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Abstract

Cross-field transport and heat loss in a magnetically confined plasma is deter-

mined by turbulence driven by perpendicular (to the magnetic field) pressure gradi-

ents. The heat losses from turbulence can make it difficult to maintain the energy

density required to reach and maintain the conditions necessary for fusion. Self-

organization of turbulence into intermediate scale so-called zonal flows can reduce

the radial heat losses, however identifying when the transition occurs and any pre-

cursors to the transition is still a challenge. Topological Data Analysis (TDA) is a

mathematical method which is used to extract topological features from point cloud

and digital data to develop a methodology to identify the transition from turbulent

dominant to zonal flow dominant behavior. When expanding this approach to ex-

perimental observations, certain topological methods are susceptible to noise, which

can appear as small scale topological features and crowd out legitimate topology. We

explore techniques to mitigate the effects of noise in the use of TDA on plasma data,

and to demonstrate methodology that is able to identify transitions despite a high

noise-to-signal ratio. In this thesis, we will focus on developing mathematical models

to test the efficacy of different smoothing algorithms on reestablishing topological

structure lost in modeled noisy data, as well as show that it is possible capture the

transition to self-organized flows in the presence of a high noise-to-signal ratio with-

out first using processing to approximate the pre-noise image. Finally, we apply the

methodology to experimental image data to capture turbulence transitions.



Chapter 1

Introduction

1.1 Motivation

Turbulence is one of the most persistent problems in classical physics, and is of im-

portance to an incredible number of self-organizing physical processes, encompassing

systems such as the Jet Stream and Jupiter’s Bands. One developing area of increased

interest is the role of turbulence in magnetically confined plasmas, which are relevant

to modern efforts in developing energy-generating fusion devices. The most promising

versions of such devices use magnetically confined plasmas, where small instabilities

can cause turbulence, thereby enhancing heat transport to the plasma edge and out-

side of magnetic confinement [1]. This can make it difficult to maintain the energy

density required to reach and maintain fusion conditions. As a result, identifying

when turbulence self-organizes into flows which can quench turbulent heat losses is

an important transition to identify, especially as Magnetic Confinement Devices seek

to overcome the barrier between low to high (L-H) efficiency confinement mode tran-

sition. Current transition diagnostics include Fourier Transform Analysis and require

arbitrarily chosen values for the percentage of energy in zonal flows, collective motion

of energy or particles within a system, with respect to the total kinetic energy in the

turbulent system. These procedures make automation challenging.
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1.2 Topological Data Analysis and Noise

A new methodology, specifically Computational Homology, is promising for automat-

ically identifying the transition regimes in plasma simulations. In a previous thesis,

Stanish [2] established that the number of topological features in an image has a

strong correlation with the turbulent regime identified by Fourier analysis of zonal

flows.

Figure 1.1: Number of features as a function of adiabaticity (α)
Curve demonstrates how topological characteristics (number of features) match with
turbulence and zonal regimes. This transition is driven by varying a parameter (adi-
abaticity) in plasmas. Figure from Stanish [2].

Figure 1.1 shows the number of features in an image (a metric derived from Topo-

logical Data Analysis) as a function of the logarithm of adiabaticity, a parameter used

to drive different flow regimes within 2-dimensional magneto-hydrodynamic simula-

tions. A clear transition can be identified within the simulated images.
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Figure 1.2: Noiseless Simula-
tion Density heatmap.

Figure 1.3: Clear transition with no
applied noise.

The number of features demonstrates a clear indication of transition occurring

within an image. Figure 1.2 is an example of one frame, corresponding to a single

point in Fig. 1.3

Figure 1.4: Heatmap with ap-
plied Poisson noise.

Figure 1.5: Transition with applied
noise (orange) compared to noiseless
case (blue).

However, one challenge in the application of this methodology is the introduction

of noise within real data sets (Fig. 1.4), specifically to some common types of camera

noise, like salt and pepper, Gaussian, or Poisson noise. This runs the risk of losing
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and obscuring relevant data, as can be seen in Fig. 1.5 . Figure 1.5 shows the same

transition without noise at the very bottom of the diagram, and we see that the

addition of noise can obscure the topological signal, so with the addition of noise to

the image, we instead get the curve at the top of this figure instead. As a result,

new methods need to be developed and made resilient against noise in order for

identification to be possible in real life experimental and control systems settings.

1.3 Goals

These new methods require an understanding of the limits of topology in the presence

of image processing algorithms. The goal of this thesis is to investigate the efficacy of

different smoothing algorithms for 2D image and video data from plasmas and analyze

the benefits and shortfalls of different post-processing algorithms in approximating

pre-noise images for the purpose of measuring topology while maintaining topological

integrity. The next goal is to demonstrate that alternative topological metrics exist

which may better be able to demonstrate transitions in the presence of noise. The final

goal is to be able to demonstrate the ability to identify transitions of real-world noisy

camera data, both by applying smoothing algorithms, and by using methodologies

that can qualitatively identify transitions without first approximating a pre-noise

image.
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Chapter 2

Topology Theory

Topological Data Analysis (TDA) [3] is a methodology gaining popularity in applied

mathematics for its ability to extract topological and geometric information from

point cloud (discrete set of points in Cartesian space) and other digital image data.

This allows measurement of coarse topological properties in images, and has also

demonstrated promise in being a metric for identifying transitions in two-dimensional

plasma data.

