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INTRODUCTION

The effect of habitat loss on ecosystem functioning
is an important issue in marine ecology due to the
rapid rate at which species such as seagrass, man-
groves, corals, and oysters are being lost from coastal
waters (Duarte et al. 2008). These species promote
diversity and stability of associated communities by
providing structure for attachment, ameliorating en -
vironmental stressors, and protecting organisms from
predation (Orth et al. 1984, Bertness & Callaway
1994, Stachowicz 2001). Loss of such species and the
habitat they provide will inevitably lead to declines

in dependent species and diversity, but the degree to
which such declines in diversity will equate to a loss
of ecosystem integrity is unclear.

In benthic environments in Chesapeake Bay, com-
plexity is provided by biogenic habitats such as sea-
grass and oyster reefs, along with non-biogenic habi-
tats such as coarse sediments. In a region dominated
by vast expanses of homogenous mud and sand, sea-
grass beds, oyster shell, shell hash, and pockets of
coarse sand and gravel tend to have high species
diversity (Orth et al. 1984, Gray 2002, Gutiérrez et al.
2003, Hewitt et al. 2005, Commito et al. 2008). In con-
trast, habitats with greater amounts of organic matter
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ABSTRACT: Habitat loss is occurring rapidly in coastal systems worldwide. In Chesapeake Bay,
USA, most historical oyster reefs have been decimated, and seagrass loss is expected to worsen
due to climate warming and nutrient pollution. This loss of habitat may result in declining diver-
sity, but whether diversity loss will equate to loss in ecosystem function is unknown. A bivalve sur-
vey was conducted in a variety of habitat types (seagrass, oyster shell, shell hash, coarse sand,
detrital mud) in 3 lower Chesapeake Bay sub-estuaries from spring 2012 through summer 2013 to
examine the correlation between bivalve densities, habitat type, habitat volume (of material
retained on 3 mm mesh), and predator density. Bivalves were analyzed as functional groups based
on feeding mode, living position, and predator defense strategy. On average, seagrass supported
one additional functional group, and diversity was increased 68–94%, in seagrass compared to
the other habitats examined. Species richness and functional group richness were positively cor-
related with habitat volume. The greatest densities of deposit-feeding bivalves were in detrital
mud habitats, the greatest densities of thin-shelled and surface-dwelling bivalves were in sea-
grass habitats, and the greatest densities of armored bivalves were in oyster shell habitats. Small,
thin-shelled bivalves were negatively correlated with densities of predators, including blue crabs
Callinectes sapidus and cownose rays Rhinoptera bonasus. Overall, bivalve diversity was as -
sociated with habitat type, habitat volume, and predator densities. These results suggest that all
habitats, and particularly seagrass, play a role in maximizing bivalve functional diversity in
Chesapeake Bay.
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(detrital muds) tend to be dominated by one or a few
species, and thus support less diverse communities of
organisms (Gray 2002, Fitch & Crowe 2012).

Some habitats in Chesapeake Bay are sensitive to
climate change and coastal development. Eelgrass
Zostera marina has been declining since the 1930s,
when there was a massive die-off due to eelgrass
wasting disease and hurricanes (Orth & Moore 1983,
Orth et al. 2006). In the past several years, seagrass
die-offs induced by extreme high temperatures in
Chesapeake Bay have resulted in the prediction that
Z. marina may disappear from the Bay entirely
(Moore & Jarvis 2008). The eastern oyster Crassostrea
virginica has experienced declines since the early
1900s, and still remains in the Bay at historically low
levels (Rothschild et al. 1994). Nutrient enrichment,
land clearing, and urban development alter the com-
position and quality of organic matter and detritus in
rivers and nearshore sediments (Wang et al. 2013,
Prater et al. 2015), which can affect habitat quality.

Changes in the quality and quantity of habitats in
Chesapeake Bay will impact the associated communi-
ties of organisms. Many marine organisms, including
fish, crustaceans, and bivalves use habitat for predator
avoidance. The complexity offered by habitats such as
seagrass and oyster shell may be beneficial for prey
species because it interferes with detection and cap-
ture of prey by predators, which promotes high prey
survival, especially for infaunal organisms such as bi-
valve mollusks (Peterson 1982, Heck & Thoman 1984,
Orth et al. 1984). Some habitats such as shell hash
 facilitate colonization of epifaunal bivalves like mus-
sels (Bertness & Grosholz 1985), while other habitats
such as dense root mats or shell material may inhibit
recruitment of large bivalves (Brenchley 1982, Fiori &
Carcedo 2015). Entire bivalve feeding groups may be
associated with certain habitats; more suspension
feeders and fewer deposit feeders are typically associ-
ated with complex shell hash habitats (Hily 1991),
oyster reefs (Rodney & Paynter 2006), and seagrass
(Stoner 1980) than with less-complex habitats such as
mud or sand. This may be due to the tendency of com-
plex habitat to slow passing currents, allowing parti-
cles to settle out and enhancing food resources for
suspension feeders (Peterson et al. 1984).

