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ABSTRACT PAGE 

One of the key goals of current cancer research is the identification of biologic 
molecules that allow non-invasive detection of existing cancers or cancer 
precursors. One way to begin this process of biomarker discovery is by using time-of­
flight mass spectroscopy to identify proteins or other molecules in tissue or serum 
that correlate to certain cancers. However, there are many difficulties associated 
with the output of such experiments. The distribution of protein abundances in a 
population is unknown, the mass spectroscopy measurements have high variability, 
and high correlations between variables cause problems with popular methods of 
data mining. To mitigate these issues, Bayesian inductive methods, combined with 
non-model dependant information theory scoring, are used to find feature sets and 
build classifiers for mass spectroscopy data from blood serum. Such methods 
show improvement over existing measures, and naturally incorporate measurement 
uncertainties. Resulting Bayesian network models are applied to three blood serum 
data sets: one artificially generated, one from a 2004 leukemia study, and another 
from a 2007 prostate cancer study. Feature sets obtained appear to show sufficient 
stability under cross-validation to provide not only biomarker candidates but also 
families of features for further biochemical analysis. 
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CHAPTER 1: INTRODUCTION 

Background 

In early 2001, Incogen, a bioinformatics company, received funding from the 

Commonwealth of Virginia to move to Williamsburg and lead a bioinformatics 

consortium that included the College of William and Mary, among others. The 

next year, Incogen began a Small Business Innovation Research project, funded by 

the National Institute of Health. This project added Eastern Virginia Medical 

School in Norfolk, Virginia as a collaborator, and expanded the consortium's 

previous work to develop a set of computational tools for classifying biologic data, 

including data derived from mass spectrometry (MS). 

That work led to an ongomg project whose goal is to create tools for 

"computationally improved signal processing for mass spectrometry data." One of 

the steps in that project, and the focus of this work, is the development of 

methods to exploit the improved MS data to find biologically relevant information. 

Mass Spectrometry 

A mass spectrometer is an instrument that takes some sample of material, biologic 

or otherwise, and measures the relative amounts of constituent materials--ordered 

by molecular mass1-in the sample. The output, shown in Figure 1, is called a mass 

1 Actually, mass divided by net charge of the molecule; sec next section. 
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spectrum and is initially continuous2 in nature, with very low signals representing 

mass regions where nothing was found, and spike-shaped structures (called 

"peaks") representing a relatively large amount of material at a particular mass. 

The signal intensity is shown here on a logarithmic scale, but in arbitrary units. The 

horizontal axis values are the atomic weight being detected. 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 

Mass 

Figure 1: A portion of a typical mass spectrum 

One type of mass spectrometry instrument works by ionizing the molecules in a 

sample, typically by an intense laser pulse or ion collision, then accelerating the 

resulting ions through an electric potential of a few kV After the molecules have 

been accelerated to some terminal velocity v, which depends on their mass m and 

electric charge z as well as the electric potential V, they float down a field-free time 

of flight (TOF) tube and strike a detector. The energy E gained relates the electric 

potential and velocity by E=zV= Vzmtl. Low mass ions reach a higher velocity and 

hence strike the detector first; heavy ions are detected last. By measuring the 

number of detections along a time scale, then converting the time axis into mass 

per unit charge (m/ ~' a spectrum of signal intensity vs. m/ z is created. While this 

2 Insomuch as each time point has a corresponding integer number of detections, the spectrum is actually 

discrete; on the scale of the entire spectrum, it is, for all intents, continuous. 
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is not the only method of mass spectrometry, it is a common one used in the field 

of proteomics. Its ability to survey a wide range of mass values aids the search for 

important proteins, as opposed to other methods, which might search for the 

abundance of a material at a specific m/ zvalue. 

Our group has data available from two types of TOF-MS instruments: matrix­

assisted laser desorption/ionization (MALDI), and surface-enhanced laser 

desorption/ionization (SELDI), which is a special type of MALDI. 

There are several errors associated with this type of instrument. Although we 

would like the peaks to be infinitely narrow "spikes," they in fact have finite width 

due to the method of ionization and detection. In addition, the time that a specific 

molecule arrives differs slightly from trial to trial, and the intensity measured can 

vary for reasons other than true abundance variations in the sample. Another 

important error arises because of the violence of the initial ionization and the 

several ways a single molecule can show up-with charge z >1 (called multiply­

charged states), in fragments, or with small common molecules such as the 

chemical matrix attached (adducts) or detached (neutral loss). These processes 

result in peaks at different m/ z values that actually represent a single underlying 

molecule. 

Goal 

Early detection of cancer dramatically increases the long-term survival rate of 

those afflicted [1]. However, most cancers are difficult to detect early, and accurate 

3 
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analysis often requires surgery or biopsy followed by forensic pathology of the 

tissue. 

The use of mass spectroscopy to search for biological markers, or biomarkers, in 

easily obtained biologic samples would enable higher throughput and less invasive 

testing. Since cancers typically cause variations in the gene expression-and hence 

protein abundance--of affected cells, researchers hope to find traces of these over 

or under expressed (or mutated) proteins that would differentiate samples from 

those with, and those without, the disease. Blood serum (blood with cells and 

platelets removed) is one of the easiest samples to obtain, and if the protein 

markers can be found to be transported in the blood, a test for early detection 

could be designed. 

The difficult part of this task is the detection and identification of the biomarker. 

There are some 30,000 or more genes in the human genome, which express at 

least 100,000 different proteins varying across twelve orders of magnitude in 

abundance - far beyond the resolution of current instruments. In addition, the 

natural variation of protein abundance across a population is often wide, and can 

mask any variation between sub-groups, such as those with or without a disease. 

Even a single individual has a dynamic proteome; the blood serum changes 

throughout the day as food is digested and proteins are absorbed in the body­

one of our colleagues at EVMS is able to determine whether a patient has eaten 

recendy simply by the opacity of a vial of blood. 

4 
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Our group has found that one of the largest errors in the process stems from the 

chemical and physical preparation of the samples prior to the MS measurements 

[2]. We have noted, for example, coefficients of variation (CV) of 5% from a 

single robotically prepared sample that is measured multiple times, and a CV of 

30-40% from a single serum sample that is robotically prepared into multiple 

instrument samples prior to measurement. This is not a condemnation of the 

robotic process over manual preparation; in fact, the opposite is true-manual 

chemical preparation will introduce even more variation. The biochemical 

preparation steps, such as the amount of materials mixed, introduce this variability. 

To date, the problem of correcting errors associated with the biochemistry of 

sample preparation have been somewhat intractable, but our group continues to 

innovate in this area. 

Other than the preparation protocols, there are three main areas where we seek 

improvement in the current technology-more accurate and precise measurement 

of the samples by improvements in the MS instrumentation, better analysis of the 

spectra produced (via noise reduction and other signal processing), and finally, 

better methods of mining the data for the biomarkers. 

Current preparation and instrumental errors, such as those described above, make 

biomarker identification part art and part science. No single, well-accepted, and 

successful methodology for data analysis and biomarker discovery yet exists. In 

fact, 

5 
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Proteomics methods based on mass spectrometry hold special promise for 
the discovery of novel biomarkers that might form the foundation for new 
clinical blood tests, but to date their contribution to the diagnostic 
armamentarium has been disappointing [3]. 

The MS group at William and Mary is pursuing improvements in all three areas, 

but it is the last goal-improved data mining-that is the focus of this work. 

Specifically, the research described herein seeks to find molecules that are 

diagnostic of the disease state, discard those that are not, and determine the data-

derived relationships among these candidates. In addition, we want to arrange the 

selected variables into a stable classifier that is predictive when new data is 

introduced. 

6 
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CHAPTER 2: MATHEMATICAL TOOLS 

Notation 

Much of the mathematics used in this work is from the field of probability theory. 

As is common, capital letters represent statements, such as A = "the patient has 

the disease" or X = "the signal intensity is between 100 and 11 0." 

The function P(A) represents the probability that A is true, or, more informally, 

can take on one of the values A =a. A vertical bar after a capital letter, followed by 

one or more capital letters, represents conditions that are assumed to be true prior 

to the evaluation of the unknown, hence P(A I B) is read "the probability of A, 

given that B is true." This is known as a conditional probability. 

As alluded to previously, small letters denote the values of a variable represented 

by its capital letter, so that one would write "the probability that X=x is true, given 

that Y has the value y" as P(X=x I Y=y), or often P(x I y). These values typically 

represent measurements, and a set of such values {x1, x2, x3, ... , xJ is written as 

the bold x and called a case. 

A conjunction, or logical "and," is denoted by a comma, or if the meaning is clear, 

two statements joined, e.g. (A AND C) = (A,C) = (AC). A logical "or" is always 

represented by a plus sign between statements, as in (A OR B) = (A+ B). A tilde 

appearing before a capital letter represents negation, so that NOT A=~ A. 

7 
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Product and Sum Rules of Probability 

Two rules of the algebra of probability theory that we will use most often are 

termed the product rule and sum rule. More information (and a proof) can be 

found in Jaynes, 2003 [4]. They are 

P(A, B) = P(A!B)P(B) (Product Rule) 

(Sum Rule) P(A +B) = P(A) + P(B)- P(A, B). 

Probability Distributions 

(1) 

(2) 

Much of what follows relies on the concept of a probability distribution function, 

or PDF. We will use this terminology for both discrete and continuous variables 

for simplicity, understanding that for a continuous variable, P(x) means P(X is 

between x and x+dx). PDFs sum (or integrate) to unity over all values that the 

variable can take. For simplicity, we may write N(u,(J) to represent a Gaussian 

distribution with a mean of f.1 and standard deviation of (J. 

Conditional Probabilities 

Conditional probabilities represent a partitioning of the data space based on the 

value of another variable (or variables). Therefore, if A represents the statement 

"I bring an umbrella to work" and B represents "it rains that day," then P(A I B) 

and P(A I ~B) partition all the days into those with rain and those without. 

One of the problems we will encounter is that such partitioning can rapidly reduce 

the number of samples from which to derive information. Take, for example, a 

patient sample size of 100, which may be sufficient to estimate the frequency of 

8 
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values for some variable of interest A. If, however, we wish to condition on two 

different variables B and C, each of which has four discrete possibilities, then 

P(A I BC) must necessarily partition the sample space into 16 possibilities, namely 

"B=b1 and C=c1," "B=b1 and C=c2," etc. It is entirely possible that one or more of 

these groups has no samples at all-making it impossible to empirically estimate 

P(A I BC) from that data for those values of B and C. 

Information Entropy 

Information (or "Shannon") entropy H is analogous to thermodynamic entropy 

[5] in that it is a measure of the disorder in a system, and is derived from the 

possible ways that a system can be arranged while preserving its macroscopic 

attributes. In the case of information entropy, the "disorder" measurement can be 

expressed as the smallest number of bits that a large binary string can be 

compressed, while maintaining all the information it contains (maximum lossless 

compression). A string like "11111111111111" could be compressed to "15 ones," 

for example, while 011101100110000 is much more difficult to compress and thus 

has more entropy. 

The mathematical definition for entropy is derived from the exponential expansion 

coefficient H in the limit equation N=enH, where n is the number of measurements 

of a random variable, and N is the number of all possible combinations of 

measurements of length n that yield the observed distribution of outcomes, e.g. 

half zeros and half ones. For a two outcome experiment, for example, Stirling's 

approximation to the binomial probability distribution function is just such an 

9 
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exponential, with H being a function of the fraction of observed trials of one 

outcome, as well as the probability of that outcome. 

In the limit of large n, information entropy H in the discrete case is defined by 

H(X) = -I P(x) log P(x), (3) 
X 

where the summation is over the allowed values of X, and P(x) represents the 

frequency in which that value appears in the system [6]. The base of the logarithm 

is arbitrary, but is typically taken to be base 2 by those working in information 

theory, and the resulting units are called "bits." Extending the definition to the 

joint entropy H(X,Y) yields 

H(X, Y) =-I P(x,y) logP(x,y). (4) 
x,y 

Entropy has a maximum value when the probabilities of all possible values of the 

variable (or variables) are equal. A proof is in Appendix A: Mathematics. The 

minimum entropy of zero occurs when a variable always results in a single value, 

so that P(x) = 0 or 1 and all terms in equation (3) vanish.3 

Conditional entropy, which is the entropy remaining in one variable given the state 

of another, is written 

H(YIX) =-I P(x,y) logP(y!x). (5) 
x,y 

3 The value of O·log(O) is 0, as can be shown by taking the limit of x·log(x) as x goes to 0. 

10 
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Mutual Information and Conditional Mutual Information 

One novel element of the work described here is that, rather than use more 

traditional tests for the correlation of variables, we use the information theory 

concept of mutual information, or MI. Mutual information is a measure of the 

information gained about one variable when another is known. 

MI is strictly non-negative, and does not depend on any specific type of 

correlation, as would a linear correlation coefficient. The data we will use has no 

known underlying natural distribution (such as Gaussian), and many traditional 

statistical tests may fail in this environment. We will therefore find it necessary to 

empirically model the distributions based on "training data." The ability to use MI 

as a model-free test for independence is therefore crucial, since it does not require 

assumptions about the underlying distributions. 

Mutual information has been used since shortly after the introduction of entropy 

by Claude Shannon [5] in the middle of the last century4 and has clear probabilistic 

meaning. Its model-free nature and ease of computation with empirical data make 

it a natural method for discovering associations between variables. 

Mutual information is defined by 

~ P(x,y) 
MI(X; Y) = L P(x,y) log2 P(x)P(y) (6) 

x,y 

4 Shannon's classic 1948 paper defines all the terms in the entropy form of the mutual information equation 
below, but did not explicitly address the concept of mutual information. This paper led to the pseudonym 
"Shannon Entropy." 

11 
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where the sum is over all possible values of the variables X andY In the case of a 

continuous variable, the summation is replaced by a double integral over dx and t!J. 

In terms of entropy, the mutual information is 

MI(X; Y) = H(X) + H(Y)- H(X, Y) 
= H(Y)- H(YIX), 

(7) 

as can be shown by expanding the logarithm function in equation (6) above and 

applying the definitions of entropy. The minimum value of MI is zero and occurs 

when X andY are independent variables. In that case, P(X,Y) = P(X)·P(Y),5 the 

logarithm vanishes for all terms in equation (6), and the MI equals zero. This can 

also be seen by examining the joint entropy H(X,Y); in the case where X andY are 

independent, equation (7) becomes 

H(X, Y) = - L P(x)P(y) log2 P(x)P(y) 
x,y 

~- rh P(x)P(y) log2 P(x) + h P(x)P(y) log2 P(y) l 
~- r~ P(x) log2 P(x) + ~ P(y) log2 P(y) l (8) 

= H(X) + H(Y). 

Here the second step relies on the property of products inside the logarithm, the 

third step on the fact that the sum of P(X=x) across all xis one, and the final step 

applies the definition of entropy. Substituting this result into the first line of 

equation (7) shows that the MI vanishes for independent variables. 

5 This is the defmition of independence between two variables. 

12 
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The maxunum value of MI occurs when the result of sampling X always 

determines the result of sampling Y (this assumes X has the same, or more, 

possible values than does Y; if not, swap the variables). This maximum value is 

equal to the entropy of the variable with fewer possible values, and, at a maximum 

state of entropy, is the logarithm of the number of those values. See Appendix A: 

Mathematics for a proof. 

Another useful way to think about mutual information is as a decrease in 

information entropy between that of two sets of outcomes taken separately, and 

the set of outcomes taken together, as can be seen in the first line of equation (7). 

Conditional Mutual Information (CMI) is the mutual information between two 

variables when conditioned on a third. Data is grouped using each of the possible 

values of the conditioning variable, and the mutual information is calculated 

between the other two. Explicitly, 

~ P(x,ylz) 
MI(X; YIZ) = L P(x,y,z) log2 P(xlz)P(ylz). (9) 

x,y,z 

Bayes' Theorem 

Bayes' Theorem was used extensively in the development of the classifier and 

associated algorithms described here. The key feature of Bayes' Theorem is that it 

allows one to invert the statements inside a conditional probability, e.g. to go from 

P(A I B) to P(B I A). This is an important step in many analyses, and one that is 

often not well addressed-especially in traditional statistics. A Student's t-test, for 

example, answers the question "what is the chance that we would observe these 

13 
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two sets of data, given that they came from the same underlying distribution?" 

The real question often being posed, however, is "what is the chance there was a 

single underlying distribution, given these two sets of observed data?" This latter 

question is answered by applying the t-test, then using Bayes' Theorem to invert 

the resulting P(data I distn"bution) into the required P(distribution I data). 

In our experiment, we examine groups of patient samples of known disease state 

to empirically estimate the distribution for "the probability that we would get this 

set of data from a serum sample, given that a patient has this disease, and the 

models we have developed from others with the disease." The question we really 

want to answer (for a classifier) is, of course, "what is the probability that a patient 

has a disease given this set of data derived from their blood serum and the model 

we have developed from previous cases?" Bayes' Theorem allows us to make this 

logical transition. In its most common form, it is 

(Bayes' Theorem) ( I 
_ P(AIB)P(B) 

p B A)- P(A) (10) 

which is easily derived by using the product rule (1) twice-swapping A and B-

and solving for the form above. The term in the denominator, P(A), is a 

normalization constant which can be calculated by marginalization (summing over 

all possible values) of the joint distribution, 

(Marginalization) P(A) = I P(A, B) (11) 
all B 
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which is equivalent to summing terms like the numerator in equation (9) over all 

possible values of B instead of a particular one. 

The term P(B) in the numerator is called a pn·or. It must be assigned by the 

researcher as the probability of B before anything is known about A; in the case of 

the disease example above, it would be the original probability that a sample comes 

from a patient with the target disease. This would be the researcher's best estimate 

based on the origin of the sample (e.g. from the general population, or someone 

with symptoms) but without consideration of the current data. As an illustration 

of the importance of this term, consider the following (oft-misunderstood) 

example: 

As a requirement for employment, you are required to be tested for a rare 

(one in a million) but deadly disease. The test for this disease has a false 

positive (see Glossary) rate of 1%, and a false negative rate of 1% as well. You 

test positive for the disease. Bayes' Theorem should give you some relief; 

since, out of 100 million people tested, it is far more likely that you are one 

of the million people that test positive falsely, than one of the 99 out of 

100 million that have the disease and test positive correctly. It is the prior 

probability that you have the disease-one in a million-that creates this 

counter-intuitive result. 

To illustrate this mathematically, take the ratio of the probability you have the 

disease to the probability you do not have the disease, given that you have gotten a 
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positive test for it. Those values are P(B="have disease," given A= "test positive") 

to P(-B="no disease," given A= "test positive"). 

Applying Bayes' Theorem (1 0) to both of the terms in the ratio, then cancelling 

the normalization factor P(A) that appears in both, yields the ratio 

P(BIA) 

P(-BIA) 

P(AIB)P(B) 

P(AI-B)P( -B) 

(. 99)(10-6 ) 1 ______ ::::::: __ _ 
(. 01)(.999999) - 10,000' 

Therefore, you are 10,000 times more likely to have gotten a false positive than to 

have the disease. 

These mathematical tools will be used in the development of the algorithms 

described later. First, however, it is important to understand the data for which 

those algorithms are designed. 
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CHAPTER 3: DATA SETS AND SIGNAL PROCESSING 

One of the first steps in the process of biomarker discovery is the collection of 

the biologic samples that will provide the data. The two real data sets discussed in 

this work originated as blood samples taken from patients diagnosed both with, 

and without, a specific disease. A third data set, consisting of data computationally 

generated to mimic the known qualities of the real data, serves as a quality control 

and testing experiment. 

The samples were prepared by technicians at Eastern Virginia Medical School in 

Norfolk, Virginia. Specifics of the sample preparation appear later in the text, 

however, the basic process includes: 

• Sample collection and labeling 

• Sample preparation, including randomization 

• Mass spectrometry 

• Signal processing 

Following the collection of the raw machine data, the signal processing, which is 

described in detail on page 28, was accomplished. After those two steps, the 

classification and feature selection methods described in Chapter 4 were applied. 

Sample Collection and Bias Avoidance 

As has been extensively discussed in the literature recendy, the collection and 

preparation processes, if not done correcdy, can introduce biases that make 

accurate data analysis difficult or even impossible. Baggerly [7] argued that a study 

claiming to have discovered a biomarker for ovarian cancer was fatally flawed 
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because samples were ordered according to disease state during measurement. 

Time-dependant instrument errors then introduced artifacts in the resulting data 

that made any conclusions inherently suspect. 

Even as simple of an error as taking samples from different disease groups at 

different times of the day could effectively ruin a study, since protein expression 

may be dynamic, as was noted previously. Sample collection is by far the most 

difficult and costly part of the process, and those doing the data analysis typically 

have no control over this phase. 

Similarly, the creation of data from the samples must be as unbiased as possible. 

Data from the two real sample sets described in this work were created by 

Semmes, et al., of Eastern Virginia Medical School (EVMS) in Norfolk, Virginia 

[8]. Special care was taken by that group to randomize the processing of the 

samples to avoid the problems previously described. Also, intermixed with the 

primary samples were samples taken from a single serum pool (mixture) of a large 

group of nominally healthy people, which acted as a surrogate for a population 

average. 

This "Quality Control;' or QC, pool allows the measurements to be calibrated in 

several ways. Since the QC samples are nominally identical, any variations noted 

must arise from the data creation process of preparation and MS measurement. 

We have noted (and corrected for) variations due to the position of the sample on 
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the plate, or "chip," that is inserted into the machine, and the number of samples 

run since the beginning of the experiment. 

Leukemia Data 

The samples producing the first real data set were provided by the National 

Institute of Health to Eastern Virginia Medical School, and kept frozen until 

processed through a SELDI instrument in 2004 [8]. Patients were diagnosed at the 

time of the original specimen collection by World Health Organization guidelines 

as to whether or not they had leukemia, a cancer of the blood. 

The working data set includes 145 different patients, of which 78 were classified 

during the clinical portion as "normal," and 67 with various stages or forms of 

leukemia. 6 The samples from the patients were processed multiple times, resulting 

in 425 cases for the study. Multiple cases from the same sample are called replicates. 