2.1 Betti Features

Betti numbers represent the connectivity of sets of points, lines, and their n-dimensional

counterparts in higher dimensions. In the topological space X, Hk(X) are defined as

the k-th homology groups for k ∈ Z. These groups are an algebraic description of the

structure of k-dimensional holes. Their associated Betti numbers βk = dimHk(X),

count the number of features of a given dimension. For example, for X ⊂ R2, β0

represents the number of connected components of X and β1 represents the number

of 1-dimensional holes in X [4].
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Figure 2.1: Two sets with gray
area representing a set with β0 =
1.
β1 = 0 (left), and β1 = 1 (right)

The shapes in Fig 2.1 represent two different

sets, where the grey area represents points in-

cluded in the set. Both consist of one connected

set, that is the one 0-dimensional Betti number is

β0 = 1. The set to the right of the image addition-

ally has a one dimensional hole and β1 = 1, while

the set on the left has no 1-dimensional holes so

β1 = 0.

2.2 Persistent Homology - Sublevel Sets

One way to measure simple binary Betti features for continuous functions is to de-

compose grayscale data into a series of nested sets and then measure the appearance

and disappearance of topological features while moving through the set using a tool

called persistent homology. These nested sets are called a sublevel set filtration. Fig-

ure 2.2 demonstrates a filtration of a the given 1-dimensional function by increasing

the value of a threshold. As the threshold increases, topological changes occur in

the sublevel sets. As the threshold continues to increase in this series, passing local

minima creates new features. At a local maximum, features merge. By convention,

the feature that emerged more recently in the sublevel set is considered to have died.

This simple 1-dimensional example can be extrapolated to more dimensions. Defin-

ing a grayscale image as f : P → {0, 1, ..., 255}, where f(x) gives the value of pixel

x, taking the threshold, for value t, the sublevel set ft := {x ∈ P |f(x) ≤ t} including

all grayscale values below the threshold, produces a series of binary images ft ⊆ ft+1.

This is the sublevel set filtration for t = 0, 1, ...255. The homological critical values

in this set, represented in this 1-D case by maxima and minima in the function are

6



Figure 2.2: Sublevel set thresholding
A threshold (green) moving through a function causes the emergence of features (blue)
within the set. Homological critical points are points where these features (blue) are
created or destroyed

places where homology groups change. Informally, these critical values are defined as

either a “Birth” coordinate or “Death” coordinate for a given feature, depending on

whether the critical value represents a point where a new Betti feature first emerges

in the set (birth), or the merging of two previously existing features occurs, where by

convention the shorter lived feature is considered to have “died”. A feature’s lifespan

is defined as the difference between an individual feature’s birth and death values in

the set.

2.3 Persistence Diagrams

Plotting all “Birth” versus “Death” coordinates yields a persistence diagram that

represents the topology of an image.

In order to reinforce intuition of a persistence diagram’s connection to image ge-

ometry, note that the two outlying points on the left of the persistence diagram

correspond to the dark points at the top of the image to the right in Fig. 2.3. Ad-

ditional information is contained in the spread of different Betti features along the

diagonal. During the process of thresholding, connected components are likely to
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Figure 2.3: Persistence Diagram (left) corresponding to 2-D image (right).
On left, β0 features represented in green, β1 features represented in red.

appear or be birthed before loops are, leading to the clustering among persistence

points corresponding to the same Betti features.

2.4 Wasserstein Distance

The Wasserstein Distance is is a metric measuring the distance between distributions,

in this case the distance between two persistence diagrams. It represents the “optimal

transport plan” between two sets of points through a minimization of the sum of

distances [5]. It can be conceptualized as the minimum total distance required to

move one set of points in a distribution to a separate set of points. This minimization

defines a scalar value that represents the topological similarity of two data sets. For

the purposes of this project, the Wasserstein distance is taken separately for each level

of homology. The Euclidean norm of these distances yields an overall Wasserstein

persistence difference. Any mention of the Wasserstein distance in this thesis uses

this version of the metric.
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Figure 2.4: Wasserstein Distance
Minimized distance between two separate sets of points (red and blue) is represented
by black dotted lines. By convention, points with no corresponding partners in the
blue set are matched to a point on the diagonal. The total length of black segments
is the scalar Wasserstein Distance.

2.5 Bottleneck Distance

The bottleneck distance is a different metric which is calculated with an alternative

pairing to the Wasserstein distance. The scalar value of this metric is the longest nec-

essary edge length required in a perfect matching, or one where all points are covered.

Computationally, this is used more often in topological analysis than the Wasserstein

distance because it trades sensitivity for computational time. However, for the pur-

pose of this project, this lower sensitivity becomes an important advantage. Because

the Bottleneck distance only includes the longest edge length, the introduction of

a significant amount of short-lived features spread along the diagonal, as would be

expected in most common types of noise, does not have a significant effect on the

Bottleneck distance. These metrics are ways to quantify the changes we see within

physical systems.
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Chapter 3

Physical Systems and Turbulence

Topology has applications in a wide range of physical systems which have associated

point cloud data. Topology is used to investigate systems from ice core scans to atmo-

spheric currents [3]. There are many physical properties of plasmas, and turbulence in

particular, that make magnetohydrodynamic systems interesting for the application

of topological data analysis. Specifically there are properties of simulations which are

conducive to investigation using TDA, as well as characteristics of turbulence that

make TDA a worthwhile subject of investigation.

