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ABSTRACT

C haracterization of defect and im purity reactions, dissociation, and m igration in 
sem iconductors requires a detailed understanding of the rates and pathways of vi­
brational energy flow and of the  coupling mechanisms between local modes and the 
phonon bath  of the  host m aterial. Inform ation 011 the inelastic microscopic interac­
tion can be obtained by m easuring the lifetime of local v ibrational modes (LVMs). 
This dissertation presents vibrational lifetime m easurem ents of hydrogen and oxy­
gen defects in sem iconductors by m eans of time-resolved infrared (IR) pum p-probe 
spectroscopy. In these experim ents, a  picosecond IR  pulse excites a v ibration of a 
significant fraction of point defects in a sample. This excitation causes a transient 
decrease; in the absorbance; of the sample, as there are fewer defects in the v ibrational 
ground s ta te  th a t can absorb. T he transm ittance change; is measureel w ith a weaker 
probe pulse th a t passes through the  sam ple after a variable; delay, see th a t the evo­
lution of the excited vibration can be followed in time. This technique enables the 
direct time-elomain m easurenmnt of the; lifetime of LVMs.

First, we measureel the vibrational lifetime of H- anel D-relat.ed bending modes 
in Si and other semiconelue:tors. Time-resolve;d pump-probe; anel linewidth m easure­
m ents reveal th a t  the lifetime of bcmeling moeles can be; explained by an energy gap 
law, i.e., th e  decay tim e increases exponentially w ith increasing decay order.

Second, we present the  v ibrational lifetime m easurenmnts of a selection of Si-H 
stretch  modes in crystalline Si. The lifetime's of in terstitia l-type elefeets are found 
to  be; a  few picoseconds, whereas vacancy-type de;fe;e;ts have; lifetimes* up to  300 pi­
coseconds. T he strong dependence of lifetime on the deflect s tructu re  suggests th a t 
pseudolocalized modes are; involveel in the  vibratiemal relaxation of the hydrogen 
stretch moeles in Si. It is found th a t the energy relaxation of Si-H stretch  modes does 
not decay by lowest orelcr, i.e., low frequency mexles are involveel in the decay process.

Furtherm ore, we perform ed lifetime; m easurenmnts of in terstitia l oxygen in Si anel 
Ge. T he lifetime of 17()i in Si is half of 16( ) j  and 180 j .  A e;alculation of the three- 
phonon elensity of s ta tes shows th a t 170,; lies in the highest phonon density resulting 
in the shortest lifetime. T he lifetime; of the  160.,; mode in Ge is m easured to be 10 
times longer than  in Si. The; interaction be;tween the  leecal moeles and the lattice 
vibrations is discussed accoreling to  the; activity  of phonon combination.

These studies elucidate the elynamies of energy dissipation anel vibrational decay 
channels of point defects in sem iconductors. The;y provide; a bet,te;r understanding 
of the dissociation of Si-H anel S i-0  bonds and the strong hydrogem and deuterium  
isotope effect found in H-passivated semiconeiuctor devices. The experim ental results 
provide an indispensable beneihmark for fu ture theoretk 'al investigations.

xviii
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Chapter 1

Introduction

1.1 Light Impurities in Semiconductors

G roup IV element sem iconductors such as silicon and germanium wore identified as 

the most promising m aterials in sem iconductor industry. Most electronic and optical 

properties of these sem iconductors are determ ined by the type and concentration of 

defects they contain. Many defects are present in as-grown sem iconductors. They 

include intrinsic defects (self-interstitial and vacancies) and extrinsic defects or im­

purities which come from the source' m aterials, the; ambient, the crucible, th e  heating 

element, etc. Defects m ay also be introduced during processing of the devices: E tch­

ing injects vacancies as well as hydrogen, the growth of layers cause's self-interstitial 

and vacancies in the bulk, ion plantation creates dam age [1]. Figure 1.1 shows a 

simple structu re  of intrinsic and extrinsic elefeeits in crystalline; solids.

T he adelition of these im purities to a sem iconductor will alt,e;r its v ibrational anel 

electronic properties. For example, dopants can aeld charge carriers (electrons e~ to 

the conduction band or holes h + to the  valence' band), which will form an e~- h +

2
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CH APTER 1. INTRODUCTION 3

Substitutional
impurity

lnterstiti<
impurity

V a ca n cy

F igu re 1.1: Point, defects in crystalline solids.

recom bination center and reduce carrier lifetimes. In general, defects or im purities 

break the periodicity of the  crystal, in troduce local strain, and result in new energy 

levels which are often in the gap. Depending on the Fermi level anti the position of 

defect level, some defects may exist in several charge states. Furtherm ore, defects can 

be mobile, leading to  a wide: range of reactions between them . Such reactions create 

new, more complicated, defects with different electronic and optical properties than  

the original o i k :. Defect diffusion and reaction is enhanced by therm al treatm ents.

Since defects are very im portan t in semiconductors, it is crucial to  understand 

their fundam ental properties, including how they diffuse, in teract with the crystal, 

w ith each other, and with other defects. T he most common im purities in semi­

conductors are hydrogen and oxygen, which have been of interest for m any years 

because of their simple atom ic structures. Experimentally, m any techniques are used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  4

to  probe their microscopic properties. Fourier transform  infra-red (FTIR.) absorption 

and R am an spectroscopy are; used to  study  local vibrational modes (LVMs). Elec­

tron param agnetic resonance (EPR ) is a technique to  find unpaired electron spins. 

Deep-level transien t spectroscopy (DLTS) is used to  probe the  gap for defect levels. 

More macroscopic m ethods such as secondary-ion m ass spectroscopy (SIMS) also pro­

vide crucial inform ation. Recently, time-resolved pum p-probe experim ents have been 

perform ed to  provide new inform ation abou t the  dynam ics of these defects.

1.1.1 H ydrogen

Hydrogen is the  sim plest element in the  periodic tab le  considering the  atom ic struc­

ture. However, hydrogen has very rich chemical properties and forms more m olecular 

com pounds th an  any other element [2],

Hydrogen is a very common im purity in semiconductors. It can be incorporated 

during crystal growth or processing steps such as wafer polishing, wet chemical etch­

ing, or reactive ion etching [3]. It is present a t virtually  every stage of the  processing 

of devices. This makes it an unavoidable im purity  even in devices fabricated w ith 

the  most perfect single crystals. T he solubility of hydrogen in sem iconductors is low. 

For example, the solubility of hydrogen in intrinsic silicon is ~  6 x 1015 cm ~3 ( ~  n r 2 

ppm) at 1200°C [4] and ~  106 c u r 3 (~  2 x H R 12 ppm) at 300°C [4, 5], However, 

the effective solubility a t m oderate tem peratures is determ ined by the  concentration 

of hydrogen traps, e.g., dopants, dangling bonds, etc., and exceeds the  intrinsic value
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by several orders of m agnitude. Early h igh-tem perature perm eation d a ta  showed th a t 

hydrogen is a rapid diffuser in silicon w ith the diffusivity

D lt =  (9 ±  4) x l ( r 3e x p [ - °-4 8 ^ (i ;Q6e1i/]cm2/ s  (1.1)
Kt,l

in tem peratu re range of 970-1200°C [4]. This high diffusivity is observed only at 

high tem peratu re  or w ith low im purity concentration, where trapping  of hydrogen is 

negligible. T he effective' diffusivity is typically several orders of m agnitude smaller 

than  the value given by Eq. (1.1). T he effect of hydrogen on a  sem iconductor de­

vice can be harmful, or in o ther cases, beneficially. Hydrogen may also be delib­

erately introduced. For example, hydrogen annealing is performed as the last step 

of polycrystalline-silieon solar-cell processing. This boosts the perform ance of these 

cells by a substantial am ount [6]. Because hydrogen is so im portan t in semiconduc­

to r industry, a large am ount of work has been done during the last three decades. 

T he properties of hydrogen in sem iconductors have been discussed in m any recent 

reviews [3, 6, 7, 8, 9].

W hen hydrogen is used to passivate deep and shallow defects in semiconductors, 

it behaves as an am photeric im purity; th a t is, it acts as a donor (H+ ) in p-type 

m aterial and an acceptor (H- ) in n-type m aterial. T he charge sta te  determ ines the 

most favorable location of hydrogen in the lattice. In the positive charge s ta te  (H+) 

the  im purity is essentially a proton. Since the  maximum negative? charge density 

is found at the bond-center (BC) site in most covalent sem iconductors, H+ locates 

a t this site [10]. In the negative charge s ta te  (H “ ) hydrogen prefers regions of low
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electronic charge density, in which its distance! to  the host atom s is maximized. So 

H “ was found a t the te trahedral in terstitia l site. Based on the calculations by Van 

De Walle [10], neutra l hydrogen was also found at the BC site, bu t it is less stable 

than  H+ a t this site.

Figure 1.2: Hydrogen defects in semiconductor.

Hydrogen can form strong covalent bonds with m any other elem ents in the periodic 

table which makes it a very diverse impurity. Hydrogen in teracts w ith virtually  any 

im perfection in the crystal such as im purities, intrinsic delects, interfaces and surfaces. 

Figure 1.2 shows a two-dimensional illustration of hydrogen defects in sem iconductor. 

T he m ajor role of hydrogen is the passivation of both  shallow and deep im purity 

centers and other defects through the form ation of complexes. On the surface, H 

forms covalent bonds w ith silicon dangling bonds [11]. In the bulk, H forms all
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kinds of interstitial, self-interstitial, vacancy-type defects or complexes w ith o ther 

im purities [11]. At the interface, H passivation can reduce the  density of Pb centers, 

which is crucial in sem iconductor devices [12]. For example, hydrogen satu ra tes 

dangling bonds at surfaces [13] and a t S i/S i()2 interfaces [14, 15], which generally 

removes the electronic levels associated with the dangling bond from the band gap 

and thus neutralizes its electrical activity. These H-related defects have been well 

characterized [3, 16].

Hydrogen can also in teract with each other and form two types of hydrogen dim er 

called H2 molecule and H |. T he H-2 molecule locates at a te trahedral site and its 

existence in silicon was first predicted by C orbett at al [17] in 1983 and confirmed by 

observation of an H-H vibrational mode with Ram an spectroscopy [18] and infrared 

absorption spectroscopy [19]. Recently, it was proposed th a t the H2 molecule behaves 

as a nearly free rotor [20]. A nother hydrogen dim er structu re  has C3„ sym m etry 

w ith one hydrogen close to the bond-center site and the o ther at an antibonding site. 

T he existence of H?] has been predicted by C hang [21] and confirmed by Holbech [22]. 

Figure; 1.3 shows the structu re of these two dimers. The; H2 molecule in Si was 

suggested to be oriented approxim ately along a (100) direction and has a  sym m etry 

of Ci point group [23, 24]. HJ] defect has C$v sym m etry with one hydrogen close to 

the bond-center site and the  o ther at an antibonding site.
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r-̂ ti
j£l*

F igu re 1.3: (a). Representative model for H2 in Si proposed by Zhou and Stavola [23]. 
(b). Structure of H2 defect in Si proposed by Holbech [22].

1.1.2 O xygen

At present about 80 % of all the silicon wafers used for microelectronic circuit fab­

rication are prepared by the C/,ochralski (CZ) m ethod or its modification. These 

silicon wafers contain oxygen 011 the  order of 1018 atom s/cm 3. Oxygen im purities 

critically affect the  properties and yield of electronic: devices because of the effects on 

the mechanical and electrical properties of the wafers as well as on the lattice defects 

incorporated. During the last four decades both  academy and industry have devoted 

a great deal of atten tion  to the investigation of oxygen in silicon [25].

Oxygen is mainly introduced during crystal growth by the CZ pulling technique 

from a silica crucible. By means of infrared absorption spectroscopy, Kaiser, Keek, 

and Lange first confirmed th a t CZ silicon crystals contain oxygen as an im purity  in 

concentration on the orefer of m agnitude higher than  usual eloping im purities [26], 

They found th a t e«ygcn atom s incorporated into silicem elemiinantly occupy the in­
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terstitia l site, which lies midway between two neighboring silicon atom s along the 

four equivalent (111) bond directions. T he structu re  is shown in Figure 1.4. Oxygen 

is located into an off-axis bond-centered position, giving rise; to  a strong absorption 

band at 1136 cm -1 . Early X-ray diffraction m easurem ents showed th a t the lattice 

param eter a 0 is increased when oxygen is present [27]. Due to the high concentration 

of oxygen in Si, annealing silicon can produce tin; precipitation of oxygen into vari­

ous forms of silica (S i0 2) precipitates. This process is reversible and oxygen can be 

dispersed again by dissolution of the precipitates at very high tem peratu re (~1300- 

1350°C). A discussion of the relationship between the shape of the precipitates and 

their infrared absorption has been given in Reference [28].

[Ill]

F igu re 1.4: Structure of intersititial oxygen in Si and Ge.

Group VI doping elem ents O, S, Se and Te are double donors in silicon [29]. This 

electrical activity  is explained by a substitu tional location of these elem ents in the
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same way as the  single donor electrical activ ity  of P, As, or Sb. As-grown CZ silicon 

displays n-type electrical activity related to oxygen [30]. This n-type behavior comes 

indeed from a  series of donors, which are called therm al donors (TDs). Oxygen could 

act as a double donor on a substitu tional site. This location is unstable because of 

the small te trahedral radius of the oxygen atom  (0.68 A), bu t it has been argued 

th a t TD s could be due to substitu tional oxygen surrounded by in terstitia l oxygen 

to com pensate an inward distortion by an outw ard distortion [31]. T he to ta l oxygen 

concentration of these TD s is typical less th an  1% of the to ta l oxygen concentration 

in as-grown silicon. Tin; study of therm al donors is a very active area of oxygen in 

semiconductors. Detailed inform ation can be found in soiik; reviews [25]. This thesis 

will include the studies of v ibrational dynam ics and oxygen isotope' effects in Si and 

Ge by time-resolved infrareel spectroscopy.

1.2 Local Vibrational M odes

In a crystalline semiconductor, atom s collectively oscillate about their equilibrium  

positions, resulting in quantizeel vibrational modes, or phonons [32]. Phonons in 

crystalline m aterials have a band of phonon frequencies anel can propagate through 

the lattice'. In a perfect lattice, phonons have-, a well-defined frequency w  and wave 

vector q. The w  vs q elispersion relation can be experim entally determ ined by neu­

tron  scattering [33]. Most of the  phonon modes are Ram an active. W hen an im purity 

is introeluceel, the translation  sym m etry is broken and one eir more' new vibrational
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modes may appear. If an im purity  replaces a heavier host atom , its v ibrational fre­

quency will be higher than  the phonon frequency. Unlike the; phonon, the v ibrational 

modes of point defects cannot, propagate in the crystal and remain localized near 

the defects. Hence they are called local v ibrational modes or LVMs. T he physical 

description of local v ibrational modes closely resembles th a t of molecular vibrations, 

except th a t point defects do not have ro tational degrees of freedom. These defects 

can also induce; a dipole mom ent which makers the vibrational moele infrareel active. 

Much informatiem has been gaineel from infrared absorption stuelies of loe:al vibra­

tional modes because they can generally be; obse;rved as sharp liirns on a monotonous 

background.

1.2.1 Local V ibrational M ode Spectroscopy

Local v ibrational moele spectroscopy has become; an im portan t probe of defects in 

solids and often provides inform ation abou t defect, strim tures anel properties th a t 

cannot be obtained by other methoels. This techniepie has been applieel extensively 

to  study isolated im purities anel im purity complexes in crystalline sediels, including 

ionic crystals [34] and sem iconductors [16].

A local vibrational moele; in teracts w ith light by absorption anei/or R am an scat­

tering. At lew tem peratures, the: population of the: e:xoit,eel sta tes of leeeal v ibrational 

modes is negligible. The local moele is infrareel active if the light-induced transition  is 

alloweel between vibrational states. T he transitiem probability is proportional to the
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square m atrix  element of the  electric dipole mom ent |e x  /r // |2. Here e is a  un it ventol­

in the direction of the polarization of the light and m j  is the  m atrix  element of the 

electric dipole moment of the center between the initial and final v ibrational states. 

For harmonic vibrations, a  mode is infrared active if the  motions of th e  defect atom  or 

atom s give rise to a change in the  dipole moment of the neuter. Consider the simple 

example of a linear defect of the form X-Y-X. Their sym m etric vibrational m ode in 

which the  Y atom  is stationary  and the X atom s vibrate 180° out of phase is infrared 

inactive because there is no net oscillating dipole moment (shown in Figure 1.5(a)). 

T he antisym m etric mode in which the  X atom s vibrate  in phase with each other and 

opposite to  the direction of Y has an allowed elentrie dipole transition  (shown in 

Figure 1.5(b)). Furtherm ore, the vibrational mode will only be excited by incident 

light th a t has a com ponent of its electric vector polarized along the direction of the 

oscillating dipole moment. For the simple example of the antisym m etric stretching 

mode of a linear defect molecule, tin; direction of the  oscillating dipole m om ent is 

along the axis of the defect molecule.

X Y X X Y X

Q  - •  O  © — •
< —  — ►  — ► < —  — ►

(a) (b)

Figure 1.5: Schernatical description of infrared activity of local vibrational modes.
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T he integrated absorption coefficient for a defect is well known to be proportional 

to the concentration of the defect. T he commonly used expression for the integrated 

absorption strength  for the local modes of an oscillating defect with mass m  and an 

effective charge q is given by

where N  is the concentration of defects in cm -3 , and rj is the refractive index of the 

host. This equation has been w ritten  in CGS units to  be consistent, with the absorp­

tion coefficient, which is conventionally determ ined in units cm - 1  and the frequency 

a  given in wavcnumber units, cum 1. An infrared absorption experim ent typically 

allows one to  determ ine the  intensity of the absorption line, i.e., the area under the 

absorption peak. T he reduced mass p  is given as [35]

where fximp and are the atom ic masses of im purity and host atom s, and x  is 

a param eter which represents the  coupling of the v ibrating entity  to the crystalline 

host. T he x  param eter depends on the structu re  of the defect, bu t is presum able close

an infrared absorption line associated w ith a local v ibrational m ode depend on the 

sam ple tem perature a t which the m easurem ent is carried out. The frequency shifts 

to higher wavcnumber and the line becomes sharper with decreasing tem perature.