The link between habitat and bivalve distribution
is important to understand, as bivalve diversity pro-
motes ecosystem functioning because bivalves with
different feeding and burrowing behaviors have dif-
ferent impacts on their environment (Biles et al.
2002). Specifically, bivalve feeding and burrowing
activities influence nitrogen cycling, organic matter
deposition, mineralization, silica flux, and sedimen-

tation (Covich et al. 1999, Norkko et al. 2001, Biles et
al. 2002, Marinelli & Williams 2003, Welsh 2003).
Suspension-feeding bivalves perform an important
ecosystem service by filtering phytoplankton out of
the water column (Grizzle et al. 2008), and in high
densities, bivalves are able to control algal blooms
and promote water clarity (Cohen et al. 1984). Simi-
larly, deposit-feeding bivalves serve an important
role in the ecosystem by mixing oxygen deeper into
the sediment through their feeding and bioturbation
(Levinton 1995), allowing for increases in microbial
metabolism and influencing nutrient cycling (Biles et
al. 2002). Thus, changes in the diversity of the bi -
valve community may alter the functioning of coastal
marine ecosystems.

In addition to their role in cycling and storage of
material in marine environments, bivalves also serve
an important role in the food web. Bivalve morphol-
ogy and living position with respect to the sediment
surface can provide clues regarding the specifics of
that role. In benthic marine ecosystems, predator−
prey interactions are a key determinant of the distri-
bution and abundance patterns of fauna (though food
availability and abiotic factors such as currents and
salinity are also important; see Eggleston et al. 1992,
Seitz et al. 2001). To deal with predation pressure,
bivalve mollusks exhibit a number of morphological
and behavioral characteristics that defend them
against predators, allowing these prey species to
coexist with their predators and persist through time
(Vermeij 1987). Some examples include maximizing
burial depth (Blundon & Kennedy 1982a) or armor
(Bertness & Grosholz 1985). These defenses define
predator−prey interactions for a given species. For
example, few marine predators can consume clams
that burrow to 40 cm or more, such as the soft-shell
clam Mya arenaria, which as an adult is only avail-
able as prey to excavating predators such as cownose
rays Rhinoptera bonasus (Blundon & Kennedy 1982a,
Fisher 2010).

The degree to which bivalve diversity would have
to decrease for any effect on ecosystem function or on
trophic dynamics to be seen is unknown. The redun-
dancy hypothesis states that some species may not be
necessary for ecosystem functioning (Lawton & Brown
1993, Ehrlich & Walker 1998). Many studies have ex-
amined the relationship between species richness and
habitat type (Airoldi et al. 2008). However, species
richness does not account for functional redundancy.
Calculating functional diversity involves grouping or-
ganisms based on traits that represent their function
in the environment to understand communities and
ecosystems based on what organisms do, rather than
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on their evolutionary  history (Petchey & Gaston 2006).
This approach, commonly used for terrestrial plants,
has relatively recently been used to describe diversity
of benthic macrobenthos (Bazairi et al. 2005, Savage
et al. 2012, van der Zee et al. 2015), and the impact of
habitat on functional diversity of marine organisms
has been identified as a research need (Airoldi et al.
2008). In addition, although species are often grouped
based on trophic position, most studies relate func-
tional diversity only to bottom-up processes, omitting
top-down processes that are likely to influence distri -
bution and diversity of marine prey (though see
Griffin et al. 2008, Clemente et al. 2010, Gauzens et al.
2016). Here, we define functional diversity as it re -
lates to functional groupings of bivalves as consumers
(feeding mode) and as prey (living position and pred-
ator defense strategy), and our study is one of the first
to examine the effect of both habitat and predators on
functional diversity in marine benthic communities.
We thus can gain a better understanding of how habi-
tat loss may alter ecosystem functioning.

Objectives

The purpose of this study was to survey bivalves in
lower Chesapeake Bay to determine the degree to
which habitat type, habitat volume in the sample (as
determined by water displacement), and predator
density impact bivalve species diversity and func-
tional diversity. Specifically, we examined (1) bivalve
species diversity and species richness, (2) density of
bivalves separated into functional groups based on
feeding mode, living position, and predator defense
strategy, and (3) bivalve functional diversity and
functional richness.

Hypotheses

1. Bivalve species diversity and functional diversity
metrics are positively correlated with habitat volume,
and bivalve communities are more diverse in more
complex habitats, such as seagrass and oyster shell,
than in less complex habitat, such as detrital mud.