Figure 2 is a heat map of the Leukemia data set. Each row of pixels represents the 

abundances for all the molecules (or peaks) found in a single spectrum (or case); 

each column is the abundance of a specific molecule for all cases. The color of the 

(iJ) pixel reflects the abundance of peak i in case ;~ where i runs along the 

horizontal axis. When sorted into classes, the heat map may be useful for searching 

for diagnostic portions of the spectra by eye. The dotted line represents the 

division between the normal class, which is the top half of the cases, and the 

6 We included acute and chronic forms of lymphoma and myelogenous leukemia, as well as adult T-cell 

leukemia and other non-Hodgkin's lymphoma. There are a number of other patients included in the data set 
with other stages or types of leukemia, however, these subsets were not examined for this study. 
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disease class. It should be possible to see the class difference in the rightmost 

variables (disease cases are slightly brighter) that we will later find to be diagnostic. 
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Figure 2: Leukemia data 

One of the samples in the "leukemia" class was rejected after it was found that the 

database had a transcription error. That sample's original diagnosis was not 

compatible with the "leukemia" classification. Another sample, diagnosed as 

"smoldering leukemia;' was rejected since that condition is considered a 

"preleukemia" [9] and only develops into leukemia in a minority of cases [1 0]. One 

of the four replicates of another sample was found to differ greatl/ from the 

other three, and was also removed. Figure 3 shows the mislabeled replicate 1 in 

blue, superimposed on the correct replicates (2-4) of the same ID number. 

7 We examined linear correlations between replicates of each sample. Those which had low correlation with 
other available replicates were examined manually. All but one was retained, as the low correlations 
appeared to be due to signal variations. 'lbe one rejected appeared to be completely unrelated to the three 
other replicates with the same sample ID number. 
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Therefore, the analysis was done with 65 total cases in the disease class, and 417 

total replicates, with m / z up to 13 kDa. 

4500 Replicate 1 
--- Replicate 2 J' • 

~ 4000 . 11 I 
~ • 1: \ I> 1::,; \ 

I rl 'i- \ I 

~ I Replicate 3 1 11[ .,, ' 

'1:1§ 3500 \ -- --- Replicate 4 II ! \k11 'I' , 

\. y v v • 

~ "xl. )\ . __ ,A , ,~~~--J 
2500 

1.1 1.12 1.14 1.16 1.18 

Time index 

Figure 3: Mislabeled replicate spectra 
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4 
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During the course of the development of this methodology, others in our group 

continued to work toward more accurate identification of peak positions and their 

values. Because of this increased fidelity, we had access to four separate versions 

of the data set. The first had 48 unique m/ z positions, the second had 120, the 

third 199, and the fmal set had 209 unique variables identified. The final version is 

the one primarily referenced in this work, however, in Chapter 5: Application of 

the Naive Bayesian Classifier, the first version was used for testing. 

Generated Data 

The computationally generated data set strives to mimic as closely as possible the 

199-variable version of the Leukemia data set. The numbers of cases, including 

replicates, and number of peaks are similar. 
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In this data set, we attempt to reproduce those systematic and statistical properties 

we have found in the real data, without the several artifacts that we have no 

specific explanation for (such as certain peaks failing to appear in some replicates). 

The primary purpose of this data set is for quality control and testing of the 

algorithms. By mimicking known properties of the real data, then attempting to 

identify those properties with algorithms made for that purpose, we gain a better 

understanding of the reliability and stability of the protocols used. 

The following steps were taken to prepare the generated data: 

1. A spectrum8 with 200 peaks is created by taking the average of the non-

disease cases in the Leukemia data set. This provides a baseline for creating 

all the cases that will be used. 

2. A set of spectra, with the number of cases approximating the number of 

unique patient identification numbers in the Leukemia data, is generated 

via a draw from a N (fl., a) distribution for each variable independantly. fl. is 

the value of the average spectrum at that peak position, a is estimated 

from the Leukemia data set population. At this point there should be no 

real distinction between any of the 200 variables. 

3. One-half of the population is designated to be in the disease class. A class 

vector representing this choice is created and attached to the data. 

8 A full spectrum is not created as we do not wish to replicate the signal processing steps described later. 
Instead, the steps here are applied to the final peak list data. 
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4. One peak ~abeled 200) is chosen as "highly diagnostic" and the mean 
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values of the two subpopulations (normal and disease) are separated by 

two times the population's average standard deviation. Specifically, the 

disease cases are redrawn from N(f1+2a,a). This results in a distribution 

like the one shown in Figure 4. 

6 7 8 9 

II Class A 

II Class B 

10 11 12 13 14 15 16 17 18 

Abundance (xl0-3) 

Figure 4: Generated data distribution for highly diagnostic peak 

5. A random fraction (about a tenth) of the total value of this peak is placed 

into each of four adjacent peaks ~abeled 195-199). In this manner, five 

diagnostic peaks are created, all diagnostic of the class. This procedure 

mimics the measurement of adducts or modifications in the real data set, 

wherein slightly modified molecules show up as peaks separate from the 

original. 

6. A small fraction of the value of the key peak (200) is moved into a peak 

some distance away in the list ~beled 100), representing a multiply-
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charged ionization satellite (z =2). This 1s repeated to a different peak 

(labeled 99) for one of the adducts (199). 

7. Another moderately diagnostic9 peak is created but not added to the peak 

list. Instead, varying portions of the total value of that peak are placed in 

two non-adjacent peaks (labeled SO and 150). This represents the breaking 

apart of a biomarker protein, whose mass is too great to be detected, into 

several fragment molecules that are in the range of measurement. 

8. Two more peaks (labeled 1 and 2) are selected as "mildly diagnostic" and 

the values chosen from two normal distributions whose means are 

separated by about one standard deviation of either group. Specifically, the 

disease cases are redrawn from N (f-l +a,a). One of these two peaks has a 

portion of the other peak's value added to it to represent two peaks that 

are so close together that the peak value of one is "riding up" on the tail 

of another. See Figure 8 on page 30 for an example. 

9. The cases are replicated three times (the original of each case is discarded) 

by multiplying each value by a de-normalization factor to replicate the 

signal strength and chemical preparation effects as described on page 31. 

For a single data vector X, a factor f is first selected from ~ U (0.5, 2.0) to 

replicate the range of total ion current normalization factors found in the 

9 Difference in means is about one and a half standard deviations of the sub populations. 
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Leukemia data. The resulting distribution for the highly diagnostic peak is 

shown in Figure 5. 
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Figure 5: Distribution for highly diagnostic peak after de-normalization 

A summary of the diagnostic peaks placed in the generated data is given in Table 

1. The resulting Bayesian network is shown in Figure 39: Resulting Bt!Jesian network, 

generated data, on page 107 . 

Table 1: Diagnostic variables, generated data 

Peak 

200 

196-199 

99, 100 

1, 2 

3, 4 

50,150 

Purpose 

Highly diagnostic 

Adducts or modi-
fications of peak 200 

Correlated doubly 
charged ionization 
states of 199,200 
Diagnostic with 

correlations due to 
nuxmg 

Mildly diagnostic 

Diagnostic-but 
hidden-primary peak 

The actual data set is too large to include in this document, but a heat map is 

shown in Figure 6 below. The code for creating the generated data can be found in 

Appendix B: MATLAB Code. 
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Figure 6: Generated data 
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The data encompassing the prostate cancer (PCA) data set was created under our 

ongoing National Cancer Institute-funded project. The data is secondary to the 

primary goal of that project, which is "improved signal processing methods" of 

the type described in the following section. 

Serum samples selected for this study were chosen to have a wide range of 

prostate-speci£c antigen (PSA) levels, with similar PSA distributions in both class 

groups--disease and normal. Previous studies have had high PSA levels in only 

the disease group; we wished to avoid the possibility of introducing expenmental 

bias. 

Therefore, on this project, samples were selected to be included in the non-disease 

group based on having PSA levels that matched those of samples found in the 

disease group. 
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As in the Leukemia data set, several replicates were created from each serum 

sample. These replicates received independent chemical preparation. Two affinity 

surfaces (IMAC and C3) were used for protein purification from serum. The 

affinity surfaces assist in enhancing the signals for certain types of molecules such 

as the hydrophobic apolipoproteins (C3) or phosphorylated proteins (IMAC) [11]. 
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Figure 7: PCA data 

The Bruker Ultraflex instrument used required the spectra to be gathered in three 

stages for maximal resolution. Spectra were taken in the mass ranges of 0-20kDa, 

15-100 kDa, and 2-100 kDa; here we use the results from the 2-100 kDa mass 

range. More detailed information on the exact experimental design and MS 

equipment can be found in Gatlin-Bunai (2007) [11]. A heat map of the PCA data 

is presented in Figure 7. 
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Signal Processing 

For the leukemia and PCA data sets, sample order was randomized and patient 

samples were interspersed with QC samples. The MS measurements were run over 

a period of several weeks. For each replicate of a sample, a spectrum was 

produced and tagged with metadata, including patient ID, date collected, and 

date/time and settings of the MS run, among others. 

These several replicate spectra from each sample, along with the metadata 

described above, constitute the input to data analysis portion of the project. 

Data Analysis 

There are three phases in the data analysis process - signal processing, feature 

selection, and classifier construction. The first, whose input is the set of spectra 

and associated metadata, includes a number of steps, listed in Table 2. This phase 

is not the primary concern of this work, but it is necessary to understand the steps 

in this phase, and especially the problems caused by their imperfections, to 

understand the results of the final two phases. 

The output of the signal processing phase is a two dimensional table of values, in 

which each row represents a single replicate spectrum, and each column represents 

a mass per unit charge (m/ :<) spectral position. The table entries are the measured 

signal intensity of that replicate at that m/ zvalue. 
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Background 
Subtraction 

Res am piing 

Peak Selection 

Peak Alignment 

Recalibration 

Replicate 
Averaging 

Deconvolution 

Table 2: Steps in the Data Creation Process 

The presence of large amounts of matrix molecules 
and other instrument effects produce a slowly varying 
underlying signal that must be removed so that a true 
zero value can be found and peak heights measured 
against this baseline. See Figure 8. 

Because peaks at the higher mass end of the spectrum 
have broader width than those at the lower end, our 
group resamples all peaks to have the same width (in 
the time domain). Therefore, a peak that is 10 time 
units wide may be resampled to be a standard of 5 
time units wide, and its height doubled, to maintain 
the total integrated signal under the peak. This step 
allows for more accurate peak selection and alignment. 
It also increases the accuracy of our normalization 
procedure, discussed later. 

Peak selection determines which m/ z values represent 
a molecule, and which of those appear in a sufficient 
number of samples to represent a variable in the end 
data. The noise associated with the instrument can 
mask peaks of lower signal intensity, or conversely, 
appear as peaks where none exist. 

Ensures the same true m/ z value (representing a 
specific molecule) is in the same position in the data 
table for all samples. See Figure 8. 

Corrects for the effects of instrument errors. The QC 
data is examined for changes in total signal over time, 
for example; this calibration is then reapplied to the 
sample data. 

To reduce variations due to preparation and 
measurement, several samples are measured from a 
single patient's serum. The results are initially treated 
as independent samples for peak selection, alignment, 
and other steps, but are eventually averaged to give a 
single measurement for each patient. 

A peak whose mean value lies within one peak width 
of another, which is often the case with adducts, rides 
up on the slope of the adjacent peak. The adjacent 
peak must be deconvolved (removed) to find the true 
maximum value of the neighbor. See Figure 8. 

Figure 8 shows the necessity for several of the data creation steps listed above. The 

first pane shows the extreme background height arising at lower m/ z values. This 
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background can cause dependencies in the values of nearby peaks (peak A high 

implies peak B high) even when no real dependency exists, since the level of the 

background overshadows the true level of the peaks. Removal of this 

"background" signal reduces artificial correlations between variables and the 

variance between samples. 

The second pane shows a slight shift to the left between the peak maxima for two 

spectra, even though these spectra are derived from the same pool of sera. This 

shift can cause incorrect measurements of either the peak position or the peak 

value, or both, and may even cause peak detection to fail. Peak alignment attempts 

to find time-scale correction coefficients to ensure peaks from similar ions appear 

at the same mass positions in all spectra, and are measured at their maxima. 

The third pane shows that when peaks have m/ z value differences less than the 

peak width, portions of the peaks can add up to yield a value that is higher than 

the true abundance for either peak. This will also yield artificial correlations 

between peaks (massive left peak always implies high right peak). Deconvolution 

attempts to find the true maximum values of closely spaced peaks. 

Background subtraction Peak alignment Deconvolution 

Figure 8: The need for signal processing 

30 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Once all of these steps are completed, the abundance values at the aligned peak 

positions are recorded, along with other data about the spectra. Table 3 shows an 

example of the output of this process. 

Table 3: Example abundance values for five patients (arbitrary units) 

Patient ID Disease m/ zpositions 
number Class 2755 2797 2873 2959 ""'_, _____ 

665 Normal 1.368 0.308 2.151 0.774 
672 Normal 1.600 1.827 1.798 1.636 
679 Normal 0.399 1.630 1.749 1.418 
696 Disease 0.438 0.696 1.607 1.941 
721 Disease 1.249 1.023 1.944 1.106 

Normalization 

One critical problem with of an MS experiment is that two identical samples (or 

even two scans of a single sample) can result in spectra that, while having 

nominally the same shape, differ gready in the values of the various peaks. As 

noted previously, sample preparation, particularly total volume of material, plays a 

large role in producing this systematic error-but other factors such as ionization 

efficiency add to the problem. 

Several methods of correcting for such errors have been used [12], however, we 

have determined that a simple method of total ion current normalization reduces 

much of the sample-to-sample variation without undue complexity that might 

introduce more artifacts. We have noted unexpectedly high correlations between 

some variables in the QC data due to problems in signal processing, and 

normalization does reduce, but not eliminate, these correlations [13]. 

For our method of normalization, the signal processing described in Table 2 is 

performed, creating an array of signal intensity measurements. Each sample (row) 
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is summed across all peak positions (columns) to find that sample's total ion count. 

An alternate method, integrating the processed spectra across the entire m/ z range, 

was considered but discarded due to its higher dependence on precise background 

subtraction-a process with relatively large inaccuracies. 

Every abundance value in each sample is then scaled by a normalization factor 

equal to the population average total ion count divided by the sample total ion 

count. This method reduces the variation in measured abundances of nominally 

identical samples, such as those from the QC data, from 40-50% to about 20% of 

the average value. 

It is possible to normalize the sample total ion count on subsets of peaks. We 

avoid this technique, however, due to the possibility of destroying valid 

information should we "normalize out" variations in samples from different 

classes. While this is a possible problem with total ion normalization as well, we 

feel that the chance of introducing error is greater with a small subset of peaks 

used without additional information. 

Figure 9 shows the normalization factors resulting from the process described 

above being applied to the Leukemia data set of 417 spectra. The horizontal axis 

lists the possible values of the normalization factor (/J, shown as log10 (cp). A factor 

qJ = 1 (no normalization required) is represented by the zero position. Positive 0.3 

represents spectra that were doubled to bring the total ion count to the data set 

average; negative 0.3 represents spectra whose signal was halved. 
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Figure 9: Histogram of normalization factors 

Inspection of the spectra with normalization factors above 2 show that these 

spectra have consistendy low signals and, therefore, lower signal-to-noise ratios. 

This induces data reduction errors, especially in background subtraction and peak 

picking. It is also clear, by inspection, that these low signals are not necessarily an 

attribute of the sample, as some low signal spectra have replicates (other spectra 

produced from the same sample) that have no apparent problems. 

We have therefore chosen to include in our algorithms the option to remove 

spectra with high (greater than 2.0) normalization factors. While this choice of 

threshold was somewhat subjective, in the chart above it is apparent that there is a 

large decrease in the frequency of occurrence at about that value. In no case were 

all the various replicates of any one sample removed. 

The resulting array of signal intensities for each replicate at each peak position, as 

well as the metadata necessary to identify each spectrum and its class, constitutes 

the input to the final phases, which are the primary focus of this work. 
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CHAPTER 4: CLASSIFICATION AND FEATURE 

SELECTION 

Each m/ z column in our data arrays, which started out as a signal peak found in a 

number of spectra, can be considered a set of realizations of a random variable 

representing the measurement of the abundance of that molecule in each sample. 

Each row, created from a single spectrum, is an instance, or case, of the full set of 

variables. 

These variables are also referred to as "features." The terminology arises from 

information theory and the computational task of pattern recognition. In this task, 

an image is broken into features-such as the eyes and nose of a face-that are 

significant, and only specifically selected features are processed. We will transition 

to this terminology for the remainder of the discussion, understanding that the 

terms "peak," "variable," and "feature" are synonymous. 

The phase of our analysis that follows the signal processing is called "feature 

selection." In this phase, features are chosen for inclusion or exclusion in the 

classifier, the goal being that the final feature set includes only those variables that 

will be helpful in classification. 

The final phase is the construction of a classifier. This construct, whose 

parameters are typically learned from samples of known classification, allows new, 

unknown samples to be classified-in this case for disease state. A probabilistic 

classifier returns the probability that the sample lies in one or another class (e.g. 
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"95% chance of having Leukemia"). A deterministic classifier takes the values of 

the features and returns a specific classification. A popular choice, and the one we 

have made, is to build a probabilistic classifier and use its output to give a 

deterministic result by setting some probability threshold for declaring the class, 

such as "if the probability that this case comes from a patient with leukemia is 

greater than 50%, we will consider the class as "disease." Obviously, this may not 

be the threshold that a doctor might set for further testing of a patient. It is 

common to vary this threshold to understand the relationship between the false 

positives and false negatives that result; we have not done so here, as the accuracy 

of the classifier is not our primary goal. 

Instead, the primary focus of biomarker discovery lies in the feature selection 

phase. Initial efforts in this field focused on finding single features that are 

indicative of disease state, although more recently, multi-feature sets (or even 

mathematical combinations of features) have been sought and examined (c£ Oh, 

2005 [14]). Once diagnostic features are found, further investigation as to the 

nature and origin of the molecules is done in an attempt to learn more about the 

processes causing the disease itself. Diagnostic features are not typically called 

biomarkers until their underlying biology and relation to the disease is better 

understood. In this research, we limit the process to selection of diagnostic 

features, although we will attempt to examine their inter-relationships. 
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Feature Set Selection 

As has been emphasized, the choice of which features to include in a classifier is 

the primary goal of this research. These features represent m/ z values, which may 

lead to the identification of proteins, then genes, and then the biological processes 

that may cause the disease. Even if we could create an accurate classifier direcdy 

using all the variables produced by the data reduction methods discussed in 

Chapter 3, we would still want to identify those features that provide the greatest 

information. 

Filter and Wrapper techniques 

Choosing which features to include in a specific classifier can be accomplished 

using a number of criteria. Methods that use some scoring criteria to select 

individual features prior to creating a model for the classifier are known as filters. 

Another commonly used method is that of the wrapper, which selects a feature 

subset and scores it using the resulting classifier itself, say by the classifier's error 

rate for a data set with known results. An algorithm searches through the space of 

all subsets, looking for ever lower error rates. 

The search algorithm used in the wrapper technique is typically not exhaustive. 

For most problems, the number of possible subsets is intractably large. Instead, 

one of many approximate search methods is used, eliminating large portions of 

the search space at each iteration. A good review of the many methods is found in 

Miller [15]. 
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We have employed both filter and wrapper techniques. Although we have said that 

the final phase of the analysis is the classifier construction, it is clear that a wrapper 

technique requires both feature selection and classifier construction to occur 

simultaneously. 

Wrapper methods 

Two of the most straightforward wrapper methods are fonvard selection and backward 

elimination [15]. To perform forward selection, the following pseudo-code 1s 

implemented: 

Select a feature 
Find an n-fold cross-validated error rate based on using only 
that feature as a criterion. 

Repeat for all features. 
Permanently select the feature that has the lowest error rate. 
From the remaining features/ select a feature. 

Using the new feature/ and the one chosen previously/ create a 
model and find the model 1 s cross-validated error rate. 

Repeat for all features. 

Choose the feature that, when combined with the first feature selected, results in 

the best model. Continue to add more features until some threshold-perhaps 

"error rate begins to rise"-is reached. The final set becomes the selected subset 

of features. 

Backward elimination is a similar process. Under this method, each feature of the 

current set is removed, one at a time, and the remaining feature set is used to find a 

cross-validated error rate. The feature whose removal results in the lowest error 

rate is discarded permanently. The process is repeated until some threshold (error 

rate rises, or minimum number of features remain) is met. Our first attempt at 
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feature selection and classification is a wrapper method that uses exactly these 

techniques. 

Naive Bayesian Classifiers 

Bayes' Theorem, which is a quarter-millennium old, has come into more 

widespread use in the last quarter century--especially in the fields of machine 

learning and pattern recognition. One of its most popular uses is for email 

filtering, where it is used to answer the question "what is the probability this email 

is spam, given the words and other data in the message" by learning the probability 

of those features first from a corpus of source-known examples.10 These 

probabilities are often updated as the recipient manually accepts or rejects new 

messages, refining and personalizing the filter. 

This "learning" of the probabilities for data occurrence based on a set of cases 

with known results is a key step in the construction of any Bayesian classification 

system. The known data is called the "training set," and the probability that a new 

case will be observed to have a certain value (or range of values) is based on the 

frequency of that value in the training set, or a model distribution based on the 

data in the training set. 

As an illustration of the use of learned probabilities and Bayes' Theorem to 

classify, consider the following example. 

!O Sec, for example, the 1997 Microsoft Research group article entitled "A Bayesian approach to filtering junk 
email" at http:// rescarch.microsoft.com/ -horvitz/junkfllter.htm. 
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A researcher is searching for the probability that "a person has long hair, 

given that they are male" using Bayes' Theorem. To do so, the researcher 

might sample a population, noting the sex and hair length of each case, 

then choose some boundary between long and short hair, such as "touches 

the collar." A probability distribution is created by directly counting the 

samples with long (or short) hair. The researcher then makes the 

assumption that "if I have seen that 80% of the males so far have short 

hair, then the probability of a new person having short hair, given they are 

male, will be 80% as well." This, plus a researcher-chosen prior probability 

of a new person being male (and the normalization factor) would allow her 

to answer the question "what is the chance that this new person is a male, 

given that I know only that they have short hair?" 

This example shows the simplest use of Bayes' Theorem for classification, based 

on a single variable (hair length). Suppose however that the researcher knows that 

she will have the additional information that "the new person wears pants (or 

not)." By gathering this information from the training set, and creating the needed 

four entry probability table P( sex= {male, female} I pants= {yes, no}) she can use 

this additional data to refine the classifier. If she assumes that the length of a 

person's hair and the wearing of pants are independent, i.e. men with short hair are 

not more likely to wear pants than men with long hair, then by the definition of 

independence P(hair, pants I sex)=P(hair I sex)P(pants I sex). 
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Using H, P, and S to represent hair, pants, and sex respectively, she writes Bayes' 

Theorem as 

P(H, P!S)P(S) P(HIS)P(P!S)P(S) 
P(SIH, P) = P(H, P) = P(H, P) (12) 

The prior, P(S), is chosen by the researcher based on her opinion of the chance the 

next person will be male (without regard to any data collected on the next person). 