( 1 .2 )

P  1 “  Pimp +  iXPho.u) \ (1.3)

to unity for hydrogen-related local modes in Si and Ge. The' frequency and w idth of
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R am an spectroscopy is com plem entary to infrared absorption spectroscopy and 

can provide inform ation about v ibrational modes th a t are infrared inactive. For 

R am an scattering m easurem ents of local v ibrational modes, a m onochrom atic laser

beam is incident on a sample. T he light is inelastically scattered by the excitation

of the crystal. M easurem ents are usually m ade a t low tem peratures and only Stokes 

scattering  processes th a t excite im purity vibrations have1 appreciable intensity [16]. 

In this case, the  frequency of light lj„ scattered  from local vibrational modes satisfies 

the relationship

w s  =  u l  — u i v m , (1-4)

where and u w m  are the laser and local modes frequencies, respectively. Thus the 

local modes can be detected  from their Ram an shifts. Since Ram an scattering  is a 

second-order process in pertu rbation  theory, it is subject to different selection rules 

than  electric-dipole allowed optical transitions. T he Ram an intensity is proportional 

to \es  x R  x e /J2, where R  is the second-order R am an tensor and eg and are unit 

vectors in the polarization directions of the  scattered and incident light.

1.2.2 D ynam ics o f Local V ibrational M odes

Most spectroscopy studies of LVMs in sem iconductors have; been carried out in the fre­

quency domain, which probes the time-averaged optical response of the modes. The 

interaction between local modes and phonons has been studied by tem peratu re  depen­

dence of linewidth and frequency shift. As tem peratu re  increases, phonon modes are
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therm ally populated. Two models have been used to understand the  coupling between 

the local modes and phonon bath  [32]. Those studies are very limited to  understand 

the relaxation process of defects because inhomogeneous broadening may contribute 

significantly to the  observed absorption linewidth. T he energy relaxation tim e cannot 

be derived from the line w idth of the linear absorption spectrum  [30, 37]. Until now 

very little  was known about the  dynam ics of local v ibrational inodes in crystalline 

semiconductors. T he tim e scales and mechanisms for population and phase relaxation 

upon excitation were still unknown. The dynam ics of local modes is responsible for 

the  flow of energy into and ou t of im purities and defect complexes. U nderstanding 

the dynam ics of defects is im portan t for defect m igration and reaction. W hen defects 

act as recom bination or scattering center in semiconductors, the  electronic excitation 

th a t is deposited a t the  defects is then  available to  prom ote defect m igration and 

reaction. Such inform ation is crucial since excited v ibrational s tates may be involved 

in the  dissociation of the  bond between defects and the lattice [38]. T his investigation 

is m ade possible only recently by the advances in tunable, u ltrafast, high-intensity 

infrared light sources, including optical param etric amplifiers (OPAs) [39, 40] and 

free-electron lasers (FELs) [41, 42]. T he tim e scale of energy relaxation and dynam ­

ics of the elastic and inelastic local interaction can be obtained directly by pum p- 

probe transien t bleaching spectroscopy. This dissertation focuses on time-resolved 

dynam ical studies of hydrogen and oxygen defects in silicon and germanium.
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1.3 Outline

In C hapter 2, we discuss the im portan t theories for vibrational relaxation dynam ics 

of local vibrational modes. We discuss the relationship between vibrational lifetime 

and linewidth, multiphonon relaxation, energy gap law, and symmetry of accepting 

modes.

In C hapter 3, we describe the1 experimental techniques including FTIR and pum p- 

probe spectroscopy, together w ith the method for generating short m id-infrared pulses. 

In C hapter 3, we also give a brief introduction for doing experiments w ith the Free 

Electron Laser a t Jefferson Lab.

In C hapter 4, we present the first study of the vibrational lifetime of hydrogen 

bending modes in semiconductors. Time-resolved pum p-probe and linewidth m ea­

surem ents reveal th a t the lifetime of hydrogen bend modes can be explained by an 

energy gap law, i.e., the decay tim e increases exponentially w ith increasing decay 

order. This study  provides a b e tte r understanding of the dissociation of Si-H bonds 

and the strong hydrogen and deuterium isotope effect found in H-passivated devices.

In C hapter 5, we present measurements of the vibrational lifetime of H-related 

stretch  modes in crystalline silicon. T in 1 vibrational lifetimes are found to  be strongly 

structu re dependent. T he interstitial-type defect. HJ; has a lifetime of 4.2 ps a t 1 0  K, 

whereas the lifetime of the vacancy-type complex HV-VH(no) is 2  orders of m agnitude 

longer (~  270 ps). T he decay channel and relaxation dynam ics arc1 also discussed in 

C hapter 5.
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In C hapter 6 , we focus on the study of the lifetime of in terstitia l oxygen and its 

isotope effects in silicon and germanium. The linewidth of the 1 7 Oi m ode in Si is two 

times broader than  tin; corresponding 16(),; and 18Ot- mode. This difference is also 

observed by time-resolved pum p-probe spectroscopy. T he lifetimes of in terstitia l 160 j  

and 170 i isotopes in Si are measured a t 10 K to be 11.5 and 4.5 ps, respectively. We 

also calculate the  three-phonon density of s ta tes and found th a t the 170  m ode lies 

in the highest phonon density resulting in the shortest lifetime, which explains the 

isotope effect. T he lifetime of the 16(),; m ode in Ge was m easured to be 125 ps, i.e., 

10 tim es longer than  in Si. T he interaction between the local inodes and the lattice 

vibrations is discussed according to  the activity  of phonon combinations.

In C hapter 7, the  last chapter of this dissertation, we give1 a  sum m ary and outlook 

for fu ture experim ents.
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Chapter 2

T heoretical C onsiderations

In this chapter, wc present the theoretical description of the v ibrational dynam ics of 

local v ibrational inodes. F irst, the relationship between vibrational relaxation and 

linewidth is described. A short introduction to  the  existing theory of m ultiphonon 

relaxation process is given. We will also discuss the im portant factors which deter­

mine the v ibrational lifetime of LVMs, including energy gap law, anharm onicity, and 

sym m etry of accepting modes.

2.1 Vibrational Relaxation and Linewidth

R elaxation processes are usually divided into two classes. F igure 2.1 schematically 

describes the two relaxation processes. The first class is called population relaxation, 

which changes the  quantum  num ber of the LVM, thus causing the states to  have 

finite lifetimes. Tf characterizes th e  tim e scale of energy relaxation of the first excited 

state. In the low tem perature lim it the homogeneous absorption linewidth of a LVM 

is determ ined by the uncertainty relation. Given the excited s ta te  lifetime 7 \, the

18
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natura l linewidth is

r = 1

27TcTi
( 2 .1 )

Population relaxation

-|2)

-1 0

1r ,
JO)

Characteristic time: 7",

P h ase relaxation

tftV a
f t  t T t

/fV
f t

Characteristic time: 7V

F igure 2.1: Schematic description of the two common relaxation processes: Energy relax­
ation and pure dcphasing.

The second class of relaxation processes are caused by interactions th a t conserve 

the quantum  num ber of the LVM, bu t cause a loss of phase coherence. These are 

elastic scattering processes which do not contribute to  population or energy relax­

ation. This process is also called pure dephasing. The lifetime of pure dephasing is 

characterized by T2*. The to tal dephasing tim e T2 is determ ined by both  the pure 

dephasing processes and the energy decay time. T he homogeneous linewidth is given 

bv

r = 1 1
(2 .2 )

2ncTi 7rcT |

Since these processes involve exponential decay, the corresponding absorption line 

shapes are Lorentzian, which is the Fourier transform  of an exponential function. In 

the low tem perature limit, the linewidth caused by pure dephasing can be neglected.
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At higher tem peratures, elastic, phonon scattering becomes therm ally  activated which 

results in homogeneous dephasing broadening of the  absorption line.

In many cases, the  line shape is dom inated by inhomogenous broadening. In an 

am orphous host or a crystal solid with high concentration of im purities, each im purity 

may experience a slightly different local environm ent. This can affect the v ibrational 

frequency of the LVM through slightly different interactions with the  surrounding host 

atoms. This leads to additional broadening of a LVM. This broadening is referred 

to as inhomogeneous broadening, which is always occurring in surface? vibrations and 

am orphous host. For example, the lifetimes of Si-H stretch  modes were' believed to be 

in the nanosecemel range based on direct m easurem ents of the  lifetime of Si-H bonds 

on H -term inated surfaces [43]. Sue:h lifetimes correspond to  natura l linewidths on the 

order of 0.005 cru"1, inueih less than  the? wielths usually eebserved feu LVM’s in seuni- 

coneluctors. Knowledge of the linewidth is not sufficient to  understanel the elynamies 

of LVMs in semicemductors. Howeveu, by decreasing the e'emcentratiem of H im puri­

ties in a crystalline Si sample, Budele e.t al founel th a t the? inhomejgemoous linewidth 

can be elim inated or neglected when the  concentration of im purities is rethmed down 

to 1 ppm  [44]. Based on Bueleic’s observation, a t low tem perature and low defeed, 

concentration the  linewidth of a  LVM m easured in a crystalline sem iconductor is a 

good estim ate of its v ibrational lifetime'.
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2.2 M ultiphonon Relaxation and Energy Gap Law

The theoretical description of v ibrational energy relaxation can be very complicated. 

The vibrationally or electronically excited im purities in a crystal can, in principle, 

decay into photons, electronic degrees of freedom, or other vibrational modes. The 

radiative lifetime can be estim ated to be of the order of milliseconds [45], which rules 

out radiative decay as the dom inating mechanism. Electronic decay can also be ruled 

out in undoped Si and Ge, because the H- or O -related defects studied here cannot in­

troduce shallow electronic levels in the bandgap. Consequently, electronic transitions 

require more energy th an  th a t of local v ibrational modes. It is most likely th a t the 

LVM decays into v ibrational modes of the system  consisting of phonon b a th  or o ther 

low frequency modes. If the  vibrational relaxation process involves transferring energy 

directly to  the phonons in a single step, and the am ount of energy transferred exceeds 

by m any tim es th e  m aximum energy of a  single phonon, then m any phonons will have 

to  be created simultaneously. This process is know as multiphonon relaxation [46]. 

One m ight reasonably imagine th a t the ra te  of such a high-order process would be 

quite small. Therefore, it  is rem arkable th a t even if the  num ber of phonons em itted 

is as high as ten  or more, m ultiphonon processes typically com pete successfully w ith 

radiative decay, and are in fact often the  dom inant relaxation mechanism.

Given the wide use; and the general im portance of m ultiphonon relaxation, a theory 

of relaxation rates based on a microscopic Hamiltoniarn is clearly desirable. Exist­

ing theories involve one of two approaches: T he adiabatic (Born-Oppenheim er) or
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’’Static-coupling” (Crude B oni-O ppenheim er) m ethods. The first m ethod is ususallv 

invoked when discussing relaxation between electronic states, but can be applied 

to high-frequency vibrations as well. T he coordinates are divided into fast (elec­

tronic or high-frequency vibration) and slow (phonons) components. One neglects 

for the moment the kinetic energy of the phonons, and finds the  eigenstates of 

the H am iltonian for fixed phonon coordinates. T he eigenvalues of th is procedure 

generate the usual adiabatic potential surfaces, and transitions between these! sur­

faces are due to the ”non-adiabatie” coupling (phonon kinetic energy) term  in the 

full Ham iltonian. Even when this 11011-adiabatie coupling is taken to lowest order 

in perturbation  theory, m ultiphonon transitions emerges. This was the approach 

pioneered by K ubo anel Toyozawa [47], Perlin [48], Miyakawa anel D exter [49],anel 

others [50, 51, 52, 53, 54, 55],

The second approach goes by several different names but its essence is as follows: 

C ue assumes th a t the H am iltonian can be1 w ritten  as

H  =  H s  +  H n  +  H , .  (2.3)

H s  is the H am iltonian for the LVM (twee-level system ) of the impurity,

H s  =  huxAa, (2.4)

where uj is the v ibrational frexpmimy, ad anel a are the e:reatiou and annihilation

operator, respectively. Hu  is the H am iltonian of the  bath  (phonons), which is giveai
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H ,t = J 2  hujh<fh- (2.5)
k

where W and b are the phonon creation and annihilation operator, respectively. In 

the most common approach, Hj  is strictly  off-diagonal in the two-level basis of the 

local vibrational m ode [46, 56, 57], T he off-diagonal m atrix  elements of Hj are ex­

panded to high order in th e  phonon coordinates, and are treated  by lowest-order 

tim e-dependent pertu rbation  theory. T he interaction H am iltonian is then given by

independent coupling strength  of the channel {u}. {u} is characterized by the  set

The contribution of the decay ra te  due to H j  is given by the standard  result of first- 

order tim e-depended perturbation  theory [58]. T he to tal decay ra te  (inverse lifetime) 

is given as the sum of the rates of all of the decay channels [46, 56, 57]:

( 2 .6 )

M

where B{v) =  n ^ Z ^ p ,} ,  and Gq„} denotes the tem perature-

W2</\  . . . ,  of accepting mode frequencies. Energy is conserved in the

decay process and the frequency sum is

(2.7)

( 2 .8)
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T he function n{„} describes the tem perature-dependent population of the receiving 

modes:

exp(jMp) -  1

n M  =  T w  • (2-9)
1 1 ?=!i e x p i i f r )  ~  1]

T he com pound spectral density of accepting states, pp,}, can be expressed in term s 

of a convolution of single spectral densities of states:

P i O  =  J  duJi ] ■■■ J  • • • P [n M n ] ) -  (2 . iO)

In the low-tem perature limit (K/,T  <  , the  decay ra te  reflects spontaneous

decay into N„ accepting modes and n{„} =  1. At higher tem peratures the decay ra te  

increases due to stim ulated emission in a fashion determ ined by the frequencies of the 

accepting modes [46, 56, 57].

The general expression for the v ibrational relaxation ra te Eqs. (2.8) and (2.9) con­

sists in general of a  large num ber of term s corresponding to higher order m ultiphonon 

processes. T he relaxation ra te  is determined by the m agnitude of the coupling term s 

between local v ibrational modes and accepting modes. It is reasonable to assume th a t 

the |( j { „ } |2 term s decrease fast w ith increasing order of the m ultiphonon process AT^j. 

As G{v] is expected to exhibit a very strong dependence on iVp,}, the relaxation ra te  

can be approxim ately expressed by the dom inant contribution. T he largest term  in 

Eq. (2.8) is determ ined by the collection of phonon states {i/} =  1, 2, • • • , N{„), where 

./V{„} is the smallest number of phonons th a t can result in a  vibrational relaxation 

process subjected to  the energy conservation [57]. The approximate expression for
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the vibrational relaxation ra te  is now

7 -  7t|G >}|2PM n M- ( 2 .1 1 )

In very good approxim ation [57], the coupling constant can be expressed as G{v) ~  

CSN , where C  is a constant, 0  <  d <C 1 , and N  is the decay order which is determ ined 

by the energy gap between local v ibrational modes and phonon modes. Such a relation 

together w ith Eq. (2.11) implies th a t 7  oc S2N (a t constant T).  A phenomenological 

approach to  the energy-gap dependence of relaxation ra te  7  has been developed in 

Reference [46, 59, 60]. It is generally believed th a t the relaxation ra te  decreases 

exponentially as the energy gap is increased. The; energy gap law can be expressed 

by

where A  and B  are two param eters which depend on the coupling constants between 

LVM and accepting modes.

2.3 Anharm onicity

T he decay of LVMs into o ther modes is an anharm onic process. So the anharm onicity 

of the defect po ten tial will play an im portan t role in the vibrational lifetime of LVMs. 

T he im purities do not reside in a perfectly parabolic potential, ra ther, the potential 

becomes weaker for larger displacements. The: interaction between the defect and the

Ti = A e x p (B  ■ N ) ( 2 .1 2 )
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lattice can be described by a Morse potential [61], winch is given by

26

V ( z  -  zc) = D t.\exp[—2a(z  -  zc)] -  2exp[a(z — zK)]}, (2-13)

where ze is the equilibrium value of the v ibrational coordinate z,  and D r is the  binding 

energy. T he Schrddinger equation can be solved exactly for the Morse potential to 

give the vibrational frequencies

uj{n) =  ojc(n  +  i )  -  uj,Xc(n + ^ ) 2, (2.14)

where u>(, = a (h D (,/ircn)1/2, u>cXe =  hoc2 /(Akc/ji) and /x is the reduced mass. The 

observed fundam ental frequency is given by uj — luc — 2a>*x«- The second harmonic 

frequency is given by u 2nd =  2 iot. — 6 u)v.Xe- So the  anharom inicity param eter can be 

given by

2 uq — i0 2nd / o i r \
X, : “ 2 ( 3 ( ' ] 

T he anharm onicity can be estim ated from the overtone and fundam ental v ibrational 

frequencies. This simple model has been used to explain the  difference in the lifetime 

of VH4 and VD 4 complexes qualitatively [62]. The D-related stretch  mode in VD4 has 

sm aller v ibrational am plitude, which gives rise; to smaller anharm onicity and longer 

v ibrational lifetime th an  VH4 s tretch  mode in Si.
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2.4 Sym m etry of Accepting M odes

In the discussion of the decay process of LVMs, there can be no coupling between 

v ibrational inodes belonging to different irreducible representations [63], T h a t is, to 

ensure nonzero anhannonic coupling coefficients, the sym m etry representation of the 

high-frequency local mode is required to contain the same irreducible representation 

of the exchange m ode or com bination of low-frequency modes. More generally, the 

Kroneckcr product of the two irreducible representations lnus to  contain the to tally  

sym m etric representation of the space group [64], So a full-scale space group analysis 

of the sym m etry of local modes and the  accepting modes is necessary to  understand 

the  coupling between them . G roup theory is often employed as a m ethod to deter­

mine the sym m etry of the norm al modes and their optical activity. T he first, step  is 

to establish the sym m etry of the modes such as rotations, reflections and inversions, 

which leave the  system  invariant. For a perfect crystal system  which has transla­

tion symmetry, space groups m ust be considered [65]. The sym m etry of the  norm al 

modes can be classified into different groups, which is characterized by character ta ­

bles. Space group theory allows classification of the local modes and the  delocalized 

states in crystalline solids (electrons, phonon, etc.) w ith respect to irreducible repre­

sentations. T he in troduction to  group theory is given in the books by C ardona [6 6 ] 

and Kuzm any [67]. This section focuses on the  selection rules of the  decay of LVMs.

