
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2009

A Bayesian network approach to feature selection in mass A Bayesian network approach to feature selection in mass

spectrometry data spectrometry data

Karl W. Kuschner
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Bioinformatics Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Kuschner, Karl W., "A Bayesian network approach to feature selection in mass spectrometry data" (2009).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623543.
https://dx.doi.org/doi:10.21220/s2-fjc0-7z38

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.wm.edu%2Fetd%2F1539623543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.wm.edu%2Fetd%2F1539623543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-fjc0-7z38
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Bayesian Network Approach to Feature Selection
in Mass Spectrometry Data

Karl Wayne Kuschner

Williams burg, Virginia

MS, National Security Studies, Naval War College, 1996
MA, Physics, University ofTexas at Austin, 1993

BS, Mathematics and Physics, U.S. Air Force Academy, 1983

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Physics

The College of William and Mary
May 2009

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Karl Wayne Kuschner

Approved by the Committee, April, 2009

Chancellor Professo 'gene Tracy, Physics
The College of William and Mary

Professor John Delos, Physics
The College of William and Mary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT PAGE

One of the key goals of current cancer research is the identification of biologic
molecules that allow non-invasive detection of existing cancers or cancer
precursors. One way to begin this process of biomarker discovery is by using time-of­
flight mass spectroscopy to identify proteins or other molecules in tissue or serum
that correlate to certain cancers. However, there are many difficulties associated
with the output of such experiments. The distribution of protein abundances in a
population is unknown, the mass spectroscopy measurements have high variability,
and high correlations between variables cause problems with popular methods of
data mining. To mitigate these issues, Bayesian inductive methods, combined with
non-model dependant information theory scoring, are used to find feature sets and
build classifiers for mass spectroscopy data from blood serum. Such methods
show improvement over existing measures, and naturally incorporate measurement
uncertainties. Resulting Bayesian network models are applied to three blood serum
data sets: one artificially generated, one from a 2004 leukemia study, and another
from a 2007 prostate cancer study. Feature sets obtained appear to show sufficient
stability under cross-validation to provide not only biomarker candidates but also
families of features for further biochemical analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

list of Figures ... iv

Acknowledgments .. vi

Chapter 1: Introduction ... 1
Background ... 1
Mass Spectrometry ... 1
Goal .. 3

Chapter 2: Mathematical Tools ... 7
Notation ... 7
Product and Sum Rules of Probability ... 8
Probability Distributions ... 8
Conditional Probabilities .. 8
Information Entropy ... 9
Mutual Information and Conditional Mutual Information 11
Bayes' Theorem .. 13

Chapter 3: Data Sets and Signal Processing ... 17
Sample Collection and Bias A voidance .. 17
Leukemia Data .. 19
Generated Data .. 21
Prostate Cancer Data ... 26
Signal Processing .. 28

Data Analysis ... 28
Normalization .. 31

Chapter 4: Classification and Feature Selection ... 34
Feature Set Selection .. 36

Filter and Wrapper techniques ... 36
Wrapper methods ... 37

Naive Bayesian Classifiers ... 38
Bayesian Networks ... 42
Bayesian Networks and Causality .. 47
Bayesian Classifier Construction ... 48

Structure Learning ... 49
Parameter Learning ... 51

Mutual Information with Class .. 54
Discretization .. 55
Cross-Validation ... 56

Chapter 5: Application of the Naive Bayesian Classifier ... 60
Classification performance ... 61

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature Selection .. 64
Error Rates .. 65
Feature Set Stability .. 67
Effect of Correlations .. 69
Correlation Effects ... 71

Chapter 6: Bayesian Network Algorithm .. 75
Goal .. 75
Algorithm ... 76
Initial data processing .. 77
Structure Learning .. 77

Mutual Information .. 79
Adjacency Matrix ... 82
First Level Connections ... 87
Second Level Connections .. 87
Parent-Child Identification .. 88
Metavariables ... 91

Parameter Learning .. 93
Classification and Error Rates ... 95

Chapter 7: Results and Analysis .. 96
Generated Data .. 97

Nai:ve Bayesian Classifier ... 97
Bayesian Network ... 101
Analysis ... 106

Leukemia Data .. 108
Naive Bayesian Classifier ... 108
Bayesian Network ... 112
Analysis ... 11 7

Prostate Cancer Data ... 119
Naive Bayesian Classifier ... 119
Bayesian Network ... 122
Analysis ... 127

Chapter 8: Conclusion .. 128

Appendix A: Mathematics ... 130
Maximum Entropy ... 130
Maximum Mutual Information .. 131
Naive Bayesian Classifier Instability ... 132

Appendix B: MATIAB Code ... 135
Nai:ve Bayesian Classifier Code ... 135
Bayesian Network Algorithm ... 146
Code for Creating Generated Data ... 171

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: Results ... 175

Index .. 179

Glossary ... 180

Works Cited .. 182

Vita ... 185

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Number Pa e
Figure 1: A portion of a typical mass spectrum ... 2
Figure 2: Leukemia data ... 20
Figure 3: Mislabeled replicate spectra .. 21
Figure 4: Generated data distribution for highly diagnostic peak 23
Figure 5: Distribution for highly diagnostic peak after de-normalization 25
Figure 6: Generated data .. 26
Figure 7: PCA data .. 27
Figure 8: The need for signal processing .. 30
Figure 9: Histogram of normalization factors .. 33
Figure 10: Bayesian network ... 42
Figure 11: Causal chain for disease .. 4 7
Figure 12: Sample population and instrument function .. 53
Figure 13: Mutual information threshold ... 55
Figure 14: Naive Bayesian classifier ... 60
Figure 15: Nominal classification error rates of individual variables 63
Figure 16: Cross-validated error rate, forward selection, PCA data 65
Figure 17: Error rate during backward elimination, Leukemia data 66
Figure 18: Variable selection frequency, 5 forward selection trials 67
Figure 19: Correlation between two diagnostic peaks .. 70
Figure 20: Generated data set with perfectly correlated features 71
Figure 21: Generated data set with correlated features with noise 72
Figure 22: Bayesian network forMS data ... 75
Figure 23: Histogram of MI between features and the class 80
Figure 24: Mutual information between variables, QC data 81
Figure 25: MI threshold effects under 10-fold cross-validation 82
Figure 26: Adjacency matrix representation ... 83
Figure 27: Results of optimizing discretization boundaries ... 84
Figure 28: Center bin isolates uncertainty ... 85
Figure 29: Search for optimal boundaries for three bin discretization 86
Figure 30: Removal of false connection to class ... 88
Figure 31: Effect of increasing drop threshold .. 90
Figure 32: Abundance probability differences by class .. 94
Figure 33: Error rate during forward selection, generated data 98
Figure 34: Error rate during feature selection, generated data 100
Figure 35: Distribution of features 3 and 4, generated data 101
Figure 36: Effect ofMI Threshold .. 102
Figure 37: Frequency of class-variable connections, generated data 104
Figure 38: Error rate distribution, generated data ... 106
Figure 39: Resulting Bayesian network, generated data ... 107
Figure 40: Error rate during forward selection, Leukemia data 108

lV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 41: Error rate during feature selection, Leukemia data 110
Figure 42: Frequency of class-variable connections, Leukemia data 113
Figure 4 3: Histogram of CV error rates, Leukemia data .. 116
Figure 44: Resulting Bayesian network, Leukemia data ... 117
Figure 45: Leukemia (red) and normal spectra, vicinity feature 198 118
Figure 46: Error rate during forward selection, PCA data .. 119
Figure 47: Error rate during repeated forward selection, PCA data 120
Figure 48: Error rate during backward elimination, PCA data 121
Figure 49: Error rate during feature selection, PCA data .. 122
Figure 50: MI threshold effects under 10-fold cross-validation 123
Figure 51: Effect of increasing drop threshold, PCA data .. 124
Figure 52: Error rates from the BN algorithm, PCA data ... 127
Figure 53: Distribution of 11.7 kDa peak by class, Leukemia data 128

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. Gene Tracy, Dr. Dasha

Malyarenko, and Dr. Bill Cooke for their guidance and support during the

development of this project. Funding for this project was provided in part by the

National Cancer Institute under grant R01-CA126118.

V1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

Background

In early 2001, Incogen, a bioinformatics company, received funding from the

Commonwealth of Virginia to move to Williamsburg and lead a bioinformatics

consortium that included the College of William and Mary, among others. The

next year, Incogen began a Small Business Innovation Research project, funded by

the National Institute of Health. This project added Eastern Virginia Medical

School in Norfolk, Virginia as a collaborator, and expanded the consortium's

previous work to develop a set of computational tools for classifying biologic data,

including data derived from mass spectrometry (MS).

That work led to an ongomg project whose goal is to create tools for

"computationally improved signal processing for mass spectrometry data." One of

the steps in that project, and the focus of this work, is the development of

methods to exploit the improved MS data to find biologically relevant information.

Mass Spectrometry

A mass spectrometer is an instrument that takes some sample of material, biologic

or otherwise, and measures the relative amounts of constituent materials--ordered

by molecular mass1-in the sample. The output, shown in Figure 1, is called a mass

1 Actually, mass divided by net charge of the molecule; sec next section.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spectrum and is initially continuous2 in nature, with very low signals representing

mass regions where nothing was found, and spike-shaped structures (called

"peaks") representing a relatively large amount of material at a particular mass.

The signal intensity is shown here on a logarithmic scale, but in arbitrary units. The

horizontal axis values are the atomic weight being detected.

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500

Mass

Figure 1: A portion of a typical mass spectrum

One type of mass spectrometry instrument works by ionizing the molecules in a

sample, typically by an intense laser pulse or ion collision, then accelerating the

resulting ions through an electric potential of a few kV After the molecules have

been accelerated to some terminal velocity v, which depends on their mass m and

electric charge z as well as the electric potential V, they float down a field-free time

of flight (TOF) tube and strike a detector. The energy E gained relates the electric

potential and velocity by E=zV= Vzmtl. Low mass ions reach a higher velocity and

hence strike the detector first; heavy ions are detected last. By measuring the

number of detections along a time scale, then converting the time axis into mass

per unit charge (m/ ~' a spectrum of signal intensity vs. m/ z is created. While this

2 Insomuch as each time point has a corresponding integer number of detections, the spectrum is actually

discrete; on the scale of the entire spectrum, it is, for all intents, continuous.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not the only method of mass spectrometry, it is a common one used in the field

of proteomics. Its ability to survey a wide range of mass values aids the search for

important proteins, as opposed to other methods, which might search for the

abundance of a material at a specific m/ zvalue.

Our group has data available from two types of TOF-MS instruments: matrix­

assisted laser desorption/ionization (MALDI), and surface-enhanced laser

desorption/ionization (SELDI), which is a special type of MALDI.

There are several errors associated with this type of instrument. Although we

would like the peaks to be infinitely narrow "spikes," they in fact have finite width

due to the method of ionization and detection. In addition, the time that a specific

molecule arrives differs slightly from trial to trial, and the intensity measured can

vary for reasons other than true abundance variations in the sample. Another

important error arises because of the violence of the initial ionization and the

several ways a single molecule can show up-with charge z >1 (called multiply­

charged states), in fragments, or with small common molecules such as the

chemical matrix attached (adducts) or detached (neutral loss). These processes

result in peaks at different m/ z values that actually represent a single underlying

molecule.

Goal

Early detection of cancer dramatically increases the long-term survival rate of

those afflicted [1]. However, most cancers are difficult to detect early, and accurate

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis often requires surgery or biopsy followed by forensic pathology of the

tissue.

The use of mass spectroscopy to search for biological markers, or biomarkers, in

easily obtained biologic samples would enable higher throughput and less invasive

testing. Since cancers typically cause variations in the gene expression-and hence

protein abundance--of affected cells, researchers hope to find traces of these over

or under expressed (or mutated) proteins that would differentiate samples from

those with, and those without, the disease. Blood serum (blood with cells and

platelets removed) is one of the easiest samples to obtain, and if the protein

markers can be found to be transported in the blood, a test for early detection

could be designed.

The difficult part of this task is the detection and identification of the biomarker.

There are some 30,000 or more genes in the human genome, which express at

least 100,000 different proteins varying across twelve orders of magnitude in

abundance - far beyond the resolution of current instruments. In addition, the

natural variation of protein abundance across a population is often wide, and can

mask any variation between sub-groups, such as those with or without a disease.

Even a single individual has a dynamic proteome; the blood serum changes

throughout the day as food is digested and proteins are absorbed in the body­

one of our colleagues at EVMS is able to determine whether a patient has eaten

recendy simply by the opacity of a vial of blood.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our group has found that one of the largest errors in the process stems from the

chemical and physical preparation of the samples prior to the MS measurements

[2]. We have noted, for example, coefficients of variation (CV) of 5% from a

single robotically prepared sample that is measured multiple times, and a CV of

30-40% from a single serum sample that is robotically prepared into multiple

instrument samples prior to measurement. This is not a condemnation of the

robotic process over manual preparation; in fact, the opposite is true-manual

chemical preparation will introduce even more variation. The biochemical

preparation steps, such as the amount of materials mixed, introduce this variability.

To date, the problem of correcting errors associated with the biochemistry of

sample preparation have been somewhat intractable, but our group continues to

innovate in this area.

Other than the preparation protocols, there are three main areas where we seek

improvement in the current technology-more accurate and precise measurement

of the samples by improvements in the MS instrumentation, better analysis of the

spectra produced (via noise reduction and other signal processing), and finally,

better methods of mining the data for the biomarkers.

Current preparation and instrumental errors, such as those described above, make

biomarker identification part art and part science. No single, well-accepted, and

successful methodology for data analysis and biomarker discovery yet exists. In

fact,

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proteomics methods based on mass spectrometry hold special promise for
the discovery of novel biomarkers that might form the foundation for new
clinical blood tests, but to date their contribution to the diagnostic
armamentarium has been disappointing [3].

The MS group at William and Mary is pursuing improvements in all three areas,

but it is the last goal-improved data mining-that is the focus of this work.

Specifically, the research described herein seeks to find molecules that are

diagnostic of the disease state, discard those that are not, and determine the data-

derived relationships among these candidates. In addition, we want to arrange the

selected variables into a stable classifier that is predictive when new data is

introduced.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: MATHEMATICAL TOOLS

Notation

Much of the mathematics used in this work is from the field of probability theory.

As is common, capital letters represent statements, such as A = "the patient has

the disease" or X = "the signal intensity is between 100 and 11 0."

The function P(A) represents the probability that A is true, or, more informally,

can take on one of the values A =a. A vertical bar after a capital letter, followed by

one or more capital letters, represents conditions that are assumed to be true prior

to the evaluation of the unknown, hence P(A I B) is read "the probability of A,

given that B is true." This is known as a conditional probability.

As alluded to previously, small letters denote the values of a variable represented

by its capital letter, so that one would write "the probability that X=x is true, given

that Y has the value y" as P(X=x I Y=y), or often P(x I y). These values typically

represent measurements, and a set of such values {x1, x2, x3, ... , xJ is written as

the bold x and called a case.

A conjunction, or logical "and," is denoted by a comma, or if the meaning is clear,

two statements joined, e.g. (A AND C) = (A,C) = (AC). A logical "or" is always

represented by a plus sign between statements, as in (A OR B) = (A+ B). A tilde

appearing before a capital letter represents negation, so that NOT A=~ A.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Product and Sum Rules of Probability

Two rules of the algebra of probability theory that we will use most often are

termed the product rule and sum rule. More information (and a proof) can be

found in Jaynes, 2003 [4]. They are

P(A, B) = P(A!B)P(B) (Product Rule)

(Sum Rule) P(A +B) = P(A) + P(B)- P(A, B).

Probability Distributions

(1)

(2)

Much of what follows relies on the concept of a probability distribution function,

or PDF. We will use this terminology for both discrete and continuous variables

for simplicity, understanding that for a continuous variable, P(x) means P(X is

between x and x+dx). PDFs sum (or integrate) to unity over all values that the

variable can take. For simplicity, we may write N(u,(J) to represent a Gaussian

distribution with a mean of f.1 and standard deviation of (J.

Conditional Probabilities

Conditional probabilities represent a partitioning of the data space based on the

value of another variable (or variables). Therefore, if A represents the statement

"I bring an umbrella to work" and B represents "it rains that day," then P(A I B)

and P(A I ~B) partition all the days into those with rain and those without.

One of the problems we will encounter is that such partitioning can rapidly reduce

the number of samples from which to derive information. Take, for example, a

patient sample size of 100, which may be sufficient to estimate the frequency of

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values for some variable of interest A. If, however, we wish to condition on two

different variables B and C, each of which has four discrete possibilities, then

P(A I BC) must necessarily partition the sample space into 16 possibilities, namely

"B=b1 and C=c1," "B=b1 and C=c2," etc. It is entirely possible that one or more of

these groups has no samples at all-making it impossible to empirically estimate

P(A I BC) from that data for those values of B and C.

Information Entropy

Information (or "Shannon") entropy H is analogous to thermodynamic entropy

[5] in that it is a measure of the disorder in a system, and is derived from the

possible ways that a system can be arranged while preserving its macroscopic

attributes. In the case of information entropy, the "disorder" measurement can be

expressed as the smallest number of bits that a large binary string can be

compressed, while maintaining all the information it contains (maximum lossless

compression). A string like "11111111111111" could be compressed to "15 ones,"

for example, while 011101100110000 is much more difficult to compress and thus

has more entropy.

The mathematical definition for entropy is derived from the exponential expansion

coefficient H in the limit equation N=enH, where n is the number of measurements

of a random variable, and N is the number of all possible combinations of

measurements of length n that yield the observed distribution of outcomes, e.g.

half zeros and half ones. For a two outcome experiment, for example, Stirling's

approximation to the binomial probability distribution function is just such an

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exponential, with H being a function of the fraction of observed trials of one

outcome, as well as the probability of that outcome.

In the limit of large n, information entropy H in the discrete case is defined by

H(X) = -I P(x) log P(x), (3)
X

where the summation is over the allowed values of X, and P(x) represents the

frequency in which that value appears in the system [6]. The base of the logarithm

is arbitrary, but is typically taken to be base 2 by those working in information

theory, and the resulting units are called "bits." Extending the definition to the

joint entropy H(X,Y) yields

H(X, Y) =-I P(x,y) logP(x,y). (4)
x,y

Entropy has a maximum value when the probabilities of all possible values of the

variable (or variables) are equal. A proof is in Appendix A: Mathematics. The

minimum entropy of zero occurs when a variable always results in a single value,

so that P(x) = 0 or 1 and all terms in equation (3) vanish.3

Conditional entropy, which is the entropy remaining in one variable given the state

of another, is written

H(YIX) =-I P(x,y) logP(y!x). (5)
x,y

3 The value of O·log(O) is 0, as can be shown by taking the limit of x·log(x) as x goes to 0.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutual Information and Conditional Mutual Information

One novel element of the work described here is that, rather than use more

traditional tests for the correlation of variables, we use the information theory

concept of mutual information, or MI. Mutual information is a measure of the

information gained about one variable when another is known.

MI is strictly non-negative, and does not depend on any specific type of

correlation, as would a linear correlation coefficient. The data we will use has no

known underlying natural distribution (such as Gaussian), and many traditional

statistical tests may fail in this environment. We will therefore find it necessary to

empirically model the distributions based on "training data." The ability to use MI

as a model-free test for independence is therefore crucial, since it does not require

assumptions about the underlying distributions.

Mutual information has been used since shortly after the introduction of entropy

by Claude Shannon [5] in the middle of the last century4 and has clear probabilistic

meaning. Its model-free nature and ease of computation with empirical data make

it a natural method for discovering associations between variables.

Mutual information is defined by

~ P(x,y)
MI(X; Y) = L P(x,y) log2 P(x)P(y) (6)

x,y

4 Shannon's classic 1948 paper defines all the terms in the entropy form of the mutual information equation
below, but did not explicitly address the concept of mutual information. This paper led to the pseudonym
"Shannon Entropy."

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the sum is over all possible values of the variables X andY In the case of a

continuous variable, the summation is replaced by a double integral over dx and t!J.

In terms of entropy, the mutual information is

MI(X; Y) = H(X) + H(Y)- H(X, Y)
= H(Y)- H(YIX),

(7)

as can be shown by expanding the logarithm function in equation (6) above and

applying the definitions of entropy. The minimum value of MI is zero and occurs

when X andY are independent variables. In that case, P(X,Y) = P(X)·P(Y),5 the

logarithm vanishes for all terms in equation (6), and the MI equals zero. This can

also be seen by examining the joint entropy H(X,Y); in the case where X andY are

independent, equation (7) becomes

H(X, Y) = - L P(x)P(y) log2 P(x)P(y)
x,y

~- rh P(x)P(y) log2 P(x) + h P(x)P(y) log2 P(y) l
~- r~ P(x) log2 P(x) + ~ P(y) log2 P(y) l (8)

= H(X) + H(Y).

Here the second step relies on the property of products inside the logarithm, the

third step on the fact that the sum of P(X=x) across all xis one, and the final step

applies the definition of entropy. Substituting this result into the first line of

equation (7) shows that the MI vanishes for independent variables.

5 This is the defmition of independence between two variables.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The maxunum value of MI occurs when the result of sampling X always

determines the result of sampling Y (this assumes X has the same, or more,

possible values than does Y; if not, swap the variables). This maximum value is

equal to the entropy of the variable with fewer possible values, and, at a maximum

state of entropy, is the logarithm of the number of those values. See Appendix A:

Mathematics for a proof.

Another useful way to think about mutual information is as a decrease in

information entropy between that of two sets of outcomes taken separately, and

the set of outcomes taken together, as can be seen in the first line of equation (7).

Conditional Mutual Information (CMI) is the mutual information between two

variables when conditioned on a third. Data is grouped using each of the possible

values of the conditioning variable, and the mutual information is calculated

between the other two. Explicitly,

~ P(x,ylz)
MI(X; YIZ) = L P(x,y,z) log2 P(xlz)P(ylz). (9)

x,y,z

Bayes' Theorem

Bayes' Theorem was used extensively in the development of the classifier and

associated algorithms described here. The key feature of Bayes' Theorem is that it

allows one to invert the statements inside a conditional probability, e.g. to go from

P(A I B) to P(B I A). This is an important step in many analyses, and one that is

often not well addressed-especially in traditional statistics. A Student's t-test, for

example, answers the question "what is the chance that we would observe these

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two sets of data, given that they came from the same underlying distribution?"

The real question often being posed, however, is "what is the chance there was a

single underlying distribution, given these two sets of observed data?" This latter

question is answered by applying the t-test, then using Bayes' Theorem to invert

the resulting P(data I distn"bution) into the required P(distribution I data).

In our experiment, we examine groups of patient samples of known disease state

to empirically estimate the distribution for "the probability that we would get this

set of data from a serum sample, given that a patient has this disease, and the

models we have developed from others with the disease." The question we really

want to answer (for a classifier) is, of course, "what is the probability that a patient

has a disease given this set of data derived from their blood serum and the model

we have developed from previous cases?" Bayes' Theorem allows us to make this

logical transition. In its most common form, it is

(Bayes' Theorem) (I
_ P(AIB)P(B)

p B A)- P(A) (10)

which is easily derived by using the product rule (1) twice-swapping A and B-

and solving for the form above. The term in the denominator, P(A), is a

normalization constant which can be calculated by marginalization (summing over

all possible values) of the joint distribution,

(Marginalization) P(A) = I P(A, B) (11)
all B

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is equivalent to summing terms like the numerator in equation (9) over all

possible values of B instead of a particular one.

The term P(B) in the numerator is called a pn·or. It must be assigned by the

researcher as the probability of B before anything is known about A; in the case of

the disease example above, it would be the original probability that a sample comes

from a patient with the target disease. This would be the researcher's best estimate

based on the origin of the sample (e.g. from the general population, or someone

with symptoms) but without consideration of the current data. As an illustration

of the importance of this term, consider the following (oft-misunderstood)

example:

As a requirement for employment, you are required to be tested for a rare

(one in a million) but deadly disease. The test for this disease has a false

positive (see Glossary) rate of 1%, and a false negative rate of 1% as well. You

test positive for the disease. Bayes' Theorem should give you some relief;

since, out of 100 million people tested, it is far more likely that you are one

of the million people that test positive falsely, than one of the 99 out of

100 million that have the disease and test positive correctly. It is the prior

probability that you have the disease-one in a million-that creates this

counter-intuitive result.

To illustrate this mathematically, take the ratio of the probability you have the

disease to the probability you do not have the disease, given that you have gotten a

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

positive test for it. Those values are P(B="have disease," given A= "test positive")

to P(-B="no disease," given A= "test positive").

Applying Bayes' Theorem (1 0) to both of the terms in the ratio, then cancelling

the normalization factor P(A) that appears in both, yields the ratio

P(BIA)

P(-BIA)

P(AIB)P(B)

P(AI-B)P(-B)

(. 99)(10-6) 1 ______ ::::::: __ _
(. 01)(.999999) - 10,000'

Therefore, you are 10,000 times more likely to have gotten a false positive than to

have the disease.

These mathematical tools will be used in the development of the algorithms

described later. First, however, it is important to understand the data for which

those algorithms are designed.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: DATA SETS AND SIGNAL PROCESSING

One of the first steps in the process of biomarker discovery is the collection of

the biologic samples that will provide the data. The two real data sets discussed in

this work originated as blood samples taken from patients diagnosed both with,

and without, a specific disease. A third data set, consisting of data computationally

generated to mimic the known qualities of the real data, serves as a quality control

and testing experiment.

The samples were prepared by technicians at Eastern Virginia Medical School in

Norfolk, Virginia. Specifics of the sample preparation appear later in the text,

however, the basic process includes:

• Sample collection and labeling

• Sample preparation, including randomization

• Mass spectrometry

• Signal processing

Following the collection of the raw machine data, the signal processing, which is

described in detail on page 28, was accomplished. After those two steps, the

classification and feature selection methods described in Chapter 4 were applied.

Sample Collection and Bias Avoidance

As has been extensively discussed in the literature recendy, the collection and

preparation processes, if not done correcdy, can introduce biases that make

accurate data analysis difficult or even impossible. Baggerly [7] argued that a study

claiming to have discovered a biomarker for ovarian cancer was fatally flawed

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because samples were ordered according to disease state during measurement.

Time-dependant instrument errors then introduced artifacts in the resulting data

that made any conclusions inherently suspect.

Even as simple of an error as taking samples from different disease groups at

different times of the day could effectively ruin a study, since protein expression

may be dynamic, as was noted previously. Sample collection is by far the most

difficult and costly part of the process, and those doing the data analysis typically

have no control over this phase.

Similarly, the creation of data from the samples must be as unbiased as possible.

Data from the two real sample sets described in this work were created by

Semmes, et al., of Eastern Virginia Medical School (EVMS) in Norfolk, Virginia

[8]. Special care was taken by that group to randomize the processing of the

samples to avoid the problems previously described. Also, intermixed with the

primary samples were samples taken from a single serum pool (mixture) of a large

group of nominally healthy people, which acted as a surrogate for a population

average.

This "Quality Control;' or QC, pool allows the measurements to be calibrated in

several ways. Since the QC samples are nominally identical, any variations noted

must arise from the data creation process of preparation and MS measurement.

We have noted (and corrected for) variations due to the position of the sample on

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the plate, or "chip," that is inserted into the machine, and the number of samples

run since the beginning of the experiment.

Leukemia Data

The samples producing the first real data set were provided by the National

Institute of Health to Eastern Virginia Medical School, and kept frozen until

processed through a SELDI instrument in 2004 [8]. Patients were diagnosed at the

time of the original specimen collection by World Health Organization guidelines

as to whether or not they had leukemia, a cancer of the blood.

The working data set includes 145 different patients, of which 78 were classified

during the clinical portion as "normal," and 67 with various stages or forms of

leukemia. 6 The samples from the patients were processed multiple times, resulting

in 425 cases for the study. Multiple cases from the same sample are called replicates.

Figure 2 is a heat map of the Leukemia data set. Each row of pixels represents the

abundances for all the molecules (or peaks) found in a single spectrum (or case);

each column is the abundance of a specific molecule for all cases. The color of the

(iJ) pixel reflects the abundance of peak i in case ;~ where i runs along the

horizontal axis. When sorted into classes, the heat map may be useful for searching

for diagnostic portions of the spectra by eye. The dotted line represents the

division between the normal class, which is the top half of the cases, and the

6 We included acute and chronic forms of lymphoma and myelogenous leukemia, as well as adult T-cell

leukemia and other non-Hodgkin's lymphoma. There are a number of other patients included in the data set
with other stages or types of leukemia, however, these subsets were not examined for this study.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disease class. It should be possible to see the class difference in the rightmost

variables (disease cases are slightly brighter) that we will later find to be diagnostic.

50

100

150
... ...

..0 e 200
= = ...
"' "' 250 u

300

350

400

20 40 60 80 100 120 140 160 180

Feature Number

Figure 2: Leukemia data

One of the samples in the "leukemia" class was rejected after it was found that the

database had a transcription error. That sample's original diagnosis was not

compatible with the "leukemia" classification. Another sample, diagnosed as

"smoldering leukemia;' was rejected since that condition is considered a

"preleukemia" [9] and only develops into leukemia in a minority of cases [1 0]. One

of the four replicates of another sample was found to differ greatl/ from the

other three, and was also removed. Figure 3 shows the mislabeled replicate 1 in

blue, superimposed on the correct replicates (2-4) of the same ID number.

7 We examined linear correlations between replicates of each sample. Those which had low correlation with
other available replicates were examined manually. All but one was retained, as the low correlations
appeared to be due to signal variations. 'lbe one rejected appeared to be completely unrelated to the three
other replicates with the same sample ID number.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, the analysis was done with 65 total cases in the disease class, and 417

total replicates, with m / z up to 13 kDa.

4500 Replicate 1
--- Replicate 2 J' •

~ 4000 . 11 I
~ • 1: \ I> 1::,; \

I rl 'i- \ I

~ I Replicate 3 1 11[.,, '

'1:1§ 3500 \ -- --- Replicate 4 II ! \k11 'I' ,

\. y v v •

~ "xl.)\ . __ ,A , ,~~~--J
2500

1.1 1.12 1.14 1.16 1.18

Time index

Figure 3: Mislabeled replicate spectra

1.2 1.22
4

X 10

During the course of the development of this methodology, others in our group

continued to work toward more accurate identification of peak positions and their

values. Because of this increased fidelity, we had access to four separate versions

of the data set. The first had 48 unique m/ z positions, the second had 120, the

third 199, and the fmal set had 209 unique variables identified. The final version is

the one primarily referenced in this work, however, in Chapter 5: Application of

the Naive Bayesian Classifier, the first version was used for testing.

Generated Data

The computationally generated data set strives to mimic as closely as possible the

199-variable version of the Leukemia data set. The numbers of cases, including

replicates, and number of peaks are similar.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this data set, we attempt to reproduce those systematic and statistical properties

we have found in the real data, without the several artifacts that we have no

specific explanation for (such as certain peaks failing to appear in some replicates).

The primary purpose of this data set is for quality control and testing of the

algorithms. By mimicking known properties of the real data, then attempting to

identify those properties with algorithms made for that purpose, we gain a better

understanding of the reliability and stability of the protocols used.

The following steps were taken to prepare the generated data:

1. A spectrum8 with 200 peaks is created by taking the average of the non-

disease cases in the Leukemia data set. This provides a baseline for creating

all the cases that will be used.

2. A set of spectra, with the number of cases approximating the number of

unique patient identification numbers in the Leukemia data, is generated

via a draw from a N (fl., a) distribution for each variable independantly. fl. is

the value of the average spectrum at that peak position, a is estimated

from the Leukemia data set population. At this point there should be no

real distinction between any of the 200 variables.

