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INTRODUCTION

Sharks occupy mid to upper trophic positions
within their food webs and have the capacity to reg-
ulate ecosystems via top-down processes (van der
Elst 1979, Stevens et al. 2000, Scheffer et al. 2005,
Heupel et al. 2014). Despite limited research on the
dynamic stability of shark communities, it has been
shown that sharks and other top predators fulfill the
crucial role of facilitating stability of the food web
(Britten et al. 2014). Sharks exhibit K-selected life

history strategies typified by late age at maturity,
long reproductive cycle, low fecundity, and extended
longevity (Cortés 1998, Musick et al. 2000, Stevens et
al. 2000, Au et al. 2015). Life cycles of sharks are typ-
ically multifaceted, undergoing ontogenetic changes
in habitat use (Heupel & Hueter 2002, McElroy et al.
2006, Grubbs 2010), diet (Lowe et al. 1996, Bethea et
al. 2004, McElroy et al. 2006, Ellis & Musick 2007,
Grubbs 2010), migration patterns (McCandless et al.
2005, Parsons & Hoffmayer 2005, Conrath & Musick
2008, Grubbs 2010), and consequently, intra- and

© Inter-Research 2017 · www.int-res.com*Corresponding author: cpeterson@vims.edu

Community interactions and density dependence in
the southeast United States coastal shark complex

Cassidy D. Peterson1,*, Kristene T. Parsons1, Dana M. Bethea2, 
William B. Driggers III3, Robert J. Latour1

1Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
2NOAA Fisheries, Southeast Regional Office, Protected Resources Division, 263 13th Avenue South, St. Petersburg,

FL 33701, USA
3National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, PO Drawer 1207, 

Pascagoula, MS 39567, USA

ABSTRACT: Studies aiming to assess intra- and interspecies community relationships in marine
habitats are typically limited to accessible, nearshore areas of restricted temporal and spatial
scale, within which only segments of the populations of interest are available. Using multivariate
first-order auto regressive state-space (MARSS-1) models, we estimated measures of interspecies
interactions and density dependence of 7 Atlantic coastal shark species (4 large and 3 small
coastal sharks) at 2 spatial scales. Localized analyses were based on data from 4 relatively spa-
tially limited, fishery-independent surveys conducted along the southeast US Atlantic coast and
within the Gulf of  Mexico. We then compared these localized results to those generated using
broad-scale indices of relative abundance estimated as common trends across the collection of 6
spatially restricted  surveys. The MARSS-1 framework was also used to estimate relative commu-
nity stability. Localized MARSS-1 analyses identified density-dependent compensation in all pop-
ulations in addition to 9 interspecies interactions, while results of broad-scale MARSS-1 analyses
revealed density dependence in 5 species and 9 interspecies interactions. More specifically, our
results support the manifestation of density-dependent compensation of neonate and juvenile
shark life stages within nursery areas. Overall, interactions within smaller spatial areas differed
from those identified using the broad-scale relative abundance trends, indicating that small-scale
interactions cannot be extrapolated to shark population growth rates of an entire stock.

KEY WORDS:  Atlantic coastal sharks · Nursery areas · Multivariate first-order autoregressive
state-space model · MARSS-1 · Early life history · Generalized linear models · GLMs

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 579: 81–96, 2017

interspecies interactions (Papastamatiou et al. 2006,
Grubbs 2010). Because sharks occupy wide spatial
ranges and several discrete niches over the course of
ontogeny, complete characterizations of population
dynamics are difficult to define. Similarly, many spe-
cies school by age, size, and sexual maturity status,
as exemplified by differential habitat use between
neonates, juveniles, and adults as well as between
males and females (Springer 1967, Heupel & Hueter
2002, Parsons & Hoffmayer 2005, DeAngelis et al.
2008). Inevitably, predatory and competitive interac-
tions of sharks must also change over their lifecycle
(Grubbs 2010).

Understanding community interactions is neces-
sary to adequately manage any species, particularly
at the ecosystem level (Morin 2012). However, there
is still much to be understood concerning intra- and
interspecies interactions among elasmobranchs (Papa -
stamatiou et al. 2006). Interactions among sharks via
predator−prey relationships have been observed
from diet studies (e.g. Hoffmayer & Parsons 2003,
McElroy et al. 2006, Ellis & Musick 2007, Gurshin
2007, McElroy 2009). However, due to the challenge
of identifying prey material down to species level,
diet analyses often group prey species into broad
 taxonomic categories (e.g. ‘elasmobranch,’ Lowe et
al. 1996, Simpfendorfer et al. 2001; ‘unidentified
teleosts,’ Bethea et al. 2004), such that inferring spe-
cific predator−prey interactions is challenging
(Grubbs et al. 2016). Furthermore, diet composition
does not directly reflect the population-level impor-
tance of interactions between predator and prey spe-
cies (Heithaus et al. 2010).

Several studies have proposed that resource parti-
tioning is occurring within shark communities
(Bethea et al. 2004, White & Potter 2004, Papastama-
tiou et al. 2006, Kinney et al. 2011, Shaw et al. 2016),
reducing direct competition between species and
promoting coexistence (Platell et al. 1998). Alterna-
tively, species may be out-competed for their ideal
habitat, such that they sacrifice conditions promoting
optimal population growth in exchange for escaping
competitive ex clusion (Morin 2012). Studies of spe-
cies interactions have traditionally been limited to
easily accessible, shallow-water habitats in which
shark congregations are known to occur (White &
Potter 2004, DeAngelis et al. 2008; e.g. nursery areas,
Heupel et al. 2007), such that interactions occurring
on a broader scale or outside the local range of these
studies remain unexplored.

