 syntax tax-
onomies in total, but our rationales only mapped to 20 of those 25. This does
not mean the 5 that did not appear in our rationales are totally irrelevant, how-
ever; asserts, bool, and with rationales were only detected for CWE-79 and loops
rationales were only detected for CWE-89. Due to this we can conclude that
different elements of the context have different contribution levels in generating
different CWEs. Additionally, shared rationales often have varying degrees of
contribution to generated weaknesses in terms of scale.

The three highest syntax taxonomy probabilities were exceptions, condition-
als, and return for CWE-79 and conditionals, type, and string for CWE-89. In
contrast, the widest range of values were conditionals, exceptions, and a tie
between types and return for CWE-79, and asserts, exceptions, and condition-
als for CWE-89. Lastly, conditionals has the most contribution to CWE-89
weaknesses, and exceptions has the most contribution to CWE-79 weaknesses.
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Figure 8.1: Case Study Results: Probability Distributions by Taxonomy and
CWE

8.2 Local Analysis

Let us compare Fig. 8.2 and 8.3. Notice that the return rationale by
far occurs the most for CWE-79, and the count drops off sharply for other
rationales.! As initially observed during global analysis, we can see the taxon-
omy frequency is clearly different. Interestingly, exceptions appears twice: for
CWE-79, it has the most unique rationales, and for CWE-89 it has the highest
rationale count. The shared ‘exceptions’ rationale is ‘try’: thus try statements
can lead to either insecurity, albeit with different commonality.

We can also compare the top rationales for CWE-79 and CWE-89 by inves-

1Whitespace matters - see the two entries for ¢’ in CWE-79 and two entries for ‘try’ in
CWE-89.
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Figure 8.2: Case Study Results: Top CWE-79 Rationales

tigating Fig. 8.4. First, return does not even appear as a rationale for CWE-89
and it is by far the most common rationale for either weaknesses. This further
underscores our previously discussed findings. Second, CWE-89 has a more
gradual decrease in rationale count than CWE-79, which indicates SQL in-
jection can be created due to a wide combination of rationales whereas XSS
injection is more often related to the returned object. Inherently, the specific
rationales make sense for the given weaknesses: SQL injection exclusive ratio-
nales such as POST and NAME are clearly from SQL statements, while XSS
exclusive rationales such as HT TPError, path, and web are clearly related to
web processes.
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8.3 Implications

Our global and local analyses both conclude that individual weaknesses
have unique rationale syntax taxonomies. This implies that there is no one-
size-fits-all approach to preventing insecure code generation; instead, preventing
individual weaknesses will have to occur through specialized methods. There
are almost one thousand weaknesses; if they all have rationales as different as
these two, identifying rationales for each one will be time-consuming and te-
dious. However, it could provide exponential returns on mitigating downstream
security problems through targeted identification of potentially problematic to-
kens.
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Chapter 9

Conclusion

Our study investigated LLM-generated code samples though applying a
new interpretability method, sequential rationales. These code samples con-
tained weaknesses, a cybersecurity term referring to code which could be ex-
ploited by a malicious actor if released as part of a product. We ran a case
study of CWE-79 and CWE-89 using GPT-2 model Codeparrot on code sam-
ples from a subsection of data synthesized for the purposes of this study. The
rationales for the two weaknesses have drastic differences in code taxonomies,
indicating individual weaknesses arise from different tokens in the code context.
More specifically, we observed that CWE-79 rationales were mostly exceptions
or conditionals, while CWE-89 rationales were overwhelmingly related to con-
ditionals.

There are many directions further research can take. The first priority should
be creating more data under a centralized system of organization. There are
nearly one thousand CWEs, all with incredibly diverse security concerns - from
the results of our case study, it is evident that each one might have different
patterns in their rationales. Without more data we cannot know. A subsection
of this is developing novel vulnerability span extraction tools, as manual review
is time-consuming and repetitive. The second priority is connected to the first,
and it is to extend analysis to 1) more CWEs, and 2) determining the most
useful type of aggregation functions. Third, creating a framework for developers
to flag when the code context could lead to LLM-generated weaknesses would
be immensely useful in the years to come as Copilot and other AI assistant
developers become more popular. Lastly, our initial evaluation only used one
model; thus, further research should extending analysis to multiple models and
thereby generalize results.
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Appendix A:
Source Dataset Boxplots

We would be remiss to not mention several observations. First, there are
zero AST errors in the CVEFixes dataset for CWE-79, even with bootstrap-
ping. This peculiarity is likely due to the nature of CVEFixes’ data gathering
format in contrast to our other two sources - detection of real vulnerabilities
instead of examples of weaknesses generated for study and experimentation.
As such, it is unlikely deployed code has compilation errors. Second, the com-
bined CWEScenarios/SecEval dataset does not contain any CWE-79 samples.
As such, it mostly consists of CWEScenarios data.
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Appendix B:
SOTA LLM Architectures

Transformers

Transformers are the go-to LM architecture for text generation. There
are two key parts to the transformer model: its encoder/decoder blocks and the
attention mechanism. The most basic Transformer architecture is illustrated in
Fig. 9.4. The left side of the figure is an encoder block, and the right side is a
decoder block.