3. One-half of the population is designated to be in the disease class. A class

vector representing this choice is created and attached to the data.

8 A full spectrum is not created as we do not wish to replicate the signal processing steps described later.
Instead, the steps here are applied to the final peak list data.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. One peak ~abeled 200) is chosen as "highly diagnostic" and the mean

ell
IIi

70

60

~ 50
u
'0 40

t 30

120
10

0

values of the two subpopulations (normal and disease) are separated by

two times the population's average standard deviation. Specifically, the

disease cases are redrawn from N(f1+2a,a). This results in a distribution

like the one shown in Figure 4.

6 7 8 9

II Class A

II Class B

10 11 12 13 14 15 16 17 18

Abundance (xl0-3)

Figure 4: Generated data distribution for highly diagnostic peak

5. A random fraction (about a tenth) of the total value of this peak is placed

into each of four adjacent peaks ~abeled 195-199). In this manner, five

diagnostic peaks are created, all diagnostic of the class. This procedure

mimics the measurement of adducts or modifications in the real data set,

wherein slightly modified molecules show up as peaks separate from the

original.

6. A small fraction of the value of the key peak (200) is moved into a peak

some distance away in the list ~beled 100), representing a multiply-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

charged ionization satellite (z =2). This 1s repeated to a different peak

(labeled 99) for one of the adducts (199).

7. Another moderately diagnostic9 peak is created but not added to the peak

list. Instead, varying portions of the total value of that peak are placed in

two non-adjacent peaks (labeled SO and 150). This represents the breaking

apart of a biomarker protein, whose mass is too great to be detected, into

several fragment molecules that are in the range of measurement.

8. Two more peaks (labeled 1 and 2) are selected as "mildly diagnostic" and

the values chosen from two normal distributions whose means are

separated by about one standard deviation of either group. Specifically, the

disease cases are redrawn from N (f-l +a,a). One of these two peaks has a

portion of the other peak's value added to it to represent two peaks that

are so close together that the peak value of one is "riding up" on the tail

of another. See Figure 8 on page 30 for an example.

9. The cases are replicated three times (the original of each case is discarded)

by multiplying each value by a de-normalization factor to replicate the

signal strength and chemical preparation effects as described on page 31.

For a single data vector X, a factor f is first selected from ~ U (0.5, 2.0) to

replicate the range of total ion current normalization factors found in the

9 Difference in means is about one and a half standard deviations of the sub populations.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

~ 25
riO

J 20 ._
0 15 t 110
z 5

0

Leukemia data. The resulting distribution for the highly diagnostic peak is

shown in Figure 5.

• Class A
• Class B

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Abundance (xt0-3)

Figure 5: Distribution for highly diagnostic peak after de-normalization

A summary of the diagnostic peaks placed in the generated data is given in Table

1. The resulting Bayesian network is shown in Figure 39: Resulting Bt!Jesian network,

generated data, on page 107 .

Table 1: Diagnostic variables, generated data

Peak

200

196-199

99, 100

1, 2

3, 4

50,150

Purpose

Highly diagnostic

Adducts or modi-
fications of peak 200

Correlated doubly
charged ionization
states of 199,200
Diagnostic with

correlations due to
nuxmg

Mildly diagnostic

Diagnostic-but
hidden-primary peak

The actual data set is too large to include in this document, but a heat map is

shown in Figure 6 below. The code for creating the generated data can be found in

Appendix B: MATLAB Code.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

100

150
....
" ~ 200 s = = " 250 "' " u

300

350

400

450
20 40 60

Prostate Cancer Data

80 100 120 140
Feature Number

Figure 6: Generated data

160 180 200

.;
X 10

The data encompassing the prostate cancer (PCA) data set was created under our

ongoing National Cancer Institute-funded project. The data is secondary to the

primary goal of that project, which is "improved signal processing methods" of

the type described in the following section.

Serum samples selected for this study were chosen to have a wide range of

prostate-speci£c antigen (PSA) levels, with similar PSA distributions in both class

groups--disease and normal. Previous studies have had high PSA levels in only

the disease group; we wished to avoid the possibility of introducing expenmental

bias.

Therefore, on this project, samples were selected to be included in the non-disease

group based on having PSA levels that matched those of samples found in the

disease group.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As in the Leukemia data set, several replicates were created from each serum

sample. These replicates received independent chemical preparation. Two affinity

surfaces (IMAC and C3) were used for protein purification from serum. The

affinity surfaces assist in enhancing the signals for certain types of molecules such

as the hydrophobic apolipoproteins (C3) or phosphorylated proteins (IMAC) [11].

X 10
5

0 6

50 5

100 4
... ...
"" e 150 = 3 = ...
"' "' u

200
2

250

300

10 20 30 40 50 60 70 80 90 100
Feature Number

Figure 7: PCA data

The Bruker Ultraflex instrument used required the spectra to be gathered in three

stages for maximal resolution. Spectra were taken in the mass ranges of 0-20kDa,

15-100 kDa, and 2-100 kDa; here we use the results from the 2-100 kDa mass

range. More detailed information on the exact experimental design and MS

equipment can be found in Gatlin-Bunai (2007) [11]. A heat map of the PCA data

is presented in Figure 7.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Signal Processing

For the leukemia and PCA data sets, sample order was randomized and patient

samples were interspersed with QC samples. The MS measurements were run over

a period of several weeks. For each replicate of a sample, a spectrum was

produced and tagged with metadata, including patient ID, date collected, and

date/time and settings of the MS run, among others.

These several replicate spectra from each sample, along with the metadata

described above, constitute the input to data analysis portion of the project.

Data Analysis

There are three phases in the data analysis process - signal processing, feature

selection, and classifier construction. The first, whose input is the set of spectra

and associated metadata, includes a number of steps, listed in Table 2. This phase

is not the primary concern of this work, but it is necessary to understand the steps

in this phase, and especially the problems caused by their imperfections, to

understand the results of the final two phases.

The output of the signal processing phase is a two dimensional table of values, in

which each row represents a single replicate spectrum, and each column represents

a mass per unit charge (m/ :<) spectral position. The table entries are the measured

signal intensity of that replicate at that m/ zvalue.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Background
Subtraction

Res am piing

Peak Selection

Peak Alignment

Recalibration

Replicate
Averaging

Deconvolution

Table 2: Steps in the Data Creation Process

The presence of large amounts of matrix molecules
and other instrument effects produce a slowly varying
underlying signal that must be removed so that a true
zero value can be found and peak heights measured
against this baseline. See Figure 8.

Because peaks at the higher mass end of the spectrum
have broader width than those at the lower end, our
group resamples all peaks to have the same width (in
the time domain). Therefore, a peak that is 10 time
units wide may be resampled to be a standard of 5
time units wide, and its height doubled, to maintain
the total integrated signal under the peak. This step
allows for more accurate peak selection and alignment.
It also increases the accuracy of our normalization
procedure, discussed later.

Peak selection determines which m/ z values represent
a molecule, and which of those appear in a sufficient
number of samples to represent a variable in the end
data. The noise associated with the instrument can
mask peaks of lower signal intensity, or conversely,
appear as peaks where none exist.

Ensures the same true m/ z value (representing a
specific molecule) is in the same position in the data
table for all samples. See Figure 8.

Corrects for the effects of instrument errors. The QC
data is examined for changes in total signal over time,
for example; this calibration is then reapplied to the
sample data.

To reduce variations due to preparation and
measurement, several samples are measured from a
single patient's serum. The results are initially treated
as independent samples for peak selection, alignment,
and other steps, but are eventually averaged to give a
single measurement for each patient.

A peak whose mean value lies within one peak width
of another, which is often the case with adducts, rides
up on the slope of the adjacent peak. The adjacent
peak must be deconvolved (removed) to find the true
maximum value of the neighbor. See Figure 8.

Figure 8 shows the necessity for several of the data creation steps listed above. The

first pane shows the extreme background height arising at lower m/ z values. This

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

background can cause dependencies in the values of nearby peaks (peak A high

implies peak B high) even when no real dependency exists, since the level of the

background overshadows the true level of the peaks. Removal of this

"background" signal reduces artificial correlations between variables and the

variance between samples.

The second pane shows a slight shift to the left between the peak maxima for two

spectra, even though these spectra are derived from the same pool of sera. This

shift can cause incorrect measurements of either the peak position or the peak

value, or both, and may even cause peak detection to fail. Peak alignment attempts

to find time-scale correction coefficients to ensure peaks from similar ions appear

at the same mass positions in all spectra, and are measured at their maxima.

The third pane shows that when peaks have m/ z value differences less than the

peak width, portions of the peaks can add up to yield a value that is higher than

the true abundance for either peak. This will also yield artificial correlations

between peaks (massive left peak always implies high right peak). Deconvolution

attempts to find the true maximum values of closely spaced peaks.

Background subtraction Peak alignment Deconvolution

Figure 8: The need for signal processing

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once all of these steps are completed, the abundance values at the aligned peak

positions are recorded, along with other data about the spectra. Table 3 shows an

example of the output of this process.

Table 3: Example abundance values for five patients (arbitrary units)

Patient ID Disease m/ zpositions
number Class 2755 2797 2873 2959 ""'_, _____

665 Normal 1.368 0.308 2.151 0.774
672 Normal 1.600 1.827 1.798 1.636
679 Normal 0.399 1.630 1.749 1.418
696 Disease 0.438 0.696 1.607 1.941
721 Disease 1.249 1.023 1.944 1.106

Normalization

One critical problem with of an MS experiment is that two identical samples (or

even two scans of a single sample) can result in spectra that, while having

nominally the same shape, differ gready in the values of the various peaks. As

noted previously, sample preparation, particularly total volume of material, plays a

large role in producing this systematic error-but other factors such as ionization

efficiency add to the problem.

Several methods of correcting for such errors have been used [12], however, we

have determined that a simple method of total ion current normalization reduces

much of the sample-to-sample variation without undue complexity that might

introduce more artifacts. We have noted unexpectedly high correlations between

some variables in the QC data due to problems in signal processing, and

normalization does reduce, but not eliminate, these correlations [13].

For our method of normalization, the signal processing described in Table 2 is

performed, creating an array of signal intensity measurements. Each sample (row)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is summed across all peak positions (columns) to find that sample's total ion count.

An alternate method, integrating the processed spectra across the entire m/ z range,

was considered but discarded due to its higher dependence on precise background

subtraction-a process with relatively large inaccuracies.

Every abundance value in each sample is then scaled by a normalization factor

equal to the population average total ion count divided by the sample total ion

count. This method reduces the variation in measured abundances of nominally

identical samples, such as those from the QC data, from 40-50% to about 20% of

the average value.

It is possible to normalize the sample total ion count on subsets of peaks. We

avoid this technique, however, due to the possibility of destroying valid

information should we "normalize out" variations in samples from different

classes. While this is a possible problem with total ion normalization as well, we

feel that the chance of introducing error is greater with a small subset of peaks

used without additional information.

Figure 9 shows the normalization factors resulting from the process described

above being applied to the Leukemia data set of 417 spectra. The horizontal axis

lists the possible values of the normalization factor (/J, shown as log10 (cp). A factor

qJ = 1 (no normalization required) is represented by the zero position. Positive 0.3

represents spectra that were doubled to bring the total ion count to the data set

average; negative 0.3 represents spectra whose signal was halved.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

~ 50
~
QJ 40 :;l..

rJl ._
30 Signal is twice 0 ...

QJ the a\<agc ..&l 20 s = :z 10

0

Logarithm of Normalization Factors

Figure 9: Histogram of normalization factors

Inspection of the spectra with normalization factors above 2 show that these

spectra have consistendy low signals and, therefore, lower signal-to-noise ratios.

This induces data reduction errors, especially in background subtraction and peak

picking. It is also clear, by inspection, that these low signals are not necessarily an

attribute of the sample, as some low signal spectra have replicates (other spectra

produced from the same sample) that have no apparent problems.

We have therefore chosen to include in our algorithms the option to remove

spectra with high (greater than 2.0) normalization factors. While this choice of

threshold was somewhat subjective, in the chart above it is apparent that there is a

large decrease in the frequency of occurrence at about that value. In no case were

all the various replicates of any one sample removed.

The resulting array of signal intensities for each replicate at each peak position, as

well as the metadata necessary to identify each spectrum and its class, constitutes

the input to the final phases, which are the primary focus of this work.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: CLASSIFICATION AND FEATURE

SELECTION

Each m/ z column in our data arrays, which started out as a signal peak found in a

number of spectra, can be considered a set of realizations of a random variable

representing the measurement of the abundance of that molecule in each sample.

Each row, created from a single spectrum, is an instance, or case, of the full set of

variables.

These variables are also referred to as "features." The terminology arises from

information theory and the computational task of pattern recognition. In this task,

an image is broken into features-such as the eyes and nose of a face-that are

significant, and only specifically selected features are processed. We will transition

to this terminology for the remainder of the discussion, understanding that the

terms "peak," "variable," and "feature" are synonymous.

The phase of our analysis that follows the signal processing is called "feature

selection." In this phase, features are chosen for inclusion or exclusion in the

classifier, the goal being that the final feature set includes only those variables that

will be helpful in classification.

The final phase is the construction of a classifier. This construct, whose

parameters are typically learned from samples of known classification, allows new,

unknown samples to be classified-in this case for disease state. A probabilistic

classifier returns the probability that the sample lies in one or another class (e.g.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"95% chance of having Leukemia"). A deterministic classifier takes the values of

the features and returns a specific classification. A popular choice, and the one we

have made, is to build a probabilistic classifier and use its output to give a

deterministic result by setting some probability threshold for declaring the class,

such as "if the probability that this case comes from a patient with leukemia is

greater than 50%, we will consider the class as "disease." Obviously, this may not

be the threshold that a doctor might set for further testing of a patient. It is

common to vary this threshold to understand the relationship between the false

positives and false negatives that result; we have not done so here, as the accuracy

of the classifier is not our primary goal.

Instead, the primary focus of biomarker discovery lies in the feature selection

phase. Initial efforts in this field focused on finding single features that are

indicative of disease state, although more recently, multi-feature sets (or even

mathematical combinations of features) have been sought and examined (c£ Oh,

2005 [14]). Once diagnostic features are found, further investigation as to the

nature and origin of the molecules is done in an attempt to learn more about the

processes causing the disease itself. Diagnostic features are not typically called

biomarkers until their underlying biology and relation to the disease is better

understood. In this research, we limit the process to selection of diagnostic

features, although we will attempt to examine their inter-relationships.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature Set Selection

As has been emphasized, the choice of which features to include in a classifier is

the primary goal of this research. These features represent m/ z values, which may

lead to the identification of proteins, then genes, and then the biological processes

that may cause the disease. Even if we could create an accurate classifier direcdy

using all the variables produced by the data reduction methods discussed in

Chapter 3, we would still want to identify those features that provide the greatest

information.

Filter and Wrapper techniques

Choosing which features to include in a specific classifier can be accomplished

using a number of criteria. Methods that use some scoring criteria to select

individual features prior to creating a model for the classifier are known as filters.

Another commonly used method is that of the wrapper, which selects a feature

subset and scores it using the resulting classifier itself, say by the classifier's error

rate for a data set with known results. An algorithm searches through the space of

all subsets, looking for ever lower error rates.

The search algorithm used in the wrapper technique is typically not exhaustive.

For most problems, the number of possible subsets is intractably large. Instead,

one of many approximate search methods is used, eliminating large portions of

the search space at each iteration. A good review of the many methods is found in

Miller [15].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have employed both filter and wrapper techniques. Although we have said that

the final phase of the analysis is the classifier construction, it is clear that a wrapper

technique requires both feature selection and classifier construction to occur

simultaneously.

Wrapper methods

Two of the most straightforward wrapper methods are fonvard selection and backward

elimination [15]. To perform forward selection, the following pseudo-code 1s

implemented:

Select a feature
Find an n-fold cross-validated error rate based on using only
that feature as a criterion.

Repeat for all features.
Permanently select the feature that has the lowest error rate.
From the remaining features/ select a feature.

Using the new feature/ and the one chosen previously/ create a
model and find the model 1 s cross-validated error rate.

Repeat for all features.

Choose the feature that, when combined with the first feature selected, results in

the best model. Continue to add more features until some threshold-perhaps

"error rate begins to rise"-is reached. The final set becomes the selected subset

of features.

Backward elimination is a similar process. Under this method, each feature of the

current set is removed, one at a time, and the remaining feature set is used to find a

cross-validated error rate. The feature whose removal results in the lowest error

rate is discarded permanently. The process is repeated until some threshold (error

rate rises, or minimum number of features remain) is met. Our first attempt at

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feature selection and classification is a wrapper method that uses exactly these

techniques.

Naive Bayesian Classifiers

Bayes' Theorem, which is a quarter-millennium old, has come into more

widespread use in the last quarter century--especially in the fields of machine

learning and pattern recognition. One of its most popular uses is for email

filtering, where it is used to answer the question "what is the probability this email

is spam, given the words and other data in the message" by learning the probability

of those features first from a corpus of source-known examples.10 These

probabilities are often updated as the recipient manually accepts or rejects new

messages, refining and personalizing the filter.

This "learning" of the probabilities for data occurrence based on a set of cases

with known results is a key step in the construction of any Bayesian classification

system. The known data is called the "training set," and the probability that a new

case will be observed to have a certain value (or range of values) is based on the

frequency of that value in the training set, or a model distribution based on the

data in the training set.

As an illustration of the use of learned probabilities and Bayes' Theorem to

classify, consider the following example.

!O Sec, for example, the 1997 Microsoft Research group article entitled "A Bayesian approach to filtering junk
email" at http:// rescarch.microsoft.com/ -horvitz/junkfllter.htm.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A researcher is searching for the probability that "a person has long hair,

given that they are male" using Bayes' Theorem. To do so, the researcher

might sample a population, noting the sex and hair length of each case,

then choose some boundary between long and short hair, such as "touches

the collar." A probability distribution is created by directly counting the

samples with long (or short) hair. The researcher then makes the

assumption that "if I have seen that 80% of the males so far have short

hair, then the probability of a new person having short hair, given they are

male, will be 80% as well." This, plus a researcher-chosen prior probability

of a new person being male (and the normalization factor) would allow her

to answer the question "what is the chance that this new person is a male,

given that I know only that they have short hair?"

This example shows the simplest use of Bayes' Theorem for classification, based

on a single variable (hair length). Suppose however that the researcher knows that

she will have the additional information that "the new person wears pants (or

not)." By gathering this information from the training set, and creating the needed

four entry probability table P(sex= {male, female} I pants= {yes, no}) she can use

this additional data to refine the classifier. If she assumes that the length of a

person's hair and the wearing of pants are independent, i.e. men with short hair are

not more likely to wear pants than men with long hair, then by the definition of

independence P(hair, pants I sex)=P(hair I sex)P(pants I sex).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using H, P, and S to represent hair, pants, and sex respectively, she writes Bayes'

Theorem as

P(H, P!S)P(S) P(HIS)P(P!S)P(S)
P(SIH, P) = P(H, P) = P(H, P) (12)

The prior, P(S), is chosen by the researcher based on her opinion of the chance the

next person will be male (without regard to any data collected on the next person).

The other two terms in the numerator, P(H I S) and P(P I S), are learned from the

training set as described previously. As before, the normalization factor in the

denominator is calculated by summing terms like the numerator for all values of S.

This two-variable classifier is direcdy extensible to any number of variables, as long

as the independence condition holds. That is, for some set of variables X= {X1,

X 2, X 3, ••• XJ we must have

n

P(XIC) = n P(XdC) (13)

i=l

when conditioned on the class C. By extending the classification to utilize several

variables, then simplifying the estimation of their PDFs with the independence

assumption, we have created what is called a naive Bqyesian classijier, or NBC.

This independence assumption is critical to the functioning of the naive Bayesian

classifier. Although it has been shown [16] that an NBC works well in many cases

even when the independence assumption is not valid, artifacts can appear that can

cause instability in the classifier.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One problem is that the dependencies impose exaggerated values in the estimation

of the final probability. To illustrate this, consider a system of two variables, A and

B, and the problem of building a classifier P(B I A). Further consider that we

attempt to add a third variable, .N, which is assumed to be independent, but in fact

always is observed to have exactly the same value as A through some underlying,

or measurement induced, dependence.

By considering the observation as that of a two variable vector A= {A, .N}, we

follow the procedure outlined above to find (ignoring the normalization factor for

now) P(BIA) oc P(AIB)P(A'IB)P(B) = P(AIB) 2 P(B), since P(AIB) = P(A'IB) for

all B.

If, for example, P(A I B)=0.9 and P(B)=O.S, the NBC will determine P(B I A)=0.9

in the case of one variable, but P(B I A)=0.99 in the case of two variables. The true

probability is the first, but by measuring the single variable A twice, and

erroneously considering the results to be independent, we have greatly

overestimated the confidence in the classification.

A second example showing how the NBC can behave poorly due to incorrect

assumptions about independance is in Appendix A: Mathematics. We will see, in

Chapter 5, that this instability will cause the NBC to be only partially suitable for

the experiment we are interested in, since it has many highly correlated variables,

such as signal peaks arising from adducts and multiply charged states. These are

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indeed multiple representations of a single underlying variable-the abundance of

the primary molecule.

Bayesian Networks

A Bayesian network is, at its most basic level, a formula for a joint probability

distribution of a set of variables, such as P(A,B,C,D, ...). This formula can be

represented graphically by use of a directed acyclic graph, or DAG.

The DAG has two elements: nodes for each variable in the problem, which we will

represent as ovals, and arcs, or lines between nodes. The arcs are directed, so that

they point (with an arrow) from one node to the other. The graph is acyclic; there

are no nodes where it is possible to start, and then return, by following a set of

directed arcs (also called a path). Figure 10 represents a simple DAG with five

nodes.

Figure 10: Bayesian network

The DAG encodes a set of facts about the relationships between the variables in

the distribution it models [17]. Arcs represent dependencies, so that, in the most

basic case of only two nodes, an arc is drawn if they are dependent and no arc if

they are independent. The DAG is simply a way to represent all the dependency

information in a particular system of variables; mathematical theorems about

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various dependencies are then represented as easily visualized operations on the

DAG. For more information, see Chapter 2 of Jensen [17].

In the DAG, we call two nodes with an arrow between them a parent and child.

More generally, the set of nodes from which a path can be found to a particular

node are its ancestors; the set of nodes that can be reached by following any path

from a particular node are that node's descendants.

Unlike the NBC described earlier, which is a special case of a Bayesian network,

there is no specific variable representing class in the general BN-although one

may be identified as such if needed. The DAG represents all the variables and all

the dependencies at once. In addition, it represents the minimum set of probability

terms that can be used to describe the joint probability distribution Q"PD) of all the

variables.

As an illustration, assume that a particular problem of interest has three variables,

A, B, and C. By using the product rule (1), the joint distribution of the conjunction

ABC can be written P(ABC)=P(A I BC)P(BC); repeated applications yield

P(ABC) = P(AIBC) · P(BIC) · P(C). (14)

Assume further, that in this system, we know that A is independent of C given B;

then P(A I BC)=P(A I B). Rewriting (14),

P(ABC) = P(C) · P(BIC) · P(AIB). (15)

Now consider a DAG of the form C ~ B ~A, where the capital letter represents

a node in the DAG. If we take a product of terms of the form P(node il all

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parents of node z), then for C ----+ B ----+ A we have P(C)P(B I C)P(A I B), which is

exactly the right hand side of equation (15). In this form, the terms in the product

has encoded the independencies we have assumed to exist.

We say that the DAG represents the JPD. The terms resulting from factoring the

joint distribution (after applying independencies) can be read graphically from the

DAG [1 7], explicitly

n

P(X1XzX3 ... Xn) = n P(Xd{Pa(Xi)}) (16)

i=l

where {Pa(XJ} represents a conjunction of all the parents of Xi. Creating the JPD

from the DAG is as simple as going through the DAG node by node, writing the

terms P(node I parents of the node) as a product.

Figure 10: Bayesian network

For the DAG in Figure 10, reproduced here, the joint distribution would be

P(ABCDE) = P(A) · P(BIA) · P(CIBE) · P(DIB) · P(E). (17)

A derivation of the formulae underlying a Bayesian network is beyond the scope

of this work, but can be found in Jensen [17]. However, one important

consequence of the representation of a JPD by a DAG is that the independencies

can be immediately read from the DAG. A serial connection such as A ----+ B ----+ C

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 10 means that A is independent of C given B. One may think of a node

as a valve, if the node is known, the valve closes, and the flow of information is

blocked. A diverging, or inverted "V" structure, like D ~ B ~ C, encodes a

similar independence, namely that D is independent of C given B.

To show why this is so, consider the JPD encoded by the simple serial DAG

A~ B ~ C, which is

P(ABC) = P(A) · P(BlA) · P(ClB). (18)

By the product rule, we also have

P(ABC) = P(AClB) · P(B). (19)

Setting these two equal and solving for P(AC I B) yields

P(AClB) = [P(A)P(BlA)l P(ClB)
P(B) .

(20)

The term in square brackets is P(A I B) by Bayes' Theorem. Inserting this yields

P(AClB) = P(AlB) · P(CjB), (21)

which is exactly the statement that A and C are independent given B. We say A and

C are independent when knowledge of B "breaks the path" between them.

The "V" structure B ~ C ~ E in Figure 10, however, has an opposite meaning. It

represents the statement that B and E are unconditionally independent, but

become dependent when Cis given (or instantiated).

The general JPD for these three variables can be written as

P(CBE) = P(ClBE) · P(BE) (22)

by the product rule, and

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P(CBE) = P(CIBE) · P(B) · P(E)

by using our method of readingJPD from the DAG.

Setting these two equal immediately yields

P(BE) = P(B) · P(E)

(23)

(24)

which demonstrates that the V structure has encoded the independence

assumption of equation (13). The proof that instantiation of C "opens up" an

information path between E and B is lengthier and can be found in Jensen [17].

We will not have occasion to use the "V" structure in the experiment discussed

here.

The ''V" structure, the inverted ''V" structure, and the serial structure are all the

possible combinations in a DAG. It is possible to include an isolated node, which

is not connected to any other. Such nodes can be immediately marginalized out of

the JPD and do not affect the outcome of a classifier. To illustrate, consider a

three-variable network with an arc from A to B, and a variable C not connected to

the other two. The JPD is

P(ABC) = P(A) · P(BIA) · P(C). (25)

Marginalizing (see page 14) across values of C, we have immediately

P(AB) = P(A). P(BIA) I (26)

which is the JPD represented by just A~ B. Thus, the independent variable C is

marginalized out of the network with no loss of information-assuming it is not a

variable of interest.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bayesian Networks and Causality

The most important reason to choose a BN for MS data classification is the BN's

ability to reflect causal relationships between variables. As is proven in Pearl [18], if

a set of variables have causal relations, and the BN is built such that arcs fully

represent the causal paths between the variables, then the resulting BN /JPD will

encode dependencies and probabilistic relations between variables.

The reverse statement, that causality can be inferred from a BN that has been

created from examination of a particular set of data, is not strictly true [18]. Data

can show dependencies where causality does not necessarily exist, or where

perhaps an unknown variable linking the two has not been included.

A conceptual causality chain for the problem discussed here is diagrammed below.

However, the inclusion of the hidden variables (dotted nodes), such as changes in

gene regulation, serves only to provide probability distributions for those unknown

processes, and does not affect the outcome of the classifier. They will therefore be

suppressed.

I

_____ ./' ~I::_d~c;_ti~n-~ ___ ":'" _ ...

1 ~ Protein ' I Protem '
' E · / ' Expression I

... --~r.:_ss,:,o~ ~ - ___ - ~-----
Abundance

------ Gene ... '

Measured

Figure 11: Causal chain for disease

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although not shown here, the variables representing a measurement of the

abundance of a particular protein (or fragment) could be connected. We expect,

for example, proteins to split into fragments due to the violence of the ionization

method with some probability of occurrence. This would be represented by a

diverging (inverted V) structure with the primary molecule at the top and the

fragments underneath. The fragments can theoretically have a secondary

connection to the disease class, should the disease change the probability of

fragmentation, but we have not identified such a connection in our work.

A serial connection could also occur, particularly in the case of a multiply-charged

ion, or satellite. Recall that the measurement is of the mass-to-charge ratio, so that

an extra charge would cause the molecule to show up at m/ 2 of the primary ion.

The variables representing the abundance measurement of these two mass values

should be dependant, since high abundance of a parent should imply high

abundance of the satellite ion.

Although V structures (representing, for example, two proteins that produce a

common fragment) are theoretically possible, we will not seek this structure. Even

in the unlikely situation where this occurred, we would not be able to precisely

allocate the abundances back to the primary ions without additional experiments.

Bayesian Classifier Construction

There are two primary steps to building a classifier based on a Bayesian Network.

The first is to determine the structure of the network. This is the most difficult

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

part, especially when it must be derived from data which is statistically noisy. The

second is to determine the exact values of the terms in the JPD (e.g. P(A I BC) for

all values of A, B, and C). These two steps are called "structure learning" and

"parameter learning."

Structure Learning

The primary difficulty with learning the bese 1 structure of a BN from a set of data

is that the number of possible structures is super-exponential in the number of

variables. The number of possible combinations G of DAGs of n variables can be

calculated by the recursive formula [19]

n

G(n) =I (-l)k+l (~) 2k(n-k)G(n- k). (27)

k=l

The result of this calculation is given in Table 4 for 1 to 10 variables.

Table 4: Number of Possible Structures in a DAG

Variables Structures
1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1 '138, 779,265
8 783,702,329,343
9 1,213,442,454,842,881
10 4,17 5,098,97 6,430,598,143

11 Meaning "the structure that most probably created this data" or, more explicitly, "the one representing the
joint probability distribution that most closely encodes the dependencies and probability parameters
matching those in the data."

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the data sets we will be using may have 100 variables or more-and even

after pruning have tens of variables-an exhaustive search of all DAGs is clearly

not feasible. Therefore, methods that are able to quickly remove large sections of

the search space, called approximate searches, are needed.

Many methods of approximate search for best-fit structures have been developed,

especially in the last decade [17]. A typical method is to start with one variable,

and then add the next best variable (or arc) based on the correlations found in the

data set. 12 A common method of measuring the success of these methods is to

start with a relatively complicated DAG, use the equivalent JPD to generate a large

(10,000 cases) data set, then attempt to re-create the DAG from the data,

measuring the number of false or missing arcs. We have used a related method,

generating data based on characteristics of a real data set, and then attempting to

verify the structure that we believe created those characteristics.

Particularly in Chapter 6: Bayesian Network Algorithm, we will use the

characteristics of our problem to efficiently build a BN structure representing the

dependencies between the class variable (disease state) and the feature set (ion

abundance at each peak position). The primary attribute that will streamline this

approach is the unique status of the class variable in a classifier. More general

structure learning methods seek dependencies between all variables without

specific regard to order or importance; with a classifier, we have a natural starting

12 Some take the opposite approach, starting with all possible arcs and pruning. Another fruitful approach has
been to do both, first adding all reasonable arcs and then using further tests to prune unnecessary ones.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point. Even more important, we actively seek to discard all variables that are not

directly connected by an arc to the class variable, since instantiation (in our case,

measurement) of the set of variables directly connected to the class will cause the

remainder to be independent of the class, and therefore, not useful in classification

[17].

A Markov blanket around a variable is the minimum subset of all other variables

that, if instantiated, break any dependence with the remaindering variables [17].

Mathematically, for a class variable C and variable set V, the Markov blanket

around Cis the minimum subsetS of V which, for all X E {V\S} (the variables

not in S), MI(X;C I S)=O.

In the case of a classifier, we need only find the Markov blanket, if we are sure to

measure all the variables in it. Since, in our experiment, each mass spectrum

produces specific measurements for each variable, the Markov blanket around the

class variable will suffice. It is this specific set of variables we will search for in our

structure learning.