It is common for several sympatric shark species to
share nursery areas (Castro 1993, Bethea et al. 2004,
Parsons & Hoffmayer 2007, Ulrich et al. 2007), which

increases the potential for interspecies competition
(Heupel et al. 2007, DeAngelis et al. 2008, Kinney et
al. 2011). Neonatal and juvenile stages of several
coastal shark species with relatively small birth sizes
and slow initial growth rates seasonally inhabit nurs-
eries for several years after birth (Heupel et al. 2007,
Grubbs 2010). Predator avoidance has been shown to
shape neonate and juvenile shark behavior within
nursery areas (Heupel & Hueter 2002, Heithaus et al.
2007, DeAngelis et al. 2008), indicating that anti -
predatory behaviors (risk effects) play an important,
but unmeasurable, role in juvenile and small prey
species’ population growth rates (Heithaus et al.
2008, 2010).

While rarely demonstrated in elasmobranchs, den-
sity-dependent regulation is a phenomenon in which
the growth rate of a population is influenced by popu-
lation size (Gedamke et al. 2007, 2009, Cortés et al.
2012). Several studies have proposed density depend-
ence in elasmobranch populations based on observa-
tions including increased survival of neonatal and
early juvenile individuals (Hoenig & Gruber 1990,
Gruber et al. 2001, Gedamke et al. 2007, Kinney &
Simpfendorfer 2009), increased growth rates and ear-
lier age at maturity (Sminkey & Musick 1995, Carlson
& Baremore 2003, Cassoff et al. 2007, Taylor & Gal-
lucci 2009), smaller size at maturity (Carlson & Bare-
more 2003, Sosebee 2005, Taylor & Gallucci 2009,
Coutré et al. 2013), and changes in fecundity (Taylor
& Gallucci 2009). However, changes with respect to
growth rate and age and size at maturity can also be
confounded by other factors, such as selective fishing
pressure (Márquez-Farias & Castillo-Geniz 1998,
Stevens et al. 2000, Carlson & Baremore 2003, Sose -
bee 2005). Nevertheless, density dependence is com-
monly assumed in various elasmobranch population
(Au & Smith 1997, Gedamke et al. 2009, De Oliveira et
al. 2013) and stock assessment models (SEDAR 2013).
Currently, the most commonly accepted compensa-
tory response mechanism is thought to be neonate
and juvenile survival (Cortés et al. 2012).

The large ranges and migratory patterns of many
shark species make conducting generalized, broad-
scale analyses challenging. Thus, studies concerning
shark interactions have been limited to confined,
small-scale analyses. In the present study, we sought
to quantitatively examine species interactions (in -
cluding density dependence) using multivariate first-
order autoregressive state-space (MARSS-1) models
within and between large and small coastal shark
species complexes along the southeast US coast and
within the Gulf of Mexico at both localized and broad
spatial scales. As afforded by the MARSS-1 model
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structure, a secondary goal was to examine relative
community stability of each species complex (see
Supplement 1 at www. int-res. com/ articles/ suppl/
m579  p081 _ supp. pdf).

METHODS

Data sources

Catch and effort data from 6 fishery-independent
surveys ranging from 1974−2014 along the southeast
US Atlantic coast and Gulf of Mexico (for a list, see
Table S1, and Figs. S1−S3 in Supplement 2 at www.
int-res. com/ articles/ suppl/ m579 p081 _ supp. pdf) were
examined to estimate time-series of relative abun-
dance at localized and broad spatial scales, and infer
species interactions and community stability. Analy-
ses focused on 7 Atlantic coastal shark species, rep-
resenting 2 management categories: 4 large coastal
shark (LCS) species (sandbar shark Carcharhinus
plumbeus, blacktip shark C. limbatus, spinner shark
C. brevipinna, and tiger shark Galeocerdo cuvier)
and 3 small coastal shark (SCS) species (Atlantic
sharpnose shark Rhizoprionodon terraenovae, blac-
knose shark C. acronotus, and bonnethead shark
Sphyrna tiburo; Table S2).

Time-series of relative abundance

Catch per unit effort data from each survey were
used to estimate annual indices of relative abun-
dance using delta-lognormal generalized linear
models (GLMs; McCullagh & Nelder 1989, Lo et al.
1992) for each species (see Peterson et al. 2017).
Indices of abundance from the 4 temporally longest-
ranging surveys represented the localized analyses.
Indices of abundance for each species from all sur-
veys were analyzed using a time-series reduction
model (dynamic factor analysis, DFA) to produce a
single trend over time. DFA is a multivariate model-
ing technique designed to extract latent common
trends from a collection of short, non-stationary time
series (Holmes et al. 2014; see Peterson et al. 2017 for
complete details). These reduced trends represented
the broad-scale analysis and were estimated on a
standardized (Z-scored) scale. Consequently, broad-
scale trends were rescaled to the maximum survey-
based index value generated by delta-lognormal
GLMs (DFA inputs) to retain a measure of relative
scale necessary for log-transformation in the
MARSS-1 analysis.

MARSS-1

Time-series of species relative abundance were
analyzed using MARSS-1 models, which are derived
from the Gompertz population growth equation (Ives
et al. 2003). The MARSS-1 models are of the form:

xt = Bx(t–1) + wt, where wt ~ MVN(0, Q)

yt = Ixt + vt, where vt ~ MVN(0, R)
(1)

where x is the vector of log-transformed true species
relative abundance at time t, B is the species inter -
action matrix in which each element, bji, represents
the effect of species i on the population growth rate
of species j, y is the measured log-transformed spe-
cies relative abundance, I is the identity matrix, and
w and v represent the multivariate normally (MVN)
distributed process and observation errors at time t
with associated means of 0 and covariance matrices
Q and R (Holmes et al. 2014).

The focus of this study was estimation of the B
matrix, because elements of the species interaction
matrix contain information on density-dependent
compensation of each species and how species’ inter-
actions impact the overall population growth rates of
other members of the complex. Specifically, diagonal
values near 0 are indicative of density-dependent
compensation as derived from the Gompertz popula-
tion growth equation; diagonal elements with magni-
tudes near 1 suggest that the corresponding species
does not experience density dependence. Off-diago-
nal elements, bji, measure the influence of species i
on the population growth rate of species j (Ives et al.
2003). Values with 90% confidence intervals that
did not overlap 0 or 1 were interpreted as represent-
ing significant interspecies interactions or density-
dependent regulation, respectively. Interaction and
density dependence coefficient values with 85% CIs
that did not overlap 0 or 1, respectively, were inter-
preted as approaching significance.

