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ABSTRACT

The high throughput capabilities of protein mass fingerprints measurements have 
made mass spectrometry one of the standard tools for proteomic research, such as 
biomarker discovery. However, the analysis of large raw data sets produced by the 
time-of-flight (TOF) spectrometers creates a bottleneck in the discovery process. One 
specific challenge is the preprocessing and identification of mass peaks corresponding 
to important biological molecules. The accuracy of mass assignment is another 
limitation when comparing mass fingerprints with databases.

We have developed an automated peak picking algorithm based on a maximum 
likelihood approach that effectively and efficiently detects peaks in a time-of-flight 
secondary ion mass spectrum. This approach produces maximum likelihood estimates 
of peak positions and amplitudes, and simultaneously develops estimates of the 
uncertainties in each of these quantities. We demonstrate that a Poisson process is 
involved for time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the 
algorithm takes the character of the Poisson noise into account.

Though this peak picking algorithm was initially developed for TOF-SIMS 
spectra, it can be extended to other types of TOF spectra as soon as the correct noise 
characteristics are considered.

We have developed a peak alignment procedure that aligns peaks in different 
spectra. This is a crucial step for multivariate analysis. Multivariate analysis is often 
used to distill useful information from complex spectra.

We have designed a TOF-SIMS experiment that consists of various mixtures of 
three bio-molecules as a model for more complicated biomarker discovery. The peak 
picking algorithm is applied to the collected spectra. The algorithm detects peaks in 
the spectra repeatably and accurately. We also show that there are patterns in the 
spectra of pure bio-molecules samples. Furthermore, we show it is possible to infer the 
concentration ratios in the mixture samples by checking the strength of the patterns.

xi
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Chapter 1 

Introduction

Though great success has been made in genome sequencing, it has been 

increasingly recognized that the genome, by itself, is not sufficient to understand the 

behavior and functions of cells, tissues, and biological systems. A current research 

focus in molecular biology is to test the hypothesis that proteins, instead of DNA, give 

more complete information related to cell function. Hence, proteins, the final product 

of genes, are receiving increased attention in biomedicine and a new field, proteomics, 

which focuses on protein characterization, protein identification and protein function, 

has emerged.

Although two-dimensional gel electrophoresis and amino acid sequencing retain 

their important roles in biochemical analysis, recent developments in Mass 

Spectrometry (MS) have now made it an additional analytical tool in proteome 

research [1, 2], Mass spectrometry can give accurate mass “fingerprints” which, in 

conjunction with protein database searching, can rapidly provide information about 

protein identification, protein function and protein post-translational modification (i.e., 

modifications after the polypeptide is synthesized).

2
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A mass spectrometer is an apparatus that differentiates different molecular/atomic 

species in the sample under investigation according to their mass-to-charge ratio. It 

also can give information about the abundance of each species in the sample. We will 

discuss more about mass spectrometers in the next two chapters. In protein 

identification, matrix assisted laser desorption ionization mass spectrometry (MALDI- 

MS) and electrospray ionization mass spectrometry (ESI-MS) are often used because 

they can ionize large biological molecules ‘softly’ without breaking most of them into 

smaller pieces. To identify proteins, proteins are often digested by a protease into 

peptides and fingerprints of the resulting peptides are measured by MALDI or ESI. 

The mass fingerprints of peptides are then compared with a database (for example, 

Swiss-Prot) using programs such as Sequest, searching for sequences in the database 

that have the same masses as the experimental masses.

The high throughput, high sensitivity and quantitative analysis of mass 

spectrometry make it possible to analyze hundreds of analytes over a large mass range 

simultaneously even the sample volume is small. If a biological fluid, such as blood, is 

measured, a protein “profile” may be developed. This leads to the potential for finding 

biomarkers that are overexpressed or underexpressed or modified. Such biomarkers 

can then be used to differentiate pathological states (disease) from normal states or to 

assess and guide drug treatments. If desired, the discovered biomarker can be 

chemically extracted for further analysis. Progress has been made with this line of 

cancer research as summarized in [3, 4, 5, 6, 7, 8].
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All information that mass spectrometry provides is encoded by peaks that occur at 

different masses with various amplitudes in the spectrum. The number of peaks 

present varies with the sample under investigation and the type of mass spectrometer 

used. If biological or organic samples are investigated, the peak number can easily rise 

to a few hundred. In blood serum, it is estimated that there may be up to 10,000 

proteins with concentrations ranging over at least 9 orders of magnitude [9, 10]. 

However, the dynamic range of MS instruments is only 3-4 orders of magnitude [11], 

thus careful biochemical sample preparation is critical. Very often, as in the biomarker 

discovery for disease detection, it is not clear beforehand which peak is important. 

Thus all peaks potentially have to be taken into account. This is also true for protein 

identification.

As more effort has been devoted to improving the performance of MS instruments 

to provide more detailed information about the sample, to increase resolving power, 

and to lower the detection limit, the resulting mass spectra have inevitably become 

more complicated. When we use a Time-of-Flight Secondary Ion Mass Spectrometry 

(TOF-SIMS) apparatus to analyze biological samples, we produce spectra that contain 

over a million data points and contain a few hundred peaks. Figure 1.1(a) shows a low 

mass portion of a typical spectrum. One can see that peaks span the whole region at 

almost every mass unit. Even a small portion that looks negligible (inside the square), 

actually has peaks present (Fig. 1.1 (b)). Compounding the problem of dense data sets, 

roboticized sample preparation and computerized data collection allow researchers to 

generate dozens, or hundreds, of such spectra in a few hours.
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The analysis of such large raw data sets produced by survey mass spectrometers 

creates a bottleneck in the research process. To overcome this bottleneck, the first step 

is to simplify a spectrum that contains thousands, even millions, of data points down 

to only the essential information about peaks, positions and amplitudes. In this way, a 

spectrum can be reduced to only a few hundreds points that represent peak positions, 

amplitudes and uncertainties in the peak positions and amplitudes.

We should emphasize that not only mass spectrometry faces peak detection 

problem. In fact, peak detection is a quite general problem in many analytical 

instruments. A good automated peak detection procedure should run rapidly, and give 

repeatable and accurate results. It should find all significant peaks in a spectrum but 

not report false peaks. For some biological samples, the concentration is very small 

and consequently the spectrum has a low signal-to-noise ratio, hence finding peaks is 

difficult. Missing peaks in a spectrum, and reporting false peaks, can both potentially 

lead to discovery of false “biomarkers.” This could lead to wasted further investment, 

which could potentially be costly and time consuming.

A good peak detector should give accurate peak position assignments and peak 

amplitude estimations. The importance of accuracy in peak position is obvious, 

especially when we want to compare the mass of a peak with a database such as 

Swiss-Prot. Accurate peak amplitude estimations are also important when quantitative 

analysis is required. For example, when looking for proteins that are associated with 

disease, it is very possible the proteins we are looking for are common in both healthy 

and sick people but are overexpressed or underexpressed. In this case, it is not a “yes
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or no” problem, but rather a “more or less” problem, and the correct peak amplitude 

estimation is essential.

Another important factor is that the full peak detection procedure should be 

automated as much as possible for high-throughput data handling. An additional 

advantage of an automated peak picking algorithm is that it minimizes human 

interaction and thus eliminates potential bias introduced by investigators. It has been 

reported that in an inter-laboratory investigation conducted by the NIH, the same 

samples were analyzed by MALDI in different laboratories. It turned out that when 

comparing experimental results from different laboratories, the reduced data showed 

more differences than the raw data. The differences in the reduced data were traced 

back to detail decisions that investigators made when the data were reduced [12, 13]. 

This result highlights the need for adoption of common, well tested and well 

understood, automated methods to avoid ad hoc methods developed in each research 

group.

During the past few years, various algorithms have been developed for peak 

detection. Many of them detect peaks according to an assigned signal-to-noise ratio or 

other similar thresholds. This is similar to a one sided statistical test of whether the 

signal deviates from background noise. Others detect peaks by comparing the 

spectrum with a predefined peak lineshape. Sometimes, a spectrum is smoothed before 

peak detection. Below we give some typical peak detection procedures that have been 

reported.
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Yasui et al. identify peaks by first finding points whose intensities are the highest 

among ±N points before and after them [14]. After trying different N value, they 

choose N to be 20. To avoid picking false peaks that are due to random noise, a 

requirement that the intensity must be higher than the average intensity over a broad 

neighborhood is applied.

Bryant et al. use cross-correlation to help peak detection [15]. First, a threshold is 

applied on intensity, the segments that are above the threshold form data blocks. Only 

blocks of length above a limit that is associated with peak width are qualified for 

further analysis. Shorter blocks are considered due to noise that occasionally runs 

above the intensity threshold. If the length of the qualified block is comparable to peak 

width, it is considered there is only one peak in the data block, and the total intensity is 

calculated and the centroid of the data is estimated. If the length of the qualified data 

block is larger, then there may be more than one peak in the data block, and cross­

correlation is calculated using a pre-defined peak lineshape. If the cross-correlation 

satisfies certain conditions, peaks are “detected”.

Gras et al. find peaks in a spectrum by comparing a segment of the spectrum with 

a template which describes the peak shape and isotopic pattern [16]. An error function, 

which is a modified Euclidian distance between the spectrum and the template, is 

defined to estimate the mismatch. Peaks are detected when the error function is 

smaller than a threshold error value and the peak heights are larger than a required 

value.
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A similar approach is proposed by Sokolov et al. where peaks are detected based 

on “minimum average risk” criteria originally proposed by Kolmogorov [17]. Before 

discussing their method, let us first introduce some notations and we will use these 

notations throughout the thesis:

We are going to use p{X)  to denote the probability of some event X ; use 

p ( X \ I )  to denote the conditional probability of X  given relevant background 

information I  at hand. We will, when talking about probability, always condition the 

statements on the background information, as the ‘absolute probability’ is not well 

posed. We will use p { X ,Y \ I )  to denote the joint probability of X  and Y,  

conditioned on relevant background information I  at hand.

To detect peaks using “minimum average risk” method, let p ( X 0 \ Y) be the 

probability that a peak is located at X q for a given data 7. If the investigator decides 

the peak is located at X, let C(X0,X )  be the loss function, which represents the

penalty for making an erroneous decision where the true peak position is X q. Then the 

conventional risk function is defined as:

R (X \Y )=  lC (X 0, X ) p ( X 0 \Y)dX0 ( 1.1)

The average risk function is defined as:

R(X)= $R(X\Y)p(Y)dY (1.2)

The loss function is often defined as:

1 otherwise
0 X0= X

(1.3)
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then, equation (1.1) becomes:

R(X  | Y) = 1 -  p ( X 0 1 Y)S(X0 - X )  (1.4)

Now, note that according to Bayes’ theorem, which we will introduce in the next 

chapter, we have:

/ * * 0 |7 )o c /> (y |* 0)/>(*0) (1.5)

In (1.5), p(Y  | X 0) is called the likelihood function, and p ( X 0) is the prior. As we 

are going to discuss likelihood function and prior in more details in the next chapter 

when we introduce Bayes’ theorem, here we just state that p(Y \ X 0) and p ( X 0) are 

two probabilities. If p ( X 0) is uniformly distributed, then the maximum of p ( Y \ X 0) 

would minimize (1.1), this then becomes a maximum likelihood method.

In order to make the above method work, an important assumption is made. It 

states that since there are many possible noise sources, then by the central limit 

theorem the resulting noise may be approximated by white Gaussian noise. The 

likelihood function can be written explicitly:

M \
X(no-.s(f,,x0))2
i=i___________

2 a 2

p(Y \ X 0)= J (1.6)

where, S(tu Xo) is the ideal signal without any noise. Equation (1.6) can be maximized 

by setting dP(Y \X Q)/  dX0 = 0.

While the above methods require knowledge about the peak lineshape, Wallace et 

al. have developed an algorithm that makes no assumption about peak shape and does
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not need to smooth the data before peak detection [12]. The essential idea of the 

algorithm is based on segmentation that is illustrated in Figl.2. The segmentation 

begins with the first point (A) and the last point (B) of the spectrum. Then, the point 

(C) in the spectrum which has the largest orthogonal distance to line AB is found. This 

breaks one segment into two. Next, in the portion between A and C, find the point (D) 

that has the largest orthogonal distance to AC, which is the beginning point of the 

peak, and similarly point E, the ending point of the peak. Then, the heights of C, D 

and E are adjusted to best fit the data.

Figl .2 is the simplest case. In general there will be more than one peak and the 

above process needs to iterate many times until the largest orthogonal distance is less 

than a predefined threshold. Thus, at the end of the procedure, each peak will be 

represented by three points, beginning point, center point and ending point. To avoid 

false detection, peaks less than threshold height will be discarded.

Another peak detection algorithm that does not depend on the peak shape is due to 

Jarman et al. [18]. In their approach, a spectrum is viewed as a histogram. In regions 

where there is no peak, the spectrum is relatively flat and the intensity varies around a 

constant. Hence, it can be viewed as a histogram for a noisy uniform distribution. In 

the region where a peak is present, the intensity profile is considered as a histogram of 

a more centralized distribution. An intensity weighted variance (IWV) is defined as:

IWV  = —  ^ --------- (1.7)
Y 1,
j< N
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With the assumption that Ij is white and independent, identically distributed (i.i.d) 

with mean n and variance a, one may test the null hypothesis:

H0: IW V  / 4  =1

Where s2u is the variance of a discrete uniform distribution. With the above

assumption on Ij, a critical value for rejection Ho can be computed theoretically. A 

peak is considered present in the window if the null hypothesis is rejected.

Efforts have also been made to smooth the spectrum to increase the signal-to-noise 

ratio before attempting peak detection. For example, Morris et al. developed an 

algorithm to detect peaks based on the mean spectrum of the spectra from an ensemble 

of similar samples [19]. By averaging spectra of similar samples, the noise is reduced. 

The mean spectrum is then further smoothed by wavelet denoising. Local maxima in 

the smoothed spectrum are labeled as candidate peaks. They then search regions 

around the candidate peaks in the spectrum of each sample which has also been 

wavelet denoised and detrend to identify peaks in the individual spectrum.

Andreev et al. smooth the spectrum by first characterizing the noise in the 

frequency domain [20]. The spectra they analyzed are from MALDI that is coupled to 

liquid chromatography. They analyzed the spectra without chromatographic peaks and 

find that the noise characteristics depend on m/z. They then characterize the frequency 

property of the noise for different mass regions. This allows them to build separate 

filters for each mass region and to filter out noise from the spectrum.
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Though all of the above peak picking procedures work to some degree in terms of 

finding peaks in the spectrum, none of them addresses the confidence level in peak 

position and amplitude assignments, except that minimum average risk method could. 

Because of the noise in the spectrum, there are always uncertainties associated with 

the estimates made. These uncertainties represent the confidence level about the peak 

positions and amplitude assignments and occur in addition to the instrument precision. 

A peak picking procedure that leads to low peak position confidence level would 

degrade the instrument performance that researchers spent vast amount of money and 

effort to improve.

When a peak is detected in a spectrum and compared with a database, it is very 

rare to find an exact match. It is almost certain that a search will return a list of 

possible chemical IDs around the detected peak. Knowing the position uncertainty will 

help us to determine how many possible chemical IDs we should seriously consider. 

The uncertainty would also help to determine whether peaks that appear at slightly 

different positions in different spectra are in fact the same.

In this thesis, a new peak picking algorithm that includes a physically valid noise 

model will be presented. The algorithm utilizes Bayes’ theorem to test if there is a 

peak in a window and, if a conclusion of positive peak presence is arrived, peak 

positions and amplitudes are estimated via a maximum likelihood method. We will 

introduce the general idea about this peak picking procedure and then specifically 

focus on finding peaks in a time-of-flight secondary ion mass spectrum. We will first 

discuss how a Time-of-Flight Mass Spectrometry (TOF-MS) instrument works and
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discuss why a Poisson process is involved in TOF-SIMS. Next, the necessary formulas 

for peak detection will be derived in such a way that Poisson (counting) noise is 

included. This approach will produce maximum likelihood estimates of peak positions 

and amplitudes, and simultaneously develop estimates of the uncertainties in each of 

these quantities.

Having developed the peak detection algorithm, we will apply it to spectra that we 

collected from a carefully designed experiment to test our ability to measure relative 

abundance of biomolecules in a sample. In the experiment, solutions containing three 

peptides at various concentration ratios were deposited onto etched silver and spectra 

were acquired by a TOF-SIMS instrument. After using our peak picking algorithm, 

multivariate analysis is applied to estimate the mixture ratios. We will demonstrate 

that it is possible to infer the concentration ratio from the spectrum.

The primary results reported in the thesis are:

1. Development of an automated peak picking algorithm that can be applied to 

a variety of TOF-MS spectra, from counting experiments (TOF-SIMS) to 

instruments like MALDI-TOF which integrate the ion signal rather than 

counting individual ions. The noise characteristics are different in these 

devices.

2. For the TOF-SIMS, the new algorithm improves the precision (i.e., 

repeatability of estimates of peak positions) by almost an order of 

magnitude. A similar improvement has been found for surface enhanced
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laser desorption ionization mass spectrometry (SELDI-MS), which is a 

version of MALDI.

3. The algorithm automatically provides estimates of uncertainties in the peak 

positions and amplitudes. This information is used to verify that aligned 

spectra collected at different spatial positions or at different times are 

properly aligned.

4. We tested these algorithms on a set of peptide mixtures and showed that it is 

possible to estimate three-way mixture ratios, though there is much room for 

further improvement.
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Fig. 1.1 A mass spectrum contains hundreds of peaks

8000

o014000

160 200120
m/z

200

100

0
132130128126 m/z

(a) The low mass region (0~200Da) of a typical TOF-SIMS spectrum 
of a biological sample deposited on silver;

(b) An expanded view of the mass region inside the square in part (a)
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Fig. 1.2 Finding peaks by segmentation

(a) Begin with two ending points A and B, find the point C which 
has the largest orthogonal distance to line AB.

(b) Next, find point D that has the largest orthogonal distance to 
AC, similarly find point E. This process iterates until the largest 
orthogonal distance falls below a predetermined threshold.
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Chapter 2 

Maximum Likelihood 

Methods in Peak Picking

In this chapter we describe how to use Bayesian methods to automatically identify 

peaks in a TOF-MS spectrum. We will begin with an introduction to TOF-MS, 

followed by a brief introduction to Bayes’ theorem and maximum likelihood method.