The other two terms in the numerator, P(H I S) and P(P I S), are learned from the 

training set as described previously. As before, the normalization factor in the 

denominator is calculated by summing terms like the numerator for all values of S. 

This two-variable classifier is direcdy extensible to any number of variables, as long 

as the independence condition holds. That is, for some set of variables X= {X1, 

X 2, X 3, ••• XJ we must have 

n 

P(XIC) = n P(XdC) (13) 

i=l 

when conditioned on the class C. By extending the classification to utilize several 

variables, then simplifying the estimation of their PDFs with the independence 

assumption, we have created what is called a naive Bqyesian classijier, or NBC. 

This independence assumption is critical to the functioning of the naive Bayesian 

classifier. Although it has been shown [16] that an NBC works well in many cases 

even when the independence assumption is not valid, artifacts can appear that can 

cause instability in the classifier. 
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One problem is that the dependencies impose exaggerated values in the estimation 

of the final probability. To illustrate this, consider a system of two variables, A and 

B, and the problem of building a classifier P(B I A). Further consider that we 

attempt to add a third variable, .N, which is assumed to be independent, but in fact 

always is observed to have exactly the same value as A through some underlying, 

or measurement induced, dependence. 

By considering the observation as that of a two variable vector A= {A, .N}, we 

follow the procedure outlined above to find (ignoring the normalization factor for 

now) P(BIA) oc P(AIB)P(A'IB)P(B) = P(AIB) 2 P(B), since P(AIB) = P(A'IB) for 

all B. 

If, for example, P(A I B)=0.9 and P(B)=O.S, the NBC will determine P(B I A)=0.9 

in the case of one variable, but P(B I A)=0.99 in the case of two variables. The true 

probability is the first, but by measuring the single variable A twice, and 

erroneously considering the results to be independent, we have greatly 

overestimated the confidence in the classification. 

A second example showing how the NBC can behave poorly due to incorrect 

assumptions about independance is in Appendix A: Mathematics. We will see, in 

Chapter 5, that this instability will cause the NBC to be only partially suitable for 

the experiment we are interested in, since it has many highly correlated variables, 

such as signal peaks arising from adducts and multiply charged states. These are 
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indeed multiple representations of a single underlying variable-the abundance of 

the primary molecule. 

Bayesian Networks 

A Bayesian network is, at its most basic level, a formula for a joint probability 

distribution of a set of variables, such as P(A,B,C,D, ... ). This formula can be 

represented graphically by use of a directed acyclic graph, or DAG. 

The DAG has two elements: nodes for each variable in the problem, which we will 

represent as ovals, and arcs, or lines between nodes. The arcs are directed, so that 

they point (with an arrow) from one node to the other. The graph is acyclic; there 

are no nodes where it is possible to start, and then return, by following a set of 

directed arcs (also called a path). Figure 10 represents a simple DAG with five 

nodes. 

Figure 10: Bayesian network 

The DAG encodes a set of facts about the relationships between the variables in 

the distribution it models [17]. Arcs represent dependencies, so that, in the most 

basic case of only two nodes, an arc is drawn if they are dependent and no arc if 

they are independent. The DAG is simply a way to represent all the dependency 

information in a particular system of variables; mathematical theorems about 
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various dependencies are then represented as easily visualized operations on the 

DAG. For more information, see Chapter 2 of Jensen [17]. 

In the DAG, we call two nodes with an arrow between them a parent and child. 

More generally, the set of nodes from which a path can be found to a particular 

node are its ancestors; the set of nodes that can be reached by following any path 

from a particular node are that node's descendants. 

Unlike the NBC described earlier, which is a special case of a Bayesian network, 

there is no specific variable representing class in the general BN-although one 

may be identified as such if needed. The DAG represents all the variables and all 

the dependencies at once. In addition, it represents the minimum set of probability 

terms that can be used to describe the joint probability distribution Q"PD) of all the 

variables. 

As an illustration, assume that a particular problem of interest has three variables, 

A, B, and C. By using the product rule (1), the joint distribution of the conjunction 

ABC can be written P(ABC)=P(A I BC)P(BC); repeated applications yield 

P(ABC) = P(AIBC) · P(BIC) · P(C). (14) 

Assume further, that in this system, we know that A is independent of C given B; 

then P(A I BC)=P(A I B). Rewriting (14), 

P(ABC) = P(C) · P(BIC) · P(AIB). (15) 

Now consider a DAG of the form C ~ B ~A, where the capital letter represents 

a node in the DAG. If we take a product of terms of the form P(node il all 
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parents of node z), then for C ----+ B ----+ A we have P(C)P(B I C)P(A I B), which is 

exactly the right hand side of equation (15). In this form, the terms in the product 

has encoded the independencies we have assumed to exist. 

We say that the DAG represents the JPD. The terms resulting from factoring the 

joint distribution (after applying independencies) can be read graphically from the 

DAG [1 7], explicitly 

n 

P(X1XzX3 ... Xn) = n P(Xd{Pa(Xi)}) (16) 

i=l 

where {Pa(XJ} represents a conjunction of all the parents of Xi. Creating the JPD 

from the DAG is as simple as going through the DAG node by node, writing the 

terms P(node I parents of the node) as a product. 

Figure 10: Bayesian network 

For the DAG in Figure 10, reproduced here, the joint distribution would be 

P(ABCDE) = P(A) · P(BIA) · P(CIBE) · P(DIB) · P(E). (17) 

A derivation of the formulae underlying a Bayesian network is beyond the scope 

of this work, but can be found in Jensen [17]. However, one important 

consequence of the representation of a JPD by a DAG is that the independencies 

can be immediately read from the DAG. A serial connection such as A ----+ B ----+ C 
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in Figure 10 means that A is independent of C given B. One may think of a node 

as a valve, if the node is known, the valve closes, and the flow of information is 

blocked. A diverging, or inverted "V" structure, like D ~ B ~ C, encodes a 

similar independence, namely that D is independent of C given B. 

To show why this is so, consider the JPD encoded by the simple serial DAG 

A~ B ~ C, which is 

P(ABC) = P(A) · P(BlA) · P(ClB). (18) 

By the product rule, we also have 

P(ABC) = P(AClB) · P(B). (19) 

Setting these two equal and solving for P(AC I B) yields 

P(AClB) = [P(A)P(BlA)l P(ClB) 
P(B) . 

(20) 

The term in square brackets is P(A I B) by Bayes' Theorem. Inserting this yields 

P(AClB) = P(AlB) · P(CjB), (21) 

which is exactly the statement that A and C are independent given B. We say A and 

C are independent when knowledge of B "breaks the path" between them. 

The "V" structure B ~ C ~ E in Figure 10, however, has an opposite meaning. It 

represents the statement that B and E are unconditionally independent, but 

become dependent when Cis given (or instantiated). 

The general JPD for these three variables can be written as 

P(CBE) = P(ClBE) · P(BE) (22) 

by the product rule, and 

45 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

P(CBE) = P(CIBE) · P(B) · P(E) 

by using our method of readingJPD from the DAG. 

Setting these two equal immediately yields 

P(BE) = P(B) · P(E) 

(23) 

(24) 

which demonstrates that the V structure has encoded the independence 

assumption of equation (13). The proof that instantiation of C "opens up" an 

information path between E and B is lengthier and can be found in Jensen [17]. 

We will not have occasion to use the "V" structure in the experiment discussed 

here. 

The ''V" structure, the inverted ''V" structure, and the serial structure are all the 

possible combinations in a DAG. It is possible to include an isolated node, which 

is not connected to any other. Such nodes can be immediately marginalized out of 

the JPD and do not affect the outcome of a classifier. To illustrate, consider a 

three-variable network with an arc from A to B, and a variable C not connected to 

the other two. The JPD is 

P(ABC) = P(A) · P(BIA) · P(C). (25) 

Marginalizing (see page 14) across values of C, we have immediately 

P(AB) = P(A). P(BIA) I (26) 

which is the JPD represented by just A~ B. Thus, the independent variable C is 

marginalized out of the network with no loss of information-assuming it is not a 

variable of interest. 
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Bayesian Networks and Causality 

The most important reason to choose a BN for MS data classification is the BN's 

ability to reflect causal relationships between variables. As is proven in Pearl [18], if 

a set of variables have causal relations, and the BN is built such that arcs fully 

represent the causal paths between the variables, then the resulting BN /JPD will 

encode dependencies and probabilistic relations between variables. 

The reverse statement, that causality can be inferred from a BN that has been 

created from examination of a particular set of data, is not strictly true [18]. Data 

can show dependencies where causality does not necessarily exist, or where 

perhaps an unknown variable linking the two has not been included. 

A conceptual causality chain for the problem discussed here is diagrammed below. 

However, the inclusion of the hidden variables (dotted nodes), such as changes in 

gene regulation, serves only to provide probability distributions for those unknown 

processes, and does not affect the outcome of the classifier. They will therefore be 

suppressed. 

I 

_____ ./' ~I::_d~c;_ti~n-~ ___ ":'" _ ... 

1 ~ Protein ' I Protem ' 
' E · / ' Expression I 

... --~r.:_ss,:,o~ ~ - ___ - ~-----
Abundance 

------ .... Gene ... ' 

Measured 

Figure 11: Causal chain for disease 
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Although not shown here, the variables representing a measurement of the 

abundance of a particular protein (or fragment) could be connected. We expect, 

for example, proteins to split into fragments due to the violence of the ionization 

method with some probability of occurrence. This would be represented by a 

diverging (inverted V) structure with the primary molecule at the top and the 

fragments underneath. The fragments can theoretically have a secondary 

connection to the disease class, should the disease change the probability of 

fragmentation, but we have not identified such a connection in our work. 

A serial connection could also occur, particularly in the case of a multiply-charged 

ion, or satellite. Recall that the measurement is of the mass-to-charge ratio, so that 

an extra charge would cause the molecule to show up at m/ 2 of the primary ion. 

The variables representing the abundance measurement of these two mass values 

should be dependant, since high abundance of a parent should imply high 

abundance of the satellite ion. 

Although V structures (representing, for example, two proteins that produce a 

common fragment) are theoretically possible, we will not seek this structure. Even 

in the unlikely situation where this occurred, we would not be able to precisely 

allocate the abundances back to the primary ions without additional experiments. 

Bayesian Classifier Construction 

There are two primary steps to building a classifier based on a Bayesian Network. 

The first is to determine the structure of the network. This is the most difficult 
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part, especially when it must be derived from data which is statistically noisy. The 

second is to determine the exact values of the terms in the JPD (e.g. P(A I BC) for 

all values of A, B, and C). These two steps are called "structure learning" and 

"parameter learning." 

Structure Learning 

The primary difficulty with learning the bese 1 structure of a BN from a set of data 

is that the number of possible structures is super-exponential in the number of 

variables. The number of possible combinations G of DAGs of n variables can be 

calculated by the recursive formula [19] 

n 

G(n) =I ( -l)k+l (~) 2k(n-k)G(n- k). (27) 

k=l 

The result of this calculation is given in Table 4 for 1 to 10 variables. 

Table 4: Number of Possible Structures in a DAG 

Variables Structures 
1 1 
2 3 
3 25 
4 543 
5 29,281 
6 3,781,503 
7 1 '138, 779,265 
8 783,702,329,343 
9 1,213,442,454,842,881 
10 4,17 5,098,97 6,430,598,143 

11 Meaning "the structure that most probably created this data" or, more explicitly, "the one representing the 
joint probability distribution that most closely encodes the dependencies and probability parameters 
matching those in the data." 
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Since the data sets we will be using may have 100 variables or more-and even 

after pruning have tens of variables-an exhaustive search of all DAGs is clearly 

not feasible. Therefore, methods that are able to quickly remove large sections of 

the search space, called approximate searches, are needed. 

Many methods of approximate search for best-fit structures have been developed, 

especially in the last decade [17]. A typical method is to start with one variable, 

and then add the next best variable (or arc) based on the correlations found in the 

data set. 12 A common method of measuring the success of these methods is to 

start with a relatively complicated DAG, use the equivalent JPD to generate a large 

(10,000 cases) data set, then attempt to re-create the DAG from the data, 

measuring the number of false or missing arcs. We have used a related method, 

generating data based on characteristics of a real data set, and then attempting to 

verify the structure that we believe created those characteristics. 

Particularly in Chapter 6: Bayesian Network Algorithm, we will use the 

characteristics of our problem to efficiently build a BN structure representing the 

dependencies between the class variable (disease state) and the feature set (ion 

abundance at each peak position). The primary attribute that will streamline this 

approach is the unique status of the class variable in a classifier. More general 

structure learning methods seek dependencies between all variables without 

specific regard to order or importance; with a classifier, we have a natural starting 

12 Some take the opposite approach, starting with all possible arcs and pruning. Another fruitful approach has 
been to do both, first adding all reasonable arcs and then using further tests to prune unnecessary ones. 
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point. Even more important, we actively seek to discard all variables that are not 

directly connected by an arc to the class variable, since instantiation (in our case, 

measurement) of the set of variables directly connected to the class will cause the 

remainder to be independent of the class, and therefore, not useful in classification 

[17]. 

A Markov blanket around a variable is the minimum subset of all other variables 

that, if instantiated, break any dependence with the remaindering variables [17]. 

Mathematically, for a class variable C and variable set V, the Markov blanket 

around Cis the minimum subsetS of V which, for all X E {V\S} (the variables 

not in S), MI(X;C I S)=O. 

In the case of a classifier, we need only find the Markov blanket, if we are sure to 

measure all the variables in it. Since, in our experiment, each mass spectrum 

produces specific measurements for each variable, the Markov blanket around the 

class variable will suffice. It is this specific set of variables we will search for in our 

structure learning. 

Parameter Learning 

Once a structure is known, we must determine, empirically or by other means, the 

values in the probability tables that make up the terms in the JPD. We can refer to 

them as tables (in the discrete case) because they hold specific probability values 

for each combination of variables in that term. Thus, for a binary class C of 

values {0,1} representing "disease" or "normal," and a data variable A with 4 
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possible values {0,1,2,3}, the network C---+A requires two tables: P(C=0,1) with two 

entries, and P(A=0,1,2,3I C=0,1) with eight entries. These entries are the 

parameters we seek to determine under the rubric "parameter learning." 

The simplest method (and the one we will use) involves usmg the maxunum 

likelihood for each parameter given the set of learning data. For a discrete system 

like the one in the previous paragraph, the maximum likelihood for each entry in 

the table P(A =a; I C=c~ is just the fraction of training data cases that fall into the 

bin represented by a;, partitioned by class [20]. Thus, if there are 25 total cases in 

the disease class, and 5 of them fall in bin 1, P(A=11 C="disease") is estimated to 

be the maximum likelihood value of 0.20. 

Another possible method of calculating the entries would be to use the data to 

model the underlying population, and then to use the model (a Gaussian for 

example) to estimate the probability, perhaps by integrating over all the values in 

the bin. The difficulty with this approach, and the reason that it was rejected for 

the problem at hand, is that there is no well established model for the expression 

of proteins in normal and disease groups for the data we wish to examine. Our 

group was able [21] to determine that the errors caused by sample preparation and 

instrumentation is fitted well by a log normal distribution. If all cases, for 

example, had a single true value, the probability distribution could be modeled by 

the log-normal13 "instrument function," since the measured distribution would be 

13 1 ng-normal means that the distribution is Gaussian after taking the logarithm of the raw values .. 
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the single value (a Dirac delta function) convoluted with the instrument function, 

returning just the instrument function. 

We estimated the parameters of the instrument function by studying the QC data 

described on page 18. At its best, this data has a coefficient of variation of 

approximately 20%, even after adjustments for laser performance and other 

experimental factors [21]. 

Unfortunately, we have no basis for concluding that all normal patients have the 

same value, or any other specific distribution of values, for the protein abundances 

we measure. We do observe certain variables to have distributions very close to the 

log-normal instrument function, with widths approaching the typical variations 

found in the QC data. 

so 
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Figure 12: Sample population and instrument function 

We conclude this to mean that the underlying population has a distribution of 

actual abundances that is very sharply peaked, and the convolution of that 

relatively sharp underlying distribution with the wider instrument function 
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produces the results we observe. An example from actual data is shown in Figure 

12. An approximate log-normal instrument variability function has been added and 

scaled in height to guide the reader's eye. 

Mutual Information with Class 

The scoring criterion we will use to select a feature V for inclusion in the BN is 

"mutual information with the class" or MI(C;V). This measurement answers the 

question "how much does knowledge of the value of a specific variable (an ion 

abundance in our case) tell us about whether or not the person has a disease?" 

Figure 13 demonstrates an important problem. Even a completely 

(pseudo )random data set will include some variables that exhibit mutual 

information with a random class variable, if enough variables are created 

compared to the number of samples. The black line in Figure 13 represents the 

cumulative distribution of MI between each of 200 random variables and a 

random binary variable designated as the class. A point (xJ') on the line means that 

a fraction y of the 200 variables had MI(C;V) less than x. In this experiment about 

3% of the variables had MI>0.04. One of our similar sized real data sets-the 

blue line-had about 32 variables with this same MI or higher. We must therefore 

keep in mind that, with a low enough MI threshold, we are likely to include 

features that are not truly indicative of a disease, but, due to small sample effects, 

have matched the class enough times to have been declared as important. 
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Figure 13: Mutual information threshold 

As indicated by the dotted line, we use a value of MI(C;V) close to the maximum 

value observed between many variables and a randomly generated class as the 

baseline minimum threshold for determining significance. We may need to vary the 

baseline MI threshold to leave a reasonable number of variables in the selected 

feature set, while reducing the chance of selecting a non-significant feature. It is 

still possible with this choice that an important feature has fallen below the 

threshold and therefore eliminated from further evaluation, or that a random 

feature has been included. 

Discretization 

A Bayesian network can include nodes representing certain continuous probability 

distributions, such as Gaussians, but we have no concrete justification for modeling 

the features we will examine with one of these allowed distributions. In addition, 

there are certain limitations to node placement and ordering that continuous 

distributions impose [17] which we choose not to accept for this problem. 
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Discrete variables, those that take on a (typically) few specific values, do not 

impose these limitations in the Bayesian network. In the general case, the possible 

values that the variable can take may come from sets like {old, middle-aged, 

young} or {greater than 50.3, less than 50.3}, but we may map these choices to an 

equal number of integers, e.g. {1, 2} for ease of use. 

With the goal of creating a Bayesian Network in mind, therefore, we will discretize, 

or bin, the values of the abundance variables from a nearly continuous set of 

values into a few bins. This will cause the values of the variable for a specific case 

to collapse from a measured abundance like "1283 counts" to "bin #2." We will 

later discuss various binning methods and the criteria for choosing bin boundaries, 

but MI with the class will be an important optimization criterion. 

Cross-Validation 

Because of the difficulty of obtaining new samples at each step of testing a new 

classifier, a method of using a single set of previously classified data to both train 

and score a classifier is used. This is called cross-validation. 

One such method is simply to train a classifier on the entire data set, and use the 

resulting model to re-examine each case-as if the result is not known-and score 

the classifier on its ability to correcdy predict the class. We will call the result of 

such an analysis the nominal error rate. The major drawback of this method is that 

the same data is used to train and test. 
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As an example of the problem this can cause, consider a researcher sitting at a 

street corner, recording the type and color of four passing vehicles. For some 

reason, on that day, two cars that pass by that are red, and two trucks that are blue. 

He builds a classifier using that data which says "if a vehicle is red, it must be a 

car." Instead of testing the model against the next passing car, he tests it against 

the data he has already collected, finding (incorrectly) that his model is error-free. 

The primary way to guard against this problem is to train the model with some 

subset of the data, then to test it against the remainder. The "leave one out" 

cross-validation method does just that, training the model under all but one case, 

then classifying that case with the resulting parameters. By repeating this for all the 

cases, an overall error rate can be scored. This method is useful because, with a 

large enough data set, the model parameters are relatively stable as the various "all 

but one" training sets are selected, and the error rate directly reflects the number 

of cases classified on this stable parameter space. One problem with the leave one 

out method, however, is that the stability of the model parameters may be 

misleading [22]. 

As an example, consider a classifier that tries to guess the sex of a student based 

on that student's height. Unfortunately, the SO-case training set (SO% female) 

happened to include ten members of the women's basketball team. Using any 49 

of the SO cases will train the classifier that, if the test case is under 5' 10", the 

student is most likely female. The 10 basketball players, all over six feet, will 

consistently be classified incorrectly. The classifier has an error rate of at least 
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20%. There is, however, no way to determine whether 20% is a stable measure, as 

each complete trial of leave-one-out cross-validation produces exact!J the same result. 

In fact, it is possible that if 50 new cases were tested, the classifier would have a 

much lower error rate. 

To correct the problem of unknown stability in the error rate, while accepting 

some increase in the instability of the model parameters, the method of nfold 

cross-validation is used. In this method, the data set is divided into n groups, for 

some small integer n. One of the groups is held back as a testing set, and the 

remainder are used to learn the model parameters. The test group is classified and 

the number of errors recorded. A different group is selected as the test group, and 

the original test group is returned to the training set. This is repeated until all n 

groups have been a test group, and hence, all cases have been classified. In this 

study, the parameter n is typically set to 10, and repeated randomized trials made, 

which decreases variance and increases stability [23]. Table 5 shows an example 5-

fold cross-validation, in which each group consists of one-fifth of the total cases. 

Table 5: Example 5-fold cross-validation 

Groupl Group2 Group3 Group4 GroupS 
Triall Train Train Train Train Test 
Tria12 Train Train Train Test Train 
Tria13 Train Train Test Train Train 
Tria14 Train Test Train Train Train 
TrialS Test Train Train Train Train 

To calculate a cross-validated classification error rate under n-fold cross-validation, it is 

necessary to record the results for each test group after its classification. After all n 

trials are accomplished, every case in the data set has been classified exacdy once. 
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At that point a cross-validated error rate can be calculated, usmg either the 

probabilistic or deterministic method of classification (see more details on these 

methods on page 34). We expect that the model parameters would vary more with 

this method than the "leave one out" method. If, for example, there are 100 cases, 

with n=S, 80 of 100 cases are used to learn the parameters, as opposed to 99 of 

100 in the "leave one out'' method. 

This leads to the strength of this method, however-the parameters can be 

tracked and the variations recorded to better understand the stability of the 

classifier. Even more importandy, the data can be randomized and a different set 

of n groups selected. Since each case is now tested on parameters derived from a 

different set of training data (unlike the leave-one-out method) it may or may not 

receive the same classification and the error rate will change after each 

randomization. By examining fluctuations in the error rate or the feature set 

selection, we can measure the stability of the classifier, and better predict whether 

it will continue to achieve similar error rates as new cases are tested. 