MARSS-1 model fitting

Localized species interactions were investigated
by fitting models to delta-lognormally generated
indices of abundance from each survey with suffi-
cient longevity (Virginia Institute of Marine Science
Longline Survey, VIMS LL; Gulf of Mexico Shark
Pupping and Nursery Gillnet Survey, GULFSPAN
GN; SouthEast Area Monitoring and Assessment
Program− South Atlantic Trawl Survey, SEAMAP-SA
Trawl; and Southeast Fishery Science Center Long-
line Survey, SEFSC LL), and broad-scale interactions
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were identified by fitting models to the broad-scale,
re duced common trends, which were representative
of larger-scale trends in relative abundance for each
species. To reduce the number of estimated parame-
ters for assurance of appropriate model convergence,
known yearly variances from the relative abundance
indices were averaged to produce a single estimate
of index variability for each species, which was spec-
ified in the observation error covariance matrix, R.
We also assumed that no covariance between species
indices existed within the observation error matrix.
The process error covariance matrix, which measures
the degree to which each species is affected by envi-
ronmental or other external perturbations, was esti-
mated from 3 different structures: (1) a diagonal and
equal structure in which all variances were assumed
to be equal and covariance was set to 0, (2) a dia -
gonal and unequal structure in which each variance
was assumed to be unique and covariance was set
to 0, and (3) an unconstrained matrix in which
all variances and covariances were independently
estimated.

Convergence problems arose when fitting MARSS-1
models, and were indicative of too many para meters
being estimated without sufficient available degrees
of freedom or that the model framework being
applied was not appropriate for the data (Holmes et
al. 2014). Hence, every element of the B matrix could
not be estimated within a single model, and relevant
species interactions were chosen a priori based on
biological and ecological inferences derived from
previous research (e.g. Bethea et al. 2004, Thorpe et
al. 2004, Papastamatiou et al. 2006, Carlson 2007,
Parsons & Hoffmayer 2007, Ulrich et al. 2007, Castro
2011, Shaw et al. 2016). The interactions were neces-
sarily 1-sided (i.e. we estimated the effect of species
X on species Y, but not the effect of species Y on spe-
cies X in the same model), enabling the MARSS-1
models to converge. Models were fitted in several
steps (see Supplement 3 at www. int-res. com/articles/
suppl/ m579 p081 _ supp. pdf). Exploratory ana lyses
were conducted by estimating ‘base’ B matrices to
de termine the directionality of the interactions to be
included in the final B matrix. The successful interac-
tions from the previous step were combined into a
single B matrix, and between 16 and 32 unique com-
binations of the given interactions were fitted. Opti-
mal models were ranked by corrected Akaike’s infor-
mation criterion (AICc; Hampton et al. 2013, Holmes
et al. 2014). Up to 10 models within 5 ΔAICc units
were analyzed, and models that resulted in the low-
est uncertainty in parameter estimates that still dis-
played acceptable graphical model fits were chosen

for final analysis. All models were fitted using the
‘MARSS’ package (Holmes et al. 2013) in R (version
3.1.1; R Core Team 2014).

Within the broad-scale analyses, before fitting a
model to all species combined, MARSS-1 models were
fitted to both the LCS and SCS complex independ-
ently. The resulting elements of each B matrix were
manually specified within the final B matrix when all
shark species were included. This effectively allowed
us to model interactions between species com plexes
which would not have been otherwise possible due to
the large number of parameters to be estimated.
When all species were included in the MARSS-1
model, we assumed that the process error covariance
matrix contained equal variances for all LCS species
and a separate measure of equal variances for all SCS
species due to divergence of life history strategies.
Stability analyses were conducted comparing the
 relative community stability of the SCS, LCS, and
 aggregated complex (see Supplement 1).

RESULTS

Localized MARSS-1 modeling

A diagonal and equal process error covariance
matrix structure was supported for each survey-spe-
cific MARSS-1 model, likely due to a reduced num-
ber of estimated parameters. A diagonal covariance
matrix Q assumes that the environmental factors
driving variation in the relative abundance of one
species is uncorrelated to environmental factors driv-
ing the relative abundances of all other species
(Holmes et al. 2014). We identified 16 instances of
density dependence in the localized analyses, along
with 9 significant species interactions (i.e. effects on
population growth rate; Table 1, Figs. 1−4).

Broad-scale MARSS-1 modeling

Broad-scale time-series of relative abundance
included single trends for sandbar, blacktip, spinner,
and tiger shark populations, which were considered
representative of individuals in both the southeast
US Atlantic coast and Gulf of Mexico. Two broad-
scale time-series were required to adequately de -
scribe the patterns of abundance for Atlantic sharp-
nose and blacknose sharks, each trend uniquely
representative of southeast US Atlantic Ocean or
Gulf of Mexico individuals, in general. Lastly, bon-
netheads produced a single explanatory time-series
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that described abundance patterns within the south-
east US Atlantic Ocean only (Fig. 5; for complete
results and interpretations, refer to Peterson et al.
2017).

In the LCS and SCS MARSS-1 analyses of broad-
scale indices of relative abundance, a diagonal and
equal process error covariance matrix was most
 supported. The resulting B matrix from the LCS
MARSS-1 model suggested density-dependent regu-
lation in sandbar, blacktip, and tiger sharks, but not
in spinner sharks (85% CI: 0.818−1.036; Table 2,

Fig. 6). In the Atlantic SCS complex,
Atlantic sharpnose and blacknose sharks
exhibited density-dependent compen -
sation. Mea sures of density dependence
were not statistically different from 1 for
bonnetheads (85% CI: 0.851− 1.035).
Within the Gulf of Mexico, density de -
pendence was not ob served in Atlantic
sharpnose sharks (85% CI: 0.745−1.094)
or blacknose sharks (85% CI: 0.5−1.119).
Nine species interactions were identi-
fied within the broad-scale shark com-
plex (Table 2, Fig. 6).