Encoder Blocks First, we embed each individual entry of our input sequence
(tokens) into tensors so the model can make calculations. To complete our
embedding we must add some positional encoding to the resultant input vectors
such that information about their original location in the sequence is preserved.
Then we enter the encoder block, where we split the inputs into 3 vectors (QKV),
calculate multi-head attention (MHA), then add the original input to the MHA
output and normalize the result. This adding and normalization layer is residual
in nature. At the end of the encoder block, we have obtained a continuous
encoding of our input sequence in the model dimension.!

Decoder Blocks Entering the decoder, we send this continuous representa-
tion of our input sequence to the MHA (3rd block in the right half of Fig. 9.4),
add and normalize, then send it through another residual feedforward layer.
Exiting the decoder, we send the output through a linear layer then softmax
activation function to obtain output probabilities. In the next iteration, the de-
coder outputs are sent to become the decoder input. They are shifted right to
limit decoder input to y~+ tokens for encoder input sequence y1.;, which masked
MHA further enforces.

The Attention Mechanism In the attention mechanism, we split our input
sequence into three vectors: Query, Key, and Value. The query and key vectors

Thttps://jalammar.github.io/illustrated-transformer/
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have the same dimensionality dj, are multiplied together, scaled by their di-
mensionality, and then activated with SoftMax. The output of SoftMax is then
multiplied by the value vector. The left side of Fig. 9.3 displays this process;
MatMul stands for matrix product. Mathematically, the output of dot-product
attention is

QiKiT
‘ QKT e VA
Attention(Q, K, V') = softmaz( NG W= sV (9.1)
' ZJK 1 ei;dlj

This dot-product attention is able to capture the relative importance of ele-
ments in a sequence by scaling aspects of sequence inputs as detailed above. In
other words, attention forces the model to pay attention to the most important
input tokens.

Multi-Head Attention first begins by sending each vector through a linear
layer, projecting them to different learned representations in the model dimen-
sion before calculating attention in parallel. This enables the model to look
across the sequence to determine relevance. It is important that this does not
result in the model “cheating” and looking at the answer, thus we may employ
masking to remove the possibility of treating the desired output as an input.
To keep complexity consistent with single-headed attention, we reduce the di-
mensions of the Q, K, and V vectors by the model dimensions divided by the
number of attention heads [45].

Scaled Dot-Product Attention Multi-Head Attention

.
MatMul
:

£
Mask (opt.) Scaled Dot-Product IIZ h
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Figure 9.3: Attention (left); Multi-Head Attention in Parallel (right)
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GPT

ChatGPT is built on the GPT architecture, which was first introduced in
February of 2019 with a full release in November of the same year. The architec-
ture consists of twelve Transformer Decoder blocks in parallel. Its main power
is its general use nature, which comes from a semi-supervised two-step training
process: generative pre-training followed by discriminative fine-tuning [48].

In the first stage, the model initializes its weights through performing unsu-
pervised learning on mass amounts of unlabeled text treated as a single, unbro-
ken sequence of tokens. The first stage produces a LLM primed for specialization
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to any number of individual tasks. The second stage has everything to do with
specialization of a general LLM. In this stage, the model is fine-tuned with su-
pervised learning via use of a labeled dataset and addition of the ultimate layer:
a linear layer following the final decoder activation function utilizing a Softmax
activation function to maximize classification accuracy. Standard finetuning,
however, will not work when faced with certain tasks such as a conversation
with an end user. In these cases GPT employs input preprocessing to avoid
changing the architecture itself which would be less efficient. The process of
specializing an all-purpose model detailed here is called transfer learning - and
finetuning is an example of it.

GPT-2

The initial success of GPT lead to more experiments with the architec-
ture. Its successor, GPT-2, was given a larger and more diverse dataset: the
text content from webpages of 45 million outgoing Reddit links with 3+ up-
votes. Providing the GPT architecture with such varied inputs lead to better
application to more generation tasks. GPT-2 differs from GPT in a few hy-
perparameters as well; most notably, the vocabulary expanded to 50,257 and
the context size doubled [60]. GPT and GPT-2’s abilities can be described as
multitasking. Many models available on HuggingFace are based on GPT-2, as it
can be finetuned to have high performance on pretty much any text-generation
related task.
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