Repeating the nfo!d cross-validation in this manner also allows the average error 

rate of a particular classifier model to be used as a parameter. For example, one 

might add, to an existing feature set, the feature that decreases the error rate the 

most. Cross-validation trials in this study are stratified, meaning that each training 

group, while selected randomly, has approximately the same fraction of each class 

as the overall population. This has been shown to reduce bias and variance [23]. 
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CHAPTER 5: APPLICATION OF THE NAIVE 

BAYESIAN CLASSIFIER 

As discussed in Chapter 2, the assumption of independence between features 

allows a great simplification in the structure and parameter learning of the 

resulting na1ve Bayesian classifier (NBC). A classifier is created by simply building 

a network with the class variable as the parent node, and the set of features as 

direct descendants of the class, with no arcs between the features. We have stated 

that an NBC is a special case of the Bayesian network, and Figure 14 shows this 

special structure. 

Figure 14: Naive Bayesian classifier 

This type of classifier was used to examine the Leukemia and Prostate Cancer data 

sets. The first experiment using the NBC was as a simple classifier using all 

available features, and for this task, it performed well. Performance for feature 

selection was less successful. Because of the problems associated with the 

independence assumption, its feature sets were unstable when used as a wrapper 

for feature selection. While it did select a reasonable feature set, it ignored highly 

correlated features that were important to further analysis for biomarker discovery. 

Specific details are found in Chapter 7: Results and Analysis. 
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Classification performance 

The simplest algorithm one can use to build and test a naive Bayesian classifier 

consists of only a few straightforward steps. The first is to discretize the data into 

two or more bins. Next, for each class, and using the full data set (no cross­

validation), find the fraction of samples in each bin, and use this result for P(data in 

bin I class). 

For example, assume there are 100 patients with a class of "disease" and a similar 

number with a class of "normal," and a single continuous variable X. A bin 

boundary x0 in the range of X is chosen by some method, such as fixing the 

boundary at the entire population's mean value. Then a second variable X' (a 

discretization of X) is created, with X'=O if X <x0 and X'=1 if X>x0• The 

parameter P(X'=O I Class=disease) is estimated by counting the number of samples 

labeled "disease" in the lower bin and dividing by the total number in the class 

(100 in this example). If 80 samples of the disease class have X>x0, then 

P(X'=11 disease) is estimated to be 0.80. 

After these two steps, Bayes' Theorem (1 0) is invoked, usmg the estimated 

parameters, to find the result for P(class I data values). A typical result might read 

"the probability that this person has the disease, given that the ion abundance 

measured was in bin x, is 75%." 

A classification threshold is used to convert this probability into a specific class, 

such as the value 0.40 in "if P(disease I Data)>0.40, the patient is classified as 
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having the disease." The threshold can be adjusted depending on the relative 

importance of eliminatingjalse positives or false negatives (see Glossary). This results 

in a deterministic classifier (see page 34). For the work presented here, the 

threshold is always set to 0.5. 

In the simple one variable example described above, it is likely that each of the 80 

samples from the disease class with X>x0, will be classified correctly as "disease," 

while the other 20% will be classified in error. If the normal class happens to have 

a similar result (80 correct, 20 in error) we say the classifier has a 20% nominal 

error rate. 

This error rate changes under cross-validation (see page 57 for details on cross­

validation methods). Under a 10-fold cross-validation, for example, 180 of the 200 

samples will be chosen as a training set, the parameters such as 

P(X'=O I class=disease) learned from that subset, and the results used to find 

P(class=disease I data) for the remaining 20 samples. The test group is returned to the 

training group, a different group of 10% of the samples is used as a test group, 

and the process is repeated (with new parameters calculated) until all the samples 

have been classified once. A probability threshold for declaring the class is chosen, 

and an error rate calculated. 

In this experiment, the values X are the measured abundances at each peak 

position. The example above is extended to many variables using the independence 

assumption, as discussed in the section leading up to equation (13). 
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Many trials of n-fold (with n typically set to 10) cross-validation are run, with the 

samples included in each of the n groups randomized between trials. This allows 

us to find an "average" cross-validated error rate, as well as determine the 

variability of that error rate between trials. 

Figure 15 shows the results of nominal error rates using each feature-by itself-

to classify the cases in the 199 peak leukemia data set. A classification error rate 

(also called a misclassification rate) of 50% means that a feature was no better than 

a random choice at choosing the correct class. An error rate of 0% means that 

feature was a perfect predictor of the class. Any of the three peaks at the far right 

of the figure, representing mass-to-charge ratios near 11700 m/ ~ predict more 

than 90% of the population correcdy. 
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Figure 15: Nominal classification error rates of individual variables 

From a pure classification standpoint, the minimum single-variable error rate 

(about 10% in this data) provides a metric by which to compare any multi-variable 

feature sets. We expect, however, that classification under a cross-validation 
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scheme, with the possible exception of the "leave one out" method [22], to give a 

somewhat higher-and variable-error rate [23]. 

Feature Selection 

The reader may note in Figure 15 the several clusters of "diagnostic" peaks-

those that by themselves may indicate the classification of the sample. The peaks 

are shown in increasing m I z value, so that variables that are adjacent in Figure 15 

are often only a few tens of Daltons apart in molecular weight. These are often a 

primary peak and its adducts or modifications; if a peak is diagnostic, its adducts 

appear to also be diagnostic. On the far right of the chart, for example, is a series 

of three of the most diagnostic peaks, which represent the m I z values of 11684, 

11727, and 11740 ml z. 

Because of the large number of variables, exhaustive search methods of various 

combinations of features are impractical. Instead, features are selected via forward 

selection and backward elimination (See Chapter 4: Classification and Feature 

Selection). The MATLAB14 code that accomplishes this is found in Appendix B: 

M.ATLAB Code. This code contains a wrapper, a method of feature selection 

where the features are selected by their utility under cross-validation. 

14 MATIAB® (for "Matrix Laboratory'') is a commercial program by The Mathworks, Inc Version 7.7 was 
used for this research. 

64 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Error Rates 

Figure 16 below shows the effect of forward selection on error rate. To select the 

next feature k+ 1, all features not previously selected are added one at a time to the 

k features that have been permanendy selected to that point. The new group of 

features that gives the lowest average error rate over a number of repetitions then 

becomes the new permanent feature set. The data come from the Prostate Cancer 

data set (described in Chapter 3), and show four typical trials of selecting 20 

features. 
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Figure 16: Cross-validated error rate, forward selection, PCA data 

The error rate rises in the middle of Trial 3, even though the search is for the 

lowest error rate. This is because the selection of another variable is mandatory, 

insomuch as the algorithm was set to select exacdy 20 variables. It happened in this 

trial that, after selecting variable 7, the next best variable's addition increased the 

error-but it increased it less than any other selection. 
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A trial with backward elimination shows a similar trend. In Figure 17 below, all but 

5 of the variables in the 199 peak Leukemia data set are removed. The error rate is 

reduced from 20% to 6.5% after removal of the first 150 features, and then rises 

from there as additional features are removed. Detailed results from each data set 

are found in Chapter 7: Results and Analysis. 
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Figure 17: Error rate during backward elimination, Leukemia data 

This rise in error rate allows one to estimate the size of an optimum feature set. 

The error rate found in the trial above reaches a minimum at about 50 features. 

This minimum is consistent; over several trials, the cross-validated error rate 

dropped to between 6% and 6.5% at about 50 features. 15 If the search were 

intended to find this number, these results would be satisfactory. However, we 

seek to find a specific set of features, and therefore must investigate which features 

are producing this error rate. If the same 50 features are selected under large 

numbers of independent cross-validations, the feature set is said to be stable, and 

15 The nominal error rate with 50 features was approximately 4.8%. 
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that feature set would be expected to perform similarly on the next sample of 

unknown classification. 

However, if we find that the feature set is unstable under cross-validation, then we 

must investigate further. 16 This requirement turns out to be the fatal flaw in the 

NBC for the purpose for which we intended it. 

Feature Set Stability 

To illustrate, consider the set of "the first SO features selected" during forward 

selection of the Leukemia data. If we repeat this trial a number of times, we can 

determine the stability of the technique by examining the percentage of times a 

specific feature is selected. A perfecdy stable system would select the same SO 

variables m times in m trials, however, that is not the result obtained. 
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Figure 18: Variable selection frequency, 5 forward selection trials 

16 The search for this instability is a key reason for using n-fold cross-validation over "leave one out." Since the 
training data is nearly constant under "leave one out," we would expect this instability to be masked, at least 
until a set of additional cases are attempted to be classified. n-fold allows the researcher to predict how well 
the training data will model another sample set. See page 31. 
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Figure 18 shows the result of selecting the best one-fourth of the variables in each 

of five trials. While the goal is that the same 25% of diagnostic variables would be 

selected during each trial, but in fact 60% of the variables are selected. Five 

percent of the (diagnostic) features are selected consistently; the majority of 

features, however, are selected only occasionally. 

Table 6 lists the peaks selected 4 or 5 times during this trial. We will compare such 

lists across different experiments in Chapter 7. 

Table 6: Features selected frequently during forward selection 

5Times m/z 4Times m/z 

3 2798 38 3768.5 
49 4031 57 4211.0 
84 4982 64 4372.1 
113 5997 103 5751.9 
124 6562 104 5773.8 
144 7649 122 6515.9 
151 7863 132 6851.0 
152 7888 
193 10547 
198 11697 
199 11742 

Leukemia Data, 199 Variable Data Set 

Part of this variation comes from the process of cross-validation, since at any one 

step, if two variables are approximately equally diagnostic, the randomized 

selection of training and testing groups will affect which is actually chosen for 

inclusion or elimination. We have attempted to mitigate this variation by repeating 

the cross-validation a number of times (we usually choose 30) and using the mean 

error rate produced as a selection metric. 
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A secondary source of variability is that we may attempt to select variables after all 

diagnostic features have already been chosen. In this case, we would expect 

diagnostic features to be chosen consistendy, and non-diagnostic features to be 

chosen occasionally. We therefore note those features chosen consistendy for 

further consideration. 

Effect of Correlations 

Despite the averaging of large numbers of cross-validated trials, we noticed large 

variations in feature set selection that were clearly problematic. For example, in the 

4 PCA data forward selection trials whose error rates were presented in Figure 16, 

the specific feature selections vary significandy. Table 7 shows the first 10 features 

selected during those trials. 

Table 7: Features selected on separate trials (PCA data) 

Trialt Trial2 Trial3 Trial4 
23 23 43 43 
6 6 66 66 

44 44 41 41 
90 90 85 63 
84 7 73 15 
2 1 82 14 
1 45 11 81 

66 66 37 1 
45 13 15 77 
31 85 10 93 

During the selection of the first seven variables, the error rate curves in Figure 16 

are relatively consistent, although the actual features selected are almost completely 

different. The first several selections in trials 1 and 3 yield significant drops in the 

error rate, but do so with different variables. Furthermore, those variables selected 
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first in one trial are rarely selected later in another. We noted that this phenomenon 

occurred often among variables with high linear correlation. 

As mentioned previously, such features exist in our data. Them/ z values of peaks 

204 and 107 in the final Leukemia data set have a ratio of almost exacdy two, 

indicating the possibility that peak 107 is a doubly charged ion (z =2) of peak 204. 

In fact, the linear correlation between those two features is 0.952. A scatter plot 

of the two features, with a marker for each of 41 7 replicate spectra, is shown in 

Figure 19. 
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Figure 19: Correlation between two diagnostic peaks 

To investigate further, we created a simple generated data set that was intended to 

determine the effect of highly correlated features on the selection process. 
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Correlation Effects 

To replicate the problem of correlated features, this generated data set was given 

three primary diagnostic17 features. Those three features were replicated elsewhere 

in the data in two ways-first by simply inserting a duplicate (perfect correlation) 

of each diagnostic feature, and second by using the values in the original, plus 

Gaussian noise, to create a more weakly diagnostic (but correlated) feature. 

Figure 20 shows a heat map of the artificial data with the three perfectly correlated 

pairs. The most diagnostic features are labeled 10, 20, and 30, and their duplicate 

features are labeled 5, 15, and 25, respectively. In the heat map below, the first 100 

cases (rows) represent one class, the remainder, the second class. The diagnostic 

features are clearly separated between these two groups. 
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Figure 20: Generated data set with perfectly correlated features 

!7 To make them "diagnostic," each feature was generated from a normal distribution with a mean value in one 

class that was separated by one standard deviation from the mean in the second class. 
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Forward selection of 10 features is attempted on both the perfect, and the noisy, 

data sets. Error rates for both data sets are low. However, after repeated trials the 

effect of highly correlated features becomes clear: after one feature is selected, the 

second feature becomes much less important of an addition to the feature set. For 

the data set with the correlated, but noisy, features18 (Figure 21), the error rate 

drops rapidly when an independent diagnostic peak is selected, but less so when 

additional, but correlated, peaks are included. 
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Figure 21: Generated data set with correlated features with noise 

Table 8 shows the first 10 features selected for this artificial data with noise, and a 

typical error rate profile. The algorithm selects one feature from each correlated 

pair (5 and 10, 15 and 20, or 25 and 30), and then a second feature is selected from 

2 of the 3 pairs, but not from the third. In fact, feature 5 is never selected, even 

18 While the majority of the linear correlations among the random variables were less than 0.1, between the 3 
diagnostic pairs the linear correlations were 0.72, 0.69, and 0.75. 
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though other, purely random, variables are selected. Correlated features are 

highlighted in red. 

Table 8: First ten features selected, generated data with correlation 

Order Selected Trial1 Trial2 Trial3 Trial4 TrialS Error Rate 
1 30 30 30 30 30 11.4% 
2 10 10 10 10 10 8.2% 
3 15 15 15 15 15 5.3% 
4 20 20 20 20 20 4.1% 
5 25 25 25 25 25 3.3% 
6 1 2 2 9 29 3.2% 
7 7 12 16 12 2 3.1% 
8 8 18 8 13 18 3.1% 
9 4 3 18 18 12 3.1% 
10 2 27 12 19 11 3.1% 

Upon repeating the experiment with the other set of generated data, in which the 

correlated pairs (e.g. 5 and 10) are exact duplicates of each other, the problem 

becomes even more apparent. One of the two features is selected, apparently at 

random, from each pair, but the other is never selected. 

Table 9: First ten features selected, generated data with duplicates 

Order Selected Trial1 Trial2 Trial3 Trial4 TrialS Error Rate 
1 30 25 25 25 25 11.1% 
2 10 s 10 10 s 8.0% 
3 15 15 20 15 15 5.8% 
4 6 17 7 7 16 5.7% 
5 4 8 12 4 6 5.6% 
6 8 4 28 23 4 5.6% 
7 11 9 17 8 7 5.5% 
8 3 11 4 11 13 5.2% 
9 9 3 23 9 8 5.0% 
10 2 28 26 3 17 4.7% 

It is possible to show why this occurs mathematically. Consider a discrete random 

variable A with alphabet {1,2}, and a second variable B that is a duplicate of A, so 
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that P(A=i[ B=;) = ofj (Dirac delta). They are used to classify a class variable C, also 

with alphabet { 1,2}. 

In the case of classifying C using only variable A, Bayes' Theorem yields 

. P(A = iiC = 1) P(C = 1) 
P(C = 11A = t) = LkP(A = iiC = k) P(C = k) 

(28) 

If we classify C using both A and its duplicate B, Bayes' Theorem gives 

. . P(A = i,B = JIC = 1)P(C = 1) 
P(C = 11A = L,B = j) = LkP(A = i,B = JIC = k)P(C = k) 

P(A = iiC = 1)P(C = 1) 6ij 
(29) 

Lk P(A = i, IC = k)P(C = k) 6ij I 

which (because it never occurs that i =f. ;) is the same as the one variable 

classification. Because the classification P(C=k [data) has the same probability 

whether A, or the duplicate pair {A,B}, are used, the error rate cannot decrease if 

B is added to the feature set that already includes A. 

Again, this might not be a significant problem if the objective was simply to build 

a classifier, since selection of either A or B is "good enough." However, our goal is 

to determine not only a minimum feature set, but rather the set of all features that 

provide significant information about the disease state. More discussion on this 

can be found in Chapter 6: Bayesian Network Algorithm. A further discussion of 

the NBC instability problems is found in Appendix A: Mathematics. 

However, the NBC is useful in that it provides a check (of feature selection), and 

bound (of error rates), for further investigation. 
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CHAPTER 6: BAYESIAN NETWORK ALGORITHM 

Given the feature selection problems associated with the NBC, it was necessary to 

expand the methodology to consider links between variables. This naturally leads 

to the creation of a two-level Bayesian network. 

Goal 

Because we only seek a Markov blanket of variables for classification (see page 51), 

that final DAG will look very much like a NBC, but with the possibility that arcs 

will exist between two variables that are each a child of the class variable. In order 

to identify variables that are correlated to diagnostic variables (which is what the 

NBC failed to do) more robusdy, we will also seek a second level of variables. 

These are variables not connected to the class except through another variable. 

Figure 22 is an example of this type of structure. 

Figure 22: Bayesian network forMS data 

In this network, C represents the disease state, or class variable. The V nodes 

represent peak features. v7 has been determined to be independent of the class 
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and will be removed from the variable space. V6 is a first level variable, as are V4 

and V5; the latter two have been determined to be connected to each other. We will 

refer to this as a tripfy connected structure or triple connection. V1, a first level variable, is 

connected to two children, V2 and V3" We seek to build such a network from the 

MS data sets, noting the first and second level features. 

Furthermore, knowing that we will encounter two variables that represent a single 

physical molecule being measured in separate variables, we will attempt to increase 

the classification ability by finding and recombining the values of such variables. 

Algorithm 

The algorithm that creates the two level BN from the data set is enclosed in two 

loops: an outer one to repeat the entire process several times to suppress statistical 

fluctuations, and an inner one for cross-validation. Inside that second loop, where 

a training group and test group have been selected, the three primary steps occur: 

structure learning, parameter learning, and classification. Classification of the test 

group is concatenated until all test groups (and hence the entire data set) have been 

tested by a network, so that an overall population error rate is available for each full 

cross-validation. 

The full code for the algorithm 1s presented in the Appendix; the simplified 

pseudo-code is: 

pre-process the data; 
for each of r repetitions 

build n cross-validation groups; 
for each of n sets of training and test groups 
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% Structure learning section 
find all significant connectionsi 
test to prune and direct arcsi 
attempt to combine linked variablesi 
record resulting networki 

% Parameter Learning section 
find probability tables for first level arcsi 

% Classification section 
classify the test group using the parametersi 
save the test groups predicted classificationi 

chose another training-test group sets until complete 
check all predicted class values against known valuesi 
record error ratesi 

randomize and repeat. 

Initial data processing 

Before the start of the algorithm, the data is processed according to several 

options available to the user. These include replicate averaging, total ion 

normalization, and the removal of cases with extremely low signal-to-noise ratios. 

Structure Learning 

To learn the structure, we exploit the assumption that the class variable has a 

unique position in the structure, since it has no ancestors, and variables with no 

path to the class are to be discarded. To determine which variables are connected 

to the class, we need a scoring criterion. Several scoring criteria have been used in 

recent research; one popular criterion is the Bayesian Information Criterion (BIC) 

[17]. The majority of methodologies that use scoring functions like BIC do so to 

compare structures. Two structures are compared, such as a baseline structure and 

the same structure with one additional arc added. Such methods often heuristically 

build a structure from a set of completely unconnected (or completely connected) 

nodes. Given our goal, we require a much simpler set of tests-those necessary to 

find connections to the class, and connections between variables. We can then 
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prune all connections with more than a two-node path to the class, creating a 

network like that illustrated in Figure 22. 

The method we employ is somewhat similar to that of the Chow-l.iu tree described 

in Jensen [17], p. 250. Chow and Liu [24] described a method of building a 

maximum weight spanning tree (MWST), wherein each arc is assigned a weight by 

some method, and a network of maximum likelihood results. 19 

The Chow-Liu tree allows flexibility as to the method of determining the weight 

of each possible arc between variables. The robust ability of mutual information to 

determine informational correlations between variables is well suited for this 

requirement, and has been used previously; a MATLAB library is available [25]. 

The method of Jensen and others builds a MWST among all variables in the 

network, only finally choosing a specific variable as the root node. One difficulty 

with directly applying previous structure learning research to our problem is that 

we seek to limit the complexity of the resulting network to one that matches our 

understanding of the underlying biological processes. 

We have therefore simplified that method, and reduced the computational expense 

significantly, by starting with the class and building a modified Chow-Liu tree to two 

levels. The result is also similar to a classification tree as discussed briefly in Jensen 

[17]. 

!9 The likelihood for network 'Bon a data set Dis P(D I 'B). 
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Mutual Information 

Due to the strength of correlations between variables, the MWST method fails to 

account for the importance of the class variable in our search. We therefore 

choose to maintain the method of assigning weight via mutual information, but do 

so starting direcdy with the class node. This method requires a test to determine 

"when to stop" attaching arcs from the class to the features. 

To provide a threshold for mutual information score that we will consider 

significant, the algorithm takes the actual data, and for each variable, computes 

mutual information between that variable and a vector created by randomly 

permuting the class variable. This process is repeated a number of times and the 

maximum20 mutual information found is used as the baseline for the minimum 

significant mutual information. 

While this threshold would seem to provide the "highest MI between a variable 

and the class expected for a non-diagnostic feature," in one of our data sets, 

dozens of features exceeded this threshold. The noise introduced by the various 

instrumental and chemical preparation processes, particularly that of signal pre­

processing, results in a spread of mutual information values that far exceeds that 

which one would expect. 

Figure 23 shows a histogram of mutual information between variables and the 

actual class for the Leukemia data, as well as the same data with a randomized 

20 We take the 99th percentile of more than a thousand trials as the "maximum." 
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class. These results represent the data discretized by a simple {high, low} method; 

upon further optimization the number of features exceeding the threshold 

increases farther. 
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Figure 23: Histogram of MI between features and the class 

While we might expect a single molecule to show up as many as ten m/ z positions 

(including multiply charged states, adducts, and modifications), we do not expect 

many proteins to be markers for a given disease state [2]. 

We verified this result using the QC data set. While no "class" exists, since all 

samples are identical, we can examine mutual information between variables, and 

set a threshold with a randomly created class assigned to each case. Where a 

feature is physically related to another, such as an ionization satellite, we would 

expect to see high mutual information between variables. For the majority of the 

435 possible unique combinations of the 30 variables we would expect litde 
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mutual information, since all variations in the data are purely from the sources of 

noise listed previously. The heat map in Figure 24 shows that large areas of 

significant mutual information are present.21 We expect some high MI scores, such 

as the score of nearly 1.0 between features 8 and 9, which is likely the result of an 

adduct. The large area of high MI in the center region, however, is more likely to 

be a signal processing error rather than a physical or biological process. Much of 

these MI(variable; variable) scores exceed the values of MI(class, variable) in our 

data sets and would mask the structure we seek under a MWST method. 
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25 

30 

5 10 15 20 25 30 

Figure 24: Mutual information between variables, QC data 

21 Assignment of a randomly chosen class to each case allowed a threshold of approximately 0.05 to be 
considered significant. 
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Given these indications that a randomized MI threshold would underestimate a 

significance level, the algorithm was modified to apply a multiplicative factor to the 

MI threshold. 