Having in mind these basic concepts, we start with an overview of the logic. The 

first step is to put an observation window of carefully chosen width on the spectrum 

and thus isolate a small portion of data. We then compare the hypothesis Hi that there 

is a peak in the observation window versus hypothesis Ho that there is no peak in the 

window, i.e., just background noise. This step is essentially calculating what is called 

the odds ratio, a definition of which will be given below. Once the comparison 

concludes that there is a peak inside the window, we then estimate its position and 

amplitude via parameter fitting by maximum likelihood method.

It is possible sometimes that there could be more that one peak in an observation 

window. This can be addressed in several ways. An easy fix is to choose an

17
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appropriate observation window width such that the window is wide enough to 

conclude whether or not there is a peak in the window while it is too narrow for more 

than one peak to be in the window. This works when the instrument is of very high 

resolving power and peaks are not severely overlapped. If the resolving power of the 

instrument is not very high and peaks of nearby masses overlap resulting in a broader, 

fat peak, a test on whether there are multiple peaks in the window will be necessary. 

However, exploring this subject is beyond the scope of current work and readers 

interested in this subject may refer to [21].

Once the logical approach is set up, an example of finding peaks in the presence of 

Gaussian white noise will be given. Gaussian white noise case is particularly chosen to 

be presented here because it is usually assumed from the perspective of maximum 

entropy, see Appendix C for details. A nice property of the Gaussian distribution is 

that all results can be arrived at in closed form because of its smoothness and 

differentiability. We will show that the outcome of the Gaussian white noise case is 

what is called matched filter for a known peak shape that is embedded in additive 

Gaussian white noise of unknown amplitude.

This chapter is arranged as the following. In section 2.1, we will introduce the 

TOF-MS and Bayes’ theorem. We then describe the logic of using Bayesian methods 

to find peaks in a spectrum in section 2.2. In the last section, section 2.3, we give an 

example of how to find peaks embedded in Gaussian white noise.
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§ 2.1 Introduction to TOF-MS and Bayes’ theorem

In this section, we will first introduce some needed concepts for TOF-MS, Bayes’ 

Theorem, and the maximum likelihood method.

§2.1.1 Introduction o f TOF-MS Instruments

A mass spectrometer is an instrument which separates ions according their mass- 

to-charge ratio (m/z). The ions are generated from samples of interest, which are 

usually initially neutral. The history of mass spectrometer goes back to the pioneering 

work of J. J. Thomson, Physics Nobel laureate of 1906, the discoverer of the electron 

who investigated the action of electrostatic and magnetic fields on anode rays and 

canal rays. His work led to the invention of mass spectrograph by F. W. Aston, which 

was used to measure the mass of isotopes of elements and also won Aston the Nobel 

Prize in Chemistry in 1922. It was called a mass spectrograph rather than mass 

spectrometer because photographic plates were used to record ions dispersed by 

electromagnetic fields.

Roughly speaking, a mass spectrometer consists of three important components: 

ion source, mass analyzer and ion detector. The ion source generates ions from the 

sample; the mass analyzer separates ions based on their mass-to-charge ratio; the 

detector records the separated ions.

“Time-of-Flight” refers to the way that ions are separated, i.e., the mass analyzer. 

The concept of a TOF mass analyzer is quite simple. A handful of ions start with the 

same kinetic energy, e.g., after falling through a fixed electrostatic field 0,  fly through
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a field-free tube, usually in vacuum, towards an ion detector at the end of the tube. It is 

easily shown that the time that ions take to fly through the tube of length D is 

proportional to the square root of mass:

2

Using vt=D, we find:

Ek = Z e ® = - m v 2; v=  ‘ (2.1)2ZeO 
m

t = 2 D (2.2)
IZe®,

However, developing instrumentation for a TOF mass analyzer in the early days 

was not as easy as its concept. There were two major reasons. First, there was not an 

efficient method to create ions from neutral samples, especially from solid samples, 

only volatile sample could be analyzed. Second, for an ion around lOOODa that is 

brought to IkeV energy, it would have a speed of 1.4xl04m/s, if the flight distance is 

1 m, then the flight time is only about 72jus. This requires a TOF instrument to have a 

recording device which can work at least at microsecond frame which was not easy 40 

years ago. Thus the development of Time-of-Flight type of instrument was limited in 

early development and was soon displaced by magnetic and quadrupole instruments. 

However, breakthroughs have been made in recent years. These breakthroughs, on the 

ionization side, are new ionization methods like Laser Desorption Ionization (LDI), 

Electro-Spray Ionization (ESI), etc., which enable ions to be generated efficiently 

from liquid or solid samples. The consequences are that increasingly heavier ions like 

peptides and proteins can now be generated and that detectable ions can be generated
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from a very small amount of sample. For example, it has been reported that MALDI 

may achieve a detection limit as low as zeptomoles [22], Fast electronics that can work 

at nanosecond or sub-nanosecond rates make recording a mass spectrum no longer a 

problem and give great resolving power. These advantages, plus that a TOF 

instrument conceptually puts no limit on the mass range, leads to rapid developments 

in instrumentation and applications. TOF-MS is now widely used in chemistry, 

biochemistry, biology and biomedical science.

A cartoon of a TOF-MS instrument is shown in Fig. 2.1. Though there are many 

kinds of TOF-MS instruments, they all work conceptually the same: The sample of 

interest is placed upon a carefully prepared surface and acted upon by an energy 

source, which could be a laser, ion beam, or some other energy forms to produce ions. 

These ions are extracted and accelerated by a static electronic potential to provide the 

same kinetic energy. To help focus the ions in time and space, ‘ion optics’ are usually 

used. These ions then fly freely in a vacuum tube during which they are separated 

according to their mass-to-charge ratio (m/z), as shown in equation (2.1). Heavier ions 

will take more time to arrive at the ion detector that sits at a fixed spatial location, a 

distance D from the ion source.

Figure 2.2 shows a sample spectrum, in which the intensities of ions were plotted 

versus the time that ions take to fly to the detector. The time can be converted to the 

mass-to-charge ratio (m/z) through the calibration equaiton:

t = amm +b (2.3)
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It can then be used to deduce chemical, biological and other information of 

interest.

Ideally, ions of a specific m/z would hit the detector after the same time of flight, 

resulting in a sharp peak lineshape like a delta function of certain height. In reality, 

however, because of the finite time during which the energy source acts on the sample, 

sample surface morphology and complex physical and chemical reactions that occur 

when energy is deposited onto the sample, ions of the same m/z are formed at different 

times and positions according to some initial time distribution and spatial distribution. 

They also come off the sample surface with an initial velocity distribution of finite 

width. Though there are ion optics strategies that attempt to correct for these effects, 

such as time-lag extraction or reflectrons, ions still enter the free drift region with 

velocity and time distributions of finite width, which results in a finite peak width for 

ions of a specific m/z. We refer to the total sum of ions of a given mass peak 

(integrated intensity) as the intensity of that peak.

Very often, in a TOF instrument, such as MALDI-MS and SIMS, laser/primary 

ions which are very well focused can be rastered over the sample surface for a number 

of irradiations in a certain pattern. For each irradiation, only a small portion of the 

scanned area is irradiated. The sum of the output of each irradiation gives the final 

spectrum.

The final spectrum can thus be viewed as consisting of measurements repeated 

many times under nominally identical conditions to gradually build up a portrait of the 

probability distribution of arrival times for each m/z. This means that the final time
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series s(t) , that is to be analyzed after all the data has been gathered, is proportional to 

the conditional probability distribution

where s{tk) is the observed signal amplitude at timetk, At is the sampling interval, 

n(m) is the total number of ions of m/z and p{tk \ f 0(v,(m),tt )) is the probability that 

an ion of m/z will strike the detector between tk and tk + At given that it entered the 

drift region at time U with a velocity close to v,(m) . If only one ion species is present, 

the velocity distribution when the ion enters the drift region is a convolution of the ion 

formation time distribution, initial spatial distribution, initial velocity distribution, etc. 

Of all mentioned distributions, none of them is fully understood, though some 

experiments and simulations have resolved some special cases. Thus, we assume that 

the velocity distribution, f Q(vfm),t t ) is just a sharply peaked function of v of the 

form

If a variety of different ions is present, fo  will be a superposition of terms like (2.5), 

properly normalized so that fo  will have unit total area. This assumes that the shape of 

the velocity spread is universal, up to translation and rescaling. We will assume

practice, the velocity distributions for each peak will contain information about the 

dynamics of the ion formation process, which depend upon the ion species. However,

s(tk) ccn(m)p(tk | f 0(v,(m),tt))At, (2.4)

(2.5)

vt (m) and <r(m) to be weak functions of the mass, and to scale like l/yfm . In
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if we assume that the ion optics are designed so that it will only pass a narrow range of 

most possible velocities for any given mass, then maximizing the entropy of the 

probability distribution fo for a single peak, given v* and cr, leads to the choice of a 

Gaussian for g:

g
v —V, 1

cr
-exp (2 .6)

^flrrcr

The choice of the maximum-entropy distribution is founded upon the principle that 

it maximizes the number of possible outcomes of repeated observations that are 

consistent with this assignment of the probability [23]. Hence, it is the least biased 

assignment of the probability that is consistent with our limited knowledge of the 

initial distribution. Transforming from the initial velocity distribution g  to the 

temporal peak shape requires solution of a simple Fokker-Planck equation, and is 

described in a later chapter.

It is important to realize that ions that arrive between time tk and tk + At are

independent of those that arrive at any other time £., even when tk and t} are

associated with the same ion peak. This is because, as stated above, the resulting 

spectrum is an accumulation of many repeated independent measurements under the 

same experimental condition. This independence will be a crucial assumption that 

underlies the entire analysis we pursue, and we will discuss this assumption more in 

the next chapter when we focus more specifically on SIMS. Any correlations in the
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signal are assumed to be due to the electronics and should be taken into account as a 

part of the model used.

§2.1.2 Introduction to Bayes9 theorem

As we are dealing with finding peaks in the mass spectrum, let two propositions A 

and B be:

A=There is a particle species of m/z equal to 100 in the sample;

B=We see a bump in the mass spectrum;

If we are told that “if  A is true then B is true”, then, anytime we knew A true, we 

could say for sure that B would be true, or, if we learned B was false, we could say for 

sure A should be false too. This is deductive reasoning, it is certain.

However, in real life, this kind of deductive logic, which deduces the truth about a 

proposition with a full certainty, does not happen very often. In many cases, we are 

facing questions like “B is true, what can we say about A”? From the perspective of 

deductive reasoning, we could find both ‘A is true’ and ‘A is false’ are consistent with 

‘B is true’. The fact that seeing a bump in the spectrum plot does not tell for sure that 

there is a particle species which has a m/z of 100: the bump could be present because 

there is such a particle species, but it is also possible due to other reasons like noise 

from external disturbances, for example, an eighteen-wheeled truck passed nearby 

when the data is collected.
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On the other side, though ‘B is true’ does not lead to the definite conclusion that A 

is true, it rules out the possibility of both A and B being false, and makes A more 

plausible. This is plausible or inductive reasoning, it deals with uncertainty.

As Laplace said in 1819 that, “Probability theory is nothing but common sense 

reduced to calculations”, the next question is then to set up quantitative rules for 

performing the inductive reasoning.

Before setting out to look for the quantitative rules for inductive reasoning, we 

want to remind the reader that when we talk about probabilities, we are going to 

always use the notations introduced in Chapter One.

Second, let us formulate that the derived rules have to satisfy the following desired 

properties:

1. Representation of degrees of plausibility by real numbers

2. Qualitative correspondence with common sense

3. Consistency

Of these three desiderata, the first two are intuitive, the third one needs a little bit 

of explanation. Consistency means that, first, if  there are several ways to do the 

reasoning on the same problem, they should arrive at the same result. Second, all 

evidence that is related to the problem is taken into account, no information is 

arbitrarily ignored. Third, if the state of knowledge about two problems is the same, 

then the plausibilities assigned to these two problems are the same.

Having these desiderata set up, it is then just a matter to work the mathematics out 

to find these rules. However, the detailed mathematical derivation is not the purpose of
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this work, we simply point out that, based on the above desiderata, Cox showed that

the product rule and sum rule can be derived [24]:

p { X ,Y \ I )  = p { X \Y , I ) p ( Y \ I )  

p { X \ I )  + p ( X \ I )  = \

Bayes’ theorem directly follows from the product rule, if  we interchange X  and

7:

p ( Y ,X \ I )  = p ( Y \ X , I ) p ( X \ I ) (2.8)

Since the probability of ‘ X  and Y ’ must be the same as ‘ Y and X  ’:

p(X ,  Y \ I )  = p ( X  | Y,I)p(Y  | / )  = p(Y  | X , I ) p ( X  | / )  (2.9)

This gives rise to the Bayes’ theorem [25]:

p ( x l  Vif)  = p O W M m  (2.10)
p(Y  11)

Now let X  be an element of a set of hypotheses. In our peak finding problem, the 

hypothesis set is:

{hypothesisk : there are k  peaks in the data, k  = 0,1,2- • ■ N} 

where N  may be a large but finite integer; let Y be the collected data. As a simple 

example, let Y be the outdoor temperature measurements that are taken hourly during 

successively 24 hours. Then Bayes’ theorem in this specific case becomes: 

p(hypothesisk \ data, I)
_ pidata | hypothesisk, I)p{hypothesisk \ I)  (2.11)

p(data | I)

Terms in above equation have their special names:
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p(hypothesisk \ I)  is the prior probability, it states our current knowledge of the

plausibility of the kth hypothesis, without taking into account the measured data. 

Common sense tells that it is cooler at night and is warmer during the day, thus, even 

without looking at the data, we would know that it would be very much more plausible 

that ‘there is a peak in the data’ than that ‘there is no peak in the data’.

pidata | hypothesis k, I)  is the likelihood function, sometimes just called likelihood.

It represents the chance of getting the observed data given the kth hypothesis. For 

example, if the hypothesis is that ‘there is no peak in the data’, then the probability of 

getting data Y would be small as there is peak in Y and hence inconsistent with the 

hypothesis, or, in other words, less likely.

pidata 11) is the chance of getting the observed data ignoring all hypotheses. It 

appears in the denominator in the right hand side of equation (2.11) as a normalization 

(scale) factor because we should have:

7  p{hypothesisk \ data, I)  = 1 (2.12)
k

since the j th hypothesis and kth hypothesis are disjoint, i.e., 

hypothesis j  n  hypothesis k = 0  . It is often canceled out if we are only interested in 

comparing two posteriors which is defined next.

pihypothesisk \ data,I),  the term in the left hand side of equation (2.11), is the 

posterior, the term we are after in Bayes’ theorem. It represents the UPDATED state
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of knowledge about the plausibility of the hypothesis having the measured data taken 

into account.

One should notice that the posterior in one problem could be, say, prior in another 

problem with independently observed data.

The likelihood function has a special use in parameter fitting, where it is referred 

to as the maximum likelihood method. To illustrate it, let the hypothesis be ‘there is no 

peak in the data’, or better, let us be more specific by saying ‘there is no peak in the 

data, only the background noise which can be characterized by parameter X .’ If the 

noise is white noise, then the parameters are the mean and the variance. In the usual 

case, X is unknown. To estimate X using the maximum likelihood methods, first 

draw a number of samples (xl,x2,---xn) , write out the likelihood function

p(x],x2,---xn | X,I ) . We will show in the next section how to estimate X by 

maximizing p(x],x2,---xn \ X ,I ) , assuming that the noise is white Gaussian.

§ 2.2 Finding peaks in a spectrum— Overview of the logic

We have briefly introduced TOF-MS. The important idea is that the final spectrum 

is an accumulation of many independent measurements under the same conditions. 

The ion count at time t is independent from that at time t j , even if they are from the

same m/z. We also introduced Bayes’ Theorem, which can be derived from the 

product rule. Now let us put things together to establish the logic of finding peaks in a
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spectrum. That is, we are going to put a window of appropriate width on the spectrum. 

For the data within the window, we are going to compare two models, one model is 

that there is a peak in the window; the other is that there is no peak present. After the 

model comparison, if we are confident that there is a peak present, we will then find 

parameters such as peak amplitude via the maximum likelihood method.

§2.2.1 Model comparisons

A mass spectrum, as we can see in Fig. 2.2 (an example spectrum), usually 

consists of a large number of peaks. To identify them, let us introduce a window at t0

that includes only Appoints in the time series, as illustrated in Fig. 2.3.

Before proceeding to further analysis, one should notice that in a mass spectrum, 

because all ions are subjected to the same instrumental function, peaks at different m/z 

share the same characteristic shape, the peak lineshape at one m/z and another m/z are 

similar up to a shift and rescaling. Let us assume that we have some peak model, 

x = f ( t - t 0),  which maximizes at t = t0, and describes what the peak lineshape would

be. This function could be obtained either empirically or derived from laws of 

physics/chemistry, but the bottom line is that it captures most of the characteristics of 

a typical peak in the spectrum. We are going to use tQ to label the position of the 

window. The window width N  is chosen such that the window covers the region from 

the left half-max to the right half-max of f ( t - t 0).  This is a (rough-and-ready) 

compromise between the desire to include as much data as possible in the window to
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improve the sampling statistics and the realization that nearby peaks may overlap and 

that our peak shape model is probably not very good out on the tails of the peak.

Thus, for the window, we have N  isolated data points (sv s2 ■•■sN) from the 

spectrum, and we have an N-component vector that describes the peak line shape:

X  — (Xj, . . . X N  ̂  — tg), . . . X ( t N — tg)J (2.13)

For convenience, let x be normalized to have unit area:

f > t = l  (2-14)
k= 1

This will only introduce a constant correction for the peak amplitude computed 

later.

The first thing we want to determine is whether or not there is a peak in the 

window. This is a comparison between two hypotheses:

• H } = There is a single peak in the window around t0 with the shape x  but of

unknown amplitude, embedded in noise of assumed type. Deviations from this

shape in the data are due to noise. Let us call the associated peak-plus-noise 

model M j;

• H 0= There is no peak in the widow t0 . The data are noise of the assumed

type. Let us call the associated pure-noise model M 0

If more than one peak is present in the window, this complicates the analysis, one 

needs to compare among hypotheses that ‘there are two peaks’, ‘there are three peaks’,
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etc., and more parameters must be fit. It will be algebraically more involved, but the 

logic is similar to what we describe below [21].