2. Functional groups exhibit the following habitat
preferences: higher densities of thin-shelled, suspen-
sion-feeding bivalves are associated with more com-
plex habitats (seagrass and oyster shell) than with
less complex habitats (detrital mud); the highest den-
sities of armored bivalves are found in/on oyster
shell; higher densities of deposit-feeding bivalves are
found in detrital mud habitat than any other habitats.

3. Densities of bivalve groups with predominately
thin-shelled species are negatively correlated with
predator density, with the exception of deep-burrow-
ing bivalves, which achieve a spatial refuge from
predation.

MATERIALS AND METHODS

Study system

Lower Chesapeake Bay encompasses the Virginia
portion of Chesapeake Bay. This portion of the Bay is
mostly polyhaline (except in the upper reaches of the
tributaries). Sediments in the lower Bay range from
fine muds to coarse sand and gravel. Sediments often
contain woody debris, marsh detritus, fossilized shell,
oyster shell, or shell material from other mollusks.
The lower Bay from south of the Potomac River
through to the mouth of the Bay supports stands of
mixed eelgrass Zostera marina and widgeongrass
Ruppia maritima, although Z. marina has been elim-
inated from more than half of its pre-1976 range in
Chesapeake Bay (Orth et al. 2010).

The most abundant demersal and epibenthic preda-
tors on benthos in Chesapeake Bay are spot Leiosto-
mus xanthurus, Atlantic croaker Micropogonus undu-
latus, hogchoker Trinectes maculatus, and blue crab
Callinectes sapidus (Hines et al. 1990). High predation
rates on infauna are also associated with seasonal mi-
gratory behavior of the cownose ray Rhinoptera bona-
sus (Blaylock 1993), which is able to consume bivalves
that would otherwise be nearly immune to predation
due to burrowing behavior, heavy armor, and/or size
refuge (Fisher 2010). While blue crabs are generalist
predators, adult crabs show a preference for infaunal
bivalves (Hines et al. 1990, Lipcius et al. 2007). Fish
consume small infaunal clams and may consume the
siphons of larger clams (Peterson & Skilleter 1994), but
they are rarely responsible for mortality of adult, large-
bodied clams (Hines et al. 1990, Eggleston et al. 1992).

Survey design

A bivalve survey was completed in the following
seasons and years: spring, summer, and fall 2012, and
spring and summer 2013. Each season, bivalves were
collected from 3 sub-estuaries of lower Chesapeake
Bay (Lynnhaven River system, York River, and Mob-
jack Bay), 4 sites within each sub-estuary, and 3 repli-
cate samples from each site (Fig. 1; GPS coordi -
nates provided in Supplement 1 at www.int-res. com/
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articles/ suppl/ m570p113 _ supp1.zip). All sites were
sampled in each season/year for a total of 180 sam-
ples, with 4 to 6 sampling dates in each season. All
sampling was completed within 2 wk in each season
except for fall 2012 (33 d) and summer 2012 (24 d),
when weather prevented more efficient sampling
(sample dates provided in Supplement 1). Sites were
chosen based on knowledge of benthic habitat com-
position. Sites often contained a mix of different habi-
tat types, and not all habitats were found in each site.
At each site, the locations for the 3 replicate samples
within each site were haphazardly selected by throw-
ing a suction ring (0.11 m2 area PVC tube) from the
boat in shallow water of 1.5 to 2 m depth mean high
water. Bivalves within the suction ring and to 40 cm
depth were collected using a suction sampling device,
and samples were sieved through 3 mm mesh. In the
laboratory, all bivalves in the 3 mm samples were
identified to species and counted. This mesh size
(3 mm) is larger than that used in some bivalve
studies (Seitz et al. 2016), but was chosen because the
literature suggests that intense predation by small
crustaceans on bivalve recruits does not occur until
clams reach 1.5–2.0 mm in shell length (van der Veer
et al. 1998), indicating clams much smaller than the 3
mm mesh would not be interacting with the crab and
fish predators we examined in this study.

For all suction samples, we examined the substrate
retained on the 3 mm mesh to assign a habitat type to
each sample. The habitat category that made up the

majority of the material by volume on the mesh
(assessed by eye) was designated as the habitat type
for the sample. Habitat categories were detrital mud
(which included woody debris or marsh detritus),
coarse sand (which included pebbles or gravel), shell
hash (which included fossilized shell and crushed or
whole bivalve shells), oyster shell (both articulated
and crushed shells which were associated with larger
reefs and were thicker and larger than shell hash), or
seagrass (any species). We calculated the total vol-
ume of habitat retained on a 3 mm sieve by water
 displacement.