DISCUSSION

Density dependence

The results of the broad-scale analyses
supported the existence of density
dependence in 5 out of 9 coastal shark
populations. Density dependence in
elasmobranch populations has been pos-
tulated or assumed in the past (e.g.
Sminkey & Musick 1995, Carlson &
Baremore 2003, Gedamke et al. 2007,
2009, Coutré et al. 2013), and this study
provides quantitative evidence that sev-
eral stocks of southeast US Atlantic
Ocean and Gulf of Mexico shark species
experience density dependence. It is
likely that the remaining 4 populations
undergo density dependence at a stock-
wide scale, but our underlying data did
not permit precise estimation of these
parameters. The absence of density
dependence within elasmobranch spe-
cies, which is generally not supported by
the available scientific literature, would
have substantial implications as popula-
tion sizes decline. Unlike a species that

exhibits density dependence, at small stock sizes, a
decrease in abundance would not result in a com-
pensatory increase in population growth rate, thus
reducing the ability of depleted populations to
recover.

Density dependence is thought to primarily mani-
fest through survival of neonate and young juvenile
sharks (Cortés et al. 2012). At the localized scale,
sandbar sharks showed density dependence within
Virginia coastal waters, likely due to the role of the
Chesapeake Bay as an important primary nursery
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Table 1. Species interaction (B) matrix results from multivariate first-order
autoregressive state-space (MARSS-1) models conducted on the Virginia
Institute of Marine Science Longline Survey (VIMS LL), Southeast Fishery
Science Center Longline Survey (SEFSC LL), SouthEast Area Monitoring
and Assessment Program−South Atlantic Trawl Survey (SEAMAP Trawl),
and Gulf of Mexico Shark Pupping and Nursery Gillnet Survey (GULFSPAN
GN). Interpretation of the off-diagonal elements in the matrix is the effect
that the column heading species has on the population growth rate of the
species noted by the row heading, and diagonal elements are indicative of
density dependence. SB: sandbar, BT: blacktip, SPN: spinner, TIG: tiger,
SN: Atlantic sharpnose, BN: blacknose, and BH: bonnethead sharks.
Bolded, italicized, and underlined values have 95, 90, and 85% confidence
intervals (CIs) that exclude 0 or 1 for community inter actions and density
dependence, respectively. Values highlighted in green represent significant
positive interactions, grey represent negative inter actions, and yellow rep-
resent density dependence. Strength of color corresponds to the α level
(darkest corresponds to α = 0.05 and lightest corresponds to α = 0.15).
Dashes indicate species that were not captured in sufficient numbers within
the given survey to generate an index of relative abundance, such that an 

interation with other species could not be observed

Species SB BT SPN TIG SN BN BH

VIMS LL
SB 0.5483 0 −0.2975 0.2641 0 − −
BT 0 −0.3969 0 0 0 − −
SPN 0 −0.5910 0.3698 0 0 − −
TIG 0 0 0 0.5303 0 − −
SN 0 0 0 0 0.6225 − −

SEFSC LL
SB 0.8615 0 0 0 0 0 −
BT 0 −0.0262 0 0 −0.3494 1.3009 −
SPN 0 −0.3598 0.5890 0 0 0 −
TIG 0.4788 0 0 −0.0799 0 0 −
SN −0.5562 0 0 0 0.8158 0 −
BN 0 0 0 −0.4903 0.0607 0.4452 −

SEAMAP-SA Trawl
BT − 0.3027 − − 1.4873 0 0
SN − 0 − − 0.7648 0 0
BN − 0 − − 0.7104 0.2126 0.4955
BH − 0 − − 0 0 0.5160

GULFSPAN GN
BT − 0.0488 0 − 0 0 0
SPN − 0 0.1737 − 0 0 0
SN − 0 0 − 0.8245 0 0
BN − 0 0 − 0 0.5112 0
BH − 0 0 − 0.1278 0 −0.3545
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area for this species (Grubbs et al. 2007). Hence,
sandbar shark density dependence in this region
may be linked to compensatory survival rates of early
life stages within nursery habitats.

Juvenile blacktip sharks are known to stray into
Virginia waters (Castro 2011). Density dependence
was found for blacktip sharks in the VIMS LL survey,
which primarily samples juvenile blacktip sharks
(73% of blacktips sampled were immature based on
median size at maturity from Branstetter 1987 and
Carlson et al. 2006). The SEAMAP-SA Trawl samples
waters adjacent to known, mixed-species nursery
areas off the coast of North Carolina (Thorpe et al.
2004), South Carolina (Abel et al. 2007, Ulrich et al.
2007), and Georgia (Gurshin 2007). Although this
survey does not precisely sample within primary

nursery areas, predominantly located within pro-
tected bays and estuaries along the US Atlantic coast,
immature individuals are sampled as they migrate
between nurseries. Juvenile carcharhinid species are
known to inhabit larger home ranges encompassing
waters adjacent to designated nurseries with onto -
geny (Heupel & Hueter 2002, McCandless et al.
2005). In the Gulf of Mexico, the GULFSPAN GN sur-
veys a known nursery area (Bethea et al. 2004, 2015),
primarily sampling juvenile blacktip sharks (96.2%
immature), while the SEFSC LL also samples a high
proportion of juvenile individuals (Ingram 2012).