Q uantum -m echanical selection rules determ ine the  transition probability for a
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system changing from a state; i to / .  T he relevant quantity  is the  m atrix  element

where r<./ are the sym m etry representations of the initial and final state, respectively, 

i/q,/ are the wave; functions for the initial and final state;, respectively. Pp is the 

sym m etry representation of the operator driving the transition, p  is the m om entum  

operator. T he selection rules can be; generalized by expressing the; direct product 

T; <S> r p <8 > Ty as a direct sum of irreducible represemtatious [6 6 ]

To obtain the irreducible representations of P /s ,  we; first m ultiply the; characters of r*, 

Y'p and Tf  column by column. Then, we find a set, of represemtatious which add up to 

the products. If one; of the; representations is T i, the totally  sym m etric representation, 

the integral may be nonzero anel the  transition  is allowed.

In the relaxation process of LVMs, sta tes e;an interact via a m atrix  element, 

( r k \SH\ri),  where SH  is a pertu rbation  due to  the surrounding atom s and has sym­

m etry P i. T he direct product, is given by

States only interact if they have the  same sym m etry component. For example, Hsu 

et al [6 8 ] discussed the interaction between th e  antisym m etric stretch  inode anel the

(2.16)

r ; © r ?, 0  P / — Pa ® Pti © r<: (2.17)

r f c ® r i « > r /  =  rfc<8>r/. (2.18)
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resonant, inode of oxygen in Si. T he in tersititial oxygen in Si belongs to D u  point, 

group. Table 2.1 lists the character table for this defect. The stretch  m ode and the 

resonant inode have A%u and E g symmetries, respectively. They cannot in teract w ith 

each other because they do not have th e  same symmetry. From Table 2.1, we know 

the second harm onics (n  =  2) of the resonant mode (E g <g> E g) have A \ g, A 2g and E g 

sym m etries, none of which can interact with the stretch modi' (A*,). However, the 

com bination of an E g and E u mock; is represented by E g ® E u = A lu © A 2u ® E u, 

which contains an A 2u com ponent. So the  stre tch  m ode (A 2u) can interact, w ith the 

com bination modi; of E g and E u modes.

D u E 2 C 3 3C2 i 2  S6

A i fl 1 1 1 1 1 1

A 2g 1 1 -1 1 1 -1

E a 2 -1 0 2 -1 0 )
Alu 1 1 1 -1 -1 -1

A'2u 1 1 -1 -1 -1 1

E u 2 -1 0 - 2 1 0

Ey <8 > Eg 4 1 0 4 1 0
Alg © A 2y © Ey 4 1 0 4 1 0

Eg 0  Ey 4 1 0 -4 -1 0
Aiu  ® A 2u © E u 4 1 0 -4 -1 0

Table 2.1: One example showing the symmetry of the combination inodes by using the 
direct product and sum.

If the accepting modes are propagating phonons in a perfect, crystal, they have 

translation  symmetry. Space groups m ust be considered [65]. C alculating the  sym­

m etry of phonon com binations is com plicated because the phonons can occur a t dif­

ferent sym m etry points, and thus have different sym m etry point groups. For example, 

the in terstitia l oxygen defect has the same sym m etry as the L-point, which has D:id
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symmetry. One of the allowed phonon decay channels is T O (L )  +  T A ( L )  +  T O ( X ) .  

Two of the phonons are at the  L-point, bu t one is a t the X -point, and therefore has 

different symmetry. In general, the sym m etry of a three-phonon com bination mode 

consisting of phonons with wave vectors *ki, *k -2 and *k3  is the direct: p roduct of their 

irreducible representations:

*ki 0  *k -2 0  */u3 - (2.19)

T he reduction of the direct, product of different, irreducible representations of the 

space group into a direct sum of space group irreducible representations is thus the 

central problem. The coefficients of the  irreducible representations in the direct sum 

have been calculated and tabu lated  by Birm an [69]. Oik: uses the point, group of 

the highest sym m etry point since all of the o ther point groups will be its subgroups. 

T he Oh group is the point group for the F point in the diam ond crystal structure. 

For tlie decay of a LVM w ith infrared activity, the direct sum of the com bibation of 

accepting modes must, contain the p (15~) irreducible representation in the 0 /t point 

group. r<15-) is the representation of the sym m etry of the infrared dipole operator 

in diam ond structure. It, is irreducible in O/, point group, but, can be reduced to 

A 2u ® E fj in Dzd point group since D 3 4  at, L-point, is the subgroup of 0 /( group a t F 

point, in the  diam ond structure. F^15-) and A2u are expressed by different notations. 

A 2u and Eg notations are often used in molecular physics. F plus a superscript, i to 

lable these irreducible representations is common in solid s ta te  physics.

Two- and three-phonon decay channels and their activities w en1 also calculated by
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C ritical Point Phonon Symm etry Critical Point Phonon Symm etry

r O(P) p(25+) L T O( L ) L(3-)

X T O ( X ) X W LO (L) L(i+)
L ( X ) X d) LA{L) L (2©

T A { X ) X(3) T A ( L ) L( 3+)

Table 2.2: High symmetry points, phonons and irreducible representation in diamond 
structure.

B irm an [70], bu t an example is included here to apply this principle to the analysis 

of the sym m etry of m ultiphonon decay channels. T he critical sym m etry points, the 

phonons a t those points and their irreducible representations are listed in Table 2.2. 

Let us consider the sym m etry and activity of the phonon combination T O ( L )  + 

T O ( X )  + T A ( L ) ,  which is one of the decay channels of the in terstitia l oxygen stretch 

m ode in Si. T he calculation of the direct sum is as follows:

T O ( L )  +  T A ( L )  +  T O ( X )  -> L(3“ } 0  L (3+) 0  X (4>

=  (r<2-> © r (12" } © 2 ( r (25“ ) © x (1) © x (2) © x (3) © x (4))) 0  x (4) 

=  i 2 ( x (1) © x (2) © x (3)) © n x (4) © 2 ( r (1+) © r (1” } © r (2+) © r ^ )

©4(p(12+) © r (12-)) © 6( r (15+) © r (15_) © r (25+) © r (25-) (2.20)

The above three-phonon com bination contains r^15-) with a m ultiplicity or activity 

of 6 . So it is an allowed decay channel for in terstitia l oxygen in Si. The detailed 

theory is given in Ref. [70].

The level of theoretical investigation of the lifetime of local vibrational inodes is 

less advanced. To our knowledge, first-principle calculations of v ibrational lifetimes of
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point defects in crystalline sem iconductors are not available until now. T he theoretical 

considerations presented in this chapter are used as a framework for discussing the 

v ibrational lifetimes of local vibrational modes in semiconductors.
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Chapter 3

E xperim ental D etails

In this chapter, the techniques involved in perform ing these experim ents are described 

in detail. We begin w ith a discussion of Fourier transform  infrared (FTIR.) spec­

troscopy, followed by a description of the use of the  Jefferson Lab Free Electron 

Laser and optical param etric amplifier. We also discuss the  vibrational pum p-probe 

spectroscopy in detail in this chapter. A description of sam ple preparation  for each 

experim ent concludes this chapter.

3.1 Fourier Transform Infrared Spectroscopy

Local v ibrational modes of an im purity  can be excited by infrared light of the proper 

frequency. In infrared absorption spectroscopy (IRAS) o ik ;  measures the  attenuation  

of the beam intensity as a function of frequency caused by the penetration  of in­

frared light through a particular sample:. T he use of FTIR. spectrom eter allows high 

resolution IRAS m easurements.

Figure 3.1 shows the schematic diagram  of a FTIR. spectrom eter. T he main eom-

33
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Movable Mirror

Sample
Detector

Fixed Mirror

o
Broadband Source

F igu re 3.1: Sketch of a FTIR spectrometer. It consists of a light sourer', a fixed mirror, a 
movable mirror, a beam splitter and a detector.

portent, of a F T IR  spectrom eter is a Miehelson interferom eter. T he interferom eter 

consists of a beam  sp litter, a fixed m irror and a  movable' mirror. Collim ated light 

is directed to a sem itransparent beam  splitter, which is designed to transm it half of 

the light to the movable m irror and half of the  light to the fixed mirror. T he two 

beam s will reflect off their respective m irrors and recombine at the beam splitter. One 

beam will travel through the sample', where light is absorbed because of electronic or 

vibrational excitations. Finally they enter a detector, where the  intensity integrated 

over all frequencies is measured.

The beam  sp litter splits the beam  into two parts of electrom agnetic waves moving 

towards the  detector, which have equal electric field am plitudes E 0 (a) for a given 

wave num ber a. T he electric field a t the detector is the sum of the electric fields of
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the two waves:

E( o)  = E 0 (a ){eilwt-'27rrTZl] + } (3.1)

where z \  and z -2 are the optical pa th  lengths from the  source to  the detector for the 

waves reflected from tin ' movable and fixed m irror, respectively. T he contribution to 

the light intensity at the detector from waves w ith a particular wave num ber o  (in 

CGS unit)is given by [71]

where z  = z\  — Z2 is the difference in optical path  length of the two waves. W hen 

the movable m irror and fixed m irror are at the  same distance from the beam splitter, 

this condition is called zero path difference. T he detector measures the  maximum 

intensity at this position of the movable1 m irror. A plot of light intensity versus z  is 

called interferogram. W hen a broadband infrared source w ith many wavelengths is 

used, the to tal interferogram  m easured by the  detector is proportional to the intensity 

given in Eq. (3.2) integrated over all wave numbers:

where C  is a constant, which depends on the design of the detector. T he first term  in 

Eq. (3.3) is a constant representing the  to ta l energy in the spectrum . This constant 

is sub tracted  from the interferogram  before the Fourier transform  is performed. The

=  ^ - |£ ( c r ) | 2 =  E  (a j 2 { 1  + co*[2 n a  z}} , (3.2)

I ( x )  — f  I(o . x )dx  =   ̂  ̂+  C  f  — E 0 2 (o) cos[2i\oz]do, (3-3)
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spectrum , B( < r )  can he obtained by calculating the inverse cosine Fourier transform  

of the interferogram:

r  2 I 00
B( a )  =  j ^ o V )  = c j Q “  7 ( ° ) /2] ™&$™z]dz. (3.4)

The limits of this integral should extend from 0 to  plus infinity. In reality, the 

movable m irror has finite moving range (0 to L). The1 interferogram  is therefore 

truncated  at some maximum path  difference zmax. T his truncation  function is often 

called a boxcar truncation  function.
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F igu re 3.2: An illustration of obtaining a sample absorbance spectrum from an interfero­
gram: (a) reference spectrum, (b) sample spectrum, (c) absorbance spectrum.
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In a F T IR  experim ent a background spectrum  m ust be m easured as a reference. 

As shown in Figure 3.2 (a), the background spectrum  contains contribution from 

the instrum ent and the  environment. Next, an interferogram is m easured with a 

sam ple containing defects and a raw spectrum  is produced as shown in Figure 3.2 

(b). It looks sim ilar to the background spectrum  except th a t additional dips are 

superim posed upon the background spectrum . The line observed around 1136 cm -1 

corresponds to in terstitia l oxygen in Si, which will be discussed in detail in chapter 

6. To reduce the atm ospheric contributions to  the  spectrum , the raw spectrum  must, 

be divided by the background spectrum  (See Figure 3.2 (c)). This will produce an 

absorbance spectrum . We use FTIR. spectroscopy to  check the absorption line before 

the lifetime m easurem ent by the pum p-probe experim ent. This ensures th a t enough 

defects are present in the sample. F T IR  spectroscopy is also used to m easure the 

natu ral linewidth of local v ibrational modes.

3.2 Generation of Picosecond Mid-Infrared Pulses

3.2.1 In troduction

Time-resolved spectroscopy of v ibrational transitions requires u ltrashort pulses th a t 

are tunable in the m id-infrared region of the electrom agnetic spectrum . T he pulses 

have to be intense since: local vibrational mode transitions are hard to  sa tu ra te  due to 

their small absorption cross sections. T he dynam ics of vibrational transitions occurs
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oil a picosecond tim e scale, which requires u ltrafast laser pulses.

Continuously tunable pulses in the  m id-infrared can be generated by different 

lasers and techniques, such as free-eleetron lasers [41, 42], color-center lasers, differenee- 

frequeney mixing [72, 73], and optical param etric generation and amplification. The 

light sources used in this dissertation are the; Free Electron Laser a t Thom as Jefferson 

N ational Accelerator Facility (T.JNAF) and an optical parametric: amplifier (OPA). 

FELs do not use atom s or molecules as an active medium, but ra ther ’’free” electrons 

in a specially designed magnetic: field. A brief description of the use of the FEL at 

Jeffeson Lab will be presented in the: Section 2.2.3.

3.2.2 O ptical Param etric Am plifier

Due to their availabilities, optical parametric: devices comprise the vast m ajority  of 

IR  sources. OPA is based on a nonlinear interaction in which two light waves of 

frequencies and cu2 are amplified in a medium  which is irradiated  w ith an intense 

pum p wave of frequency o>3 =  u>x +  u>2. The: higher of the: two frequencies uj2  is 

referred to as the signal, the lower as the idler. For the parametric: amplification to 

occur efficiently, the  phase-m atching condition k$ = ki + k 2  m ust be satisfied, where 

A*3 , k x and k 2  are wave vectors of pum p beam, signal and idler, respectively. This is 

generally achieved by using birefringent nonlinear crystals such as /?-BaB20 4  (BBO) 

and K T iO P 0 4 (K T P). By changing the angle of the optical axis of the crystal with 

respect to  the: polarization of one or two of the three interacting fields, a particu lar
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set of frequencies lo\, uj2 is selected for which bo th  the conditions of phase m atching 

(nzu>3 =  niUi +  and energy conservation (W3 =  uj\ + m2) are fulfilled {n.j is the 

index of refraction of the medium at frequency cjj). Figure; 3.3 is an illustration of 

this process.

Nonlinear Crystal

Pump «

Signal or 
Idler Seed

F igu re 3.3: Sketch of optical parametric generation.

OPA is a second-order nonlinear optical process. I11 general, the dielectric po­

larization P(t )  of a  medium w ith nonlinear susceptibility x  can be w ritten  as as 

expansion in powers of the applied field

P(t )  = e0( x W m  + X {2)E \ t )  + Xi3)E 3(t) +  (3-5)

where x ^  is the  Arth-order susceptibility tensor of rank Ah-1. T he electrom agnetic 

wave

E{t)  =  Ei  0 0 3 (0 ;! — ki z)  +  E -2 cos(cu2 — k-iz), (3-6)

consists of two com ponents incident on the  nonlinear medium. At a fixed position 

(z=0) the quadratic term  x ^ E ( t )  in Eq. (3.5) gives the second-order polarization

Signal
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p ( 2) =  £oXi2)E 2(z  =  0)

— £ 0X^' \E ' i  COS* UJ\t 4~ E ‘2 COS UJ‘2̂  4~ ‘2 E \E i2 COS Cd \t  ' OOSLL^t)

=  + E% + -E 'l  cos2wi^

— ~ E 2 cos 2 cC'2  ̂4“ A'i E 2 [<‘os(^i 4“ (^2 )  ̂4~ ('os(u.'i — cco)^]}, (3.7)

which includes a dc polarization, ac com ponents at the second harmonics 2 u>i, 2 u>2 

and com ponents at the sum or difference frequencies u \  ±  u>2.

The phase condition can be fulfilled in uniaxial birefringent crystals th a t have two 

different indices n 0 and n,; for the ordinary and the  extraordinary waves. T he BBO 

crystal is a good choice due to its high dam age threshold [74] and large bandw idth. 

BBC) crystals are therefore often used in commercial OPA systems. If the OPA is 

pum ped with the fundam ental T bsapphire wavelength at 800 inn. signal and idler 

cover a wavelength range of 1-2.6 gin. Longer wavelengths cannot be generated 

because of the onset of infrared absorption in BBO at ~  2.6pm [74]. T he tuning 

range can be extended to 2 0  pm  by difference frequency mixing of the signal and 

idler in a different crystal e.g., AgGaS2 or GaSe, bu t the resulting intensities are 

ra ther low.

In our OPA system depicted in Figure 3.4, a tunable mode-locked T bsapphire 

oscillator (Coherent M ira Model 900-F) is used to generate pulses of 200 fs at a 

repetition ra te  of 76 MHz, with a center wavelength of 800 11111. The oscillator is
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200 fs, 800 nm
-1 0  nJ at 76 MHz

2.5 ps, 800 nm
2.5 mJ at 1 kHz

Coherent Mira 
900-F

Coherent Verdi 
5 V pump laser

Light Conversion TOP AS

Quantronic DQ-527 
flash lamp pumped

Quantronic Titan 
RGA and MPA amplifiers

F igure 3.4: The amplified Tbsapphire laser system consists of an oscillator Mira 900-F, 
diode-pumped laser Verdi 5V, frequency-doubled Nd:YLF laser DQ527 and TOPAS.

pum ped by a Coherent Verdi V-5 D iode-Pum ped laser, which has an o u tp u t power 

of 5W. The oscillator o u tpu t pulses are first stretched to  a length of several hundreds 

of picoseconds (ps) by using a single grating. T he pulses from the stretcher art! 

used to seed a Q uantronix T itan  regenerative T bsapphire amplifier (RGA), which is 

pum ped by 15% of the beam  from a Q uantronix DQ527 Nd:YLF laser. T he DQ527 

Q-switehed laser ustss a flash lam p to pum p the Nd-doped LiYF4 crystal to generate! 

20-niJ pulses at a wavelength of 527 nm. T he seed pulse is coupled into and out of 

the RGA a t a frequency of 1 KHz using a Pockel’s coll. A photodiode! m onitoring the 

ou tpu t pulses from the RGA is used together with a frequency divider to trigger the 

Pockel’s cell and the Q-switched DQ527, ensuring th a t they are synchronized with 

the  seed pulses. T he ou tpu t from the RGA are amplified by a two-pass amplifier.
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which is pum ped by 85% of the beam  from the DQ527. T he amplified pulses will be 

compressed by a pair of gratings. Pulses of 2.5 ps and 2.5 m.J at a repetition  ra te  of 

1 KHz are obtained. A typical autocorrelation trace of amplified pulses are shown in 

Figure 3.5. T he pulses from T itan  will be used as pum p source for the OPA.