For hypothesis Hx, if the noise is additive, it is equivalent to assume that the 

observed signal s(t) within the window is given by

sk =axk +rjk, k = \ ,2 , . . .N  (2.15)

where a is an unknown amplitude and t j  = ( t j1, t j 2 - - - t i n )  is a random process of some 

appropriate type. For example, r] may come from a white Gaussian noise. Similarly, 

for hypothesis H 0, we have:

sk =tjk k  = l , 2 - N  (2.16)

Under the assumption that the ion counts at different times are independent, the 

likelihood function, i.e., the probability of observing the particular count sequence 

s = (s:,s2---sN) is simply

p(s\a ,A,t0,M k)

~ / ^ ( { ^ i j I  (2.17)
N

= Y [ p ( s i \a,A,t0,M k)
i=i

By the notation A we indicate parameter(s) that characterize(s) the noise process 

(e.g., the variance cr and mean /j. for a Gaussian process or the ‘dark’ current rate r0 

for a Poisson process). By M k we mean to emphasize a particular choice of model 

class, including a peak shape x  and a noise model. As in the introduction, the
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probability (2.17) is the likelihood function of observing the data in the window 

labeled to given the model class M k and the parameters k .

We wish to compute the probability of which each of these hypotheses was true, 

given the data, and then take the ratio of two probabilities p(H] \ s) and p(H0 \ s):

Since at this point for each window position we are only considering two 

possibilities, i.e., H x (there is one peak in the window) and H 0 (there is no peak in 

the window), these two events are mutually exclusive:

One can then immediately recognize that equation (2.18) is what is called an odds 

ratio in statistics. If this ratio is large compared to one, we can be confident that there 

is a peak in the window, while if it is approximately one we interpret that as saying 

there is only weak evidence of a peak in the window (because a=0 is a possible 

estimate of the peak amplitude, which we interpret as ‘no peak’). Therefore, one may 

set a threshold for peak detection.

In order to compute the odds ratio in (2.18), let us invoke Bayes’ theorem (2.11), 

identifying hypothesisk as the model class M k, and ‘data’ as the observed data

s = (sl ,s2---sN) in the window to'.

p (Hx\s) p{Mx\s,tG) 
P ( H 0 \ s )  p (M 0 \s,t0)

(2.18)

p(H0) + p (Hl) = 1 (2.19)

P ( M k \ s , t 0)  =
p ( s \ M k,t0)p(Mk \t0) 

P(s\t0)
(2.20)
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The denominator in (2.20) is the normalization factor we encountered before, it 

may be computed:

However, our interest here is to compare two posteriors as in (2.18), it is clear that 

this normalization factor cancels.

If we have no reason to prefer one model class over another, we should assign 

them all equal prior probabilities. For example, if we are comparing two types of 

models (a single peak vs. no peak), then p(M 0 \ t0) = p(M ] |t0) = 1/2. Therefore, we 

have the simple result that

Hence, we need to calculate the likelihood that we observed the data given the 

model class, p(s \ M k,t0) , a quantity called the evidence, notice that it is not 

conditional on parameters (a, A ) . We get this by marginalizing the likelihood 

function (2.17) over the model parameters using an appropriate prior for the 

parameters:

P(s 110) = p(s | M 0,t0)p(M0 110) + p(s | M l,t0)p(Ml 110) (2 .21)

(2.22)

Thus, the odds ratio in (2.18) becomes:

P(HX 1 s) = p{Mx | s,t0) p(s | Mj.fp) 
P(Hq | s) p (M 0 | s, t0) p ( s \ M 0,t0)

(2.23)

(2.24)
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where p(a,A \Mk,t0) is the prior distribution of parameters (a, A) . For each model

class, there will be a prior probability distribution for the parameters. For example, 

when no peak is present we choose the prior:

p(a,A | t0,M 0)= ^S (a )p (A  \t0,M 0) (2.25)

where the Vi factor appears because the 8-function will be integrated only over the 

positive values of a. If we know nothing about the values of A, then we choose a 

uniform prior, or some other prior that is very broad in A -  space on the grounds that 

when we integrate against (2.17) only the neighborhood of the maximum likelihood 

value of A will contribute.

Up to this point, we have set up the concept of doing a model comparison for the 

data in a window located at t0, all necessary terms have been computed and the odds 

ratio is ready to be computed. The window will then slide across the spectrum point by 

point. When the window is sliding, the window width will eventually get wider 

because, for instrumental reasons, peaks of heavier mass will become broader. For 

each window, the odds ratio is computed. As the window comes across a peak, the 

odds ratio will increase, and will decrease again when the window passes a peak. One 

can then set a threshold for the confidence we need to have to declare a peak to be 

detected.

Once we have detected that a peak lies within a certain region of the time axis, we 

then fix the position and amplitude of the peak by maximizing the likelihood over the
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parameters {a, A, t0) , as discussed in the next section. Before doing so, we summarize 

that to compare the hypotheses that there is, or is not, a peak in the window, we need 

to compute the ratio (2.18), which requires computation of (2.24) for both model M 0

and model M l .

§2.2.2 Parameter fitting

As the window slides across the spectrum one point at a time, the odds ratio is 

calculated for each window position. We can then justify in which region in the 

spectrum we are confident that there is a peak. We then look into particular regions of 

interest, to fit parameters (a, A) by maximizing the likelihood function (2.17). This 

requires solving the following equations, for a window located at to with isolated data

S =(sl,S2'"SN) .

8L(a,A,t0) Q

da (2.26)
8L(a,A,t0) _ Q

8A

where L(a,A,t0) is the natural logarithm of likelihood function (2.17):

L(a,A,t0) = \n(p(s \ a ,A,Mk,t0)) (2.27)

Solving equations (2.26) gives the maximum likelihood estimations of parameters 

(a*, A*) for window with a fixed to and data .v. If the data is informative, then the 

likelihood would sharply peak around the point (a*, A*) in the parameter space and
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die off quickly as we move away from (a*, A*). It is natural to Taylor expand (2.27) 

around (a ,  A*):

L(a, A, £q)

*L(a*,A\t0)

+ -
1 d2L , , *. 2 d2L

da
{a —a )  +

dA2 'a X (A-A*)2

where X  =

+ - ^ H  * (a — a*)(A — A*)
dad A ’

= L{a ,A*, t0) + i ( X - X*)'VVL(a ,A*,t0) ( X - X * )

, and

VVL(a*,A\t0) =

d2L d2L
da2 . dadA

a ,A a ,A

d2L d2L
dadA ' ;• d* 2a ,a a X

(2.28)

(2.29)

is the Hessian matrix evaluated at (a*, A*).

It follows from (2.28) that the leading term of the likelihood function in (2.17) is 

approximately:

p(s \a ,A ,M k,t0) = exp[L(a,A,t0)]

'• exp L ( a , A \ t 0) + ̂ ( X - X * ) V V L ( a , A \ t 0) ( X - r ) (2.30)

_i
_  e H a  X , t 0) e 2

(.X - X  ) 'V V L ( a  ,X ,ta\ X - X  )
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This implies that the likelihood function looks like a multivariate normal 

distribution in parameter space, centered at (a , A*) with the following uncertainties, 

if a and X are not coupled:

cr =
i  \ - l / 2

52Z,
da2 a'x

(2.31)
,  \ - 1 / 2  V '  

82L , '
dA2 ,

Moreover, the approximation in equation (2.30) provides a possibly easy way to 

compute the evidence in equation (2.24) in the sense that if the prior is independent of 

{a, A), for example, a and A are uniformly distributed in some region (amin, )

and (Amm, AimK), with substitution of (2.30) into (2.24), the integration is readily 

carried out:

p(s | M k,t0) = JdadAp(s \ a ,A,Mk,t())p{a,A\ M k,t0)

= 7  7 — 4 ----------- 1—  (2.32)

_ 1 1 (2 x ) ml2
a —a ■ A —Amax min max min ^ |d e t[W L (a * ,r ,t0)]|

where m is the dimension of parameter space. In the last step of integration, lower and 

upper boundaries of integration are extended to infinity. This is valid if  the likelihood 

function is sharply peaked around (a*, A*) and (<2min, amax) and (/tmm, are large 

enough such that contributions from outside these regions are negligible. Otherwise, 

the integral will result in an error function. Note d e t[W L (a’,/l*,t0)] is the
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determinate of Hessian matrix evaluated at ( a ,  A*), and l/^ |det[w Z (a* ,A * ,t0)J  is 

proportion to the ‘volume’ within cra and crx around (a*, A*) in parameter space, i.e.

p(n | M k,t0) ~ p(s  | a*,A*,Mk,t0) -----^ --------------- —  (2.33)
a —a A — Amax mm max nun

Notice that solving equation (2.26) only maximizes the likelihood with respect to 

(a, A ) , the maximizing of likelihood with respect to t0 is done by computing the

likelihood for each window position at (a , A*), i.e., p(n \ a , A*,Mk,t0) and then find

the maximum point of p(n \ a ,A* ,M k,t0) with respect to t0. However, maximizing

over to has a different logical character than the other parameters, because we are 

comparing different data sets as we slide the window across the peak. The 

justification is based upon the physical reasonableness of the approach: the width of 

the window is large compared to the uncertainty in the position of the peak, hence near 

the maximum of the likelihood, most of the data being compared comes from 

overlapping windows. An alternative way of looking this is that by comparing 

p{n | a ,A* ,M k,t0) at different t0 we are actually looking for a window in which the

data best support the assumption that there is a peak in the window.

Before we go any further, let us summarize that, in the normal way, in order to 

compare model M x versus M 0 we need to evaluate the odds ratio (2.18) in which we 

need to compute the evidence in (2.24) by marginalizing the likelihood function (2.17) 

over the prior distribution p(a,A \ M k,t0) o f  parameters (a, A). If the odds ratio is
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large compare to one, it strongly suggests that there is a peak in the window; 

otherwise, it is more likely that there is no peak. Once the odds ratio concludes that a 

peak is present, parameters may be fit by maximizing the likelihood function (2.17), 

via solving equation (2.26). Equation (2.32) provides an alternative way of computing 

the evidence if  that the likelihood is strongly peaked in parameter space is satisfied.

§ 2.3 Finding a peak embedded in Gaussian noise

We now consider a specific example, i.e., detection of a peak in white Gaussian 

noise. We show that the approach described above leads to what is called the ‘matched 

filter’ in the engineering literature. The Gaussian white noise case is of particular 

importance because in many situations the noise characteristics are not clear or are 

very complex and Gaussian white noise is often assumed based on a maximum 

entropy argument. In this section, we do not specify the peak shape but simply use x,

to denote peak shape in general.

For convenience, from now on, except for to , when referring to parameters 

associated with model Mo, a subscript 0 will be used, a subscript 1 will be used for 

parameters associated with model Mi. For both models, a superscript of star (*) will be 

used for best estimations of parameters.

Since we assume the noise process is Gaussian and white, then for the noise 

rj = (rjl,rj2- ■■ijN) in the window t0 we have:
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(2.34)

{ l }  =  M 

{%%) = ^ jk

(2.35)

(2.36)

Let us first consider model M x, which says there is a peak in the observation 

window of known shape x  but unknown amplitude ax, in the presence of noise:

Under the assumption of independence between two data points, one can write the 

likelihood function (2.17) explicitly:

where a subscript N  is used to emphasize that p N(r/ \ ax,px, , t 0, Mx) is a likelihood

function with N  data points considered.

Following the summary made at the end of previous section, the next step is to 

compute the evidence. One can compute it by marginalizing the likelihood function

(2.39) over parameters (ax, i \ , o  nX) to get the evidence, p(r/ \ M x,t0). We now assume

sj =axxj +Tjj i = l . . .N (2.37)

It can be rewritten as:

rji = .v, - axxx i = I . . .N (2.38)

(2.39)
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that we know nothing about the prior probabilities for all parameters, the amplitude of 

the peak ax, the mean of noise and the variance of the noise <j !]X , aside from the

requirement that they be probabilities in the parameter space (a,, //,, cr?/1). The

simplest choice is to assume that they are constant over some range (0, ], (0, /imax ],

(0,cr ]:'/max

p(a j ,Ml,<Tlll\tQ,Mi) = — -----  —  (2-40)
a m ax  Mmax ^ m a j

However, this allows us to take a short cut by utilizing equation (2.32) to get the 

evidence, instead of carrying out the integral. We will do it that way in the next 

chapter when finding peaks in a SIMS spectrum. So, let us find the maximum 

likelihood estimation of parameters (a*,ju*,cr*) and the Hessian matrix at

These are easily computed, we will only quote the results here, one may 

find detailed calculations in the Appendix A:

, ( s x ) - s x  ( s - , s ) ( x - x )

^  “  7 - t 2 “  ( x - x ) 2 ~

f / = T  — a*x (2.41)
^  „* / „  — \ \ 2  2 *2 2

=  ( si ~ s ~ a\ (xi ~ x ))2 =  c t2 -  a*2a.
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L L Laa an aa

Lpa
L L Laa an c a

N ( , r l +x>) Z X .

2

N

z *1=1

ST*2

N
* 2 * 2

0 0

where x is arithmetic mean of x, a 1 is the variance of x:

1 N

x  =  — V  X
n t r '

a 1 = — V ( x  - x ) 2

0

2 N
2

°7i

(2.42)

(2.43)

(2.44)

s and <t2 are defined similarly.

Thus, we have our uncertainties about our best estimation on parameters and the 

evidence:

A ax =
^ ( a l + x 2)

A  _  ^

*

A _  ^

" -JlN

< 2.45)
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det(VVL(a*,/j*,cr* ,t0))
(2.46)

A little more algebra shows (see Appendix A):

pin \M v h )

(2n f 2p \ r \  I a’, (2.47)

‘max

This is consistent with the general results stated in previous section.

For the case of model M0, i.e. there is no peak in the observation window, the

signal observed is considered as all coming from noise, i.e. -  rji , the calculation is

similar to model M x. In fact one can get all results simply by eliminating amplitude

component from model M x and find the evidence is:

Having the evidences for both models computed, the odds ratio is easily computed:

J n  J i n
^ P n (7 I Mo > ̂ r/0 ’ M 0, t0)

(2.48)

^ O m a x  ^ O m a x
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p(H x | n) ^  p{M x 1 n,t0) p(j] \ M v t0)
p (H 0 1 n) p (M 0 1 n,tQ) p(rj\M 0,t0)

* f  * \ N~21 rz n

!W
(2.49)

N -2  
\  -)

One must notice that the above calculation is done only on ONE window that is 

located at t0. Perhaps a better way to describe the best estimation of (a,, //,, cr^) is to

write their dependence on t0 explicitly, i.e. (a*(t0) , / / ( tQ),a*^(t0)) . In the region that

the odds ratio (2.49) indicates a peak, one will need to compute 

p*N(rj | a*,//1’,a'*1,M 1,/o) f°r each window position, find the t*0 that maximizes

P*n (p | a*, jux, cr*i, Mj, /0) and report as peak position and u*(to) as peak amplitude. 

If one looks closely at the maximum likelihood estimation of the peak amplitude:

one would see that it is in fact doing a correlation between data in the window and the 

known peak lineshape, the same as a matched filter does.

However, we do not use af(t0) to estimate peak position as is typically done with 

matched filters, but instead use the likelihood function p*N. Matched filter, as can be 

seen in (2.50), involves correlation between the signal and the known peak line shape, 

which would result in a broad peak a* (t0), while p*N is narrower. This is showed in

» ( s - s ) ( x - x )  ( s - s  ) ( x - x )
(2.50)
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Fig. 2.4 with simulated data. In Fig. 2.4, from the top to bottom, a simulated peak, 

a[(t{]) and the natural log of p *N, log( p *M), are plotted in turn. The location of the 

simulated peak is marked by a dash line. The natural log of p*N has its characteristic 

shape, which we will elaborate in next chapter. The thing to notice here is that 

log( p *N) is much narrower than a\(t0) , it would be even shaper if  we exponentiate it

to get p N.
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Fig. 2.1 Illustration of the concept of TOF-MS.

(1) Substrate
(2) Sample
(3) Energy source
(4) Extracting voltage
(5) Ion optics
(6) Detector
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Fig. 2.2 An example spectrum

6000

4000

2000

0
1.3 1.6 1.7 1.81 1.1 1.2 1.4 1.5

Arrival time (clock tick number) xio5

The spectrum is plotted as counts versus arrival time (in 
clock tick number)
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Fig. 2.3 An observation window of width N

N1

A window of width N  is superimposed on the spectrum. It isolates N  
data points (the black dots). For these N  data points, we compare the 
hypotheses that there is a peak versus that there is no peak. The 
window width is chosen in such a way that when the window is right 
on top of the peak, the window runs from the left half maximum to the 
right half maximum of the peak. The window slides one clock tick a 
time to the right and the two hypotheses are compared for each 
window.
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Fig. 2.4 Comparison of sharpness

850 900 950800 1000 1050 1100 1150 1200
t

800 850 900 950 1000 1050 1100 1150 1200
t

800 850 900 950 1050 1100 1150 12001000
t

For a simulated peak, log(p*N) is much sharper than a*(t0)
(a) A simulated peak locates at t=1000;
(b) The corresponding a* (t0);

(c) The corresponding log( p *N)
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Chapter 3 

TOF-SIMS Data Analysis

In this chapter, we first introduce basic principles of static TOF-SIMS. We will 

show that a Poisson process is involved and this would be our basis for finding peaks 

in a TOF-SIMS spectrum. Then, formulas for identifying peaks in a SIMS spectrum 

will be derived and examples with simulated data will be given.

§ 3.1 Introduction to TOF-SIMS

In 1931, Woodstock first observed secondary ion formation when a sample was 

bombarded with ions and SIMS came to the world thereafter. SIMS, by itself, is a 

kind of desorption mass spectrometry. It uses an energetic primary ion beam, usually 

with keV energy, to probe the sample surface. As a result of the primary ion impact 

and subsequent energy transfer, secondary particles are generated. Of these secondary 

particles, some are ionized and then mass analyzed.

Generally, SIMS works in two different regimes, dynamic SIMS and static SIMS. 

The difference between dynamic SIMS and static SIMS is in the primary ion flux.