Less is known about spinner shark movement pat-
terns. Throughout the western North Atlantic Ocean,
it is assumed that mature individuals remain off-
shore, with the exception of gravid females who
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Fig. 1. Hypothesized interactions estimated by the Virginia
Institute of Marine Science Longline Survey (VIMS LL)
 multivariate first-order autoregressive state-space (MARSS-
1) modeling. Shark species are numbered as follows: (1) sand-
bar; (2) blacktip; (3) spinner; (4) tiger; (6) Atlantic sharpnose.
All species presented experienced localized density depend-
ence. Black arrows denote negative interactions in the direc-
tion of the arrow (i.e. arrows are pointing to the negatively
 affected species), and green arrow represents positive inter-
actions in the direction of the arrow. Shark specimen illustra-
tions were created and copyrighted by ©Marc Dando

Fig. 2. Hypothesized interactions estimated by the South-
East Area Monitoring and Assessment Program−South At-
lantic Trawl Survey (SEAMAP-SA Trawl) MARSS-1 model-
ing. Shark species are numbered as follows: (2) blacktip; (5)
blacknose; (6) Atlantic sharpnose; (7) bonnethead. Species
represented by circled numbers experienced localized den-
sity dependence; boxed number did not. Green arrows rep-
resent positive interactions in the direction of the arrow
(i.e. arrows are pointing to the positively affected species).
Shark specimen illustrations were created and copyrighted 

by ©Marc Dando
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come inshore to pup (Castro 2011), while adults can
be found nearshore in the western Gulf of Mexico
(W. B. Driggers III unpubl. data). Based on size at
maturity reported by Branstetter (1987), 93.6% of
spinner sharks captured in the VIMS LL survey were
immature. Similar to the case for blacktip sharks, the
GULFSPAN GN survey has only captured 6 adults
out of all spinner shark observations included in the
present study (n = 903).

Tiger sharks do not use nursery areas (Driggers et
al. 2008). Nevertheless, based on sex-specific lengths
at maturity (Branstetter et al. 1987), almost all tiger
sharks captured in the VIMS LL were immature
(98.6%), while the SEFSC LL also samples juvenile
tiger sharks (Driggers et al. 2008). Thus, our model-
ing results suggest that young-of-year and juvenile

LCS species are driving localized and broad-scale
density-dependent compensatory responses within
the southeast US Atlantic coast and the Gulf of
 Mexico.

Within shallow coastal areas, Atlantic sharpnose
sharks are ubiquitous in both the Atlantic (Thorpe et
al. 2004, Abel et al. 2007, Gurshin 2007, Ulrich et al.
2007) and Gulf of Mexico (Hueter & Tyminski 2007,
Neer et al. 2007, Parsons & Hoffmayer 2007). Al -
though it has been hypothesized that Atlantic sharp-
nose sharks do not occupy discrete nursery areas (as
defined by Heupel et al. 2007), but rather seasonally
occupy shallow interconnected bays and inlets along
a vast range of coastline (Heupel et al. 2007), they
exhibited density dependence within coastal Vir-
ginia waters and in a nursery off the Gulf coast of
Florida. While immature blacknose sharks are also
known to use waters along the southeast US Atlantic
coast (Ulrich et al. 2007) and within the Gulf of Mex-
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Fig. 3. Hypothesized interactions estimated by the Southeast
Fishery Science Center Longline Survey (SEFSC LL)
MARSS-1 modeling. Shark species are numbered as follows:
(1) sandbar; (2) blacktip; (4) tiger; (5) blacknose. Species
represented by circled numbers experienced localized den-
sity dependence; boxed number did not. Black arrow de-
notes negative interactions in the direction of the arrow (i.e.
arrow is pointing to the negatively affected species), and
green arrows represent positive interactions in the direction
of the arrow. Shark specimen illustrations were created and 

copyrighted by ©Marc Dando

Fig. 4. Hypothesized interactions estimated by the Gulf of
Mexico Shark Pupping and Nursery Gillnet Survey (GULFS-
PAN GN) MARSS-1 modeling. Shark species are numbered
as follows: (2) blacktip; (3) spinner; (5) blacknose; (6) At-
lantic sharpnose; (7) bonnethead. All species presented ex-
perienced localized density dependence. Shark specimen
 illustrations were created and copyrighted by ©Marc Dando
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ico (Hueter & Tyminski 2007, Bethea et al. 2015),
mature individuals occupy similar shallow-water
habitats (Ulrich et al. 2007). For example, although
the SEFSC LL primarily captures mature blacknose
sharks (W. B. Driggers III unpubl. data), density de -

pendence was noted within this survey. Bonnet-
heads, another ubiquitous SCS species along the
southeast US Atlantic coast (Ulrich et al. 2007) and
within the Gulf of Mexico (Hueter & Tyminski 2007,
Bethea et al. 2015), showed localized density de -
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Fig. 5. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally derived indices of relative abun-
dance for the coastal shark complex that were input into the broad-scale MARSS-1 model. Trends (solid lines) are shown with
corresponding 95% confidence intervals (shaded regions). Black trends are indicative of abundance throughout the southeast
US Atlantic coast (Atl.) and the Gulf of Mexico (GoM), while blue and red trends uniquely represent abundance patterns in the 

Atl. and GoM, respectively (see Peterson et al. 2017)
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pendence. While it is possible that immature individ-
uals are driving these density-dependent trends for
SCS species, an alternative life history strategy as

compared to LCS species, in which juvenile and
adult individuals of each species spend a substantial
portion of time in nearshore areas (Hueter & Tymin-
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Fig. 6. Hypothesized interactions estimated by the broad-scale MARSS-1 modeling. Shark species are numbered as follows: (1)
sandbar; (2) blacktip; (3) spinner; (4) tiger; (5) blacknose; (6) Atlantic sharpnose; (7) bonnethead. Black arrows denote negative
interactions in the direction of the arrow (i.e. arrows are pointing to the negatively affected species), and green arrows represent
positive interactions in the direction of the arrow. Species represented by circled numbers experienced broad-scale density de-
pendence; boxed numbered species did not. Shark specimen illustrations were created and copyrighted by ©Marc Dando