Blue crab density at each site was quantified using
6 replicate 20 m tows with a modified commercial
crab scrape (usually used for harvesting soft shell
peeler crabs in seagrass in lower Chesapeake Bay)
with an opening 1 m wide, a 6 mm mesh net, and a
tickler chain to increase capture of small crabs (Seitz
et al. 2008). Tows were completed on the same day as
bivalve sampling or within a few days of sampling.
All blue crabs were measured to the nearest 0.1 mm.
In addition, any fish caught in tows were identified,
measured to the nearest 1 mm and released. At each
site, the number of ray pits within 1 m to either side
of a 50 m transect were counted and are treated as a
proxy of cownose ray R. bonasus density (Hines et al.
1997). Ray pits were about 0.3 m in diameter and
10 cm deep, and could be easily seen in good visibil-
ity or detected by sweeping the sediment with hands
in poor visibility.

Statistical analysis

Species diversity was calculated as
the Gini-Simpson index of diversity, or
the probability that 2 randomly se -
lected individuals will be of different
species. The Gini-Simpson index, λ, is
calculated as 1 − Simpson’s index,
where Simpson’s index = Σ i=1

R pi
2, in

which pi = the proportional abundance
of the i th species. The Gini-Simpson
index ranges from 0 to 1, with larger
values representing higher diversity.
Species richness was calculated as the
number of species present in each
sample, and total bivalve density was
also calculated for each sample. To
account for bias in species richness
associated with variability in the num-
ber of individuals collected in a given
sample, we calculated rarefied species
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Fig. 1. Sampling sites in lower Chesapeake Bay, VA, USA (inset). Samples
were collected in 3 sub-estuaries: Mobjack Bay, the York River, and Lynn-

haven; 4 sites were sampled in each sub-estuary
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richness using fixed-coverage subsampling (Chao &
Jost 2012) using the iNEXT package in R (Hsieh et al.
2016).

For each sample, bivalves were assigned to func-
tional groupings based on 3 categories summarizing
their life history and trophic niche: armor (thin-
shelled or armored), feeding mode (deposit feeding
or suspension feeding), and living position (deep
 burrowing or shallow/surface dwelling; Fig. 2).
These groupings included (1) facultative deposit-
feeding (DF) bivalves, (2) deep-burrowing suspen-
sion-feeding (DBSF) bivalves, (3) thin-shelled sur-
face-dwelling (TSSD) bivalves (which included both
shallow-burrowing bivalves such as Gemma gemma
and epifaunal bivalves such as the paper mussel
Arcuatula papyria), and (4) armored bivalves (ARM;
see Table 1). Bivalves were considered armored
if they had thicker or stronger shells than other bi -
valves in their size range (Blundon & Kennedy
1982b). Bivalves were considered deep-burrowing if
adults of the species burrowed to depths of 15 cm or
more (Fraser 1967, Alexander et al. 1993). The only
exception was Limecola balthica which, despite
the ability to burrow deeply in the sediment as an
adult, was included as a deposit feeder (Blundon &
Ken nedy 1982a) because the majority of the individ-
uals collected were small. Functional richness was
calculated as the number of functional groups repre-
sented in the sample, and functional diversity was
calculated as the Gini-Simpson’s diversity index of
bivalve functional groups for the sample (Schleuter
et al. 2010).

Gini-Simpson’s index of species diversity, species
richness, functional group richness and functional
diversity were analyzed using a generalized linear
model with a Gaussian distribution and an identity

link function. Densities for the 4 functional bivalve
groupings were analyzed with generalized linear
models with a quasi-Poisson distribution and a log
link function. Generalized linear models contained
the following predictor variables as fixed effects:
year (2 levels), season (3 levels), sub-estuary (3 lev-
els), site (4 levels, nested within sub-estuary), habitat
(5 levels), habitat volume (ml), blue crab density
(m−2), fish density (m−2), and ray pit density (m−2).
McFadden’s R2 (also known as rho-squared) was
 calculated as a measure of fit for all generalized
 linear models of density data (McFadden 1974). Con-
fidence intervals (95%) were calculated for coeffi-
cients within the model and for best-fit lines, and are
presented back-transformed to the original scale.

All variables were examined for multicollinearity
with scatter plots before inclusion in the model. In
addition, assumptions of generalized linear models
were examined using quantile−quantile plots and
residual plots. All models met the assumptions of nor-
mality and homogeneity of variance except models
for TSSD and DF bivalve groups. These groups were
examined further using zero-inflated Poisson models.
However, zero-inflated models provided no improve-
ment in ability to meet assumptions, and resulted in
more extreme residuals than quasi-Poisson models.
Analyses proceeded using quasi-Poisson generalized
linear models for both TSSD and DF bivalves, and
any conclusions should be treated with caution due
to the deviance from assumptions.