For each data set, we examined the effect of changing this threshold factor on the 

cross-validated error rate and the number of variables selected to be direcdy 

connected to the class variable. In the Leukemia data set, factors below 2.0 (double 

the "randomized" threshold) resulted in an unrealistic number of first level 

features selected, as well as an error rate significandy higher than the results of 

previous analyses. However, when the threshold was set to approximately 3.4, the 

error rate reached a minimum, and a biologically reasonable number of features 

were selected. 
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Figure 25: MI threshold effects under 10-fold cross-validation 

Adjacency Matrix 

While discovering the BN structure, we need a method to encode the various arcs 

and nodes efficiendy. Our method, following that of the Bqyes Net Toolbox open 
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source MATLAB library written by Kevin Murphy22 (with contributions), is that of 

the acfjacenry matrix. In general, with n nodes in a structure, the adjacency matrix is 

an n-by-n logical array. The (i;) entry in the array represents the truth value of the 

statement "an arc exists between node i and node f' Care must be taken in its 

assembly, as the requirements for a DAG are stricter than those of the adjacency 

matrix-for example, a true in a diagonal element represents an arc from a node to 

itself, which is not allowed in a DAG. An adjacency matrix for Figure 10 is shown 

below. 

Arrqy Entries 

To 

A B C 
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Figure 26: Adjacency matrix representation 

The first step in the structure learning is to find arcs from the class variable to the 

peak variables, or c~ V. For the reasons mentioned previously, the abundance 

values need to be discretized. 

Several methods of discretization of the variables were explored. One method, 

which we termed as naive binning, models the entire population as a normal 

22 The BN Toolbox is hosted at http:/ /www.cs.ubc.ca/ ~murphyk/Software/BNT /bnt.html. 
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distribution, and uses combinations of the mean and standard deviation to set bin 

boundaries. A second method attempts to optimize MI(C;V), where V is the value 

of V discretized over the boundaries. Both two bin, with a single central boundary, 

and three bin, with two central boundaries land r, were used. The class variable is 

already discrete (disease or normal). 

An example taken from several features of the Leukemia data set is shown in 

Figure 27. Three bin optimized discretization enhances mutual information 

compared to naive methods and two bin optimization. 
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Figure 27: Results of optimizing discretization boundaries 

While it is possible that mutual information could be increased further with 

increasing numbers of optimized bin boundaries, practical limits exist. First, the 

search for optimal boundaries is computationally expensive. Second, the greater 

the number of boundaries, the more likely it is that small sample effects, such as 

central bins having no cases from one class, will occur. 
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Three Bin Discretization 

Three bin discretization was therefore chosen for this algorithm. If the variable is 

diagnostic of the class, central values that are common to both classes are isolated 

in the center bin, and the probability difference between classes falling in the outer 

bins is maximized. 

Figure 28 demonstrates this effect. In that figure, a variable in the generated data 

set is separated into classes, and each class is histogrammed by the measured 

abundance value. Bin boundaries (green dashed lines) are placed to isolate the area 

where class is the most uncertain. In the outer bins, the probability ratio 

P(bin I class=1)/ P(bin I class=2) is far from unity, providing the best possible input 

for a Bayesian analysis. 
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Figure 28: Center bin isolates uncertainty 
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Boundary Optimization 

The algorithm finds boundary values l and r lying between max(V) and min(V) 

using a 2-D exhaustive search.23 Results of one such search (feature 197) are 

presented in Figure 29. The values on the lower axes represent possible positions 

of land r as they are stepped across the range of V The vertical axis represents the 

mutual information MI(C;V) resulting from discretizing on those boundaries. 
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Figure 29: Search for optimal boundaries for three bin discretization 

0 

The maximum point represents the (l, r, max MI) point which is used for further 

testing. All cases (training and testing groups) are discretized on the I and r 

boundaries found in this search. 

23 The exhaustive search is inefficient but simple to implement. The computational expense was minimal, as 
optimization is only accomplished once per cross-validation. 
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First Level Connections 

Once discretization is complete, we score all c~ V connections and note those 

with MI(C;V)>E:, where E: represents the mutual information threshold found from 

random data, adjusted as described on page 82, to reduce false arcs. Connections 

meeting this test are entered in the appropriate element in the adjacency matrix. 

Second Level Connections 

The second level should consist only of connections of the type v~w, where V 

is a node found in the first level, and W is a node (also representing a peak position 

abundance variable) found using the test MI(V;W)>E:'. 

E:' found in this test is scaled from the E: used previously, since the maximum value 

of mutual information differs according to the number of elements in the 

alphabet of each variable. For example, if the class has two possible values, and 

the variables three, the maximum of MI(C;V) is logz(2)=1; the maximum of 

MI(V; W) is log2(3). For the leukemia data, E: was about 0.05, E:1 was about 0.08. 

Initially, the entire adjacency matrix is filled with the results of this test. However, 

the algorithm then clears irrelevant arcs, such as those between variables with no 

path to the class and those more than two levels beneath the class. This removes 

triply-connected structures on the second level. Triply-connected structures may 

remain on the first level, with an unknown arc direction between the features, since 

MI(V;W) is symmetric. 
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Parent-Child Identification 

We must address the triply-connected features to determine if they are a result of a 

true triple connection (which is not allowed in a Chow-Liu tree) or if one of the 

nodes is a child of the other-but not the class. We seek to direct or remove arcs 

in the manner shown in Figure 30. 

Figure 30: Removal of false connection to class 

We believe we will find such structures based on our understanding of the physical 

processes involved. In the diagram above, V 1 might represent a primary ion and V 2 

a modification of that ion. Strictly adhering to the causality precepts for the BN, 

we might instead seek to insert a hidden variable between the class node and the 

inverted V arcs in the left side of Figure 30, with the hidden variable representing 

the base molecule before ionization. However, the result will be the same, as will 

be discussed in the next section on metavariable creation. 

To test the triply-connected structure with the goal of simplifying it into a serial 

connection, we use a property of the Bayesian network. In the serial structure, if 

the center variable is known, the root variable and the child variable become 

independent (see the discussion on page 45). Mathematically, MI(C;V 2 1 V1)=0. 
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We will not require the mutual information to vanish, due to the inherent noise in 

our data-rather we test for a significant drop such that MI(C;V2 1 V1)« MI(C;V ~-

Specifically, we test that 

MI(C; V2)- MI(C; VziVt) 
MI(C; V2 ) ~ 8 ' 

(30) 

where o represents some threshold. It is important to note that, for testing as 

parent and child, the arc between the two variables must already be directed since 

MI(C;V2 1 V1) is not symmetric in V We do so by choosing the greater of the terms 

MI(C;V; IV), where i and j are the indices of the two variables to be tested and are 

permuted. Thus, whichever variable maintains a stronger correlation to the class 

upon instantiation of the other is chosen as the parent. 

The reader who is familiar with the controversy regarding the "monotone DAG 

faithfulness" assumption, made by Cheng, et al.[26], and questioned by Chickering 

[27], may object to our use of decreasing MI to choose numbers of paths to a 

descendant. However, we do not seek to extend our search for paths beyond the 

simple question of "one path or no paths?" It was this extension by Cheng, et al. 

which led to the inconsistencies noted by Chickering. 

While we allow for some mutual information to remain after the center variable 

(V1 in Figure 30) is instantiated, we do not assume that there are paths remaining 

that provide that mutual information; rather we understand that in the data sets we 

use, perfect dependence or independence is unlikely. 
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The question arises as to what level of decrease will be considered significant when 

making the test for a drop in mutual information. While the threshold 8=1 is 

unrealistic, too low of a threshold will prevent us from finding parent-child 

relationships in physically correlated variables-a problem we have planned to 

avoid. 

Our only method of determining o gtven the unknown nature of the data 

correlations is to test various thresholds empirically and determine a reasonable 

balance of first-level feature set size, stability, and error rate. 

The results of just such an analysis are shown below. Using the Leukemia data set, 

and holding all other parameters constant, many trials at various values of o were 

performed, and the error rate and number of variables noted. As can be seen, the 

cross-validated error rate remained relatively constant through the reasonable 

range for o, but, as expected, the number of variables began to rise. 
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Figure 31: Effect of increasing drop threshold 
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The largest increase began (for this data set) at about 8=0.7, and that threshold 

was chosen for the remainder of the testing. Stability of the feature set is 

discussed later. 

Whether or not the triply-connected structure is resolved into a serial structure, all 

connections V ~ V remaining at this point are tested for possible combination into 

metavariables. 

Metavariables 

Knowing that there is a strong possibility (one that is verified later) that such 

V ~ V connections will often represent the abundance of a single molecule 

showing up as more than one variable, it is prudent to attempt to recombine those 

variables into a single metavariable. The simple summation of abundances would 

seem to be the best method. Unfortunately, using a MALDI TOF-MS system, the 

measured abundance of molecules in a sample is made in arbitrary units, since 

numbers of ions are not measured directly. Even the measured abundances for 

two peaks in a single sample are not perfect indicators of the actual ratio of 

concentrations [28]. 

Lacking any precise method for learning the original abundance of the parent ion, 

we can only rely on the knowledge that the expectation value of the sum of two 

random variables is the sum of their individual expected values [29]. We therefore 

chose to sum the abundance values of two variables, if they are determined to 

likely represent the same parent species. 
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The determination of a physical relationship itself was more problematic. While it 

was relatively simple to identify multiply charged ionization states from the integer 

ratios of the two variables' m/ z values, it is extremely difficult to automate the 

identification of the hundreds of possible adducts and modifications. In fact, this 

process is a separate and active area of study; a few products are available 

commercially. 

While it may have instead been possible to group species manuai!J pnor to 

metavariable selection,24 a different approach was chosen. In that approach, each 

candidate was combined on a trial basis, and the new variable was re-optimized to 

determine the maximum MI(C;V) of the metavariable. If this value exceeded the 

mutual information of the parent variable alone, the metavariable was kept. If the 

mutual information showed no increase, the metavariable was not created, and the 

child was noted and removed (unless it was a first level variable itself). 

Surprisingly, few features were combined using this test. We had expected the 

series of features in the Leukemia data set around 11.7 kDa, which appeared to be 

a set of modifications, to combine into a single feature with increased mutual 

information with the class. While two features did often combine, and others did 

occasionally, the infrequence with which this occurred was unexpected. Table 10 

below shows the occurrence of metavariable creation during ten 10-fold cross-

validation trials (100 possible occurrences). 

24 This is quite difficult in itself, particularly in the mass ranges under consideration, as the exact m/ z values arc 
estimated, and there may be many possible explanations for a single m/ z difference. 
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Table 10: Metavariable creation in 199 feature leukemia data 

First Level Feature Fraction of 
Feature25 Combined Occurrences 

42 43 0.28 
43 42 0.01 
76 17 0.01 
76 74 0.01 
100 122 0.03 
121 123 0.01 
122 100 0.01 
122 121 0.01 
145 121 0.01 
145 122 0.07 
151 112 0.04 
198 195 0.09 
198 196 0.02 
198 197 0.03 
198 199 0.70 

In the PCA data, the occurrence of metavariable combination was more frequent. 

However, the much lower MI threshold for declaring relationships does not allow 

a direct comparison between the two data sets; at the thresholds used in the 

Leukemia data, the PCA data shows no connections at all. 

It is clear that, if there is more information to be found by combining variables, 

more work needs to be done in this area. However, since our primary goal was to 

identify feature groups (the candidates for metavariables) rather than build a 

perfect classifier, we accepted the limitations of the metavariable technique as 

described. 

Parameter Learning 

With the creation of the metavariables, the algorithm now learns the probability 

tables associated with each arc. This process is the same as that described in 

zs Two features may show up in reverse order in this table, such as the pair 42-43, since on various trials, either 
one may be selected as a parent of the other and hence be listed as the top-level feature. 
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Chapter 5: Application of the Naive Bayesian Classifier; data is simply partitioned 

and counted for each probability needed. 

Table 11 is an example probability table from a single cross-validation attempt for 

the 199 feature Leukemia data. On this particular attempt, all the test cases were 

classified correctly, using the feature set {3,42,43,51,142,144,145,151,193,198}. The 

variable labeled 198 on this attempt is a metavariable combining feature 198 with 

features 197 and 199. 

Table 11: Probability table: P(abundance I class) for metavariable 198 

i Abundance J 
~ -,,----~--- . 

Low l-~ed High I 

Normal 96% i 4% 0% i 
~-Le-u_k_e_m_i_a__, __ 1_5 __ 

0
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Figure 32 demonstrates why this variable was chosen. It has large differences 

between P(V I C=Normal) and P(V I C=Leukemia) in the outer bins. 
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Figure 32: Abundance probability differences by class 
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Classification and Error Rates 

As was done in the NBC, a deterministic classification method is used. The joint 

probability distribution that is represented by the BN resulting from the previous 

steps is solved for P(class J data). The vector of data includes only those features 

finally chosen as first level nodes. 

This probabilistic classification is matched against the known classification at some 

threshold, typically 0.5, and each test case is scored "correct" or "incorrect." Once 

a complete set of cases is scored after one n-fold cross-validation, an overall error 

rate is assigned to that trial. Specific results are found in the next chapter. 
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CHAPTER 7: RESULTS AND ANALYSIS 

In this chapter, we present the results of the methods described in the two 

previous chapters applied to the three data sets described in Chapter 3. The results 

are organized by data set, then by method, with an overall analysis of each data 

set's results at the end of each section. 

For each data set, two experiments are run using the Naive Bayesian Classifier. 

First, ten independent trials of forward selection are done, with 20 features 

selected in each trial, to assess the stability of the feature set. Second, a forward 

selection is run, selecting a large subset of features, from which backward 

elimination is used to find a minimal feature set based on lowest error rate. 

Thirty cross-validated error rates are calculated after each feature's addition or 

elimination; the results are averaged to score that feature's value to the feature set. 

10-fold cross validation is used for each trial. A deterministic classification scheme 

is used, with a threshold of P(class I data)>O.S to declare the class. Four and six bin 

discretizations are used, depending on the data. 

For the Bayesian Network technique, it was first necessary to determine the 

appropriate thresholds for mutual information tests that create, or break, links in 

the Bayesian network. Node-to-node minimum MI thresholds were found first 

using an analysis that balanced error rate and feature set size. Next, the threshold 

used to remove or arrange links are determined using a similar analysis. 
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When those parameters were established, the algorithm was run repeatedly, 

typically 100 times using 10-fold stratified cross-validation. This results in 1000 

Bayesian networks, and 100 fully cross-validated error rates. Networks are 

examined for stability and consistency, and important features are noted and 

compared to the NBC results. 

Generated Data 

The generated data set is described in Chapter 3. The reader may want to review 

Table 1: Diagnostic variables, generated data on page 2S to see the purpose for the 

features listed below. We expect to find thirteen total features: 

• Peak 200 as a parent, with children at 100 and 196-199; 
• Peak 99 as a child of peak 199; 
• Peaks 1 and 2, with correlations due to deconvolution problems; 
• Peaks 3 and 4, which were independent 
• Peaks SO and 1 SO which should combine to form a single feature 

N a'ive Bayesian Classifier 

The data was processed using repeated forward selection and a "forward-then-

backward'' experiment. 

Forward Selection 

Forward selection of features was accomplished by selecting the best 20 features 

(based on error rate) in ten independent trials. The goal was to select the thirteen 

diagnostic features, followed by several features that were not intended to be 

diagnostic-we will call these random features. During those trials, cross-validated 

error rate dropped to about 2%. Three typical trials are shown in Figure 33. 
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Figure 33: Error rate during forward selection, generated data 

Table 12 lists the features selected, in order, for each of the ten trials. The feature 

set selected early in each trial was relatively stable. The first three selections were 

consistent, and included the parent peak (200) of the correlated set {200,196-199, 

99-100}, followed by one of the correlated "convoluted peaks," feature 2. The 

third selection in every trial was one of the pair of correlated "fragments," peak 

50. The fourth selection in all trials was a random peak, the fifth was often a 

"mildly diagnostic" feature 3. The other mildly diagnostic peak, feature 4, does not 

appear. Entries in red are those intended to be diagnostic. 

Table 12: Forward selection, generated data 

Selection Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial 
No. 1 2 3 4 5 6 7 8 9 10 

1 200 200 200 200 200 200 200 200 200 200 
2 2 2 2 2 2 2 2 2 2 2 
3 50 50 50 50 50 50 50 50 50 50 
4 179 190 190 5 190 179 190 190 190 190 
5 1 3 61 94 3 170 3 3 3 3 
6 175 164 81 170 164 62 164 164 164 164 
7 58 126 94 195 76 81 126 76 76 126 
8 3 76 112 190 126 5 76 126 126 76 
9 48 63 193 37 63 36 63 63 63 63 

10 194 94 170 61 160 76 138 160 178 160 
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It would have been difficult to separate the mildly diagnostic feature 3 from the 

random features such as 190 that appeared frequently in the first few selections. It 

is clear, however, that the error rate curves for the ten trials begins to diverge at 

selection 4, which could indicate that a maximum-size stable feature set has been 

selected. The error rates for all ten trials are in Appendix C. 

Forward-Backward Feature Set and Error Rates 

In the second experiment, 80 of 100 features are selected by forward selection, and 

then backward elimination is run using only those features. Cross-validated error 

rates as low as 1% were obtained during trials of the forward selection portion. 

However, error rates under 10% were only achieved while selecting many random 

features26
• Of the thirteen diagnostic features, only 5 were chosen. Given the 

problems associated with correlated features, we expected only one of the 

correlated set {200,199-196,99-100) to be chosen; that expectation held true. Of 

the six remaining features, namely {1,2,3,4,50,150}, four were selected; 2 were not. 

Table 13 shows the diagnostic peaks selected and the selection order (of 80). 

Features highlighted in red were found by forward selection in the first experiment. 

26 More specifically, "features that were diagnostic only due to random chance in a small sample set." 
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Table 13: Diagnostic variables selected, generated data 

Feature Selection Number 

200 1 

1 2 

3 4 

2 26 
150 69 

Cross-validated error rates for the forward selection portion of this experiment 

stabilized at about 1% with 25 features remaining. The error rate curve is shown in 

Figure 34. 
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Figure 34: Error rate during feature selection, generated data 

As the error rate began to rise during the backward elimination portion of this 

experiment (the red line in Figure 34 above, reading right to left), all the features 

listed above remained, as well as 13 random features. After further elimination, 

feature 2 was removed, leaving 4 diagnostic and 12 random features. Feature 2 was 

highly correlated to feature 1 due to artificial deconvolution problems. After this, 

however, all the random features were eliminated, leaving four diagnostic features, 

namely {200, 1, 3, 150}, with about 7% error. 
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This feature set includes exactly one feature from each group of correlated 

features, other than feature 4, which should have been independent and diagnostic. 

A closer examination of feature 4 shows that its distribution is perhaps less 

diagnostic than was intended. Figure 35 shows features 3 and 4 side-by-side for 

companson. 
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Figure 35: Distribution of features 3 and 4, generated data 

Bayesian Network 

The artificially generated data set was processed usmg the Bayesian network 

algorithm described in Chapter 6; the code is in Appendix B: MA TLAB Code. 

Prior to the main part of the experiment, it was necessary to determine the 

thresholds for mutual information tests, as described on page 82. 
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It was immediately clear that thresholds for MI(class;variable) near the baseline, 

which was derived from the expected maximum MI between a similar size data set 

with a random class, overstated the number of diagnostic features. Even using 2.0 

times the baseline as a threshold, 16 features were frequendy selected as diagnostic. 

Knowing that we intentionally placed only 13 of 200 diagnostic features in the data 

set, it was obvious that small sample effects27 allowed some random features to 

appear non-random, when optimized as described on page 85. Figure 36 shows the 

effect of changing the threshold on error rate and number of variables selected. 
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Figure 36: Effect of MI Threshold 

A MI threshold factor of 3.2 times a "random MI" minimized error rate and 

limited feature set size to about 6. While this was less than the 13 known 

diagnostic variables, we expected that the correlated variables would not be 

selected at the first level, so our expected feature set size was seven. We chose a 

somewhat lower threshold factor of 2.5, knowing that random features might be 

27 Meaning that our sample size of 150 samples was small compared to the 200 variables. 
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selected, but attempting to determine whether our methodology would identify 

them through their infrequent and unstable inclusion. 

It was also necessary to determine the threshold for declaring parent-child 

relationships in the network structure. An analysis similar to that described on 

page 88 (parent-child identification) determined that a 75% drop from 

MI(class; child) to MI(class; child [parent), where "child" is the perspective child 

variable of the "parent" variable, is a reasonable threshold. This threshold 

provided a minimum error rate (about 5% in that analysis) while maintaining the 

feature set size that was desired. The remainder of the analysis was performed 

with these two thresholds. 

Feature Set Selection 

We performed 100 repetitions of the Bayesian network algorithm, each time 

recording the adjacency matrices and 10-fold cross-validated error rate, as well as 

any metavariables created. Since each cross-validation attempt results in a unique 

Bayesian network and accompanying parameters, with 100 repetitions of 10-fold 

cross-validation, 1000 adjacency matrices are created. 

Class to feature connections 

The adjacency matrices for all trials are summed together; the value at the (i?J) 

position of the result is the total number of times a connection was found from Vi 

to Vi in all networks. Since the class variable is a node in the network, the final row 

in the adjacency matrix represents the number of times a connection was found 
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from c~v for each variable. Figure 37 shows how many of the 200 variables 

were connected to the class at various fractions of the possible networks. 
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Figure 37: Frequency of class-variable connections, generated data 

Six features are selected by the BN algorithm to be directly connected to the class 

more than 50% of the time - in fact, these six are always selected. These features 

are listed in Table 14. Features that were also found in the NBC are highlighted in 

red. 

Table 14: Variables selected by BN, generated data 

Feature Selection Frequency 

1 100% 

2 100% 

3 95.1% 

4 99.7% 

150 99.9% 

200 99.6% 

This list is almost exactly the set of features we expected to find. It includes all the 

"parent" features we attempted to place in the generated data set, with none of the 

correlated features. The seven features not included were: 
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• SO, which, with 150, was a fragment of a hidden feature; 
• 99 and 100, which were ionization states of 199 and 200; and 
• 196-199, which were correlated modifications of 200. 