51
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Dynamic SIMS uses a continuous primary ion current to erode the sample surface, 

consecutive sample layers are removed very fast, generating primarily elemental ions 

and some small cluster ions. Because of the fast erosion of the sample, depth profiling 

can be easily achieved. When combined with scanning of the primary ion beam that 

rasters the surface, one can build 3-D characterization of a sample’s composition. 

However, because of the high primary ion current, organic samples will be fragmented 

too much to generate useful information.

It was Benninghoven who introduced static SIMS in 1970, and a detectability of 

less than lppm was reported [26]. In static SIMS, a small current of primary ion beam 

is used to probe the sample surface such that less than 1% of the top layer receives an 

ion impact. The idea is that no area should receive more than one impact. This puts an 

upper limit on the primary ion dose. It is generally accepted that for the static SIMS 

regime, the primary ion dose should not exceed 10 ions/ cm , which is approximately 

1% of the atomic surface density of a silicon wafer. The actual static limit depends on 

properties of the analyte under investigation, the primary ion being used, primary ion 

incident angle, etc. For example, an organic sample would have a smaller static limit, 

as do primary-ion beams of heaver mass and larger geometrical size.

There are many kinds of primary-ion beam. For example, inert gas ions like Ar+, 

Xe+ are commonly used as primary ions because of their inertness. Liquid metal ion 

guns (LMIG), like Ga+, are also widely used because they provide submicron lateral 

resolution and are thus ideal for imaging purposes. Recent research has shown that the 

use of polyatomic primary ions, such as C6o+ and Aun+, leads to a nonlinear increase in
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secondary-ion yield and thus is promising for large organic and biological samples 

[27, 28, 29],

When the sample is bombarded by the primary ions, secondary particles, including 

neutrals, positive and negative ions, and electrons, are emitted from the sample 

surface. The majority of these particles come from the top one or two monolayers, and 

over 99% of them are neutral. The exact mechanisms by which ions are formed during 

the emission are not fully understood and seem to depend on the type of analyte, as 

well as the local chemical and physical environment. Various models have been 

proposed, either from a physical perspective or from chemical point of view. Vaeck et 

al. provide a good summary in their review on static TOF-SIMS [30], However, it is 

clear that the energy needed for ejecting these secondary particles comes from the 

energetic primary ion. Around the primary-ion impact point, energy and momentum is 

transferred into the neighboring area via a collision cascade, creating an excited area 

[31, 32]. The energy and momentum distributions within the excited area depends on 

many factors, such as the lattice structure (if any) of the sample/substrate, the energy, 

mass and physical size of the primary ion, the incident angle of the primary ion, and so 

on. But, qualitatively, the closer to the impact point, the higher the energy transfer. 

Those molecules that are directly impacted by the primary ions will break into pieces 

(fragments) as the energy of primary ions, in keV range, is far larger than the bond 

energy. Even those molecules close to the impact point will also get so much energy 

that they will fragment. Only molecules that are remote from the impact point might 

gain sufficient energy to escape the surface as intact molecules yet remain
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unfragmented. For organic samples that are adsorbed as thin film on a metal surface, 

the primary ion penetrates into the substrate and initiates a collision cascade in the 

substrate atoms. Molecular dynamics simulations have shown that this collision 

cascade in the substrate is responsible for the ejection of intact molecules [33]. It has 

also been shown that most of the fragments come from a region close to the impact 

point, less than 5 angstroms, while intact molecules come from more distant areas up 

to 30 angstroms away [34],

As the bottleneck of fast electronics is no longer a problem, a TOF mass analyzer 

becomes a favorable one. The ratio of the number of ions that leave a region of a mass 

spectrometer to the number of ions that enter that region is often called transmission. It 

is the high transmission that makes TOF mass analyzer superior to some other 

scanning mass analyzers, like quadrupole, which have been commonly used on SIMS 

apparatus for a long time. The quadrupole mass filter has a mass limit and runs in a 

scanning mode. Only ions of a specifically selected m/z can pass through at a time. 

Moreover, a quadrupole has an energy band limit about 5~20eV, but the secondary 

ions generated on the surface usually have an initial energy distribution spread over 

tens of eV’s, especially for elemental ions, which means that even ions of the 

specifically selected m/z can not all pass through the quadrupole. These considerations 

suggest that quadrupoles have a very low transmission. In the case of static SIMS, 

where the ion yield is very low, this requires a sample to be exposed to the primary- 

ion beam for a long time to get a survey spectrum, and this exceeds the static limit. 

The importance of keeping to the static limit is that the damage caused by primary-ion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

erosion is permanent. It changes the chemical and physical composition in the excited 

area. Bombarding in such area again will generate information of limited usefulness. 

The advantage of a TOF mass analyzer is then obvious: all ions generated on the 

surface will be transmitted to the detector and all ions of the full range of m/z are 

detected in parallel. The transmission of a TOF mass analyzer overwhelms that of 

quadrupole. This also results in a much shorter acquisition time and thus avoiding 

violating the static limit. Another advantage is that, theoretically, a TOF mass 

analyzer puts no upper limit on mass. This becomes crucial as organic and biological 

samples are analyzed. For static SIMS, the heaviest detectable analyte goes up to 

10,000Da [35],

The use of a TOF mass analyzer poses a special requirement. As a TOF mass 

analyzer differentiates ions of different m/z by measuring their flight time, it is 

important to have an accurate measurement of the flight start time. A way to achieve 

this is to use a pulsed primary-ion beam. A pulsed primary-ion beam is also essential 

to maintain the static limit. The pulsed primary-ion beam is repeated at an appropriate 

repetition rate which is determined by the detection mass range set up such that the 

detector will not confuse the heaviest (slowest) secondary ion of one pulse with the 

lightest (fastest) secondary ion of the next pulse. The final spectrum is the sum of the 

detector output of each primary-ion pulse.

As mentioned above, of all secondary particles from the primary ion impact, only a 

few are ionized, i.e., the secondary-ion yield is very low. For example, in a typical 

TOF-SIMS spectrum we collected on a peptide sample, about 1.4 xlO8 primary ions
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were delivered onto the sample surface (4xl0"4cm2) in about 1.1 xlO6 pulses, and 

about 10 x10s secondary ions were detected. This means that for each primary ion 

pulse, we detected only about 10 secondary ions. These secondary ions cover the mass 

range up to 2000Da, and are well separated in arrival time. It is thus possible to count 

each of them. And, in fact, it is a counting detector system that most TOF-SIMS are 

equipped with. Modem developments of fast electronics have facilitated such counting 

systems. For example, a microchannel plate (MCP), which is often used in such 

counting systems, generates an electron pulse of width from a sub-nanosecond to a 

few nanoseconds for a single particle impact event. Working together with a multistop 

time-to-digital converter (TDC), ion impact events occurring less than a nanosecond 

apart can be resolved. For example, the TRIFT II TOF-SIMS has a maximum time 

resolution of ,\3ns. It is also shown that, when optimized carefully, MCP offers good 

ion detection efficiency for ions up to 10,000Da [36].

§ 3.2 Applications of TOF-SIMS

As TOF-SIMS gathers information only from the top few monolayers and within a 

very small area (usually in micron scale) on sample surface, it is very sensitive to 

sample composition. The high sensitivity, together with the high resolution, has made 

TOF-SIMS a powerful surface analytical technique, from research to production
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control [37]. It has been widely used from isotope ratio measurements, polymer 

analysis, biological surface analysis to biological tissue imaging [38, 39, 40, 41].

§ 3.3 Poisson processes and Independence

As stated in the Introduction of this chapter, the essence of the static limit is that 

each primary ion impinges on fresh sample area that has not been impacted and is 

unaffected by impacts that have happened elsewhere. It is then clear that each impact 

is an independent measurement of the sample under the same conditions. For each 

measurement, the chance of seeing an ion of m/z arriving at the detector at t j , p m/zl ,

is determined by the sputtering yield, the ionization probability, transmission, 

detection probability, initial velocity distribution, etc. The combination of these factors 

makes pmlzl very small but stable under the static regime. During a TOF-SIMS

experiment, often millions of primary ions are delivered to the sample surface to get a 

good signal. Thus, the chance of observing n m/z ions in N  impacts (« “good” 

outcomes in N  “observations”) is given by the Bernoulli distribution:

(3.1)

Now, let:

r (3.2)
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where r, called the ‘rate’, is the expected the number of m/z ions in N  observations. Let 

TV become large, holding r fixed:

TV! r  r v
Pin | r , T V )  = Hm — — —  -  1 - -  (3.3)

TV

f  r \ N~n

TVn \(N -n ) \

A little algebra and using Stirling’s approximation, note that (\ - r / N ) N ~e~r , 

leads us to the Poisson distribution:

rne rP (n \r ,N )= ------- (3.4)
n\

This says that, at a specific time tj in a spectrum of some sample, if the “IDEAL”

(expected) number of counts after TV pulses is r, then the probability of actually 

observing n counts follows the Poisson distribution and can be calculated by (3.4).

Let us consider an analogy to this TOF-SIMS counting process. Suppose we want 

to make a survey of the automobile market share. We do this by standing beside a road 

next to a traffic signal and for each green light, we categorize each passing vehicle 

according its brand and model. Let us now build a conceptual mapping that connects 

the TOF-SIMS process and market share survey:
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Table 3.1 Conceptual mapping between TOF-SIMS process and market share survey

TOF-SIMS Automobile market share survey
Event A primary ion impact A green light

Observed quantity Ions of a specific m/z, 
say m/z= 100

Vehicles from a specific maker, 
say Toyota

Possible Outcome 1 An ion of m/z=100 
arrives detector at tj

A Toyota passes, and the model is 
4Runner

Possible Outcome 2
Another ion of 
m/z= 100 arrives 
detector at tj+i

Another Toyota passes, and the 
model is Camry

Outcome 1 Total After N  primary ions, 
seeing n counts at tj

After N  green lights, seeing k 
4Runners

Outcome 2 Total After N  primary ions, 
seeing n ’ counts at t/+j

After N  green lights, seeing ft’ 
Camrys

Expected Outcome 
1 and Outcome 2

The expected counts 
at tj and tj+i are r and

tr

The expected number for 
4Runners and Camries are 7  and 
7

The automobile survey is clearly a counting problem, the probability of seeing ft 

4Runners given the rate is 7  also follows Poisson distribution:

 £  - 7

P{k\T,N)  = r- ^ -  (3.5)

Note that the likelihood of seeing k 4Runners does not depend on seeing k ’ 

Camries, it only depends on the actual market share of 4Runner, i.e., the rate of 

4Runner 7 . Thus, in N  green lights, the joint probability of seeing k 4Runners and k ’ 

Camrys is:

7 ke~7 7 k'e~r
P( k , k ' \7 , 7 , N)  = (3.6)

ft! ft'!

Similarly, in TOF-SIMS, observing n counts at tj is independent of seeing n ' 

counts at tJ+ /, the joint probability of getting (n, n ’) given (r, r ’) is simply:
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rne~r r'n'e~r'
P(n,n '\r ,r ',N) = — -------—  (3.7)

n\ n !

This general result for likelihood of independent counting experiments will allow 

us to find peak in a TOF-SIMS spectrum.

§ 3.4 Finding peaks in TOF-SIMS spectrum

Finding peaks in a TOF-SIMS spectrum follows the same logic as finding peaks in 

a Gaussian white noise which we demonstrated in last chapter. One needs to put a 

window on the spectrum. Within the window, compare the hypotheses Hi and Ho as in 

previous chapter. If there is a peak, then do a parameter fitting via the maximum 

likelihood method.

§3.4.1 Model comparison

First, we summarize that the noise is still white because the essence of the Poisson 

process is that we are counting discrete events that are uncorrelated from one time to 

another. The probability that we observe n events in the time interval [t,t+At] is given 

by the single-step Poisson distribution:

P i ( n \ r ( t ) ) = v  "----- (3.8)
e

n\

where r(t) is the rate at time [t,t+At\. We note that the expectation value of n is 

(n) = ^  np(n \ r(t)) = r{t) . The rate will depend upon the local signal strength. If no
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signal is present, i.e., there is only dark current, then the rate will be denoted ro. The 

signal rides on top of the dark current and it is assumed that the local count rate is 

directly proportional to the signal:

where x(tt) describes the known peak lineshape. We can try to estimate both ro and a 

from the same data, or we can estimate ro either from a separate time series, or a 

region of the time series that is far from any peak.

As counts at tj are independent of counts at any other time, the likelihood function 

of N  data points that we observed, the count sequence (nl,n2,---nN) in the window 

located at time to, is then:

In order to compute the odds ratio, we need to compute the evidence for both Mo 

and Mi, which requires marginalizing the likelihood function over parameters, as 

shown in Chapter Two. First, let us consider the case where there is no peak in the 

window, only the dark current due to electronic fluctuation, i.e. Mo. We may use a 

prior distribution

ri =r(ti) = r0+ax(ti) (3.9)

(3.10)

N

where it is assumed that x,- has unit area: ^  x1 - 1.

Omax

0 < r0 < r0Omax (3.11)
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as we know nothing about the dark current, so we choose a uniform distribution ^f
Om ax

o /  \

for ro. We choose to be the prior of the amplitude because in M0 the peak

amplitude is zero and the integration only performed on the positive axis when 

marginalizing.

Substituting (3.10) and (3.11) into equation (2.24), one may find the evidence for 

Mo. As in Chapter Two, the detailed calculation may be found in the Appendix B, here 

we only quote the result:

p(n | M0, t0) = ^ p ( n  | a, r0,M 0, tQ)p(a,r0 \M 0,t0)dadr0

= j j e -^ o g- ^ K + ^o)n' m  dadro  ( 3 .12)

/= !  H i ! 2 r 0 m ax

“ n » , '

We now consider model Mi, where there is a peak in the presence of dark current 

in the window. We choose the prior distribution of a and ro to be uniformly 

distributed:

p(a,r0 \M l) =  l- , 0 < a < a max,0 < r0 <r0max (3.13)
d r

m ax  Om ax

Then, according to equation (2.24), the evidence for Mi is:
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p (n \M l,t0) = ^ p (n \a ,r 0,M l,t0)p(a,r0 \M 1,t0)dadr0

=--- 1~-- \\e Nr"e~“Yl(ax‘ + rodadro 3̂'14̂
W W l l "-1 !=1i=l

N

The integral in (3.14) is over the parameter plane (a, ro), the term Y l ( axi +ro)n‘ is
i= i

problematic when the peak amplitude is comparable to the dark current. However, as 

we are looking for strong evidence of peaks in the spectrum, the product

N

]^[(axi + r(j)n‘ will be dominated by the peak even if axt is just slightly larger than ro
i = i

due the power of nL, and vice versa. Thus we will neglect a very narrow region close

to the diagonal of aro-plane, and approximate (3.14) by:

p {n \M l,t0)~  p(n\M [,t0)
= pin  | only a peak in the window at t0)

+ p(n | only dark current in the window at t0)
= pin  | only a peak in the window at t0) + pin  | M 0,t0)

where model M[ is an approximation of model My. there is either only dark current 

or only a peak (no dark current) in the window. Hence the ratio in equation (2.23) 

becomes:

p iH l | n) p i n \ M \ , t 0)  ̂+ Pin I onfy a peak in the window at t0)  ̂̂
p{H0 \n) p (n \M 0,t0) p {n \M 0,t0)

where pin \ only a peak in the window at t0) can be computed with the same fashion as

pin  | M0) , but with a different prior:
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p(a,r0 1 only peak) = (3-17)
2 «m ax

This results in (see details in Appendix B):

(n*')(5»!p{n | only a peak in the window at t0) = -------------   (3.18)
2 a \ \ n !max X  X  *

Substitute (3.12) and (3.18) into (3.16), we find the odds ratio to be:

+ i (3.19)
P (P o | «) «inax ;=i

In (3.19), only the first term changes as data {«} changes. As we will see soon, the 

first term dominates when there is a peak and becomes negligible where there is no 

peak.

§ 3.4.2 Parameter fitting

With above ratio (3.19) computed, if the odds ratio is above some threshold, we 

infer there is a peak in the window, and the parameter, i.e., the amplitude, can be 

estimated by maximizing the likelihood function (3.10), using the dark current 

estimated from the tail of the spectrum where there is no peak. The natural logarithm 

of the likelihood function (3.10) is:

L(n | a,ra,M x,t0) = \og[p(n \ a,r0,M x,t0)]
__ \ * “  *■' y

= -Nr0 - a  + 2_ini log(f0 + axt) -  £ log(»,.!)

To maximize it, we set:
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—  = - l  + N V  X- = 0  (3.21)
da r0+ axi

Note axi »  r0 if there is a peak, the r0 in the denominator is then negligible 

(recall x{>0, the window lies near the center of the peak and does not extend to the 

tails):

f ^ - l  + E -  = 0 (3.22)
da a

which results in:

a (3.23)
k=\

This is our best estimate of the amplitude of the peak. This approximation is not 

good for very small peaks. The second derivative of (3.20) gives the uncertainty of 

the estimated a*\

A a = \ Y j ni (3.24)
;=i

As in the previous chapter, one has to notice that the above calculations have been 

carried out only for ONE window that is located at some to. One has to let the window 

now slide point by point and carry out above necessary calculations for each window. 

The best estimation of t*0 is found by looking for local maximum of

£ ( n \a  ,rQ,Mi,t0) = £ (t0)•
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§3.5 Results on simulated data and their interpretation

As we have derived necessary formulas for finding peaks in a TOF-SIMS 

spectrum, let us first try it on simulated data to see what the results look like and how 

to interpret them.

In Fig. 3.1 we show a simulated peak with Poisson noise in the first pane. The 

ideal peak without Poisson noise is a Gaussian with a variance equal to 100, centered 

at t=1000. In this case, the assumed known peak lineshape xj is the same Gaussian but 

runs only from the left half maximum to the right half maximum. This is an ideal case 

where we know exactly what the peak lineshape is. In the next two panes, the log of 

the odds ratio and the log of the maximized likelihood for each window position are 

plotted:

As the moving window approaches a peak, three distinct regions can be identified. 

The behavior of the log of the odds ratio ,R (n \t0),  and the log of the likelihood,

L*(h | a*,r0,M l,t0) for each window, and their interpretation is listed in the following 

table:

(3.25)
« j r  log(Nxt) + log(A) + logC^sss.)