For multiple comparisons, significant difference
was determined using non-parametric bootstrap
hypothesis testing with 10 000 simulations and α =
0.05 (Efron & Tibshirani 1993) because many re -
sponse variables deviated from the assumptions of
parametric methods. Bootstrap hypothesis testing is a
more powerful alternative to traditional hypothesis
testing on transformed data (Russell & Dean 2000).
Contrasts proceeded as follows: the category with the
largest value of the response was compared with the
category with the lowest value. If this comparison
was significant at α = 0.05, the category with the
largest response was compared to the category with
the next lowest value, and so on until the result was
not significant at α = 0.05. This procedure was then
repeated for the category with the second largest
response. For each response variable, p-values were
corrected for multiple comparisons using the Bonfer-
roni method. Cohen’s d was calculated as a measure
of effect size for all 2-group comparisons. All analy-
ses were completed using R statistical software (R
Core Team 2016), and code and data files are pro-
vided in Supplement 1.
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Fig. 2. Functional dendrogram of the relationships between
functional groupings. Based on these groupings, bivalves
were assigned into 4 functional groups: facultative deposit-
feeding (DF), deep-burrowing suspension-feeding (DBSF),
thin-shelled surface-dwelling (TSSD), and armored (ARM) 

bivalves
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RESULTS

In all, 2871 bivalves representing 17 species were
collected in the survey (Table 1). The maximum den-
sity observed for a single species was 2082 m−2

Limecola balthica in the York River in spring 2013.
After L. balthica (with 1250 total individuals collected),
the most commonly encountered bivalves were, in
descending order, the stout razor clam Tagelus ple-
beius (312 collected), Ameritella mitchelli (299 col-
lected), and Kelliopsis elevata (287 collected).

Average overall sample Gini-Simpson diversity
index and rarefied species richness were 0.37 and
8.44, respectively. Rarefied species richness was sig-
nificantly greater in seagrass than in detrital mud (d =
0.08, p = 0.04; Fig. 3a), and functional richness was
greater in seagrass than in oyster shell (d = 0.07, p =
0.04), shell hash (d = 0.08, p = 0.007), and detrital mud
(d = 0.08, p = 0.05; Fig. 3b). Trends in the Gini-
 Simpson diversity index and functional diversity
were both very similar to trends in species richness,
and results are included in Fig. S1 and Table S1 in
Supplement 2 at www. int-res. com/ articles/ suppl/
m570 p113 _ supp2. pdf.

Detrital mud supported higher densities of the fac-
ultative DF L. balthica and A. mitchelli than seagrass
(d = 0.15, p = 0.0006; Fig. 4a). DBSF bivalves, such as
T. plebeius, Ensis directus, Mya arenaria, Petricolaria

pholadiformis, and Tagelus divisus
(Table 1), had similar densities in all
habitats (Fig. 4b). TSSD bivalves,
such as K. elevata and Arcuatula
papyria (Table 1), had higher densi-
ties in seagrass habitat than detrital
mud (d = 0.06, p = 0.05), or shell hash
(d = 0.04, p = 0.04; Fig. 4c). ARM
bivalves, such as Geu kensia demissa,
Mercenaria mercenaria, Muli nia lat-
eralis, Noetia ponderosa, and Modio-
lus modiolus (Table 1), had the high-
est densities in oyster shell, and
densities of ARM bivalves were sig-
nificantly higher in oyster shell than
in detrital mud (d = 0.09, p = 0.04) or
shell hash (d = 0.07, p = 0.03; Fig. 4d).

In generalized linear models, spe-
cies diversity, functional diversity,
species richness, and functional rich-
ness were all positively associated
with presence of seagrass (Tables S2−
S5 in Supplement 2). In comparison
with detrital mud (the habitat with
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Species Total Maximum DF DBSF TSSD ARM
collected density

Limecola balthica 1250 2082 X
Tagelus plebeius 312 218 X
Ameritella mitchelli 299 327 X
Kelliopsis elevata 287 345 X
Arcuatula papyria 233 527 X
Ensis directus 90 136 X
Mulinia lateralis 88 91 X
Mya arenaria 79 191 X
Mercenaria mercenaria 64 73 X
Parvilucina crenella 45 218 X
Gemma gemma 31 45 X
Petricolaria pholadiformis 29 173 X
Tagelus divisus 26 55 X
Geukensia demissa 21 118 X
Lyonsia hyalina 8 18 X
Modiolus modiolus 7 27 X
Noetia ponderosa 2 9 X