3.1 Magnetohydrodynamic Simulation

Magnetohydrodynamics (MHD) is the combination of hydrodynamics and electrody-

namics which are used to model a large number of electrically conductive fluids, and

is good for modelling the large-scale magnetic behavior of plasmas. Specifically, MHD

is most applicable when plasmas are highly collisional, have low resistivity, and the

time scales and length scales are much greater than the ion gyration time and Larmor

radius. This makes MHD an area of interest for research of Driftwave Turbulence and

large scale dynamics within future magnetic confinement fusion devices [6].

10



3.2 Modified Hasegawa Wakatani

The Modified Hasegawa Wakatani MHD model simulates electron density in plasmas

[7] and is used to produce the 2-dimensional grayscale turbulence images used in

this thesis (an example of which can be seen in Fig. 1.2). The Modified Hasegawa

Wakatani model is a pair of coupled differential equations that, along with continuity

equations and boundary equations describe the motion of electrons in a free electron

gas and is used to approximate the physical setting of the edge region of a tokamak

plasma [8]. These equations are

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ− n)− µ∇4ζ (3.1)

∂n

∂t
+ {ϕ, n} = α(ϕ− n)− κ

∂ϕ

∂y
− µ∇4n (3.2)

Here, ζ is the vorticity, n is the electron density, ϕ is the charge density, µ is a param-

eter governing diffusion rates, and {a, b} is the canonical Poisson Bracket Operator.

In these simulations x and y are in the radial direction within the core of the plasma,

with y being in the direction of the magnetic gradient. Some of the assumptions

that are used in these simulations are periodic dimensions, cuboid geometry, and cold

ions. Parameters of note that were varied at the beginning of the simulations were

the density gradient drive κ = − ∂
∂x

ln(no), and α or the adiabaticity which governs (in

2D) collisionality, and acts as a parameter which can be adjusted to reach different

flow regimes in the simulations. While it is possible to use κ to drive the change

in the flow regime, collisionality presents a more convenient parameter, as its end

behaviors are well understood. As α → 0, zonal flows become entirely suppressed,

while as α → ∞, the model becomes fully dominated by zonal flows. Numata et al.

[9] identify distinct dynamic flow regimes in the model, turbulent, transitional, and

11



zonal. By considering the fraction of energy contained within zonal flows in an image

Ez :=
1
2

∫
(∂⟨ϕ⟩

∂x
)2 to total kinetic energy Ek :=

1
2

∫
(∇ϕ)2, they were able to determine

how dominant zonal flows were in a given system. Their results determined that a

system is zonal if Ek

Ez
> 0.9, turbulent if Ek

Ez
< 0.2, and transitional in between, i.e.

0.2 < Ek

Ez
< 0.9. These results are compared to the results of topological metrics

within this thesis.

3.3 Turbulence Scales

Turbulence additionally has several characteristics which lend themselves especially

well to topological data analysis. Specifically, turbulence is composed of vortices of

different scales. The largest vortices are driven by the mean flow of the medium, and

are a result of the geometry and collisionality of the fluid in question. These vortices

drive smaller vortices in the inertial subrange, where they are no longer dependent

on the geometry of the fluid, but instead exhibit energy decay to smaller and smaller

scales. At the smallest feature scales, the viscosity of the fluid dissipates the energy

contained in these vortices. This is why a high number of features is characteristic

of systems with lower collisionality (and therefore a turbulent flow), where the dis-

sipation scale occurs at lower energies, allowing for a larger inertial subrange [10].

Topological data analysis contains a variety of tools which can quantify the char-

acteristics of turbulence which are visually intuitive, yet mathematically difficult to

calculate. This will be most relevant as we move from simple models to more complete

plasma simulations.

12



Chapter 4

Application to Models and
Simulation

Topological Data Analysis has broad applicability in all sorts of point cloud and

image data. In this chapter, single feature models demonstrate the limits of smoothing

algorithms in approximating pre-noise topology. Then, alternative topological metrics

to the number of features are examined in the presence of noise in order to determine

if there are noise-stable alternatives to previously used metrics.

4.1 Noise in a Single Feature Model

This Thesis examines the effects of real life noise on point cloud data. To represent

common noise expected in camera data, this project uses a Poisson distribution. This

works well for gray-scale data, but runs into problems in binary images, or images

where pixels can have one of two discrete values. A Gaussian distribution is used

instead for binary images, with a mean value set as halfway between the binary

values. In order for this approximation to remain relevant, binary images are defined

as having values of either

{
pm,n = 0

pm,n = 255
for pixel (m,n) in the pixel grid. For

grayscale images (represented by colored heatmap images for readability), Poisson

noise is applied, where random values from the distribution are generated for each

13



pixel based on the intensity of said pixel. The topology of a noisy image and its

pre-noise image are then compared topologically by using the modified Wasserstein

distance and Bottleneck distance metric. Turbulence is defined by the energy cascade,

where energy is generally transferred from large spatial scale features to smaller scale

features until those features reach dissipation scales. This means that features of all

spatial scales are represented [10]. This is difficult for standard smoothing algorithms

like a Gaussian blur to deal with, as smaller features can easily be smoothed out and

important information can be lost. Therefore, it is important to identify the limits

of algorithms at the extremes of feature scales. Two different single feature models

provide the simplest cases to examine the behavior of topological metrics at logical

extremes.