/=1 ^m ax'max

(3.26)
“  ■a* + Z  n> lo§^o + a*xi) -  X  log(^ ' !)
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Table 3.2 Interpretations of behavior of R(n \ t0) and L*(n | a ,r0,M x,t0)

Region R(n 110) Interpretation £ ( n \a  ,r0,Mi,t0) Interpretation

I Close to 
zero1

No peak High2 It is highly likely 
that there is only 
dark current 
occurs in this 
region

II First 
remains 
close zero, 
and then 
begins to 
increase.

As the window 
first encounters 
the rising edge 
of the peak, 
there is not 
sufficient 
evidence of a 
peak, but as the 
window keeps 
moving towards 
the peak, it is 
more evident 
there is a peak, 
so R(n \ t0)
begins to 
increase.

Decreases first, 
but eventually 
begins to increase.

In this region, first 
it looks like there 
is neither a peak, 
nor only dark 
current, so 
L*(n\a,r0,M v t0) 
initially decreases. 
As the window 
continues to move 
to the right, it 
eventually looks 
like there is a 
peak, so
£ ( n \a  ,r0,Mi,t0)
begins to increase.

III Reaching a 
local max

There is a peak 
in this region

Forms a local 
spike

The maximum 
occurs when the 
window is right on 
top of the peak

1 Hi has one more parameter to fit than Ho, generally this will improve Hj. The 
worst situation is that this parameter does not bring in any improvement, thus 
p(H l | n) will be always no less than p(H 0 \ n ) , so the smallest value of R(n \ t0) 
is zero.
2 the highest possible of value of L*(« | a ,r0,M 1,t0) is also zero, corresponding 
to the likelihood having a value of 1, i.e., certainty.
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To find the best estimate of to, fit the peak of £(n\a*,r0,M l,tQ) in region III to a 

parabola:

r « 0) = r  - t l f  (3.27)

Because L*(n | a*,r0,M v t0) is sharply peaked, and we exponentiate 

| a*,r0,M 1,t0) to get the likelihood, the likelihood should look like an even

sharper Gaussian, the center of the parabola is then the center of the Gaussian and its 

curvature gives our local estimate of the uncertainty in the peak position:

= \  (3.28)
a ‘„

For the simulated peak in Fig. 3.1, we find that t*0 -  999.803, and a .  =1.336 . At 

first glance, one may think that R(n \ ta) is more sharply peaked than 

| a*,r0,M v t0) . In fact this is not the case. R(n\t0) seems to be sharper simply 

because its y-axis range is much smaller. It becomes clear that L*(n\a*,r(),M x,t0) is 

actually more sharply peaked in Fig. 3.2 where R(n\t0) and £ {n\a ,rQ,M x,tQ) are 

plotted such that y-axes have the same range. Actually, for R(n \ t0) , we can calculate 

the “uncertainty” as we calculate and it turns out to be 3.287, much larger that a . .

Having seen the £ ( n \a  ,r0,M x,t0) in Fig. 3.1, one might think that since 

L*(m | a*,r0,M v t0) has this characteristic shape, we can look for the spike in 

L*(n | a ,r0,M {,t0) to find the peak, why should we bother with the odds ratio? The
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answer is that we do need the odds ratio for several reasons. First, the odds ratio, 

which depends on the peak shape, but is independent of parameters, gives a better 

sense in which region there might be a peak. This can be done by setting a thresholds 

on R(n\t0) which we will discuss in detail in next chapter. Second, as in Fig. 3.3, 

when there are two peaks close to each other (in pane a), the characteristic shape of 

Z,*(« | a ,?Q,Mx,to) will be distorted. It forms a spike between the two peaks (in pane 

b). It would be wrong if one sees this spike and considers there is a peak, the odds 

ratio can help us to avoid this mistake (in pane c). Third, as in (3.26), 

H(n\a*,r0,M 1,t0) depends on the signal amplitude. The spike will become less

obvious for small peaks, then finding peaks could rely on the odds ratio by setting an 

appropriate threshold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Fig. 3.1 Behavior of log of the odds ratio and log 
of the maximized likelihood of a simulated peak.
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(a) A simulated peak with Poisson noise. The true peak (without 
noise) is a Gaussian curve of variance 100 centered at t=1000.

(b) The log of the odds ratio for each window.
(c) The log of the maximized likelihood for each window.
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Fig. 3.2 Graphical comparison of the sharpness of 
R(n 1t0) and the sharpness of L*(n \ a ,ra,M x,tQ)

1000
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1200 1400600 800 1000 t

-500

-1000
1200 1400600 800 1000 t

In (a) and (b), R(n \ t0) and l l (n \ a*,r0,M v t0) are plotted in a way 
the y-axes cover the same range. It is evident that 
L* (n | a , r0, M x, t0) is sharper, and more sensitive to peak position.
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Fig. 3.3 ‘Phony peak’ in the log of likelihood
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When two peaks close to each other as in (a), £(n\a*,r0,M 1,t0)
forms a ‘phony peak’ between the two actual peaks as in (b), which 
may mislead someone to think there is peak in the spectrum 
corresponding to the ‘phony peak’ in I?(n\a ,r0,M v t0) . The odds 
ratio clear eliminates this possibility. As in (c), R(n\t0) remains 
close to zero in the region between two peaks.
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Chapter 4 

Automated TOF-SIMS Peak Picking

In this chapter, we are going to apply the peak picking method that has been 

developed in the previous chapter to real TOF-SIMS data. In order to do so, we will 

need to first solve some problems, namely, derivation of the peak lineshape and 

threshold setting strategy. We will begin with a description of the TOF-SIMS 

instrument we used, which will facilitate the derivation of the peak lineshape.

§ 4.1 TOF-SIMS apparatus

The instrument we used for TOF-SIMS experiments is a TRIFT II spectrometer 

from Physical Electronics. The configuration of the instrument is sketched in Fig. 4.1. 

It uses a Ga+ (or Au^) liquid metal ion gun (LMIG) as the primary-ion gun to probe

the sample surface and has three quasi-hemispherical electrostatic-sector analyzers 

(ESA) as part of the secondary ion optics.

The secondary ions are extracted by an immersion lens and fly in a field-free 

region for some distance and then transfer into the ESA through a transfer lens. These

73
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lenses are important for secondary ion detection but the details about how they work 

are of less interest here and will not be discussed.

Each ESA uses an electric field (E) that is perpendicular to the secondary ion 

velocity to bend the secondary ion by 90° according to:

Z7 W y 2  ( A  1 \qE =-----  (4.1)
r

Let Ek denote the kinetic energy of the secondary ion, it is easy to see that:

?F
r = ^  (4.2)

qE

From (4.2), it is clear that ESA provides energy focusing in the sense that faster 

ions of the same mass have larger radii and hence follow longer trajectories. More 

specifically, let Eq and vo be the nominal kinetic energy and velocity of a secondary 

ion species, it will take Lo/vo for the particle to fly a distance of L q. For a secondary ion 

of kinetic energy E=Eq{ 1 +<5), ( S « l ) ,  in the time Lq/vq, it will fly a distance of:

I Z i = = (4.3)
V 2m  v0 v 2m  v 0 2

That is, to a first order approximation, this ion will fly an extra distance LoS/2. The 

principle for ESA to achieve energy compensation is to let the secondary ion of energy 

E  to travel LoS/2  longer by following a loop with a greater radius.

In a TRIFT II system, as shown in Fig. 4.1, three consecutive ESA provide triple 

focusing and bend the secondary ions by 270°. After the secondary ions leave the third 

ESA, they fly in a field free region for distance L  before they hit the detector.
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Sometimes a post acceleration right in front of the detector is needed to boost the 

kinetic energy and momentum of the secondary ions to increase detection efficiency.

It is clear from Fig. 4.1 that throughout the flight, only electrostatic fields act on

the secondary ion, so the Hamiltonian is time independent and conserved:

2

H = -? -  + ®(r) (4.4)
2m

In fact, only when in the acceleration region and in ESA (region I and III in Fig. 

4.2) the secondary ion is affected by the electrostatic fields. A graphical sketch of the 

phase flow that illustrates the ion dynamics is shown in Fig. 4.2. The axial velocity 

and spatial distributions are illustrated by an ellipse. The ellipse is used just for 

convenience, one should not interpret the ellipse as multivariate normal distribution.

In region I, secondary ions come off the sample surface with initial axial velocity 

and spatial distributions, which are represented by the ellipse at the sample surface. 

The secondary ions are accelerated by an electrostatic potential. Because of the initial 

spatial distributions, the ellipse will be elongated in velocity after the acceleration. The 

combination of initial axial velocity and spatial distribution makes the ellipse tilt to the 

right when the ions enter region II, a field free drift region. In this region, the ellipse 

will be further tilted to the right as higher speed ions travel more distance in the same 

time. After the ions enter the ESA (region III), because higher speed results in larger 

radius, the tilt is eventually corrected. As a matter of fact, the ideal situation is that 

when the ions exit the ESA, the ellipse would be slightly tilted in the reversed 

direction so that when the ions fly through region IV, they would hit detector at the
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same time, as illustrated in region IV in Fig. 4.2. That is, the ESA does not 

compensate the velocity distribution of the secondary ions, but compensates for the 

spatial spread caused by the velocity distribution.

Another thing to note is that, Fig. 4.2 happens in a two dimensional space, only the 

axial velocity and distance is considered, but ions move in a three dimensional space. 

The angular distribution of the secondary ion velocity is another source that degrades 

the mass resolution. In order to achieve high mass resolution, an angular filter can be 

brought into place in front of the entrance of the first ESA. However, for biological 

samples, the entrance is often left fully open because of the low secondary ion yield.

Above, we have discussed the TOF-SIMS instrument we used in experiments. The 

detailed information about how TOF-SIMS experiments were conducted will be given 

in the next chapter, since here we want to focus on finding peaks in a TOF-SIMS 

spectrum. We will just “borrow” a typical spectrum from the next chapter, as shown in 

Fig. 4.3.

Pane (a) in Fig. 4.3 is a typical TOF-SIMS spectrum of pure peptide, Vasopressin, 

deposited on etched silver foil. The instrument runs at a time resolution of 138/75. The 

spectrum is plotted as counts vs. time, with about 8.6x105 time steps are plotted 

corresponding to a mass range of 0~2000Da. A close look at the parent peak of 

Vasopressin is plotted in pane (b). The sequential peaks, marked by I, II...V, are the 

isotopic pattern of the parent ion due to natural abundance of the constituent peptides 

atoms, H, C, N, S, etc. Two successive peaks are separated by IDa, easily resolved by
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the high resolution of TOF-SIMS. In mass spectrometry, mass resolution is used to 

describe the power of resolving nearby peaks. It is defined as:

mass resolution = (4.5)
Am

where m is the mass of a peak, Am is the full width at half maximum (FWHM) of the 

peak.

If the resolution was lower, each of these peaks would become broader and 

overlap with neighbor peaks resulting in one big, fat peak.

The majority of this work is done in time domain, because in time domain, the 

arrival time record is equally sampled, i.e., each time step is the same, 138ps. If we 

worked in mass domain, because of the quadratic relationship between mass and time, 

a non-linearity would be introduced; i.e., the mass spectrum would not be equally 

sampled in mass domain. It is easy to find that the resolution in time domain has the 

following relationship with the mass resolution:

m ‘ (4.6)
Am 2At

where t is the peak position, At is the FWHM in time. From now on, when we mention 

resolution which will be denoted by R, we mean the resolution in time domain:

R = ±  = ̂  (4.7)
At Am

It can be seen in pane (b) in Fig. 4.3 that At for peak I, II...V is about 150 time 

steps, which yields a R of about 4000. One thing to notice is that the R is roughly a
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constant across the spectrum. This can be seen in pane (c) in Fig. 4.3, which is a 

expansion of the early part of the spectrum.

§ 4.2 Application of automated peak picking methods to TOF-SIMS spectra

We have TOF-SIMS data in our left hand and the necessary formulas for finding 

peaks in a TOF-SIMS spectrum (Chapter Three) in our right hand. Now let us put 

them together.

There are two issues that need to be dealt with. First, a useful peak lineshape, xj, 

which is assumed to be known up to this point, needs to be derived. Second, we said in 

previous chapters that once the odds ratio was computed, a threshold could be set so 

that we could identify regions which we are confident contain peaks. We must choose 

the strategy to set the threshold.

Having resolved these two problems, we then coded our peak picking method in 

MATLAB. The algorithm takes the TOF-SIMS spectrum as input and gives peak 

positions, intensities and their uncertainties as output.

§ 4.2.1 Derivation o f  a peak lineshape

Let us consider ions of a specific m/z. As we mentioned in the previous chapter, 

the TOF-SIMS is a counting experiment and typically counts the arrival time of one 

ion at a time. For any given primary ion pulse, there will typically be, at most, one ion 

of m/z that reaches the detector and the eventual peak shape at m/z spectrum is an
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accumulation of many such independent measurements. Since ions generated at the 

sample surface have their initial distributions in velocity and time, ion optics are used 

to compensate for these initial spreads to get high mass resolution. An example is the 

ESA used in the TRIFT II apparatus that we discussed above.

Consider ions of m/z after they exit the third ESA and now fly freely towards the 

detector. Had we known the exact velocity and spatial distributions of the ions as they 

enter region IV in Fig. 4.2, we would be able to derive an exact peak lineshape, which 

is the distribution of the arrival time. Ultimately, the spreads in velocity and space as 

ions begin to fly freely come from initial distributions during the secondary ion 

formation. These distributions include, for example, spatial distribution due to reasons 

like the surface morphology and finite width of primary-ion pulse, the initial axial 

velocity distribution, angular distribution, etc. If we knew all of them, we would be 

able to convolute them together and derive an exact peak lineshape since the following 

on ion dynamics is pretty well defined. However, in reality, these distributions are not 

well understood.

Though part of these distributions still remains a mystery, some studies have 

revealed certain properties. For example, it has been shown that the axial velocity 

distribution of the secondary organic ion peaks at less than 5eV and has a width of a 

few eV [42, 43]. The distribution due to finite width of the primary ions can be 

minimized by optimizing the primary-ion gun such that the pulse is short and only 

minimal degradation of resolution is caused. For example, the primary-ion pulse in our 

experiment is about lOns.
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The important thing to keep in mind is that, because of the presence of ion optics, 

by the time the secondary ions enter region IV, the distributions in velocity and space 

are sharply peaked around the nominal value.

We have pointed out in the previous section that the ideal situation occurs when 

secondary ions leave the third ESA, the ellipse is tilted a little bit backwards, which 

causes the time at which the secondary ion hits the detector to be:

*total = t enter + t free  ( 4 ‘ 8 )

where tenter is the time at which the ion enters free flight region IV, tfree is the time that 

the ion takes to fly through region IV.

In Chapter Two we suggested a Gaussian for the velocity distribution g(v) from 

maximum entropy arguments: when assigning a probability density function (PDF) 

for the outcome of what will be a prior of a repeated series of identical and 

independent experiments, one should choose that PDF which maximizes the number 

of possible outcomes that are consistent with the probability assignment [44]. In other 

words, the choice of a Gaussian here is based on the desire to minimize bias in the 

outcome, not on physical arguments requiring ‘thermalization’ in the ionization 

process or the nature of the ion optics.

Thus, let us assume that as a secondary ion of a given m/z leaves the third ESA and 

begins to fly freely to the detector, it has a Gaussian velocity distribution which 

centers at vo(m) and has a width o(m), the distance of the free flight is L. The problem 

to be solved is the arrival time distribution at the detector. This can be done if we go to
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the phase space (z, v), as in Fig. 4.4, we are going to let z=0 be the point where the 

secondary ion begins to fly freely, let the detector be located at z=L. Let f(z,v,t) be the 

PDF. Then f(z,v,t)dvdz is the probability at time t that the ion lies in an infinitesimal 

neighborhood of the point (z,v) in phase space. At the instant t=0, the secondary ion 

enters region IV, we have:

/ ( z ,  v, t) = / ( z  = 0, v, f = 0) = £  (z)g(v) (4.9)

where g(v) is the Gaussian distribution:

(v-v0(m))2

g(v)=  '■ (4.10)
V2;rcr(m)

This PDF f(z,v,t) evolves according to the Fokker-Planck equation, which in free 

flight is simply:

—  + v—  = 0 (4.11)
dt dz

implying that:

f(z ,v ; t)  -  S (z-v t)g (v )  (4.12)

In the (z, v) phase space, the motion of the particle is represented by a straight line 

that crosses the origin and has a slope of 1/t. The cumulative probability P(t) that the 

secondary ions will fly across the detector in time interval (0,t] is:

oo L i t

P(t)= \g{v)dv = 1 -  Jg(v)Jv  (4.13)
L i t  0

Then, the PDF of arrival time is simply:
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(4.14)

1 L  

yl2n<j{m) t2
2 ( c r ( m ) f

We pointed out previously in equation (4.8) that the ion enters the final free flight 

region at time tenter which will be different from one ion to another even if both ions 

are of the same m /z. This means that tenter itself has a distribution and we should 

convolute it with (4.14). But, it is not clear what the tenter distribution looks like. We 

find that, as a simple approximation, let tenter be a constant, the resulting peak 

lineshape still fits well with observed data in the region above the half maximum 

which be illustrated momentarily. The reason for this may because that tilt of the 

ellipse at the entrance of free flight region IV is small compared to the spread in space 

due to the finite pulse width and surface morphology. Thus, we may set tenter to be 

zero.

However, we do not use (4.14) directly in our calculation as we do not know vo(m) 

and a(m ) in advance. Instead, we do the following time transformation for the N  data 

points included in the window at to'.

o
(4.15)

and let:
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The N in (4.16) is a normalization factor such that ^ x ,  = 1.

The R in (4.15) is the resolution in time as in (4.7). As we have already pointed out 

several times, in our TOF-SIMS spectra, R is roughly the same over the observed mass 

range. For other types of instruments, such as MALDI, R is roughly constant over the 

mass “focusing” range where the resolution has been optimized. Outside this region, 

for MALDI, R begins to decrease.

The S  in (4.15) is a scale factor, it is the FWHM of the function 

f ( u ) = exp(-l/w 2)/w2.