Table 1. Bivalve species and functional groups encountered during a survey of
lower Chesapeake Bay. Bivalve species presented in order of cumulative total
number of individuals collected over the course of the study (total collected).
Maximum densities (m−2) are the maximum observed in one sample. Bivalves
were grouped into 4 functional groups: facultative deposit-feeding (DF), deep-
burrowing suspension-feeding (DBSF), thin-shelled surface-dwelling (TSSD), 

and armored (ARM) bivalves

Fig. 3. Bivalve diversity in different habitats. Means ±1 SE
for (a) rarefied species richness and (b) functional richness in
different habitat types in lower Chesapeake Bay. Samples
were collected in detrital mud (n = 21), shell hash (n = 61),
oyster shell (n = 30), coarse sand (n = 13), and seagrass 
(n = 55). Letters denote significant differences at α = 0.05

http://www.int-res.com/articles/suppl/m570p113_supp2.pdf
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lowest diversity), seagrass had 0.19–0.55 units higher
Gini-Simpson diversity index, 0.18–0.51 units higher
functional diversity index, and supported 4.11–9.65
more species (95% CIs). On average, seagrass sup-
ported 0.74–2.20 more functional groups than detri-
tal mud, 0.41–1.96 more than coarse sand, 0.56–1.93
more than oyster shell, and 0.53–1.64 more than shell
hash (95% CIs).

Indices of diversity were influenced by both habitat
and predators, although the influence of predators
was not necessarily negative. Gini-Simpson diversity
index and functional diversity were both positively
correlated with the index of ray density (no. ray pits
m−2; Tables S2 & S3). An increase of 1 ray pit m−2

resulted in a 0.19–1.34 unit increase in the Gini-
Simpson diversity index and a 0.31–1.37 unit in -
crease in functional diversity (95% CIs; Fig. 5a,b).
Both rarefied species richness and functional rich-
ness were positively correlated with habitat volume;
an increase of 1 l habitat volume was associated with
an increase in rarefied species richness of 0.03–1.50,

and an increase in functional richness of 0.02–0.41
(Fig. 5c,d; Tables S4 & S5).

Predator density was identified as one of the
major factors associated with DF bivalve distribu-
tion; DF bivalves were negatively correlated with
blue crab density (Fig. 5e), and negatively corre-
lated with ray pit density (Fig. 5f; Table S6 in Sup-
plement 2). DBSF bivalves were mainly associated
with high habitat volume (Fig. 5g; Table S7). TSSD
bivalves tended to be positively correlated with
habitat volume (Fig. 5h) and negatively correlated
with blue crab density (Fig. 5i). These predictors
were significant at α = 0.10, and there were no pre-
dictors significant at α = 0.05 for TSSD bivalves
(Table S8). ARM bivalves were significantly more
abundant in oyster shell than in detrital mud, coarse
sand, or shell hash habitats, and ARM bivalve den-
sity was positively correlated with habitat volume
(Fig. 5j; Table S9). Bivalve densities were not corre-
lated with fish densities for any bivalve functional
group (Tables S2−S9).
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Fig. 4. Bivalve functional group densities (m−2) in different habitats. Means ±1 SE for densities of (a) facultative deposit-feed-
ing (DF) bivalves, (b) deep-burrowing suspension-feeding (DBSF) bivalves, (c) thin-shelled surface-dwelling (TSSD) bivalves,
and (d) armored (ARM) bivalves in different habitat types in lower Chesapeake Bay. Samples were collected in detrital mud
(n = 21), shell hash (n = 61), oyster shell (n = 30), coarse sand (n = 13), and seagrass (n = 55). Letters denote significant differ-

ences at α = 0.05
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DISCUSSION

Habitat appears to be an important factor in bi -
valve community structure and distribution in lower
Chesapeake Bay, consistent with our hypotheses.
Bivalve species diversity and functional diversity
metrics were positively correlated with habitat vol-
ume, and bivalve communities were more diverse in
seagrass than in less complex habitats. Seagrass in -
creased bivalve diversity by 68, 76, 87, and 94%
when compared to oyster shell, detrital mud, coarse
sand, and shell hash habitats, respectively, in models.
Seagrass had one additional bivalve functional group

compared to the other habitats (out of 4 total func-
tional groupings).