Figure 4.1: Stripe and Circle Single Feature Models
Each model from left to right has a

1) Noiseless image 2) Noisy image 3) Post-Process image.

14



A binary model with a single stripe is the topologically simplest single feature

model. The circular model adds complexity in the form of vertex-to-vertex connec-

tions between pixels, which represent a problem for cubical homology within grid

point cloud data. Thus the circular model becomes more relevant to real world data

at the expense of some topological simplicity.

4.1.1 Processing Algorithms- Opening/Closing

Opening and Closing are morphological dual operations that use repetitions of erosion

and dilation to attempt to restore noisy images. In opening, the input image is first

eroded then dilated, while in closing these processes are reversed. Erosion is the

process where each pixel is assigned the minimum pixel value of the set of pixels in

its spatial “neighborhood” or kernel. For dilation, the maximum value is assigned

instead [11]. Opening and closing an image is sometimes effective in removing small

Figure 4.2: Opening and Closing
The curve at the top of this figure (Iterations=0) represents the Wasserstein distance
between persistence diagrams of a pre-noise and post-noise image. The bottom curve
(Iterations=1) represents the same relationship, but with processing applied to the
post-noise image. In both cases the curve is feature scale independent.
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scale pixel-wise noise and is often used in that application. In this thesis, a kernel is

a 3 × 3 box of pixels. The single stripe model in Fig. 4.1 is shown in three states:

noiseless, with noise applied, and then with noise and opening/closing applied. The

Wasserstein distance can be utilized as a metric to determine the topological similarity

between the first and third images in this series. A perfect topological match between

two images would correspond to a Wasserstein distance of zero (note that two very

different images can be topologically identical).

In Fig 4.2, opening then closing removes orders of magnitude from the Wasserstein

distance demonstrating a reduction in the level of noise in the image. The relative

consistency of the line as the scale (“radius”) of the stripe is varied, implies that the

spatial scale of relevant features has a minimal impact on the applicability of this

metric. However, while this metric is effective for targeting noise over topology, the

final effect of the smoothing may not be strong enough to reduce the effects of noise

on topological data for an image. However, plotting the Wasserstein distance while

varying the feature scale demonstrates that opening/closing is effective at removing

pixel-wise additive noise independent of feature scale.

4.1.2 Processing Algorithms- Gaussian Blur

A Gaussian blur, as used in the circle model of Fig 4.1, is widely used to reduce image

noise at the expense of image detail. Each pixel’s new value is set to a weighted

average of the values in the pixel’s neighborhood, in this case with weight determined

by a 2-dimensional normal Gaussian distribution,

f =
1

(2πσ)2
e−

(x−x̄)T (x−x̄)
2σ (4.1)
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The width of this weighted Gaussian is determined by σ (sigma), and the vector

x represents the position of the pixel being assigned a new value, with x̄ being the

value of said pixel [12]. This also implies that by choosing too large a value for σ, it

is possible to wash out genuine topology and not just noise artifacts.

Figure 4.3: Gaussian Filter
Each curve represents how well a Gaussian filter can approximate the pre-noise topol-
ogy of a noisy image at different feature sizes. Each curve represents a different blur
strength based on the σ of the Gaussian distribution.

This embeds inherent limits into the utility of a Gaussian blur, as the blur will be

less effective when the scale of noise approaches the scale of the smallest features in an

image. Figure 4.3 demonstrates the scale dependence of the effectiveness of a Gaussian
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blur. In the figure, this limit appears for both small and large values for the radius

of the feature, since as the feature scale grows dominant, the background and feature

can be viewed as having flipped places. Additionally, as σ is increased, the range of

effectiveness for a Gaussian filter decreases, as larger features are able to be smoothed

out. However, a higher σ is also associated with a lower Wasserstein distance within

this range where a blur is most effective, and thus a better approximation of a noiseless

image.

4.2 Application to MHD Simulations

Single feature models give good approximations of the way that topological data may

react to the influence of noise. The next important step is to examine how more

complex magneto-hydrodynamic simulations react to the addition of noise. By vary-

ing the collisionality (α) parameter in the modified Hasegawa-Wakatani simulation

module of BOUT++, it is possible to drive different simulation outcomes. For the

purposes of this thesis, simulations are run for 4000 timesteps to allow for the effects

of input parameters to propagate and yield the desired end behavior. The effect of

collisionality (α) on the state can be seen in Figs. 1.1 and 1.3. This set of generated

plasma images is used as the basis for further investigation.

4.2.1 Gaussian Filter

The transition between turbulent and zonal flows is characterized by changes in the

number of topological features, but also visually by the spatial scale of features. As

a result of this variance, images react differently to a Gaussian blur depending on

the regime. This presents an alternative methodology for the characterization of im-

ages by flow type, as can be seen in Fig. 4.4. By using the Wasserstein Distance to

compare, topologically, an image before and after a Gaussian blur is applied, differ-
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Figure 4.4: Effect of Gaussian Blur
Wasserstein distance plotted against σ (for different values of adiabaticity) reacts
differently to a Gaussian filter based on the adiabaticity. This visible separation lines
up with the different states seen in Fig. 1.1, as can be seen on the labels on the right.

ent flow regimes (characterized by initializing parameter adiabaticity) seem to lose

topological data at different rates. The information loss caused by a Gaussian filter

differs not only based on the flow regime, but also in that the reactions of different

images represent an alternative to categorize those regimes with a metric other than

the Number of Features. Intuitively, as limσ→∞, the image approaches homogeneity.