Slow-Scan Autocorrelation Trace
1.1

SoBd Hue: A U T O n tA ry ;n « am l Mm: H ypatoM c n e b  Fit. FW HM-2-Sp«

1.0

a?

0.4e4)

0.1

0.0
- 15.0 - 5.0 15.0

Time Delay, ps

F igure 3.5: Autocorrelation trace of the compressed amplifier output, recorded from a 
BBO crystal. The solid curve is a sech2 with a FWHM of 2.5 ps.

The OPA used for lifetime m easurem ents is a commercial traveling-wave optical 

param etric amplifier of superfluroreseence (TOPAS), which can generate signal and 

idler pulses th a t are continually tunable from 1 to 2.6 fun. It is based on the  one 

stage for generation of superfluroreseence (SFL) and four light amplification stages 

arranged in the same 5 mm BBO crystal.

The TOPAS is depicted schematically in Figure 3.6. The 800 nm pum p beam
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OUTPUT

F igure 3.6: The traveling-wave optical parametric: amplifier TOPAS, the 800 nm pump 
beam is shown in grey, the signal+idler beam in black. All mirrors are 800 nm high-reflective 
dielectric mirrors, except M3, M7 and M8 which are metallic mirrors. NC: nonlinear crystal 
(BBO); TD: birefringent plate to generate delay between signal and idler; GP: glass plate; 
BSl and BS2: beamsplitters.

is split into three parts by the beam  splitters B Sl and BS2. T he first two are used 

for the fourth and fifth amplification stage. The th ird  one (only 4%) passes through 

a telescope and is directed to the BBO crystal by the m irrors M l and M2. There, 

param etric generation takes place, resulting in a broadband seed pulse. The seed is 

backward reflected from CM1, through the BBO crystal (NC), to  CM2. This is the 

second pass, which amplifies the eollinear com ponent of SFL produced in the first 

pass. T he th ird  pass is the  reflection from CM2 through NC to the diffraction grating 

(DG). In the th ird  pass the beam  of amplified SFL goes ju s t above C M 1 and hits 

the center of DG. T he beam  from DG is relatively weak and broad-band param etric 

radiation w ith significant divergence in vertical plane. T he beam  will be amplified
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by the first part of the pum p beam, which is directed to the BBO by m irrors M3-5. 

It passes through a glass p late G P which compensates the parallel displacem ent of 

the seed when the  phase angle of the BBO is changed. T he pre-amplified beam  goes 

through M 2  and is reflected from M7 and passes the time delay crystal th a t separates 

signal and idler pulses in time. Then it will be directed to NC by m irrors M8 . There 

it is strongly amplified by the th ird  and most intense part of the  pum p beam, directed 

to the  crystal by m irrors M9-11.

The TOPAS performance1 is critically dependent on the pum p beam param eters, 

such as energy, pulse1 duration, contrast ratio  and beam quality to achieve the specified 

values. T he beam  energy from T itan  should be over 2 .2  m.T. The power from T itan  

can be optimized by aligning the pump m irrors of the RGA and m ultipass amplifier. 

T he contrast ratio  measured by a fast photodiode; should be >  100. If the  contrast, 

ratio  is less th an  100, it can be optimized by turn ing  the screws the of PoekeTs cell 

slightly. If all these parameters are dose; to the specification of T itan , the  daily 

operation of the TOPAS is very easy.

The first step to align the TOPAS is to ensure th a t the beam goes through the 

center of the first two irises. Then block the 4th and fifth pa th  by placing a beam  

blocker before M3 and M9. Second, place a card before C M l and cheek th a t the 

beam s after the first and th ird  passes are in one vertical plane. By scanning in height 

of the card, one can see the first and th ird  pass alternatively. By using a small card 

before grating (DG) and aligning the  pick-up m irror outside of TOPAS, the  th ird  

path  can be aligned through the center of CL2. Third, one can now unblock the
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4th  and 5th pass and put a power m eter after the  TOPAS to observe the ou tput. 

If the power is too low, then the SFL generated in the third pass is most likely too 

weak. One reason is th a t the pulse duration  is slightly different from previous setting. 

T he angle of stretcher grating can be tweaked slightly to optimize the dispersion of 

stretcher in T itan  according to  the reading of the power meter.

TOPAS4/80^sTunin^cu^^j|

W&M
2004.04.09

Pump: Quantronix Titan 
E=2.6 mJ, t = 2  ps, 
A=795 nm

100

o DF1 
♦  DF2

....:

•■o

1000 10000
Wavelength, nm

F igure 3.7: Tuning curves of the TOPAS at the College of William and Mary. S: Signal; 
I: Idler; DF1: Difference Crystal AgGaS2 ; DF2: Difference Crystal GaSe.

Very high conversion efficiencies can be reached with the TOPAS. Signal+idler 

energies of 650 //.I can be obtained with pum p energy of 2.3 m J. To extend the tuning 

range to infrared wavelengths, a difference frequency generator is used to mix the 

TOPAS signal and idler pulses. Nonlinear crystals for frequency mixing are installed
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in com puter controlled ro tation stage th a t can be controlled by TOPAS module. 

Two different nonlinear crystals are used for the  difference frequency generation. The 

wave-length range can be obtained from 2.6-13 gin for AgGaS -2 and 4.5-22 gm  for 

GaSe crystal. The tuning curves are shown in Figure 3.7. More details are given in 

the TOPAS m anual (TOPAS m anual, Light Conversion).

3.2.3 Free E lectron Laser 

O verview

Vrtgglci magnet 
array

Ffectnat

Total ^ 
reflector 1 Lorentz transform 

x I Doppler shift

F igu re 3.8: Schematic diagram of a free electron laser [75],

A free-eleetron Laser (FEL) provides intense, powerful beam s of laser light th a t 

can be tuned to a. precise wavelength. FELs differ from most o ther types of lasers by 

not having atom s or molecules as an active medium, but ra ther ’’free” electrons in a 

specially designed wiggler. They can absorb and release energy a t any wavelength. 

This key feature enables the FEL to produce intense powerful light, over a large
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wavelength range. The; lack of a lasing medium in the; cavity allows the  laser to 

operate at very high power levels w ithout the usual cavity heating problems.

T he key com ponents of an FEL oscillator include an electron beam  of given en­

ergy and intensity and the associated accelerator, a  wiggler (also called an undu- 

lator), and the  electrom agnetic (EM) wave and the associated optical components. 

Figure 3.8 [75] is a schematic representation of an FEL. The principles behind free 

electron lasers are not discussed here. A detailed description of FEL physics is given 

in Ref. [76]. Briefly, the electrons are accelerated to  the velocity close to light veloc­

ity by a superconducting R F  linac. The: relativistic electron beam  oscillates w ithin 

a cavity w ith a m agnetic field, which is controlled by a linear arrangem ent of m ag­

nets of alternating  polarity. K inetic energy from the electron beam is tran sfe ra l to 

EM waves w ithin the cavity, allowing for regenerative energy build-up in the  cavity. 

W hen the electron beam  is accelerated and confined to  bunches, the FEL cavity can 

be synchronously pum ped, generating sub-picosecond IR. pulses.

The radiation produced by an FEL has a wavelength given by

A =  ^ L ( l  +  a' ;̂), (3.8)

where A,„ is the wiggler period, and 7  is the relativistic! Lorentz factor, and aw is 

a characteristic of the wiggler. Unlike; most conventional solid s ta te  or g;rs lasers, 

which produce radiation at specific frequencies corresponding to  transitions in a gain 

medium, the FEL wavelength can be quickly and continually tuned merely by vary­
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ing the  electron beam  energy. This wavelength tuuability  is one of the most useful 

features of the FEL. A review com paring and contrasting the uses of FEL and optical 

param etric sources for the study of v ibrational dynam ics has been presented in Ref. 

[77].

C haracteristics o f th e  IR -D em o FEL at Jefferson Lab

T he Jefferson Lab FEL fatality is designed to  delivery the optical beam  to sev­

eral user stations. The optical beam  is transported  to  each experim ental room via 

an evacuated beam line. A small fraction of the beam  is delivered to a diagnostics 

table where the  beam  is continuously characterized. These diagnostics consist of 

m acropulse power m easurem ents, spectral wavelength m easurem ents of FEL beam  

using a  m onochrom ator, and the  tem poral pulse length m easurem ents using an au­

tocorrelator. Table 3.1 summarizes some of the; im portan t characteristics of the  FEL 

IR-Demo at Jefferson Lab.

T he average power used in our experim ents described in C hap ter 4 is around 2 0  

W , with a  repetition ra te  of 18.7 MHz. The beam  delivers pulses w ith a duration of ~  

1 ps a t 5 n in. T he beam  size is ~  2.5 cm in d iam eter at 5 pm  when it is transported  

to  the  lab. A telescope has to be used to reduce the beam size.

In order to work in a safe environm ent, the  labs a t Jefferson Lab FEL have three; 

different modes of operation. Before running the full power beam, the beam  is aligned 

in a so-called ’’alignm ent m ode” . T he laser provides less th an  400 m.I of light to  the 

user lab in 2 Hz pulse operation. Users have to wear goggles all tim e while working in 

the lab. A fter the  laser is aligned, the laser can be operated in the  full power mode.
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Basic C haracteristics
W avelength range 3 - 6.2 /mi

B andw idth (FW HM ) 0.3-2%
Pulse length (FW HM ) 0.5-1.7 ps

Transverse mode <2x  diffraction limit
Beam diam eter a t lab 1.5-3.5 cm

Pulse Structure, Energy, and Power
Repetition R ate 74.85, 37.425, 18.7 MHz

Micropulse energy up to 70 i l l
Average power 1720 w atts

Electron Beam C haracteristics
Electron Energy 42 Mev
Average current 5 niA

Peak C urrent 50 A

Stability
Wavelength Stability <  2  cm - 1

A m plitude jitte r  (RMS) <  1 0 % p-p
Energy stability  (RMS) 4 x u r 4

Beam position ji tte r  (RMS) 1 0 0  pm
Beam Angle ji tte r  (RMS) 250 prad

T able 3.1: Specification of the FEL IR-Demo at the Jefferson Lab.

An interlocked hutch ensures th a t users are not exposed to the FEL beam  while it 

is being delivered to the  room. This is called ’’hutch mode:” . W hen the interlocked 

hutch is open and the full power beam  is delivered to  the experim ental table, users 

are not allowed in the  lab during beam  delivery. This is called exclusionary mode. 

All the d a ta  acquisition is accomplished by a rem ote com puter in the control room. 

If the user needs to go to the  lab to adjust some optics, the FEL beam has to  be shut 

off by the operator.
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3.3 Vibrational Pum p-probe Spectroscopy

3.3.1 E xperim ental Set-up

The vibrational lifetimes in this thesis were m easured by pum p-probe spectroscopy, 

also called transient bleaching spectroscopy. T he experim ental setup is a standard  

one-color pum p-probe set-up which is shown in Figure 3.9. T he laser beam  of the 

TOPAS or FEL must be collim ated at different wavelengths by a pair of lenses or 

curved mirrors. The collim ated laser beam  is split into two beam s by a ZnSe beam  

splitter. One is pum p beam, which carries about 90% of the to ta l energy. T he other 

is probe beam, which is much weaker th an  the pum p beam (about 10%). T he probe 

beam  will pass through a com puter-controlled translation stage. Both pum p and 

probe beam s are focused by a pair of parabolic mirrors. T he pum p and probe are 

spatially overlapped in the sample. T he strong pum p beam will excite a significant 

fraction of the  defects to the  first excited sta te , which will cause a transient increase 

in the transm ission coefficient of tin; sample. By varying the delay between the 

pum p and probe pulses, the  evolution of the excitation can be followed in time. The 

transm itted  probe; beam is m easured by a detector placed after a m onochrom ator. In 

order to  m easure the  decay tim e of the  first excited vibrational s ta te  of th e  defect, 

the laser pulse m ust be significantly shorter th an  the decay time. T he pum p beam is 

chopped a t 300 Hz for the OPA system and 3 KHz for the FEL beam. T he chopped 

beam causes a m odulation of the pum p-probe signal, which is recorded by a lock-in 

amplifier. In the experim ents we use M C T /InSb ’’sandwich” detectors from Judson
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Technologies, LLC. T he InSb and M CT detectors can be used a t wavelengths at 2 to  6  

/rrn and 6  to 16 /mi, respectively. T he detected signal is first amplified by a low-noise 

voltage preamplifier. A SR250 gated in tegrator and boxcar averager, and a lock-in 

amplifier are used to average and ex tract the transient change of the transm itted  

signal of the probe beam.

I Laser

Iris

*1 if* 1 l«
V '  I

I

Sample/cryostat

IHeNe Laser

Chopper Pump detector

V
Optical delay

t Probe detector

 ^
%  <4=*
C t O r V y .

Monochromator

F igu re 3.9: Typical set-up for pump-probe experiments.

3.3.2 A lignm ent o f the Infrared B eam s

T he alignm ent of the invisible beam  is the most im m ediate challenge to perform ing 

any experim ent w ith the IR. beam. Basic alignment, tasks, trivially perform ed with 

a visible laser, become difficult and time-consuming with the infrared beam. It is 

therefore im portan t to develop alignment, m ethods which are quick and accurate so
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th a t beam  alignm ent can be accomplished efficiently. The; most generally useful 

technique is to  coalign a visible; beam with the infrared beam to provide a visual 

reference to  guide the  alignm ent of the IR. beam. R.ed Helium-Neon (HeNe) lasers are 

generally the visible laser of choice, because of their simple operation and excellent 

transverse mode quality.

In the experim ental set-up shown in Figure; 3.9, two irises are; placed before the 

beam  splitter. During the alignm ent procedure, the IR. lase;r beam is blocked and 

the HeNe laser be;am is directeel into the  center of the two irises by a pick-up mirror. 

T he pick-up m irror is m ounted on a  m agnetic base; and can be; easily removed and 

placed back. All the optics after the second iris are aligned accoreling to the HeNe 

laser beam. A fter all the aligmneaits are finished, one; needs to block the HeNe beam, 

remove the pick-up m irror anel let the; IR. beam  go through the twee irises. A detector 

is placed after the irises and the power is optim ized when the; beam  goes through the 

irises. This ensures th a t the IR. be;am passes through the; ceaiter of bo th  irises.

3.3.3 E xperim ental Procedures

The vibrational lifetime; mesasureanents of local vibrational modes are very challenging 

due to  the small absorption cross section of the elefects, especially when they are 

measured by our OPA system. The; meausurement, is very critically dependent on the 

alignm ent anel laser stability. Before running the experimeait, we m ust make sure th a t 

the lasers run stable and make sure th a t the laser beam goes through the eemter of
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the  first two irises. Generally there arc' three steps in the experim ent. F irst, we use a 

reference sample, which gives rise to  a strong signal, to chock the alignm ent and the 

spatial overlap of the pum p and probe beam. A pin-hole w ith a diam eter of 50 fim 

is used to help align the spatial overlap of the two beams. The sample is m ounted 

on a three-dim ensional translation  stage1, which can be moved to optim ize the signal. 

Once the set-up is optimized, a big spike shown in Figure 3.10 can be observed. This 

spike is independent of wavelength. Next, the sam ple is m ounted in the  cryostat and 

one needs to  check w hether the spike still exists. Then, the  sam ple is cooled down 

to 80 K and the OPA is tuned  to  the absorption resonance of the defect. W hen the 

spectrum  of the- probe beam is m easured w ith the monochrom ator, an absorption dip 

will be observed, which is shown in Figure 3.11. This spectrum  is m easured in a Ge 

sam ple w ith a  very high oxygen concentration. T he dip corresponds to  the  absorption 

of the oxygen stretch  mode in Gc. Most defects do not have; a strong dip due to their 

weak absorption. The; last step is to  lower the tem perature to  10 K and m easure the 

v ibrational lifetime.

3.4 Sample Preparations

3.4.1 H ydrogen in Silicon

Hydrogentated Si prepared by proton-im plantation

The proton-im planted Si samples used in v ibrational lifetime m easurem ents are
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F igure 3.10: Pump-probe signal at room temperature: from a Ge sample.
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F igure 3.11: Spectrum of a 1.7 ps laser pulse passing through a monochromator. The 
clip at 860 cm-1 corresponds to the absorption of interstitial oxygen in Ge doped by C o  = 
~  1018 cm-3.
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m ade by M. Budde [78], It is a 2-mm thick, high resistivity, disk-shaped Si single 

crystal, coated w ith a m id-IR  antireflection coating on one side. T he coating pre­

vents spurious signals due to internally reflected light. T he Si sam ple is im planted 

w ith protons at different, energies in the range l - 1 .8 MeV. A to ta l dose of 2 x 1017 

p ro tons/cm 2 is im planted into the uncoated side of the sample at 80 K yielding a 47 

gm  deep, uniform H concentration profile. Figure 3.12 shows the  im plantation profile 

obtained by the software package SRIM [79]. T he im plantation dose at each energy is 

adjusted  in order to  obtain a uniform hydrogen concent ration of 0.02%. T he sample 

tem perature is kept at 80 K during the im plantation, and the background pressure 

is about 10- 6  torr. A uniform H concentration of 1.7 x 102 ppm  is formed from the 

surface to a depth  of 47 pm  by variable-energy im plantation of the uncoated side of 

the sam ple a t 80 K.

0.020

.2 0.015

£ 0.010

o 0.005

10 20 30 40
Depth (pm)

Figure 3.12: Hydrogen implantation profile. 