The functional group that was consistently found in
seagrass, and relatively rarely found in other habitat
types, was the TSSD group that included the species
Kelliopsis elevata, Arcuatula papyria, Parvilucina
crenella, Gemma gemma, and Lyonsia hyalina. Two
of these species, A. papyria (epifaunal) and L. hyalina
(infaunal) were nearly exclusively found in seagrass
habitats. In contrast to other high complexity habitats
such as oyster shell and shell hash, seagrass provides
both aboveground and belowground structure, offer-
ing protection for infaunal and epifaunal bivalves
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Fig. 5. Generalized linear model re-
sults for bivalve diversity and func-
tional groups. Best fit lines and 95%
confidence intervals are included for
all significant (α = 0.05) terms in the
model for (a−d) species/functional di-
versity indices (link = identity, family =
Gaussian) and bivalve density (m−2) in
functional groups (link = log, family =
quasi-Poisson) including (e,f) faculta-
tive deposit-feeding (DF) bivalves, (g)
deep-burrowing suspension-feeding
(DBSF) bivalves, (h,i) thin-shelled sur-
face-dwelling (TSSD) bivalves, and (j)
armored (ARM) bivalves. Note: predic-
tors significant at α = 0.10 are shown
for TSSD bivalves, due to no signifi-
cant predictors at α = 0.05. Points have
been jittered in both x and y directions
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(Orth et al. 1984). This characteristic of seagrass habi-
tat may make it possible for TSSD bivalves, which do
not have many defenses from predators, to persist in
seagrass. Seagrass may also indirectly facilitate TSSD
bivalves in ways unrelated to the functional groupings
used in this study (e.g. protection from predation or
feeding mode). For example, seagrass blades may
 increase rates of larval settlement by baffling water
currents (Heiss et al. 2000). More research is needed
to determine the exact mechanism behind the asso -
ciation between seagrass and TSSD bivalves.

The functional groupings in this study represent
the role of bivalves in trophic interactions; thus, loss
of seagrass habitat, and the concurrent loss of an
entire functional group, may impact ecosystem func-
tion. Impacts of the loss of a functional group of bi -
valves will ultimately be determined by the ability of
other groups to fill the role of the lost species. For
example, the role of oysters in the Chesapeake Bay
was at least partially filled by zooplankton, planktiv-
orous fish, suspension-feeding polychaetes, and
clams (Baird & Ulonowicz 1989, Thompson & Schaffner
2001). However, despite these functional replace-
ments, the loss of oysters still had massive implica-
tions for water quality and ecosystem function in the
Chesapeake Bay (Rothschild et al. 1994). This indi-
cates that when a functional group is lost, complete
functional replacement by other species may be
unlikely in the Chesapeake Bay.

Consistent with our hypotheses, functional groups
exhibited the following habitat preferences: the
greatest densities of DF bivalves were in detrital mud
habitats, the greatest densities of TSSD bivalves
were in seagrass habitats, and the greatest densities
of ARM bivalves were in oyster shell habitats. These
results confirm that the functional groupings of bi -
valves used in this study represent realized niches
driven by bivalve morphology and feeding mode. To
allow all of the functional groups to persist in the Bay,
all of the habitats must be maintained, with a special
focus on seagrass, the presence of which is a major
factor in both species and functional diversity. Amount
of habitat also matters: habitat volume was corre-
lated with density of all suspension-feeding bivalve
groups (DBSF, TSSD, and ARM bivalves). The eco-
logical consequence of these results is that maintain-
ing diverse habitats is important for sustaining full
functionality in lower Chesapeake Bay.

In disagreement with our hypotheses, DBSF bi -
valves did not have higher densities in more complex
habitats. Sediment penetrability in complex habitats
is often very low, preventing burrowing behaviors
and prohibiting some of the deep-burrowing species

from colonizing these areas (Fiori & Carcedo 2015). A
few of the DBSF species found in the samples, in -
cluding Ensis directus and Petricola pholadiformes,
are sensitive to sediment texture and are unable to
burrow efficiently when sediment particles exceed
an optimal range (Alexander et al. 1993), and this
may be why these habitat types were not particularly
advantageous to DBSF species.

As we hypothesized, densities of 2 functional
groups that contained thin-shelled bivalves that were
not deep burrowing were either negatively associ-
ated (DF) or tended towards a negative relationship
(TSSD) with blue crab density. There was also evi-
dence that DF bivalves were negatively associated
with ray pits, which corresponds to evidence that
cownose rays Rhinoptera bonasus prey heavily on
Limecola balthica, the dominant DF species (Fisher
2010). These groups do not exhibit armor or deep-
burrowing behavior, and are presumably more sus-
ceptible to predation (i.e. top-down control). These
results are opposite of what was seen in some studies
demonstrating bottom-up control of bivalves on crabs
(Seitz & Lipcius 2001, Seitz et al. 2003, 2016). How-
ever in these studies, top-down control became more
apparent at smaller spatial scales (Seitz & Lipcius
2001, Seitz et al. 2016). The current study was con-
ducted at a small spatial scale, where predators do
not move among habitats that differ greatly in food
availability, so top-down control was more evident in
the current results.