This approaches the Wasserstein distance becoming an equivalent metric to the total

lifespan of persistent pairs. This is because the set of persistent pairs for a homoge-

neous image is the null set, and therefore this Wasserstein distance is equivalent to

minimizing all points to the diagonal.
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4.2.2 Noise Stability of Filter Methodology

In real-world applications this methodology, however, is still unstable in the presence

of noise. Figure 4.5 is a simplification of the end behavior of Fig. 4.4, showing the

Wasserstein distance between an image and its homogenous average (limσ→∞).

Figure 4.5: Gaussian Blur Only
Curve represents the Wasserstein distance be-
tween a noisy image and its homogeneous average
as a function of adiabaticity.

Specifically in Fig. 4.5, these

images have standard Poisson

noise applied to them. Ideally,

this would mirror the transition

seen in Fig. 1.1. However,

noise dominates and this metric

shows promise in differentiating

flow types. The Wasserstein dis-

tance in this case is susceptible to

the noise introduced by an appli-

cation of Poisson noise. Because

the Wasserstein distance depends

on a distance minimization between persistent pairs and, in this case, the diagonal,

the Wasserstein distance is significantly dependent on the number of features. This,

as established previously, is unstable in the presence of even minor noise.

4.2.3 Bottleneck Dependence

Fortunately, while the number of features is noise unstable and difficult to use in this

context, the stability of Wasserstein distances is more complex. More specifically, the

Bottleneck distance- a special case of the Wasserstein distance- is stable under the

introduction of noise. The Cohen-Steiner stability theorem for topology states that

in the presence of noise ϵm,n ∈ R with |ϵm,n| < ϵ, the maximum Bottleneck distance
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between two persistence diagrams P and P + ϵ is at most the scale of ϵ [4]. This

result implies that the bottleneck distance is a potential noise-stable alternative to a

full Wasserstein Distance.

Figure 4.6: Bottleneck Distance Only
Applying the Bottleneck distance in place of the Wasserstein distance from Fig. 4.4,
separation still occurs, and the end behavior remains similar.

Figure 4.6 implies that the Bottleneck distance contains the same information as

the Wasserstein distance with a loss of sensitivity at some levels. However, the general

end behavior of each image remains the same.
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4.2.4 Maximum Lifespan

Applying a Gaussian filter with limσ→∞ approaches a fully homogeneous image, which

has no non-infinite persistence pairs. Therefore, as the filter approaches this limit,

all persistence points in a set are paired to a point on the diagonal. Therefore this

bottleneck distance is equivalent to measuring the maximum lifespan an image.

Figure 4.7: Transition Captured with maximum lifespan
Plot of the maximum lifespan within the topology of each image across a transition.
This curve demonstrates the same trend as seen with the number of features ⟨Nf⟩.

And indeed, replacing the Wasserstein distance in Fig. 4.5 with the maximum

lifespan, the expected transition reemerges in Fig. 4.7.
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Figure 4.8: Maximum lifespan vs number of features
Both the number of topological features (blue) and the maximum lifespan (red) of
topology in an image follow the same trend across a transition.

Comparing the transition captured by Number of Feature methodology vs maxi-

mum lifespan methodology (Fig. 4.8) demonstrates that maximum lifespan has po-

tential as a noise-stable alternative to the number of features.

4.2.5 Noisy Maximum Lifespan

This metric is significantly more stable under the influence of noise than the number

of features. Because this is essentially a bottleneck distance, the stability theorem

applies. Figure 4.9 shows how the bottleneck distance metric reacts to noise, and

compares that with a noiseless transition. While this introduces a shift in the diagram,

the transition is still identifiable, and critical points where the transition occurs are
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also still preserved.

Figure 4.9: Maximum Lifespan Stability
The maximum lifespan under the influence of noise is compared to the maximum
lifespan in the noiseless case. The relation is stable under the effects of background
noise, and flow regimes can still be identified. Compare to Fig. 1.5

While there is some loss of information, the general structure of the dependence is

preserved. This metric is, of course, limited by the stability theorem, requiring that

the noise smaller than the signal under investigation. However, comparing the results

of Figs. 1.5 and 4.9, this is significantly more stable to introduced noise. In the zonal

regime the difference is largest since the bottleneck distance is less stable when the

distance is smaller. Conceptually, this can be imagined as the zonal flows appearing

more “turbulent” as a result of the type of noise applied.
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Chapter 5

Testing TDA on experimental fast
camera data

The LArge Plamsa Device (LAPD), located at UCLA, is a cylindrical magnetized

plasma device which produces a plasma with a length of 17 meters and a diameter of

60 centimeters. It is ionized using a barium-oxide coated nickel cathode that causes

a slow drift of the plasma in the ion diamagnetic direction. Biased obstacles inserted

into the core plasma is shown to achieve more continuous control of crossfield flow.

In the absence of these biased limiters, the plasma will continue to rotate slowly in

the ion diamagnetic drift direction, but biasing the limiters placed in the device with

respect to the cathode drives flow in the electron diamagnetic drift direction instead.

Importantly for the purposes of this project, during this process, the initial flow is

reduced and brought to near zero flow and flow-shear, and is ultimately reversed.