Species             SB                 BT               SPN              TIG         GOM SN       Atl. SN       GOM BN       Atl. BN         Atl. BH

SB                   0.7847               0                   0               0.1895               0                   0                   0                   0                   0
BT                       0               0.6488          0.2616               0                   0                   0                   0                   0                   0
SPN                    0                   0               0.9273               0                   0                   0                   0                   0                   0
TIG                     0                   0               0.7468          0.4011               0                   0                   0                   0                   0
GOM SN           0               0.1388               0                   0               0.9194               0                   0                   0                   0
Atl. SN         −0.1817             0                   0                   0                   0               0.0824               0                   0               0.0532
GOM BN           0                   0                   0                   0             −0.4346             0               0.809               0                   0
Atl. BN               0               0.5921         −0.5450             0                   0                   0                   0               0.2448          0.6360
Atl. BH         −0.1598             0                   0                   0                   0                   0                   0                   0               0.9434

Table 2. Species interaction (B) matrix results from multivariate first-order autoregressive state-space (MARSS-1) models con-
ducted on the dynamic factor analysis (DFA) common trends for all species. Interpretation of the matrix, color coding, and spe-
cies abbreviations follow those presented Table 1, with the addition of population designators, where Atl.: southeast US Atlantic 

coast, GOM: Gulf of Mexico
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ski 2007, Ulrich et al. 2007, Bethea et al. 2015), may
be driving density-dependent responses across dis-
tinct life stages.

Overall, these results support the prominent hypo -
thesis that the primary mechanism of density de -
pendence in these coastal shark species is through
neonate and juvenile survival (Cortés et al. 2012),
when these immature individuals reside within nurs-
ery grounds. This study highlights the importance of
shark nursery areas in facilitating protected growth to
maturity in coastal sharks (Heupel & Hueter 2002),
particularly for LCS species. While Heithaus et al.
(2007) suggested that areas where density-dependent
selection occurs should be deemed critical habitat,
Kinney & Simpfendorfer (2009) proposed that the im-
portance of shark nursery areas has been overstated,
citing several matrix-based demographic modeling
studies (e.g. Brewster-Geisz & Miller 2000), which
used sensitivity analyses to show that juvenile survival
had much greater impacts on population size than
first-year survival. However, basic Leslie matrix models
that have been applied to shark species have not been
structured to incorporate nonlinear functions for age-
or stage-specific density dependence (Cortés 1998),
thus precluding objective evaluation of this phenome-
non. Additionally, several species exhibit natal homing,
using nursery areas well into the juvenile life stage
(e.g. Heupel et al. 2007, Hueter & Tyminski 2007, Cas-
tro 2011). If these areas are compromised through an-
thropogenic degradation, reduced resource availability
could limit operative carrying capacity, effectively re-
stricting the number of neonates that survive to matu-
rity. We argue that it is important to continue to focus
scientific attention on establishing shark nursery areas
as essential fish habitat (NMFS 1999) to allow overex-
ploited coastal shark populations to rebound, in con-
junction with protecting other life stages (Kinney &
Simpfendorfer 2009).

Broad-scale interspecies interactions

We considered interactions identified in the
MARSS-1 analyses and the potential underlying
mechanisms presented to be hypotheses that require
empirical experimentation for validation. Broad-
scale analyses revealed 9 statistically significant
interactions that affect inter-specific population
growth rates (Fig. 6). Juvenile diet and habitat over-
lap was observed between blacktip sharks and spin-
ner sharks within a Gulf of Mexico nursery area
(Bethea et al. 2004, 2015), while larger size classes
(sub-adults and adults) have been known to co-

school (Aubrey & Snelson 2007). Data from the VIMS
LL indicated that when present, blacktip sharks and
spinner sharks co-occurred in 35% of longline sets
(C. D. Peterson unpubl. data), which suggests co-
schooling behavior in the mid-Atlantic region. Our
analyses demonstrated that the presence of spinner
sharks had a positive effect on blacktip sharks, with
values that approached statistical significance (85%
CI did not overlap 0), indicating that co-schooling
was beneficial for blacktip sharks.

Simultaneously, spinner sharks had a positive effect
on the population growth rate of tiger sharks, which
are known to feed on blacktip sharks and other
medium-sized elasmobranchs (Bell & Nichols 1921,
Lowe et al. 1996). This relationship may result from
tiger shark predation on spinner sharks, or may repre-
sent an indirect effect in which spinner sharks in-
crease the population growth rate of blacktip sharks,
thereby increasing the number of blacktip sharks
available as prey for tiger sharks. Similar  indirect re-
sults have been observed using multivariate first-
order autoregressive (MAR-1) modeling, in which
secondary interactions were identified while primary
interactions were repressed within the B matrix
(Hampton et al. 2006). Additionally, effects of chang-
ing predator abundance may result in indirect effects
on tertiary species, without displaying population level
effects on mesoconsumers, particularly those that ex-
perience density dependence (Heithaus et al. 2010),
like blacktip sharks in the present study. Furthermore,
due to shared diagnostic characters and overlap in
early taxonomic keys (Branstetter 1982), the potential
for misidentification of spinner sharks and blacktip
sharks suggests that interactions involving these spe-
cies should be interpreted with care.

Increased population growth rate of sandbar
sharks was observed in the presence of tiger sharks.
Predatory interactions of tiger sharks on sandbar
sharks have been previously reported off the Hawai-
ian Islands (Papastamatiou et al. 2006), and anec-
dotal observations of tiger sharks secondarily cap-
tured on hooks on which juvenile sandbar sharks
were primarily captured have been reported on the
VIMS LL and SEFSC LL surveys. A predatory release
interaction is unlikely, due to the large sizes and
 generally high trophic position of sandbar sharks
(Cortés 1999). However, if tiger sharks prey on juve-
nile and neonate sandbar sharks within their nursery
grounds, this predatory interaction likely stimulated
the population growth rate of density-dependent
sandbar sharks (i.e. assuming all else remains con-
stant, lower abundance of juvenile sandbar sharks
results in a density-dependent compensatory re -

90



Peterson et al.: Coastal shark interactions and density dependence

sponse, likely facilitating increased population growth
rate). Additional mechanisms underlying this inter-
action may be linked to annual environmental condi-
tions, such as those driven by decadal oscillations
that likely dictate regional organization (Peterson et
al. 2017), resulting in correlated catches of tiger
sharks and sandbar sharks.