H ydrogentated Si prepared by electron-irradation
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T he samples which are used in high resolution IRAS m easurem ents are prepared 

by electron irradiation at Lehigh University. An advantage' of producing these defects 

by electron irradiation, ra th e r th an  by proton im plantation, is th a t the defects can 

be d istributed uniformly w ith lower concentrations throughout bulk samples and, 

therefore, have reduced inhomogeneous broadening and have narrower vibrational 

linewidths. T he samples consist of n-type Si ([As] = 3  x 1 0 14 c n r ,!) grown by the 

floating zone (FZ) m ethod. T he samples have dimensions 7 x 7 x 15 m m 3 w ith the 

optical viewing direction along the long axis. T he viewing surfaces of the  samples 

are polished w ith SiC and A120 3 grits and 0.5 gm  diam ond paste. T he samples 

doped with H (Si:H) or D (Si:D) are annealed a t 1250° for 30 min in quartz ampules 

containing H2 or D2 gas at 0 .6 6  atm . T he anneals were term inated by a rapid quench 

in w ater to  room tem perature. The concentration of H or D is determ ined to be 1016 

cm - 3  by m easuring the intensity of the 3618.4 cm - 1  line assigned to IT- T he H and D 

defects are created by irradiating the samples with 2.5 MeV electrons at RT to a to ta l 

dose of 1017 cm ” 2. The samples are irradiated  w ith half the  to ta l dose from opposite 

sides to make the defect concentration nearly uniform. T he defect concentration in 

the samples is estim ated to  be ~  1016 cm”3, which is ~50  tim es smaller th an  in the 

proton im planted samples.
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3.4.2 O xygen in Si and G e

T he oxygen isotopes 170  and 180  are diffused into FZ-Si doped w ith boron concen­

tra tion  of 5.7 x 1015 cm - 3  a t the University of Paderborn [80]. In order to avoid 

contam ination with transition  m etals such as Fe or Ti, the diffusion was done under 

extrem ely clean conditions using an IR. heat chamber. The sam ple is placed into an 

()2-gas atm osphere enriched w ith 17() and 180  in a  cooled quartz  am poule onto a short 

quartz rod. T he sample is held for about 14 days at an oxygen pressure of 3 bars 

at 1400°C. The tem peratu re  gradient is w ithin 5% over 50 mm of the sam ple length. 

The; ho ttest point in the  am poule and support system  eould be held below 900°C by 

forced air cooling, thus over 500°C less than  the sample tem perature. The sam ple is 

cooled slowly from 1400°C to 800°C at a ra te  of 200°C /hour and them quenched at 

room tem perature.

The "G e:0  sample is an as-grown sample taken from a CZ Ge:() n-type (n  ~  

1 .6  x 1014 cm -1 ) crystal grown by M etallurgie Hoboken Overlept in Belgium about 

2 0  years ago.
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Chapter 4 

H ydrogen B ending M odes in 

Sem iconductors

4.1 Introduction

Hydrogen passivation of defects is a standard  processing step in t he production of 

m etal-oxide-sem iconduetor (MOS) electronit: devices. This process reduces the den­

sity of Pfc centers, the most abundant electrically active defect a t the S i/S i0 2 interface, 

by 3 orders of m agnitude [1 2 , 81], Recently, an isotope effect of Si-H and Si-D bonds 

has been observed during this passivation process. By using deuterium  instead of 

hydrogen to passivate Si dangling bonds of Pf, centers at the S i/S i0 2 interface, Lyd- 

ing, Hess, and Kizilyalli found th a t hot-electron degradation of MOS transistors was 

reduced by factors of 10-50 [82]. This reduction increased the operational lifetime of 

a silicon chip. A similar isotope effect has been observed in a. study of the dissociation 

kinetics of Si-H and Si-D complexes in GaAs. Chcvallier ei al. observed th a t, for a 

given incident ultraviolet (UV) photon density, the concentration of dissociated Si-D

58
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complexes is 10-20 times below the concentration of dissociated Si-H complexes [83].

Energy

E=0

H
Emission

Transport
States

Si-H
Vibrational

Levels

Figure 4.1: Schematic potential energy surface for a Si-H bending mode, showing vibra­
tional energy levels in the first energy well. When H is vibrationally excited to the top of 
the well, it may be emitted to transporting states and dissociate' the bond.

T he isotope effect of H and D implies th a t Si-D bond-breaking is slower than  

for Si-H. The origin of this isotope effect is not well established and m any possible 

mechanisms have been proposed [82, 84, 85, 8 6 ]. T he key feature' is th a t  the elec­

tronic properties of Si-H and Si-D are identical, and only their vibrational properties 

are different. It is believed th a t the dissociation of Si-H and Si-D bonds is caused 

by inelastic electron scattering, which excites the  defect to  either a dissociative elec­

tronic s ta te  or to excited vibrational states. T he vibrational excitation mechanism 

of hydrogen-related modes has been described by the  truncated  harmonic oscillator 

model [84, 87, 8 8 , 89], which is shown in Figure 4.1. This model describes the Si-H 

and Si-D bonds as harm onic oscillators. Si-H bonds can be excited to  a more ener-
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getic v ibrational s ta te  by non-radiative electron-hole (e-h) recom bination or by hot 

electrons at Si/SiC^ interfaces. If the excited Si-H oscillation can be sustained, hydro­

gen can be em itted over the barrier to a mobile transport s ta te  (Figure 4.1), causing 

the Si-H bond to  dissociate. W ithin th is model, the  desorption ra te  is approxim ately 

given by

where T x is the lifetime of the v ibrational s ta te  | 1 ) and F i s  the  excitation ra te  of 

the transition  |0) —> |1). From Eq. (4.1) the vibrational lifetime T i is an im portant 

param eter for the dissociation ra te  of Si-H or Si-D bonds.

nism is most likely controlled by the Si-H bending mode [90]. Based on their calcu­

lations by density functional theory, the  bending mode at anti-bonding sites provides

bulk TO  phonon states at the X point (463 can-1 ). So one may expect th a t the  cou­

pling of the  Si-D bending mode; to  the Si bulk phonons results in an efficient channel 

for de-excitation. Evidence for the coupling between the Si-D bending mode and Si-Si 

lattice vibrations is found a t the S i/S i0 2 interface [92] and in deuterated  am orphous 

silicon [93]. To our knowledge the v ibrational lifetimes of Si-H and Si-D bending 

modes in Si have never been measured and vibrational dynam ics of bending modes is

(4.1)

Chris G. Van de Wallo et al. proposed th a t carrier-enhanced dissociation mecha-

a more favorable dissociation pa th  than  the Si-H stretch  mode [91]. T he v ibrational

frequency of bending mode for Si-H was calculated to  be around 650 cun J, and the;

estim ated frequency for Si-D is around 460 cm x, which is close: to  the frequency of
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essentially unknown. These experim ents are difficult to perform because the bending 

modes lie close to the phonon bath  and the laser pulses are weak in th a t wavelength 

range.

This chapter presents the first m easurem ent of H -related bending modes in Si. The 

lifetime of the bending m ode in Si a t 817 cm - 1  is measured to  be =  12.2 ±  0.8 

ps by transient bleaching spectroscopy. T he temperature; dependence of the lifetime 

and calculations of phonon-density of s ta te  indicate th a t the  bending m ode of H* 

decays into two phonons (LA +  TO phonons a t the  X point). T he vibrational life­

times of o ther H -related bending modes are estim ated from their infrared absorption 

linewidths. T he different, lifetimes of H and D -related bending modes can be described 

by an energy gap law [93].

4.2 Experim ental

The sample consists of a 2-min thick disk cut from single; crystalline; high-resistivity 

Si. T he sam ple was polished em both  sides, and coated with a miel-IR antireflection 

coating on one side to  prevent spurious signals arising from m ultiple internal reflec­

tions. A uniform H concentration of 1.7 x 102 ppm  was formed from the surface to  a 

dep th  of 47 pm  by variable-energy im plantation of the uncoateel side; of the sam ple at 

80 K. After the im plantation, infrared absorption spectroscopy was perform ed with 

a  commercial Nicolet Nexus 670 F T IR  spectrom eter at tin; Applied Research Center 

of Jefferson Lab. F igure 4.2 shows the spectrum  of the bending mode at 817 cm -1 .
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The inset shows the defect structure: one H close- to the bond-center side (BC) and 

the  o ther near the antibonding (AB) site. T he Hg in Si gives rise to  four absorption 

lines a t 817, 1599, 1838, 2062 cm -1 . T he 1838- and 2062 -cm - 1  lines were assigned 

to  the  stretch  inodes at the AB side and the BC site, respectively. The 817-em-1 line 

corresponds to the bending mode of hydrogen at the- AB site. 1599-cm - 1  line is the 

overtone of the 817-em "1 modi!.
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Figure 4.2: Absorbance spectrum of proton-implanted Si showing the 817 cm"1 bending 
mode of H?i, shown in the inset.

T he IR, pum p-probe setup is described in C hapter 3. The laser source is the 

TO PAS which delivers pulses at 1-kHz repetition  ra te  with a tim e duration  of ~ 2  

ps, spectral w idth of 10 cm "1, and a pulse energy of 1 2  p.J a t 817 cm "1. T he tran ­

sient bleaching signal Su is detected  using an amplified liquid nitrogen-cooled M CT 

detector. To allow for low tem perature m easurem ents, all experim ents are performed 

w ith the sample m ounted in an optical cryostat. The Si sam ples used for linewidth
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m easurem ents are 15 mm thick, grown by the float-zone m ethod, and prepared by 

electron irradiation in Prof. Stavola’s group at Lehigh University. T he details about 

the electron irradiation are described in C hapter 2. The' IR. absorbance spectra  are 

m easured w ith a resolution of 0.1 cm - 1  using a Bonien DA 3.16 Fourier transform  

infrared spectrom eter.

4.3 R esults and Discussions

4.3.1 L ifetim e M easurem ents o f B end M ode o f Hjj in Si and

Ge

0.010 
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Figure 4.3: Decay of the transient bleaching signal Si, from the 817-cm-1 mode of H| 
measured at 10 K with the TOPAS. St, decays exponentially with a time constant of T\ = 
12 ±  0.8 ps.

Bend Mode of H2 
1 0K
On resonance 817 cm 
T =  12 + 0.8 ps
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Figure 4.3 shows a semi-log plot of the transient bleaching signal versus tim e 

delay m easured at 10 K w ith the laser frequency centered on the 817-em-1 mode. 

The signal decreases w ith a tim e constant 7 i =  12 ±  0.8 ps. Figure 4.4 shows the 

spectrum  of our laser pulses. The dip at 813-cm-1 corresponds to  th e  absorption of 

the bending mode of H j a t room tem perature. F igure 4.4 also shows the band w idth 

w ith a  FW HM  of 10 cm - 1  a t 12.2 /am. W hen the wavelength is tuned off 817 cm - 1  

by 10 cm -1 , the exponential decay S*, disappears. M easurem ents of Si, vs wavelength 

show th a t the transien t bleaching signal originates from th e  817 cm - 1  mode.

813 cm' at RT

0.06

~  0.04 HWFM: -10 cm

0.02

0.00

790 850780 800 810 820 830 840

Wave Number (cm'1)

Figure 4.4: Spectrum of a 1.7 ps laser pulse passing through monochromator, showing 
the absorption of the H2 bending mode at 813 cm-1 at room temperature.

As discussed in C hapter 2, the vibrational lifetime of the excited sta te  of a. local
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v ibrational mode can be estim ated from

where F 0 corresponds to the  natu ra l linewidth, which has to be m easured a t the 

highest resolution possible using samples with very low defect concentrations. The 

sample m ust be cooled to  below 10 K for the absorption m easurem ent to  insure th a t 

the line broadening due to pure dephasing is negligible.

Figure 4.5(a) shows the absorption spectrum  of HJ measured a t 5 K using samples 

with H concentration of ~  1 x 1 0 16 cm -3 . T he line shape of H j is fitted by a L o ren taan  

w ith a FW HM  of 0.42 cm -1 , which corresponds to a lifetime of 12.2 ps calculated 

by Eq. (4.2). This result shows th a t the lifetime measured in the tim e dom ain is 

exactly consistent w ith the  one obtained in the frequency domain. T he absorption 

linewidth is dom inated by the homogeneous natu ra l linewidth. T he lifetime estim ated 

from this low concentration sam ple is reliable. Since the v ibrational lifetime of Dg is 

hard  to  measure due to  the weak laser pulses a t ~ 17  /zm, we obtained the  lifetime 

of Dj a t 588 cm - 1  by measuring its linewidth. T he silicon sam ple containing D.J is 

prepared in the  same way as II ) , and the line broadening a t 5 K is dom inated by its 

natu ra l linewidth. From Figure 4.5(b) we obtain the absorption line w idth of 0.46 

cm -1 , which corresponds to a lifetime 7 \ =  1 1 .6  ps. For this special case, it is very 

interesting to  find th a t the lifetimes of HJ; and bending modes are almost the same. 

In the following, we will show th a t this result can be explained by the energy gap 

law, i.e., both  modes fall into the two-phonon band of Si. To gain further insight, the
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relaxation channel and decay mechanism need to  be understood.
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F ig u re  4.5: IR  absorbance spectrum of e-irradiated, H-doped Si, showing the lines of Hlj 
and Dj.

4.3 .2  D ecay C hannel o f th e  H 2 B end  M ode

T he na tu re  of the accepting modes of H -related stretch  modes is unknown [44, 94], 

They can be Si-H bending modes, pseudolocalized modes, a n d /o r phonon modes. In 

contrast, the decay channel of the bending modes may be less com plicated because 

they  art: low-frequency modes and m ay decay directly  into the phonon bath . To iden­

tify the  relaxation channel we measured th e  tem perature' dependence of the lifetime.
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Figure 4.6: Temperature dependence: of T \ of the 817-ein-1 mode of HJ. The dashed and 
solid lines are the theoretical predictions for decay into three phonons {517, 150, 150} and 
two phonons {460, 357} cm-1, respectively.

817 cm'1 = 0(517cm'1) +2 TA(150 cm'1) 
- 817 cm'1= TO(460cm'1) +LA(357 cm'1)
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Figure 4.6 shows T i versus tem peratu re for the  bending mode of H.J a t 817 cm - 1  in 

silicon. T x is nearly constant up to  130 K. T he lifetime measured above 130 K is not 

reliable due to  the low signal-to-noise ratio. T he solid line in Figure1 4.6 shows a fit, 

using Eq. (2.9) in C hapter 2 w ith the  v ibrational relaxation channel of the 817-cm "1 

mode represented by two accepting modes {460 and 357} cm -1 . T he dashed line is a 

fit using three accepting mode's {517, 150 and 150} cm "1, which corresponds to the 

phonon com bination of one1 optical phonon at F point anel two TA phonons. It is 

clear th a t th e  beneling moele at 817 cm - 1  decays via two-order proe'e'ss. T he phonon 

decay channels are not uniquely determ ined by the tem peratu re dependence of the 

lifetime. They can also be fitted well by o ther two-order processes. For example, the 

tem perature dependence of the 817 cm - 1  is equally well represented by 409 and 408 

cm " 1 accepting modes. However, any three-order process will not fit the d a ta  points. 

Since D£ and fall into the two-phonon band of Si, we would expect th a t D | also 

decays via the two-order proems. Figure; 4.7 shows the calculation of the two-phonon 

density of states by straightforw ard convolution of the one-phonon density of s ta tes 

according to  Eq. (2.10) in chapter 3. The bending mode at 817 cm " 1 falls on the 

peak of the T O + L A  phonon combination, whereas the  DJ bending mode a t 588 cm " 1 

coincides w ith T A + T O  phonon combination. According to  the sym m etry selection 

rules described in C hap ter 2 , the decay channels of H j and D | are infrared active and 

the two-phonon decay channels are allowed.
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F igure 4.7: Two-phonon density of states in Si. The H?; bending mode at 817 c a r 1 
coincides with LA+TO phonons, whereas the bending mode at 588 cm-1 lies in the 
TA+TO phonon band.
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4.3.3 L ifetim e o f O ther H -related B end M odes and Energy  

G ap Law

Nitssan at al. developed a theory of v ibrational energy relaxation in solids, which is de­

scribed in C hapter 2 . T he vibrational relaxation ra te  is expressed in Eqs. (2.8), (2.9), 

and (2.10). T he relaxation ra te  is determ ined by the m agnitude of the coupling term s 

between local vibrational modes and accepting modes. Since the  hydrogen bending 

mode decays by lowest order, it is reasonable to  assume th a t the |Gq,q | 2 term s decrease 

fast w ith increasing order of the  m ultiphonon process N ^ .  According to  Eq. (2.12), 

the relaxation ra te  decreases exponentially as the energy gap between local modes 

and phonon modes or decay order is increased. T he energy gap law can be expressed 

by [95, 96]

71 =  A e llN, (4.3)

where N  is the  decay order according to the lowest-order decay, and A  and B  are 

two param eters which depend on the coupling constants between tin ' local vibrational 

modes and the  accepting modes.

F igure 4.8 shows a plot of tin- v ibrational lifetimes of H (D )-related bending modes 

vs decay order for various im purities in different semiconductors. The linewidth of Si­

ll  bending mode; in Si-doped GaAs at 896 cm - 1  is ~0.02 cm - 1  [97], which corresponds 

to a lifetime of ~260 ps. Since the m aximum phonon frequency in GaAs is a t 291 

cm -1 , there must, be a t least 4 phonons involved in the  decay process. T he linewidth of 

Si-H bending mode at 890 cm - 1  in Si-doped AlAs is 0.07 cm - 1  [97], which corresponds
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F igure 4.8: Vibrational lifetimes of H-related bending modes vs decay order in different, 
hosts. The line is a fit to Eq. (4.8) with two parameters, A  =  0.15 ps and B  =  2.01

to a lifetime of ~75 ps. The maximum phonon frequency of AlAs is 402 cum 1, which 

leads to a decay order of 3. The linewidth of Si-D in GaAs at 641 cum 1 is around 0.13 

cm corresponding to T i ~  40 ps [98]. S (Se,Te)-H modes have' almost the same 

frequencies w ith a linewidth of 0.045-0.09 cun corresponding to  T x =  55-110 ps [99], 

and a three-order process. In contrast, the linewidth of the corresponding D-modes 

are 0.3-0 .6  cm " 1 (T i =  8-16 ps) due to their two-order decay process. T ight-binding 

molecular dynam ics sim ulations predict a lifetime of 0.3~0.5 ps for Si-D at 460 cm " 1 

and 5-6 ps for Si-H at 640 cm "1. The solid line in Figure 4.8 is a fit using Eq. (4.3). 

This fit, reveals the general trend th a t the v ibrational lifetime of H (D )-related bending 

modes does follow closely an energy gap law. The d a ta  points are fitted with the values
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A  =  0.15 ps and B  =  2.01. A  is determ ined by the tim e scale of the first-order decay 

and B  depends only logarithm ically on the coupling constant and on N  [95]. The 

coupling constant B  =  2 .0 1  is close1 to the value of the CN “ stretch  mode in silver 

halides, which also follows the energy gap law w ith the fitting param eter B  =  1.94 

[96]. T he variation of B  from host to  host is therefore small enough to justify  the 

d a ta  analysis.