This represents a transition state between two flow states [13].

In the video under consideration for the purpose of this section of this thesis, taken

from one end of the LAPD tube, records the electron density of a plasma. In this

video, a clear transition occurs in the vicinity of frame 50. The goal is to be able to

identify when this transition occurs topologically, and whether there is a topological

difference between pre and post transitional states.

25



Figure 5.1: Frames from LAPD Video
From left to right, grayscale frames from before (frame 36), during (frame 48) and
after (frame 60) transition in shearing turbulence video captured by fast camera at
LAPD.

5.1 Number of Features

The number of features within each frame of the LAPD video is an insufficient metric

for identifying transitions.

Figure 5.2: Pre-process LAPD data
Effect of noise on number of topological features
per frame. Noise

Figure 5.2 plots the number

of features in each frame over

time. The curve in this fig-

ure demonstrates that we are

working with a type of noise

which does not resemble the shot

noise which was previously used

to model expected camera noise.

Specifically, this introduces an

unexpected noise signal on a 12

frame cycle. However, on a

frame-by-frame basis, this noise appears to be both small in scale and additive, even

if it is not consistent over the course of the video. Under these conditions, the dual

morphological operations of opening and closing would be able to help reduce this
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noise. Alternatively, since the maximum scale of this applied noise is small relative to

the feature scale, the stability theorem for Bottleneck distances means the maximum

lifespan metric may also be applicable.

5.2 Opening/Closing

Opening and Closing are a reasonable image processing methodology for approximat-

ing pre-noise images from noisy data with small scale noise. Figure 5.3 demonstrates

that when opening/closing is applied to each frame in the LAPD camera data, the

number of features lose a lot of their fluctuations. This methodology does indicate

Figure 5.3: Number of Features with Opening/Closing
Opening/Closing operations remove “spikes” seen in Fig. 5.2 to allow the visualization
of the topological change around frame 50.
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a transition occurring near frame 50, therefore demonstrating that opening/closing

in the presence of pixel-wise noise preserves topological structures of interest for this

system, and allows the extraction of topological information from previously noisy

data.

5.3 Maximum Lifespan

The maximum lifespan in each frame of this video also characterizes the frames where

the expected transition occurs. Plotting the maximum lifespan of features in each

image once again allows the emergence of a significant signal around frame 50.

Figure 5.4: Real World Lifespan Diagnostic
The maximum lifespan of each feature demonstrates interesting topological change
occurring around frame 50, as expected based on the known transition.
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5.4 Interpretation of Results

While both of these methods have established interesting topological changes around

frame 50, following expectations of when a transition occurs within the LAPD video,

there appears to be another topological feature of interest. Specifically, both of these

topological metrics appear to show another type of slower topological change occur-

ring in the range of frame 200. Considering the maximum lifespan as a special case

of the Bottleneck distance, which is fully independent of the number of features, the

maximum lifespan and number of features are fully decoupled metrics. This implies

that the shared shift in topology which is observed at frame 200 is likely physical in

origin, or is at least inherent to the camera data itself. This may or may not imply

some more subtle transition occurring at this point, and more research is required to

identify what that change may be, or if this topologically has any implications at all.

Figure 5.5: Overlapping results from post-processing number of features (fig. 5.3)
and lifespan (fig. 5.4)
Both demonstrate a topological shift during known transition at around 50 frames,
with evidence of interesting behavior around frame 200.
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Chapter 6

Conclusion and Outlook

Motivated by the goal of utilizing topology as a metric for identifying flow states

within real life and noisy camera data, this thesis examines several physical systems

of interest. The effects of noise on metrics which measure changes in topological

behavior were measured in all three of these applications: single feature models,

magneto-hydrodynamic simulation, and real world fast camera data.

Building on the results of previous work which determined that the homology of

patterns give a reasonable description of when transitions occur, this thesis demon-

strates how these metrics are susceptible to common real-world noise. This demon-

strates that there are alternative homology methods that provide noise-resilient quan-

titative descriptions of transition, which match with previous results to identify tran-

sitional regimes. Specifically, by characterizing the effect of a Gaussian blur on the

Wasserstein distance of differing regimes, continuous improvements to methodologies

demonstrated that the maximum lifespan of features within a topological image is a

viable and potentially noise stable way to quantify transition.

To test this potential noise-stable methodology, these metrics were applied to real

world fast camera data from LAPD, which demonstrated that the maximum lifespan

was indeed more stable to noise than the number of features, and demonstrated a clear

transition in the camera data, and even potentially captured additional dynamics
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which could be the subject of future investigation. However, since the maximum

lifespan is a modification of the bottleneck distance, this metric trades sensitivity for

resilience against noise. Therefore there are still concerns that this metric may not be

stable under different noise conditions, or that the methodology may not be delicate

enough to capture more subtle transitions. This again could be the direction that

future investigation takes.