Parameter Learning

Once a structure is known, we must determine, empirically or by other means, the

values in the probability tables that make up the terms in the JPD. We can refer to

them as tables (in the discrete case) because they hold specific probability values

for each combination of variables in that term. Thus, for a binary class C of

values {0,1} representing "disease" or "normal," and a data variable A with 4

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possible values {0,1,2,3}, the network C---+A requires two tables: P(C=0,1) with two

entries, and P(A=0,1,2,3I C=0,1) with eight entries. These entries are the

parameters we seek to determine under the rubric "parameter learning."

The simplest method (and the one we will use) involves usmg the maxunum

likelihood for each parameter given the set of learning data. For a discrete system

like the one in the previous paragraph, the maximum likelihood for each entry in

the table P(A =a; I C=c~ is just the fraction of training data cases that fall into the

bin represented by a;, partitioned by class [20]. Thus, if there are 25 total cases in

the disease class, and 5 of them fall in bin 1, P(A=11 C="disease") is estimated to

be the maximum likelihood value of 0.20.

Another possible method of calculating the entries would be to use the data to

model the underlying population, and then to use the model (a Gaussian for

example) to estimate the probability, perhaps by integrating over all the values in

the bin. The difficulty with this approach, and the reason that it was rejected for

the problem at hand, is that there is no well established model for the expression

of proteins in normal and disease groups for the data we wish to examine. Our

group was able [21] to determine that the errors caused by sample preparation and

instrumentation is fitted well by a log normal distribution. If all cases, for

example, had a single true value, the probability distribution could be modeled by

the log-normal13 "instrument function," since the measured distribution would be

13 1 ng-normal means that the distribution is Gaussian after taking the logarithm of the raw values ..

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the single value (a Dirac delta function) convoluted with the instrument function,

returning just the instrument function.

We estimated the parameters of the instrument function by studying the QC data

described on page 18. At its best, this data has a coefficient of variation of

approximately 20%, even after adjustments for laser performance and other

experimental factors [21].

Unfortunately, we have no basis for concluding that all normal patients have the

same value, or any other specific distribution of values, for the protein abundances

we measure. We do observe certain variables to have distributions very close to the

log-normal instrument function, with widths approaching the typical variations

found in the QC data.

so
45 -Actual Cases

rJJ 40
~

35 rJJ
C'S

-LogNormal

u 30
0 25
~

.c 20 s 15 = z 10
5
0

5 6 7 8
log (abundance)

Figure 12: Sample population and instrument function

We conclude this to mean that the underlying population has a distribution of

actual abundances that is very sharply peaked, and the convolution of that

relatively sharp underlying distribution with the wider instrument function

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

produces the results we observe. An example from actual data is shown in Figure

12. An approximate log-normal instrument variability function has been added and

scaled in height to guide the reader's eye.

Mutual Information with Class

The scoring criterion we will use to select a feature V for inclusion in the BN is

"mutual information with the class" or MI(C;V). This measurement answers the

question "how much does knowledge of the value of a specific variable (an ion

abundance in our case) tell us about whether or not the person has a disease?"

Figure 13 demonstrates an important problem. Even a completely

(pseudo)random data set will include some variables that exhibit mutual

information with a random class variable, if enough variables are created

compared to the number of samples. The black line in Figure 13 represents the

cumulative distribution of MI between each of 200 random variables and a

random binary variable designated as the class. A point (xJ') on the line means that

a fraction y of the 200 variables had MI(C;V) less than x. In this experiment about

3% of the variables had MI>0.04. One of our similar sized real data sets-the

blue line-had about 32 variables with this same MI or higher. We must therefore

keep in mind that, with a low enough MI threshold, we are likely to include

features that are not truly indicative of a disease, but, due to small sample effects,

have matched the class enough times to have been declared as important.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<IJ

~
~

-~ 0.8 ..
I

- ~----- -:------ ~----- - MI(C;V), Actual Class
OS

> - MI(C;V), Randomized Class
.....
0

= 0.6 ---+ - -- -- -1- -- - -- t- - --- --+- -- ---I-- - --- t----- - --t - -- --

.9 I I I ...
'.J
OS ..
~ 0.4

-~ ...
~ = 0.2 8 =

~: : : : I

-~--~---~------~-----~----- -----~-----~-----

: : Approximate Threshold 1

0 I I

: I
-~~~~- I------~------ I----- "1----- -~------ r----- I-----

• I I I I . u . . .
0 .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
MI (Class; Variable)

Figure 13: Mutual information threshold

As indicated by the dotted line, we use a value of MI(C;V) close to the maximum

value observed between many variables and a randomly generated class as the

baseline minimum threshold for determining significance. We may need to vary the

baseline MI threshold to leave a reasonable number of variables in the selected

feature set, while reducing the chance of selecting a non-significant feature. It is

still possible with this choice that an important feature has fallen below the

threshold and therefore eliminated from further evaluation, or that a random

feature has been included.

Discretization

A Bayesian network can include nodes representing certain continuous probability

distributions, such as Gaussians, but we have no concrete justification for modeling

the features we will examine with one of these allowed distributions. In addition,

there are certain limitations to node placement and ordering that continuous

distributions impose [17] which we choose not to accept for this problem.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Discrete variables, those that take on a (typically) few specific values, do not

impose these limitations in the Bayesian network. In the general case, the possible

values that the variable can take may come from sets like {old, middle-aged,

young} or {greater than 50.3, less than 50.3}, but we may map these choices to an

equal number of integers, e.g. {1, 2} for ease of use.

With the goal of creating a Bayesian Network in mind, therefore, we will discretize,

or bin, the values of the abundance variables from a nearly continuous set of

values into a few bins. This will cause the values of the variable for a specific case

to collapse from a measured abundance like "1283 counts" to "bin #2." We will

later discuss various binning methods and the criteria for choosing bin boundaries,

but MI with the class will be an important optimization criterion.

Cross-Validation

Because of the difficulty of obtaining new samples at each step of testing a new

classifier, a method of using a single set of previously classified data to both train

and score a classifier is used. This is called cross-validation.

One such method is simply to train a classifier on the entire data set, and use the

resulting model to re-examine each case-as if the result is not known-and score

the classifier on its ability to correcdy predict the class. We will call the result of

such an analysis the nominal error rate. The major drawback of this method is that

the same data is used to train and test.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As an example of the problem this can cause, consider a researcher sitting at a

street corner, recording the type and color of four passing vehicles. For some

reason, on that day, two cars that pass by that are red, and two trucks that are blue.

He builds a classifier using that data which says "if a vehicle is red, it must be a

car." Instead of testing the model against the next passing car, he tests it against

the data he has already collected, finding (incorrectly) that his model is error-free.

The primary way to guard against this problem is to train the model with some

subset of the data, then to test it against the remainder. The "leave one out"

cross-validation method does just that, training the model under all but one case,

then classifying that case with the resulting parameters. By repeating this for all the

cases, an overall error rate can be scored. This method is useful because, with a

large enough data set, the model parameters are relatively stable as the various "all

but one" training sets are selected, and the error rate directly reflects the number

of cases classified on this stable parameter space. One problem with the leave one

out method, however, is that the stability of the model parameters may be

misleading [22].

As an example, consider a classifier that tries to guess the sex of a student based

on that student's height. Unfortunately, the SO-case training set (SO% female)

happened to include ten members of the women's basketball team. Using any 49

of the SO cases will train the classifier that, if the test case is under 5' 10", the

student is most likely female. The 10 basketball players, all over six feet, will

consistently be classified incorrectly. The classifier has an error rate of at least

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20%. There is, however, no way to determine whether 20% is a stable measure, as

each complete trial of leave-one-out cross-validation produces exact!J the same result.

In fact, it is possible that if 50 new cases were tested, the classifier would have a

much lower error rate.

To correct the problem of unknown stability in the error rate, while accepting

some increase in the instability of the model parameters, the method of nfold

cross-validation is used. In this method, the data set is divided into n groups, for

some small integer n. One of the groups is held back as a testing set, and the

remainder are used to learn the model parameters. The test group is classified and

the number of errors recorded. A different group is selected as the test group, and

the original test group is returned to the training set. This is repeated until all n

groups have been a test group, and hence, all cases have been classified. In this

study, the parameter n is typically set to 10, and repeated randomized trials made,

which decreases variance and increases stability [23]. Table 5 shows an example 5-

fold cross-validation, in which each group consists of one-fifth of the total cases.

Table 5: Example 5-fold cross-validation

Groupl Group2 Group3 Group4 GroupS
Triall Train Train Train Train Test
Tria12 Train Train Train Test Train
Tria13 Train Train Test Train Train
Tria14 Train Test Train Train Train
TrialS Test Train Train Train Train

To calculate a cross-validated classification error rate under n-fold cross-validation, it is

necessary to record the results for each test group after its classification. After all n

trials are accomplished, every case in the data set has been classified exacdy once.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At that point a cross-validated error rate can be calculated, usmg either the

probabilistic or deterministic method of classification (see more details on these

methods on page 34). We expect that the model parameters would vary more with

this method than the "leave one out" method. If, for example, there are 100 cases,

with n=S, 80 of 100 cases are used to learn the parameters, as opposed to 99 of

100 in the "leave one out'' method.

This leads to the strength of this method, however-the parameters can be

tracked and the variations recorded to better understand the stability of the

classifier. Even more importandy, the data can be randomized and a different set

of n groups selected. Since each case is now tested on parameters derived from a

different set of training data (unlike the leave-one-out method) it may or may not

receive the same classification and the error rate will change after each

randomization. By examining fluctuations in the error rate or the feature set

selection, we can measure the stability of the classifier, and better predict whether

it will continue to achieve similar error rates as new cases are tested.

Repeating the nfo!d cross-validation in this manner also allows the average error

rate of a particular classifier model to be used as a parameter. For example, one

might add, to an existing feature set, the feature that decreases the error rate the

most. Cross-validation trials in this study are stratified, meaning that each training

group, while selected randomly, has approximately the same fraction of each class

as the overall population. This has been shown to reduce bias and variance [23].

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5: APPLICATION OF THE NAIVE

BAYESIAN CLASSIFIER

As discussed in Chapter 2, the assumption of independence between features

allows a great simplification in the structure and parameter learning of the

resulting na1ve Bayesian classifier (NBC). A classifier is created by simply building

a network with the class variable as the parent node, and the set of features as

direct descendants of the class, with no arcs between the features. We have stated

that an NBC is a special case of the Bayesian network, and Figure 14 shows this

special structure.

Figure 14: Naive Bayesian classifier

This type of classifier was used to examine the Leukemia and Prostate Cancer data

sets. The first experiment using the NBC was as a simple classifier using all

available features, and for this task, it performed well. Performance for feature

selection was less successful. Because of the problems associated with the

independence assumption, its feature sets were unstable when used as a wrapper

for feature selection. While it did select a reasonable feature set, it ignored highly

correlated features that were important to further analysis for biomarker discovery.

Specific details are found in Chapter 7: Results and Analysis.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Classification performance

The simplest algorithm one can use to build and test a naive Bayesian classifier

consists of only a few straightforward steps. The first is to discretize the data into

two or more bins. Next, for each class, and using the full data set (no cross­

validation), find the fraction of samples in each bin, and use this result for P(data in

bin I class).

For example, assume there are 100 patients with a class of "disease" and a similar

number with a class of "normal," and a single continuous variable X. A bin

boundary x0 in the range of X is chosen by some method, such as fixing the

boundary at the entire population's mean value. Then a second variable X' (a

discretization of X) is created, with X'=O if X <x0 and X'=1 if X>x0• The

parameter P(X'=O I Class=disease) is estimated by counting the number of samples

labeled "disease" in the lower bin and dividing by the total number in the class

(100 in this example). If 80 samples of the disease class have X>x0, then

P(X'=11 disease) is estimated to be 0.80.

After these two steps, Bayes' Theorem (1 0) is invoked, usmg the estimated

parameters, to find the result for P(class I data values). A typical result might read

"the probability that this person has the disease, given that the ion abundance

measured was in bin x, is 75%."

A classification threshold is used to convert this probability into a specific class,

such as the value 0.40 in "if P(disease I Data)>0.40, the patient is classified as

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

having the disease." The threshold can be adjusted depending on the relative

importance of eliminatingjalse positives or false negatives (see Glossary). This results

in a deterministic classifier (see page 34). For the work presented here, the

threshold is always set to 0.5.

In the simple one variable example described above, it is likely that each of the 80

samples from the disease class with X>x0, will be classified correctly as "disease,"

while the other 20% will be classified in error. If the normal class happens to have

a similar result (80 correct, 20 in error) we say the classifier has a 20% nominal

error rate.

This error rate changes under cross-validation (see page 57 for details on cross­

validation methods). Under a 10-fold cross-validation, for example, 180 of the 200

samples will be chosen as a training set, the parameters such as

P(X'=O I class=disease) learned from that subset, and the results used to find

P(class=disease I data) for the remaining 20 samples. The test group is returned to the

training group, a different group of 10% of the samples is used as a test group,

and the process is repeated (with new parameters calculated) until all the samples

have been classified once. A probability threshold for declaring the class is chosen,

and an error rate calculated.

In this experiment, the values X are the measured abundances at each peak

position. The example above is extended to many variables using the independence

assumption, as discussed in the section leading up to equation (13).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many trials of n-fold (with n typically set to 10) cross-validation are run, with the

samples included in each of the n groups randomized between trials. This allows

us to find an "average" cross-validated error rate, as well as determine the

variability of that error rate between trials.

Figure 15 shows the results of nominal error rates using each feature-by itself-

to classify the cases in the 199 peak leukemia data set. A classification error rate

(also called a misclassification rate) of 50% means that a feature was no better than

a random choice at choosing the correct class. An error rate of 0% means that

feature was a perfect predictor of the class. Any of the three peaks at the far right

of the figure, representing mass-to-charge ratios near 11700 m/ ~ predict more

than 90% of the population correcdy.

0%

10%

QJ ...
20% ~ = ...

0
30% t

iJ;l

40%

50%
Features

Figure 15: Nominal classification error rates of individual variables

From a pure classification standpoint, the minimum single-variable error rate

(about 10% in this data) provides a metric by which to compare any multi-variable

feature sets. We expect, however, that classification under a cross-validation

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheme, with the possible exception of the "leave one out" method [22], to give a

somewhat higher-and variable-error rate [23].

Feature Selection

The reader may note in Figure 15 the several clusters of "diagnostic" peaks-

those that by themselves may indicate the classification of the sample. The peaks

are shown in increasing m I z value, so that variables that are adjacent in Figure 15

are often only a few tens of Daltons apart in molecular weight. These are often a

primary peak and its adducts or modifications; if a peak is diagnostic, its adducts

appear to also be diagnostic. On the far right of the chart, for example, is a series

of three of the most diagnostic peaks, which represent the m I z values of 11684,

11727, and 11740 ml z.

Because of the large number of variables, exhaustive search methods of various

combinations of features are impractical. Instead, features are selected via forward

selection and backward elimination (See Chapter 4: Classification and Feature

Selection). The MATLAB14 code that accomplishes this is found in Appendix B:

M.ATLAB Code. This code contains a wrapper, a method of feature selection

where the features are selected by their utility under cross-validation.

14 MATIAB® (for "Matrix Laboratory'') is a commercial program by The Mathworks, Inc Version 7.7 was
used for this research.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error Rates

Figure 16 below shows the effect of forward selection on error rate. To select the

next feature k+ 1, all features not previously selected are added one at a time to the

k features that have been permanendy selected to that point. The new group of

features that gives the lowest average error rate over a number of repetitions then

becomes the new permanent feature set. The data come from the Prostate Cancer

data set (described in Chapter 3), and show four typical trials of selecting 20

features.

40% - Tri 11 a

38%

36%
~

34%
~ = 32% ...

-Trial2

"' Trial3

~
-Trial4

~ -g
30% iJ;l

~ -

28%

26%

24%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Features Selected

Figure 16: Cross-validated error rate, forward selection, PCA data

The error rate rises in the middle of Trial 3, even though the search is for the

lowest error rate. This is because the selection of another variable is mandatory,

insomuch as the algorithm was set to select exacdy 20 variables. It happened in this

trial that, after selecting variable 7, the next best variable's addition increased the

error-but it increased it less than any other selection.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A trial with backward elimination shows a similar trend. In Figure 17 below, all but

5 of the variables in the 199 peak Leukemia data set are removed. The error rate is

reduced from 20% to 6.5% after removal of the first 150 features, and then rises

from there as additional features are removed. Detailed results from each data set

are found in Chapter 7: Results and Analysis.

25%

20%

"' ~
15% ~
~ ...

§ 10%
IJ;J

5%

0%

198 178 158 138 118 98 78 58 38 18

Feature Set Size

Figure 17: Error rate during backward elimination, Leukemia data

This rise in error rate allows one to estimate the size of an optimum feature set.

The error rate found in the trial above reaches a minimum at about 50 features.

This minimum is consistent; over several trials, the cross-validated error rate

dropped to between 6% and 6.5% at about 50 features. 15 If the search were

intended to find this number, these results would be satisfactory. However, we

seek to find a specific set of features, and therefore must investigate which features

are producing this error rate. If the same 50 features are selected under large

numbers of independent cross-validations, the feature set is said to be stable, and

15 The nominal error rate with 50 features was approximately 4.8%.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that feature set would be expected to perform similarly on the next sample of

unknown classification.

However, if we find that the feature set is unstable under cross-validation, then we

must investigate further. 16 This requirement turns out to be the fatal flaw in the

NBC for the purpose for which we intended it.

Feature Set Stability

To illustrate, consider the set of "the first SO features selected" during forward

selection of the Leukemia data. If we repeat this trial a number of times, we can

determine the stability of the technique by examining the percentage of times a

specific feature is selected. A perfecdy stable system would select the same SO

variables m times in m trials, however, that is not the result obtained.

45%

"' 40%
.£
~ 35%
't: 30%
~

> 25%
0 20%
;:::
0 15%
(J 10% ~ ...

5% IJ...

0%

Never Once Twice Three times Four times Always

Number of Times Selected

Figure 18: Variable selection frequency, 5 forward selection trials

16 The search for this instability is a key reason for using n-fold cross-validation over "leave one out." Since the
training data is nearly constant under "leave one out," we would expect this instability to be masked, at least
until a set of additional cases are attempted to be classified. n-fold allows the researcher to predict how well
the training data will model another sample set. See page 31.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 18 shows the result of selecting the best one-fourth of the variables in each

of five trials. While the goal is that the same 25% of diagnostic variables would be

selected during each trial, but in fact 60% of the variables are selected. Five

percent of the (diagnostic) features are selected consistently; the majority of

features, however, are selected only occasionally.

Table 6 lists the peaks selected 4 or 5 times during this trial. We will compare such

lists across different experiments in Chapter 7.

Table 6: Features selected frequently during forward selection

5Times m/z 4Times m/z

3 2798 38 3768.5
49 4031 57 4211.0
84 4982 64 4372.1
113 5997 103 5751.9
124 6562 104 5773.8
144 7649 122 6515.9
151 7863 132 6851.0
152 7888
193 10547
198 11697
199 11742

Leukemia Data, 199 Variable Data Set

Part of this variation comes from the process of cross-validation, since at any one

step, if two variables are approximately equally diagnostic, the randomized

selection of training and testing groups will affect which is actually chosen for

inclusion or elimination. We have attempted to mitigate this variation by repeating

the cross-validation a number of times (we usually choose 30) and using the mean

error rate produced as a selection metric.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A secondary source of variability is that we may attempt to select variables after all

diagnostic features have already been chosen. In this case, we would expect

diagnostic features to be chosen consistendy, and non-diagnostic features to be

chosen occasionally. We therefore note those features chosen consistendy for

further consideration.

Effect of Correlations

Despite the averaging of large numbers of cross-validated trials, we noticed large

variations in feature set selection that were clearly problematic. For example, in the

4 PCA data forward selection trials whose error rates were presented in Figure 16,

the specific feature selections vary significandy. Table 7 shows the first 10 features

selected during those trials.

Table 7: Features selected on separate trials (PCA data)

Trialt Trial2 Trial3 Trial4
23 23 43 43
6 6 66 66

44 44 41 41
90 90 85 63
84 7 73 15
2 1 82 14
1 45 11 81

66 66 37 1
45 13 15 77
31 85 10 93

During the selection of the first seven variables, the error rate curves in Figure 16

are relatively consistent, although the actual features selected are almost completely

different. The first several selections in trials 1 and 3 yield significant drops in the

error rate, but do so with different variables. Furthermore, those variables selected

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first in one trial are rarely selected later in another. We noted that this phenomenon

occurred often among variables with high linear correlation.

As mentioned previously, such features exist in our data. Them/ z values of peaks

204 and 107 in the final Leukemia data set have a ratio of almost exacdy two,

indicating the possibility that peak 107 is a doubly charged ion (z =2) of peak 204.

In fact, the linear correlation between those two features is 0.952. A scatter plot

of the two features, with a marker for each of 41 7 replicate spectra, is shown in

Figure 19.

2100

1900
~ 1700 u
d

1500 ~
"0
d 1300 =
~ 1100
['

900 0
,;c 700
~
~

500 =-
300

100

100

• Normal Class
+Leukemia Class

1100 2100 3100 4100 5100 6100 7100 8100 9100

Peak 204 Abundance

Figure 19: Correlation between two diagnostic peaks

To investigate further, we created a simple generated data set that was intended to

determine the effect of highly correlated features on the selection process.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Correlation Effects

To replicate the problem of correlated features, this generated data set was given

three primary diagnostic17 features. Those three features were replicated elsewhere

in the data in two ways-first by simply inserting a duplicate (perfect correlation)

of each diagnostic feature, and second by using the values in the original, plus

Gaussian noise, to create a more weakly diagnostic (but correlated) feature.

Figure 20 shows a heat map of the artificial data with the three perfectly correlated

pairs. The most diagnostic features are labeled 10, 20, and 30, and their duplicate

features are labeled 5, 15, and 25, respectively. In the heat map below, the first 100

cases (rows) represent one class, the remainder, the second class. The diagnostic

features are clearly separated between these two groups.

20

40

60

j 80

100

~ 120

140

160

180

200
5 10 15 20 25 30

Feature Number

Figure 20: Generated data set with perfectly correlated features

!7 To make them "diagnostic," each feature was generated from a normal distribution with a mean value in one

class that was separated by one standard deviation from the mean in the second class.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forward selection of 10 features is attempted on both the perfect, and the noisy,

data sets. Error rates for both data sets are low. However, after repeated trials the

effect of highly correlated features becomes clear: after one feature is selected, the

second feature becomes much less important of an addition to the feature set. For

the data set with the correlated, but noisy, features18 (Figure 21), the error rate

drops rapidly when an independent diagnostic peak is selected, but less so when

additional, but correlated, peaks are included.

20

40

60

...
80 4.1 ,::,

e
= 100 z
4.1
~ 120 u

140

160

180

200
5 10 15 20 25 30

Feature Number

Figure 21: Generated data set with correlated features with noise

Table 8 shows the first 10 features selected for this artificial data with noise, and a

typical error rate profile. The algorithm selects one feature from each correlated

pair (5 and 10, 15 and 20, or 25 and 30), and then a second feature is selected from

2 of the 3 pairs, but not from the third. In fact, feature 5 is never selected, even

18 While the majority of the linear correlations among the random variables were less than 0.1, between the 3
diagnostic pairs the linear correlations were 0.72, 0.69, and 0.75.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

though other, purely random, variables are selected. Correlated features are

highlighted in red.

Table 8: First ten features selected, generated data with correlation

Order Selected Trial1 Trial2 Trial3 Trial4 TrialS Error Rate
1 30 30 30 30 30 11.4%
2 10 10 10 10 10 8.2%
3 15 15 15 15 15 5.3%
4 20 20 20 20 20 4.1%
5 25 25 25 25 25 3.3%
6 1 2 2 9 29 3.2%
7 7 12 16 12 2 3.1%
8 8 18 8 13 18 3.1%
9 4 3 18 18 12 3.1%
10 2 27 12 19 11 3.1%

Upon repeating the experiment with the other set of generated data, in which the

correlated pairs (e.g. 5 and 10) are exact duplicates of each other, the problem

becomes even more apparent. One of the two features is selected, apparently at

random, from each pair, but the other is never selected.

Table 9: First ten features selected, generated data with duplicates

Order Selected Trial1 Trial2 Trial3 Trial4 TrialS Error Rate
1 30 25 25 25 25 11.1%
2 10 s 10 10 s 8.0%
3 15 15 20 15 15 5.8%
4 6 17 7 7 16 5.7%
5 4 8 12 4 6 5.6%
6 8 4 28 23 4 5.6%
7 11 9 17 8 7 5.5%
8 3 11 4 11 13 5.2%
9 9 3 23 9 8 5.0%
10 2 28 26 3 17 4.7%

It is possible to show why this occurs mathematically. Consider a discrete random

variable A with alphabet {1,2}, and a second variable B that is a duplicate of A, so

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that P(A=i[B=;) = ofj (Dirac delta). They are used to classify a class variable C, also

with alphabet { 1,2}.

In the case of classifying C using only variable A, Bayes' Theorem yields

. P(A = iiC = 1) P(C = 1)
P(C = 11A = t) = LkP(A = iiC = k) P(C = k)

(28)

If we classify C using both A and its duplicate B, Bayes' Theorem gives

. . P(A = i,B = JIC = 1)P(C = 1)
P(C = 11A = L,B = j) = LkP(A = i,B = JIC = k)P(C = k)

P(A = iiC = 1)P(C = 1) 6ij
(29)

Lk P(A = i, IC = k)P(C = k) 6ij I

which (because it never occurs that i =f. ;) is the same as the one variable

classification. Because the classification P(C=k [data) has the same probability

whether A, or the duplicate pair {A,B}, are used, the error rate cannot decrease if

B is added to the feature set that already includes A.

Again, this might not be a significant problem if the objective was simply to build

a classifier, since selection of either A or B is "good enough." However, our goal is

to determine not only a minimum feature set, but rather the set of all features that

provide significant information about the disease state. More discussion on this

can be found in Chapter 6: Bayesian Network Algorithm. A further discussion of

the NBC instability problems is found in Appendix A: Mathematics.

However, the NBC is useful in that it provides a check (of feature selection), and

bound (of error rates), for further investigation.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6: BAYESIAN NETWORK ALGORITHM

Given the feature selection problems associated with the NBC, it was necessary to

expand the methodology to consider links between variables. This naturally leads

to the creation of a two-level Bayesian network.

Goal

Because we only seek a Markov blanket of variables for classification (see page 51),

that final DAG will look very much like a NBC, but with the possibility that arcs

will exist between two variables that are each a child of the class variable. In order

to identify variables that are correlated to diagnostic variables (which is what the

NBC failed to do) more robusdy, we will also seek a second level of variables.

These are variables not connected to the class except through another variable.

Figure 22 is an example of this type of structure.

Figure 22: Bayesian network forMS data

In this network, C represents the disease state, or class variable. The V nodes

represent peak features. v7 has been determined to be independent of the class

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and will be removed from the variable space. V6 is a first level variable, as are V4

and V5; the latter two have been determined to be connected to each other. We will

refer to this as a tripfy connected structure or triple connection. V1, a first level variable, is

connected to two children, V2 and V3" We seek to build such a network from the

MS data sets, noting the first and second level features.

Furthermore, knowing that we will encounter two variables that represent a single

physical molecule being measured in separate variables, we will attempt to increase

the classification ability by finding and recombining the values of such variables.

Algorithm

The algorithm that creates the two level BN from the data set is enclosed in two

loops: an outer one to repeat the entire process several times to suppress statistical

fluctuations, and an inner one for cross-validation. Inside that second loop, where

a training group and test group have been selected, the three primary steps occur:

structure learning, parameter learning, and classification. Classification of the test

group is concatenated until all test groups (and hence the entire data set) have been

tested by a network, so that an overall population error rate is available for each full

cross-validation.

The full code for the algorithm 1s presented in the Appendix; the simplified

pseudo-code is:

pre-process the data;
for each of r repetitions

build n cross-validation groups;
for each of n sets of training and test groups

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Structure learning section
find all significant connectionsi
test to prune and direct arcsi
attempt to combine linked variablesi
record resulting networki

% Parameter Learning section
find probability tables for first level arcsi

% Classification section
classify the test group using the parametersi
save the test groups predicted classificationi

chose another training-test group sets until complete
check all predicted class values against known valuesi
record error ratesi

randomize and repeat.

Initial data processing

Before the start of the algorithm, the data is processed according to several

options available to the user. These include replicate averaging, total ion

normalization, and the removal of cases with extremely low signal-to-noise ratios.

Structure Learning

To learn the structure, we exploit the assumption that the class variable has a

unique position in the structure, since it has no ancestors, and variables with no

path to the class are to be discarded. To determine which variables are connected

to the class, we need a scoring criterion. Several scoring criteria have been used in

recent research; one popular criterion is the Bayesian Information Criterion (BIC)

[17]. The majority of methodologies that use scoring functions like BIC do so to

compare structures. Two structures are compared, such as a baseline structure and

the same structure with one additional arc added. Such methods often heuristically

build a structure from a set of completely unconnected (or completely connected)

nodes. Given our goal, we require a much simpler set of tests-those necessary to

find connections to the class, and connections between variables. We can then

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prune all connections with more than a two-node path to the class, creating a

network like that illustrated in Figure 22.

The method we employ is somewhat similar to that of the Chow-l.iu tree described

in Jensen [17], p. 250. Chow and Liu [24] described a method of building a

maximum weight spanning tree (MWST), wherein each arc is assigned a weight by

some method, and a network of maximum likelihood results. 19

The Chow-Liu tree allows flexibility as to the method of determining the weight

of each possible arc between variables. The robust ability of mutual information to

determine informational correlations between variables is well suited for this

requirement, and has been used previously; a MATLAB library is available [25].

The method of Jensen and others builds a MWST among all variables in the

network, only finally choosing a specific variable as the root node. One difficulty

with directly applying previous structure learning research to our problem is that

we seek to limit the complexity of the resulting network to one that matches our

understanding of the underlying biological processes.

We have therefore simplified that method, and reduced the computational expense

significantly, by starting with the class and building a modified Chow-Liu tree to two

levels. The result is also similar to a classification tree as discussed briefly in Jensen

[17].

!9 The likelihood for network 'Bon a data set Dis P(D I 'B).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutual Information

Due to the strength of correlations between variables, the MWST method fails to

account for the importance of the class variable in our search. We therefore

choose to maintain the method of assigning weight via mutual information, but do

so starting direcdy with the class node. This method requires a test to determine

"when to stop" attaching arcs from the class to the features.

To provide a threshold for mutual information score that we will consider

significant, the algorithm takes the actual data, and for each variable, computes

mutual information between that variable and a vector created by randomly

permuting the class variable. This process is repeated a number of times and the

maximum20 mutual information found is used as the baseline for the minimum

significant mutual information.

While this threshold would seem to provide the "highest MI between a variable

and the class expected for a non-diagnostic feature," in one of our data sets,

dozens of features exceeded this threshold. The noise introduced by the various

instrumental and chemical preparation processes, particularly that of signal pre­

processing, results in a spread of mutual information values that far exceeds that

which one would expect.

Figure 23 shows a histogram of mutual information between variables and the

actual class for the Leukemia data, as well as the same data with a randomized

20 We take the 99th percentile of more than a thousand trials as the "maximum."

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class. These results represent the data discretized by a simple {high, low} method;

upon further optimization the number of features exceeding the threshold

increases farther.

140

l 120

100

• Leukemia Data, True Class

• Leukemia Data, Random Class

>,
u 80 = QJ
:I
"0"'

60 QJ ...
~

40

20

0

0 0.025 0.05 0.075 0.1

Mutual Information between Variable and Class

Figure 23: Histogram of MI between features and the class

While we might expect a single molecule to show up as many as ten m/ z positions

(including multiply charged states, adducts, and modifications), we do not expect

many proteins to be markers for a given disease state [2].