Feature 99 was found to be a first level node nearly 40% of the time; a random 

feature (1SS) was included in 48% of the trials. We next examined the second level 

features to determine whether these correlated features were identified. 

Feature to feature connections 

Only two first-level features had other features frequendy connected at the second 

level. Feature 200 was found to be the parent of features 19S-199 and 100, all 

more than 99% of the trials. Feature 1SO was connected to feature 50, but in only 

13% of the trials. These two features were fragments of a non-measured feature. 

The only diagnostic feature not identified by the BN algorithm at either the first 

level or the second level of nodes more than SO% of the time was feature 99. 

However, this was a correct result, since feature 99 was intended to be a child of 

feature 199, which itself was derived from feature 200. Therefore, it should have 

been identified as a third level node and eliminated, which is indeed what occurred. 

Metavariables 

All the children of feature 200 were occasionally combined into a metavariable 

with that feature, at rates ranging from 17% (feature 100) to 31% (feature 196). 

Features SO and 1 SO were not found to combine into a metavariable. 
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Error Rates 

Error rates ranged from 1 0% to 19%, much higher than that found with the NBC. 

A histogram of cross-validated error rates for 100 trials is presented in Figure 38. 
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Figure 38: Error rate distribution, generated data 

Analysis 

The Naive Bayesian Classifier was extremely successful at minimizing error rate, 

achieving cross-validated rates as low as 1% with feature set sizes near 20. It did 

so, however, by including large numbers of random features and missing many 

diagnostic features-both primary and correlated. We did see some stability in the 

first several features selected, but large instabilities in the feature sets that achieved 

the lowest error rates. Correlated features, as expected, were not added to the 

feature sets by the NBC. Given that the lowest error rates were achieved with a 

large and unstable set of features, we would expect the resulting classifier to have 

much higher error rates for new cases. 

The Bayesian network algorithm behaved much differendy. It was able completely 

identify the expected feature set, including correlated features at the second level, 

and remove all non-diagnostic features and third-level features. It proved extremely 
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stable with regard to feature set selection. Error rates were much worse than the 

NBC, but likely more indicative of the true classification ability of this data. Figure 

39 shows the most likely Bayesian network found by averaging the results of the 

1000 trials.28 Solid lines represent strong links, dotted lines represent weaker links. 

Black lines were found by the algorithm, blue lines were intended by the 

construction of the generated data (see page 22) but not found. Red lines 

represent links that were found, but not intended. 
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······~--~ 

~) 

Figure 39: Resulting Bayesian network, generated data 

The node labeled "H" was a hidden variable; it presented itself as a serial 

connection between its parent (the class) and one of its descendants. Feature 99 

was a third-level variable and should have been removed, but was found in a small 

fraction of the trials. 

This result shows that the BN was successful at finding nearly all the intended links 

in the data, and most importandy, in showing their causal connections, something 

that the NBC was unable to do. 

28 The 1000 adjacency matrices are averaged; arcs that appear frequently are declared "stable." The resulting 
network could be used for classification of new samples if needed. 
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Leukemia Data 

Portions of the results shown in this section are shown elsewhere in the 

document; they are repeated here for consistency. The 199-feature data set is used 

for these calculations. 

Naive Bayesian Classifier 

As was done for the generated data, a repeated trials of forward selection 

investigates stability, and a "forward-then-backward" trial seeks a minimal feature 

set. The threshold for deterministically declaring a class remams at 

P(c!ass I data)=0.50, and 10-fold cross validation is used again. 

Forward Selection 

As in the generated data, 20 features are selected in ten trials. However, the 

number of diagnostic features is now unknown. Three typical error rate profiles 

are shown in Figure 40. 
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Figure 40: Error rate during forward selection, Leukemia data 
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The following features were found to occur at least 75% of the trials: 

Features 
199 
198 
151 
122 
141 
193 
68 

Frequency 
100% of trials 

90% of trials 

80% of trials 

Four more features, 3, 10, 38, and 43, appeared in at least one-half of the trials. 

The complete list of features selected during this experiment is found in Appendix 

C: Results. An excerpt is shown in Table 15. Features mentioned above are listed in 

red. 

Table 15: Forward selection, leukemia data 

Selection Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial 
1 2 3 4 5 6 7 8 9 10 

1 199 199 199 199 199 199 199 199 199 199 
2 198 198 198 198 198 198 198 198 198 198 
3 141 141 141 141 141 193 141 141 141 141 
4 43 43 43 43 122 18 80 122 43 122 
5 31 122 4 4 9 93 122 9 4 9 

Backward Elimination 

Since the size of the "true" feature set is unknown, a trial of backward elimination 

was completed to look for an optimal feature set size, as measured by error rate. 

Figure 17, which is repeated below, shows that the cross-validated error rate stops 

decreasing at about 6%, at that point a feature set of about 60 features remains. 

This experiment was repeated several times with consistent results. 
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Figure 17: Error rate during backward elimination, Leukemia data 

Fonvard-Backward Feature Set and Error Rates 

The initial portion of this experiment consisted of choosing a reduced feature set 

of 80 features. That size was selected to add a margin to the optimum feature set 

size of 60 found in the previous experiment. 

Forward selection produced error rates of about 6.4% at a feature set size of 50 

features and then stabilized. This error rate profile is represented by the blue curve 

in Figure 41. 
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Figure 41: Error rate during feature selection, Leukemia data 

110 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Using the reduced feature set found in the forward selection phase, backward 

elimination was performed. This error rate profile is represented by the red line in 

Figure 41. Unlike the generated data, in which the backward elimination error rate 

closely followed the forward selection curve, in this data the error rate dropped 

further, reaching minimum of 3.44% with 21 features remaining. Of the 11 

features found often in the forward selection trial, 7 remained in this experiment 

(red in Table 16). The list is in order of effect on error rate. 

Table 16: Features remaining after forward-backward selection 

Feature Label 
198 
193 
199 
144 
122 
182 
140 
151 
120 
117 
34 
124 
101 
186 
3 

115 
45 
38 

Features 141 and 68, which were found often in forward selection but not in this 

particular trial, were often included in the minimal feature set during other trials. 

With only the seven features found in both experiments, the Leukemia data set 

(after normalization) can be classified at either a nominal or a cross-validated error 

rate of about 7.5%. 
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Bayesian Network 

The leukemia data set was processed by the same method described for the 

generated data. Prior to the main part of the experiment, it was necessary to 

determine the thresholds for mutual information tests, as described on page 82. As 

can be seen from Figure 25, reproduced below, using a MI threshold of 3.2 times 

the maximum random MI(C;V) achieved a minimal error rate with approximately 

7-10 independent features. 
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Figure 25: MI threshold effects under 10-fold cross-validation 

We also found that using a drop in MI of 70-80% to determine parent-child 

relationships provided minimal error rates and similar feature set sizes (see Figure 

31, page 90). Therefore, analysis of the leukemia data set was performed with 

these two parameters. 

Feature Set Selection 

We again performed 100 repetitions of the Bayesian network algorithm, each time 

recording the adjacency matrices and 10-fold cross-validated error rate, as well as 

any metavariables created. 

112 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Class to feature connections 

Figure 42 shows the number of variables selected at various fractions of the 

possible trials. The bar at the far left, representing the group of variables that were 

never selected, is off the scale of this chart at 179 of the 199 total variables. 
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Figure 42: Frequency of class-variable connections, Leukemia data 

Twenty features are selected at least once, but only eight of these are selected more 

than SO% of the time. Seven features are selected by the BN algorithm to be 

direcdy connected to the class more than 75% of the time. 

The eight most-selected features are listed in Table 17. Features that were also 

found frequendy in the NBC trials are highlighted in red. 
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Table 17: Variables selected by BN, Leukemia data 

Feature Selection Frequency m/z 

198 100% 11697 

51 98.8% 4106 

145 98.0% 7691 

151 87.8% 7863 

142 87.4% 7483 

3 82.3% 2798 

144 76.0% 7649 

141 54.6% 7448 

The three features not highlighted, along with feature 141 (which was found by 

NBC) are all within 250 Daltons, a range which we have found to be indicative of 

modifications of a single protein. These features were apparendy interconnected in 

the network; the feature selected to connect direcdy to the class appeared to vary 

as cross-validation chooses different subsets of cases from which tests are derived. 

Feature-feature connections 

Extremely strong and frequent second level connections are found between feature 

198 and several others, particularly those between 195 and 199. The strongest 

connections with this feature are listed in Table 18. 

Table 18: Second level features connected to feature 198 

Feature Selection Frequency m/z 

107 100% 5878 

108 100% 5887 

195 100% 11486 

196 100% 11539 

197 100% 11640 

199 100% 11742 

144 96.5% 7649 

42 85.5% 3898 
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The features labeled 107 and 108 are almost exacdy one-half of them/ z ratio of 

feature 199, which we have taken to mean that they are each a doubly-charged 

satellite of one of the features 195-199. Feature 42 is almost exacdy one-third of 

them/ zvalue of feature 198, we have taken that to be a triply-charged satellite. 

We are less sure about the causal connection between features 144 and 198. It may 

be that 144 is a fragment of 198, indeed, the difference between their m/zvalues is 

nearly equal to the m / z of feature 51, which was found to be connected to the 

class variable. 

Feature 145 is connected to feature 146 in 78% of the trials; the difference in their 

m/ z values is 21 Daltons, which may indicate a sodium adduct (23 Daltons) or 

neutral loss of water (18 Daltons). It is connected to feature 122less often (33%). 

Features 3, 142, 144, and 151 have no frequent second level connections with 

other variables. Due to them/ z proximity of the features in the range 141-145, it 

may be that a single diagnostic feature is in this range and being modified. It is also 

possible that there is a larger protein outside the range we have studied which is 

showing up here as multiply charged states or fragments. We were unable to 

determine specific patterns for these features, but are currendy attempting to 

expand our mass range to find more massive features correlated to this group. 

Feature 38, which was found in the NBC, is not found in the first level 

connections of the BN. However, it is found to be connected at the second level 

with feature 141, and appears to be a doubly-charged ionization state. 
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Metavariables 

The algorithm attempts to recombine these feature combinations to create 

metavariables with better classification performance. 

All the features 195, 196, 197, and 199 are combined at least once with parent 

feature 198 during this trial, however, only 195 (65.5%) and 199 (47.1%) are 

frequently combined. 

Feature 122, which was one of the features found often by the NBC, was 

combined with feature 145 nearly 20% of trials. It does not appear to be an 

adduct, modification, or satellite of 145. 

Error Rates 

Cross-validated error rates averaged 12.2%, significantly higher than the NBC. 

However, the feature sets were much smaller (averaging 9+ /-2 features) and much 

more stable. The range of error-rates is shown as a histogram in Figure 43. 
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Figure 43: Histogram of CV error rates, Leukemia data 
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Only 100 values are included, as each 10-fold cross-validation results in a single 

error rate for the entire population. 

Analysis 

Many of the results found in the Leukemia data set were similar to those predicted 

with the generated data (which was designed to mimic it). We saw very low cross-

validated error rates (4%) and even lower nominal error rates (2.5%), but this 

required feature set sizes near 20. Features selected by the NBC were very unstable 

past the selection of a few features, and correlations were ignored. 

The BN algorithm identified the most stable features found by the NBC, as well as 

other stable features. The result of that analysis is shown in Figure 44. 
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Figure 44: Resulting Bayesian network, Leukemia data 

This stability came at the cost of a rise in cross-validated error rate, however. The 

BN also successfully found and connected correlated features such as 
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modifications and ionization states. One of these feature groups has possibly led 

us to a better biomarker candidate than had been found using previous methods. 

Our collaborators at EVMS had previously identified the feature labeled here as 

198 as a potential biomarker [8]. However, attempts to identify the actual protein 

consistendy have been problematic [2]. 

The additional understanding of correlation given by the BN analysis, however, 

gave us important clues that may lead to better protein identification. The right 

half of the structure shown in red in Figure 45 is the one that produces the 

features 19 5-199 in our data set. The normal (black) spectrum has a peak located at 

the position we label as feature 198, but typically at a much lower abundance, and 

without the modifications to feature 198 seen in the disease (red) spectrum. 
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Figure 45: Leukemia (red) and normal spectra, vicinity feature 198 

Examination of the m/ z differences between the parent feature (198) and the 

others has led us to hypothesize that this feature represents the protein serum 

amyloid A (SAA) with modifications such as des-arginine (156 Daltons) which 

matched our m/ z change from feature 198 to feature 196 (157 Daltons) [30]. This 
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combination of SAA and modifications has been found to be present in the blood 

sera of renal cancer patients, also using a SELDI technique [31]. Further work to 

confirm this identification is currently ongoing at EVMS. 

Prostate Cancer Data 

Examination of the PCA data mirrored that of the other data sets. However, we 

found that feature set selection was more difficult than the Leukemia data, and 

error rates were much higher. 

Naive Bayesian Classifier 

Due to the difficulties with stable feature set selection, we examined error rate 

curves for both the forward selection and backward elimination methods to 

determine the approximate optimal feature set size for the PCA data. We then used 

many repetitions of forward selection to determine which features were 

consistently chosen within this parameter. 

Forward Selection 

Several trials of forward selection of nearly all the variables produced error rate 

curves such as that in Figure 46. 
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Figure 46: Error rate during forward selection, PCA data 
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The minimum error rate is just under 30%, far greater than in the previous data 

sets. This error rate is achieved at about 22 features. We will therefore expand the 

repetitive forward selection feature set search to 30 features in an attempt to find a 

stable feature set of about 20 features. 

After 10 trials of selecting 30 features (the complete list is in the appendix) there 

are 23 features that appear in more than one-half of the feature sets. The error 

rate is more unstable initially than seen in previous data sets. Three typical error 

rate curves are shown in Figure 47. The minimum error rate was 28%. 
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Figure 47: Error rate during repeated forward selection, PCA data 

Backward Elimination 

Backward elimination achieved a slightly lower error rate (27%) at only 12 features 

when compared to forward selection, which achieved a minimum error rate of 

28% at about 22 features. 
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Figure 48: Error rate during backward elimination, PCA data 

The 12 features comprising the minimum error rate feature set in this trial are 

shown in Table 19. Those that were also found often during the repeated forward 

selection trials are highlighted in red. 

Table 19: Features achieving minimum error, backward elimination 

Feature Label 
38 
45 
19 
40 
52 
58 
84 
23 
89 
66 
67 

Forward-Backward Feature Set and Error Rates 

During forward selection, 60 of the 100 possible features were chosen to provide a 

reduced feature set. As before, minimal error rates were achieved at about 22 

features. 
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Figure 49: Error rate during feature selection, PCA data 

Backward elimination is then attempted to find a minimal feature set; Figure 49 

shows the error rate proflle for both phases. Error rates dropped to 28% at 22 

features and remain steady until another 10 features are eliminated. The final set of 

features is listed in Table 20. Features found often in repeated forward selection are 

listed in red. 

Table 20: Minimal feature set, forward-backward selection, PCA data 

Bayesian Network 

Feature Label 

7 
23 
75 
9 

37 
58 
38 
73 
64 
77 
25 

As was done for the Leukemia data, we examine a range of mutual information 

thresholds used to declare node connections in the Bayesian network. The 

thresholds that give reasonable results in the PCA data set are much closer to the 
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baseline value of one, representing the maximal value of mutual information 

between similar data and a random class. 
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Figure 50: MI threshold effects under 10-fold cross-validation 

Figure SO shows that minimal cross-validated error rates are achieved with a 

threshold factor of 1.0 to 1.5, while the number of first-level features decreases 

from 55 to 3 over the range 1.0 to 1.8. We chose to use a factor of 1.5, in order to 

expand slighdy the minimum feature set size with the goal of finding stable (and 

unstable) features. 

Determining the proper mutual information drop threshold was more difficult. As 

shown in Figure 51, the feature set size (and to some extent, error rate) were 

unstable while varying this parameter. Since the feature set size was unknown, and 

nothing in Figure 51 suggested otherwise, we chose to use 70% as a parameter to 

minimize error rate. 
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Figure 51: Effect of increasing drop threshold, PCA data 

Feature Set Selection 

As was done for the Leukemia data, 1000 networks were created by repeating a 10-

fold cross validation 100 times. 

Class to variable connections 

During those trials, 16 features were found in more than 30% of the trials. Those 

features and their selection frequency are found in Table 21. Features found 

frequently by the NBC are highlighted in red. This data set did not exhibit the 

feature set consistency shown by the previous two data sets between the NBC and 

the BN approaches. Of the 9 features found in more than 50% of the BN trials as 

first level features, only 4 are from the two sets of about 12 features in the 

previous sections. 
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Table 21: Variables selected by BN, PCA data 

Feature Selection Frequency Mass/ charge 

23 87.4% 4042 
49 72.2% 7406 
67 71.7% 8779 
25 69.6% 4083 
79 63.6% 13260 
85 62.6% 16580 
74 59.0% 9672 
99 57.1% 81441 
89 53.8% 25091 
45 48.5% 6607 
70 46.8% 9256 
33 45.5% 4553 
66 44.9% 8740 
77 42.1% 12555 
65 37.7% 8656 
62 37.2% 8179 

Feature-feature connections 

No features were found to connect to the most frequendy selected first level 

feature, labeled 23. The next most frequent, feature 49, had several second level 

connections, including m/ z neighbors 46, 47, 50, and 51. A list of the various 

second level connections for the most frequendy found first-level features (ftrst 

row) is found in Table 22, with NBC-identifted features in red. We were unable to 

make speciftc hypotheses about the nature of the connections listed above, other 

than those features which are adjacent and may be adducts or modifications. 

125 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table 22: Variables connected to first-level variables, PCA data 

23 25 33 45 49 62 65 66 67 70 74 77 79 85 89 99 
2 46 44 73 60 88 
13 47 so 
24 so 63 
37 51 65 

68 
69 
71 
72 
95 

We do have indications that some of the relationships shown are real; feature 67 

may be Apolipoprotein C II, which has correlated modifications that may be 

represented by features 68, 69, 71, and 72. We continue to investigate this finding. 

Metavariables 

Feature 44 and 67 were combined into a metavariable in 53% of the trials. Feature 

66 was also combined with feature 67 in about of 30% of the trials in which it 

appeared as a first level variable. 

Error Rates 

Error rates for this data set were poor, averaging 44% and never dropping below 

39% for any of the 100 cross-validated trials. A histogram of the cross-validated 

error rates that occurred in this set of trials is presented in Figure 52. 
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Figure 52: Error rates from the BN algorithm, PCA data 

Analysis 

Neither the naive Bayesian classifier, nor the Bayesian network approach, was 

successful in finding either stable feature sets or low error rates. A small number 

of features did appear as diagnostic in several different experiments, but the 

extremely high error rates, and unstable inclusion of other features in the results, 

led us to conclude that these techniques are unlikely to identify any features as 

likely biomarker candidates. Further research, particularly in the signal processing 

stage (peak-picking, background subtraction, etc.) is ongoing and may help 

improve these results. 
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CHAPTER 8: CONCLUSION 

Biomarker discovery V1a mass spectrometry of biologic samples has been an 

intense area of recent research. The possibility of semi-automated high-

throughput, multiple-disease tests for deadly cancers is enticing, but the systemic 

errors in the mass spectrometry signals have led to generally poor results to date. 

Proteins with relatively high mass-to-charge ratios have been found usmg 

traditional data analysis techniques, such as the 11.7 kDa peak in our Leukemia 

data set. Features such as that peak, seen in Figure 53 below, are identified by 

relatively simple statistical tests. 
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Figure 53: Distribution of 11.7 kDa peak by class, Leukemia data 

Even after finding such a diagnostic feature, however, the task of identifying the 

exact protein can be difficult-as our group has discovered. Our naive Bayesian 

classifier, combined with stratified n-fold cross-validation, expanded our ability to 

find feature sets with modest stability, but did not solve the problem of identifying 

correlated features. The Bayesian network classifier appears to perform this 
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function well in some data, and appears to identify the causal relations between 

correlated features. This capability has already led us to re-designate the protein 

responsible for the primary Leukemia feature shown in Figure 53 above as serum 

amyloid A (with modifications), which appears to be consistent with findings of 

other researchers' results. 

The fact that the BN classifier was unsuccessful in performing the same function 

with the prostate cancer data is somewhat encouraging, in that it shows a certain 

degree of discrimination between "good" and "bad" data. High-dimensional data 

with small samples, such as the data sets in this study, can often lead traditional 

statistical tests into identifying correlations that will not be stable under new cases. 

The combination of our algorithms provide a method of attacking the problem 

from two very different angles - the wrapper approach of the NBC, based on 

error rates, and the filter approach of the BN, which ignores error rates and 

instead focuses on the model-free mutual information score. This combination 

allowed us to determine that the current state of the prostate cancer data did not 

lead to a stable feature set that could be exploited for biologic information. 

We will continue to explore ways of increasing the repeatability of our abundance 

measurements in the pre-processing stages. Whether that effort is successful or 

not, the naive Bayesian classifier, and mutual information-based Bayesian network 

algorithm, will be important tools in the search for biomarkers. 
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APPENDIX A: MATHEMATICS 

Maximum Entropy 

Entropy is defined as 

H(X) = - L P(x) log2 P(x). (A-1) 
X 

We can find the maximum entropy using the method of Lagrange multipliers, 

adding the constraint Lx P(x) = 1 (the sum of all probabilities must be 1). In both 

summations, the value of x ranges over all possible values that the corresponding 

variable X can take. Labeling these values { x1, x2, ••. ,xJ and using the shorthand 

notation p1=P(x;), the constrained equation is 

(A-2) 

Taking the partial derivative of the above with respect to one of the particular 

probabilities Pm' with apJapm = oim (the Kronecker Delta), and setting the result 

to zero to find the maximized constrained solution yields 

aH - = -log Pm - 1 +A = 0. apm 
(A-3) 

Since A. is a constant, and equation is valid for all m, this implies all the probabilities 

are equal to some other constant y=e u. Applying the constraint Lt=l y = 1, we 

find that all probabilities P(X=x.)=1/n, where n is the number of possible values 

that X can take. 
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Therefore, the maximum value of entropy is when all values of the variable are 

equally probable, or, alternatively, occur an equal number of times in a sample set. 

Maximum Mutual Information 

We seek to find the maximum value of MI(X:Y), where X and Y are discrete 

variables that can take on the values x E {x1, x2, ... xJandy E {y1, y2, .. ·Ym}, with 

m'5.n, without loss of generality. We have shown in the text that 

MI(X; Y) = H(Y)- H(YIX). (A-4) 

Since both MI and entropy H are always positive, the maximum value of MI 

occurs when H(YI X) is zero. 