There are two remarks about (4.14) and (4.16). First, (4.16) shares the same 

functional form as (4.14), the peak lineshape described by (4.14) and (4.16) has the 

same asymmetry property. Second, as shown in Fig. 4. 5, the transform

u _ - 1  _|_ h.— {JL x p  shifts a peak with maximum near to to a peak with maximum near
h

u= 1 and compresses it to have a FWHM=1. It is then stretched by the multiplication 

of S such that it has the same FWHM as the peak lineshape x,.

§ 4.2.2 Optimizing peak lineshape parameter

First, suppose we ‘magically’ have a perfect sequence of counts {«} that has no 

noise on it. In other words, {n} represents the true peak lineshape. The set of numbers 

{x,} that would exactly be proportional to the true peak lineshape would maximize the
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likelihood function (3.10) or, equivalently, the natural log of the likelihood function 

(3.20). This can be shown as following. We wish to find the set of {x,} that

Take the derivative of h with respect to Xj, note axj is far larger than ro when there 

is a peak, and that xj only goes from the left half-max to the right half-max of the peak. 

We then have:

Equation (4.18) has to be true for all i=l,2...N, which implies that the best set of 

{x,} is the one that is proportional to {«,}. Such a set of {x,} would maximize the 

likelihood. This makes sense as in Chapter Three, where the local rate is assumed to 

be r = axi + r0.

The peak lineshape in (4.15) and (4.16) is derived from a simple approximation, it 

is not the exact peak lineshape, but Fig. 4.5 ( and later in Fig. 4.8) shows it is a good 

approximation in the sense that it fits well with the data above the half maximum. The 

peak lineshape will deviate from data as we go farther away from the center. Thus, in 

the following calculation, when we use (4.16) as our peak lineshape to identify peaks

maximizes (3.20) subject to the constraint that ^ x , . -1  = 0. Let us use Lagrange 

multiplier:

h = L{n\airQ,M l,tfi) - X  X * ; -1
V  1=1

f  N \ (4.17)

= -N f0 - a  + Y , ni log<To + **,)“  X log(«, 9 -  ̂  X “ 1
J

(4.18)
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in a spectrum, we restrict ourselves to only use {x,} that are above the half maximum 

of f (u )  = ex p (-l/u 2) /u 2, as in Fig. 4.5.

The {x;} that we derived is determined by the parameter R. One should use an 

optimal R which leads to a set of {x7-} such that, when the window is right on top of a 

peak, the likelihood function is maximized, or, in other words, {x7} is made to be 

proportional to observed data as closely as possible. However, as we do not know in 

advance at which window position t*0 the window is ‘at the peak’, we sum the

likelihood in the region around t*0, as in Fig. 4.6. In doing so, we are, in some sense, 

marginalizing the likelihood function against to, which makes us less insensitive to t*0. 

Strictly speaking, we are not marginalizing since the data varies as the window shifts, 

however, in the region around t*0, data only changes a few points, this introduces only

a small effect. Also, since around t*0, n{ a nN, the changes are not great.

As we set out to find an optimal R, we notice that, within a TOF-SIMS spectrum, 

the R is roughly the same but not exactly a constant, which we have demonstrated in 

previous section (Fig. 4.3). So, we manually picked about one hundred “obvious” 

peaks in a spectrum. By “obvious” peaks, we mean peaks that are well above noise 

level, i.e. are of large intensities. For one selected peak, we let R vary from 3100 to 

6000 in steps of 100, and found the one value of R that maximizes above the sum of 

likelihood. This was treated as the ‘individual optimal’ for that peak. This was done 

again for all selected “obvious” peaks and we then took the mean of all ‘individual 

optima’ as the ‘spectrum optimal’ R for the spectrum. Second, for similar samples, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

R does not change much from sample to sample, especially for samples that are taken 

only days apart, as long as the machine is running stably. Thus, in principle, one can 

use the ‘spectrum optimal’ for all similar samples. Yet, to be careful, we took an extra 

step. Our samples were taken over three successive days. We performed the above 

optimization on two spectra from each day, and got six ‘spectrum optimal’ R, the 

mean of the six ‘spectrum optimal’ R was then used in (4.15) and (4.16) to compute 

the peak lineshape.

§4.2.3 Threshold setting strategy

Having settled on the peak lineshape model parameter, we are then left to fix a 

strategy for choosing the threshold. We first note that the actual data observed in a 

window {ri], n.2 ...n^} is just one realization of a process with rates {>/, r2 ...r^), where 

ri is the assumed local rate for some peak amplitude a, and shape xt, as in equation 

(3.9). Thus, the calculated log of the odds ratio in equation (3.25), R(n\to), will deviate 

from its expected value < R(n\to)> due to sampling fluctuations. If we can find < 

R(n\to)>, we can then set a threshold by comparing R(n\to) with < R(n\to)>. To find < 

R(n\to)>, we will need an ensemble of {«}. Just like in the univariate case, we need to 

draw a series of samples to estimate a random variable’s mean. However, only one 

realization of {n} was observed in the spectrum, so, let us try a mental experiment. 

Imagine we have an ensemble of M  realizations of {r/, Y2 ...yn). We use n\ to denote 

the counts at ti in j th realization. We may, approximately, write:
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n{ = axj + %!■Jaxi i = l,2---jV; j  = \,2---M  (4.19)

where £,( is a random variable from Normal distribution with mean zero and variance

one. In writing nf in the form of (4.19), we preserve two important properties of nj as

a Poisson random variable. Its mean and variance, when averaged over j ,  we would 

have:

(nl)  = axi
/ \2 \ (4-20)

var(«(.) = (( n, -  ax,) ) = ax,

Substitute (4.19) into (3.25), and then average over j .  We would have:

{R(n Uo)) = X ax, log(Nx,) + log(A) + l o g ( ^ )  (4.21)
i= l  ^ m a x

and the corresponding variance:

var(R(n \ t0)) = £ a x ,  (log(Nx,))2 (4.22)
i= i

A careful look at (4.21) and the log of odds ratio (3.25), shows that they all are 

proportional to the peak amplitude. Higher peak amplitudes would lead to larger odds 

ratios, which means stronger evidence of the presence of a peak. A threshold on odds 

ratio implies a requirement on the minimum peak amplitude. In order to be confident 

there is a peak in the window, there must be sufficient counts in the window. If there is 

a total of a counts observed in the window, the {n} observed in the window may come 

from two distinct local rates, one is r. = ax, + r0, i.e. associated with a peak; the other
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one is r '= -^  + r0, i.e. associated with a larger dark current (pure noise). For the latter, 

we can similarly compute(/?'(n 110)} and var(i?'(« 110)) :

(R'(n | („)) = g  loS(Nx,) + log (N) + log
N f  \YOmax 

V ^ m a x  J

(4.23)

var(R'(n \ t0)) = (togCMx,-)) (4.24)

The requirement on the amplitude is then that, a has to be large enough such that 

(R(n 110)) and (R'(n \ t0)) have to be well separated compare to var (R(n \ t0)) and

var(i?'(« |t0)).

§4.3 Results

Applying our peak picking algorithm allows accurate and automatic peak finding 

in a TOF-SIMS spectrum. The calculation for one spectrum of ~106 time series takes 

about 3 to 4 minutes on a 650 Hz Sun Fire V I20 server. Peak positions and 

amplitudes, together with their uncertainties are reported. In Fig. 4.7, the work flow of 

peak finding is shown. In Fig. 4.8, a few example peaks are overlapped with estimated 

peak amplitudes times our peak lineshape that locate at the estimated peak positions. 

One may see that stand-alone peaks, peaks with satellites, and peaks that are partially 

overlapped are detected. In the next chapter, we discuss an automatic algorithm for 

aligning the peaks that have been identified in multiple spectra. This “auto-alignment”
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step is required before we can compare two different spectra to look for similarities or 

dissimilarities.
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Fig. 4.1 Layout of TRIFT II configuration
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Fig. 4.2 Sketch of ion dynamics for TRIFT II
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Ions of the same m/z are generated on the sample surface with initial velocity and spatial distributions. 
They spread even more after the acceleration region (I) and the first free flight region (II). ESA (III) 
compensate the spread so that ions exit the ESA at the same time and then fly freely (IV) to the detector
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Fig. 4.3 A typical TOF-SIMS spectrum of Vasopressin
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Fig. 4.4 Ions that can hit the detector at time t

k = -

z

Only the portion with velocity above L/t could pass the line z=L at time t
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Fig. 4.5 Illustration of transformation of equation (4.15).

700

600

500

400

300

200

100

0
-2 0 2 4 6 8 10

700

600

500

400

300

200

100

0

600

500

400

300

200

100

10

300

(a) apeak;

(b) transform time t to ut -1  + - —— x R , now the peak maximizes
h

around 1 and has FWHM=1;
(c) stress (b) by multiply S;
(d) peak lineshape;
(e) overlap of (c) and (d)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

Fig. 4.6 Optimize the resolution R
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Fie. 4.7 Work flow of findine neaks in a TOF-SIMS soectrum

(1) Read in spectrum

(2). Put a window of width N  which isolates N  
data points

(7). Find peak information in regions identified in

(6). Find the regions where the odds ratio is 
above the threshold

(5). Do calculation in (3) for each of these 
windows

(3). For these N data points, compute the log of 
odds ratio and log of likelihood, i.e., equation 
(3.25) and (3.26)

(4). Let the window slide one data point by one 
point. Window width will increase so that it 
always runs from left half max of a peak to 
the right half max of the peak
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Fig. 4.8 Detected peak and the fitted curve overlapped with spectrum
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Chapter 5 

Searching for Patterns in 

TOF-SIMS Mass Spectra Part I: 

Peak Alignment and Feature Selection

In this chapter, we first describe the collection of some TOF-SIMS spectra upon 

which we apply the method developed in previous chapters. Instead of collecting 

spectra from arbitrary samples, we carefully designed an experiment which would be a 

model for the use of TOF-SIMS as a biomarker discovery tool. Specifically, we 

created various mixtures of the peptides angiotensin (Ang), somatostatin (Som) and 

vasopressin (Vas), the goal being to infer the concentration ratio from the TOF-SIMS 

spectra. We will achieve this by introducing multivariate analysis. We will first find 

patterns in the spectra of each individual peptide that provides discriminant ability and 

then infer the concentration ratio by examining the strength of patterns in the mixture 

spectra. In this chapter, we will only describe how the spectra were collected and how 

to convert the spectra into appropriate data format so we can apply multivariate

98
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analysis. That is, we will introduce a peak alignment strategy and a feature selection 

procedure. The discriminant analysis and inference of concentration ratio from the 

spectra will be left to next chapter.

§5.1 Experiment details 

Motivation:

This work was done under more challenging conditions in which tools for the 

discovery of biomarkers associated with disease are under development. The idea is 

that disease processes would lead to unusual protein levels in the body which can be 

screened by high throughput profiling of tissue or blood by means of a mass 

spectrometer. The spectra would be collected from both sick and healthy people, the 

goal is then to find “biomarkers” that discriminate between these groups [3, 4, 5, 6, 7, 

8, 45]. The biomarkers are characteristic peaks in the mass spectra that provide 

discrimination capability and are likely to be a combination of a few peaks. It is 

important in the biomarker discovery process that one needs to first identify 

significant peaks that are above the noise level and to reliably find their positions and 

amplitudes. In doing so, a spectrum that contains tens or hundreds of thousands of data 

points is compressed to far fewer data points that represent only meaningful peaks and 

hence reduces the dimensionality. It is the information of peak position and peak 

intensity that is used for finding different patterns between healthy and diseased
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patients and our peak-picking algorithm is designed to automatically extract this 

information from the spectra. Simply using the raw spectrum may lead to “false 

discovery”. False discovery, in turn, can lead to a significant waste of resource as any 

potential biomarkers are tested in further clinical trials or drag developments.

Another potential application lies in the imaging of biomaterial surfaces, where the 

surface is rastered and each rastering position would be a pixel in the final image. At 

each pixel, a full mass range spectrum is acquired. By detecting the peak positions 

and intensities in each spectrum, one can select a specific peak (a chemical species, for 

example, cholesterol) and build an image of surface abundance of that peak [46, 47, 

48,49, 50,51,52].

In previous work, we have been able to register peptides that were deposited on 

etched silver. Because of the destructive nature of SIMS, both fragments and 

molecular ions were observed. As each different peptide has its own specific amino 

acid composition, it would not surprise us that each peptide would have its own 

fragmentation pattern, which would appear in the spectrum as repeatable peak 

distributions at different m/z with different intensities. Finding these patterns would 

enable us to discriminate between different parent peptides, just as finding patterns in 

a sick person’s serum spectrum would help us diagnose disease. It would also be 

interesting if we can quantitatively infer the concentration ratio of peptides by 

checking the relative strength of patterns in a spectrum from a mixture sample. This is 

a model system for the more complicated biomarker discovery problem.
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Experimental design:

The experiment was designed with help from Dr. Michael Trosset of the William 

and Mary Mathematics Department. A series of ten samples of three different peptides 

(Ang, Som, Vas), consisting of individual peptides (pure samples), binary mixtures 

and ternary mixtures, were made according the concentration ratio shown in Fig. 5.1. 

This design helped us to test if  there was a linear relationship between the relative 

pattern strength and concentration ratio, which will be discussed in next chapter.

Materials:

Three peptides were used for the experiment. They were Angiotensin II Human, 

ArgS-Vasopressin and Somatostatin. Vasopressin was purchased from Sigma Aldrich 

and the other two were purchased from American Peptide Company. A diagram of the 

amino acid sequence of each peptide is shown in Fig. 5.2. All samples came in sealed 

glass containers, kept in a refrigerator, and were used without further purification. 

Silver substrate foils were purchased from Alfa Aesar.

Sample preparation:

2
The silver substrate was cut into small pieces (0.6 ~ 1 cm ) then etched/cleaned by 

immersion into 25% nitric acid. Previous experiments had shown that etching for 4 

minutes would expose fresh silver without introducing significant surface roughness, 

which causes a decrease in the secondary ion yield. During etching, a stirring bar was
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used to disperse gas bubbles forming on the surface. These substrates were then rinsed 

with deionized water once, ultrasonicated for 5 minutes, then rinsed with deionized 

water 3 times.

Three peptides were dissolved in separate beakers in deionized water and each had 

a concentration of 0.15mg/ml. They were shaken for 5 minutes to completely suspend 

or dissolve them. They were then mixed together according to table 5.1 to get mixture 

samples of the desired concentration ratios (Fig. 5.1).

Table 5.1 Volume of pure peptide solutions used for mixture sample preparation

Concentration ratio 
(A:S:V)

Angiotensin
(ml)

Somatostatin
(ml)

Vasopressin
(ml)

1:0:0 3 0 0
0:1:0 0 3 0
0:0:1 0 0 3

1/2:1/2:0 1.5 1.5 0
1/2:0:1/2 1.5 0 1.5
0:1/2:1/2 0 1.5 1.5

1/3:1/3:1/3 1 1 1
2/3:1/6:1/6 2 0.5 0.5
l/6:2/3:l/6 0.5 2 0.5
1/6: l/6:2/3 0.5 0.5 2

Each mixture solution was then incubated with one etched silver foil at room 

temperature for 40-60 minutes. After that, the silver foil was taken out of solution, 

shaken to get rid of extra liquid droplets on the surface and blow-dried with nitrogen 

gas. They were then stored under nitrogen in dessicators before the acquisition of
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SIMS spectra. All preparation was done exclusively using glassware that was cleaned 

with nitric acid and deionized water to minimize contamination by organic polymers 

from plastic containers.

Spectra acquisition:

A TRIFT II spectrometer (Physical Electronics) with a Ga+ primary-ion gun was 

used to acquire spectra. The spectrometer was operated at a pressure of

( l.5 -3 .0 )x l0 “10 Torr. The primary ion had an energy of 15 keV. The scanning area

2 11 2 
was 200x200pm . The primary-ion dose was computed to be 3.47 x 10 ions/cm ,

within the static regime. For each piece of silver, thirty areas that spread over the

silver were scanned, i.e., thirty spectra for each mixture solution.

§ 5.2 Multivariate analysis

The great analytical power has made TOF-SIMS a powerful surface 

characterization tool. It gives a wealth of chemical information and structural 

information about the analyte. Its capability of detecting ions in parallel over a large 

mass range generates spectra with a large amount of data rapidly. This is particularly 

so when organic materials are analyzed. For heavy mass polymers and biological 

samples such as proteins, it is always the case that due to the inherent destructive 

property of SIMS, many fragment ions are generated as a result of energetic primary
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ion impact, resulting in from a few hundreds to thousands of peaks. Sometimes, the 

intact molecular ions are not observed at all, in which case all information is 

embedded in the large number of fragment peaks. It is then a real challenge to 

transform these data into useful information.

Multivariate analysis, which has been commonly used in statistical pattern 

recognition and chemometrics, has been increasingly used to help to interpret SIMS 

spectra and SIMS imaging to provide insights into the spectra [41, 53, 54],

Multivariate analysis, as opposite to univariate analysis, deals with the situation 

where more than one measurement is performed on one sample. In multivariate 

analysis language, each measurement is called a variable. Each multivariate object 

naturally lives in a multi-dimensional space. The “dimensionality” is the number of 

variables. For example, in a peptide TOF-SIMS spectrum, there are a few hundreds 

peaks, each of these peaks would be a variable. The dimensionality is the number of 

peaks. It is usually true that some of these variables are correlated. In a TOF-SIMS 

spectrum, this is demonstrated by the fact that many ions are fragments of the same 

parent ions but from different fragmentation pathways and thus carry related 

information. The advantage of multivariate analysis is that it is potentially capable of 

untangling this information and thus simplifying the spectrum.

§5.3 Peak alignment

In general, if we have p  measurements on each of n objects, multivariate analysis
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usually begins with a n x p  data matrix X :

C \

(5.1)

in which each row is an object (or sample, or patient), and each column is a variable.

In order to perform any multivariable analysis on TOF-SIMS spectra, we have to 

fill the detected peaks into such a data matrix in such a way that each row corresponds 

to a spectrum and each column corresponds to a peak of certain m/z. However, the 

spectra collected are not naturally aligned. Peaks of the same m/z will arrive at the 

detector at slightly different m/z positions due to factors such as fluctuations in 

extraction voltage, as shown in Fig. 5.3, the dot and dashed lines are two spectra of the 

same sample in the same mass range. It is clear that there are small shifts between the 

two spectra. The same peak arrives at the detector at slightly different time, but they 

should be treated as peaks of the same m/z. This indicates a peak alignment is 

necessary.