We verified this result using the QC data set. While no "class" exists, since all

samples are identical, we can examine mutual information between variables, and

set a threshold with a randomly created class assigned to each case. Where a

feature is physically related to another, such as an ionization satellite, we would

expect to see high mutual information between variables. For the majority of the

435 possible unique combinations of the 30 variables we would expect litde

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mutual information, since all variations in the data are purely from the sources of

noise listed previously. The heat map in Figure 24 shows that large areas of

significant mutual information are present.21 We expect some high MI scores, such

as the score of nearly 1.0 between features 8 and 9, which is likely the result of an

adduct. The large area of high MI in the center region, however, is more likely to

be a signal processing error rather than a physical or biological process. Much of

these MI(variable; variable) scores exceed the values of MI(class, variable) in our

data sets and would mask the structure we seek under a MWST method.

5

10

15

20

25

30

5 10 15 20 25 30

Figure 24: Mutual information between variables, QC data

21 Assignment of a randomly chosen class to each case allowed a threshold of approximately 0.05 to be
considered significant.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given these indications that a randomized MI threshold would underestimate a

significance level, the algorithm was modified to apply a multiplicative factor to the

MI threshold.

For each data set, we examined the effect of changing this threshold factor on the

cross-validated error rate and the number of variables selected to be direcdy

connected to the class variable. In the Leukemia data set, factors below 2.0 (double

the "randomized" threshold) resulted in an unrealistic number of first level

features selected, as well as an error rate significandy higher than the results of

previous analyses. However, when the threshold was set to approximately 3.4, the

error rate reached a minimum, and a biologically reasonable number of features

were selected.

30% 30
-Error rate "' 25% 25 ~ -,:; -Average number of variables ~

~ 20% 20 ·c
~

----~-

~

>
~ 15% 15 ._
B 0 10% 10 ~

IJJ ,:;
E

5% 5 = z
0% 0

2 3 4
MI Threshold Factor

5

Figure 25: MI threshold effects under 10-fold cross-validation

Adjacency Matrix

While discovering the BN structure, we need a method to encode the various arcs

and nodes efficiendy. Our method, following that of the Bqyes Net Toolbox open

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source MATLAB library written by Kevin Murphy22 (with contributions), is that of

the acfjacenry matrix. In general, with n nodes in a structure, the adjacency matrix is

an n-by-n logical array. The (i;) entry in the array represents the truth value of the

statement "an arc exists between node i and node f' Care must be taken in its

assembly, as the requirements for a DAG are stricter than those of the adjacency

matrix-for example, a true in a diagonal element represents an arc from a node to

itself, which is not allowed in a DAG. An adjacency matrix for Figure 10 is shown

below.

Arrqy Entries

To

A B C
A 1

B 1
E c 0 ... u..

D

E 1

Discretization

D

1

Resulting DAG

E

4

5

Heat map rif Arrqy

2 3 4 5

Figure 26: Adjacency matrix representation

The first step in the structure learning is to find arcs from the class variable to the

peak variables, or c~ V. For the reasons mentioned previously, the abundance

values need to be discretized.

Several methods of discretization of the variables were explored. One method,

which we termed as naive binning, models the entire population as a normal

22 The BN Toolbox is hosted at http:/ /www.cs.ubc.ca/ ~murphyk/Software/BNT /bnt.html.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution, and uses combinations of the mean and standard deviation to set bin

boundaries. A second method attempts to optimize MI(C;V), where V is the value

of V discretized over the boundaries. Both two bin, with a single central boundary,

and three bin, with two central boundaries land r, were used. The class variable is

already discrete (disease or normal).

An example taken from several features of the Leukemia data set is shown in

Figure 27. Three bin optimized discretization enhances mutual information

compared to naive methods and two bin optimization.

0.6

"'
•4 Bin naive

"' 0.5
~ 2 Bin Optimized -u

't:l • 3 Bin Optimized
= 0.4 ~

4.1 ...
= ...
~ 0.3 4.1
~

= 4.1
4.1 0.2 e
4.1
~

0.1 ~

0

195 196 197 198 199

Feature Number

Figure 27: Results of optimizing discretization boundaries

While it is possible that mutual information could be increased further with

increasing numbers of optimized bin boundaries, practical limits exist. First, the

search for optimal boundaries is computationally expensive. Second, the greater

the number of boundaries, the more likely it is that small sample effects, such as

central bins having no cases from one class, will occur.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Three Bin Discretization

Three bin discretization was therefore chosen for this algorithm. If the variable is

diagnostic of the class, central values that are common to both classes are isolated

in the center bin, and the probability difference between classes falling in the outer

bins is maximized.

Figure 28 demonstrates this effect. In that figure, a variable in the generated data

set is separated into classes, and each class is histogrammed by the measured

abundance value. Bin boundaries (green dashed lines) are placed to isolate the area

where class is the most uncertain. In the outer bins, the probability ratio

P(bin I class=1)/ P(bin I class=2) is far from unity, providing the best possible input

for a Bayesian analysis.

70

60
(/J

~
(/J 50 ~ u 40
0
....
~ 30
1 20 :::: z

10

0

5 6 7 8 9

• Class A

• Class B

10 11 12 13 14 15 16 17 18

Abundance (xtQ-3)

Figure 28: Center bin isolates uncertainty

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Boundary Optimization

The algorithm finds boundary values l and r lying between max(V) and min(V)

using a 2-D exhaustive search.23 Results of one such search (feature 197) are

presented in Figure 29. The values on the lower axes represent possible positions

of land r as they are stepped across the range of V The vertical axis represents the

mutual information MI(C;V) resulting from discretizing on those boundaries.

0.35

I

0.3

I

-:--- ~-- -:
1 I I

--~---~---~-

1

I I

0.25 - - -: - - - ~ - - -:- - - ~ - - -:- - - ~ - - -~- -

I I I :

0.2

0.15

0.1

0.05

0
60

I
---,---r-

1

50 45 40

I -

I -.-..-.I

I

Figure 29: Search for optimal boundaries for three bin discretization

0

The maximum point represents the (l, r, max MI) point which is used for further

testing. All cases (training and testing groups) are discretized on the I and r

boundaries found in this search.

23 The exhaustive search is inefficient but simple to implement. The computational expense was minimal, as
optimization is only accomplished once per cross-validation.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First Level Connections

Once discretization is complete, we score all c~ V connections and note those

with MI(C;V)>E:, where E: represents the mutual information threshold found from

random data, adjusted as described on page 82, to reduce false arcs. Connections

meeting this test are entered in the appropriate element in the adjacency matrix.

Second Level Connections

The second level should consist only of connections of the type v~w, where V

is a node found in the first level, and W is a node (also representing a peak position

abundance variable) found using the test MI(V;W)>E:'.

E:' found in this test is scaled from the E: used previously, since the maximum value

of mutual information differs according to the number of elements in the

alphabet of each variable. For example, if the class has two possible values, and

the variables three, the maximum of MI(C;V) is logz(2)=1; the maximum of

MI(V; W) is log2(3). For the leukemia data, E: was about 0.05, E:1 was about 0.08.

Initially, the entire adjacency matrix is filled with the results of this test. However,

the algorithm then clears irrelevant arcs, such as those between variables with no

path to the class and those more than two levels beneath the class. This removes

triply-connected structures on the second level. Triply-connected structures may

remain on the first level, with an unknown arc direction between the features, since

MI(V;W) is symmetric.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parent-Child Identification

We must address the triply-connected features to determine if they are a result of a

true triple connection (which is not allowed in a Chow-Liu tree) or if one of the

nodes is a child of the other-but not the class. We seek to direct or remove arcs

in the manner shown in Figure 30.

Figure 30: Removal of false connection to class

We believe we will find such structures based on our understanding of the physical

processes involved. In the diagram above, V 1 might represent a primary ion and V 2

a modification of that ion. Strictly adhering to the causality precepts for the BN,

we might instead seek to insert a hidden variable between the class node and the

inverted V arcs in the left side of Figure 30, with the hidden variable representing

the base molecule before ionization. However, the result will be the same, as will

be discussed in the next section on metavariable creation.

To test the triply-connected structure with the goal of simplifying it into a serial

connection, we use a property of the Bayesian network. In the serial structure, if

the center variable is known, the root variable and the child variable become

independent (see the discussion on page 45). Mathematically, MI(C;V 2 1 V1)=0.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We will not require the mutual information to vanish, due to the inherent noise in

our data-rather we test for a significant drop such that MI(C;V2 1 V1)« MI(C;V ~-

Specifically, we test that

MI(C; V2)- MI(C; VziVt)
MI(C; V2) ~ 8 '

(30)

where o represents some threshold. It is important to note that, for testing as

parent and child, the arc between the two variables must already be directed since

MI(C;V2 1 V1) is not symmetric in V We do so by choosing the greater of the terms

MI(C;V; IV), where i and j are the indices of the two variables to be tested and are

permuted. Thus, whichever variable maintains a stronger correlation to the class

upon instantiation of the other is chosen as the parent.

The reader who is familiar with the controversy regarding the "monotone DAG

faithfulness" assumption, made by Cheng, et al.[26], and questioned by Chickering

[27], may object to our use of decreasing MI to choose numbers of paths to a

descendant. However, we do not seek to extend our search for paths beyond the

simple question of "one path or no paths?" It was this extension by Cheng, et al.

which led to the inconsistencies noted by Chickering.

While we allow for some mutual information to remain after the center variable

(V1 in Figure 30) is instantiated, we do not assume that there are paths remaining

that provide that mutual information; rather we understand that in the data sets we

use, perfect dependence or independence is unlikely.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The question arises as to what level of decrease will be considered significant when

making the test for a drop in mutual information. While the threshold 8=1 is

unrealistic, too low of a threshold will prevent us from finding parent-child

relationships in physically correlated variables-a problem we have planned to

avoid.

Our only method of determining o gtven the unknown nature of the data

correlations is to test various thresholds empirically and determine a reasonable

balance of first-level feature set size, stability, and error rate.

The results of just such an analysis are shown below. Using the Leukemia data set,

and holding all other parameters constant, many trials at various values of o were

performed, and the error rate and number of variables noted. As can be seen, the

cross-validated error rate remained relatively constant through the reasonable

range for o, but, as expected, the number of variables began to rise.

14
riJ
~

12 -.c
(':$

10
·c

(':$

> -
~ 14% ...
(':$

~ 12% ... g
10% w

/ - - -......£,... -
8 ~

>
~

6:l ...
riJ

4
.::
"'"'

'"0 8% ~ ...
(':$

'"0 6% :=
~ 4% -Error Rate -

"'"' 2 0 ...
riJ
riJ

2% 0 ...
-Number ofVariables _

~

0 1
u

0%

40% 50% 60% 70% 80% = z 90%

Drop in MI Required to Remove Link

Figure 31: Effect of increasing drop threshold

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The largest increase began (for this data set) at about 8=0.7, and that threshold

was chosen for the remainder of the testing. Stability of the feature set is

discussed later.

Whether or not the triply-connected structure is resolved into a serial structure, all

connections V ~ V remaining at this point are tested for possible combination into

metavariables.

Metavariables

Knowing that there is a strong possibility (one that is verified later) that such

V ~ V connections will often represent the abundance of a single molecule

showing up as more than one variable, it is prudent to attempt to recombine those

variables into a single metavariable. The simple summation of abundances would

seem to be the best method. Unfortunately, using a MALDI TOF-MS system, the

measured abundance of molecules in a sample is made in arbitrary units, since

numbers of ions are not measured directly. Even the measured abundances for

two peaks in a single sample are not perfect indicators of the actual ratio of

concentrations [28].

Lacking any precise method for learning the original abundance of the parent ion,

we can only rely on the knowledge that the expectation value of the sum of two

random variables is the sum of their individual expected values [29]. We therefore

chose to sum the abundance values of two variables, if they are determined to

likely represent the same parent species.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The determination of a physical relationship itself was more problematic. While it

was relatively simple to identify multiply charged ionization states from the integer

ratios of the two variables' m/ z values, it is extremely difficult to automate the

identification of the hundreds of possible adducts and modifications. In fact, this

process is a separate and active area of study; a few products are available

commercially.

While it may have instead been possible to group species manuai!J pnor to

metavariable selection,24 a different approach was chosen. In that approach, each

candidate was combined on a trial basis, and the new variable was re-optimized to

determine the maximum MI(C;V) of the metavariable. If this value exceeded the

mutual information of the parent variable alone, the metavariable was kept. If the

mutual information showed no increase, the metavariable was not created, and the

child was noted and removed (unless it was a first level variable itself).

Surprisingly, few features were combined using this test. We had expected the

series of features in the Leukemia data set around 11.7 kDa, which appeared to be

a set of modifications, to combine into a single feature with increased mutual

information with the class. While two features did often combine, and others did

occasionally, the infrequence with which this occurred was unexpected. Table 10

below shows the occurrence of metavariable creation during ten 10-fold cross-

validation trials (100 possible occurrences).

24 This is quite difficult in itself, particularly in the mass ranges under consideration, as the exact m/ z values arc
estimated, and there may be many possible explanations for a single m/ z difference.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10: Metavariable creation in 199 feature leukemia data

First Level Feature Fraction of
Feature25 Combined Occurrences

42 43 0.28
43 42 0.01
76 17 0.01
76 74 0.01
100 122 0.03
121 123 0.01
122 100 0.01
122 121 0.01
145 121 0.01
145 122 0.07
151 112 0.04
198 195 0.09
198 196 0.02
198 197 0.03
198 199 0.70

In the PCA data, the occurrence of metavariable combination was more frequent.

However, the much lower MI threshold for declaring relationships does not allow

a direct comparison between the two data sets; at the thresholds used in the

Leukemia data, the PCA data shows no connections at all.

It is clear that, if there is more information to be found by combining variables,

more work needs to be done in this area. However, since our primary goal was to

identify feature groups (the candidates for metavariables) rather than build a

perfect classifier, we accepted the limitations of the metavariable technique as

described.

Parameter Learning

With the creation of the metavariables, the algorithm now learns the probability

tables associated with each arc. This process is the same as that described in

zs Two features may show up in reverse order in this table, such as the pair 42-43, since on various trials, either
one may be selected as a parent of the other and hence be listed as the top-level feature.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Application of the Naive Bayesian Classifier; data is simply partitioned

and counted for each probability needed.

Table 11 is an example probability table from a single cross-validation attempt for

the 199 feature Leukemia data. On this particular attempt, all the test cases were

classified correctly, using the feature set {3,42,43,51,142,144,145,151,193,198}. The

variable labeled 198 on this attempt is a metavariable combining feature 198 with

features 197 and 199.

Table 11: Probability table: P(abundance I class) for metavariable 198

i Abundance J
~ -,,----~--- .

Low l-~ed High I

Normal 96% i 4% 0% i
~-Le-u_k_e_m_i_a__, __ 1_5 __

0
!<-o-+I--2-9°-Yo---1-56% I

Figure 32 demonstrates why this variable was chosen. It has large differences

between P(V I C=Normal) and P(V I C=Leukemia) in the outer bins.

120% -(J}

100% (J}

~ -u
80%

~ u
= 60%
~

'"d

= 40%
= ~ 20% -=..

0%

Low

8Normal

8Leukemia

Med
Abundance (discretized)

High

Figure 32: Abundance probability differences by class

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Classification and Error Rates

As was done in the NBC, a deterministic classification method is used. The joint

probability distribution that is represented by the BN resulting from the previous

steps is solved for P(class J data). The vector of data includes only those features

finally chosen as first level nodes.

This probabilistic classification is matched against the known classification at some

threshold, typically 0.5, and each test case is scored "correct" or "incorrect." Once

a complete set of cases is scored after one n-fold cross-validation, an overall error

rate is assigned to that trial. Specific results are found in the next chapter.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7: RESULTS AND ANALYSIS

In this chapter, we present the results of the methods described in the two

previous chapters applied to the three data sets described in Chapter 3. The results

are organized by data set, then by method, with an overall analysis of each data

set's results at the end of each section.

For each data set, two experiments are run using the Naive Bayesian Classifier.

First, ten independent trials of forward selection are done, with 20 features

selected in each trial, to assess the stability of the feature set. Second, a forward

selection is run, selecting a large subset of features, from which backward

elimination is used to find a minimal feature set based on lowest error rate.

Thirty cross-validated error rates are calculated after each feature's addition or

elimination; the results are averaged to score that feature's value to the feature set.

10-fold cross validation is used for each trial. A deterministic classification scheme

is used, with a threshold of P(class I data)>O.S to declare the class. Four and six bin

discretizations are used, depending on the data.

For the Bayesian Network technique, it was first necessary to determine the

appropriate thresholds for mutual information tests that create, or break, links in

the Bayesian network. Node-to-node minimum MI thresholds were found first

using an analysis that balanced error rate and feature set size. Next, the threshold

used to remove or arrange links are determined using a similar analysis.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When those parameters were established, the algorithm was run repeatedly,

typically 100 times using 10-fold stratified cross-validation. This results in 1000

Bayesian networks, and 100 fully cross-validated error rates. Networks are

examined for stability and consistency, and important features are noted and

compared to the NBC results.

Generated Data

The generated data set is described in Chapter 3. The reader may want to review

Table 1: Diagnostic variables, generated data on page 2S to see the purpose for the

features listed below. We expect to find thirteen total features:

• Peak 200 as a parent, with children at 100 and 196-199;
• Peak 99 as a child of peak 199;
• Peaks 1 and 2, with correlations due to deconvolution problems;
• Peaks 3 and 4, which were independent
• Peaks SO and 1 SO which should combine to form a single feature

N a'ive Bayesian Classifier

The data was processed using repeated forward selection and a "forward-then-

backward'' experiment.

Forward Selection

Forward selection of features was accomplished by selecting the best 20 features

(based on error rate) in ten independent trials. The goal was to select the thirteen

diagnostic features, followed by several features that were not intended to be

diagnostic-we will call these random features. During those trials, cross-validated

error rate dropped to about 2%. Three typical trials are shown in Figure 33.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18%
41 ... 16% ~

~ .. 14%
0 ..

12% ..
r..l
"CC 10%

41 ...
~ 8% "CC :.= 6% ~

>. 4% "' "' 0 2% ..

" \
\

" "' ~
~ --- ---u

0% '

Feature Set Size

Figure 33: Error rate during forward selection, generated data

Table 12 lists the features selected, in order, for each of the ten trials. The feature

set selected early in each trial was relatively stable. The first three selections were

consistent, and included the parent peak (200) of the correlated set {200,196-199,

99-100}, followed by one of the correlated "convoluted peaks," feature 2. The

third selection in every trial was one of the pair of correlated "fragments," peak

50. The fourth selection in all trials was a random peak, the fifth was often a

"mildly diagnostic" feature 3. The other mildly diagnostic peak, feature 4, does not

appear. Entries in red are those intended to be diagnostic.

Table 12: Forward selection, generated data

Selection Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial
No. 1 2 3 4 5 6 7 8 9 10

1 200 200 200 200 200 200 200 200 200 200
2 2 2 2 2 2 2 2 2 2 2
3 50 50 50 50 50 50 50 50 50 50
4 179 190 190 5 190 179 190 190 190 190
5 1 3 61 94 3 170 3 3 3 3
6 175 164 81 170 164 62 164 164 164 164
7 58 126 94 195 76 81 126 76 76 126
8 3 76 112 190 126 5 76 126 126 76
9 48 63 193 37 63 36 63 63 63 63

10 194 94 170 61 160 76 138 160 178 160

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It would have been difficult to separate the mildly diagnostic feature 3 from the

random features such as 190 that appeared frequently in the first few selections. It

is clear, however, that the error rate curves for the ten trials begins to diverge at

selection 4, which could indicate that a maximum-size stable feature set has been

selected. The error rates for all ten trials are in Appendix C.

Forward-Backward Feature Set and Error Rates

In the second experiment, 80 of 100 features are selected by forward selection, and

then backward elimination is run using only those features. Cross-validated error

rates as low as 1% were obtained during trials of the forward selection portion.

However, error rates under 10% were only achieved while selecting many random

features26
• Of the thirteen diagnostic features, only 5 were chosen. Given the

problems associated with correlated features, we expected only one of the

correlated set {200,199-196,99-100) to be chosen; that expectation held true. Of

the six remaining features, namely {1,2,3,4,50,150}, four were selected; 2 were not.

Table 13 shows the diagnostic peaks selected and the selection order (of 80).

Features highlighted in red were found by forward selection in the first experiment.

26 More specifically, "features that were diagnostic only due to random chance in a small sample set."

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13: Diagnostic variables selected, generated data

Feature Selection Number

200 1

1 2

3 4

2 26
150 69

Cross-validated error rates for the forward selection portion of this experiment

stabilized at about 1% with 25 features remaining. The error rate curve is shown in

Figure 34.

18%
16% • -Forward Selection -

' 14%
~

-Backward Elirrllnation -.... 12% co=
~
.... 10%
0
t: 8%
~

G 6%
4%

.\
' \\
'<.\
~

2% --_.......
0%

0 10 20 30 40 50 60 70 80
Feature Set Size

Figure 34: Error rate during feature selection, generated data

As the error rate began to rise during the backward elimination portion of this

experiment (the red line in Figure 34 above, reading right to left), all the features

listed above remained, as well as 13 random features. After further elimination,

feature 2 was removed, leaving 4 diagnostic and 12 random features. Feature 2 was

highly correlated to feature 1 due to artificial deconvolution problems. After this,

however, all the random features were eliminated, leaving four diagnostic features,

namely {200, 1, 3, 150}, with about 7% error.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This feature set includes exactly one feature from each group of correlated

features, other than feature 4, which should have been independent and diagnostic.

A closer examination of feature 4 shows that its distribution is perhaps less

diagnostic than was intended. Figure 35 shows features 3 and 4 side-by-side for

companson.

60 •Class A

>. 50
• Class B u 40 ;:::

~
30 = 1:T

~ 20 ...
~ 10

0

200 250 300 350 400 450 500 550 600 650

Abundance, Feature 3

100 • Class A
>. 80 u
;::: 60 ~

= a' 40
f:
~ 20

0

150 200 250 300 350 400 450

Abundance, Feature 4

Figure 35: Distribution of features 3 and 4, generated data

Bayesian Network

The artificially generated data set was processed usmg the Bayesian network

algorithm described in Chapter 6; the code is in Appendix B: MA TLAB Code.

Prior to the main part of the experiment, it was necessary to determine the

thresholds for mutual information tests, as described on page 82.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It was immediately clear that thresholds for MI(class;variable) near the baseline,

which was derived from the expected maximum MI between a similar size data set

with a random class, overstated the number of diagnostic features. Even using 2.0

times the baseline as a threshold, 16 features were frequendy selected as diagnostic.

Knowing that we intentionally placed only 13 of 200 diagnostic features in the data

set, it was obvious that small sample effects27 allowed some random features to

appear non-random, when optimized as described on page 85. Figure 36 shows the

effect of changing the threshold on error rate and number of variables selected.

25% 18
16 rJJ

11.1
-Error rate

20% 14 ::c
~

1::--"'1..------ -Average number of variables
11.1 ...
~ 15% = ... g 10%

iJ;l

12 ·c
~

10 > ...
8 0 ...
6 11.1

.c
5% 4 s ::

2 z
0% 0

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

MI Threshold Factor

Figure 36: Effect of MI Threshold

A MI threshold factor of 3.2 times a "random MI" minimized error rate and

limited feature set size to about 6. While this was less than the 13 known

diagnostic variables, we expected that the correlated variables would not be

selected at the first level, so our expected feature set size was seven. We chose a

somewhat lower threshold factor of 2.5, knowing that random features might be

27 Meaning that our sample size of 150 samples was small compared to the 200 variables.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selected, but attempting to determine whether our methodology would identify

them through their infrequent and unstable inclusion.

It was also necessary to determine the threshold for declaring parent-child

relationships in the network structure. An analysis similar to that described on

page 88 (parent-child identification) determined that a 75% drop from

MI(class; child) to MI(class; child [parent), where "child" is the perspective child

variable of the "parent" variable, is a reasonable threshold. This threshold

provided a minimum error rate (about 5% in that analysis) while maintaining the

feature set size that was desired. The remainder of the analysis was performed

with these two thresholds.

Feature Set Selection

We performed 100 repetitions of the Bayesian network algorithm, each time

recording the adjacency matrices and 10-fold cross-validated error rate, as well as

any metavariables created. Since each cross-validation attempt results in a unique

Bayesian network and accompanying parameters, with 100 repetitions of 10-fold

cross-validation, 1000 adjacency matrices are created.

Class to feature connections

The adjacency matrices for all trials are summed together; the value at the (i?J)

position of the result is the total number of times a connection was found from Vi

to Vi in all networks. Since the class variable is a node in the network, the final row

in the adjacency matrix represents the number of times a connection was found

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from c~v for each variable. Figure 37 shows how many of the 200 variables

were connected to the class at various fractions of the possible networks.

8
186

riJ 7
~ - 6 ..c
~ ·;:::

5 ~
;. ._

4 0
....

3 ~
..c
E 2
= z 1

0

0% 20% 40% 60% 80% 100%

Frequency of connection with class

Figure 37: Frequency of class-variable connections, generated data

Six features are selected by the BN algorithm to be directly connected to the class

more than 50% of the time - in fact, these six are always selected. These features

are listed in Table 14. Features that were also found in the NBC are highlighted in

red.

Table 14: Variables selected by BN, generated data

Feature Selection Frequency

1 100%

2 100%

3 95.1%

4 99.7%

150 99.9%

200 99.6%

This list is almost exactly the set of features we expected to find. It includes all the

"parent" features we attempted to place in the generated data set, with none of the

correlated features. The seven features not included were:

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• SO, which, with 150, was a fragment of a hidden feature;
• 99 and 100, which were ionization states of 199 and 200; and
• 196-199, which were correlated modifications of 200.

Feature 99 was found to be a first level node nearly 40% of the time; a random

feature (1SS) was included in 48% of the trials. We next examined the second level

features to determine whether these correlated features were identified.

Feature to feature connections

Only two first-level features had other features frequendy connected at the second

level. Feature 200 was found to be the parent of features 19S-199 and 100, all

more than 99% of the trials. Feature 1SO was connected to feature 50, but in only

13% of the trials. These two features were fragments of a non-measured feature.

The only diagnostic feature not identified by the BN algorithm at either the first

level or the second level of nodes more than SO% of the time was feature 99.

However, this was a correct result, since feature 99 was intended to be a child of

feature 199, which itself was derived from feature 200. Therefore, it should have

been identified as a third level node and eliminated, which is indeed what occurred.

Metavariables

All the children of feature 200 were occasionally combined into a metavariable

with that feature, at rates ranging from 17% (feature 100) to 31% (feature 196).

Features SO and 1 SO were not found to combine into a metavariable.

10S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error Rates

Error rates ranged from 1 0% to 19%, much higher than that found with the NBC.

A histogram of cross-validated error rates for 100 trials is presented in Figure 38.

25

j ~ 20

I = 15

I I
~

I ::s
a' 10
~ ...

!l. 5 1
0 I - - I I I

10% 11% 12% 13% 14% 15% 16% 17% 18% 19%

CV Error Rate

Figure 38: Error rate distribution, generated data

Analysis

The Naive Bayesian Classifier was extremely successful at minimizing error rate,

achieving cross-validated rates as low as 1% with feature set sizes near 20. It did

so, however, by including large numbers of random features and missing many

diagnostic features-both primary and correlated. We did see some stability in the

first several features selected, but large instabilities in the feature sets that achieved

the lowest error rates. Correlated features, as expected, were not added to the

feature sets by the NBC. Given that the lowest error rates were achieved with a

large and unstable set of features, we would expect the resulting classifier to have

much higher error rates for new cases.

The Bayesian network algorithm behaved much differendy. It was able completely

identify the expected feature set, including correlated features at the second level,

and remove all non-diagnostic features and third-level features. It proved extremely

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stable with regard to feature set selection. Error rates were much worse than the

NBC, but likely more indicative of the true classification ability of this data. Figure

39 shows the most likely Bayesian network found by averaging the results of the

1000 trials.28 Solid lines represent strong links, dotted lines represent weaker links.

Black lines were found by the algorithm, blue lines were intended by the

construction of the generated data (see page 22) but not found. Red lines

represent links that were found, but not intended.

~
······~--~

~)

Figure 39: Resulting Bayesian network, generated data

The node labeled "H" was a hidden variable; it presented itself as a serial

connection between its parent (the class) and one of its descendants. Feature 99

was a third-level variable and should have been removed, but was found in a small

fraction of the trials.

This result shows that the BN was successful at finding nearly all the intended links

in the data, and most importandy, in showing their causal connections, something

that the NBC was unable to do.

28 The 1000 adjacency matrices are averaged; arcs that appear frequently are declared "stable." The resulting
network could be used for classification of new samples if needed.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Leukemia Data

Portions of the results shown in this section are shown elsewhere in the

document; they are repeated here for consistency. The 199-feature data set is used

for these calculations.

Naive Bayesian Classifier

As was done for the generated data, a repeated trials of forward selection

investigates stability, and a "forward-then-backward" trial seeks a minimal feature

set. The threshold for deterministically declaring a class remams at

P(c!ass I data)=0.50, and 10-fold cross validation is used again.

Forward Selection

As in the generated data, 20 features are selected in ten trials. However, the

number of diagnostic features is now unknown. Three typical error rate profiles

are shown in Figure 40.

20%
~ 18% <'! =: 16% ...
g 14%

IJJ 12%
'"0 10% ~

<'! 8% '"0
:.::1 6%
~ 4% I

\.

'-\..
' ~,;;::""ooo.,

<IJ
<IJ 2% 0 ... 0% u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Feature Set Size

Figure 40: Error rate during forward selection, Leukemia data

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following features were found to occur at least 75% of the trials:

Features
199
198
151
122
141
193
68

Frequency
100% of trials

90% of trials

80% of trials

Four more features, 3, 10, 38, and 43, appeared in at least one-half of the trials.

The complete list of features selected during this experiment is found in Appendix

C: Results. An excerpt is shown in Table 15. Features mentioned above are listed in

red.

Table 15: Forward selection, leukemia data

Selection Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial
1 2 3 4 5 6 7 8 9 10

1 199 199 199 199 199 199 199 199 199 199
2 198 198 198 198 198 198 198 198 198 198
3 141 141 141 141 141 193 141 141 141 141
4 43 43 43 43 122 18 80 122 43 122
5 31 122 4 4 9 93 122 9 4 9

Backward Elimination

Since the size of the "true" feature set is unknown, a trial of backward elimination

was completed to look for an optimal feature set size, as measured by error rate.

Figure 17, which is repeated below, shows that the cross-validated error rate stops

decreasing at about 6%, at that point a feature set of about 60 features remains.

This experiment was repeated several times with consistent results.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25%

20%

Q.j ...
15% (1

=: ...
8 10% ...

p;J

5%

0%

198 178 158 138 118 98 78 58 38 18

Feature Set Size

Figure 17: Error rate during backward elimination, Leukemia data

Fonvard-Backward Feature Set and Error Rates

The initial portion of this experiment consisted of choosing a reduced feature set

of 80 features. That size was selected to add a margin to the optimum feature set

size of 60 found in the previous experiment.

Forward selection produced error rates of about 6.4% at a feature set size of 50

features and then stabilized. This error rate profile is represented by the blue curve

in Figure 41.