A predatory interaction of sandbar sharks on bon-
netheads within the southeast US Atlantic Ocean
was identified, while spinner sharks had a negative
effect on blacknose sharks. Sandbar sharks feed on
various small and medium-sized elasmobranchs
(Ellis & Musick 2007, Castro 2011) and follow shrimp
trawlers to exploit bycatch within the Atlantic Ocean
and the Gulf of Mexico (Carlson 1999, Castro 2011).
Bonnetheads are commonly captured as bycatch
within the shrimp fishery (SEDAR 2011, 2013, Scott-
Denton et al. 2012), providing a mechanism facilitat-
ing this interaction. Furthermore, these species’ dis-
tributions overlap within the Florida Keys (Heithaus
et al. 2007), Gulf of Mexico (Hueter & Tyminski 2007,
Parsons & Hoffmayer 2007, Bethea et al. 2015), and
off the coast of South Carolina (Abel et al. 2007,
Ulrich et al. 2007). Antipredatory behaviors of bon-
netheads and blacknose sharks may occur in re -
sponse to LCS species, in which prey species will
forego optimal environmental conditions to avoid
direct predation that may be playing an indirect role
in the reduced population growth rate of bonnet-
heads and blacknose sharks (Heithaus et al. 2008,
2010). These antipredatory behaviors, typically dis-
played by long-lived species, have the ability to
reduce effective carrying capacity of a species and
are inter related to direct predatory effects that mag-
nify the negative effects of predators on prey species
(Heithaus 2007, Heithaus et al. 2010).

The presence of blacktip sharks was found to have a
positive effect on blacknose sharks within the south-
east US Atlantic Ocean. Similarly, in the Gulf of Mex-
ico, blacktip sharks had a positive effect on the popu-
lation growth rate of the Atlantic sharpnose sharks.
Blacknose, Atlantic sharpnose, and blacktip sharks
consume small teleost species, such as clupeids (Hoff-
mayer & Parsons 2003, Bethea et al. 2004, Gurshin
2007, Barry et al. 2008, Castro 2011), and habitat over-
lap has been noted along the southeast US Atlantic
coast (Ulrich et al. 2007), Florida Keys (Heithaus et al.
2007), and the Gulf of Mexico (Hoffmayer & Parsons
2003, Gurshin 2007, Hueter & Tyminski 2007, Parsons
& Hoffmayer 2007, Bethea et al. 2015). It is likely that
when local environmental conditions are favorable for
population growth rate of one species, sympatric spe-
cies may exhibit similar responses.

Within the Gulf of Mexico, the presence of Atlantic
sharpnose sharks had a negative effect on blacknose
sharks, suggestive of a competitive interaction. This
hypothesis can be further demonstrated by consider-
ing that Atlantic sharpnose and blacknose sharks are
known to feed on crustaceans as well as menhaden
(Brevoortia spp.) and other small teleosts (Bethea et
al. 2004, 2006, Castro 2011), inhabit similar ranges
within the Gulf of Mexico (Bethea et al. 2004, 2015,
Hueter & Tyminski 2007, Parsons & Hoffmayer 2007),
and exhibit similar early life history characteristics
(i.e. size at birth, growth rate, etc.). Niche overlap
between these SCS species likely results in fre -
quent interspecific competition for food and space
resources.

Lastly, broad-scale MARSS-1 analyses identified a
positive effect of bonnetheads on the population
growth rate of blacknose sharks within the Atlantic
Ocean. While this interaction could be the effect of
both species benefiting from mutually favorable
environmental conditions, it could also be due to an
indirect predatory release mechanism. For example,
within the Atlantic Ocean, bonnetheads almost ex -
clusively feed on crabs and other benthic inverte-
brates (Gurshin 2007), while blacknose sharks con-
sume several teleost species that feed on crabs (e.g.
sciaenids; Ford 2012). When bonnetheads are abun-
dant, they consume more crabs, such that other pred-
ators of the same crab species (e.g. sciaenids) are
forced to spend more time foraging, making them
susceptible to predation by predators, such as black -
nose sharks (Preisser et al. 2005). Unfortunately, due
to data limitations, we did not have a representative
trend of bonnethead abundance from the Gulf of
Mexico and as such were unable to assess species
interactions of the Gulf of Mexico stock.

Localized interspecies interactions

While some interactions were preserved at the lo-
calized scale (e.g. positive effect of tiger sharks on
sandbar sharks), not all broad-scale community inter-
actions were maintained. However, some localized in-
teractions may help to elucidate the mechanisms un-
derlying the broad-scale results. For example,  several
positive interactions were identified from SEAMAP-
SA Trawl survey data. As identified in the broad-scale
analyses, bonnetheads showed a positive effect on
blacknose sharks. Similarly, Atlantic sharpnose sharks
had a positive effect on the population growth rate of
both blacktip and blacknose sharks, while these inter-
actions were reversed in the broad-scale B matrix. Al-
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though these interactions could derive from ecological
origins, positive relationships noted within the
SEAMAP-SA Trawl B matrix were likely exaggerated
by anthropogenic factors. Mandatory commercial by-
catch reduction device implementation was estab-
lished off the southeast US Atlantic coast in 1997
(Scott-Denton et al. 2012), after which indices of rela-
tive abundance derived from the SEAMAP-SA Trawl
denoted synchronous increases in abundance for
blacktip, Atlantic sharpnose, and blacknose sharks.
Consequently, management measures may have con-
founded any biological interactions that exist within
the SEAMAP-SA Trawl survey area, so interspecific
interactions should be interpreted with care. The
broad-scale interactions that agree with the SEAMAP-
SA Trawl-specific MARSS-1 results may likewise be
misperceived.