Comparing two TOF-SIMS spectra, we observed that there was a linear trend in 

the relative shifts of peaks of approximately the same m/z in two spectra with respect 

to peak position, as shown in Fig. 5.4. Let p; be the peak position of a peak of m/z in 

the first spectrum, p 2  be the position of the peak of the same m/z in the second 

spectrum, we may fit the linear trend into the form:

P i - P 2 = aP 2 + b (5.2)
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This constant shift b is likely due to the surface morphology or triggering error 

while the linear trend could be caused by a small change in acceleration voltage. This 

can be shown as follows. The velocity of an ion after acceleration is:

eO = — mv2 (5.3)
2

substitute that v = L / t ,  where L is flight length after acceleration, t is the time of 

flight:

^  ^  S C  A \e® = — t- (5.4)
2t

take the derivative:

m l 2
edO = — V -dt  (5.5)

f

this implies that:

A® „ At= - 2 —  (5.6)
0  t

It is easy to see that the shift is proportional to the fluctuation in the voltage:

At = -------- (5.7)
2 0

Thus, we can shift and scale pi  to match it to y? y:

p'2 =(l + a)p2+b (5.8)

This is done globally for all peaks that lie “close”, with a and b optimized by the 

least square minimization of ^  (Ap)2 . The absolute value of residue shifts after 

match p 2  to pi  is shown in Fig. 5.5, in which, one may see that the residue shift is of
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the order of one in 105. The result of this transformation is shown in Fig. 5.6, where 

the same region as in Fig. 5.3 after this transformation is plotted. One can see that, 

though the transformation is very simple, peaks are aligned well. Having aligned the 

two spectra, we then take the mean of p x and p'2 as the peak position. We then use it

as p, to align a third spectrum, and so on. This is done for thirty spectra in each

sample, and a peak list for the sample is generated after this procedure. Figure 5.7 

shows a heat map of aligned peaks. In the figure, there are thirty horizontal lines, each 

line corresponds to a spectrum, and each vertical line represents a peak position, the 

intensity is plotted in log scale and is color code according the color bar on the right. 

A simple check of overall alignment effects of this procedure is to look at peaks of 

two silver isotopes, which are of the highest intensities in a spectrum, i.e., the brightest 

line in the heat map. It is no doubt that they are aligned across these thirty spectra after 

the alignment.

We first applied this alignment procedure on the spectra collected from ten 

samples on samplewise base. Then, the sample peak lists of three individual peptides 

(Ang, Som, and Vas) were used to generate a “master peak list.” All other sample 

peak lists were aligned to this master peak list.

Having finished the peak alignment procedure, TOF-SIMS spectra are converted 

into the data matrices of the form (5.1). Before this data matrix is used for further 

analysis, those peaks that only occasionally appear in a few spectra are discarded. 

More specifically, we look into the thirty spectra of one individual peptide sample, say
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Ang, find those peaks that appear in at least twenty spectra. These peaks are 

candidates to be retained. We do the same for the other two pure peptides samples, the 

union of all candidates are the peaks retained for further analysis.

§ 5.4 Feature selection

As stated in the beginning of this chapter, after constructing the data matrix, the 

first thing we need to do is to find patterns that separate the three individual peptide 

samples. These patterns can then be used to either classify new spectra, or, in our 

experiment, to infer the concentration ratios of mixture samples. If one thinks of the 

spectra of these individual samples as vectors in a multi-dimensional space, then the 

question is, do they cluster on a sample bases? That is, do the Ang vectors cluster 

separately from Som, etc.

The data matrix generated after previous peak alignment still has quite a number of 

variables. Even after discarding rare peaks, there are still over 400 peaks. One might 

welcome such a large number of variables because, intuitively, one would think that 

adding a new variable will provide additional information about the samples. With this 

additional information, one could build a better classifier. By better, we mean the 

misclassification rate is smaller. The worst case is that the additional information that 

the new variable provided has nothing to do with the sample, then the 

misclassification rate would remain unchanged. However, in practice, it is not the 

case. Adding in new variables will initially improve the performance of the classifier,
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if these variables are not from noise. But at some point, adding in variables will then 

lead to a degradation in the performance when the sample size is finite. This is the so- 

called “small sample size” problem, and it is an active research topic in statistical 

pattern recognition. This problem is beyond the scope of current project. For more 

information, one may refer to [55, 56, 57, 58], However, it is important to realize here 

that, as we have only thirty spectra for each individual sample, a step of choosing an 

optimal variable set with significant fewer than 30 peaks is required.

In order to find such variable set, a criteria is needed. What do we mean by the 

“optimal set”? We chose Wilks’ A test [59], which measures the ratio of the within- 

group covariance to between-group covariance for each choice of variable 

combinations.

Suppose we have data matrices X h X2...Xk from k  groups of p  variables, in the ith 

group, there are n, objects, i.e. X t is a p  matrix. Let xt . be the j th objects in the ith

group, x. be the mean of ith group:

(5.9)

Let x  be the over all mean of all objects from all groups:

k (5.10)

1=1
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Let W and B be the within group sum of squares and between group sum of 

squares, respectively:

k

W (5 U >
,'=1 y = l

B = Y Jni(xi ~x)'(xi - x)  (5.12)
i = i

It can be shown that W + B equals the total sum of squares:

T = t , ’Z ( x lj - x ) X x , J - x )  = W + B  (5.13)

The Wilks’ A is testing the hypothesis: H 0 \xl =x2 =---xk :

A = r ^ - r  (5-14)
\W + B\

If the k  groups do not show any clustering in ^-dimensional space, then 

3Ci = x2 = ■ ■ ■ xk = x  , and A = 1. On the other hand, if  k groups cluster in distinct

regions, then A would be smaller than 1. Thus, the goal of selecting features with 

discriminating capability is to find a set of features that results in the smallest A.

If we desire d  variables, one can, in theory, do an exhaustive search in all possible 

P1 —----- combinations to find the best set of d. However, this is often
( p - d ) \ d \

computationally expensive. To avoid this difficulty, we implement the first part of 

what is called McHenry’s variable selection [60], The strategy is to find a subset of d
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variables such that it is impossible to replace any of the d variables to decrease Wilks’ 

A. The work flow is demonstrated in the flow chart in Fig. 5.8.

To test the discriminant capability of selected features, a randomization test is 

performed. The randomization tests the hypothesis that a selected feature (a 

combination of peaks) provides no discriminating capability, i.e., spectra do not 

cluster in the space. For the interested reader who wants more detailed descriptions 

about randomization tests, see [61]; for an example of randomization test, see [62], 

Here we only describe how we do this test. First, we pool spectra of individual peptide 

samples together in the order that 1-30 are Ang, 31-60 are Som, 61-90 are Vas. We 

reassign the chemical label by randomly permuting the order, then treat the first 

random thirty as ‘Ang’, the second random thirty as ‘Som’, and the last random thirty 

as ‘Vas’. If the original spectra cluster, this random permutation will break the 

clustering, resulting in a much larger A compared to the A before shuffling. This 

random permutation is done 1000 times, and the distribution of resulting A’s is shown 

in Fig. 5.9. The original A is also indicated in Fig. 5.9. Clearly the original A is far 

smaller then those after permutation, indicating a good discrimination capability.

This summarized how our variables for classification are selected. In the next 

chapter, we describe, finally, the results of the classification on our mixtures.
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Fig. 5.1 The mixture map

Ang

1,0 ,0.

(2/3,1/6,176)

(1/2, 0, 1/2)(1/2 , 1/2 , 0)

(1/3, 1/3, 1/3)

(1/6,1/6, 2/3)(1/6-2/3, 1/6)

Som (0, 1, 0) (0, 1/2, 1/2) (0, 0, 1) Vas

The three vertices represent three pure ingredients Ang, 
Som and Vas respectively. The vertical distances from 
vertices to their opposite edges, represent the abundance of 
the ingredients.
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Fig. 5.2 Sequences of three peptides used in the experiment

Angiotensin:

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

Somatostatin:

Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys

Vasopressin:

Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly
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Fig. 5.3 The shift of the same peak in different spectra

6000
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x 10
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1000
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0
6.38 6.3856.37 6.375

The same peak arrives at the detector at different times in two different 
spectra (black dots and gray dashes). The shift in early part of the time 
series (a) is smaller than the shift in the late part of the time series (b).
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Fig. 5.4 Linear trend of the peak shift
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The shift between the same peak but in two different spectra gets 
larger as the arrival time of the peak gets later. The relationship 
between the shifts and arrival times can be approximated by a linear 
relationship.
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Fig. 5.5 The absolute value of residue shift 
after correcting the linear trend

After correcting the linear trend in the shift between the same peak 
in two spectra, the residue is only about 1 in 104 to 1 in 105
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Fig. 5.6 Effects of correcting the linear trend on spectra
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The same region as in Fig. 5.3, peaks are matched much better 
after correcting the linear trend.
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Fig. 5.7 Heat map of 30 aligned spectra

100 200 300 400 500 600 700 800 900 1000 1100

Peak Number

Thirty spectra are plotted as thirty horizontal lines. Each vertical line corresponds to a 
peak. The log 10 of the intensities are color coded according the color bar on the right.
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Fig. 5.8 The work flow of McHenry’s variable selection

General terminology: a subset is a set that contains a number of variables that are 
considered as candidates which lead to the smallest Wilks’ A. The remaining set 
contains all other variables that are not in the subset just mentioned.

(4) Repeat (3) for all variables in the subset.

(1) Begin with an initial subset, which may be a guess 
of best set.

(2) In the remaining set, find a variable such that when 
it is added into the subset, the Wilks’ A is as small 
as possible.

(3) For a variable in the subset, check all variables in 
the remaining set, look for the one that when using 
it to replaced the variable in the subset, the Wilks’ 
A is smallest.

(5) After one pass through, repeat (3) and (4) again, 
until after a pass through, variables in the subset do 
not change. The resulting subset is considered as an 
optimal subset
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Fig. 5.9 Histogram of Wilks’ A from randomization test

Original

After randomization, spectra do not cluster, Wilks’ A is much 
larger than before randomization, the spike marked ‘Original’.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Searching for Patterns in 

TOF-SIMS Mass Spectra Part II: 

Classification and Mixture

In this chapter, we will first introduce linear discriminant analysis (LDA) which 

projects high-dimensional data into a low-dimensional sub-space such that different 

groups are separated as much as possible. With our TOF-SIMS data, we first apply 

LDA to three individual peptide samples, i.e., looking for the projecting directions, 

and show the discrimination among them. Once the projection directions were 

determined, we then applied it to all mixture samples.

§6.1 Introduction to linear discriminant analysis

Linear discriminant analysis is one of the most common methods for 

discrimination. Suppose we have sample sets Xj, X 2 ...Xg (note that Xt is an x p

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

matrix as in the previous chapter) that are drawn from g ( g > 2 ) different populations, 

i.e., g  groups. The purpose of discrimination is to allocate an individual object x  to one 

of these g  groups. There are many ways to do this. For example, if  the probability 

density for each of these groups is known, this can be done by the maximum 

likelihood approach. Furthermore, if  the prior probability of each group is known, then 

a Bayesian discriminant that incorporates this prior would be a good choice [63]. 

However, in practice, these probabilities are not always known. LDA provides a way 

of performing discrimination without these probabilities. The assumption it makes is 

that all groups share a common covariance structure, but have different mean values.

The idea of LDA is easy to illustrate in the case of two groups. Let X; ( r ^ x p )  and

X 2  (n2 x p ) be the data matrices for group 1 and group 2, as illustrated in Fig. 6.1:

x l , l

1 1

.
.

.

K> x 2 =

<N

.
.

.

11 11

LDA looks for a linear transformation from x  to a ’x  (where a is vector of p  

elements) such that the ratio of the between-group sum of squares to the within-group 

sum of squares is maximized.

The linear transformation:

P

z g,i =  a ' x g,i =  Z a j x g , u  g  =  1’ 2  i  =  1’ 2 - n g  (6-2)
7=1
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gives a scalar zgi. The goal is to find an array (projector) a such that the squared 

standardized difference is maximized:

( z , - z 2)2 _ [a'(xl - x 2) f
s2z a 'Spla

(6.3)

where Spi is the pooled covariance.

The solution to this problem is:

a = Sp,(xl - x 2) (6.4)

An object x  will be assigned to group 1 if:

a \ x - f i ) >  0 (6.5)

where n  -  (3q + x2) / 2. Otherwise, it will be assigned to group 2.

This result is exactly the same as the maximum likelihood approach, assuming a 

multivariate normal distribution for the probability density function for each group.

In the cases of several groups, Fisher suggested to look for a vector a that 

maximizes:

^  (6.6)
a'Wa

where B and W are the between group sum of squares and within group sum of squares 

defined in the previous chapter.

It turns out that such a vector a is the eigenvector associated with the largest 

eigenvalue of the matrix W~'B [59, 63]. It defines the direction (the first discriminate 

coordinate) on which different groups are most separated. In general, matrix W~lB
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has min(p, g-1) non-zero eigenvalues, the eigenvector corresponding to the second 

largest eigenvalue gives the second discriminant coordinate, and so on. One should 

notice that since W XB is in general nonsymmetric, its eigenvectors are not necessarily 

orthogonal, which means that the discriminant coordinates may be correlated.

LDA is naturally related to Wilks’ A in the sense that Wilks’ A may be written as:

A = r & 1 = P [ —  (6.7)
\W + B\ L L l + Ai

where, m is the i eigenvalue of W~ B . That is, the feature selected according Wilk’s 

A criteria automatically gives best discrimination capability when LDA is used.

§ 6.2 Other work

Before we apply LDA to the TOF-SIMS data that we collected, we want to 

mention that Castner’s group at the University of Washington has done extensive 

work using TOF-SIMS as an analytical tool to characterize proteins adsorbed onto 

different surfaces. Part of their work involves using TOF-SIMS to analyze binary and 

ternary mixtures of proteins and using the “partial least squares” method to predict the 

relative concentration ratio[54, 64]. The result is then compared with the concentration 

ratio measured by other means such as I-radiolabel method and shows good 

consistency. The proteins used in their work are bovine serum albumin, bovine 

immunoglobulin C and human fibrinogen.
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Most experiments they performed are binary mixtures where the total mass 

concentrations were maintained but the relative concentration ratio of two components 

varied. In their ternary mixture experiment, the mass concentration of one component 

was fixed but the relative concentration ratio of the other two varied. It is effectively a 

binary mixture but with a background having a fixed concentration component. In our 

work, the relative concentration ratio of all three components is varied.

The variables Castner et al. used for their data analysis are selected based on a 

public literature search. The most intense fragment peaks, which are presumed to be 

originated from an amino acid, are chosen for further analysis. This might bias the 

data analysis because the various experiments in the open literatures were carried out 

under very different conditions.

The method Castner et al. used for data analysis is partial least squares (PLS) 

regression. It is a variation of ordinary linear least squares regression:

Y = X/3 + E  (6.8)

where X  are independent variables Y are dependent variables and E  are residuals.

The least square solution to (6.8) is:

P = { X ' X Y xX ' y  (6.9)

The problem with (6.9) is that it will break down when X  is not of full rank, which 

often happens with TOF-SIMS spectra analysis where many of variables (peaks) are 

present. PLS regression provides a way out of this situation. To understand PLS, we 

have to mention principal component regression (PCR). In PCR, X  is replaced by its
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principal component scores and Y is regressed on these scores. One may also replace Y 

by its principal component scores. However, in above, the principal component scores 

of Y and principal component scores of X  are calculated separately and may have only 

weak connections. PLS decomposes X  and Y into a small number of latent variables 

(“scores”) with the constraint that the covariance between X  and Y is preserved as 

much as possible. This is usually done by nonlinear iterative algorithm. For more 

details, readers may refer to [65, 66],

§ 6.3 Apply LDA to TOF-SIMS mixture data

We first applied LDA to three pure peptide samples. Since the group number is 

three, we get two nonzero eigenvalues, i.e., two discriminant coordinate axes, which 

determines a plane. The projection of samples onto this plane is shown in Fig. 6.2. It is 

clear that they are well separated.

We then project our mixture samples onto this discriminant plane. If there is linear 

relationship between the peak intensities and the relative concentration ratio, then the 

projection of mixture samples on this plane would have the same configuration as Fig. 

5.1, with three pure samples as three vertices of the simplex. For simplicity, in the 

following projections for mixtures, only the means of individual samples will be 

superimposed.
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In Fig. 6.3, the scatter plots of projections of three binary mixture samples are 

shown. The expected position is also shown. As we can see, they lie on the edges of 

the simplex, close to the middle point.

In Fig. 6.4, ternary mixture of concentration 1:1:1 is plotted, they are in the middle 

of the simplex, but locate to the left of expected location (gray diamond).

In Fig. 6.5, ternary mixtures of concentration ratios 1:1:4, 1:4:1 and 4:1:1 are 

plotted. They are relatively more spread, but not far away from their expected value 

(gray diamonds).

In Fig 6.6, the mean of all samples are plotted. The expected values of all samples 

are also plotted. Arrows are used to illustrate the deviation of sample means from 

expected values.