Topology is a field where real world applications are just being applied to match

the power of computational and mathematical discoveries in the field. Topology

presents new opportunities for working towards both a greater understanding of tur-

bulent systems, as well as potential applications of control systems and data analysis

in the future.
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Appendix A

Computer Programs

A.1 Simulation Lifespan Diagnostic Code

The following python code is used to produce figures like figure 4.9:

import MethodsMaster as gen

import matplotlib.pyplot as plt

import numpy as np

import random

import xarray as xr

import scipy as sp

import skvideo.io

import skvideo.utils

import skvideo.datasets

from scipy import fftpack, ndimage

plt.rc(’font’, size=10)

gridar2=[1,0.9,0.7,0.5,0.3,0.1,0.09,0.07,0.05,0.03,0.01,0.009,0.007,0.005,0.003,0.001]

#gridar2=[1,0.5,0.1,0.05,0.01,0.005,0.001]

gridar=gridar2[::-1]

fig=plt.figure()

y=[]

for i in gridar:

grid=np.loadtxt(f"./Simulation/ImRepoComp/BOUT_{i}.txt");grid=gen.normalize(grid)

g=gen.gaussblur(grid,100)

y.append(gen.BottleneckCompare(grid,g))

plt.plot(gridar,y)

plt.xlabel("Adiabaticity")

plt.xscale("log")

plt.ylabel("Maximum Lifespan")

print("CLEARLINE_____________________________________CLEARLINE",end="\x1b[1K\r")

save_name=input("Save with name: ")

fig.savefig(f"./{save_name}.png")

plt.close()
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A.2 Real World Bottleneck Diagnostic

The following is the Python code that produces figures like figure 5.4:

import MethodsMaster as gen

import matplotlib.pyplot as plt

import numpy as np

import random

import xarray as xr

import scipy as sp

import skvideo.io

import skvideo.utils

import skvideo.datasets

from scipy import fftpack, ndimage

db=skvideo.io.vread(f"./shear_example.avi")[:int(524/2),20:640,60:770,0]

x=[];y=[]

for i in range(len(db)):

grid=db[i];grid=gen.convertimg(grid)

g1=gen.gaussblur(grid,100)

x.append(i)

y.append(gen.BottleneckCompare(grid,g1))

fig=plt.figure()

plt.plot(x,y,"o-")

plt.xlabel("Frame")

plt.ylabel("Bottleneck Distance")

print("CLEARLINE_____________________________________CLEARLINE",end="\x1b[1K\r")

save_name=input("Save with name: ")

fig.savefig(f"./{save_name}.png")

plt.close()

A.3 Methods Code

The following is the Python code that contains most of the general methods used in the production
of graphics and analyzing data for this project. It is imported for all other code samples as gen:

/***********************************************************/

import numpy as np

import xarray as xr

from PIL import Image, ImageFilter

import random

import scipy as sp

import scipy.ndimage

import gudhi as gd

import gudhi.wasserstein as gdwas

import matplotlib.pyplot as plt

import matplotlib.animation as animation
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from matplotlib.animation import FuncAnimation

#import cv2

#Only used for testing purposes

def openthedata():

test=input("Simulation Info Desired (n, phi, vort): ")

data=xr.open_dataset(f"Simulation/BOUT.dmp.0.nc")

#info=data["info"].values

data=data[test].values[len(data[test]["t"])-1,2:len(data[test]["x"])-2,0,:]

return data

#Additive Gaussian Noise

def noisegauss(tempdata,sigmamod):

returnable=np.zeros((int(len(tempdata[:,0])),int(len(tempdata[0,:]))))

m=((np.amax(tempdata))*0.05)*sigmamod

for i in range(int(len(tempdata[:,0]))):

for j in range(int(len(tempdata[0,:]))):

returnable[i][j]=tempdata[i,j]+random.gauss(tempdata[i,j],m)

#print(f"Gaussian Noise Added, sigma={m}")

return returnable

#True Poisson Noise

def noisepoisson(tempdata):

returnable=np.random.poisson(tempdata)

return returnable

#"Additive" poisson noise

def noisepoisson2(tempdata,lamb):

returnable=np.zeros((int(len(tempdata[:,0])),int(len(tempdata[0,:]))))

for i in range(len(tempdata)):

for j in range(len(tempdata[0])):

returnable[i][j]=tempdata[i][j]+np.random.poisson(lamb)

return returnable

#normalizes out magnetic gradient along forst axis (useful for BOUT++ output)

def normalize(tempdata):

returnable=np.zeros((int(len(tempdata[:,0])),int(len(tempdata[0,:]))))

for i in range(len(tempdata[:,0])):

returnable[i]=tempdata[i,:]-np.mean(tempdata[i,:])

return returnable

#Creates an animation of input 3D array

def visualize(viddata):

def AnimationFuncion(frame):

dap=viddata[frame]

plotte.set_array(dap)

#print(frame)

return plotte

dap=viddata[-1]

#Setting first frame(which is last frame to set colorbar to reasonable scale)

Figure=plt.figure()
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plotte=plt.imshow(dap)

plt.colorbar(plotte)

#Animation drawn and saved

anim=FuncAnimation(Figure,AnimationFuncion,frames=len(viddata),interval=200)