T he overall fitting of the; d a ta  point is satisfactory, bu t by no m eans perfect. 

There are a few possible errors in the: lifetime of H (D )-related bending modes plotted 

in Figure 4.8: (1 ) Most of the lifetimes arc estim ated from their linewidths measured 

a t low tem peratures, which may have some inhomogenous broadening and not their 

real natu ra l linewidth. (2) T he linewidth may contain the instrum ental broadening, 

especially those sharp lines. (3) Isotope broadening may contribute: to the linewidth 

of Sc (Te)-H or D mode's in GaAs [100]. (4) The: coupling constant e:an be slightly 

different in different hosts even though the calculations by Biswas [89] indicate th a t 

lifetimes of bending modes are: insensitive to the: environment. (5) T he calculated 

Si-H lifetime is about half of our measure*! lifetime of H[>. We m easured the Si-H 

lifetime to  be ~ 12  ps, while the calculate*! lifetime of Si-H bemeling m ode is only 5-6 

ps. So the  lifetime for Si-D moele may be larger as well, i.e., ~ p s  according to  the 

experim ental elata.

We already kimw th a t the Si-H stretch  modes do not, follow the: energy gap law. 

For example, the HI, and HV-VH(n0) complex in Si have: imarly the same freepieimy 

bu t very different lifetimes by two-orders of m agnitude [101, 94]. Likely, the coupling
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constant, accepting modes and decay mechanism of stretch modes are different and 

show a strong structu re  dependence as discussed in the  next chapter. O ur lifetime 

m easurem ent of bending modes and analysis of energy gap law clearly shows th a t 

the lifetime of bending m ode critically depends cm the decay order, i.e., the energy 

gap between the local v ibrational inodes and accepting modes. T he energy relaxation 

tim e can be different by 3 orders of m agnitude when the; bending m ode decays into 

different num ber of phonons. Since; the energy of the bending mode; is sm aller for 

deuterium  th an  for hydrogen the former m ay decay via lower-order process which 

results in shorter lifetime. This result can explain the giant H (D) isotope effect and 

supports the finding th a t the dissociation of Si-H and Si-D bonds is controlled by the 

dynam ics of hydrogen bending modes.

4.4 Conclusion

In conclusion, we have measured the vibrational lifetime's of Si-H and Si-D bending 

m odes of H j in Si and extended this study to  m any other bending modes in semicon­

ductors. This study  is key to understanding the physics of the giant isotope effect. 

We show th a t the v ibrational lifetime; of bending modes can be; desci'ibed by an energy 

gap law. T he lifetime increases dram atically  w ith increasing de;cay oreler.
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Chapter 5

H ydrogen Stretch M odes in Silicon

5.1 Introduction

For a com plete understanding of the v ibrational dynam ics of hydrogen in semiconduc­

tors, it is important, to study also the  lifetime of hydrogen stretch  modes. In contrast, 

to the  bending modes, the stretch  modes are high-frequency modes and can decay 

into phonons, bending modes, an d /o r pseudolocalized modes related w ith hydrogen 

defects. In 1975, Stein reported a pioneering infrared absorption study of crystalline 

silicon im planted with protons at room tem peratu re (RT) [102]. The spectrum  ob­

served by Stein after im plantation a t ~  80 K is dom inated by an intense absorption 

line a t 1990 cm - 1  [103], which was identified as bond-center hydrogen (H ^ |)  shown in 

Figure 5.1(a). In proton-im planted Si, more than  ten absorption lines are observed in 

the range 1800~2250 cm - 1  a t R.T (Figure 5.2). The lines shift down in frequency by a 

factor of 1 /  \ /2  when deuterons are im planted instead of protons. These Si-H or Si-D 

absorption lines can also be observed in Si grown in a. H2 am bient and subsequently 

irradiated  w ith electrons [104, 105] or neutrons [106], Local vibrational m ode spec-

74
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troseopy and uniaxial-stress techniques have been used to assign these Si-H stretch 

modes to specific hydrogen-related defects.

(e). VH2 (f). v h 4

Figure 5.1: Structures of the interstitial-type defects (top), and the vacancy-type com­
plexes (bottom). Large spheres are Si, whereas small spheres are H.

A num ber of' defects have been identified, part of which are shown in Figure 5.1. 

Figure 5.1(a) shows the bond-center hydrogen defect in Si. It gives rise to  an intense 

absorption line at 1998 cm * 1 due to  the excitation of the stretch mode, where the 

hydrogen vibrates parallel to the Si-H-Si bond axis. Figure 5.1(b) depicts the 11*2
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F igure 5.2: Absorption lines of hydrogen stretch inodes in proton-implanted Si: Hj gives 
rise to two absorption lines at 1838 (BC site) and 2002 cm-1(AB site'.); IH-2 is a self- 
interstitial defect and has two absorptions lines at 1987 and 1990 cm-1; V2H2 has two 
Si-H stretch modes, but only one Si-H mode is IR active at 2072 cm-1; VH consists of one 
hydrogen atom saturating a dangling bond of the vacancy, which was assigned to be 2038 
cm” 1; VH2 gives rise to two absorption lines at 2267 and 2316 can” 1.

defect, which is described in C hap ter 1 and 4. F igure 5.1(c) shows the  self-interstitial 

hydrogen defects in Si. This defect contains two nearly perpendicular and equivalent 

Si-H bonds th a t are almost, aligned w ith the  [011] and [011] directions and has a C 2 

axis parallel to the [001] direction [107].

Vacancy type defects are also fundam ental, intrinsic point defects in crystalline Si. 

Theoretical calculations [91, 108, 109, 110] predicted th a t a dangling Si bond repre­

sents the strongest trap  for hydrogen in bulk Si and th a t a vacancy may trap  up to 

four H atoms. T he vibrational stretch  frequencies were also calculated and exhibited 

a steady increase w ith increasing n  for the V H n complex. The atom ic configuration 

of VmH.„ complexes are shown in Figure 5.1(d), (e) and (f). VjIIz was identified
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by Suezawa in a hydrogenated Si sample by electron-irradiation [111). This complex 

with a divacariey binding two H atom s is nam ed H V  ■ H V (n0) to emphasize th a t the 

Si-H bonds art' located in the  sam e (110) plant!, in separate halves of the divacariey. 

V H -2 has C-2v sym m etry and consists of two hydrogen atom s each satu ra ting  a dan­

gling bond of the vacancy. V H -2 has two Si-H stretch  modes a t 2122 and 2145 cm -1 . 

V H 4  has all four dangling bonds of the  vacancy satu ra ted  by hydrogen, which renders 

the complex electrically inactive. This complex has T(i sym m etry and gives rise to a 

absorption line at 2223 cm "1.

In order to understand the dynam ics of these defects, th e  vibrational lifetimes of 

these local modes need to  be measured. Initial vibrational lifetime m easurem ents of 

H in crystalline Si were done by Buckle [44] et al. for the bond-center hydrogen at 

1998 cm -1 . The vibrational lifetime of the stretch  mode was m easured to  be 7.8 

ps. T he tem peratu re dependence of v ibrational lifetime showed th a t the H # q s tretch  

mode does not decay via lowest order. The; lifetimes of o ther H -related stretch  modes 

were also estim ated from their spectral w idths. A structure' dependence of the  lifetime 

was found from the linewidth analysis in samples with very low defect concentrations 

[44]. T he lifetimes of in terstitia l-type defects are much shorter than  vacancy-type 

defects. This disparity  in m easured lifetimes is unexpected based on simple theories 

and is as yet unexplained [56, 57]. Experimentally, the most straightforw ard way to 

characterize a  m ultiphonon relaxation ra te  from a given vibrational level is from the 

tem peratu re  dependence of its lifetime. In this chapter, we will discuss a detailed com­

parison of the tem perature dependence of the vibrational lifetime of two structu rally
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distinct point defects in crystalline Si, H%, an in terstitia l defect, and HV-VH(110), a 

vacancy complex. T he very different, temperature! dependences show th a t these vi- 

brationally excited defects decay into m arkedly different accepting vibrational modes, 

giving new insights into the origin of the  observed largo difference' in their lifetimes.

5.2 Experimental

H V V

20802060 20702050
Wave Numbers (cm-1)

F igure 5.3: Absorbance spectrum of proton-implanted Si showing the 2062.1-, 2068-, anel 
2072.5-cm-1 lines of IF>, HVF,  and HV-VH(110).

The Si sample useel for the lifetime measurement, of H2 boneling me)de is the same 

one used for stretch  mode m easurem ents as described in C hapter 4. After warming to 

room tem perature, IR  absorbance m easurem ents from the im planted sample revealed 

a series of strong absorption lines in the Si-H stretch  region, including lines a t 2062.1, 

2068, and 2072.5 cm -1 . Figure 5.3 shows an absorbance spectrum  taken w ith 0.15-
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cm - 1  resolution at 10 K from a Si-H sam ple w ith a low H concentration (~ 7  ppm) to 

clearly resolve the different absorption lines. T he 2068-cm-1 line has been assigned 

to  the divacancy binding one H atom  HV-V [112], and was ~ 3  tim es smaller th an  

the 2072.5-cm“ 1 line of V2 H 2 in the sam ple w ith the high H concentration. Since the 

linewidth is inversely related to the lifetime, it is im m ediately apparent th a t HJ] and 

the vacancy complexes have very different excited sta te  lifetimes. However, a direct 

determ ination of the lifetime from the  w idth may be uncertain due to  inhomoge- 

neous broadening, instrum ental resolution, and dephasing at elevated tem peratures. 

Therefore, a transien t bleaching (pum p-probe) technique was used for tim e dom ain 

m easurem ents of the lifetimes.

T he transient bleaching signal S<> was m easured as a function of tim e delay be­

tween the pum p and probe pulses, as described in C hapter 2. T he experim ents were 

performed using the  high-power, IR. free-electron laser (FEL) at the Thom as Jeffer­

son N ational Accelerator Facility (T.JNAF). T he FEL delivered pulses w ith a time 

duration  of ~ 1  ps, spectral w idth of 1 2  cm -1 , and pulse energy of 1 p J  a t a pulse 

repetition ra te  of 18.6 MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 5. HYDROGEN ST R E T C H  MODES IN  SILICON 80

1 .0 -

HV*VH,
(110)

0.8 -

0.6
A

0) T = 291 + 4 ps
0 .4 -

0.2

0.0
0 2 0 0  4 0 0  6 0 0  8 0 0

0 .8 -

0 .6 -

co
0 .4 -

0 .2 -

0.0
0 20 4 0

Time Delay (ps) Time Delay (ps)

F igu re 5.4: Transient bleaching signal from the 20(>2-em-1 (left side) and the 2072-cm-1 
(right side) mode measured at 10 K.

5.3 Results

5.3.1 V ibrational L ifetim e o f and H V  V H (n0)

Figure 5.4 shows the transient bleaching signal versus tim e delay measured a t a tem ­

perature of 10 K w ith the laser frequency centered either on the 2062-enm1 (left) or 

the 2072-cni-1 line (right). The signal of the former decreases w ith a tim e constant 

Ti =  4.2 ±  0.2 ps (left side of Figure 5.4). The lifetime of Ti =  4.2 ±  0.2 ps ob­

tained directly from the transient bleaching experim ent is longer than  the Ti =  1.9 

ps estim ated from the w idth of the 2062.1-cm-1 line measured in a low hydrogen 

concentration sample [101]. This indicates th a t the low -tem perature linewidth is still 

broadened by intrinsic (homogeneous) dephasing processes. In addition, a long-lived 

tail is clearly present in the decay of S*. Since the laser spectrum  has a FW HM
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of ~ 12  cm -1 , wo expect th a t Si, also exhibits a response; from the; ‘2068- and 2072- 

cm _ 1  modes. Indeed, by centering the laser frequency on the 207'2-cm-1 mode, the 

long-lived com ponent of St, is enhanced; i.e., it corresponds to  the stretch  m ode of 

H V ■ V i7(no), possibly with a small contribution from H V  V  (right side; of F igure 5.4). 

T he lifetime of the H V  ■ V H ^ W) s tretch  mode; is constant w ithin experim ental error 

up to  60 K, with a mean value of 7) =  291 ±  4 ps. The; contribution of the; 2068- 

crn- 1  line to Si, is expee;ted to  be very small since the; transient bleae:hing signal is 

a  nonlinear function of the; laser intensity. In addition, the HV-VH(n0) and HV-V 

defects arc; structurally  very similar, and we1 therefore; expect them  to have similar 

lifetimes. Both signals in Figure' 5.4 exhibit a fast transient, which e;oineidcs w ith the 

pum p pulse. This instantaneous response results from the nonresonant excitation of 

the bulk crystal.

5.3.2 T em perature D ependence o f L ifetim e and D ecay Chan­

nels

Figure 5.5 shows T i versus tem peratu re for HJ (left side) and HV-VH(110) (right 

side). In the case of the 2062-cm_1 moele, T x is nearly constant up to ~  60 K, where 

it s ta rts  to  decrease, reaching half of its low-tem perature value a t 130 K. T he solid 

lines in Figure 5.5 are fits using Eq. (2.9) in chapter 3 with the v ibrational relaxation 

channel of the  2062-cm-1 m ode represented by a set of six accepting modes {165, 

165, 165, 522, 522, 522} cm -1 . This set of accepting modes is very similar to  th a t
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F igu re 5.5: Temperature dependence of Ti of the 2062-cm-1 mode of FT, (left side) and 
the 2072-cm-1 mode of HV-VH(110) (right side). The solid lines are fits from Eq. (2.9) in 
chapter 2 for decays into the sets of accepting modes {165, 1(55, 165, 522, 522, 522} cm-1 
and {343, 343, 343, 521, 521} cm-1 of the 2062- and 2072-cm-1 modes. The dashed lines 
are fits of lowest-order decay channels.

of' the 1998-cm-1 mode of bond-center H in Si, which is well described by decays 

into six accepting modes, {150, 150, 150, 516, 516, 516 } cm - 1  [44]. In contrast, 

the lifetime of the 2072-cm-1 mode sta rts  to  decrease at 120 K reaching half of its 

low-tcm perature value a t 250 K. The decay channel of the 2072-cm-1 mode is well 

represented by five accepting modes with frequencies {343, 343, 343, 521, 521} cm -1 . 

We note th a t the v ibrational relaxation channels are not uniquely determ ined by the 

tem perature dependence of the lifetimes. In particular, the high-frequency phonon 

modes of the decay channels do not have a strong influence on the tem perature 

dependence of the lifetimes. For example, the tem perature dependence of the 2072- 

cin - 1  mode is equally well represented by a  set of accepting modes of {343, 343, 343, 

343, 700} cm -1 . However, the wave num ber of the accepting mode w ith the lowest
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frequency is quite' well determ ined by the onset of the  tem peratu re dependence of 

T i, for example, 60 K for IT2 and 120 K for HV-VH(n0). F igure 5.5 also shows th a t 

in bo th  eases the  calculations using Eq. (2.9) deviate from the m easured lifetimes at 

elevated tem peratures, indicating th a t additional relaxation channels may increase 

the decay ra te  at higher tem peratures. We note th a t the low-frequency accepting 

m odes of 165 cm - 1  for (and 150 cm ” 1 for bond-center hydrogen) nearly coincide 

with transverse acoustic phonons of the undistorted  Si crystal (Figure 5.6), which 

have been calculated in Reference [113]. Likewise, the 343-crn- 1  inodes involved in 

the decay of the stretch  mode of HV-VH(110) nearly coincide w ith the peak in the 

longitudinal acoustic phonon density (Figure 5.6). T he natu re  of these accepting 

modes is still unknown. However, likely candidates are pertu rbed  optical, acoustic 

an d /o r pseudolocalized modes (PLM s) of these' defects.

TO

TA

LA

100 300 500

Wave Numbers (cm 1)

F igure 5.6: Phonon spectrum of Si adapted from Reference [113].
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It has been accepted th a t high-frequency vibrational modes decay by lowest order 

according to  N itzan’s theory [56, 57]. T he coupling strengths are proportional to 

the derivative of the potential energy surface1 w ith respect to  the norm al coordinates 

of the Si-H stretch  mode and the N< accepting modes, corresponding to  enharm onic 

term s of order N, + 1 . Since; the m agnitude of the anharmemic teams is believed to  fall 

off rapidly w ith increasing order, channels w ith small N< are; likely to  dom inate the 

decay. T he decay channel of bo th  and HV-VH(no) with lowest order is the  decay 

into four modes with frequeneaes at about 515 cm -1 , e:orresponding to e>ptie;al phouons 

or peessibly Si-related LVMs split off from the phonon bane Is by the  strain  fielels in 

the  vicinity of the  defects. Figure 5.5 also shows th a t  the; tem peratu re  dependence 

of T i is incompatible1 with the Si-H stretch  me)de;s elec:aying predom inantly into four 

modes a t abou t 515 cm -1 . This is consistent w ith the  fact th a t  a  com bination of four 

optical phouons are not infrared active [69, 70] and therefore are not allowed as a 

decay channel. A low-ffequency m ode m ust be involved in the  decay process of Si-H 

stretch  modes in Si. This is different, with the; Si-H moelees in ameuphous Si, which 

decays into bending modes via lowesst order [114] since phouons do not show high 

sym m etry in am orphous hosts.
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5.3.3 Structural D ependence o f Lifetim e o f H ydrogen D e­

fects

The Hj arid HV-VH(110) complexes show 2 -onlers-of-ma.gnitude difference in their vi­

brational lifetimes. This is surprising a t first glance considering th a t bo th  Si-H stretch  

modes have nearly the  same frequency and symmetry, and the com pound density of 

accepting phonon states of the unperturbed  lattice  is almost identical. T he vibra­

tional lifetimes of other Si-H modes m easured by infrared absorption spectroscopy 

a t the highest resolution possible using sam ples w ith very low defect concentrations 

also show a strong structu ra l dependence [1 0 1 ]. Table 5.1 shows th a t the lifetimes of 

Si-H stretch  modes depend strongly on the  bonding configuration of the  defects. For 

instance, th e  in terstitia l-type defects , IH 2 , and H ^ .  have lifetimes of 4.2 — 12 ps, 

whereas th e  lifetimes of vacancy-hydrogen complexes are a t least 42 — 295 ps. The 

strong structu ra l dependence m ight be explained by either pseudolocalized modes or 

LVMs being involved in the  decay process. Being localized around the defect, such 

modes have much larger vibrational am plitudes on the  atom s close to  the  Si-H bond 

than , e.g., lattice phonons, which m ay cause a  strongly enhanced anharm onic cou­

pling to  the  Si-H stretch  mode. However, significant distortions of the  Si-Si bonds 

in th e  vicinity of the  defects are required for pseudolocalized modes or LVMs to 

form [34] which is consistent w ith highly distorted  in terstitia l-type defects having 

shorter lifetimes th an  vacancy-type defects. Furtherm ore, to  explain the  large differ­

ence in lifetimes, one should also consider the  anharm onic coupling strength  between
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the stretch m ode and the low-frequency modes. In the HV-VH(no) center, it certainly 

seems plausible th a t the relatively large open volume of the vacancies would lead to 

a small interaction between the hydrogen and the surrounding silicon atom s. This 

small interaction would lead to a longer v ibrational lifetime.