The conditional entropy is defined by H(YIX) = - Lx,y P(x, y) log2 P(ylx). Since 

P(x, y) = P(ylx)P(x), the conditional entropy vanishes when, for all possible 

values, either P(ylx) = {0,1} or P(x) = 0. The second condition means that some 

value of x never occurs; let us remove it from the set of values. The first condition 

implies that for a given X;, the condition Y=yi either always, or never, occurs. In this 

case we can relabel the possible values of x andy as x E {xk} andy E {Yk} with 

each yk always being chosen when a member of the corresponding subset of xk's is 

chosen. 

For example, consider the problem where x E{1, 2, 3, 4, 5, 6},y E {green, gold}, and 

whenever xis odd (even),y is always green (gold), respectively. In this problem, we 

can relabel the values xE{1,2,3,4 ... } to {xJreen•XJold•xJreen•XJozd ... }. Then 

P(Y=green I X=xffreen)=1, and P(Y=green I x:azd)=O, etc., for all possible k. 
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In the general case, we have P(yi lxD = oik· This implies 

(A-5) 

Using the definition for conditional entropy, 

H(YIX) =-L P(xk)oik log2 oik = L P(xk) log2 1 = 0 (A-6) 
i,j,k j,k 

Then MI(X;Y)=H(Y). As was shown previously, the maximum value of MI occurs 

when all values of yare equally probable (P(y)=1/m where m is the number of 

possible values of y); in that case, using the definition of H(Y), 

m 

MI(X; Y) =-L P(yD log2 P(yD =-L: log2 : = log2m. (A-7) 
i i=l 

N ai've Bayesian Classifier Instability 

To further illustrate the problems inherent in assuming independence in the Naive 

Bayesian Classifier, consider a system of three binary variables, A, B, and C, where 

C is the class we wish to examine. Following the discussion in the main document, 

we seek 

P(ABIC)P(C) P(AIC)P(BIC)P(C) 
P(CIAB) = P(AB) = P(A)P(B) (A-8) 

where the first step uses Bayes' Theorem and the last step relies on the 

independence of A and B. For this example, we use the prior P(C) = % and, for 

the eight possible combinations of the values A, B and C from { 0,1}, use 

P(ABIC = 0) = [; H and P(ABIC = 1) = l~ n (A-9) 
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where a the top row represents A=O, the bottom row A=1, the left column B=O, 

and the right column B=1. 

First, examine the values P(C I AB) exactly (without the independence assumption). 

Marginalizing the values given in (A-9) over C29 shows that P(AB)= 1
/4 for all four 

possible combinations of A and B. Putting all these values into equation (A-8) 

gives the true classification equations 

P(C = OIAB) = [~ ~], and P(C = liAB) = [~ ~]. (A-10) 

This shows, for example, that when A=O and B=O (the top left entry), C cannot be 

0 and is certain to be 1-perfect classification. 

If we use the independence assumption, a different result arises. If we calculate 

P(A I C) and P(B I C) by marginalizing (A-9) over the unneeded variable, we find 

P(AIC = O) = I [~ ~1 = [i1, 
B=O 1 - 0 -

' 2 2 

(A-11) 

and the same for P(B I C). Therefore, both of these terms equal Vz for all values of 

A, B, and C. Note also that P(A) = P(B) = Vz 

If we then apply these values to the right hand side of (A-8), after the 

independence assumption, we find a classification result 

P(AIC)P(BIC)P(C) .! . .!..! 1 
P(CIAB) = P(A)P(B) = zi~iz = 2 (A-12) 

29 Marginalize over C by summing the two matrices and normalizing to 1. 
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for all values of A, B, and C. This represents a complete inability to classify C given 

A and B. Thus, the independence assumption has rendered the NBC completely 

unusable for this set of values. 
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APPENDIX B: MATLAB CODE 

The native MA TLAB code used to produce the results throughout this text is presented 

below. All subroutines that are not native MA TLAB functions are included, however, some 

calls to MATLAB functions require the Statistics Toolbox. 

We have maintained the original MATLAB code coloration and number of characters per 

line to increase readability. 

Naive Bayesian Classifier Code 

The MATLAB code in this section is a standalone function (intended to be repeated a 

number of times) that takes two data sets, one for each of two choices of class (such as 

disease or normal) and attempts to find a feature set. Details are in the code itself or in 

Chapter 5: Application of the Naive Bayesian Classifier. 

Contents 

• Options Section 
• Set up Section 
• Normalization 
• Initial Classification Section 
• Start Removing Peaks 
• Start Adding Peaks 
• Combine Groups 
• Remove Outliers 
• Count number correct 
• Perform the Cross Validation 
• Perform the Naive Bayesian Classification 
• Create n groups for Cross Validation 
• Remove Zeros left by array split up 
• Split up groups for cross validation 
• TimerTool 
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function [FinalError PeakList ANorm BNorm] = NBC (ClassA, ClassB, xValReps., .. 
OutlierRemoval, RemovePeaks, PeaksToLeave, Normalize) 

% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% NBC (a wrapper) finds a feature set through forward or backward selection 
% 
% DESCRIPTION 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% USAGE 
% 
% 

NBC implements a Naive Bayesian Classifier to select features. 
Given two groups of cases from two different classes, it sets up a 
cross validation scheme and then begins to remove (or add) 
features, looking at the ability of each feature's removal to 
decrease error to determine if that removal should bEpermanent. 
You then have the choice of removing highly misclassified samples 
(if OutlierRemoval-=0) . The integer flag RemovePeaks controls 
whether features are removed one at a time to leave the (integer) 
PeaksToLeave mo~ important ones (RemovePeaks=1). Alternately, if 
RemovePeaks~1, features are added. Setting the flag to zero skips 
this step. 

The function returns the list of peaks that were left after feature 
removal (or found during Eature addition) as well as the 
corresponding error rates at each step. These error rates are from 
nfold cross validation, repeated xValReps (integer) times. Other 
options are listed immediately below. 

[Error PeakList]=MainProgram(A,B,reps,outlier,remove,leave,norm); 

% INPUTS 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

A, B: Data is stored in two arrays of continuous data, separated by 
class, with the cases arranged in the rows and the features, or 
variables, in columns. A B typically the normal group and B 
the disease group. The (i,j) value is "intensity of Peak j for 
Case i." 

reps: times to repeat the whole process 
outlier: true if outlier removal is desired, otherwise false. 
remove: 1 for backward selection, -1 for forward selection 
leave: number of final features desired 
norm: Logical, whether to perform total ion normalization 

% INTERNAL SETTINGS 
% 
% 
% 
% 
% 
% 
% 
% 

Number of Bins: for discretization, number of bins m build 
probability distribution. Choices are 2,4, or 6 for discrete; 0 
for continuous (no bins) . 2 works best for highly separated 
features, 6 or 0 for overlapping groups. 

n: For n-fold cross-validation 
Threshold = The probability threshold for declaring the class, e.g. 

0.5 means "if P(Class)>.5, Class=disease" 

% OUTPUTS 
% 
% 
% 
% 

FinalError: List of the error rate after each removal/addition 
PeakList: List of which of the "leave" peak remained 
ANorm, BNorm: Data with total ion normalization applied 

% CALLED FUNCTIONS 
% 
% 
% 
% 
% 

CombineGroups: Creates a population from the two inputs 
CrossValidate: Divides the data into test and training groups 
PerformBayes: Perurms the actual NBC analysis to find P(C!Data) 
CountCorrect: Finds which cases were classified correctly 
RemoveOutliers: If desired, removes cases that appear as outliers 
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Options Section 
% See explanation at top 
NumberOfBins = 6; 
n = 10; 
Threshold = .5; 
Set up Section 
start = clock; 
% Check the sizes of the arrays 
[NumA ColsA] = size(ClassA); 
[NumB ColsB] = size(ClassB}; 
if ColsA -= ColsB 

Error = 'Input Arrays must have same width' %#ok<NOPRT> 
disp (Error); 

else 

end 

Cols = ColsA; 
clear ColsA ColsB 

% Set a bound on feature removal 
PeaksToRemove = max ( [0 Cols-max( [2 PeaksToLeave]) J ) ; 
Population= CombineGroups(ClassA,ClassB) ;% see function at end 
Normalize 
%Normalize the sum of each row of data to to the average of the popularon 
if Normalize 

TotionCt=mean(sum(Population,2)); %Population mean total per row 
factA=sum(ClassA,2)/TotionCt; 
factB=sum(ClassB,2)/TotionCt; 
for i=1:NumA 

ClassA(i, :)=ClassA(i, :)/factA(i); 
end 
for i=1:NumB 

ClassB(i, :)=ClassB(i, :)/factB(i}; 
end 

end 
ANorm=ClassA; 
BNorm=ClassB; 
Initial Classification Section 
%Find and display Population Classification 
Population= CombineGroups(ClassA,ClassB};% see function at end 
PopProbinClassB = PerformBayes (Population, ClassA,ClassB, NumberOfBins}; 
PopCorrectness = PopProbinClassB; clearPopProbinClassB; 
PopCorrectness (1:NumA} = 1- PopCorrectness (1:NumA}; 
NominalErrorRate = CountCorrect(PopCorrectness,Threshold}; 
figure(} ; 
hist(PopCorrectness*100,100}; figure(gcf}; axis ([050 o NumA/2]}; 
title({'Worst Classified Patients'; 'All Tokens'; ... 

['Nominal Error Rate =',num2str(NominalErrorRate*100) ,'%'] }} ; 
xlabel ('Percent Correct'); 
ylabel ('Number of Patients'} ; 

% Optionally remove cases that are badly misclassified 
if OutlierRemoval 

prompt = {'Threshold (in percent} for removing misclassified patients}'; 
dlg_title = 'Remove Outliers'; 
num lines = 1; 
default_answer = {'0'}; 
OutlierRemovalThreshhold = str2num(cell2mat .. 

(inputdlg(prompt,dlg title,numlines,default answer}}}/100; 
clear prompt dlg_title nt1m lines default_answer;-

137 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NumOut=NumA+NumB; %Placeholder for number removed 
[ClassA ClassB NumA NumB] = RemoveOutliers (ClassA, ClassB, Numk, .. 

NumB, PopCorrectness, OutlierRmovalThreshhold); 
axis ([0 100 0 NumA+NumB/2]); 
title({ ['Original Patients, All Tokens, ',num2str(NumberOfBins) , ... 

' Bins']; ['Nominal Error Rate =', ... 
num2str(NominalErrorRate*100) ,'%'] }) ; 

% Redo Nominal Error Rate 
Population= CombineGroups(ClassA,ClassB) ;%see function at end 
PopProbinClassB = ... 

PerformBayes (Population, ClassA, ClassB, NumberOfBins); 
PopCorrectness = PopProbinClassB; clearPopProbinClass~ 
PopCorrectness ( 1: NumA) = 1 - PopCorrectness ( 1: NumA) ; 
NominalErrorRate = CountCorrect(PopCorrectness,Threshold); 
xValErrorRate = ... 

CrossValidate (ClassA, ClassB, n, NumberOfBins, xValReps); 

NumOut=NumOut-(NumA+NumB); 
figure(); hist(PopCorrectness*100,100); axis ([0 100 ONumA+NumB]); 
title({ [num2str(Num0ut),' Patients Removed, All Tokens, ~ ... 

num2str (NumberOfBins) ,' Bins']; ... 
['Nominal Error Rate = ', num2str (NominalErrorRate*100) ,'% '] ; ... 
['Cross Validated Error Rate = ', num2str (xValErrorRate"'lOO), '% ']}); 

xlabel ('Percent Correct'); 
ylabel('Number of Patients'); 
msgbox('Outlliers removed. Details saved in OutliersRemoved.mat)'; 

end % of optional outlier removal 
Start Removing Peaks 
if RemovePeaks == 1 

% Remove Peaks one at a tfue, report error rates 
PeakNumber = 1:Cols; 

% Build a data set without that peak and find the error 
for RemovePeak = 1:PeaksToRemove 

NumCols = Cols+1-RemovePeak; 
PeakxValErrorRate = zeros(1,NumCols); 
for Peak = 1:NumCols 

end 

ClassAMinus = ClassA; 
ClassAMinus (:,Peak) = []; 
ClassBMinus = ClassB; 
ClassBMinus (:,Peak) = []; 
[SampleCorrectness(Peak, :) PeakxValErrorRate(Peak)J .. 

= CrossValidate (ClassAMnus, ... 
ClassBMinus, n, NumberOfBins, xValReps);%#ok<*AGROW> 

% Try to capture peak discrimination 
CurrentPeakError = zeros (1,Cols); 
for p = 1:Peak 

CurrentPeakError(PeakNumber(p))=PeakxValErorRate(p); 
end 
[LowErrorRate BestPeakToRemove] = min(PeakxValErrorRate); 
PeakRemoved = PeakNumber(BestPeakToRemove); 
ClassA(:,BestPeakToRemove) = []; 
ClassB(:,BestPeakToRemove) = []; 
PeakNumber(BestPeakToRenove)=[]; 
PeaksOut(RemovePeak,1) RemovePeak; 
PeaksOut(RemovePeak,2) = PeakRemoved; 
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end 

PeaksOut(RemovePeak,3) = LowErrorRate; 
DisplayElapsedTime (PeakRemoved, LowErrorRate, PeaksToRemove~·· 

RemovePeak,start); 
FinalError(PeaksToRemove)=LowErrorRate; 

end 
PeakList=PeakNumber; 

Start Adding Peaks 
if RemovePeaks == -1 % Add Peaks one at a time, report error rates 

PeakNumber = 1:Cols; 

end 

ClassAFinal=zeros(NumA,PeaksToLeave); 
ClassBFinal=zeros(NumB,PeaksToLeave); 
for AddPeak = 1:PeaksToLeave % Repeat until desired number of peaks 

NumCols = Cols+1-AddPeak; % Initialize number of peaks to test 
PeakxValErrorRate = zeros(1,NumCols);% Initialize current errors 
ClassAPlus=ClassAFinal(:,1:AddPeak); 
ClassBPlus=ClassBFinal(:,1:AddPeak); 

end 

for Peak = 1:NumCols 

end 

ClassAPlus(:,AddPeak) = ClassA(:,Peak); 
ClassBPlus(:,AddPeak) = ClassB(:,Peak); 
[SampleCorrectness(Peak, :) Peakx~lErrorRate(Peak)] ... 

= CrossValidate (ClassAPlus, ... 
ClassBPlus, n, NumberOfBins, xValReps); 

CUrrentPeakError = zeros (1,Cols); 
for p = 1 :Peak 

CurrentPeakError(PeakNumber(p))=PeakxVaErrorRate(p); 
end 
[LowErrorRate BestPeakToAdd] = min(PeakxValErrorRate); 
ClassAFinal(:,AddPeak)=ClassA(:,BestPeakToAdd); 
ClassBFinal(:,AddPeak)=ClassB(:,BestPeakToAdd); 
PeakAdded = PeakNumber(BestPeakToAdd); 
ClassA(:,BestPeakToAdd) = []; 
ClassB(:,BestPeakToAdd) = []; 
PeakNumber(BestPeakToAdd)=[]; 
PeaksAdded(PeakAdded,1) = AddPeak;% Order Added 
PeaksAdded(PeakAdded,2) = PeakAdded;% Specific Peak added 
PeaksAdded(PeakAdred,3) = LowErrorRate;% Error Value that Peak 
DisplayElapsedTime (PeakAdded, LowErrorRate, AddPeak, .. 

PeaksToLeave,start); 
PeakList(AddPeak)=PeakAdded; 
FinalError(AddPeak)=LowErrorRate; 

end %function 

Combine Groups 
function population = CombineGroups (elsA, clsB) 
% Combines two groups together to make a population 
rowsA =size (clsA,1); 
rowsB =size (clsB,1); 
population (1 : rowsA, :) = elsA; 
population (rowsA+1 : rowsA+rowsB, :) clsB; 
end 

Remove Outliers 
function [A B nA nB] ... 

= RemoveOutliers(clsA, clsB, numA, numB, correct, threshhold) 
% Removes rows in elsA and clsB whose corresponding correctness is below 
% the threshold. 
nA=numA; 
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nB=numB; 
correctness = correct; 
removed= cell (numA+numB,1); 
for i = numB:-1:1 

if correct(i+numA)<threshhold 
clsB(i, :)=[]; 
nB=nB-1; 
correctness(i+numA)=[]; 
removed(numA+i,1) = {['removed because correctness was 

num2str(100*correct(i+numA)) ,'%'] }; 
else 

removed(numA+i,1) = {'not removed'}; 
end 

end 

for i = numA:-1:1 

end 

if correct(i)<threshhold 
clsA(i,:) = []; 
nA=nA-1; 
correctness(i)=[]; 

else 

end 

removed(i,1) = {['removed because correctness was 
num2str(100*correct(D), '%']}; 

removed(i,1) = {'not removed'}; 

A=clsA; 
B=clsB; 
save 'OutliersRemoved' removed; 
end 

Count number correct 
function errorrate = CountCorrect(correctvector,threshold) 

I ' ... 

I 
I • • • 

% Counts the number of entries in correctvector thatare above threshold 
len=max(size(correctvector)); 
count=sum(correctvector>threshold); 
errorrate=1-(count/len); 
end 

Perform the Cross Validation 
function [correctnesstable xValErrorRate] = CrossValidate (elsA, clsB •.. 

n, NumberOfBins, reps) 
% This function manages the overall cross validation, splitting the data 
% into n groups and then choosing one group at a time to be the test group. 
%The Bayes analysis is done inside the cross validation attempt. 

for r = 1:reps 
% Split each class into n subgoups for nfold cross validation 

[nGroupsA RowsinGroupsA]=nfold(n, elsA);% This function appears below 
[nGroupsB RowsinGroupsB]=nfold(n, clsB);% This function appears below 

% Now we iterate the 
% the other group to 
position = 0; 
for i = 1 : n 

n groups, choosing a1 groups to "learn" from md 
classify. 

NumClassA 
NumClassB 

RowsinGroupsA (i); 
RowsinGroupsB (i) ; 

% Combine n-1 of the groups to train on, the other to test 
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% This function appears bel& 
[Test TrainA TrainB] = CreateValGroups(i, n, nGroupsA, nGroupsB); 

% Send these groups to the Bayesian Classifier 
PrBP = PerformBayes(Test, TrainA, TrainB, NumberOfBins); 

% Build the correctness table 
correctnesstable(position+1:position+NumClassA)~ .. 

1-PrBP(1:NumClassA); 
position = position+NumClassA; 
correctnesstable(position+1:position+NumClassB)T .. 

PrBP(NumClassA+1:NumClassA+NumClassB); 
position = position + Nu~lassB; 

end 

% Call a function that returns an error rate for the correctness table 
TrialErrorRate(r) = CountCorrect(correctnesstable, .5); %#ok<AGROW> 

end 
xValErrorRate = mean(TrialErrorRate); 
end 

Perform the Naive Bayesian Classification 
function PrBP = PerformBayes (testgroup, groupa, groupb, NumBins) 
% This function reads in a pair of training groups, creates a probability 
% distribution table, and then uses that to classify a test group. The 
% array that is returned has the probability (frm 0 to 1) that the 
% corresponding element in the test group is in class B 

% First determine number of data sets (rows) and elements per data set 
% (cols) for each class 
[RowsA Cols] = size(groupa); 
RowsB = size(groupb,1); 
Rows = RowsA + RowsB; 
Pa = RowsA/Rows ; 
Pb = RowsB/Rows; 
Prior = Pb; 
[RowsT ColsT] = size(testgroup); 
PopBins = zeros (NumBins+1,Cols); 
ProbDistA =zeros (NumBins+1,Cols); 
ProbDistB = zeros (NumBins+1,Cols); 
PopProbDist zeros (NumBins+1,Cols); 

% Now Combine the classes into a populatio 
Population(1:RowsA, :)=groupa; 
Population (RowsA + 1 : RowsA +RowsE, :) = groupb; 
PrPeaksA zeros (RowsT, Cols); 
PrPeaksB zeros (RowsT, Cols); 

% Create Row Vectors with mean and standard dev for each peak 
AvgColValue=mean(Population); 
StandardDev=std(Population) ; 

if NumBins ==0 % Do Continuous Case 
MeanA=mean(groupa); 
MeanB=mean(groupb); 
StDevA=std(groupa); 
StDevB=std(groupb); 
% Calculate the probability (from a normal distribution) of getting 
% that value. Use 1% as a minimrn. 
for c = 1:Cols 
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end 

for r = 1:RowsT 
PrPeaksA(r,c)= ... 

end 

max( [exp(-(testgroup(r,c)-MeanA(c))A2/StDevA(c)A2) .01]); 
PrPeaksB(r,c)= ... 

max([exp(-(testgroup(r,c)-MeanB(c))A2/StDevB(c)A2) .01)); 

else % Do Discrete case 
for i = 1 : Cols 

% Create bins- either 2, 4, or 6 (see below) 
if NumBins == 2 % Create Bins for above and below mean 

Bins=[-inf, AvgColValue(i) ,inf); 
elseif NumBins == 4 % Create additional bins 1 std dev above/below 

Bins=[-inf,AvgColValue(i)-StandardDev(i) ,AvgColValue(i) , ... 
AvgColValue(i)+StandardDev(i), inf); 

elseif NumBins ==6 %Create bins +/- .5,1.2 std devs from mean 
Bins=[-inf, AvgColValue(i)-1.2*StandardDev(i) , ... 

else 

AvgColValue(i)-.S*StandardDev(i) , ... 
AvgColValue(i), AvgColValue(i)+.S*StandardDev(i), .. 
AvgColValue(i)+1.2*StandardDev(i),inf); 

disp('Number of Bins must be 2, 4, or 6?; 
end 
PopBins(:,i)=Bins; 

% Bin each peak in each set into the bins created above store the 
% bins for each peak in PopBins, store the normed histogram in 
% PopProbDist 
ClassProbDistA=histc(groupa(:,i) ,Bins); 
ClassProbDistB=histc(groupb(:,i),Bins); 
ProbDistA(:,i)=ClassProbDistA/RowsA; 
ProbDistB(:,i)=ClassProbDistB/RowsB; 

end % creating Bins and population distributions 

% Find the Probability diaributions 
% ProbDistA and B are NumBins x "number of peaks" arrays. The 
% probability distribution lookup table for each peak's set of bins is 
% in each column. This is the likelihood for one peak "i" 
% Pr(PiiClass). BinnedData has the bb that each patient's peak's fall 
% within (1-6). Prior is a scalar (~1) that is the Pr (B) given only 
% population info. 