As we can see in above figures, projections of all samples are qualitatively in the 

positions we expected. Deviations from the expected positions may be due to many 

reasons. For example, the relatively large spread of each sample suggests a better 

normalization strategy may be needed. It is also possible that the intensities of peaks 

may not depend linearly on the concentrations, thus some higher order correction may 

be needed.
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Fig. 6.1 Illustration of LDA in two-group case

• t

Xl

An illustration of LDA in the case of two groups (dots and circles), two 
variables (x/ and x^). The two groups, the dots and circles are not well 
separated in either xj or X2 directions. LDA looks for a direction z, which is a 
linear combination of x/ and x ,̂ such that when the groups are projected onto 
the z direction, the two groups are well separated. The two Gaussian-like 
curves represent the distribution of the projections of two groups onto z 
direction.
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Fig. 6.2 LDA projections of pure samples
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LDC 1 x 10‘4

LDA projection of the spectra of three pure peptides samples onto a 
two dimensional plane. Spectra of three pure peptides form three 
distinct clusters.
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Fig 6.3 Projections of binary mixture samples

a s j
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(a): (Ang, Som, Vas)=(0,‘/2,!4); 
(c): (Ang, Som, Vas)=(!/2,V2,0);

(b): (Ang, Som, Vas)=(‘/i,0,y4);

The means of three pure samples are illustrated by three stars. The gray 
diamonds are expected locations, respectively. The projections of binary 
samples (black dots) are located close to the expected places (gray 
diamonds). For example, the binary mixture of Som and Vas in pane (a) 
are located between the means of Som and Vas, except a few outliers.
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Fig. 6.4 Projections of ternary mixture 
with equal concentration
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-4x 10

The projections (dots) of ternary mixture with concentration ratio 
(Ang, Som, Vas)=(l/3, 1/3, 1/3) locate inside the triangle formed 
by the stars (the means of pure samples).
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Fig. 6.5 Projections of other ternary mixtures
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The projections of ternary mixtures with concentration ratio:
(a): (Ang, Som, Vas)=(l/6, 1/6, 2/3); (b): (Ang, Som, Vas)=(l/6, 2/3, 1/6)
(c): (Ang, Som, Vas)=(2/3, 1/6, 1/6)

The means of pure peptides are represented by three stars and for each mixture, 
the expected positions are represented by the gray diamond. Though the 
projections are more scattered, they are still close to the expected positions.
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Fig. 6.6 The mean of all samples

x 10'3
2.5
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1: (0,1/2,1/2); 2: (1/2, 0,1/2); 3: (1/2,1/2, 0); 4: (1/3,1/3,1/3);
5: (1/6,, 1/6, 2/3); 6: (1/6, 2/3, 1/6); 7: (2/3, 1/6, 1/6)

Three stars are the means of three pure sample, they formed the vertices 
of the simplex. The expected locations of all mixture samples are 
represented by gray diamonds. The actual means of mixture samples 
are plotted as black dots. An arrow from the expected location to actual 
mean is used to shown the deviation from expected value.
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Chapter 7 

Summary and future work

§ 7.1 Conclusion

A new peak identification procedure for static TOF-SIMS spectra has been 

developed. The algorithm is based on the understanding of the nature of static TOF- 

SIMS, a statistical test of peak presence and maximum likelihood parameter fitting.

The understanding of the nature of TOF-SIMS is one of the most basic aspects of 

this thesis. Without it, it would be impossible to accommodate the correct noise model 

and to formulate the appropriate statistical test. Three essential points about TOF- 

SIMS are: 1]. it is a counting problem; 2] the count at time U is independent of the 

count at tj, even when U and tj are from the same peak; and 3] a theoretical 

understanding of TOF-SIMS as a physical device enables us to derive a reasonable 

one-parameter peak lineshape function that works well for a wide mass range.

The first point is obvious. By the nature of time of flight and the instrument 

configuration, the primary-ion beam has to be run in a pulsed mode. For each pulse 

containing a given number of ions, there are many fewer secondary ions that reach the

134
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detector. The detector, which consists of two microchannel plates, has such a high 

time resolution (138 ps) that it actually detects every ion impact event as a single event 

on the detector. This means that a Poisson process is involved. If at a given time U the 

ideal rate is rt, then the probability of an actual observation nl is described by Poisson 

distribution function, as in equation (3.4).

The second point is less evident, but is due to the fact that a count at time t, and a 

count at tj may result from different primary-ion pulses, even if they represent the 

same peak. The static TOF-SIMS regime requires that any part of the sample should 

only be impacted no more than once during the acquisition. This means that each 

primary-ion pulse is an independent probe of the surface under nominally the same 

condition. One secondary ion that happens at time U in one probe is independent of 

another secondary ion that happens at time tj in another probe, which in turn is 

independent of all other probes. The final spectrum is a summation of the outputs of 

millions of independent probes. Thus the count at time tt is independent of the count at 

tj. The importance of this is that it allows us to write out the likelihood function for N  

successive data points.

The third point is also crucial. By studying the ion dynamics and an argument from 

maximum entropy, a peak lineshape is derived. Though it is based on simple 

approximation, the derived peak lineshape captures the shape of the top half of a peak 

very well, including its asymmetry. The derived peak lineshape gives us the local rate 

in the Poisson distribution function (3.4). Without this peak model, no calculation can 

be done.
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With the above understanding of TOF-SIMS, we have developed a novel 

procedure to detect peaks in a TOF-SIMS spectrum.

The first step in peak detection is to put an observation window of width N  on the 

spectrum and thus isolate N  data points n = {nx,n2---nN) . Since our peak lineshape

only fits well to the top half of the peak, N  is chosen such that the window runs from 

the left half maximum of a peak to the right half maximum. For these N  data points, 

we compute the odds ratio that compares the hypothesis Hi that there is a peak in the 

observation window versus the hypothesis Ho that there is no peak in the window (i.e., 

just dark current). In doing so, we need to compute two posteriors, p(H x \ n) , the

probability that there is a peak given the data n = {nx,n2---nN} in the window, and 

p(H 0 1 n) the probability that there is not a peak in the window given the data 

n - { p , n 2 . These two terms are calculated by invoking Bayes’ theorem. Having

finished the calculation in this window, the window is shifted one time step to the 

right and the same comparison is made for the new window. This is performed 

continuously until the window hits the end of the spectrum. One thing to keep in mind 

is that, as the mass resolution of a TOF-SIMS spectrum under investigation is roughly 

the same, mass peaks get wider as the mass gets larger, and correspondingly, the 

window width must get larger to always cover the top half of a peak.

Having computed the odds ratio, a threshold value is set according the expected 

value of the odds ratio. Region where the odds ratio rises above the threshold yields 

confidence that there is a peak present. We then estimate its position and amplitude via
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parameter fitting by maximum likelihood methods. The maximum likelihood also 

gives quantitative estimations of uncertainties in peak position and peak amplitudes. 

To our knowledge, our procedure is the only peak finder to yield this information.

The above peak detection procedure can detect peaks in a TOF-SIMS spectrum 

automatically and efficiently. It greatly reduces a TOF-SIMS spectrum for a couple 

million data points to a couple of thousand numbers representing four entries of each 

of a few hundred peaks. That is, the number of data points of a spectrum is reduced by 

1000 times without losing any essential information.

We found a shift between the same peak in different spectra taken at different 

times or positions. The shift gets larger at later times (higher mass) in a spectrum and 

shows a linear trend between the time shift and arrival time. This shift is likely due to 

surface morphology or electric voltage fluctuations, both of which may cause a slight 

change in the kinetic energy. Correcting this linear trend, the same peaks in different 

spectra are brought into alignment within a range of one or two time points out of 

more than hundred thousand time points. This provides us a way to align peaks among 

spectra.

We then applied the method to the spectra from a mixture ratio experiment. The 

experiment is designed to be a model for the use of TOF-SIMS as a supplementary 

biomarker discovery tool. In the experiment, mixtures of the peptides angiotensin 

(Ang), somatostatin (Som) and vasopressin (Vas) of known solution concentration 

ratios were deposited onto etched silver. The purpose of the work is to deduce the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

mixture ratio on the surfaces (which we have assumed to be nominally the same as the 

solution ratios) from the TOF-SIMS spectra.

In order to infer the concentration ratio from the spectra, multivariate analysis is 

introduced. The above alignment allows us to prepare spectra into a data matrix format 

for multivariate analysis. Since there are hundreds of peaks in a spectrum, and only a 

small number of spectra, a variable selection must be performed. We do so by 

implementing an algorithm proposed by McHenry which uses Wilks’ A as a criteria to 

select a set of d  peaks that provides the best discriminating ability. We then applied 

linear discriminant analysis (LDA) to three individual peptide samples using the 

selected d  peaks. The inherent connection between Wilks’ A and LDA ensured that 

the selected peaks give the best discriminant capability when LDA is applied. With the 

selected d peaks, LDA projects the data from ^-dimensions onto a 2-dimensional 

plane, since we have only three groups. In this 2-dimensional plane, the three different 

groups (peptides) are separated as much as possible. Once the projection direction is 

determined, we then applied it to all mixture samples of various concentration ratios. 

The projections of mixture samples in the 2-dimensional plane distribute as expected, 

having the 3 pure peptides sit in the vertices, and mixtures close to the expected 

nominal locations as in Fig. 5.1.

§ 7.2 Future work

Though the peak detection algorithm developed here specifically focused on 

identifying peaks in a TOF-SIMS spectrum, the logic is general and can be modified
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to accommodate other types of analytical instrument, not necessarily just mass 

spectrometers. In Chapter Two, we gave an example of finding peaks in Gaussian 

noise.

Our peak lineshape is derived based on a simple approximation. A better peak 

lineshape would lead to better results because we would be able to include more data 

points in the window, yielding greater statistical reliability. The peak lineshape has a 

fixed resolution parameter which is estimated from the peak in the spectrum. We have 

found that resolution varies from peak to peak a little bit, thus using a fixed resolution 

may not be a good assumption. A more appropriate method would let the resolution be 

a parameter that varies along with the peak amplitude.

It is possible that sometimes nearby masses overlap, resulting in a broader peak. 

With TOF-SIMS, this may not be as serious an issue because of its high mass 

resolution even isotopes are generally resolved very well. But for other mass 

spectrometers, or other instruments whose resolutions are low, this may lead to 

difficulties in accurate peak position and amplitude assignments. It is then necessary to 

test a series of hypotheses that in the window there is no peak, one peak, two peaks, 

and so on, so that, we may choose the most likely one.
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Appendix A 

Derivation of Equations 

(2.41), (2.42) and (2.47)

1. Derivation of equation (2.41)

When the noise is white Gaussian, for the N  data points that are isolated by the 

window at to, for the hypothesis that there is a peak present, the likelihood function, as 

in equation (2.39):

1
/=i

i l N
= r F T  vv exp(~ ^ r l > <  -  M)2) (V 2 n a , )  2cj i=1

(A.l)

The natural log of the likelihood function is: 

L = log [pN (77 | ax, a  , crvX, t0, M x)]

= -^ -lo g (2 ^) -  A G og^,) “ aix- “ M)
(A.2)

2cr.,, ,=1'n 1

To maximize it, let:
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^  = ~  (s, - ax{ - / / )  ( -x ,) = 0
r\ i- 1

| ^  = - ^ r ^ ( ^ - f l x , . - ^ ) ( - 1) = 0 (A.3)
<7n i=i

dL JV I f .  , 2 .
+ — X O , - a X i - n )  =0

d<7, <rn a n , =1

Solving these equations, we have:

„ ( s x ) - s x  (.S- £  ) ( x ~ x )  ( s - s ) ( x - x )

fl’ " 7 - x 2 " ( x - x ) 2 ~

fi = J  -  a*x (A.4)
*  /  —  *  /  — \ \ 2  2 *2 2 <r,i = ( * - s - a ,  (x, - x ) )  = <7, -a , cr,

This is the result in equation (2.41).

2. Derivation of equation (2.42)

The elements in Hessian matrix VVL(ax,/Jv a nl) evaluated at («*,//,<r* ) are:
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d2L
da 2

d2L

1 N 
= - n 1L x l  =

N ( a l + x 2)

(o'.mV* i) 71 ‘ 1 'V1

5//,

d2L

1 w 

=4rZP)= N

TV 3  2 2 7 V
■ + — = ■

( a ,  ,cr , ) 7l

a2z
daxd/ux

d2L

Z*
1=1

52Z

4 T Z ^ - aix. - / /i ) =0
i= l

daxd(Tnl * 3
/ * * * \ wl(ai^i^i) z1 (A. 5)

The last 2nd term is zero obviously because / S = s -  a x  . The last term is also 

because it is proportional to the correlation between the residue, which is presumably 

white noise with zero mean, and the target xi , which is zero. Nevertheless, it can be 

shown by following:

N

~<hxi -  M K
1=1

N

= ^  (si — a*lxi —J  + a\x)xi
1=1
N  N  N  N

= Z  J,-*i ~ al T , xf - s J l x, +alx Y uxi
i= l  i= l  i= l

= N(sx - a \ x 2 -  J x  +a[x2) 

-  N(sx -  J x - a l ( x 2 - x 2))

i=i

(A. 6)

= N ( ( s - s  )(x - x ) - a l<Jx) 
=  0
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Thus, we have the result in equation (2.42):

L L Laa a/i aa

L L Lfia MM fUT

L L Laa GM a a

N ( 0-,2+ * 2)
N

V
N

1=1

'n i

TV 
*  2

0

0

2N
2

3. Derivation of equation (2.47)

To get (2.47), as we can see in equation (2.46):

1 1 1 (2;t)3/2

<h Mx <r,*mjY ^tna* 'max '  ‘ max ^ m a x det (VVL(a*, / / ,  , t0))

we need the determinant of the Hessian matrix:

(A. 7)

’ (A.8)
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Id e tfv V Z ^ /^ c r* ,)]!  = 

2A3(c72+ x 2) - 2 A 3x 2

2 A 3 (<t 2 + x 2 )
2 N

f  N  \

V  /=1 /

2Nla l

V

Inverse it,

V

7* 6V V

J d e t[ v v z ( a; , « > ; , ) ] (
* * *

^  a n\ G n\ G n\

J n o I J n  4 2 N

qc A ajA /Z jA cr,^

Substitute into (2.46), we have:

1 1 1 (2 x? l2a J _____ 1 -Nil
ax M (2N y <j (2ti) <7

‘ max ‘ max ' / ‘ in n  '<7l
1 1 1 '//I /?!

oc
Aflj A//, Act,
a, cr ,

1max 1max 77 1max

✓ ̂  v l / O  * .  , * * * I ^ N .

(2*0 p  (r]\al ,{il ,<JnVM l)

This is the equation (2.47)

(A.9)

(A. 10)

(A.11)
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Appendix B 

Derivation of Equation (3.12) and (3.18)

1. Derivation of equation 3.12

To evaluate the following integral:

= JK^TI
i= l

N (ax, +r0)n‘ S(a)
n: ! 2r,

dadr„
Omax

J e Nr,:' r ' 1 drn

(B.l)

Let us change variables:

Nr0 =t 
dt

dr0 =
N

^ r ^ n‘
y N j

(B.2)

Note that:

:!= f t ze-‘dt (B-3)

Substitute (B.2) and (B.3) into (B.l), we have:
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p (n \M 0) =

N1+X*/

 !_____ le-‘( - r -
2 ^ n ^ J N  N

n

r 2>Je ‘t ' 1 dt

(  N  \

z«,
V  /= !  /

i+I
1=1

2r0̂ N  "  n«,!
We get the formula in equation (3.12).

(B.4)

2. Derivation of equation (3.18)

The assumption is that there is only peak, no dark current, the integral need to be 

evaluated is:

p(n | only a peak in the window at t0)

= \ \ e ' " ' e ‘ f { (aX‘ +f  dudr,
1=1 H i • 2 1 3  m ax

(B ,)

fK
' 1 je  aa ‘1 da

2a n » jmax i

Use (B.3) again, we get equation (3.18):

(n*'Ki>i)!p(n | only a peak in the window at t0)=  -------- ===------- (B.6)
2 « m a x l l « i !
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Appendix C 

Maximum Entropy Method

The principle of maximum entropy is a method to determine a unique probability 

distribution that is consistent with available information.

In discrete case, for example, a random variable has m possible discrete values, 

{Ai, A 2 ...Am), and one wants to assign a probability p t to each possible value At, he 

may draw independently from {A/, A 2 ...Amj for n times. The most possible outcome is 

the one that maximize:

w W = - "J (C.l)
mnY ln l !

;=i

where n, represents how many times he gets Aj and

m

(C.2)
;=i

He would conclude that:

Pi = n j  n (C.3)
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if  the outcome consists with available information, for example, he knows the mean 

A:

  m

A = t , 4 P ,  (C.4)
1=1

That is, he wants to maximize (C.l) subject to the constraint (C.4) and ^ j p i -  I.

ln(w(n))
To maximize (C.l) is equivalent to maximize —-------  . When n —» oo, by using

n

Stirling’s approximation and substitute nt with npt, we have:

(C.5)
n i=i

where,

m

H  = ~ Y j p i \n(pi) (C.6)
i=i

is called entropy.

In continuous case, entropy is defined as:

H(x) = -  J/?(x)ln(j3(x)) {C.l)

If the available information is the mean and variance:

x  = Jxp(x)dx (C.8)

a 2 = J (x -x )2 p(x)dx (C.9)

We then want to maximize (C.l) with the constraint (C.8), (C.9) and Jp(x)dx = 1, 

in which case, we need to use Lagrange multiplier, let:
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^  (p(x)) = ~ Jp(x) 1h (P(x)) dx  + K  ( \p{x)dx - 1)

+ /lj |  ^xp(x)dx-x^  + 1 \ { x - x ) 2 p (x )d x -c r2 j

We need to functional derivative of (C.10) with respect to p(x)\

5 0  (p(x)) ®(p(x) + e f ( x ) ) - 0 ( p ( x ) )

 i -------------------

First, notice that:

In (p(x) + ££(x)) = In (/?(*)) + In \  , < (* ) "  
v P (x) j

and

thus, we have:

= ln (p(x)) + ̂ -  + 0 ( s 2) 
p(x)

(p(x) + <  (x)) In (p(x) + <  (x))

= p(x) In (/>(x)) + ( x )  + e£  (x) In (/?(x)) + 0 ( s 2)

O  ( /> (* )+  < ( x ) ) - 0  (/> (*))

= £• J(^ (x )ln (p(x)) +£(x)yix +sA^ jg(x)dx  

+ s \  Jx^ (x)dx + sÂ  J(x -  x)2 £ (x)dx

and

 ^  = ^cbc£{x)(h\(p(x)) + \ + Aq + Alx + A7( x - x ) z 'j

=  0

Equation (C. 15) has to be true for any £ (x), thus, we have to have: 

ln(/?(x))+l + >̂  + AjX + A*2 ( x  — x)2 = 0

(C.10)

(C .ll)

(C.12)

(C.13)

(C.l 4)

(C.l 5)

(C.l 6)
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which implies that

p(x) = e-(I+V e- v e-^(*-*)2 (C.l 7)

Now, consider that p(x) has to satisfy the constraints,

J p(x)dx = 1

^xp(x)dx = x (C.18)

^ ( x - x ) 2 p(x) = a 2

we get:

e -(i+ 4 > ) 1

2<r

This leads p(x) to the Gaussian distribution:

yflTrcr
4 = 0  (C.l 9)

4 ='  1

j (x~x)2
p ( x ) = - — e ^  (C.20)

yJzTTCT
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