Defect
Si-H 

u> (cm-1 )
Si-H 

T i (ps)
f a 2062.1 1.9 (4.2)

I  f a 1987.1 12

I f a 1990.0 11

V fa 2 2122.3 60
V f a 2145.1 42
V f a 2223.0 56

H V  • V H aw) 2072,5 262 (295±6)

Table 5.1: Lifetimes of H-related stretch modes in Si measured at 10 K. To obtain the 
lifetimes shown in column 3, the linewidths were corrected for instrumental broadening and 
then entered into equation Ti =  l/(27rcro).

T he coupling term  of H *2 and HV-VH(110) has been sim ulated by Buckle [78, 115] 

using a simple Morse potential, which includes anharm onic effects and is known to 

represent the bonding of diatom ic molecules quite accurately. T he model ham iltonian 

of the two coupled oscillators is given by

H  =  - C m  '  + “ l p + ^  ' l f + ( w )

where hi  and /r2 are the effective masses, and and r 2 are the  displacement coordi­

nates corresponding to  bond stretching, f a r  H z  is the coupling term  which determines 

the coupling strength  of the two oscillators. In this simulation, the  coupling constant 

f a  of H -2 is about 50 times larger than  of HV-VH(110). This calculation shows th a t the
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two Si-H stretch  modes strongly couple to  each other in Hj and the energy dissipation 

is much faster th an  in HV-VH(110).

5.4 Conclusion

Vibrational lifetime m easurem ents of Si-H stretch  modes have great significance in 

excitation processes which involve the dynam ics of energy dissipation in solids. A 

specific example is the desorption of H at the S i/S iO -2 interface [116, 8 8 , 90]. T he ra te  

of H loss is a sensitive function of the  excitation to vibrational s ta tes of the Si-H bond 

and the lifetimes of these states. The results presented here indicate th a t the relevant 

lifetime is a  strong function of the local defect configuration. Thus quantita tive models 

of these processes require detailed knowledge of the  local structu re  and the associated 

local phouons. In conclusion, we have m easured the vibrational lifetime of the Si-H 

stretch  mode of two structurally  distinct, point defects in Si, H£, and HV-VH(110), 

as a function of tem perature. We; have shown th a t the dom inating decay channels 

of these defects are significantly different, involving low-frequency accepting modes 

(165 and 343 cm -1 ) of very different symmetry. It is suggested th a t this highly 

selective; behavior is due to the nature; of the  local distortions and the  associateel 

pseudoloealized phonon modes. A more; detailed unelerstaneling of the  nature of these 

PLM s is required to  fully elucielate the v ibrational energy relaxation and transfer 

channels in solids.
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Chapter 6

Interstitial O xygen in Si and Ge

6.1 Introduction

Oxygen is one of the most common and technologically im portan t im purities in 

Czochralski (CZ)-grown silicon and germanium, which are the dom inant m aterials 

used for the  fabrication of electronic devices. Si grown by CZ has a high concentra­

tion of oxygen (~  1 0 18 cm "3), which is incorporated as a result of the dissolution of 

the S i0 2 crucible at the growth tem perature. T he concentration of oxygen is less than  

1016 cm " 3 in crystals prepared by the; floating zone method. T he oxygen im purity 

critically affects the  properties and yield of the devices. At high tem peratures it forms 

aggregates or clusters w ithin silicon, as well as in terstitia l dislocation loops. These all 

d isrupt the la ttice and lead to defect s ta tes in silicon. At lower tem peratures oxygen 

can still be a problem, for example through the formation of therm al donors which 

occur when silicon is annealed a t tem peratures of around 450°C. These defects are 

electrically active, and act as electron-hole recom bination centers, lowering th e  mo­

bility, etc. For this reason, it is essential to  understand exactly how oxygen behaves

88
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in silicon. A full understanding of the bonding and structure, as well as the diffusion 

and kinetics of oxygen, will yield to improved m anufacturing processes. This in tu rn  

should lead to faster, cheaper, and more efficient microchip technology [117].

Because oxygen is lighter than  Si and Ge atoms, it forms local vibrational modes 

in Si and Ge crystals. T he most well studied oxygen LVM absorption is known as 

the 9-pm  line appearing a t 1107 cm - 1  a t room tem perature [118, 119]. Gxvgen 

in germanium, first investigated at about the same time [1 2 0 , 1 2 1 ], has a similar 

s tructu re  as oxygen in Si and gives rise to an absorption line; a t 11.7 pm . Due to 

the lower m elting point and lower oxygen affinity of Ge, the  intensity of the  11.7-pm 

band is two orders of m agnitude sm aller th an  th a t of the corresponding 9-pm band 

in crucible-grown Si. Recently, oxygen in Ge has been reinvestigated more actively, 

due to progress in spectroscopy and to  the availability of quasi-monoisotopic (qmi) 

germanium  samples [122, 123, 124, 125, 126, 127].

In the early work by Kaiser et al. [118], a model was proposed in which the oxygen 

atom  occupies an in terstitia l position, bonded to  two Si neighbors, sim ilar to  the Si- 

O-Si unit in quartz. T he uniaxial stress experim ents doin' by C orbett [1 2 1 ] confirmed 

th a t Si-O-Si complexes are aligned along (111) direction. T he structu re  is shown in 

Figure 6 .1 . From ab initio calculations [128], it was found th a t  the S i-0  bond length 

is 1.59 A and the Si-O-Si angle is 172°. W hile in equilibrium geom etry the Ge- 0  

bond length is 1.70 A and the Ge-O-Ge angle is 140° [127].
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[111]

F igu re 6.1: Structure of interstitial oxygen in Si and Ge

6.1.1 V ibrational Spectroscopy o f In terstitia l O xygen in Si 

and Ge

Infrared v ibrational spectroscopy is one of th e  most powerful techniques to  charac­

terize oxygen defects in Si and Ge. The in terstitia l oxygon in Si and Ge has been 

assigned to the  v irtual molecule w ith Czv sym m etry [129, 130, 131]. Early studies 

on in terstitia l oxygen in silicon (Si:0.i;) showed two main absorption features in the 

infrared ( 519 cm - 1  and 1136 cm -1 ) and another structu re  in the far infrared (29 

c n f 1). T he three m ain features were associated w ith the th ree fundam ental v ibra­

tional modes of a puckered Si20  molecule, v\ (the 519 cm - 1  peak), u2 (the 29 cm - 1  

band), and ^3  (the 1136 cm - 1  or 9 pm  stretching band), as displayed in Figure 6.2. 

T he analysis of the fine s tructu re  of the  high- and low-frequency features [129] of­

fered insight into the natu re  of the microscopic: s tructu re  of the oxygen center and
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its dynam ics. In spite of the correctness and m erit of this analysis, it was only re­

cently shown th a t the puckered image was misleading, a be tte r one being th a t of 

a pseudo-molecule Si3 = S i-0 -S i=  Si3 w ith dynam ic Dzd sym m etry [132], T he as­

signments were consequently revised: the  519 cm " 1 peak is not a vibration of the 

Si2() pseudomolecule (not shown in Figure 6 .2 ), b u t a backbond Si-Si vibration of E,t 

sym m etry of the corresponding D^d point group. T he stretching m ode (u3) remains 

essentially unchanged, being of A2,, symmetry. T he equivalent to the vx m ode is an 

A ig sym m etric stretching m ode invisible to  the infrared, located at around 600 c u r 1. 

T he observed com bination mode a t 1750 cm - 1  is a com bination of the A1(y and A2it 

modes, or (vi+vz).  Its isotope shift strongly supports this new model [133].

Ge \

V \ v<i 1/3

Si

E u A \g  A^U

F igure 6.2: Fundamental vibrational modes of (a) the puckered Ge2() and (b) the linear 
Si20  quasimolecule. The traditional molecular' nomenclature has been adopted for Ge20. 
For Si20  the nomenclature corresponds to the D-̂ d point group, appropriate for the linear 
structure.

In the  case of in terstitia l oxygen in germ anium  (Ge:0,,), infrared-absorption bands 

have been reported near 860 and 1270 cm -1 , which are equivalent to  the  1136 and
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1750 c u r 1 bands in Si:()j. Low-energy absorption lines have also been detected  by 

phonon spectroscopy, a t a much lower energy scale than  the far-infrared absorption 

in Si [123], but there is no report on any feature in the interm ediate frequency range.

The excitation dynam ics of oxygen in Si and Ge has been well studied. It was 

observed th a t there are a few side bands on the low-energy side of 1136 cm - 1  line 

when the tem peratu re was raised above 20 K [129] (see Figure 6.3). Y am ada-K aneta 

[132, 134] e.t al. have quantified the coupling interaction by form ulating the  Hamil­

tonian for the problem as tin; sum of the low-energy mode' w ith a phenomenological 

po tential a r '2 + j3r4, the one-dimensional simple harmonic i/3 mode, and an anhar­

monic coupling between them . This model proposes a two dimensional low energy 

anharm onic excitation of the oxygen complex due to the; coupled A%u and A 1(/ modes. 

This coupling causes the fine structu re  of 9-p band.

30
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1050 1100 1150 1200 1250

Wavenumber (cm'1)

Figure 6.3: Absorption spectrum of the asymmetric mode of 160.; in Si measured at 60 K 
showing the side bands on the lower energy side.
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F ig u re  6.4: Absorption spectrum of the asymmetric mode of ()v in natural Ge at 6 

K. The spectrum shows the complex fine structure arising from different Ge isotopes and 
pairs of lines due to coupling between ^3 mode*, and oxygen rotational motion. Each peak 
is identified by the average Ge isotopic mass. The average linewidth is ~  0.04 e n f  *.
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F ig u re  6.5: Delocalization of oxygen in Si:0» and Ge:0,; in the plane perpendicular to the 
Si-Si (Ge-Ge) axis. The O, motion is radial in Si and rotational in Ge.
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The absorption band of oxygen stretch  mock; in Ge (1/3 ) has a different structu re  

than  in Si. Unlike Si, where 28Si is much more abundant th an  29Si and 30Si, the Ge 

isotopes occur with com parable abundances. As a result, a t very low tem peratures, 

the 1/3 m ode of oxygen in Ge exhibits a complex spectrum  as shown in Figure 6.4, 

w ith as m any as 44 sharp lines within a 5-em - 1  range associated with the 11 distinct 

isotopic com binations of the two Ge atom s [125], On the o ther hand, oxygen in Ge 

does not show a two-dimensional motion, bu t a ro tation  (see1 F igure 6.5). T he coupling 

of th is ro tational m otion and asymmetric' stretch  mode 1 /3  gives rise to additional lines.

T he microscopic! s tructu re  of the defect center and the excitation dynam ics of 

in terstitia l oxygen in Si and Ge are well understood. This is an ideal system  for 

studying vibrational relaxation mechanisms in semiconductors, which are im portant 

to elucidate diffusion and defect reactions involving oxygen im purities [135], Re­

cently, McCluskey and co-workers used hydrostatic pressure; to bring the  asym m etric 

stretch  inode of 18(); in Si into resonance w ith a spatially extended mode and studied 

the resonant interaction between these two modes [6 8 ]. The; au thors sta ted  th a t the 

transition  from a localized to an extended mock' m ight be the; first step toward decay 

into lattice phouons. However, little  is known about the; actual decay dynam ics of 

the local vibrational m ode into lattice' phouons.
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Figure 6.6: Absorption spectrum of the asymmetric stretch mode of 0 ? for different O 
isotopes in Si samples enriched with 170  and 180 . The linewidth of 170  mode is 1.2 cm-1 , 
while it is 0.6 c n f 1 for 160  and 18().

6.1.2 Isotope Effect o f O xygen in Si

In the past, isotope substitu tion  of the oxygen center with 16(), 170 ,  and 180  has

been useful for experim ental understanding of oxygen-related LVMs in Si and Ge. 

However, the1 full w idth at half maxim um  (FW HM ) of the asym m etric stre tch  inode 

of 170,t in Si (1109 cm -1 ) is a factor of 2 larger than  for the  16Oi (1136 cm -1 ) and 

18()i mode (1085 cm -1 ) as shown in Figure 6 .6 , a puzzle th a t has not been solved 

since 1995 [133]. This broadening does not depend on the; 17G concentration and

it is not observed for the low-frequency mode a t 29 cm ” 1. Thus, the ground s ta te

is not broadened. T he broadening m ust be from the excited state. In principle, a 

broadening could result from the splitting  of the 5 /2  spin level of 17() by quadrupole 

interaction with an electric field gradient in the v ibrational excited state . However,
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in order to  explain the observed broadening for i/3 (170 ), one would need a very large 

field gradient, about a hundred times larger than  typically found for ground states 

in sem iconductors [133]. T he effect was not observed in Ge which rules out th a t it 

is intrinsic to 170 .  T he effect, may be related to  the vibrational lifetime and to  the 

coupling between the  local modes and the  lattice phonons. It is therefore crucial to 

m easure the vibrational lifetimes of oxygen isotopes in Si.

T he other interesting question is th a t  the  linewidth of 16() in Ge is much sharper 

th an  in Si. Infrared absorption m easurem ents show th a t the average line w idth of 

160  m ode in Ge is 0.04 cm -1 , i.e., a factor of 10 narrower th an  in Si [122]. In terstitial 

oxygen in Si and Ge have; similar defect structures and excitation dynamics. The 

different linewidths may indicate; different relaxation dynam ics of these two modes in 

Si and Ge;. F igure 6.4 shows the; absorption spectrum  measured a t 7 K a t a resolution 

of 0.02 cm - 1  in Ge sample.

6.2 Experim ental

N atural Si is m ade up from 28Si (92.2%), 29Si (4.7%) and 30Si (3.1%), and its isotope 

shift of v ibrational lines can be observed by infrared absorption spectroscopy. The 

composition of oxygen in Si consists of 160  (99.76%),17() (0.04%) and 180  (0.2%). 

A float-zone grown silicon sam ple enriched w ith oxygen isotopes by diffusion is used 

for the lifetime experim ent. T he concentrations of 16(), 1' 0  and l8() isotopes are 20, 

25 and 2 .4x lO 16 cm -3 , respectively. The germanium  sample' contains isotopes 70Ge,
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72Ge, 73Ge, 74Ge, 77Gc, w ith relative (natural) abundances of 0.205, 0.274, 0.078, 

0.365 and 0.079, respectively. The oxygen concentration of the Ge sam ple is 4.9 x 1016 

cm -3 . The lifetime of the asym m etric stretch  mode of in terstitia l oxygen isotopes is 

measured directly by transien t bleaching spectroscopy. We use an IR pum p-probe 

setup, as described in C hapter 3. The; TOPAS used in this experim ent delivers pulses 

at 1-kHz repetition  ra te  w ith a tim e duration of ~ 1 .7  ps, spectral w idth of 16 cm -1 , 

and a pulse energy of 18 p.J a t 1136 cum 1 and 1109 cm -1 , and 9 //..I a t 861 cm -1 . 

T he transient bleaching signal S& is detected using an amplified liquid nitrogen-cooled 

HgCdTe detector. To allow for low tem peratu re  m easurem ents, all experim ents are 

performed with the  sam ple m ounted in an optical cryostat.

6.3 R esults and Discussions

6.3.1 L ifetim e M easurem ents

Figure 6.7 shows a semi-log plot of So vs tim e delay from the asym m etric stretch mode 

of 16Oj and 170 ,; in Si a t 10 K. Both decay profiles fit well to  a single exponential 

function, yielding a lifetime T\ =  11.5 ±  1 ps for 160 ,;, and T\ =  4.5 ±  0.4 ps for irO,j;. 

We could not measure1 the  lifetime of th e  180.; mode because of its low concentration. 

T he d a ta  shown in Figure 6 .8  are m easured at a  center frequency of 1123 a n -1 , i.e., 

between the two modes. The curve does not exhibit any decay process, bu t only 

the laser pulse with 1.7-ps width. T he TOPAS spectrum  with a FW HM  of 16 cm - 1
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Figure 6.7: (a) The transient, bleaching signal Si, decays exponentially with a time constant 
Ti =  11.5±1 ps for the asymmetric stretch mode of 16Oj in Si tit 10 K; (b) while T\ =  4.5±0.4 
ps for 17 Oi.

(Figure 6.9) is therefore narrow enough to  distinguish between tin ' two vibrational 

modes of the oxygen isotopes in Si.

T he narrow band w idth enables us to  tune the wavelength into resonance with 

the 16Oi and 1 7  Ot m ode in Si. T he 1.7-ps pulse w idth and 16 cm - 1  band w idth are 

ideal param eters to measure' the  vibrational lifetime of these two modes. If the band 

w idth is too narrow, the pulse will be1 too long to  m easure the lifetime of 17Oi mode 

since the lifetime of 1 7 Ot is only 4.5 ps. If the band width is too wide, it will not 

distinguish the two modes.