20%

I\ -Forward Selection

~ 15%

~
-Backward Elimination -

...
g 10%

~ p;J - -G 5% - .__,.---...... -
0%

0 10 20 30 40 so 60 70 80

Feature Set Size

Figure 41: Error rate during feature selection, Leukemia data

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the reduced feature set found in the forward selection phase, backward

elimination was performed. This error rate profile is represented by the red line in

Figure 41. Unlike the generated data, in which the backward elimination error rate

closely followed the forward selection curve, in this data the error rate dropped

further, reaching minimum of 3.44% with 21 features remaining. Of the 11

features found often in the forward selection trial, 7 remained in this experiment

(red in Table 16). The list is in order of effect on error rate.

Table 16: Features remaining after forward-backward selection

Feature Label
198
193
199
144
122
182
140
151
120
117
34
124
101
186
3

115
45
38

Features 141 and 68, which were found often in forward selection but not in this

particular trial, were often included in the minimal feature set during other trials.

With only the seven features found in both experiments, the Leukemia data set

(after normalization) can be classified at either a nominal or a cross-validated error

rate of about 7.5%.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bayesian Network

The leukemia data set was processed by the same method described for the

generated data. Prior to the main part of the experiment, it was necessary to

determine the thresholds for mutual information tests, as described on page 82. As

can be seen from Figure 25, reproduced below, using a MI threshold of 3.2 times

the maximum random MI(C;V) achieved a minimal error rate with approximately

7-10 independent features.

30% 30

-Error rate ~

25% 25 ~ -
-Average number of variables ~

~ 20% 20 ·t: ~ ~ > =:::
15% 15 0 0

t:
10% 10 ~

~ ,.Q s
5% 5 = z
0% 0

2 3 4 5
MI Threshold Factor

Figure 25: MI threshold effects under 10-fold cross-validation

We also found that using a drop in MI of 70-80% to determine parent-child

relationships provided minimal error rates and similar feature set sizes (see Figure

31, page 90). Therefore, analysis of the leukemia data set was performed with

these two parameters.

Feature Set Selection

We again performed 100 repetitions of the Bayesian network algorithm, each time

recording the adjacency matrices and 10-fold cross-validated error rate, as well as

any metavariables created.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class to feature connections

Figure 42 shows the number of variables selected at various fractions of the

possible trials. The bar at the far left, representing the group of variables that were

never selected, is off the scale of this chart at 179 of the 199 total variables.

8

7
CIJ
~ 6 -..::.
~

·~:: 5
~
> 4 0
....
~ 3 ..::.
§ 2 z

1

0

179

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Frequency of connection with class

Figure 42: Frequency of class-variable connections, Leukemia data

Twenty features are selected at least once, but only eight of these are selected more

than SO% of the time. Seven features are selected by the BN algorithm to be

direcdy connected to the class more than 75% of the time.

The eight most-selected features are listed in Table 17. Features that were also

found frequendy in the NBC trials are highlighted in red.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 17: Variables selected by BN, Leukemia data

Feature Selection Frequency m/z

198 100% 11697

51 98.8% 4106

145 98.0% 7691

151 87.8% 7863

142 87.4% 7483

3 82.3% 2798

144 76.0% 7649

141 54.6% 7448

The three features not highlighted, along with feature 141 (which was found by

NBC) are all within 250 Daltons, a range which we have found to be indicative of

modifications of a single protein. These features were apparendy interconnected in

the network; the feature selected to connect direcdy to the class appeared to vary

as cross-validation chooses different subsets of cases from which tests are derived.

Feature-feature connections

Extremely strong and frequent second level connections are found between feature

198 and several others, particularly those between 195 and 199. The strongest

connections with this feature are listed in Table 18.

Table 18: Second level features connected to feature 198

Feature Selection Frequency m/z

107 100% 5878

108 100% 5887

195 100% 11486

196 100% 11539

197 100% 11640

199 100% 11742

144 96.5% 7649

42 85.5% 3898

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The features labeled 107 and 108 are almost exacdy one-half of them/ z ratio of

feature 199, which we have taken to mean that they are each a doubly-charged

satellite of one of the features 195-199. Feature 42 is almost exacdy one-third of

them/ zvalue of feature 198, we have taken that to be a triply-charged satellite.

We are less sure about the causal connection between features 144 and 198. It may

be that 144 is a fragment of 198, indeed, the difference between their m/zvalues is

nearly equal to the m / z of feature 51, which was found to be connected to the

class variable.

Feature 145 is connected to feature 146 in 78% of the trials; the difference in their

m/ z values is 21 Daltons, which may indicate a sodium adduct (23 Daltons) or

neutral loss of water (18 Daltons). It is connected to feature 122less often (33%).

Features 3, 142, 144, and 151 have no frequent second level connections with

other variables. Due to them/ z proximity of the features in the range 141-145, it

may be that a single diagnostic feature is in this range and being modified. It is also

possible that there is a larger protein outside the range we have studied which is

showing up here as multiply charged states or fragments. We were unable to

determine specific patterns for these features, but are currendy attempting to

expand our mass range to find more massive features correlated to this group.

Feature 38, which was found in the NBC, is not found in the first level

connections of the BN. However, it is found to be connected at the second level

with feature 141, and appears to be a doubly-charged ionization state.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Metavariables

The algorithm attempts to recombine these feature combinations to create

metavariables with better classification performance.

All the features 195, 196, 197, and 199 are combined at least once with parent

feature 198 during this trial, however, only 195 (65.5%) and 199 (47.1%) are

frequently combined.

Feature 122, which was one of the features found often by the NBC, was

combined with feature 145 nearly 20% of trials. It does not appear to be an

adduct, modification, or satellite of 145.

Error Rates

Cross-validated error rates averaged 12.2%, significantly higher than the NBC.

However, the feature sets were much smaller (averaging 9+ /-2 features) and much

more stable. The range of error-rates is shown as a histogram in Figure 43.

20

~ 15
t:
~

10 = tr
~ ...
~ 5

0

9% 10% 11% 12% 13% 14% 15% 16%

Error Rate

Figure 43: Histogram of CV error rates, Leukemia data

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Only 100 values are included, as each 10-fold cross-validation results in a single

error rate for the entire population.

Analysis

Many of the results found in the Leukemia data set were similar to those predicted

with the generated data (which was designed to mimic it). We saw very low cross-

validated error rates (4%) and even lower nominal error rates (2.5%), but this

required feature set sizes near 20. Features selected by the NBC were very unstable

past the selection of a few features, and correlations were ignored.

The BN algorithm identified the most stable features found by the NBC, as well as

other stable features. The result of that analysis is shown in Figure 44.

I

I I

I_ - - - - - - -- - - - ---- - - - -- - - - - -

-+ Metavariable created

0 Ionization satellite

······-;> Weakconnection
I-- -I

f_-- ...

42

Adducts/Modifications

Also foundmNBC

Figure 44: Resulting Bayesian network, Leukemia data

This stability came at the cost of a rise in cross-validated error rate, however. The

BN also successfully found and connected correlated features such as

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modifications and ionization states. One of these feature groups has possibly led

us to a better biomarker candidate than had been found using previous methods.

Our collaborators at EVMS had previously identified the feature labeled here as

198 as a potential biomarker [8]. However, attempts to identify the actual protein

consistendy have been problematic [2].

The additional understanding of correlation given by the BN analysis, however,

gave us important clues that may lead to better protein identification. The right

half of the structure shown in red in Figure 45 is the one that produces the

features 19 5-199 in our data set. The normal (black) spectrum has a peak located at

the position we label as feature 198, but typically at a much lower abundance, and

without the modifications to feature 198 seen in the disease (red) spectrum.

4500

.>.-
"1il 4000
5
~ 3500

~
Cii 3000

1.15 1.16 1.17 1.18
Time

1.19 1.2 1.21 1.22
4

X 10

Figure 45: Leukemia (red) and normal spectra, vicinity feature 198

Examination of the m/ z differences between the parent feature (198) and the

others has led us to hypothesize that this feature represents the protein serum

amyloid A (SAA) with modifications such as des-arginine (156 Daltons) which

matched our m/ z change from feature 198 to feature 196 (157 Daltons) [30]. This

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combination of SAA and modifications has been found to be present in the blood

sera of renal cancer patients, also using a SELDI technique [31]. Further work to

confirm this identification is currently ongoing at EVMS.

Prostate Cancer Data

Examination of the PCA data mirrored that of the other data sets. However, we

found that feature set selection was more difficult than the Leukemia data, and

error rates were much higher.

Naive Bayesian Classifier

Due to the difficulties with stable feature set selection, we examined error rate

curves for both the forward selection and backward elimination methods to

determine the approximate optimal feature set size for the PCA data. We then used

many repetitions of forward selection to determine which features were

consistently chosen within this parameter.

Forward Selection

Several trials of forward selection of nearly all the variables produced error rate

curves such as that in Figure 46.

40%

~ 35%
~

30% ..
g
w 25%

20%

1 21 41 61 81
Feature Set Size

Figure 46: Error rate during forward selection, PCA data

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The minimum error rate is just under 30%, far greater than in the previous data

sets. This error rate is achieved at about 22 features. We will therefore expand the

repetitive forward selection feature set search to 30 features in an attempt to find a

stable feature set of about 20 features.

After 10 trials of selecting 30 features (the complete list is in the appendix) there

are 23 features that appear in more than one-half of the feature sets. The error

rate is more unstable initially than seen in previous data sets. Three typical error

rate curves are shown in Figure 47. The minimum error rate was 28%.

40%
~
(<!

~ =::
.... 35% s ~
~
"'0 30% -~ --.... -(<!

"'0 :.=
25% ~

I
ell
ell
0

20% u
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Feature Set Size

Figure 47: Error rate during repeated forward selection, PCA data

Backward Elimination

Backward elimination achieved a slightly lower error rate (27%) at only 12 features

when compared to forward selection, which achieved a minimum error rate of

28% at about 22 features.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45%

40% 1-
~
~ 35% = ---...
g 30%
~ 25%

---......~ ___ _,,

20%

100 80 60 40 20

Feature Set Size

Figure 48: Error rate during backward elimination, PCA data

The 12 features comprising the minimum error rate feature set in this trial are

shown in Table 19. Those that were also found often during the repeated forward

selection trials are highlighted in red.

Table 19: Features achieving minimum error, backward elimination

Feature Label
38
45
19
40
52
58
84
23
89
66
67

Forward-Backward Feature Set and Error Rates

During forward selection, 60 of the 100 possible features were chosen to provide a

reduced feature set. As before, minimal error rates were achieved at about 22

features.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40%
4.1 ~ ...
eo$ 35%
~ ~ -... g 30% -- -Forward Selection ~

G 25% -Backward Elimination

20%

0 10 20 30 40 50 60 70

Feature Set Size

Figure 49: Error rate during feature selection, PCA data

Backward elimination is then attempted to find a minimal feature set; Figure 49

shows the error rate proflle for both phases. Error rates dropped to 28% at 22

features and remain steady until another 10 features are eliminated. The final set of

features is listed in Table 20. Features found often in repeated forward selection are

listed in red.

Table 20: Minimal feature set, forward-backward selection, PCA data

Bayesian Network

Feature Label

7
23
75
9

37
58
38
73
64
77
25

As was done for the Leukemia data, we examine a range of mutual information

thresholds used to declare node connections in the Bayesian network. The

thresholds that give reasonable results in the PCA data set are much closer to the

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

baseline value of one, representing the maximal value of mutual information

between similar data and a random class.

50% 60

48%
~

~ 46% =: ...
8 44% ...
~

42%

<IJ

50 ~ -~
40 •t:

~

>
30

0 ...
20 ~

,&J

E
10 = z

-Error rate
f---:'lo---­

- Average number of variables

40% 0

1 1.2 1.4 1.6 1.8 2

MI Threshold Factor

Figure 50: MI threshold effects under 10-fold cross-validation

Figure SO shows that minimal cross-validated error rates are achieved with a

threshold factor of 1.0 to 1.5, while the number of first-level features decreases

from 55 to 3 over the range 1.0 to 1.8. We chose to use a factor of 1.5, in order to

expand slighdy the minimum feature set size with the goal of finding stable (and

unstable) features.

Determining the proper mutual information drop threshold was more difficult. As

shown in Figure 51, the feature set size (and to some extent, error rate) were

unstable while varying this parameter. Since the feature set size was unknown, and

nothing in Figure 51 suggested otherwise, we chose to use 70% as a parameter to

minimize error rate.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50% 25
(I}

45%

~ 40%
~

=:::
35% ...

0
t 30% IJ;J

25%

--__
/

./""
....,.,

-
-Error rate -

-Average number of variables -

~

20 -~
·t:

15 ~

>
0

10 ...
~

5 1 = z
20% 0

50% 60% 70% 80% 90%

MI Threshold Factor

Figure 51: Effect of increasing drop threshold, PCA data

Feature Set Selection

As was done for the Leukemia data, 1000 networks were created by repeating a 10-

fold cross validation 100 times.

Class to variable connections

During those trials, 16 features were found in more than 30% of the trials. Those

features and their selection frequency are found in Table 21. Features found

frequently by the NBC are highlighted in red. This data set did not exhibit the

feature set consistency shown by the previous two data sets between the NBC and

the BN approaches. Of the 9 features found in more than 50% of the BN trials as

first level features, only 4 are from the two sets of about 12 features in the

previous sections.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 21: Variables selected by BN, PCA data

Feature Selection Frequency Mass/ charge

23 87.4% 4042
49 72.2% 7406
67 71.7% 8779
25 69.6% 4083
79 63.6% 13260
85 62.6% 16580
74 59.0% 9672
99 57.1% 81441
89 53.8% 25091
45 48.5% 6607
70 46.8% 9256
33 45.5% 4553
66 44.9% 8740
77 42.1% 12555
65 37.7% 8656
62 37.2% 8179

Feature-feature connections

No features were found to connect to the most frequendy selected first level

feature, labeled 23. The next most frequent, feature 49, had several second level

connections, including m/ z neighbors 46, 47, 50, and 51. A list of the various

second level connections for the most frequendy found first-level features (ftrst

row) is found in Table 22, with NBC-identifted features in red. We were unable to

make speciftc hypotheses about the nature of the connections listed above, other

than those features which are adjacent and may be adducts or modifications.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 22: Variables connected to first-level variables, PCA data

23 25 33 45 49 62 65 66 67 70 74 77 79 85 89 99
2 46 44 73 60 88
13 47 so
24 so 63
37 51 65

68
69
71
72
95

We do have indications that some of the relationships shown are real; feature 67

may be Apolipoprotein C II, which has correlated modifications that may be

represented by features 68, 69, 71, and 72. We continue to investigate this finding.

Metavariables

Feature 44 and 67 were combined into a metavariable in 53% of the trials. Feature

66 was also combined with feature 67 in about of 30% of the trials in which it

appeared as a first level variable.

Error Rates

Error rates for this data set were poor, averaging 44% and never dropping below

39% for any of the 100 cross-validated trials. A histogram of the cross-validated

error rates that occurred in this set of trials is presented in Figure 52.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

>. 15
(J

= ~
10 ;:

C"
~ ...
~ 5

0

39% 41% 43% 45% 47% 49%

Error Rate

Figure 52: Error rates from the BN algorithm, PCA data

Analysis

Neither the naive Bayesian classifier, nor the Bayesian network approach, was

successful in finding either stable feature sets or low error rates. A small number

of features did appear as diagnostic in several different experiments, but the

extremely high error rates, and unstable inclusion of other features in the results,

led us to conclude that these techniques are unlikely to identify any features as

likely biomarker candidates. Further research, particularly in the signal processing

stage (peak-picking, background subtraction, etc.) is ongoing and may help

improve these results.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8: CONCLUSION

Biomarker discovery V1a mass spectrometry of biologic samples has been an

intense area of recent research. The possibility of semi-automated high-

throughput, multiple-disease tests for deadly cancers is enticing, but the systemic

errors in the mass spectrometry signals have led to generally poor results to date.

Proteins with relatively high mass-to-charge ratios have been found usmg

traditional data analysis techniques, such as the 11.7 kDa peak in our Leukemia

data set. Features such as that peak, seen in Figure 53 below, are identified by

relatively simple statistical tests.

120

"'100
4.1
ell

J 80
.....
~ 60
4.1

140
= z 20

0

0 500

•Normal

•Leukemia

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 More

Abundance

Figure 53: Distribution of 11.7 kDa peak by class, Leukemia data

Even after finding such a diagnostic feature, however, the task of identifying the

exact protein can be difficult-as our group has discovered. Our naive Bayesian

classifier, combined with stratified n-fold cross-validation, expanded our ability to

find feature sets with modest stability, but did not solve the problem of identifying

correlated features. The Bayesian network classifier appears to perform this

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function well in some data, and appears to identify the causal relations between

correlated features. This capability has already led us to re-designate the protein

responsible for the primary Leukemia feature shown in Figure 53 above as serum

amyloid A (with modifications), which appears to be consistent with findings of

other researchers' results.

The fact that the BN classifier was unsuccessful in performing the same function

with the prostate cancer data is somewhat encouraging, in that it shows a certain

degree of discrimination between "good" and "bad" data. High-dimensional data

with small samples, such as the data sets in this study, can often lead traditional

statistical tests into identifying correlations that will not be stable under new cases.

The combination of our algorithms provide a method of attacking the problem

from two very different angles - the wrapper approach of the NBC, based on

error rates, and the filter approach of the BN, which ignores error rates and

instead focuses on the model-free mutual information score. This combination

allowed us to determine that the current state of the prostate cancer data did not

lead to a stable feature set that could be exploited for biologic information.

We will continue to explore ways of increasing the repeatability of our abundance

measurements in the pre-processing stages. Whether that effort is successful or

not, the naive Bayesian classifier, and mutual information-based Bayesian network

algorithm, will be important tools in the search for biomarkers.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A: MATHEMATICS

Maximum Entropy

Entropy is defined as

H(X) = - L P(x) log2 P(x). (A-1)
X

We can find the maximum entropy using the method of Lagrange multipliers,

adding the constraint Lx P(x) = 1 (the sum of all probabilities must be 1). In both

summations, the value of x ranges over all possible values that the corresponding

variable X can take. Labeling these values { x1, x2, ••. ,xJ and using the shorthand

notation p1=P(x;), the constrained equation is

(A-2)

Taking the partial derivative of the above with respect to one of the particular

probabilities Pm' with apJapm = oim (the Kronecker Delta), and setting the result

to zero to find the maximized constrained solution yields

aH - = -log Pm - 1 +A = 0. apm
(A-3)

Since A. is a constant, and equation is valid for all m, this implies all the probabilities

are equal to some other constant y=e u. Applying the constraint Lt=l y = 1, we

find that all probabilities P(X=x.)=1/n, where n is the number of possible values

that X can take.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, the maximum value of entropy is when all values of the variable are

equally probable, or, alternatively, occur an equal number of times in a sample set.

Maximum Mutual Information

We seek to find the maximum value of MI(X:Y), where X and Y are discrete

variables that can take on the values x E {x1, x2, ... xJandy E {y1, y2, .. ·Ym}, with

m'5.n, without loss of generality. We have shown in the text that

MI(X; Y) = H(Y)- H(YIX). (A-4)

Since both MI and entropy H are always positive, the maximum value of MI

occurs when H(YI X) is zero.

The conditional entropy is defined by H(YIX) = - Lx,y P(x, y) log2 P(ylx). Since

P(x, y) = P(ylx)P(x), the conditional entropy vanishes when, for all possible

values, either P(ylx) = {0,1} or P(x) = 0. The second condition means that some

value of x never occurs; let us remove it from the set of values. The first condition

implies that for a given X;, the condition Y=yi either always, or never, occurs. In this

case we can relabel the possible values of x andy as x E {xk} andy E {Yk} with

each yk always being chosen when a member of the corresponding subset of xk's is

chosen.

For example, consider the problem where x E{1, 2, 3, 4, 5, 6},y E {green, gold}, and

whenever xis odd (even),y is always green (gold), respectively. In this problem, we

can relabel the values xE{1,2,3,4 ... } to {xJreen•XJold•xJreen•XJozd ... }. Then

P(Y=green I X=xffreen)=1, and P(Y=green I x:azd)=O, etc., for all possible k.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the general case, we have P(yi lxD = oik· This implies

(A-5)

Using the definition for conditional entropy,

H(YIX) =-L P(xk)oik log2 oik = L P(xk) log2 1 = 0 (A-6)
i,j,k j,k

Then MI(X;Y)=H(Y). As was shown previously, the maximum value of MI occurs

when all values of yare equally probable (P(y)=1/m where m is the number of

possible values of y); in that case, using the definition of H(Y),

m

MI(X; Y) =-L P(yD log2 P(yD =-L: log2 : = log2m. (A-7)
i i=l

N ai've Bayesian Classifier Instability

To further illustrate the problems inherent in assuming independence in the Naive

Bayesian Classifier, consider a system of three binary variables, A, B, and C, where

C is the class we wish to examine. Following the discussion in the main document,

we seek

P(ABIC)P(C) P(AIC)P(BIC)P(C)
P(CIAB) = P(AB) = P(A)P(B) (A-8)

where the first step uses Bayes' Theorem and the last step relies on the

independence of A and B. For this example, we use the prior P(C) = % and, for

the eight possible combinations of the values A, B and C from { 0,1}, use

P(ABIC = 0) = [; H and P(ABIC = 1) = l~ n (A-9)

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where a the top row represents A=O, the bottom row A=1, the left column B=O,

and the right column B=1.

First, examine the values P(C I AB) exactly (without the independence assumption).

Marginalizing the values given in (A-9) over C29 shows that P(AB)= 1
/4 for all four

possible combinations of A and B. Putting all these values into equation (A-8)

gives the true classification equations

P(C = OIAB) = [~ ~], and P(C = liAB) = [~ ~]. (A-10)

This shows, for example, that when A=O and B=O (the top left entry), C cannot be

0 and is certain to be 1-perfect classification.

If we use the independence assumption, a different result arises. If we calculate

P(A I C) and P(B I C) by marginalizing (A-9) over the unneeded variable, we find

P(AIC = O) = I [~ ~1 = [i1,
B=O 1 - 0 -

' 2 2

(A-11)

and the same for P(B I C). Therefore, both of these terms equal Vz for all values of

A, B, and C. Note also that P(A) = P(B) = Vz

If we then apply these values to the right hand side of (A-8), after the

independence assumption, we find a classification result

P(AIC)P(BIC)P(C) .! . .!..! 1
P(CIAB) = P(A)P(B) = zi~iz = 2 (A-12)

29 Marginalize over C by summing the two matrices and normalizing to 1.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for all values of A, B, and C. This represents a complete inability to classify C given

A and B. Thus, the independence assumption has rendered the NBC completely

unusable for this set of values.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B: MATLAB CODE

The native MA TLAB code used to produce the results throughout this text is presented

below. All subroutines that are not native MA TLAB functions are included, however, some

calls to MATLAB functions require the Statistics Toolbox.

We have maintained the original MATLAB code coloration and number of characters per

line to increase readability.

Naive Bayesian Classifier Code

The MATLAB code in this section is a standalone function (intended to be repeated a

number of times) that takes two data sets, one for each of two choices of class (such as

disease or normal) and attempts to find a feature set. Details are in the code itself or in

Chapter 5: Application of the Naive Bayesian Classifier.

Contents

• Options Section
• Set up Section
• Normalization
• Initial Classification Section
• Start Removing Peaks
• Start Adding Peaks
• Combine Groups
• Remove Outliers
• Count number correct
• Perform the Cross Validation
• Perform the Naive Bayesian Classification
• Create n groups for Cross Validation
• Remove Zeros left by array split up
• Split up groups for cross validation
• TimerTool

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function [FinalError PeakList ANorm BNorm] = NBC (ClassA, ClassB, xValReps., ..
OutlierRemoval, RemovePeaks, PeaksToLeave, Normalize)

% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% NBC (a wrapper) finds a feature set through forward or backward selection
%
% DESCRIPTION
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% USAGE
%
%

NBC implements a Naive Bayesian Classifier to select features.
Given two groups of cases from two different classes, it sets up a
cross validation scheme and then begins to remove (or add)
features, looking at the ability of each feature's removal to
decrease error to determine if that removal should bEpermanent.
You then have the choice of removing highly misclassified samples
(if OutlierRemoval-=0) . The integer flag RemovePeaks controls
whether features are removed one at a time to leave the (integer)
PeaksToLeave mo~ important ones (RemovePeaks=1). Alternately, if
RemovePeaks~1, features are added. Setting the flag to zero skips
this step.

The function returns the list of peaks that were left after feature
removal (or found during Eature addition) as well as the
corresponding error rates at each step. These error rates are from
nfold cross validation, repeated xValReps (integer) times. Other
options are listed immediately below.

[Error PeakList]=MainProgram(A,B,reps,outlier,remove,leave,norm);

% INPUTS
%
%
%
%
%
%
%
%
%
%
%

A, B: Data is stored in two arrays of continuous data, separated by
class, with the cases arranged in the rows and the features, or
variables, in columns. A B typically the normal group and B
the disease group. The (i,j) value is "intensity of Peak j for
Case i."

reps: times to repeat the whole process
outlier: true if outlier removal is desired, otherwise false.
remove: 1 for backward selection, -1 for forward selection
leave: number of final features desired
norm: Logical, whether to perform total ion normalization

% INTERNAL SETTINGS
%
%
%
%
%
%
%
%

Number of Bins: for discretization, number of bins m build
probability distribution. Choices are 2,4, or 6 for discrete; 0
for continuous (no bins) . 2 works best for highly separated
features, 6 or 0 for overlapping groups.

n: For n-fold cross-validation
Threshold = The probability threshold for declaring the class, e.g.

0.5 means "if P(Class)>.5, Class=disease"

% OUTPUTS
%
%
%
%

FinalError: List of the error rate after each removal/addition
PeakList: List of which of the "leave" peak remained
ANorm, BNorm: Data with total ion normalization applied

% CALLED FUNCTIONS
%
%
%
%
%

CombineGroups: Creates a population from the two inputs
CrossValidate: Divides the data into test and training groups
PerformBayes: Perurms the actual NBC analysis to find P(C!Data)
CountCorrect: Finds which cases were classified correctly
RemoveOutliers: If desired, removes cases that appear as outliers

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Options Section
% See explanation at top
NumberOfBins = 6;
n = 10;
Threshold = .5;
Set up Section
start = clock;
% Check the sizes of the arrays
[NumA ColsA] = size(ClassA);
[NumB ColsB] = size(ClassB};
if ColsA -= ColsB

Error = 'Input Arrays must have same width' %#ok<NOPRT>
disp (Error);

else

end

Cols = ColsA;
clear ColsA ColsB

% Set a bound on feature removal
PeaksToRemove = max ([0 Cols-max([2 PeaksToLeave]) J) ;
Population= CombineGroups(ClassA,ClassB) ;% see function at end
Normalize
%Normalize the sum of each row of data to to the average of the popularon
if Normalize

TotionCt=mean(sum(Population,2)); %Population mean total per row
factA=sum(ClassA,2)/TotionCt;
factB=sum(ClassB,2)/TotionCt;
for i=1:NumA

ClassA(i, :)=ClassA(i, :)/factA(i);
end
for i=1:NumB

ClassB(i, :)=ClassB(i, :)/factB(i};
end

end
ANorm=ClassA;
BNorm=ClassB;
Initial Classification Section
%Find and display Population Classification
Population= CombineGroups(ClassA,ClassB};% see function at end
PopProbinClassB = PerformBayes (Population, ClassA,ClassB, NumberOfBins};
PopCorrectness = PopProbinClassB; clearPopProbinClassB;
PopCorrectness (1:NumA} = 1- PopCorrectness (1:NumA};
NominalErrorRate = CountCorrect(PopCorrectness,Threshold};
figure(} ;
hist(PopCorrectness*100,100}; figure(gcf}; axis ([050 o NumA/2]};
title({'Worst Classified Patients'; 'All Tokens'; ...

['Nominal Error Rate =',num2str(NominalErrorRate*100) ,'%'] }} ;
xlabel ('Percent Correct');
ylabel ('Number of Patients'} ;

% Optionally remove cases that are badly misclassified
if OutlierRemoval

prompt = {'Threshold (in percent} for removing misclassified patients}';
dlg_title = 'Remove Outliers';
num lines = 1;
default_answer = {'0'};
OutlierRemovalThreshhold = str2num(cell2mat ..

(inputdlg(prompt,dlg title,numlines,default answer}}}/100;
clear prompt dlg_title nt1m lines default_answer;-

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NumOut=NumA+NumB; %Placeholder for number removed
[ClassA ClassB NumA NumB] = RemoveOutliers (ClassA, ClassB, Numk, ..

NumB, PopCorrectness, OutlierRmovalThreshhold);
axis ([0 100 0 NumA+NumB/2]);
title({ ['Original Patients, All Tokens, ',num2str(NumberOfBins) , ...

' Bins']; ['Nominal Error Rate =', ...
num2str(NominalErrorRate*100) ,'%'] }) ;

% Redo Nominal Error Rate
Population= CombineGroups(ClassA,ClassB) ;%see function at end
PopProbinClassB = ...

PerformBayes (Population, ClassA, ClassB, NumberOfBins);
PopCorrectness = PopProbinClassB; clearPopProbinClass~
PopCorrectness (1: NumA) = 1 - PopCorrectness (1: NumA) ;
NominalErrorRate = CountCorrect(PopCorrectness,Threshold);
xValErrorRate = ...

CrossValidate (ClassA, ClassB, n, NumberOfBins, xValReps);

NumOut=NumOut-(NumA+NumB);
figure(); hist(PopCorrectness*100,100); axis ([0 100 ONumA+NumB]);
title({ [num2str(Num0ut),' Patients Removed, All Tokens, ~ ...

num2str (NumberOfBins) ,' Bins']; ...
['Nominal Error Rate = ', num2str (NominalErrorRate*100) ,'% '] ; ...
['Cross Validated Error Rate = ', num2str (xValErrorRate"'lOO), '% ']});

xlabel ('Percent Correct');
ylabel('Number of Patients');
msgbox('Outlliers removed. Details saved in OutliersRemoved.mat)';

end % of optional outlier removal
Start Removing Peaks
if RemovePeaks == 1

% Remove Peaks one at a tfue, report error rates
PeakNumber = 1:Cols;

% Build a data set without that peak and find the error
for RemovePeak = 1:PeaksToRemove

NumCols = Cols+1-RemovePeak;
PeakxValErrorRate = zeros(1,NumCols);
for Peak = 1:NumCols

end

ClassAMinus = ClassA;
ClassAMinus (:,Peak) = [];
ClassBMinus = ClassB;
ClassBMinus (:,Peak) = [];
[SampleCorrectness(Peak, :) PeakxValErrorRate(Peak)J ..

= CrossValidate (ClassAMnus, ...
ClassBMinus, n, NumberOfBins, xValReps);%#ok<*AGROW>

% Try to capture peak discrimination
CurrentPeakError = zeros (1,Cols);
for p = 1:Peak

CurrentPeakError(PeakNumber(p))=PeakxValErorRate(p);
end
[LowErrorRate BestPeakToRemove] = min(PeakxValErrorRate);
PeakRemoved = PeakNumber(BestPeakToRemove);
ClassA(:,BestPeakToRemove) = [];
ClassB(:,BestPeakToRemove) = [];
PeakNumber(BestPeakToRenove)=[];
PeaksOut(RemovePeak,1) RemovePeak;
PeaksOut(RemovePeak,2) = PeakRemoved;

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

PeaksOut(RemovePeak,3) = LowErrorRate;
DisplayElapsedTime (PeakRemoved, LowErrorRate, PeaksToRemove~··

RemovePeak,start);
FinalError(PeaksToRemove)=LowErrorRate;

end
PeakList=PeakNumber;

Start Adding Peaks
if RemovePeaks == -1 % Add Peaks one at a time, report error rates

PeakNumber = 1:Cols;

end

ClassAFinal=zeros(NumA,PeaksToLeave);
ClassBFinal=zeros(NumB,PeaksToLeave);
for AddPeak = 1:PeaksToLeave % Repeat until desired number of peaks

NumCols = Cols+1-AddPeak; % Initialize number of peaks to test
PeakxValErrorRate = zeros(1,NumCols);% Initialize current errors
ClassAPlus=ClassAFinal(:,1:AddPeak);
ClassBPlus=ClassBFinal(:,1:AddPeak);

end

for Peak = 1:NumCols

end

ClassAPlus(:,AddPeak) = ClassA(:,Peak);
ClassBPlus(:,AddPeak) = ClassB(:,Peak);
[SampleCorrectness(Peak, :) Peakx~lErrorRate(Peak)] ...