Predators, specifically rays, had an unexpected
positive effect on bivalve diversity. There was a posi-
tive correlation between ray pit density and bivalve
diversity/functional diversity. Ray pits may serve as a
disturbance that promotes diversity of bivalves by
interrupting succession (Sousa 1979) and decreasing
the abundance of competitive dominants (Menge &
Sutherland 1987). In otherwise homogenous environ-
ments like sand and mud flats, where rays often feed,
ray feeding activity may serve to structure communi-
ties of bivalves.

Declines in ecosystem function due to the loss of
invertebrate groups has led to unpredictable and
serious consequences in other regions of the world
(Goedkoop & Johnson 1996, Lodge et al. 1998). When
seagrasses and other complex macrophytes were lost
in Scotland, the Baltic, and Western Australia, the
result was a truncation of the food web and a loss of
many important fish and bird species (Jansson &
Dahlberg 1999, Rafaelli 1999, Thomson et al. 2015).
In Chesapeake Bay, the dominant seagrass species
(eelgrass Zostera marina) is near its upper thermal
tolerance limit, so extreme and frequent seagrass
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die-backs are expected in the future as global tem-
peratures warm (Moore & Jarvis 2008). Thus, based
on lessons from other regions, and due to bivalves’
importance for ecosystem functioning, seagrass loss
in Chesapeake Bay may be associated with a loss in
functionality.

This study is one of the first to examine the impact
of predator density and habitat (although see Duffy
et al. 2001) on functional diversity and individual
functional groups in marine benthic communities.
With declines in top predators worldwide, and in par-
ticular in many of the same ecosystems experiencing
habitat loss (Jackson et al. 2001), it is important to
understand the combined effect of predators and
habitat on bivalve functional diversity and ultimately
ecosystem function. In addition, restoration efforts
targeting maximized ecosystem function may find
this information useful, as habitat restoration and
predator management are both key components in
bivalve restoration (Brumbaugh et al. 2006). If the
goal of restoration is to maximize functional diversity,
blue crab density should be taken into consideration
to encourage survival of thin-shelled bivalves.

Future research should focus on the impact of the
loss of seagrass and other habitats on benthic− pelagic
coupling in Chesapeake Bay, including both direct
links between habitat loss and biogeochemical cycling
as well as indirect effects that are mediated by con-
current losses in bivalve functional diversity. This re-
search should include an examination of quantitative
bivalve functional traits related to feeding preferences
and predator avoidance, and experimental designs
that document shifts in these traits when habitat is lost
from embayments and tributaries in the Bay. An inter-
disciplinary approach is necessary to understand how
loss of bivalve functional diversity in Chesapeake Bay
will alter the geology, chemistry, and biology of this
highly productive estuary. For example, little is known
regarding the degree to which loss of seagrass in par-
ticular will alter the volume and quality of organic
matter in the Bay, and the degree to which changes in
organic matter due to seagrass loss will impact bio-
geochemical cycling directly (Eyre et al. 2013) or indi-
rectly through changes in bivalve distribution and
feeding modes (Caliman et al. 2007). These lines of in-
quiry can inform models that will lead to predictions
for the future of biogeochemical cycling in Chesa-
peake Bay as seagrass continues to decline. Consider-
ing the consequences of shifts in benthic community
structure in other estuaries (Petersen et al. 2008, Kris-
tensen et al. 2014), these steps are necessary to ensure
Chesapeake Bay will continue to provide ecosystem
goods and services for future generations.

CONCLUSIONS

Chesapeake Bay bivalves interacted with habitat
and predators differently depending on the bivalves’
feeding mode, predator defense strategy, and living
position. Bivalve species diversity and functional
diversity were positively associated with complex
habitats and quantity (volume) of habitat. Bivalve
functional groups exhibited habitat preferences
based on feeding mode and susceptibility to preda-
tors. Densities of bivalves in functional groups that
were expected to be most susceptible to predation
were negatively related to predator densities. Loss of
structured habitat may lead to loss of functional
groups of bivalves in Chesapeake Bay. The group
that is most at risk contains thin-shelled suspension-
feeding bivalves that live near the sediment surface,
either as shallow-burrowing infauna or epifauna.
Complex habitat such as seagrass may provide these
bivalves with protection from predation, especially
by the dominant epibenthic predator in Chesapeake
Bay, the blue crab Callinectes sapidus. Through an
examination of functional diversity of bivalves in
Chesapeake Bay habitats, this study has identified a
potential mechanism by which habitat loss may lead
to a decrease in ecosystem functioning in Chesapeake
Bay: by removing entire groups of bivalves that con-
tribute to nutrient cycling and trophic dynamics.
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