FFwriter = animation.FFMpegWriter()

output_path=input("Save animation with name: ")

anim.save(f’{output_path}.mp4’)

plt.close()

def genperscalc(img1):

ccimg1=gd.PeriodicCubicalComplex(top_dimensional_cells=img1,periodic_dimensions=[False,True])

ccimg1.compute_persistence()

pimg1=ccimg1.persistence()

return pimg1

#Wasserstein distance between two images

##euclidean distance between individual sets of betti numbers

def wasserbetti(temppersistence):

b0=[];y0=[];b1=[];y1=[]

for i in range(len(temppersistence)):

if temppersistence[i][0]==0:

b0.append(temppersistence[i][1][0])

y0.append(temppersistence[i][1][1])

elif temppersistence[i][0]==1:

b1.append(temppersistence[i][1][0])

y1.append(temppersistence[i][1][1])

return np.vstack((b0,y0)).T,np.vstack((b1,y1)).T

def WassersteinCompare(img1,img2):

pimg1=genperscalc(img1);pimg2=genperscalc(img2)

cimg10,cimg11=wasserbetti(pimg1);cimg20,cimg21=wasserbetti(pimg2)

bimg1=gdwas.wasserstein_distance(cimg20,cimg10,order=1.,internal_p=2.)

bimg2=gdwas.wasserstein_distance(cimg21,cimg11,order=1.,internal_p=2.)

return np.sqrt(bimg1**2+bimg2**2)

def BottleneckCompare(img1,img2):

pimg1=genperscalc(img1);pimg2=genperscalc(img2)

cimg1=wasserbetti2(pimg1);cimg2=wasserbetti2(pimg2)

return gd.bottleneck_distance(cimg1,cimg2)

#Standard wasserstein distance between two images

def wasserbetti2(temppersistence):

b=[];y=[]

for i in range(len(temppersistence)):

b.append(temppersistence[i][1][0])

y.append(temppersistence[i][1][1])

return np.vstack((b,y)).T

def WassersteinCompare2(img1,img2):

pimg1=genperscalc(img1);pimg2=genperscalc(img2)

cimg1=wasserbetti2(pimg1);cimg2=wasserbetti2(pimg2)

return gdwas.wasserstein_distance(cimg2,cimg1,order=1.,internal_p=2.)
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def get_betti_lifespan(p):

b=[];y=[]

for i in range(len(p)):

b.append(p[i][1][0])

if p[i][1][1] != ’inf’:

y.append(p[i][1][1])

return b,y

def lifespanvals(img1):

pimg1=genperscalc(img1)

b,y=get_betti_lifespan(pimg1)

spans=[]

for i in range(len(b)):

if y[i]-b[i] != float("inf"):

spans.append(y[i]-b[i])

return spans

#Eucliduan distance between two images

def eucdistance(img1,img2):#Need to be the exact same scale

returnable=0

for i in range(len(img1)):

for j in range(len(img1[0])):

returnable+=(int(img1[i][j])-int(img2[i][j]))**2

return np.sqrt(returnable)

#Retrieve persistence diagram for an image

def get_betti_pers(p):

b0=[];y1=[];b1=[];y2=[];b2=[];y3=[]

for i in range(len(p)):

if p[i][0]==0:

b0.append(p[i][1][0])

y1.append(p[i][1][1])

elif p[i][0]==1:

b1.append(p[i][1][0])

y2.append(p[i][1][1])

return(b0,y1,b1,y2)

def persinfo(tempdata):

p=genperscalc(tempdata)

b0,y1,b1,y2 =get_betti_pers(p)

lims = [np.amin(b0)-0.05,np.amax(b1)+0.05]

fig=plt.figure()

plt.xlabel("Birth",fontsize=20)

plt.ylabel("Death",fontsize=20)

plt.plot(b0,y1,’gx’,label="Betti 0 Features")

plt.plot(b1,y2,’rx’,label="Betti 1 Features")

plt.legend()

plt.fill_between(lims,lims,y2=lims[0],color=’#d3d3d3’)

return fig

#Returns number of topological features in an image

def numfeat(tempdata):

cc=gd.PeriodicCubicalComplex(top_dimensional_cells=tempdata)
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cc.compute_persistence()

p=cc.persistence()

return len(p)

#Converts image from pixel data to greyscale image object

def convertimg(tempdata):

tempdata=tempdata+abs(np.amin(tempdata))

tempmax=np.amax(tempdata)

for i in range(len(tempdata)):

for j in range(len(tempdata[0])):

tempdata[i][j]=int((tempdata[i][j]/tempmax)*255)

tempdata=tempdata.astype(np.uint8)

temp_image=Image.fromarray(tempdata)

temp_image.convert("L")

#print("Return type is now Image")

return temp_image

#mode blur smoothing algorithm

def modeblur(tempdata,kern):

tempdata=convertimg(tempdata)

returnable=tempdata.filter(ImageFilter.ModeFilter(size=kern))

return np.array(returnable)

#Gaussian blur smoothing algorithm

def gaussblur(tempdata,sigma):

return sp.ndimage.gaussian_filter(tempdata,sigma)

#Median blur smoothing algorithm

def medianblur(tempdata,kern):

return sp.ndimage.median_filter(tempdata,size=kern)

#Opening/Closing smoothing algorithm

def imopen(tempdata,d):

return sp.ndimage.grey_opening(tempdata,size=(3,3))#structure=np.ones((3,3)))

def imclose(tempdata,d):

return sp.ndimage.grey_closing(tempdata,size=(3,3))#structure=np.ones((3,3)))

def opencloseblur(tempdata,itera):

d=(len(tempdata),len(tempdata[0]))

for i in range(itera):

tempdata=imopen(tempdata,d)

tempdata=imclose(tempdata,d)

return tempdata

#Normalize an image with added noise

def noisenormalize(img1,img2):# 1 has no noise 2 is noisy

return img2-abs(np.average(img1)-np.average(img2))
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