= CrossValidate (ClassAPlus, ...
ClassBPlus, n, NumberOfBins, xValReps);

CUrrentPeakError = zeros (1,Cols);
for p = 1 :Peak

CurrentPeakError(PeakNumber(p))=PeakxVaErrorRate(p);
end
[LowErrorRate BestPeakToAdd] = min(PeakxValErrorRate);
ClassAFinal(:,AddPeak)=ClassA(:,BestPeakToAdd);
ClassBFinal(:,AddPeak)=ClassB(:,BestPeakToAdd);
PeakAdded = PeakNumber(BestPeakToAdd);
ClassA(:,BestPeakToAdd) = [];
ClassB(:,BestPeakToAdd) = [];
PeakNumber(BestPeakToAdd)=[];
PeaksAdded(PeakAdded,1) = AddPeak;% Order Added
PeaksAdded(PeakAdded,2) = PeakAdded;% Specific Peak added
PeaksAdded(PeakAdred,3) = LowErrorRate;% Error Value that Peak
DisplayElapsedTime (PeakAdded, LowErrorRate, AddPeak, ..

PeaksToLeave,start);
PeakList(AddPeak)=PeakAdded;
FinalError(AddPeak)=LowErrorRate;

end %function

Combine Groups
function population = CombineGroups (elsA, clsB)
% Combines two groups together to make a population
rowsA =size (clsA,1);
rowsB =size (clsB,1);
population (1 : rowsA, :) = elsA;
population (rowsA+1 : rowsA+rowsB, :) clsB;
end

Remove Outliers
function [A B nA nB] ...

= RemoveOutliers(clsA, clsB, numA, numB, correct, threshhold)
% Removes rows in elsA and clsB whose corresponding correctness is below
% the threshold.
nA=numA;

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nB=numB;
correctness = correct;
removed= cell (numA+numB,1);
for i = numB:-1:1

if correct(i+numA)<threshhold
clsB(i, :)=[];
nB=nB-1;
correctness(i+numA)=[];
removed(numA+i,1) = {['removed because correctness was

num2str(100*correct(i+numA)) ,'%'] };
else

removed(numA+i,1) = {'not removed'};
end

end

for i = numA:-1:1

end

if correct(i)<threshhold
clsA(i,:) = [];
nA=nA-1;
correctness(i)=[];

else

end

removed(i,1) = {['removed because correctness was
num2str(100*correct(D), '%']};

removed(i,1) = {'not removed'};

A=clsA;
B=clsB;
save 'OutliersRemoved' removed;
end

Count number correct
function errorrate = CountCorrect(correctvector,threshold)

I ' ...

I
I • • •

% Counts the number of entries in correctvector thatare above threshold
len=max(size(correctvector));
count=sum(correctvector>threshold);
errorrate=1-(count/len);
end

Perform the Cross Validation
function [correctnesstable xValErrorRate] = CrossValidate (elsA, clsB •..

n, NumberOfBins, reps)
% This function manages the overall cross validation, splitting the data
% into n groups and then choosing one group at a time to be the test group.
%The Bayes analysis is done inside the cross validation attempt.

for r = 1:reps
% Split each class into n subgoups for nfold cross validation

[nGroupsA RowsinGroupsA]=nfold(n, elsA);% This function appears below
[nGroupsB RowsinGroupsB]=nfold(n, clsB);% This function appears below

% Now we iterate the
% the other group to
position = 0;
for i = 1 : n

n groups, choosing a1 groups to "learn" from md
classify.

NumClassA
NumClassB

RowsinGroupsA (i);
RowsinGroupsB (i) ;

% Combine n-1 of the groups to train on, the other to test

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% This function appears bel&
[Test TrainA TrainB] = CreateValGroups(i, n, nGroupsA, nGroupsB);

% Send these groups to the Bayesian Classifier
PrBP = PerformBayes(Test, TrainA, TrainB, NumberOfBins);

% Build the correctness table
correctnesstable(position+1:position+NumClassA)~ ..

1-PrBP(1:NumClassA);
position = position+NumClassA;
correctnesstable(position+1:position+NumClassB)T ..

PrBP(NumClassA+1:NumClassA+NumClassB);
position = position + Nu~lassB;

end

% Call a function that returns an error rate for the correctness table
TrialErrorRate(r) = CountCorrect(correctnesstable, .5); %#ok<AGROW>

end
xValErrorRate = mean(TrialErrorRate);
end

Perform the Naive Bayesian Classification
function PrBP = PerformBayes (testgroup, groupa, groupb, NumBins)
% This function reads in a pair of training groups, creates a probability
% distribution table, and then uses that to classify a test group. The
% array that is returned has the probability (frm 0 to 1) that the
% corresponding element in the test group is in class B

% First determine number of data sets (rows) and elements per data set
% (cols) for each class
[RowsA Cols] = size(groupa);
RowsB = size(groupb,1);
Rows = RowsA + RowsB;
Pa = RowsA/Rows ;
Pb = RowsB/Rows;
Prior = Pb;
[RowsT ColsT] = size(testgroup);
PopBins = zeros (NumBins+1,Cols);
ProbDistA =zeros (NumBins+1,Cols);
ProbDistB = zeros (NumBins+1,Cols);
PopProbDist zeros (NumBins+1,Cols);

% Now Combine the classes into a populatio
Population(1:RowsA, :)=groupa;
Population (RowsA + 1 : RowsA +RowsE, :) = groupb;
PrPeaksA zeros (RowsT, Cols);
PrPeaksB zeros (RowsT, Cols);

% Create Row Vectors with mean and standard dev for each peak
AvgColValue=mean(Population);
StandardDev=std(Population) ;

if NumBins ==0 % Do Continuous Case
MeanA=mean(groupa);
MeanB=mean(groupb);
StDevA=std(groupa);
StDevB=std(groupb);
% Calculate the probability (from a normal distribution) of getting
% that value. Use 1% as a minimrn.
for c = 1:Cols

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

for r = 1:RowsT
PrPeaksA(r,c)= ...

end

max([exp(-(testgroup(r,c)-MeanA(c))A2/StDevA(c)A2) .01]);
PrPeaksB(r,c)= ...

max([exp(-(testgroup(r,c)-MeanB(c))A2/StDevB(c)A2) .01));

else % Do Discrete case
for i = 1 : Cols

% Create bins- either 2, 4, or 6 (see below)
if NumBins == 2 % Create Bins for above and below mean

Bins=[-inf, AvgColValue(i) ,inf);
elseif NumBins == 4 % Create additional bins 1 std dev above/below

Bins=[-inf,AvgColValue(i)-StandardDev(i) ,AvgColValue(i) , ...
AvgColValue(i)+StandardDev(i), inf);

elseif NumBins ==6 %Create bins +/- .5,1.2 std devs from mean
Bins=[-inf, AvgColValue(i)-1.2*StandardDev(i) , ...

else

AvgColValue(i)-.S*StandardDev(i) , ...
AvgColValue(i), AvgColValue(i)+.S*StandardDev(i), ..
AvgColValue(i)+1.2*StandardDev(i),inf);

disp('Number of Bins must be 2, 4, or 6?;
end
PopBins(:,i)=Bins;

% Bin each peak in each set into the bins created above store the
% bins for each peak in PopBins, store the normed histogram in
% PopProbDist
ClassProbDistA=histc(groupa(:,i) ,Bins);
ClassProbDistB=histc(groupb(:,i),Bins);
ProbDistA(:,i)=ClassProbDistA/RowsA;
ProbDistB(:,i)=ClassProbDistB/RowsB;

end % creating Bins and population distributions

% Find the Probability diaributions
% ProbDistA and B are NumBins x "number of peaks" arrays. The
% probability distribution lookup table for each peak's set of bins is
% in each column. This is the likelihood for one peak "i"
% Pr(PiiClass). BinnedData has the bb that each patient's peak's fall
% within (1-6). Prior is a scalar (~1) that is the Pr (B) given only
% population info.

% Shave off bottom row which is all zeros
LastRow = size(PopProbDist,1);
ProbDistA(LastRow,:)=[);
ProbDistB(LastRow, :)=[);

% Bin the test data
BinnedData = zeros (RowsT, ColsT);
for i = 1 : RowsT

for j = 1 : ColsT
if testgroup (i,j) < PopBins (2,j)

BinnedData (i,j) = 1;
elseif testgroup (i,j) < PopBins (3,j)

BinnedData (i,j) = 2;
elseif testgroup (i,j) < PopBins (4,j)

BinnedData (i,j) = 3;
elseif testgroup (i,j) < PopBins (S,j)

BinnedData (i,j) = 4;
elseif testgroup (i,j) < PopBins (6,j)

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%

end

Now
for

end

BinnedData (i,j) 5;
else

BinnedData (i,j) 6;
end

examine the test data
i = 1 : RowsT
for j = 1 : ColsT
% Build two arrays wkh each entry being the Pr(that biniClass)
% for all peaks for all patients. The pointer on where to look is
% the array BinnedData (i,j) -- a number 1 to 6 representing the
% bin for that peak. It becomes the row that is looke up in the
% probability distribution table. Set a min of 1% to prevent zero
% probability.

PrPeaksA (i,j)
PrPeaksB (i,j)

max([ProbDistA(BinnedData(i,j) ,j) .01]);
max([ProbDistB(BinnedData(i,j) ,j) .01]);

end
end

end %choice of discrete or continuos

% Now find the Pr (PI Class) by taking the product Pr(PiiClass). The
% product ends up as a column vector with each row representing the
% Pr(PIClass) for that patient. This is the likelihood.
PrPA prod (PrPeaksA,2);
PrPB = prod (PrPeaksB,2);

% Compute evidence - Prob (Peaks) marginalizing across groups
PrP = (PrPA*Pa) + (Pb*PrPB);

% Use Bayes' rule to calculate the posterior Prob (class I Peaks). This
% Posterior is returned as the output of tfi function. Only the
% Prob of being in class B is returned. Pr(AIPl is that subtracted from 1.
PrEP= zeros (RowsT,1);
for i = 1 : RowsT

if PrP(i)==O
PrEP (i) = 0;

else
PrBP(i) = (PrPB(i) * Prior)/PrP(i);

end
end

end

Create n groups for Cross Validation
function [Test TrainA TrainB] = ...

CreateValGroups(i,n,ClassAGroups,ClassBGroups)
% Given two sets of groups n x Row x Col, selects the ith group as a test
% group and removes that group from the set.

% Create three 1 x C ar-rays
Cols = size(ClassAGroups,3);
Test= zeros(l,Cols);
TrainA = Test;
TrainB = Test;
Coltest=Cols;

% Create the Test Group from the ith group of the two input arrays
TestA (:, :) ClassAGroups(i, :, :) ;
TestE (:, :) = ClassBGroups(i, :, :) ;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if Cols == 1
TestA=TestA 1

;

TestB=TestB 1
;

end
Test = cat (1, TestA, TestE);

% Remove the Test Group from the mix
ClassAGroups(i, :, :) [];
ClassBGroups(i, :, :) = [];

%Create the two training Groups from the remainder of the input arrays
for j = 1 : n-1

GroupA (:, :) = ClassAGroups (j, :,:);
GroupB (:,:) = ClassBGroups (j,:,:);
if Coltest == 1 %This section makes sure MATLAB handles a single

% column as a column not a row vector.

end

GroupA=GroupA 1
;

GroupB=GroupB 1
;

Coltest=O;
end
TrainA
TrainB

cat (1, TrainA, GroupA);
cat (1, TrainB, GroupE);

% Because of the uneven size of the arrays, they will have lines of all
% zero which need to be deleted using a function RemoveZeros
Test= RemoveZeros (Test);% This function appears below
TrainA Removezeros (TrainA);
TrainB = Removezeros (TrainB);
end

Remove Zeros left by array split up
function ArrayOut = RemoveZeros (Arrayin)
% Removes any line in Arrayin that is all zeros* (from bad indexing)
% *careful it only checks if the sum is zero
% Build a vector Hash with the sums of each row.
Rows size(Arrayin,1);
Hash = sum(Arrayin,2);

% Look through Rows and delete any with a sum of zero
for i = Rows:-1:1

if Hash(i) == 0
Arrayin(i, :)=[];

end
end
ArrayOut = Arrayin;
end

Split up groups for cross validation
function [ArraysOut RowsinGroup] nfold(n, Arrayin)
% nfold splits array into n arrays of nearly equal length and returns
% it as the 3-D array Arrays0ut(1) through (n). The las row of some of the
% arrays is all zeros since the input array may not be split evenly
RowsinGroup=zeros(n,1);% Stores how many are in each group

% Determine size of the array
[Rows Columns] = size(Arrayin);

% Randomize the order of the rows prior tosplitting by attaching a random
%vector (random numbers ~1), sorting by that vector, then deleting it.
SortVector = rand(Rows,1);

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AppendData = [SortVector Arrayin] ;
SortData = sortrows(AppendData);
SortData (:,1) = [];

% Find out how many rows go in ea© final array. RowsLeft counts down as we
% pull rows out into the Output array.
RowsLeft=Rows;
NuminGroups = int8 ((Row&mod(Rows,n))/n);
ArraysOut=zeros(n,NuminGroups+1,Columns);
for i = 1:n

end
end

% Determine if the array can be split evenly, if not, add me to each
% group until the split is even
if (mod(RowsLeft,NuminGroups) == 0)

RowsinGroup(i) NuminGroups;
else

RowsinGroup(i) NuminGroups + 1;
end

% Determine how many rows are left. For however many rows are irrhe
% current group, pull a row out of the main array into a sub array
RowsLeft=RowsLeft-RowsinGroup(i);
for j = 1:RowsinGroup(i)

end

fork = 1:Columns
ArraysOut (i,j,k) SortData(RowsLeft+j,k);

end

Timer Tool
function DisplayElapsedTime(PeakRemoved, LowErrorRate, PeaksToRemove •..

RemovePeak, starttime)
% This tool keeps the user informed of the progress
ElapsedTime = clock-starttime;
PeaksLeft=PeaksToRemov~RemovePeak;

% RemainTime=((Elap~dTime(4)*3600)+(ElapsedTime(5)*60)+ ...
% ElapsedTime(6))*(.75)*PeaksLeft/60;
if ElapsedTime(6)<0

ElapsedTime(6) ElapsedTime(6)+60;
ElapsedTime(5) = ElapsedTime(5~1;

end
if ElapsedTime(5)<0

ElapsedTime(5)
ElapsedTime(4) =

end

ElapsedTime(5)+60;
ElapsedTime(4~1;

Note = ['Removing Peak ', num2str(PeakRemoved), ' with error '
num2str(LowErrorRate*100) ,'%,
num2str(PeaksLeft), ...
' left, Elapsed time = ', num2str (ElapsedTime (4)) , ...
'h, ', num2str(Elapsedi'ime(5)), 'm, ', ...
num2str (int8 (ElapsedTime (6))), 's. '] ;

disp (Note);
end

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bayesian Network Algorithm

The MATLAB code in this section performs repeated n-fold cross-validation trials. During

each cross-validation, an adjacency matrix is saved to document the feature set; a meta-

variable adjacency matrix is saved to document the combining of variables; and the overall

error rate is recorded and saved.

The first function listed is the main program. Sub-functions called by that one are listed

afterwards. There are several references to functions only available to the MA TLAB

"statistics toolbox," which is not part of the base MA TLAB library.

Details on this algorithm can be found in Chapter 6: Bayesian Network Algorithm.

Contents

• Initial Processing of Input Structure
• Build network links
• Attempt to find metavariables
• Bayes classification
• Optimized discretization
• Optimized binning search
• Automated MI thresholding
• Find arcs, build adjacency matrix
• Clear irrelevant arcs
• Attempt to prune relevant arcs
• Find all necessary mutual information values
• Coarse optimized binning,
• Find Bayes network parameters
• Find all variable entropies
• Entropy equation implementation
• Find mutual information of a vector with all columns of an array

function OutputStructure = BayesianNetworkClassifier (InputStructure)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% DoTheMath takes a data set and performs feature selection
%
% DESCRIPTION
% DoTheMath takes a data array, class vector, and other information

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% and builds and assesses a Bayesian network after selecting features
% from within the data array. It is called from the user interface
% "orca.m."
%
%
%
%
%
%
% USAGE

This is the umbrella script that loops
(see "repeats" below), each time doing
validation and recording the results.
are stored in a single data structure,

a specified number of times
a full flfold cross
All inputand output data
described below.

%
%

OutputDataStructure DoTheMath (InputStructure)

% INPUTS
% InputStructure: Data repository with fields: Intensities: Array of
% intensity val~s of size #cases x #variables Class: Vector of
% length "#cases", with discrete values identifying
% class of each case (may be integer)
% ID: Patient ID array of length #cases, with one or more cols MZ:
% Vector of length "#va:riables" holding labels for variables Options:
% Logical 6x1 array. Options are:
% 1. Normalize on population total ion count (sum across rows) 2.
% Remove negative data values by setting them to zero 3. After
% normalizing, before binning, average cases with same ID 4. Find
% the MI threshold by randomization 5. Take log(data) prior to
% binning. Negative values set to 1. 6. Remove Low Signal cases
% NOT DONE: 3 Bin (2 Bin if False)
% n: the "n" inn-fold cross validation repeats: Times to repeat the
% whole process (e.g. recrossvalidate) threshold: Factor by which
% the maximum "random" MI us multiplied to
% find the minimum "significant" MI (double, 1.-85.0).
%
% OUTPUTS
% OutputDataStructure: all the fields of InputStructure, plus:
% ErrorRate: Vector containing misclassification rate for each repeat
% KeyFeatures: Index to vector MZ that identifies features selected
%
% CALLED FUNCTIONS
%
% InitialProcessing: Applies the options listed above BuildBayesNet:
% Learns a Bayesian Network from the training data ChooseMetaVars:
% Combines variables that may not be physically
% separate molecules.
% TestCases: Given theBayesNet, tests the "test group" to determine
% the probability of being in each class.
% opt3bin: Discretizes continuous data into 3 bins, optimizing MI
% FindProbTables: Learns the values P(C,V) for each variable
% cvpartiticn and training are MATLAB Statistics toolbox functions.

% Initialize Set up (for now) hard coded values:
drop=0.75; % MI loss pecentage threshold for testing independance, see
% clipclassconnections

% Initial Processing According to options, remove nega±ve values,
% normalize and/or take logarithm of data, replicate average. Store in
% output data structure.

% display('Starting Initial Processing of Data');
OutputStructure = InitialProcessing(InputStructure);
display('Initial processing complete.?
display (' ') ;

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Get values out of Data structure to be used later
ff=OutputStructure.threshold;
n=double(OutputStructure.n);% for n-fold cross validation; default is 10
repeats=OUtputStructure.repeats;% Number of times to repeat CV, default 30
numtrials=repeats*n;
cverrorrate=zeros(numtrialsll);
errorrate=zeros(repeats,l);
data=OutputStructure.Intensities;
class=OutputStructure.Class;

% Find some sizes and initialize variables
[rows cols]=size(data);
% OutputStructure.varlist=zeros(cols,l);
class_predict=zeros(rows,repeats);
class_prob=zeros(rows 1 repeats);
trial=O; % counter of how many times we perform Bayes Analysis (n*repeats)

% "Repeat Entire Process" Loop

% Repeat all processes the number of times requested
for r=l:repeats

display (1 1
) ;

display([1 Working on repetition number num2str(r), 1 at 1

num2str(toc/60) 1
1 mins 1

]);

% Cross
% group
% those
% has a

Validation Loop This section selects a training and testing
out of the data by dividing it into n groups, and using~ of
for training and 1 for testing. MATLAB (ver. 2008a or later)
built in class for this. See MATLAB documentation for

% "cvpartition" and "training."
cvgroups = cvparti tion (class, 1 kfold 1

1 n) ;

for cv = l:n% for each of n test grmps, together spanning all cases
trial=trial+l; % Keep track of each trial
display ([1 Working on cross-validation number 1

, num2str (cv) I • ••

1 of 1 ,num2str(n)])

% The next line uses a function inside "cvpartition" caJ..ed
% "training" that returns a logical vector identifying which cases
% to use as the training group in cross validation.
traingrpindex=training(cvgroups,cv);

% Use the vee to extract tng data and class of the tng cases
traingrp=data(traingrpindex, :);
traingrpclass=class(traingrpindex, :);

% The test cases are cases NOT in the training group
testgrp=data(-traingrpindex, :);
testgrpclass= class(-traingrpindex, :) ;

% Discretize the groups into h~med-low by optimizing MI(V,C) for
% each V (feature) in the training data.

[leftbndry~rightbndry~traingrpbinl maxMI]=opt3bin(traingrp •..
traingrpclass); %#ok<NASGU>

% Build an augmented Naive Bayeslin Network with the training data
% The adjacency matrix is a logical with true values meaning "there
%is an arc from row index to column index." The last row

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% represents the class variable.

adjmat = BuildBayesNet(train~pbin, traingrpclass, ff, drop);
% Find MetaVariables, rebuild data Depending on the option set,
% reduce the V->V links by removing them, or combining them into a
% single variable. The result is a naive Bayesian network with oql
% connections C->V.

meta_option=l; % Hard coded for now
classrow=cols+l;
listvec=l:cols; % just a list of numbers
varlist=unique(listvec(adjmat(classrow, :)));%top level vars

if meta_option==l
[finaldata metas leftbndry rightbndry] = ...

ChooseMetaVars (traingrp, traingrpclass, adjmat);
end

% Bin up the test group using these final results, combining
% variables per the instructions encoded in the "meta" logical
% matrix.

testdata=zeros(size(testgrp));

if isempty(varlist) % in case no links are found
disp ('Not finding any links yet ... ?;
errorrate(trial) = 1;

else % if we do find links
for var = varlist; % each of the parents of metavariables

metavar=[var listvec(metas(var, :))];%concatenate children
testdata(:,var)=sum(testgrp(:,metavar) ,2) ;% sum parent/child

end

% Now remove empty rows
finaltestdata=testdata(:,varlist);

% And bin the result
testgrpbin=zeros(size(finaltestdata));%will be stored here
% Build boundary arrays to test against
testcases=size(testgrp,l);
lb=repmat(leftbndry,testcases,l);
rb=repmat(rightbndry,testcases,l);
% test each value and record the bin
testgrpbin(finaltestdata<lb)=l;
testgrpbin(finaltestdata>=lb)=2;
testgrpbin(finaltestdata>rb)=3;

% Populate Bayesian Network

% With the final set of data and the adjacency matrix, build
% the probability tables and test each of the test group cases,
% to see if we can determine theclass.

% Build the probability tables empirically with the training
% group results
ptable=FindProbTables(finaldata, traingrpclass);
prior=histc(class,unique(traingrpclass))/max(size(traingrpclass));

% find out the probability of each cases bing in class 1,2,etc.
% Cases are in rows, class in columns.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classprobtable = TestCases (ptable, prior, testgrpbin);
[P_C predclass]=max(classprobtable, (] ,2);
class_prob(-traingrpindex,r)=P_C;
class_predict(-traingrpindex,r)=predclass;

%Get the per trial error rate
cverrorrate(trial)= sum(predclass==testgrpclass)/testcases;

%Store some "per trial" data
OutputStructure.Adjacency(trial, :, :)=adjmat;
OutputStructure.MetaVariablesFound(trial,l:cols,l:cols)=metas;
ProbTables(trial) .Tria1Table=ptable;%#ok<AGROW>

end % of finding metavariables

end % of Cross Validation lo~

wrong=sum(-(class==class_predict(:,r)));
errorrate(r)=wrong/rows;

end % of repeating entire process loop

% Record the results in the output structure
OutputStructure.ErrorRate=errorrate;% one for each repeat
OutputStructure.CvErrorRate=cverr~rate; % one for each of n*repeats trials
OutputStructure.PredictedClass=class_predict;

% Find out the error for each case
classrep=repmat(class,l,r);
Wasiright=classrep==OutputStructure.PredictedClass;
OutputStructure.CasePredictionRate=sum(Wasiright, 2/double(r);

OutputStructure.ClassProbability=class_prob;
OutputStructure.ProbTables=ProbTables;
OutputStructure.SumAdj=squeeze(sum(OutputStructure.Adjacency,l));
OutputStructure.SumMV=squeeze(sum(OutputStructure.MetaVariablesFound,l));
% Save the results as a .mat data file and alert the user.
save results -struct OutputStructure
disp('Results are saved in the current directory as results.mat)'

end % of the function

Initial Processing of Input Structure
function StructOut = InitialProcessing(Structin)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% INITIALPROCESSING Inital Prep of Data from Signal Processing
%
% DESCRIPTION
% Takes peaklists that have been imported into MATLAB and prepares
% them for Bayesian Anaysis.
%
% USAGE
%
%
% INPUTS

StructOut InitialProcessing(Structin)

% Structure with the following doubletyped arrays Intensities: n x m
% real-valued array with variables (peaks) in
% columns, cases (samples) in rows.
% MZ: List of the labels (m/z value) for each of the variables.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Must be the same size as the number of variables in Intensities
% Class: Classification of each sample (disease stat~- 1 or 2--must
% be the same size as the numberof cases in Intensities ID: Case or
% patient ID number, same size as class. May have second
% column, so each row is [ID1 ID2} where ID2 is replicate number.
% Options (logical): Array of processing options with elements:
% 1. Normalize 2. Clip Data (remove negatives) 3. Replicate
% Average 4. Auto threshold MI 5. Use Log of Data 6. Remove Low
% Signal cases NOT DONE: 3 Bin (2 Bin if False)
%
% OUTPUTS
% DataStructure: MATLAB data structure with he following components:
% RawData: Intensities as input ClipData: RawData where all
% values less than 1 are set to 1 NormData: ClipData normalized
% by total ion count, i.e.
% divided by the sum of all variable for each case
% LogData: Natural logarithm of NormData Class, MZ: Same as input
% ID: Single column. If replicates are not averaged, the entries
% are now ID1.ID2. If replicates averaged, then just ID1
% Delta~: difference in peak m/z values to look for adducts
% RatioMZ: ratios of m/z values ot look for satellites
%
% CALLED FUNCTIONS
% None. (cdfplot is MATLAB "stat" toolbox)

% Initialize Data
% find the size, create the output structure,ad transfer info

[rows cols]=size (Structin.Intensities);
StructOut = Structin;
StructOut.RawData = Structin.Intensities;

%Option 2: Clip Negatives from data
% set values below 0 to be 1 because negative
% molecule counts are not physically reasonable
% 1 is chosen rather than 0 in case log(data) is used Note: the decision to
% do this before normalization was based on discussions with Dr. William
% Cooke, who created the data set.

if Struct0ut.Options(2)
StructOut.Intensities(find(StructOut.Intesities<1))=1; %#ok<FNDSB>

end

% Option 6: Removal of Cases with Low Signal
% find the sum of all values for eah row, then normallze each row to
% account for the effects of signal strenght over time and other
% instrumental variations in total stragth of the signal

% Find the total ion count for each case, then the global average.
% Determine a correction factor for each case (NormFactor)
if StructOut.Options(l) I I Struct0ut.Options(6)

end

RowTotalionCount=sum(StructOut.Intensities, 2);
AvgTotalionCount=mean(RowTotalionCount); %Population average
NormFactor=AvgTotalionCount./RowTotalionCount;%Vector of norm factors
StructOut.NormFactor=NormFactor; %save this in the structure

% If Remove Low Signal is desired, interact with user m determine
% threshold, then remove all cases that are below the threshold.

if Struct0ut.Options(6)

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

figure(999);
cdfplot(NormFactor);
title('Cumulative Distribution of Normalization FactorsY;

% Request cutoff

text(1.3,0.5, ['Click on the graph where you want'; ...
'the normalization threshold ~ .. .
'Cases with high norm factor (or ~ .. .
'low signal) will be removed. l);

[NormThreshold, Fraction] = ginput(1);
display([num2str(floor((~Fraction)*100)) ,'%of cases removed']);
close(999);
TossMe=find (NormFactor>NormThreshold) ;%Low signal cases

% Now record, then remove, those cases with low signal

StructOut.LowSignalRemovedCases=StructOut.ID(TossMe, :) ;
StructOut.LowSignalRemovedCasesNormFactors=NormFactor(TossMe);
StructOut.Intensities(TossMe,:)=[];
StructOut.ID(TossMe, :)=(];
StructOut.Class(TossMe,:)=[];

%Option 3: Replicate Average This option causes cases with same ID numbers
% to be averaged, peak by ~ak.

if Struct0ut.Options(3) %Replicate Average
% Collapse to unique IDs only, throw out replicate ID column
StructOut.Replicate_ID=StructOut.ID;%Save old data
StructOut.Replicate_Class=StructOut.Class;

newiD=unique(StructOut.ID(:,1));% List of unique IDs
num=size(newiD,1); %how many are there?
newClass=zeros(num,1);% Holders for extracted class, data
newData=zeros(num,cols);
for i=1:num% for each unique ID

id=newiD(i);% work on this one

end

cases=find(StructOut.ID(:,l)==id);% Get a list of cases with this ID
newClass(i)=StructOut.Class(cases(1));% save their class
casedata=StructOut.Intensities(cases, :) ;% get their data
newData(i, :)=mean(casedata, 1);% and save the average

StructOut.Intensities=newData;
StructOut.Class=newClass;
StructOut.ID=newiD;
clear newiD newClass newData

else % If replicates exist, combine the 2 column ID into a single ID
ID= StructOut.ID;

end

if min(size(ID))==2

end

shortiD=ID(:,1)+(ID(:,2)*.001);% Now single entry is ID1.ID2
StructOut.OldiD=StructOut.ID;
StructOut.ID=shortiD;
clear ID shortiD

% Option 1: Normalize total ion count Apply the normalization factor to

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%each row to normalizetotal ion count. We'll recalc norm factors in case
% data was replicate averaged.
if StructOut.Options(l)

RowTotalionCount=sum(StructOut.Intensities, 2);
AvgTotalionCount=mean(RowTotalionCount) ;%Population average
NormFactor=AvgTotalionCount/RowTotalionCount; %Vector of norm factors
StructOut.NormFactor=NormFactor; %save this in the structure
NFmat=repmat(NormFactor, 1, cols) ;% match size of Intensities
StructOut.Intensities=StructOut.Intensities.*NFmat;
clear NFmat RowTotalionCount AvgTotalionCount NormFactor;

end

% Option 5: Work with log (data)

if Struct0ut.Options(5)
StructOut.Intensities=log(StructOut.Intensities);

end

% end function

end
Build network links
function adjacency BuildBayesNet(data, class, ffact~, drop)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% BuildBayesNet selects features and metafeatures based on mutual info.
%
% DESCRIPTION
% This function takes a set of training data and an additional
% variable called "class" and tries to learn a Bayesian Network
% Structure by examining Mutual Information. The class variable C is
% assumed to be the ancestor of all other variables V. Arcs from c
% to V are declared if MI(C;V)>>Z, where zis a maximum expected MI
% of similar, but random data ... multiplied by a "fudge factor." Arcs
% from Vi to Vj are similarly declared. Then various tests are
% performed to prune the network structure and combine variables that
% eXhibit high correlations. Finally the network is pruned to be a
% Naive Bayesian Classifier, with only e>V arcs remaining.
%
% USAGE
% network structure BuildBayesNet(training_data, class)
%
% INPUTS
% training_data: cases in rows, v~iables in cols, integer array
% containing the data used to build the Bayes net
% class: the known class variable for each case (l:c col vector)
% ffactor: multiple of auto MI to use to threshold C>V connections
% drop:
%
% OUTPUTS
%
% adjmatrix: a matrix of zeros and ones, where one in row i, column j
% denotes a directed link in a Bayesian network between
% variable i and variable j. The class variable is the last
% row/colunn.
%
% CALLED FUNCTIONS
%
% automi: finds an MI threshold based on data findmutualinfos: finds

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% all values MI(V;C), MI(V;V) and MI(V;C!Vl

% Initialize

% Initialize the network object and some constants
network.data=data;
network.class=clas~

automireps=lO; %times to repeat the auto MI thresholding to find avg.