The significantly negative effect of spinner sharks
on sandbar sharks inferred from the VIMS LL B
matrix may be indicative of a local competitive inter-
action. Although the diet of spinner sharks has not
been extensively examined, evidence suggests the
mutual consumption of clupeids (e.g. menhaden
Brevoortia spp.) by juvenile spinner sharks in the
Gulf of Mexico and sandbar sharks off the Atlantic
coast (Bethea et al. 2004, McElroy 2009). Thus, inter-
specific interactions in the southeast US Atlantic
Ocean may be facilitated by competition for overlap-
ping prey resources among species (Abel et al. 2007).
The negative effect of blacktip sharks on spinner
sharks in coastal Virginia waters may indicate that,
although blacktip shark populations benefit from co-
schooling with spinner sharks (as noted in the broad-
scale analysis), this co-schooling may be detrimental
to the population growth rate of spinner sharks via
resource competition.

Within the Gulf of Mexico, the positive effect of
blacknose sharks on blacktip sharks reinforces the
hypothesis that these 2 species share prey resources
and annual catches are correlated due to annual pat-
terns in distribution or availability to sampling gear.
Additionally, the negative effect of tiger sharks on
blacknose sharks suggests a predatory interaction
following the preference of tiger sharks for consum-
ing elasmobranch prey species, including blacknose
sharks (Bell & Nichols 1921).

MARSS-1 modeling

Graphical analyses suggested that overall model
fits were appropriate in the present study (see
Figs. S4−S8 in Supplement 2), and models appeared

to produce realistic characterizations of local and
broad-scale shark community interactions. Similarly,
the MAR-1 model framework matches empirical esti-
mation of community interactions within planktonic
freshwater lake communities (Hampton & Schindler
2006, Hampton et al. 2006), and provides simple
approximations to complex, nonlinear processes
(Ives et al. 2003). MAR-1 modeling results are robust
to the foundational assumption of a Gompertz versus
Ricker population growth structure (Mac Nally et al.
2010). Hence, several MAR-1 studies have been con-
ducted on various freshwater and marine ecosystems
(Hampton & Schindler 2006, Hampton et al. 2008,
2013, Grossman & Sabo 2010, Mac Nally et al. 2010,
Francis et al. 2012, Britten et al. 2014).

Implementation of these models in a state-space
framework (MARSS-1) provides additional flexibility
in data structure and accounts for both observation
and process error. While Ives et al. (2003) found that
exclusion of observation error does not tremendously
alter the interpretation of model results, particularly
when it comes to relative stability, Hampton et al.
(2013) noted that the state-space framework may be
more essential in marine communities due to the
open nature of these systems compared to enclosed
freshwater lakes. The expectation-maximization fit-
ting algorithm employed in our MARSS-1 analyses
(Holmes et al. 2014) can accommodate missing data
without prior linear interpolation or truncation. A
downside to the state-space framework involves pre-
specifying the B matrix structure. Incorporating pre-
existing biological knowledge to specify the ele-
ments of the B matrix is vital, because a different
configuration may result in different interpretation of
results (Ives et al. 2003, Holmes et al. 2014).

The broad-scale time-series are representative of
trends of relative abundance along the southeast US
Atlantic coast and the Gulf of Mexico, including var-
ious size classes sampled by several gear types (see
Peterson et al. 2017 for in-depth discussion concern-
ing merging data from gears with variable selectivity
functions). This is beneficial when considering how
the whole population of a species will affect that of
another species. For example, if species M affects
species L only in their shared nursery areas and spe-
cies N feeds on species L in adulthood, analysis of
only 1 life stage of species L would result in incom-
plete characterizations of interactions impacting the
population growth rate of species L. Secondarily,
Ulrich et al. (2007) suggested that multiple gear types
be used to adequately assess shark assemblages.
Bonnetheads, for example, primarily feed on crabs,
such that static gear baited with fish is unlikely to
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effectively sample these individuals (Ulrich et al.
2007). Consequently, by incorporating several sam-
pling techniques, both inshore and offshore, and
aggregating life history stages as in the broad-scale
analyses, we have been able to describe the broadest
and most complete estimates of whole-scale commu-
nity dynamics possible.

CONCLUSIONS

While some community interactions derived from
the broad-scale MARSS-1 analysis are supported in
the survey-specific MARSS-1 analyses, many inter-
actions are distinct. This suggests that interactions
that can be inferred from localized MARSS-1 analy-
ses cannot be generalized across a broader distribu-
tion or entire shark stocks. Thus, whole shark popu-
lation community analyses that functionally affect
species population growth rates can only be obtained
given inputs that encompass a broad area, providing
merit to the procedure employed in the present
study. Nevertheless, implementation of survey-spe-
cific analyses was useful for characterizing small-
scale, localized interactions, and for assisting inter-
pretation of broad-scale B matrix analyses.

These broad interactions have resulted in insights
on a southeast US coastal shark complex that could
not be directly observed, including density-depen-
dent responses in all species examined. Interactions
identified in the present study corroborate known re -
lationships, while adding to our knowledge of inter-
specific shark interactions and formulating hypothe-
ses regarding significant species interactions. With
continued environmental changes and anthropogenic
impacts, these interactions may change over time,
necessitating further analyses. Likewise, the results
of the present study provided analytically derived
hypotheses about shark intra- and interspecies inter-
actions that would greatly benefit from continued
field and experimental research to uncover the true
mechanisms underlying these responses. As anthro-
pogenic forces continue to alter natural communities,
understanding community dynamics and interrela-
tionships can help us predict how these communities
will change and how to manage them accordingly
(Morin 2012).
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