Figure 6 .6  shows the infrared absorption spectrum  of the asym m etric stretch  mode 

of different oxygen isotopes m easured from the Si sam ple by B. P a jo t in Paris. This
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Figure 6.8: The transient bleaching signal S/, measured at a center frequency of 1123 cm-1 , 
which lies between the 160,; and 17O, mode. The signal does not show any decay. It is fitted 
by a Gaussian function, giving the pulse width of ~  1.7 ps.
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Figure 6.9: The laser pulse spectrum has a band width of 16 cm” 1 at /nn measured 
with a monochromator.
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m easurem ent was perform ed at liquid helium tem peratu re using a BOM EN DA3 

Fourier transform  spectrom eter w ith spectral resolution of 0.1 c m -1. T he shape of an 

absorption line is generally given by the convolution of its homogeneous line shape 

w ith a function describing the inhomogeneous broadening [136]. T he FW HM  of the 

1 7 Oi line is ~ 1 .2  cm -1 , while for 16Oj and 180.; it is ~0 .6  (an - 1  a t 7.5 K. We also 

m easured the linewidth of 160,; mode in a Si sam ple with lower oxygen concentration 

1016 cin-3 ). T he linewidth of the 16O, m ode at 10 K was found to  be F =  0.55 

cm -1 , which is shown in Figure 6.10.

0.26 

0.24
4>O 
C  (0
f  0.22
<o 
S3 
<

0.20 

0.18
1132 1134 1136 1138 1140

W avenum ber (cm '1)

F igure 6.10: Absorption spectrum of the asymmetric stretch mode of 160.; measured in a 
fioat-zone Si sample: with oxygen concentration of ~  0.2 ppm. The linewidth is 0.55 cm-1 .

The natu ra l linewidth deduced from the lifetime is 1.12 cm - 1  for 17Oj, and 0.44 

cm - 1  for 1 6 Oi. O ur results in the  tim e dom ain are therefore consistent w ith those in 

the frequency domain, which shows th a t the absorption lines of in terstitia l oxygen are 

homogeneously broadened in crystalline: silicon a t low tem perature. This consistency

0.55 cm
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has been shown for hydrogen-related modeds in crystalline silicon in the tim e and 

frequency dom ain [44, 101]. We can therefore deduce the lifetime of the  lsO, mode 

from the linewidth to be ~ 10  ps, close to th a t for 1 6 0{. The difference (factor of two) 

between the linewidths of 17Oi com pared w ith ieO,; and 17O t is also observed in their 

lifetimes.

Ge: H,0  
862 cm"*
T, =  125 ± 10 ps

0

cn •2

•3

-4
o 50 100 150 200 250

Time Delay (ps)

Figure 6.11: Tlie transient bleaching signal S*, decays exponentially with a time constant 
Ti =  125 ±  10 ps for the asymmetric stretch mode of 16Oi in Ge at 10 K.

In order to  elucidate the difference of the linewidth of ieO ; in Si and Ge, we 

measured the v ibrational lifetime of 16Oj; in Ge. Figure G .ll shows the lifetime of 

the asym m etric stretch  mode, which was m easured to be Ti =  125 ±  10 ps at 10 K. 

Since the absorption lines of the 16Oj m ode for different Ge isotopes are very close, 

our laser pulses cam m easure only an average lifetime. This corresponds to  an average 

linewidth of 0.04 cm -1 , which is consistent with the  absorption spectrum  shown in 

Figure 6.4. This indicates th a t a t low tem peratu re and low defect concentration the
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160 i  m ode in Ge is dom inated by the natural linewidth.

102

6.3.2 M ultiphonon D en sity  o f S tates and D ecay C hannels

T he asym m etric stretch  mode of Oi lies in the three-phonon continuum  of Si and is 

expected to decay by a three-phonon process. It is therefore necessary to  calculate

p{l/] =  dE 2  ■■■ d E N-ip i{fiw  -  Ei)p-2(E i -  E 2) . . .  P n{E N- i). (6 .1 )

T he one-phonon density of states was obtained from ab initio  calculations, which 

are available in the literature! [137, 138]. T he dispersion curves in F igure 6.12 are 

for Si and Ge. T in 1 graphs on the  far right side show the  density of states, which 

are obtained by integrating over the dispersion curves, giving the  density of phonon

identical crystal structure, so their dispersion and density of state's curves are very 

similar, with Ge! having lower frequencies because its mass is higher th an  Si. Plionon- 

dispersion relations can be determ ined experim entally by inelastic neutron scattering. 

The m arkers along the curves in Figure 6.12 are! experim ental d a ta  points. The 

theoretical calculations are very reliable.

Figure 6.13 shows the three-phonon density of s tates for Si calculated by stra igh t­

forward convolution of the  one-phonon density of sta tes  aee:ording to Eq. (6 .1 ). The

the com pound three-phonon density of states. T he com pound three-phonon density

is given by

inodes as a function of frequency (in unit of waveuumber, cm r ). Si and Ge have
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F ig u re  6.12: Phonon dispersion curves and density of states for Si (top) and Ge (bottom). 
Si figure is courtesy of Wei [138], Ge figure is courtesy of Giannoz'/i et. al [137].

1 1  Oi mode happens to fall right on the peak of the 2TO +  1TA phonon com bination, 

whereas the 160 ,; and 18Ch mode are on both  sides with sm aller combined phonon 

densities. High phonon density corresponds to a short lifetime. The1 difference of the 

phonon density provides a satisfactory explanation for the difference of the lifetimes. 

T he ratio  of the phonon densities at the frequencies of the 170 , and Ui0.; mode is ~1.3, 

which is smaller th an  the ratio  of the lifetimes (~2.5). The overall agreem ent between 

the calculations and the experim ent is satisfactory, bu t is by no m eans perfect. In 

a full trea tm ent of v ibrational relaxation by anharm onic coupling between LVM and 

lattice phonon modes, one should consider modifications introduced by the distortion 

of the lattice because of the im purities, which may affect the phonon density of states
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locally [139].
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Figure 6.13: Normalized tliroe-plioiion density of states in Si at 0 K. The asymmetric: 
stretch mode of 17 0 \ coincides with the highest three-phonon density in Si, whereas the 
ieO; and 18Oi modes are on both sides of the 2TO + 1TA phonon peak.

Recently, Kat.o and coworkers reported a surprisingly large effect of Si isotopic 

mass disorder on the linewidth of the asym m etric stretch mode of 160 .;, which cannot 

be explained well by their calculations [140]. O ur lifetime' m easurem ents indicate' 

th a t the line broadening of the 160 , mode is dom inated by the natu ral linewidth at 

low tem peratures. The linewidth of this mode in quasi-mono-isotopic (qmi) 29Si and 

30Si samples are narrower th an  those in natu ral Si and 28Si. This can be explained 

by the isotopic shift, of the phonon frequency ra ther than  tin' isotopic mass disorder. 

Passing from 28Si to 30Si, the phonon frequency will shift, to  a. lower wave number, 

which results in lower phonon densities for 29Si and 30Si than  for natu ral Si a t the
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frequency of the 160 ,; mode.
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F ig u re  6.14: Normalized three-phonon density of states in Ge at 0 K. The 160,; and 17Oi 
inodes lie in the 3TO phonon band, whereas the lsO; mode coincides with a 2TO +  1LO 
phonon process.

To elucidate the long lifetime of the asym m etric stretch  mode of 160 ;  in Ge requires 

knowledge of the decay channels and phonon density of states. The 862-cm-1 mode 

falls into the three-phonon continuum  since the cut-off frequency of phouons in Ge 

is 306 cm -1 . Figure 6.14 shows the calculated three-phonon density of states in Ge 

similar to the one of Si. The 16Oj; and 170 , modes fall on the 3TG phonon peak in Ge 

while they coincide w ith 2TO +  TA phonon processes in Si. The oxygen isotope effect 

has been investigated also in Ge [141]. A resonant broadening of the 17Oi absorption 

line com pared w ith 16Oj and 180 ?; has not been observed in Ge, bu t the individual 

lines of 18Cb are broader th an  those for 1(,O t and 170 ,:. The 16O j  and 17O i  lines coincide 

with the same peak (3TO phonons), bo th  of them  have the same decay channel and 

their three-phonon density of states is close. So they show the same linewidth in
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Ge. T he 18Oi mode in Ge may have; different coupling constant since it decays into a 

different channel (2TO +  LO phouons).

6.3.3 Sym m etry A nalysis

T he difference in phonon density between the 2TO +  1TA and 3TO phonon combi­

nations is only a factor of 2~3 , which is not enough to explain the large difference in 

lifetimes of 1 6 Ot in Si and Ge. Since the decay channels are different, it is necessary 

to account for the different coupling constants (?{„}, representing the strength  of the 

interaction between the local mode and the accepting modes. T he asym m etric stretch  

m ode of in terstitia l oxygen in Si and Ge has A-2u symmetry, which is infrared active in 

the D 3(i point group of the 0 ;  defect. Tin; three-phonon com binations m ust contain 

A'2u sym m etry [20], or otherw ise the decay channel is not allowed. T he infrared dipole 

operator whose irreducible representation in the 0 /,. group is T15/ can be reduced to 

A-2u +  E u sym m etry in the D 3d group, since D3,; (group of L in the diam ond structure) 

is a subgroup of ()/,. So we need to  look into the infrared activity of three-phonon 

processes in the diam ond structure. This has been published in Ref. [70]. Table 6.1 

lists the com binations of 2TO +  TA phonons in Si and 3TO phouons in Ge which 

are infrared active [70]. Activity (M) is the coefficient of T15/ in the reduction of 

the  direct sum of sym m etry elements of three-phonon combinations. Larger M corre­

sponds to a more infrared active three-phonon process [70]. Table 6 .1  shows th a t the 

com binations of 2TO +  TA phonons are more IR-aetive than  3TG phonon processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. IN TE R STIT IA L  O X YG E N  IN  SI AND GE  107

The interaction will be stronger between the A 2u local mode and 2TO +  TA phonons 

th an  w ith 3TO phonons. In addition, there an; more channels for the A 2u mode to 

decay into 2TO +  TA phonons, which results in a shorter lifetime of the oxygen mode 

in Si.

Activity (M) Phonon com binations Frequency (cm x)
Silicon

3 T 0 { X )  +  0 { F )  + T A ( X ) 1129
6 T O ( L )  +  O ( r )  +  T A ( L ) 1 1 2 2

3 2T O { L )  +  T A ( X ) 1134
6 T O ( L )  +  T O ( X )  +  T A ( L ) 1071
2 2 T O { X )  +  T A ( X ) 1078

Germ anium
1 2  T O { X )  +  O ( P ) 856
3 2 T O { L )  +  0 (F ) 8 8 8

T able 6.1: Threo-phonon processes in Si and Ge close to the frequency of the asymmetric 
stretch mode of interstitial oxygen. The infrared activity M is also listed.

6.4 Conclusion

In conclusion, we have measured the v ibrational lifetimes of the asym m etric stretch 

m ode of oxygen isotopes in silicon and germanium. In silicon, the  1 1 0.-, m ode lies in 

the highest density of three-phonon states, which gives rise to  a shorter lifetime (7 \ 

=  4.5 ps) than  for the 160* and 180 ,; modes (7 \ ~  10 ps). We also m easured the 

lifetime of 160 ,; mode? ? in Ge, which show a  much longer lifetime, T t — 125 ps, th an  in 

Si. We argue th a t the oxygen modes in Si decay into 2TO +  TA phonons, while they 

decay into 3TO phonons in Ge. These phonon com binations have different infrared
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activities, which result in different coupling strengths and very different lifetimes. A 

more quantita tive understanding of the v ibrational energy relaxation and transfer 

channels in solids requires detailed knowledge' of anharrnonic coupling between LVM 

and lattice phonon modes and phonon density of sta tes modified by im purities. The 

m easured lifetimes presented here have great significance in elucidating the  stability  

and diffusivity of im purities in sem iconductors as well as complex formation and will 

generate renewed interest in the dynam ics of energy dissipation from local modes into 

solid-state phonon bath.
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Chapter 7

Sum m ary and Future Work

7.1 Summary

The study  of relaxation dynam ics of local v ibrational inodes down to the  picosecond 

timeseale is a  now emerging field. In this dissertation, we have studied in detail the 

v ibrational lifetime of various defects in sem iconductors by vibrational pum p-probe 

spectroscopy. This study of vibrational lifetimes elucidates the  decay dynam ics of 

local v ibrational modes and provides unique inform ation about energy relaxation 

processes to  solid-state phonon bath . According to our studies in this dissertation, 

there are five im portant factors which determine! the lifetime of local v ibrational 

modes: ( 1 ) Order o f decay channel, (2)sym m etry o f the accepting modes, (3 )density o f 

states o f accepting phonon inodes, (4 )anharm onicity , and (5) defect, structure.

V ibrational lifetimes of H- and D -related bending modes are determ ined by the 

decay order, i.e., the decay tim e increases exponentially w ith increasing decay order. 

This provides an estim ate of the lifetimes of m any other hydrogen bonding modes in 

solids. For instance, when the local mode couples to only one phonon, the decay tim e

109
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is around 1 ps or less. Two-order decay of hydrogen bending inodes corresponds to a 

decay tim e of ~ 10  ps, three-order processes correspond to 40-100 ps, while the  decay 

tim e of four-order processes can be longer than  250 ps. This so-called energy-gap 

law shows th a t the; lifetime of D -related bending modes are generally shorter than  

H -related bending modes. This result can explain the large H /D  isotope effect in 

H-passivaster! sem iconductor devices.

In contrast, v ibrational lifetime's of H -related stretch  modes critically depend on 

defect structure. The in terstitia l-type defect HJj a t 2062 cm - 1  has a  lifetime of 4.2 

ps at 1 0  K, whereas the  lifetime of the  vacancy-type complex HV-VH(no) a t 2072 

cm - 1  is 2 orders of m agnitude longer. The; decay mechanism of stretch  modes is more 

complicated than  for bending modes. The accepting modes of hydrogen stretch  modes 

can lie phonons, bending modes, an d /o r pseuelolocalizoel modes. More theoretical 

work is needed.

The study of in terstitia l oxygen and its isotope effects in Si and Ge shows th a t 

both  density of states and sym m etry of accepting modes are' im portant to  eietermine 

their v ibrational lifetime's. T he lifetimes of in terstitia l 160  and 18Q m ode is two timers 

longer th an  170  m ode in Si. A calculation of the three'-phonon density of states 

shows th a t 1,() lies in the highest phonon density resulting in the  shortest lifetime. 

The lifetime of 160  inoeles in Ge is measured to be ~ 10  times longer than  in Si. 

Sym m etry analysis reveals th a t the accepting moeles of in terstitia l oxygen in Si are 

more infrared active and have more decay channels than  in Ge .

Until now, no first-principle calculatiems have been done of the' vibrational life­
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times of hydrogen or oxygen in crystalline semiconductors. T he level of theoretical 

investigations into the dynam ics of these modes is lews advanced. We believe th a t the 

m easured lifetimes presented in this dissertation provides an indispensable benchm ark 

for fu ture theoretical calculations.

7.2 Future Work

In th is dissertation, the v ibrational lifetimes of H- and O- related defects are investi­

gated in intrinsic: sem iconductors and the  decay of LVMs are governed by m ultiphonon 

relaxation processes. T he decay of LVMs via electronic processes represents an excit­

ing new direction for this project. A lthough the energy of LVMs is small com pared to 

the band-gap of' an intrinsic semiconductor, bo th  p- or n- doped sem iconductors and 

laser-induced free carriers provide energetically accessible; electronic channels. The 

existence of electronic pathways will undoubtedly influence the  population lifetimes 

and linewidths.

One of the: m ost interesting systeaus is the O-H complex in ZnO, which is a wide­

band gap sem iconductor th a t has a ttrac ted  trem endous interest for optical, electronic, 

and mechanical applications [142, 143]. It provides a possible alternative to GaN for 

use in optoelectronic devices. Bulk ZnO single' crystals can be grown and they nearly 

always exhibits n-type conductivity. Recently, Van Do Wallc> performed theorectical 

calculations and proposed th a t H im purity in ZnO is a shallow donor th a t may be 

introduced into the bulk during growth or processing [144]. This is unexpected be­
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cause in all other sem iconductors, in terstitia l hydrogen has been found to counteract 

the prevailing conductivity caused by extrinsic dopants. In ZnO, however, hydrogen 

occurs exclusively in the positive; charge; state;, whieli can e;xplain the typical n-type 

eionehmtivity of ZnO [145, 146].

By annealing ZnO in H 2 gas at ele;vateel te;mpe;rature, McCluskey et al. have; 

observed a v ibrational line a t 3326.3 cm - 1  anel have asseKiiated this line; w ith O-H 

stretch  m ode eef a H -related donor [147]. F igure 7.1 slmws the s tructu re  anel the 

absorption line; of this stretch  moele:

[0001]
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0.95

0.85
o
03XI
<

0.75

0.70

3320 3322 3324 3326 3328 3330 3332Anti bonding
Frequency (cm )

Figure 7.1: Structure of O-H bond in ZnO anel absorption spectrum at 3326 cm-1 [151].

We note th a t the absorption line of the O-H vibrational moele' a t 3326.3 cm - 1  

is asym m etric. W ith  elecre;asing concentration, the line be;e:oirie;s sharper anel more 

sym m etric. In boron-eloped Si, this phenomenon was observed by M. Stovala [148]. 

Tlie acceptor-H  vibrational banels are; asym m etric anel broadened by a Farm inter­

action w ith the continuum  absorption elue to  reisidual fine; e:arriers. Fano interaction
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effects are well known in Ram an studies of heavily doped m aterials. B oth the  Si 

optical phonon at 520 cm - 1  and the B local-mode features at 620 and 644 cm - 1  

show pronounced Fano-interaetion effects in Si w ith high free-carriers concentration 

[149, 150],

The O-H stretch  mock' a t 3326 cm - 1  is associated with the H -related donors. W ith 

decreasing the H concentration, the free-carrier concentration will also decrease. At 

low hydrogen concentration, the  Fano-shape is less pronounced [151]. To the best 

of our knowledge, nobody has studied how this interaction between local m ode and 

free carriers will affect the vibrational lifetime of local modes. It will be interesting 

to study how the v ibrational lifetime will change with different H concentrations.

Through the tem perature1 dependence of lifetime m easurem ents, we learn about 

the relaxation channel. As discussed above, relaxation through free carriers may 

provide another channel for vibrational modes. The interaction between local mode 

and free carriers may increase the relaxation rate. This exciting new direction will 

lead to a be tte r general understanding of relaxation mechanisms.
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