% Check the sizes of various things
[rows cols]=size(data); %#ok<NASGU>
cases=max(size(class));
if rows==cases

clear cases
else

disp('# of rows in the data and class must beequal. ')
return

end

% network.adjmat=zeros(cols+l); % all variables plus class as last row/col
dataalphabet=max(size(unique(data)));% number of possible values of data
classalphabet=max(size(unique(class)));% Number of values of class

% Step 0: Find all the necessary mutual information values, thresholds The
% function below finds all values MI(V;C!Vl and other combos needed and
% stores them in the network structure.

network.mi_vc, network.mi_vv, network.mi vc v) ..
= findmutualinfos(dat~ class);

% Find a threshold MI by examining MI under randomization
network.vcthreshold = automi(data, class, automireps)*ffactor
network.vvthreshold = network.vcthreshold ~ ..

log(dataalphabet)/log(classalphabet);

% Step 1: Find all the possib£ arcs. Find the variables with high MI with
%the class, i.e. MI(V,C)>>O and connect a link in the adjacency matrix
% C->V. Also connect variable Vi,Vj if MI(Vi;Vj)>>O

network.adjmatl=getarcs(network.mi_vc,network.vcthreshold,network.mi_v~,..

network.vvthreshold);

% Step 2: Prune the variable set by clearing irrelevant features If there
% is no path from V to the class, clear all entries V<>Vi (all i)
network.adjmat2 = clearirrarcs(network.adjmatl);

%Step 3: Cut connections to class Where twovariables are connected to
% each other and also to the class, attempt to select one as the child of
% the other amd disconnect it from the class. Use MI(Vi;C!Vj)<<MI(Vi;C) as
% a test.

temp= clipclassconnections (network.adjmat2, ...
network.mi_vc,r.etwork.mi_vc_v, drop);

% and once again clear features no longer near class and end function
adjacency= clearirrarcs(temp);

end

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attempt to find metavariables
function [finaldata metamatrix leftbound rightbound] T ..

ChooseMetaVars (data, class, &j)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% ChooseMetaVars attempts to combine variables into better variables
%
% DESCRIPTION
% Finds the V-V pairs in the adjacency matrix, and attempts to
% combine them mto a metavariable with a higher mutual information
% than either variable alone. If it is possible to do this, it
% returns a new data matrix with the variables combined.
%
% USAGE
%
%

[finaldata metamatrix leftbound rightbound] =
ChooseMetaVars (data, class, adj)

%
% INPUTS
% data: double array of discrete integer (l:n) values, cases in rows
% and variables in columns.
% class: double column vector, also l:n. Classification of each case.
% adj: Adjacency matrix, #variables+l by #variables. Last row is
% class node. Logical meaning "there is an arc from ito j."
%
% OUTPUTS
% metamatrix: logical whose (i,j) means "variable j was combined into
% variable i (and eBsed)"
% finaldata: The data matrix with the variable combined and rebinned
% leftbound: The new left boundary (vector) for binning. rightbound:
% The new right boundary (vector) for binning.
%
% CALLED FUNCTIONS
% opt3bin: rebins mmbined variables to determine highest MI.

% Intialize
[rows cols]=size(data);
[classrow numvars]=size(adj);
bindata=zeros(rows,cols);
metamatrix=false(cols);

% Create a list of all the variables V to check by examining the adjacency
%matrix's last row, i.e. those with C->V connections
listvec=l:numvars;
varstocheck=unique(listvec(adj (classrow, :)));
l=zeros(l,numvars);
r=zeros(l,numvars);

% Now go through that list, testing each V>W connection to see if adding V
% and W creates a new variable Z that h5 a higher MI with the class than V
% alone. V is the list above, W is the list of variables connected to a V.

for v=varstocheck % Pull out the W variables connected to V and test
wlist=unique(listvec(adj (v,:)));
[l(v), r(v), binned, mitobeat] =opt3bin(data(:,v), class);
bindata(:,v)=binned;
if -isempty(wlist)

for w=wlist
newdata=data (: , v) +data (: , w) ;
[left, right, binned, newmi] opt3bin(newdata, class);

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if newmi>mitobeat
mitobeat=newmi;
data (:, v) =data (:, v) +data (:, w);
metamatrix(v,w)=true;% record the combination
bindata(:,v)=binned;
l(v)=left;
r(v)=right;

end
end

end
end

%pull out just the V->C columns from the data matrix.
finaldata=bindata(:,adj(classrow,:));
leftbound=l(adj(classrow,:));
rightbound=r(adj(classrow, :));
end
Bayes classification
function classprobs = TestCases(p, prior, data)
% (c) Karl Kuschner, College ofWilliam and Mary, Dept. of Physics, 2009.
%
% classprobs uses Bayes rule to classify a case
%
% DESCRIPTION
% Tests each of a set of data vectors by looking up P(datalclass) in
% a probability table, then finding P(caselclass) by multiplying ffih
% of those values in a product. Then uses Bayes' rule to calculate
% P(classldata) for each possible value of class. Reports this as an
% array of class probabilities for each case.
%
% USAGE
%
%

classprobs Testcases(p, prior,data)

% INPUTS
% data: double array of discrete integer (l:n) values, cases in rows
% and variables in columns.
% p: 3-D double array of probabilities (c,d,v). The first dimension
% is the class, the second is the data ~lue, the third is the
% variable number. The entry is P(var v=value d I class=value c).
%
% OUTPUTS
%
%
%

classprobs: ~D double array whose value is P(class=cldata) for
each case. Cases are in rows, class in cols.

%
% CALLED FUNCTIONS
%
% None.

% Intialize

% Find the sizes of the inputs and the number of possible values
[cases numvars]=size(data);
classvals=size(p,l);
pvec=zeros(classvals,numvars);
classprobs = zeros(cases, classvals) ;% holds the classification results

% Find the probabilities

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Create pvec, an array whose first row is P(V=vlc=l) for each V
for casenum=l:cases

casedata=data(casenum, :) ; %The case to be checked
for c=l:classvals

for v=l:numvars
pvec(c,v)=max(p(c,casedata(v),v), .01); %Don't want any zeros

end
end
% Now find P(caselclass) for each class by multiplying each individual
% P(VICl together, assuming they are independant.

Pdc=prod(pvec,2);

%Use Bayes' Rule

classprobs(casenum, :) =(Poc.*prior)/sum(Pdc.*prior);

end

end
Optimized discretization
function [1, r, binned, mi] = opt3bin (data, class)
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% FunctionName short description
%
% DESCRIPTION
% This function takes an array of continuous sample data of size
% cases (rows) by variables (columns), along with a class vector of
% integers l:c, each integer specifying the class. The class vector
% has the same number of cases as the data. Thefunction outputs the
% position of the 2 bin boundaries (3 bins) that optimize the mutual
% information of each variable's data vector with the class vector.
%
% USAGE
%
%

[l,r,binned, mi]=opt3bin(data,class)

% INPUTS
% data: doublearray of continuous values, cases in rows and
% variables in columns. Distribution is unknown.
% class: double column vector, values l:c representing classification
% of each case.
%
% OUTPUTS
%
% 1 -row vector of left boundary position for each var. r
% row vector of right boundary position for each var. binneddata
% array discretized using boundaries in l and r mi - row vector of
% mutual info between each discr. variable
% and class
%
% CALLED FUNCTIONS
%
% opt2bin: Similar function that finds a single boundary. This is
% used as a seed for the 3 bin optimization.
% looklr: See below.

% Intialize
%

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Variable Prep find sizes of arrays and create paceholders for locals

steps=l50;
[rows cols]=size(data);
boundary=zeros(2,cols);

% Method Find starting point by finding the maximum value of a 2 bin mi.
% Next, go left and right from that position, finding the position of the
%next boundary that maxfuizes MI.

[mi boundary(1, :)] = opt2bin (data, class, steps, 2);

% We've located a good starting (center) bin boundary. Search L/R for a
% second boundary to do a 3 bin discretization.
[mi boundary(2, :)] = looklr (data, class, boundary(l, :), steps);

% We've now found the optimum SECOND boundary position given the best 2 bin
% center boundary. Now research using that SECOND boaundary position,
% dropping the original (2 bin). The result should be at, or near, the
% optimal 3 bin position.
[mi boundary(1, :) binned] = looklr (data, class, boundary(2, :) , steps);

% from the two boundaries found above, sort the left and right
r=max (boundary) ;
l=min(boundary);

% Now retutn the vector of left and right boundaries, the disc. data, and
% max MI found.
end % of function

Optimized binning search
function [miout nextboundary binned] = looklr (data, class, startbd, steps)
% given a start position, finds another boundary (to create 3 bins) that
% maximizes MI with the class
[rows cols]=size(data);
farleft=min(data, 0 ,1);
farright=max(data, [],1);
miout=zeros(1,cols);
binned=zeros(rows,cols);
nextboundary=zeros(1,cols);

for peak=1:cols% for each peak/variable separately ...

% discretize this variables' values. Sweep through the possible bin
% boundaries from the startbd to the furthest value of the data,
% creating 2 boundaries for 3 bins. Record the binned values in a
% "cases x steps" array, where "steps" is the granularity of the sweep.
%The data vector starts off as a column ...

testmat=repmat(data(:,peak),1,steps);% and is replicated to an array.

% Create same size array of bin boundaries. Each row is the same.
checkptsL=repmat(linspace(farleft(peak),startbd(peak),steps),rows,1);
checkptsR=repmat(linspace(startbd(peak) ,farrigt(peak),steps),rows,1);

% Create a place to hold the discrete info, starting with all ones. The
% "left" array will represent data binned holding the center boundary
% fixed and sweeping out a second boundary to the left; similarly the
% right boundary starts at "startbd" and sweeps higher.
binarrayL=ones(rows,steps);

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

binarrayR=ones(rows,steps);

% Those in the L test array that are higher than the left boundar~> 2
binarrayL(testmat>checkptsL)=2;
binarrayL(testmat>st~tbd(peak))=3;% >center boundary-> 3

% Similarly using center and right boundaries
binarrayR(testmat>startbd(peak))=2;
binarrayR(testmat>checkptsR)=3;

% Now at each of those step positions, check MI (var;class).
miout(peak) = 0;

% THese vectors hold the MI with each step used to discretize.
miL=Miarray(binarrayL,class) fa MI(V;C) using left/center
miR=Miarray(binarrayR,class);% MI(V;C) using center/right

if max(miL)>max(miR) %See which one is the largest
[miout(peak) index]=max(miL); %record the max mi found
nextboundary(peak)=checkptsL(l,index) ;% and record the boundary
binned(:,peak)=binarrayL(:,index) ~and record the discrete data

else

end

[miout(peak) index]=max(miR); %record the max mi found
nextboundary(peak)=checkptsR(l,index) ;% and record the boundary
binned(:,peak)=binarrayR(:,index)fo and record the discrete data

end% of that variable's search. Go to next variable.

end% of the search. Returnthe best boundary and the associated MI and data
Automated MI thresholding
function threshold= automi(data, class, repeats
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% automi finds a threshold for randomized MI(V; C)
%
% DESCRIPTION
% Finds the threshold of a data set's mutual information with a class
% vector, above which a variable's MI(class, variable) can be
% expected to be significant. The threshold for mi (significance
% level) is found zy taking the data set and randoomizing the class
% vector, then calculating MI(C;V) for all the variables. This is
% repeated a number of times. The resulting list of length (#repeats
% * #variables) is sorted, and the 99th percentile rna MI is taken
% as the threshold.

% USAGE
%
%

threshold automi(data, class)

% INPUTS
% data: double array of discrete integer (l:n) values, cases in rows
% and variables in columns.
% class: double column vector, alsol:n. Classification of each case.
% repeats: the number of times to repeat the randomization
%
% OUTPUTS
%
% threshold: the significance level for MI(C;V)

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
% CALLED FUNCTIONS
%
% Miarray(data,class): returns a vector with MI(Vi;Class) dt each V
% in the data set

% Intialize

% Find the size of the data (cases x variables) and check against class
[rows cols]=size(data);
cases=max(size(class));
if rows==cases

clear cases
else

disp (1 # of rows in the data and class must a equal. 1
)

return
end

% Repeat a number of times

mifound=zeros(cols,repeats);% stores the results of the randomized MI
for i=l:repeats

c=class(randperm(rows));% creates a randomized class vector
mifound(:,i)=Miarray(data,c);% record MI(Ci;V) in an array

end

% pull off the 99th percentile highest MI
mi_in_a_vector=reshape(mifound,repeats*cols,l) ;% prctile needs vector
threshold=prctile(mi_in_a_vector,99);

end
Find arcs, build adjacency matrix
function adjacency = getarcs(mvc, vcthreshola mvv, vvthreshold)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% GETARCS builds the adjacency matrix for a set of variables
%
% DESCRIPTION
% By comparing mutual information between two variables to thresholds
% determined seperately, this function declares there to be an arc in
% a Bayesian network. Arcs are stored in an adjacency matrix,
% described below.
%
% The primary tests are: MI(Vi;Cj)>>Vcthreshold : tests for links
% between Vi and the class MI(Vi;Vj)>>vvthreshold : tests the links
% between variables
%
% USAGE
% adjacency getarcs(mvc, vcthreshold, mvv, vvthreshold)
0 .,
% INPUTS
% mvc [mvv] : double vector [array] with mutual information between
% variables and the class [variables and other variables] . The
% (i,j) entries of mvv are MI(Vi,Vj).
% vc/vvthreshold: scalar threshold used to test for existence linkz
%
% OUTPUTS
%
% adjacency: logical matrix whose entries "1" at (i,j) ean "an arc

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
%
%
%

exists from the Bayesian network node Vi to Vj." The class
variable c is added at row (number of V's + 1). "0" values
mean no arc.

% CALLED FL~CTIONS
%
% None.
%
% For more information on the testsand the links, see my dissertation.

% Initialize
numvars=max(size(mvc)); %the number of variables
classrow=numvars+l; %row to store links ~>V
adjacency= false(classrow,numvars);%the blank adjacency matrix

% Test for adjacency to class
adjacency (classrow)= mvc > vcthreshold;

% Test for links between variables This test results in a symmetric logical
% matrix since MI (X;Y) is symetric. To create a directed graph, these arcs
% will need to be pruned.
adjacency (l:numvars, l:numvars) = mvv > vvhreshold;

end
Clear irrelevant arcs
function adjout = clearirrarcs(adjin)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% CLEARIRRARCS clears arcs that are not G>V or C->V<->V
%
% DESCRIPTION
% Given an adjacency matrix with V<->V arcs in a square matrix and an
% additional row representing G>V (class to variable), this function
% clears out all Vk>V2 arcs where Vl is not a member of the set of
% V's that are clas&connected, i.e. have arcs in thefinal row.
%
% USAGE
% adjout clearirrarcs(adjin)
%
% INPUTS
% adjin: a logical array where a true value at position (i,j) means
% that there is an arc in a directed acyclic graph between
% (variable) i and variable j.
%
% OUTPUTS
% adjout: copy of adjin with unneeded arcs cleared
%
% CALLED FUNCTIONS
% None.

% Intialize Find the sizes of the input
[classrow, numvars]=size(adjin);

% Main processing Find out which variables are connected to class
conntocls=(adjin(classrow, :)) ;

% Remove all arcs that don't have at least one variable in this list, e.g.
%all Vi<->Vj such that -(V~>C or Vj->C). These are all the entries in the
% adjacency matrix whose i and j are NOT in the list above.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Make a matrix with onffi where neither variable is in the list above
noconnmat=repmat(-conntocls,numvars,l) & repmat(-conntocls',l,numvars);

% Use that to erase all the irrelevant entries in the square adj matrix, at
% the same time remove the diagonal (arcs vi~>Vi)
adjout=adjin (l:numvars, l:numvars)& -noconnmat & -eye(numvars);

% Bidirectional arcs are temporarily permitted between nodes coLnected
% directly to the class, but not between nodes where only one is connected
% to the class- those are assumed to flow G>Vl->V2 only. Remove V2->Vl.

% Get a matrix of ones in rows that are class connected. V>V arcs are only
% allowed to be in these rows:
parents=repmat(conntocls',l,numvars);
% Remove anything else
adjout=adjout & parents;

% Now add back in the class row at the b~tom of the square matrix
adjout(classrow, :)=adjin(classrow, :) ;

end

Attempt to prune relevant arcs
function adjout = clipclassconnections(adj, mivc_vec,mivcv,dropthreshold
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% clipclassconnections delinks variables from class
%
% DESCRIPTION
%
%
%
%

Where two variables are connected to each other and also to the
class, attempt to select one as the child of the other and
disconnect it from the class. Use MI(Vi;cyj)<<MI(Vi;C) as a test.

% USAGE
%
%

probtable FindProbTables(data, class)

% INPUTS
% adj: (logical) matrix where "true" entries at (i,j) mean "an arc
% exists from the Bayesian network node Vi to Vj." The class
% variable C is added at row (number of V' s + 1). "0" values
% mean no arc.
% mivc vee: (double) row vector containing MI(C;Vi) for each variable
% mivcv: (double) array whose (i,j) entry is MI(Vi,CIVj).
% dropthreshold: percentage ocop from MI(Vj;C) to MI(Vj;CIVi) before
% declaring that Vi is between c and Vj.
%
% OUTPUTS
% adjout: copy of adj with the appropriate arcs removed.
%
% CALLED FUNCTIONS
% None.

% Intialize
[classrow, numvars]=size(adj);
classconnect=adj (classrow, :) ; % the last row of adj stores arcs G>V
adjout=false(classrow, numvars);% placeholder for output array

% Identify triply connected arcs

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% First look for pairs that are connected to each other and connected to
% the class.

% Connected to each other: build logical array with (i,j) true if Vi<>Vj
vv_conn=adj(l:numvars, l:numvars);

%Connected to the class: logical array with (i,j) true if C>Vi and C->Vj
vcv_conn=repmat(classconnect, numvars,l) & repmat(classconnect',l,numvars);

% Find all (i,j) with both true
triple_conn = vv conn & vcv_conn;

% Determine preferred direction on v~>V arcs

%Determine the vi~>Vj direction by finding the greater of MI(C;i[j) or
% (C;j [i). Greater MI means less effect of the instantiation of i or j.
arcdirection=mivcv > mivcv'; %Only the larger survive
dag_triple_conn=arcdirection & triple_conn;% Wipes out the smaller->

% find links should NOT be kept under the test above,
linkstoremove=(-arcdirection) & triple_conn;
% and if they are in the connecuon list, remove them
adjout(l:numvars, l:numvars)=xor(vv_conn,linkstoremove);

% Now we need to test whether we can remove the link between C and which
%ever V (i or j) is the child of the other. We look for a "significant"
%drop in MI(Vj;C) when instattiating Vi, e.g. MI(Vj;C[Vi)<<MI(Vj;C).
%
% dropthreshold of .7, for example, means link breaks if 1st term is less
% than 30% of the second term.
%
% If there is a big drop in MI(C;Vj) when Vi is given, and V~Vj exists in
%the DAG, then we can remove me link C->Vj and leave C->Vi->Vj.

% Build an array out of the mivc_vec vector
mivc=repmat(mivc_vec',l,numvars);
% Test for the large drop described above
bigdrop=((mivc-mivcv) ./mivc) > dropthreshold;
% Test for the big drop and the VV connection
breakcann = bigdrop' & dag_triple_conn;
% If any of the elements in a column of the result are true, remove that
%variable's C->V link, since it is a child.
linkstokeep=-any(breakconn);
adjout(classrow, :)= adj (classrow,:) & linkstokeep;

% With V->V links now only one way, and ~>V removed where needed, we can
end

Find all necessary mutual information values
function [mi_vc, mi_vv, mi_vc_v] = findmutualinfos(data, class)
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% FINDMUTUALINPOS finds the various mutual info combos among variables.
%
% DESCRIPTION
% Given a set of data (many cases, each with values for many
% variables) and an additional value stored in the vector class, it
% finds various combinations of Midescribed below in "OUTPUTS."
%
% USAGE

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
%
% INPUTS

mi_vc, mi_vv, mi vc v findmutualinfos(data, class)

% data: A number of cases (in rows), each with a measurement for a
% group of variables (in columns). The data should be ±Bcretized
% into integers 1 through k. The columns are considered variables
% Vl, V2,
% class: an additional measurement of class C. A column vector of
% length "cases" with integer values 1,2 ...
%
% OUTPUTS
%
% mi vc: a row vector whose ith value is MI(Vi,C). mi_vv: Symmetric
% matrix with values MI(Vi,Vj). mi vc v: NoRsym matrix with values
% MI(Vi;CIVj).
%
% CALLED FUNCTIONS
%
% findentropies: returns entropy values [e.g. H(Vi,Vj)]

% Intialize

%Find the data size and declare some blank arrays
[rows cols]=size(data);
mi_vv=zeros(cols);
mi_vc_v=zeros(cols);

% Find Entropies and Calculate Mutual Informations

%Find the various entropies needed to calculate the MI's
h_c, h_v, h_vc, h_vv, h_vcv] = findentropies(data, class);

% Calculate the value MI(Vi,C)
mi VC = h V + h _ C - h _ VC ;

%For each variable Vj, calculate MI(Vi,Vj) and MI(Vi;C!Vj)

for i=l:cols
for j=l:cols

mi_vv (i,j) = h_v(i) + h_v(j)- h_vv(i,j);
mi_vc_v(i,j) = h_vv(i,j)- h_v(j)+ h_vc(j) - h_vcv(i,j);

end
end

end

Coarse optimized binning,
function [mi boundary binneddata] = opt2bin (rawdata, class, steps •..
typesearch, minint, maxint)
% (c) Karl Kuschner, College of William and Mary, Dept. of Pheyics, 2009.
%
% opt2bin finds the best single boundary for each variable to maximize MI
%
% DESCRIPTION
% This function takes an array of continuous data, with cases in rows
% and variables in columns, along with a vector "class" which holds
% the known class of each of the cases, and returns an array
% "binneddata" that holds the 2 bin discretized data. The
% discretization bin boundary is found by maximizing the mutual
% information with the class; the resulting MI andboundary are also

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
%
%
%

returned. The starting boundaries for the search can be given in
the vectors min and max, or either one, or neither, in which case
the data values determine the search boundaries.%

% USAGE
%
%
%

[mi boundary tinneddata]
min, max])

maxMibin(rawdata, class, typesearch [,

% INPUTS
%
%
%

rawdata: double array of continuous values, cases in rows and
variables in columns. Distribution is unknown.

%
class: double column vector, valas 1:c representing classification

of each case.
%
%
%
%
%
%
%
%

steps: Number of steps to test at while finding maximum MI
typesearch =0: starting bndry based on data's actual max/min values

=1: use the value passed in max a maximum (right) value
~1: use the value passed in min as minimum (left) value
=2: used values passed via max, min

the two optional arguments are vectors whose values limit the range
of search for eam variables boundaries.

% OUTPUTS
%
%
%
%

mi: row vector holding the maximum values of MI(C;Vi) found
boundary: The location used to bin the data to get max MI
binneddata: The resulting data binned into "1" (low) or "2" (hi)

%
% CALLED FUNCTIONS
%
%
%

Miarray: Finds the MI of each col in an array with a separate
vector (the class in this case)

% Intialize
[rows cols]=size(rawdata);
mi=zeros(1,cols);
boundary=zeros(1,cols);
binneddata=zeros(rows,cols);
currentmi=zeros(steps,cols);

% if not passed, find the left and rightmost possible bin boundaries from
% data

if nargin-=6
minint=min(rawdata, [] ,1);
maxint=max(rawdata, [] ,1);

elseif typesearch==1
minint=min(rawdata, [] ,1);

elseif typesearch==-1
maxint=max(rawdata, [] ,1);

elseif typesearch==2
disp ('using passed values')

else

end

disp ('type search must = 0, 1,-1, 2 ')
return

% Find best boundary

for peak=1:cols %look at each variable separately

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end

end

% Create an array of bin boundary's possible locatioa min->max
checkpoints=repmat(linspace(minint(peak),maxint(peak),steps),rows,l);

% discretize the variable's values at each of these possible
%boundaries, putting 2's everywhere (value> boundary), 1 elsewhere
binarray=(repmat(rawdata(:,~ak), 1, steps)>checkpoints)+l;

%Send this array off to find the MI(C,V) for each possible binning
currentmi(l:steps,peak)=Miarray(binarray,class);

%Now pick out the highest MI, i.e. best bin boundary
[mi(peak) atstep]=max(currentmi(:,pak));
boundary(peak)=checkpoints(l,atstep);

% and record the binned data using that boundary.
binneddata(:,peak)=binarray(:,atstep);

Find Bayes network parameters
function p=FindProbTables(data, class)
% (c) Karl Kuschner, College ofWilliam and Mary, Dept. of Physics, 2009.
%
% FindProbTables estimates the probabilities P(class=c[data=D)
%
% DESCRIPTION
% Input a training group of data arranged with cases in rows and
% variables in columns, as well as the class value c fo that vector.
% Each case represents a data vector V. For each possible data value
% vi, and each variable Vi, it calculates P(C=c[Vi=vi) and stores
% that result in a ~D table. The table is arranged with the
% dimensions (class value, data value, variable number).
%
% USAGE
%
%

probtable FindProbTables(data, class)

% INPUTS
% data: double array of discrete integer (l:n) values, cases in rows
% and variables in columns.
%
%

class: double column vector,also l:n. Classification of each case.

% OUTPUTS
%
% probtable: ~D array whose (c,d,v) value is P(class=c[data=p) for
% variable v.
%
% CALLED FUNCTIONS
%
% None.

% Intialize Find the sizes of the inputs and the number of possiba values
[cases numvars]=size(data);
datavals=max(size(unique(data)));
classvals=max(size(unique(class)));
% Build some placeholders and loop indices
p=zeros(classvals, datavals, numvars);% triplet: (class, value, variable#)
databins=l:datavals;
classbins=l:classvals;

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Find Probabilities For each classification value, extract the data with
% that class
for c=classbins

datainthatclass=data(class==C, :); %array of just cases with class=c
% find the percentage of data with each possible data value
p(c,:, :)=histc(datainthatclass,databins)/cases;

end

end
Find all variable entropies
function [h_c, h_v, h_vc, h_vv, h_vvc] = findentropies(data, class)

% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% findentropies finds all the entropies H(V), H(V,V), etc.
%
% DESCRIPTION
% Give a set of data arranged with cases in rows and variables in
% columns, and an additional variable labeled the "class", this
% function returns the entropy of each variable's ~a, the class'
% data, and the joint entropy of all pairs of two variables, all
% variables with the class, and all pairs of variable and the class.
%
% USAGE
%
%
% INPUTS

h_c, h_v, h_vc, h_vv, h vvc findentropies(data, class)

% data: double array of discrete integer (l:n) values, cases in rows
% and variables in columns.
% class: double column vector, also l:n. Classification of each case.
%
% OUTPUTS
%
% h_v: entropies of the variables, H(Vi), storedin a row vector.
% h_c: scalar entropy of the class vector, H(C) h_vc: vector whose
% ith entry is the joint entropy H(Vi,C) h_vv: matrix whose (i,j)
% entry is the joint entropy H(Vi,Vj) h vvc: matrix whose (i,j) entry
% is the j o:int entropy H (Vi, Vj, C)
%
% CALLED FUNCTIONS
%
% entropy (vector, num_poss_vals [vector, numvals, ...]) see below

% Initialize
% Find the number of variable (cols) and number of cases, as well as the
% number of possible values (k) and class values l)
[rows cols]=size(data);
k=max(size(unique(data)));% #of possible values of data
l=max(size(unique(class)));% #of possible values of class

% Intialize the output matrices
h_v=zeros(l,cols);
h vc=zeros(l,cols);
h=vv=zeros(cols,cols);
h_vvc=zeros(cols,cols);

% Main processing Calculate all the various entropy combinations
h c =entropy (class, 1);% see function below

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for i=1:cols

h_v(i) =entropy (data(:,i), k);
h_vc(i) =entropy (data(:,i), k, class, l);

for j=1:cols
h vv(i,j)= entropy (data(:,i), k, data(:,j), k);
h=vvc(i,j) =entropy (data(:,i), k, data(:,j), k, class, l);

end

end

end
Entropy equation implementation
function ent=entropy(vector1, k, vector2, l, vector3, m)
% (c) Karl Kuschner, College of Williamand Mary, Dept. of Physics, 2009.
%
% entropy finds all the entropies H(V), H(V,V), etc.
%
% DESCRIPTION
% Calculates the entropy (or joint entropy if more that one argument
% pair) of a vector (or vectors) whose values are {1,2, ... k}. Must
% send in one or more pairs of arguments ("vector", "num poss vals")
%
% USAGE
% ent=entropy (vector, num_poss_vals [,vec,numvals [,vec,numvals]])
%
% INPUTS One to three pairs of
% vector: vector of integers 1,2, .. k representing values ofrandm var
% k: number of possible values in vector
%
% OUTPUTS
% ent: information entropy H(Vl) [or H(Vl,V2) or H(V1,V2,V3)]
%
% CALLED FUNCTIONS
%
% None.

% Initialize
n=max(size(vector1));% Number of possible cases (not error checked)

% Calculate the Entropy

% single variable entropy formula
if nargin==2

end

P_k=hist(vector1,1:k)/n;
Nonzero=find(P_k-=0); % See Note 1
ent=-sum(P_k(NonZero) .*log2(P_k(NonZero)));

%two variable joint entropy H(V1,V2)
if nargin==4

end

ent=O;
for i=1:l

end

P_lk=hist(vector1(vector2==i) ,1:k)/n;
NonZero=find(P_lk-=0);
ent=ent-sum(P_lk(NonZero) .*log2(P_lk(NonZero)));

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% three variable joint entropy H(Vl,V2,V3)
if nargin==6

end

ent=O;
for i=1:1 % for all possible values in V2

end

for j=1:m % for all possible values in V3

end

% empirically find probability and sum entropy each
% step
P lkm=hist(vector1(vector2==i & vector3==j),1:k)/n;
NonZero=find(P_lkm-=0); % See Note 1
ent=ent-sum(P_lkm(NonZero) .*log2(P_lkm(Nonzero)));

% Note 1: we can skip terms with p(a,b,c)=O since
% p log (p) = 0 log 0 = 0
% in that case and it does not contribute to ta sum.

end
Find mutual information of a vector with all columns of an array
function MIOut = Miarray(Matrixin, class)
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
%
% Miarray finds MI of each column of a data set with a separat vector
%
% DESCRIPTION
% This function finds the mutual information between a single
% discrete variable (class) and a matrix of discrete variables
% (Matrixin) which have the same number of cases (variables in
% columns, cases inrows). A row vector containing the values
% MI(Vi,C) for each variable Vi in the matrix is returned.
%
% USAGE
% MIOut MI(Matrixin, class)
%
% INPUTS
% data: double array of discrete integer (l:n) values, cases in rows
% andvariables in columns.
% class: double (col) vector, values l:c representing class of each
% case. Number of values c can be different than n in the data.
%
% OUTPUTS
% MIOut: double (row) vector whose entries are the Mutual informatio
% between each corresponding column of Matrixin and the class.
%
% CALLED FUNCTIONS
% None.
%

% Intialize and Data Check check arguments
if nargin-=2

end

disp('wrong number of input arguments?
disp ('need (data_array, class) '}
disp(' '}
disp('Type "doc MI" for more info'}

%class and Matrixin must have the same number of rows
[rows cols]=size(Matrixin};

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if size(class,2)==rows
class=transpose(class);

elseif size(class,1)-=rows
disp('Dimension mismatch in rows of MI arays')
disp('Input arrays must have the same number of rows'
return

end %row dimension check

% States must be integer values, typically 1 to n. If so, record n.
% Similarly, find out the number of states of the class variable.
if sum(any(Matrixirrround(Matrixin)))

disp('Matrix in should be integers 1 to nl
return

else
n=max(size(unique(Matrixin)));% Number of data states
c=max(size(unique(class))) fo Number of class states

end % check if integer

% Variable Prep
Matrixin=int8 (Matrixin) ; %optional
class=int8(class); %optional
Pcv = zeros(c,n,cols);

% Compute probability tables. P_ij is a matrix whose entries are
% Prob(Variable l=state i and Variable 2= state j). Others are similar.

if C==1 %trap for errors in the case where allclasses are the same
Pc = 1;

else

end

% Create a 3-D array with c rows, each row filled with P(C=ci)
Pc = repmat((hist(class,1:c)/rows)', [l,n,cols]);

%Create a 2-D array where (j,k) is P(Vk=vj). Replicate it to a third
% dimension to prepare for multiplication with the above.
Pv =repmat(reshape (hist(Matrixin,1:n)/rows, [l,n,cols]), [c,l,l]) ;

% Now multiply these together, The result is a c by n by cols matrix whose
% (i,j,k) entry is P(C=ci)*P(Vk=vj) for each value of class ci and dro vj.
PCPV= PC. *Pv;

%Now we need a similar sized array with the (i,j,k) entry equal to P(C=ci
%and Vk=vj) -- the joint probability.
for classstate=l:c

Pcv(classstate, :, :) = hist(Matrixin(class==classstate, :),l:n)/rows;
end

% Now we can compute tre mutual info using
%
% MI(C=i;Vk=j) =sum i (sum j (Pcv(i,j,k) log [Pcv(i,j,k)/PcPv(i,j,k)]))
%
miterms=Pcv.*(log2(Pcv)-log2(PcPv));% The term inside the log above ...
miterms(isnan(miterms))=O;% with all the 0 log 0 entries removed

% Do the double sunmation and squeeze the unused dimensions
MIOut = squeeze(sum(sum(miterms,l),2)) ';

end

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Code for Creating Generated Data

The code that follows takes a real data set and creates a generated data set that models the

parameters of the real data, and is suitable for input to the classifier code.

Contents

• Find baseline values for all peaks
• Build randomized peaks from baseline values
• Designate disease class, separate subgroups
• Build diagnostic features
• Replicate and de-normalize cases

function [GenData, A,B] = CreateGenData (LeukData)
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009.
% This function creates a generated data set with parametes modeled from
% the 2004 Leukemia data set.
%
% INPUTS
% LeukData: Data repository structure with fields:
% Intensities: Array of intensity values of size
% #cases x #variables
% Class: Vector of length "#cases", with discrete arlues
% identifying class of each case (may be integer)
% ID: Patient ID array of length #cases, with one or more cols
% MZ: Vector of length "#variables" holding labels for variables
%
% OUTPUTS
% GenData : Data structure exacfi.y like "LeukData"
% A,B : The subgroups (class 1,2) of the Intensities matrix
Find baseline values for all peaks
GenData = LeukData;
int=GenData.Intensities;
intN=int(GenData.Class==l, :); clearint;
intN(intN<l)=l;
intN(:,200)=intN(:,l48); %add an extra variable, copying a peak from Leuk
GenData.MZ(200)=GenData.MZ(l99)+100;% Fill in an artificial m/z
mu=mean (intN) ;
sig=std (intN) ;
CV=Sig./mu;
cv(cv>.2)=.2; %from data
sig=cv. *mu; clear cv;
Build randomized peaks from baseline values

A set of spectra, with the number of cases approximating the number of unique patient
identification numbers in the Leukemia data, is generated via a draw from a N (mu,sigma) (normal)
distribution for each variable individually. mu is the value of the average spectrum at that peak
position, sigma is estimated from the Leukemia data set population. At this point there should be
no real distinction between any variables.

for i=l:l50

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Genint (i,:) =random('normal ',mu, sig);
end
clear i mu sig;

Designate disease class, separate subgroups

One half of the population is designated to be in the disease class. A class vector representing this
choice is created and attached to the data.

class(1:75)=1;
class(76:150)=2;

Build diagnostic features

One feature (labeled 200) is chosen as "highly diagnostic" and the mean values of the two
subpopulations (normal and disease) are separated by at two times the population's average
standard deviation. Specifically, the disease cases are redrawn from N(mu+3sig,sig).

mu=mean(Genint);
sig=.2*mu(200);
v200(1:75)=normrnd(mu(200) ,sig, 75,1);
v200(76:150)=normrnd(mu(200)+2*sig,sig, 75,1); %Note mean is mu+2sigma
v200=v200';figure();bar(v200);
Genint(:,200)=v200;
clear mu sig

% A random fraction (about a tenth) of the total value of this
% feature is placed into each of four adjacent features (labeled 195199) .
% In this manner, five diagnostic features are created, correlated to the
% parent feature. This procedure mimics the measurement of
% adducts or modifications in the real data set, wherein slightly modified
% molecules show up as a peak separate from the original.
v196to9fact=(rand(150,4)*.04)+.08;% 8 to 12%
for i=1:4

v196to9add(:,i)=v200.*v196to9fact(:,1);%#ok<*AGROW>
end
Genint(:,196:199)=Genint(:,196:199)+v196to9add;

% Another small fraction of the value of the key peak is moved into
% a feature some distance away in the list (labeled 100), representing a
% multiply-charged ion (m/2z) . This is repeated to a different feature
% (labeld 99) for one of the adducts.
v99to100fac=(rand(150,2)*.1)+.1;
v99to100add=Genint(:,199:200) .*v99to100fac;
Genint(:,99:100)=Genint(:,99:100)+v99to100add;
clear v99to100add v99to100fac

% Another diagnostic feature (1.5 sigma separation) is created but
%not added to the feature list. Instead, a random amamt of the total
% value of that feature (itself chosen from a normal distribution) is
% placed in two nofradjacent features (labeled 50 and 150). This
% represents the breaking apart of a biomarker protein, whose mass is too
% great to be detected, into ~veral fragment molecules that are in the
% range of measurement.
mu=mean(Genint(:,50));
sig=.2*mu;
v201(1:75)=normrnd(mu,sig, 75,1);
v201(76:150)=normrnd(mu+1.5*sig,sig, 75,1);

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v201=v201';
fragfac1=(rand(150,1))*.4;
fragfac2=1-fragfac1;
v50add=v201. *frag:fac1;
v150add=v201.*fragfac2;
Genint(:,50)=Genint(:,50)+v50add;
Genint(:,150)=Genint(:,50)+v150add;
clear fragfac1 fragfac2 mu sig v150add v50add v201

Two more features (labeled 1 and 2) are selected as "moderately diagnostic" and the values chosen
from two normal distributions whose means are separated by about two standard deviations of
either group. Specifically, the disease cases are redrawn from N(mu+l.Ssig,sig). One of these two
features has a portion of the other feature's value added to it to represent an unsuccessful
deconvolution of two peaks that are so close together the peak value of one is "riding up" on the
tail of another. Two mildly diagnostic features (3 and 4) are created without this effect.

for i=1:2
mu=mean(Genint(:,i));
sig=.2*mu;
Genint(1:75,i)=normrnd(mu,sig, 75,1);
Genint(76:150,i)=normrnd(mu+1.5*sig,sig, 75,1);

end
shoulder=rand(150,1)*.1+.1;% 10-20%
Genint(:,1)=Genint(:,1)+shoulder.*Genint(:,2);
for i=3:4

mu=mean(Genint(:,i));
sig=.2*mu;
Genint(1:75,i)=normrnd(mu,sig, 75,1);
Genint(76:150,i)=normrnd(mu+1*sig,sig, 75,1);

end
clear i mu sig shoulder

Replicate and de-normalize cases

The cases are replicated three times (the original of each case is discarded) by multiplying each
value by normalization factor. For a single data vector X a factor f is flrst selected from -U(O.S,
2.0) to replicate the range of total ion current normalization factors found in the Leukemia data.

for i=1:150;
for j=1:3

casenum=(i-1)*3+j;
% thiscase=Genint(i, :) ;

basefactor = rand*1.5+.5;
% factorvec=rand(l,200)*.1+basefactor;

Finint(casenum, :)=Genint(i, :)*basefactor;
FinCl(casenum)=class(i);
FiniD(casenum,1)=i; %patient ID
FiniD(casenum,2)=j; %replicate number

end
end % de-normalization
figure();imagesc(log(Genint));
GenData.Intensities=Finint;
GenData.ID=FiniD;
GenData.Class=FinCl';
Int=GenData.Intensities;
A=Int(1:225, :);

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B=Int(226:450, :) ;clear Int;
end %of CreateGenData function

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C: RESULTS

This section lists the detailed results for the three data sets under repeated

application of the naive Bayesian classifier.

Generated Data

The error rates for the forward selection of the generated data features are listed

below. Each trial is a column listing the error rate resulting from a feature set size

as listed in the leftmost column.

Size Trial1 Trial2 Trial3 Trial4 TrialS Trial6 Trial7 TrialS Trial9 Trial10
1 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6%
2 12.5% 12.5% 12.4% 12.5% 12.5% 12.5% 12.5% 12.5% 12.4% 12.3%
3 9.9% 9.8% 9.9~/o 9.9% 9.7°/o 9.9% 9.9°/o 9.6% 10.0% 9.8%
4 8.1% 8.2% 8.1% 8.1% 8.3% 8.0% 8.1% 8.2% 8.1% 8.1%
5 7.6% 6.9% 7.0% 7.5% 7.1 ~lo 7.5% 7.1°/o 7.0% 7.0% 6.9%
6 6.6% 5.0% 6.1% 6.4% 5.2% 6.8% 5.1 ~/0 5.4% 5.3% 5.2%
7 5.7% 4.1% 5.4% 5.7% 4.2% 5.9% 4.0% 4.2% 4.2°/o 4.1%
8 5.0% 3.3% 4.9% 5.4% 3.5% 5.0% 3.5% 3.4% 3.5% 3.5%
9 4.1% 2.8% 4.6% 4.9% 2.9% 4.7% 2.8% 3.0% 3.1% 3.0%

10 3.3% 2.8% 4.3% 4.5% 2.6% 4.6% 2.9% 2.8% 2.8~1o 2.7%
11 2.7% 2.6% 3.8% 4.3% 2.5% 4.7% 2.6% 2.7% 2.7°/o 2.5%
12 2.3% 2.0% 3.8% 4.0% 2.4% 4.4% 2.3% 2.4% 2.6% 2.6%
13 2.1% 1.9% 3.6% 3.8% 2.0% 3.8% 2.2% 2.0% 2.5~/o 2.0%
14 1.7% 1.7% 3.5% 3.8% 1.9% 3.6% 2.1% 1.9% 2.5% 1.9%
15 1.6% 1.7% 3.6% 3.0% 1.9% 3.4% 2.2% 1.9% 2.3% 1.9%
16 1.5% 1.5% 3.5% 2.5% 2.0% 3.5% 2.1% 1.8% 2.1% 1.8%
17 1.2% 1.5% 3.4% 2.3% 1. 7~1o 3.5% 2.0% 1.8% 2.0°/o 1.7%
18 1.1% 1.4% 3.3% 2.2% 1.7% 3.5% 1.9% 1.5% 1.9°/o 1.7%
19 1.0% 1.4% 3.0°/o 2.1% 1.7% 3.6% 1.7% 1.5% 1.5% 1.6%
20 1.0% 1.2% 3.0% 2.0% 1.7% 3.6% 1.6% 1.2% 1.3°/o 1.8%

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Leukemia Data

The following table lists the first twenty features from the Leukemia data set

selected via forward selection in each of ten trials.

Size Triall Trial2 Trial3 Trial4 Trial5 Trial6 Trial7 TrialS Trial9 TriallO

1 199 199 199 199 199 199 199 199 199 199
2 198 198 198 198 198 198 198 198 198 198
3 141 141 141 141 141 193 141 141 141 141
4 43 43 43 43 122 18 80 122 43 122
5 31 122 4 4 9 93 122 9 4 9
6 90 151 18 27 102 122 193 102 122 193
7 102 76 122 44 10 151 151 10 151 151
8 122 118 151 18 5 118 116 5 76 120
9 151 27 10 142 191 71 173 105 118 41

10 68 68 74 42 109 76 119 151 55 173
11 93 109 11 3 193 11 30 193 38 27
12 104 70 158 151 151 54 5 182 179 133
13 39 62 68 193 110 48 10 136 3 99
14 169 33 171 1 68 86 68 71 144 182
15 120 193 39 10 71 128 25 48 74 186
16 3 172 193 68 4 33 104 24 68 38
17 110 158 5 171 86 44 38 70 135 25
18 167 3 53 186 118 56 3 192 193 3
19 191 115 188 30 39 158 56 39 30 188
20 38 38 179 38 101 148 27 68 168 26

The error rates associated with the selections listed above are shown in the table

below.

Size Trial1 Trial2 Trial3 Trial4 Trial5 Trial6 Trial? TrialS Trial9 Trial10

1 17.2% 17.2% 17.1% 17.2% 17.1% 17.1% 17.2% 17.2% 17.2% 17.1%
2 12.6% 12.4% 12.6% 12.6% 12.4% 12.5% 12.5% 12.5% 125% 12.4%
3 9.7% 10.0% 9.9% 9.9~/0 9.8% 10.0% 9.9% 9.8% 9.7% 10.0%
4 8.6% 8.7% 8.6% 8.6% 8.7% 8.7% 8.8% 8.7% 8.8% 8.7%
5 8.2% 8.2% 8.2% 8.1% 7.5% 7.9% 8.0% 7.6% 8.3% 7.3%
6 7.9% 7.1 °/o 7.8% 7.9% 6.6% 7.2% 7.1% 6.7% 7.8% 6.5%
7 7.6% 6.3% 7.5% 7.7% 6.0% 6.1% 6.3% 6.2% 6.7% 6.0%
8 7.3% 5.8°/o 6.3% 7.5% 6.1% 5.2% 5.6% 6.1% 5.9% 5.6%
9 6.2% 5.4% 5.7% 7.2:'/o 5.9% 5.0% 5.2:'/o 6.0% 5.6% 5.1%

10 5.8% 5.2% 5.5% 6.8% 5.9% 4.5% 4.9% 5.9% 5.4% 4.5%
11 5.4% 5.1% 5.3% 6.3% 5.8% 4.1% 4.7% 5.2% 5.4% 4.4%
12 5.3% 4.9% 5.3% 6.0% 5.4% 4.1% 4.5% 4.6% 5.0% 4.2%
13 5.1% 5.0% 5.2% 5.3% 5.0% 3.9% 4.3% 4.3% 4.9% 4.5%
14 5.1% 5.0% 5.0% 5.0% 4.7% 4.0% 4.2:'/o 4.3% 4.2:'/o 4.4%
15 4.8% 4.9% 4.8% 4.7% 4.5% 3.9% 4.1% 4.2% 4.1% 4.4%
16 4.7% 4.7% 4.7% 4.6% 4.3% 3.8% 3.9% 4.2% 3.9% 4.3%
17 4.5% 4.5% 4.5% 4.6% 4.3% 3.9% 4.1% 4.2:'/o 3.9% 4.0%
18 4.3% 4.5% 4.4% 4.3% 4.3% 3.7% 4.0% 4.3% 3.7% 3.8%
19 4.2:'/o 4.4% 4.3% 4.4% 4.1% 3.8% 3.6% 4.3% 3.6°/o 3.4%
20 4.0% 4.1% 4.1% 4.3% 4.1% 3.7% 3.4% 4.3% 3.5% 3.4%

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PCAData

The next table gives the first thirty features selected from the PCA data set in each

of ten trials.

Size Triall Trial 2 Trial3 Trial4 TrialS Trial6 Trial 7 TrialS Trial9 Trial10
1 71 71 71 71 71 71 71 71 71 71
2 1 1 1 1 1 1 1 1 1 1
3 9 72 77 9 77 77 77 9 77 77
4 23 77 37 23 37 37 37 23 37 37
5 99 37 75 99 75 75 75 73 75 75
6 38 25 65 73 83 65 84 77 84 25
7 73 75 19 38 25 83 65 91 25 83
8 77 84 84 80 6 81 81 66 66 66
9 4 38 38 17 66 19 68 38 19 91

10 19 81 66 58 38 66 19 27 85 81
11 57 64 25 25 9 25 38 48 95 19
12 49 6 2 77 57 6 58 6 11 9
13 84 9 11 91 91 9 6 62 9 58
14 78 57 52 84 84 38 46 75 38 38
15 54 3 72 78 7 11 9 20 58 20
16 80 52 6 6 58 57 57 41 6 64
17 6 86 78 3 81 3 17 7 46 6
18 66 19 3 20 78 2 3 25 73 52
19 58 11 5 33 20 72 78 83 80 86
20 91 78 99 57 46 91 90 47 83 90
21 25 74 81 56 97 14 69 81 23 74
22 74 21 20 8 19 80 25 11 31 62
23 83 20 57 31 23 64 83 5 8 47
24 75 98 12 75 73 52 47 37 7 89
25 20 79 83 10 5 82 63 58 90 78
26 10 17 21 64 17 29 5 31 29 21
27 60 43 17 81 45 16 74 65 99 GO
28 17 58 80 54 68 7 54 84 43 11
29 90 48 93 4 13 31 12 33 17 17
30 81 29 31 37 3 73 20 57 91 41

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The fnal table lists the error rate associated with the selections listed above.

Size
1
2
3
4

5
6
7
8
9

10
11
12

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30

Trial1
38%
37%
37%
36%
35%
34%
32%
32%
31%
30%
30%
30%
30%
30%
30%
30%
30%
30%
29%
29%
29%
29%
29%
29%
28%
28%
28%
29%
29%
29%

Trial2
38%
37%
37%
38%
35%
34%
33%
32%
32%
31%
31%
30%
29%
28%
28%
28%
28%
29%
28%
29%
29%
29%
29%
29%
30%
30%
30%
30%
30%
30%

Tria13
38%
37%
37%
35%
34%
33%
33%
32%
31%
31%
30%
30%
30%
30%
31%
31%
30%
30%
30%
30%
30%
30%
30%
30%
30%
31%
30%
31%
31%
31%

Trial4
38%
37%
37%
36%
35%
34%
33%
32%
32%
32%
31%
31%
30%
30%
29%
29%
28%
28%
29%
29%
29%
29%
30%
30%
30%
30%
29%
30%
30%
30%

TrialS
38%
37%
37%
35%
34%
33%
32%
32%
31%
30%
30%
29%
28%
29%
29%
29%
28%
28%
28%
28%
28%
28%
29%
28%
28%
28%
28%
28%
29%
29%

178

Trial6
38%
37%
37%
34%
34%
33%
33%
31%
31%
31%
30%
30%
30%
29%
29%
29%
29%
30%
30%
30%
30%
30%
30%
30%
30%
30%
31%
31%
31%
31%

Trial?
38%
38%
37%
35%
34%
34%
32%
32%
31%
30%
31%
30%
30%
30%
29%
29%
29%
29%
29%
29%
30%
30%
30%
30%
30%
30%
30%
31%
31%
31%

TrialS
38%
37%
37%
36%
35%
33%
32%
31%
30%
30%
30%
30%
29%
29%
29%
29%
29%
28%
28%
28%
29%
29%
30%
30%
30%
30%
30%
30%
30%
30%

Trial9
38%
37%
37%
35%
34%
33%
32%
31%
31%
30%
30%
30%
31%
31%
31%
31%
30%
30%
30%
30%
29%
28%
28%
28%
28%
28%
28%
29%
29%
29%

Trial10
38%
37%
37%
34%
34%
34%
32%
31%
31%
30%
30%
30%
29%
29%
29%
28%
28%
28%
28%
29%
29%
29%
30%
30%
30%
30%
30%
31%
31%
31%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INDEX

Adducts and modifications
combination into metavariables, 92

Adjacency matrix, 82
Approximate searches, 50
Background Subtraction, 29
Bayes' Theorem

description, equation, 13
example, 15
prior, 15, 40

Bayesian network
algorithm, 7 6
and causality, 4 7
definition, 42

Bayesian network structures
diverging (inverted V) connection, 45
isolated node, 46
number of possible DAGs, 49
serial connection, 44
triply connected structure, 7 6
V connection, 45

Bias avoidance, 1 7
Binning, bin. See Discretization
Biomarkers, 4
Classifier

construction, 34
deterministic vs. probabilistic, 35

Conditional probabilities, 8
Cross-validation

general, 56
leave one out method, 57
methods, 57
n-fold, 58, 62
stratification, 59

Deconvolution, 29
Directed acyclic graph

ancestors and descendants, 43
DAG,42
encoding joint probability distributions, 44
example, 42
parent and child, 43
representing a probability distribution, 43

Discretization, 55, 83
boundary optimization, 86
naive, 83
optimized, 83

Entropy
conditional, 10
definition, 9
equation, 10
information vs. thermodynamic, 9
joint entropy, 10
maximum and minimum, 10

179

Shannon,9
Error rate

cross-validated, 58
Feature selection

backward elimination, 37, 64
definition, 34
filter and wrapper techniques, 36
forward selection, 37, 64, 97
pseudo-code, 3 7

Independence
condition, 40
problem caused by, 41

Instantiation, 45
Instrument function, 53
Marginalization, 14
Markov blanket, 51, 7 5
Mass spectrometry, 1
Metavariables, 91
Multiply charged ion, 48
Mutual information, 11

as a function of entropy, 12
between variables and the class, 54
conditional, 13
equation, 11
maximum and minimum, 12
threshold, 55, 82
threshold factor, 82
used for structure learning, 79

Naive Bayesian classifier, 38, 60
Normalization

by total ion current, 31
Parameter learning, 51

use of maximum likelihood, 52
Peaks, 2
Probability

conditional, 7
Probability distribution function (PDF), 8
Probability tables, 51, 77, 93
Product Rule, 8
Quality control, 18
Replicates, 19, 20, 33

replicate averaging, 29
Satellite. See Multiply charged ion
Structure learning, 49

approaches, 77
classification tree, 78
first level, 83
maximum weight spanning tree, 78
parent-child identification, 88
triply-connected structures, 87

Sum Rule, 8
Training set, 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GLOSSARY

Adjacency matrix- A square matrix of logical (true of false) values. The entry at
the row i and column j position represents the truth value of the statement "in the
Bayesian network represented by this adjacency matrix, there is a directed arc
between node i and node f'

Cross-validated error rate -The error rate that is found by first classifying a sub­
population based on parameters derived from the remainder of the population,
repeating this process until all samples in the total population have been classified,
then comparing each sample's predicted class to its known class.

Deterministic Classifier -A classifier that assigns a case to a specific class, rather
than assigning the probability of being in a class.

False Positive/False Negative - A classifier error where a case is
deterministically labeled with the wrong class. In this document, a false positive
refers to a classification that a disease is present, when the clinical diagnosis was
that a disease was not present. A false negative refers to a classification that the
case was normal, when the clinical diagnosis was that a disease was present.

Instantiation - A node in a Bayesian network is instantiated when its value
becomes known. This knowledge is propagated throughout the network, and the
probability tables of nodes whose values are unknown are adjusted.

N alve binning - Discretizing data based on parameters derived from the entire
population. For example, a continuous variable can be discretized by the test b=O
if x>f-L, b=1 otherwise, where xis the continuous value, b is the discrete value, and
fl. is the population mean.

Probabilistic Classifier- a classifier whose output is the probability (from 0 to 1)
that the case being classified is one of a set of possible class outcomes.

QC Spectra- Set of spectra created from a mixed pool of blood sera from many
people, then sampled many times. Variations in the results are assumed to
represent the variability of the preparation and measurement processes, rather
than the population.

Replicates - A blood serum sample from a single patient is divided into several
samples and the entire process of chemical preparation, mass spectrometry, and
signal processing is completed independently on each. The resulting data is called a
replicate and may be treated independently, or averaged with other replicates to
reduce experimental variation.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Markov blanket - In a Bayesian network, the Markov blanket of a node N is the
minimum set of other nodes S such that if all the nodes in S are instantiated, the
probability of N is fixed, regardless of the values of nodes not in S. Once the
Markov blanket is determined, additional structures are irrelevant to N, and can be
ignored if N is the only node of interest.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WORKS CITED

[1] National Cancer Institute. The Earfy Detection Research Network Fourth Report.
Bethesda, MD : National Institute of Health, 2008.

[2] Malyarenko, Dariya. Personal Interview. June 2008.

[3] Rifai, Nader and Gillette, M. A. Carr, Steven. Protein biomarker discovery and
valzdation: the long and uncertain path to clinical utzli!J. 24, 2006, Nature
Biotechnology, pp. 971-983.

[4] Jaynes, E. T. Probabili!J Theory: the logic if science. Cambridge : University Press,
2003. pp. 24-34. 0-521-59271-2.

[5] Shannon, Claude E. A Mathematical Theory if Communication. October, s.l. : Bell
Systems Technical Journal, 1948, Vol. 27.

[6] Cover, Thomas M. and Thomas, Joy A. Elements if Information Theory. s.l.:
John Wiley & Sons, Inc, 1991. 0-471-06259-6.

[7] Baggerly, Keith A., Coombes, Kevin R. and Morris, Jeffrey S. Bias,
Randomization, and Ovarian Proteomic Data: A Repfy to "Producers and Consumers". 1,
2002, Cancer Informatics, Vol. 1.

[8] Semmes, 0. J., et al. Discrete protein signatures discriminate between adult T-ee!!
leukemia and HTLV-1-associated myelopatf?y. 19, 2005, Leukemia.

[9] Definition of Smoldering Leukemia. Dictionary if Cancer Terms. [Online]
National Cancer Institute. [Cited: September 3, 2008.]
http:/ /www.cancer.gov /Templates/ db_alpha.aspx?CdriD=46583.

[10] Myelodysplastic syndromes. Disease !'!formation. [Online] Leukaemia Research
Foundation. [Cited: September 3, 2008.]
http:/ /www.lr£org.uk/ en/1/infdispatmye.html.

[11] Gatlin-Bunai, Christine L., et al. Optimization if MALDI-TOF MS Detection
for Enhanced Sensitiviry if Affiniry-Captured Proteins Spanning a 100 kDa Mass Range.
6, 2007,Journal of Proteome Research, pp. 4517-4524.

[12] Rasmussen, G. T. and Isenhour, T. L. The Evaluation if Mass Spectral Search
Algorithms. 3, 1979,]. Chern. Inf. Comput. Sci., Vol. 19, pp. 179-186.

[13] Weaver, Dennis. Anafysis if QC spectra correlations. 2008. Internal Report.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] Oh, Jung Hun, et al. Diagnosis if Earjy Relapse in Ovarian Cancer Using Serum
Proteomic Profiling. 2, 2005, Genome Informatics, Vol. 16.

[15] Miller, AlanJ. Subset Selection in Regression. 2d ed. Boca Raton, FL: CRC Press,
2002. pp. 39-45. ISBN 1-58488-171-2.

[16] Langley, Pat and Sage, Stephanie. Induction if Selective Bqyesian Classifiers.
Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence.Seatde, WA, 1994.

[17] Jensen, Finn V. and Nielson, Thomas D. Bqyesian Networks and Decision
Graphs. New York, NY: Springer, 2007. ISBN 0-387-68281-3.

[18] Pearl, Judea. Causality. Cambridge, UK: Cambridge University Press, 2000.
ISBN 0-521-77362-8.

[19] Robinson, R. W. Counting unlabled acyclic digraphs. [ed.] C. H. C. Litde.
Combinatorial Mathematics V. Berlin: Springer, 1977, Vol. 622, pp. 28-43.

[20] Heckerman, David. A Tutorial on Learning With Bqyesian Networks. Redmond
Washington: Microsoft Research, 1995. MSR-TR-95-06.

[21] Marchetelli, Robert. Anajysis if Quality Control Data. Department of Physics,
College of William and Mary. Williamsburg, VA: s.n., 2005. Internal Report.

[22] Elisseeff, M. and Ponti, A. Leave-one-out error and stability if learning algorithms
with applications. [ed.] J. Suykens. s.l. :lOS Press, 2002, NATO-ASI Series on
Learning Theory and Practice.

[23] Kohavi, Ron. A Stu4J if Cross Validation and Bootstrap for Accurary Estimation
and Model Selection. Stanford, 1995.

[24] Chow, C. and Liu, C. Approximating discrete probability disttibutions with
dependence trees. 1968, IEEE Transactions on Information Theory, Vol. 14, pp.
462-467.

[25] LeRay, Phillippe and Francois, Olivier. BNT Structure Learning Package:
Documentation and Experiments. Rouen, France : Laboratoire PSI - Universite et
INSA de Rouen, 2004.

[26] Cheng, Jie, et al. Learning Bqyesian networks from data: An information-theory based
approach. 2002, Artificial Intelligence, Vol. 137.

[27] Chickering, David Maxwell and Meek, Christopher. Monotone DAG
Faitlfulness: A Bad Assumption. Microsoft Research. Redmond, WA : Microsoft
Corporation, 2003.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] Mann, Mathias, Hendrickson, Ronald C. and Pandey, Akhilesh. Ana!Jsis
if Protiens and Proteomes f?y Mass Spectrometry. 70, 2001, Annu. Rev. Biochem., pp.
437-73.

[29] Trosset, Michael W. An Introduction to Statistical Iiference and its Applications.
Williamsburg, VA: Unpublished, 2006.

[30] Hortin, Glen L. The MALDI-TOF Mass Spectrometric View if the Plasma
Proteome and Peptidome. 52,Jul2006, Clin. Chern, pp. 1223-1237.

[31] Tolson, Jonathon and al., et. Serum protein prrifiling f?y SEWI mass spectrometry:
detection if multiple variants if serum amyloid alpha in renal cancer patients. 84, 2004,
Laboratory Investigation, pp. 854-856.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Karl Kuschner was born in northern Virginia and grew up in Melbourne, Florida.
After graduation from Eau Gallie High School in 1978, he entered the United
States Air Force Academy in Colorado Springs, Colorado. He graduated with a
Bachelor of Science in Physics and Mathematics, and was commissioned as an
officer in the United States Air Force on June 2, 1983.

He attended Undergraduate Pilot Training and eventually was stationed in
Germany as a pilot of the F4-E. Over the next eight years, he was stationed
around the world and won several decorations for valor in combat. He entered the
Graduate School of the University of Texas at Austin, Texas in August 1992.
After receiving a Master of Arts degree in Physics, he returned to the cockpit and
spent the remainder of his Air Force career as an F-4G Wild Weasel and F-15C
Eagle pilot, serving in multiple combat zones and other worldwide deployments.
He also received a Master of Science degree in National Security Studies from the
U.S. Naval War College in Newport, Rhode Island.

He retired from the Air Force in 2004 and began his graduate program in the
Department of Physics at the College of William and Mary in Williamsburg,
Virginia.

He is married to Bjork Jonasdottir and has two children.

185

	A Bayesian network approach to feature selection in mass spectrometry data
	Recommended Citation

	tmp.1539748087.pdf.ohXpm