% Shave off bottom row which is all zeros 
LastRow = size(PopProbDist,1); 
ProbDistA(LastRow,:)=[); 
ProbDistB(LastRow, :)=[); 

% Bin the test data 
BinnedData = zeros (RowsT, ColsT); 
for i = 1 : RowsT 

for j = 1 : ColsT 
if testgroup (i,j) < PopBins (2,j) 

BinnedData (i,j) = 1; 
elseif testgroup (i,j) < PopBins (3,j) 

BinnedData (i,j) = 2; 
elseif testgroup (i,j) < PopBins (4,j) 

BinnedData (i,j) = 3; 
elseif testgroup (i,j) < PopBins (S,j) 

BinnedData (i,j) = 4; 
elseif testgroup (i,j) < PopBins (6,j) 
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% 

end 

Now 
for 

end 

BinnedData (i,j) 5; 
else 

BinnedData (i,j) 6; 
end 

examine the test data 
i = 1 : RowsT 
for j = 1 : ColsT 
% Build two arrays wkh each entry being the Pr(that biniClass) 
% for all peaks for all patients. The pointer on where to look is 
% the array BinnedData (i,j) -- a number 1 to 6 representing the 
% bin for that peak. It becomes the row that is looke up in the 
% probability distribution table. Set a min of 1% to prevent zero 
% probability. 

PrPeaksA (i,j) 
PrPeaksB (i,j) 

max([ProbDistA(BinnedData(i,j) ,j) .01]); 
max([ProbDistB(BinnedData(i,j) ,j) .01]); 

end 
end 

end %choice of discrete or continuos 

% Now find the Pr (PI Class) by taking the product Pr(PiiClass). The 
% product ends up as a column vector with each row representing the 
% Pr(PIClass) for that patient. This is the likelihood. 
PrPA prod (PrPeaksA,2); 
PrPB = prod (PrPeaksB,2); 

% Compute evidence - Prob (Peaks) marginalizing across groups 
PrP = (PrPA*Pa) + (Pb*PrPB); 

% Use Bayes' rule to calculate the posterior Prob (class I Peaks). This 
% Posterior is returned as the output of tfi function. Only the 
% Prob of being in class B is returned. Pr(AIPl is that subtracted from 1. 
PrEP= zeros (RowsT,1); 
for i = 1 : RowsT 

if PrP(i)==O 
PrEP (i) = 0; 

else 
PrBP(i) = (PrPB(i) * Prior)/PrP(i); 

end 
end 

end 

Create n groups for Cross Validation 
function [Test TrainA TrainB] = ... 

CreateValGroups(i,n,ClassAGroups,ClassBGroups) 
% Given two sets of groups n x Row x Col, selects the ith group as a test 
% group and removes that group from the set. 

% Create three 1 x C ar-rays 
Cols = size(ClassAGroups,3); 
Test= zeros(l,Cols); 
TrainA = Test; 
TrainB = Test; 
Coltest=Cols; 

% Create the Test Group from the ith group of the two input arrays 
TestA (:, :) ClassAGroups(i, :, :) ; 
TestE (:, :) = ClassBGroups(i, :, :) ; 
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if Cols == 1 
TestA=TestA 1 

; 

TestB=TestB 1 
; 

end 
Test = cat (1, TestA, TestE); 

% Remove the Test Group from the mix 
ClassAGroups(i, :, :) []; 
ClassBGroups(i, :, :) = []; 

%Create the two training Groups from the remainder of the input arrays 
for j = 1 : n-1 

GroupA (:, :) = ClassAGroups (j, :,:); 
GroupB (:,:) = ClassBGroups (j,:,:); 
if Coltest == 1 %This section makes sure MATLAB handles a single 

% column as a column not a row vector. 

end 

GroupA=GroupA 1 
; 

GroupB=GroupB 1 
; 

Coltest=O; 
end 
TrainA 
TrainB 

cat (1, TrainA, GroupA); 
cat (1, TrainB, GroupE); 

% Because of the uneven size of the arrays, they will have lines of all 
% zero which need to be deleted using a function RemoveZeros 
Test= RemoveZeros (Test);% This function appears below 
TrainA Removezeros (TrainA); 
TrainB = Removezeros (TrainB); 
end 

Remove Zeros left by array split up 
function ArrayOut = RemoveZeros (Arrayin) 
% Removes any line in Arrayin that is all zeros* (from bad indexing) 
% *careful it only checks if the sum is zero 
% Build a vector Hash with the sums of each row. 
Rows size(Arrayin,1); 
Hash = sum(Arrayin,2); 

% Look through Rows and delete any with a sum of zero 
for i = Rows:-1:1 

if Hash(i) == 0 
Arrayin(i, :)=[]; 

end 
end 
ArrayOut = Arrayin; 
end 

Split up groups for cross validation 
function [ArraysOut RowsinGroup] nfold(n, Arrayin) 
% nfold splits array into n arrays of nearly equal length and returns 
% it as the 3-D array Arrays0ut(1) through (n). The las row of some of the 
% arrays is all zeros since the input array may not be split evenly 
RowsinGroup=zeros(n,1);% Stores how many are in each group 

% Determine size of the array 
[Rows Columns] = size(Arrayin); 

% Randomize the order of the rows prior tosplitting by attaching a random 
%vector (random numbers ~1), sorting by that vector, then deleting it. 
SortVector = rand(Rows,1); 
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AppendData = [SortVector Arrayin] ; 
SortData = sortrows(AppendData); 
SortData (:,1) = []; 

% Find out how many rows go in ea© final array. RowsLeft counts down as we 
% pull rows out into the Output array. 
RowsLeft=Rows; 
NuminGroups = int8 ((Row&mod(Rows,n))/n); 
ArraysOut=zeros(n,NuminGroups+1,Columns); 
for i = 1:n 

end 
end 

% Determine if the array can be split evenly, if not, add me to each 
% group until the split is even 
if (mod(RowsLeft,NuminGroups) == 0) 

RowsinGroup(i) NuminGroups; 
else 

RowsinGroup(i) NuminGroups + 1; 
end 

% Determine how many rows are left. For however many rows are irrhe 
% current group, pull a row out of the main array into a sub array 
RowsLeft=RowsLeft-RowsinGroup(i); 
for j = 1:RowsinGroup(i) 

end 

fork = 1:Columns 
ArraysOut (i,j,k) SortData(RowsLeft+j,k); 

end 

Timer Tool 
function DisplayElapsedTime(PeakRemoved, LowErrorRate, PeaksToRemove •.. 

RemovePeak, starttime) 
% This tool keeps the user informed of the progress 
ElapsedTime = clock-starttime; 
PeaksLeft=PeaksToRemov~RemovePeak; 

% RemainTime=((Elap~dTime(4)*3600)+(ElapsedTime(5)*60)+ ... 
% ElapsedTime(6))*(.75)*PeaksLeft/60; 
if ElapsedTime(6)<0 

ElapsedTime(6) ElapsedTime(6)+60; 
ElapsedTime(5) = ElapsedTime(5~1; 

end 
if ElapsedTime(5)<0 

ElapsedTime(5) 
ElapsedTime(4) = 

end 

ElapsedTime(5)+60; 
ElapsedTime(4~1; 

Note = ['Removing Peak ', num2str(PeakRemoved), ' with error ' 
num2str(LowErrorRate*100) ,'%, 
num2str(PeaksLeft), ... 
' left, Elapsed time = ', num2str (ElapsedTime ( 4)) , ... 
'h, ', num2str(Elapsedi'ime(5)), 'm, ', ... 
num2str (int8 (ElapsedTime ( 6))), 's. '] ; 

disp (Note); 
end 
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Bayesian Network Algorithm 

The MATLAB code in this section performs repeated n-fold cross-validation trials. During 

each cross-validation, an adjacency matrix is saved to document the feature set; a meta-

variable adjacency matrix is saved to document the combining of variables; and the overall 

error rate is recorded and saved. 

The first function listed is the main program. Sub-functions called by that one are listed 

afterwards. There are several references to functions only available to the MA TLAB 

"statistics toolbox," which is not part of the base MA TLAB library. 

Details on this algorithm can be found in Chapter 6: Bayesian Network Algorithm. 

Contents 

• Initial Processing of Input Structure 
• Build network links 
• Attempt to find metavariables 
• Bayes classification 
• Optimized discretization 
• Optimized binning search 
• Automated MI thresholding 
• Find arcs, build adjacency matrix 
• Clear irrelevant arcs 
• Attempt to prune relevant arcs 
• Find all necessary mutual information values 
• Coarse optimized binning, 
• Find Bayes network parameters 
• Find all variable entropies 
• Entropy equation implementation 
• Find mutual information of a vector with all columns of an array 

function OutputStructure = BayesianNetworkClassifier (InputStructure) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% DoTheMath takes a data set and performs feature selection 
% 
% DESCRIPTION 
% DoTheMath takes a data array, class vector, and other information 
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% and builds and assesses a Bayesian network after selecting features 
% from within the data array. It is called from the user interface 
% "orca.m." 
% 
% 
% 
% 
% 
% 
% USAGE 

This is the umbrella script that loops 
(see "repeats" below), each time doing 
validation and recording the results. 
are stored in a single data structure, 

a specified number of times 
a full flfold cross 
All inputand output data 
described below. 

% 
% 

OutputDataStructure DoTheMath (InputStructure) 

% INPUTS 
% InputStructure: Data repository with fields: Intensities: Array of 
% intensity val~s of size #cases x #variables Class: Vector of 
% length "#cases", with discrete values identifying 
% class of each case (may be integer) 
% ID: Patient ID array of length #cases, with one or more cols MZ: 
% Vector of length "#va:riables" holding labels for variables Options: 
% Logical 6x1 array. Options are: 
% 1. Normalize on population total ion count (sum across rows) 2. 
% Remove negative data values by setting them to zero 3. After 
% normalizing, before binning, average cases with same ID 4. Find 
% the MI threshold by randomization 5. Take log(data) prior to 
% binning. Negative values set to 1. 6. Remove Low Signal cases 
% NOT DONE: 3 Bin (2 Bin if False) 
% n: the "n" inn-fold cross validation repeats: Times to repeat the 
% whole process (e.g. recrossvalidate) threshold: Factor by which 
% the maximum "random" MI us multiplied to 
% find the minimum "significant" MI (double, 1.-85.0). 
% 
% OUTPUTS 
% OutputDataStructure: all the fields of InputStructure, plus: 
% ErrorRate: Vector containing misclassification rate for each repeat 
% KeyFeatures: Index to vector MZ that identifies features selected 
% 
% CALLED FUNCTIONS 
% 
% InitialProcessing: Applies the options listed above BuildBayesNet: 
% Learns a Bayesian Network from the training data ChooseMetaVars: 
% Combines variables that may not be physically 
% separate molecules. 
% TestCases: Given theBayesNet, tests the "test group" to determine 
% the probability of being in each class. 
% opt3bin: Discretizes continuous data into 3 bins, optimizing MI 
% FindProbTables: Learns the values P(C,V) for each variable 
% cvpartiticn and training are MATLAB Statistics toolbox functions. 

% Initialize Set up (for now) hard coded values: 
drop=0.75; % MI loss pecentage threshold for testing independance, see 
% clipclassconnections 

% Initial Processing According to options, remove nega±ve values, 
% normalize and/or take logarithm of data, replicate average. Store in 
% output data structure. 

% display('Starting Initial Processing of Data'); 
OutputStructure = InitialProcessing( InputStructure); 
display('Initial processing complete.? 
display (' ' ) ; 
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% Get values out of Data structure to be used later 
ff=OutputStructure.threshold; 
n=double(OutputStructure.n);% for n-fold cross validation; default is 10 
repeats=OUtputStructure.repeats;% Number of times to repeat CV, default 30 
numtrials=repeats*n; 
cverrorrate=zeros(numtrialsll); 
errorrate=zeros(repeats,l); 
data=OutputStructure.Intensities; 
class=OutputStructure.Class; 

% Find some sizes and initialize variables 
[rows cols]=size(data); 
% OutputStructure.varlist=zeros(cols,l); 
class_predict=zeros(rows,repeats); 
class_prob=zeros(rows 1 repeats); 
trial=O; % counter of how many times we perform Bayes Analysis (n*repeats) 

% "Repeat Entire Process" Loop 

% Repeat all processes the number of times requested 
for r=l:repeats 

display ( 1 1
) ; 

display([ 1 Working on repetition number num2str(r), 1 at 1 

num2str(toc/60) 1
1 mins 1

]); 

% Cross 
% group 
% those 
% has a 

Validation Loop This section selects a training and testing 
out of the data by dividing it into n groups, and using~ of 
for training and 1 for testing. MATLAB (ver. 2008a or later) 
built in class for this. See MATLAB documentation for 

% "cvpartition" and "training." 
cvgroups = cvparti tion ( class, 1 kfold 1 

1 n ) ; 

for cv = l:n% for each of n test grmps, together spanning all cases 
trial=trial+l; % Keep track of each trial 
display ( [ 1 Working on cross-validation number 1

, num2str ( cv) I • •• 

1 of 1 ,num2str(n)]) 

% The next line uses a function inside "cvpartition" caJ..ed 
% "training" that returns a logical vector identifying which cases 
% to use as the training group in cross validation. 
traingrpindex=training(cvgroups,cv); 

% Use the vee to extract tng data and class of the tng cases 
traingrp=data(traingrpindex, :); 
traingrpclass=class(traingrpindex, :); 

% The test cases are cases NOT in the training group 
testgrp=data(-traingrpindex, :); 
testgrpclass= class(-traingrpindex, :) ; 

% Discretize the groups into h~med-low by optimizing MI(V,C) for 
% each V (feature) in the training data. 

[leftbndry~rightbndry~traingrpbinl maxMI]=opt3bin(traingrp •.. 
traingrpclass); %#ok<NASGU> 

% Build an augmented Naive Bayeslin Network with the training data 
% The adjacency matrix is a logical with true values meaning "there 
%is an arc from row index to column index." The last row 
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% represents the class variable. 

adjmat = BuildBayesNet( train~pbin, traingrpclass, ff, drop); 
% Find MetaVariables, rebuild data Depending on the option set, 
% reduce the V->V links by removing them, or combining them into a 
% single variable. The result is a naive Bayesian network with oql 
% connections C->V. 

meta_option=l; % Hard coded for now 
classrow=cols+l; 
listvec=l:cols; % just a list of numbers 
varlist=unique(listvec(adjmat(classrow, :)));%top level vars 

if meta_option==l 
[finaldata metas leftbndry rightbndry] = ... 

ChooseMetaVars (traingrp, traingrpclass, adjmat); 
end 

% Bin up the test group using these final results, combining 
% variables per the instructions encoded in the "meta" logical 
% matrix. 

testdata=zeros(size(testgrp)); 

if isempty(varlist) % in case no links are found 
disp ('Not finding any links yet ... ?; 
errorrate(trial) = 1; 

else % if we do find links 
for var = varlist; % each of the parents of metavariables 

metavar=[var listvec(metas(var, :))];%concatenate children 
testdata(:,var)=sum(testgrp(:,metavar) ,2) ;% sum parent/child 

end 

% Now remove empty rows 
finaltestdata=testdata(:,varlist); 

% And bin the result 
testgrpbin=zeros(size(finaltestdata));%will be stored here 
% Build boundary arrays to test against 
testcases=size(testgrp,l); 
lb=repmat(leftbndry,testcases,l); 
rb=repmat(rightbndry,testcases,l); 
% test each value and record the bin 
testgrpbin(finaltestdata<lb)=l; 
testgrpbin(finaltestdata>=lb)=2; 
testgrpbin(finaltestdata>rb)=3; 

% Populate Bayesian Network 

% With the final set of data and the adjacency matrix, build 
% the probability tables and test each of the test group cases, 
% to see if we can determine theclass. 

% Build the probability tables empirically with the training 
% group results 
ptable=FindProbTables(finaldata, traingrpclass); 
prior=histc(class,unique(traingrpclass))/max(size(traingrpclass)); 

% find out the probability of each cases bing in class 1,2,etc. 
% Cases are in rows, class in columns. 
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classprobtable = TestCases (ptable, prior, testgrpbin); 
[P_C predclass]=max(classprobtable, (] ,2); 
class_prob(-traingrpindex,r)=P_C; 
class_predict(-traingrpindex,r)=predclass; 

%Get the per trial error rate 
cverrorrate(trial)= sum(predclass==testgrpclass)/testcases; 

%Store some "per trial" data 
OutputStructure.Adjacency(trial, :, :)=adjmat; 
OutputStructure.MetaVariablesFound(trial,l:cols,l:cols)=metas; 
ProbTables(trial) .Tria1Table=ptable;%#ok<AGROW> 

end % of finding metavariables 

end % of Cross Validation lo~ 

wrong=sum(-(class==class_predict(:,r))); 
errorrate(r)=wrong/rows; 

end % of repeating entire process loop 

% Record the results in the output structure 
OutputStructure.ErrorRate=errorrate;% one for each repeat 
OutputStructure.CvErrorRate=cverr~rate; % one for each of n*repeats trials 
OutputStructure.PredictedClass=class_predict; 

% Find out the error for each case 
classrep=repmat(class,l,r); 
Wasiright=classrep==OutputStructure.PredictedClass; 
OutputStructure.CasePredictionRate=sum(Wasiright, 2/double(r); 

OutputStructure.ClassProbability=class_prob; 
OutputStructure.ProbTables=ProbTables; 
OutputStructure.SumAdj=squeeze(sum(OutputStructure.Adjacency,l)); 
OutputStructure.SumMV=squeeze(sum(OutputStructure.MetaVariablesFound,l)); 
% Save the results as a .mat data file and alert the user. 
save results -struct OutputStructure 
disp('Results are saved in the current directory as results.mat)' 

end % of the function 

Initial Processing of Input Structure 
function StructOut = InitialProcessing( Structin) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% INITIALPROCESSING Inital Prep of Data from Signal Processing 
% 
% DESCRIPTION 
% Takes peaklists that have been imported into MATLAB and prepares 
% them for Bayesian Anaysis. 
% 
% USAGE 
% 
% 
% INPUTS 

StructOut InitialProcessing( Structin) 

% Structure with the following doubletyped arrays Intensities: n x m 
% real-valued array with variables (peaks) in 
% columns, cases (samples) in rows. 
% MZ: List of the labels (m/z value) for each of the variables. 
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% Must be the same size as the number of variables in Intensities 
% Class: Classification of each sample (disease stat~- 1 or 2--must 
% be the same size as the numberof cases in Intensities ID: Case or 
% patient ID number, same size as class. May have second 
% column, so each row is [ID1 ID2} where ID2 is replicate number. 
% Options (logical): Array of processing options with elements: 
% 1. Normalize 2. Clip Data (remove negatives) 3. Replicate 
% Average 4. Auto threshold MI 5. Use Log of Data 6. Remove Low 
% Signal cases NOT DONE: 3 Bin (2 Bin if False) 
% 
% OUTPUTS 
% DataStructure: MATLAB data structure with he following components: 
% RawData: Intensities as input ClipData: RawData where all 
% values less than 1 are set to 1 NormData: ClipData normalized 
% by total ion count, i.e. 
% divided by the sum of all variable for each case 
% LogData: Natural logarithm of NormData Class, MZ: Same as input 
% ID: Single column. If replicates are not averaged, the entries 
% are now ID1.ID2. If replicates averaged, then just ID1 
% Delta~: difference in peak m/z values to look for adducts 
% RatioMZ: ratios of m/z values ot look for satellites 
% 
% CALLED FUNCTIONS 
% None. (cdfplot is MATLAB "stat" toolbox) 

% Initialize Data 
% find the size, create the output structure,ad transfer info 

[rows cols]=size (Structin.Intensities); 
StructOut = Structin; 
StructOut.RawData = Structin.Intensities; 

%Option 2: Clip Negatives from data 
% set values below 0 to be 1 because negative 
% molecule counts are not physically reasonable 
% 1 is chosen rather than 0 in case log(data) is used Note: the decision to 
% do this before normalization was based on discussions with Dr. William 
% Cooke, who created the data set. 

if Struct0ut.Options(2) 
StructOut.Intensities(find(StructOut.Intesities<1))=1; %#ok<FNDSB> 

end 

% Option 6: Removal of Cases with Low Signal 
% find the sum of all values for eah row, then normallze each row to 
% account for the effects of signal strenght over time and other 
% instrumental variations in total stragth of the signal 

% Find the total ion count for each case, then the global average. 
% Determine a correction factor for each case (NormFactor) 
if StructOut.Options(l) I I Struct0ut.Options(6) 

end 

RowTotalionCount=sum(StructOut.Intensities, 2); 
AvgTotalionCount=mean(RowTotalionCount); %Population average 
NormFactor=AvgTotalionCount./RowTotalionCount;%Vector of norm factors 
StructOut.NormFactor=NormFactor; %save this in the structure 

% If Remove Low Signal is desired, interact with user m determine 
% threshold, then remove all cases that are below the threshold. 

if Struct0ut.Options(6) 
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end 

figure(999); 
cdfplot(NormFactor); 
title('Cumulative Distribution of Normalization FactorsY; 

% Request cutoff 

text(1.3,0.5, ['Click on the graph where you want'; ... 
'the normalization threshold ~ .. . 
'Cases with high norm factor (or ~ .. . 
'low signal) will be removed. l); 

[NormThreshold, Fraction] = ginput(1); 
display([num2str(floor((~Fraction)*100)) ,'%of cases removed']); 
close(999); 
TossMe=find (NormFactor>NormThreshold) ;%Low signal cases 

% Now record, then remove, those cases with low signal 

StructOut.LowSignalRemovedCases=StructOut.ID(TossMe, :) ; 
StructOut.LowSignalRemovedCasesNormFactors=NormFactor(TossMe); 
StructOut.Intensities(TossMe,:)=[]; 
StructOut.ID(TossMe, :)=(]; 
StructOut.Class(TossMe,:)=[]; 

%Option 3: Replicate Average This option causes cases with same ID numbers 
% to be averaged, peak by ~ak. 

if Struct0ut.Options(3) %Replicate Average 
% Collapse to unique IDs only, throw out replicate ID column 
StructOut.Replicate_ID=StructOut.ID;%Save old data 
StructOut.Replicate_Class=StructOut.Class; 

newiD=unique(StructOut.ID(:,1));% List of unique IDs 
num=size(newiD,1); %how many are there? 
newClass=zeros(num,1);% Holders for extracted class, data 
newData=zeros(num,cols); 
for i=1:num% for each unique ID 

id=newiD(i);% work on this one 

end 

cases=find(StructOut.ID(:,l)==id);% Get a list of cases with this ID 
newClass(i)=StructOut.Class(cases(1));% save their class 
casedata=StructOut.Intensities(cases, :) ;% get their data 
newData(i, :)=mean(casedata, 1);% and save the average 

StructOut.Intensities=newData; 
StructOut.Class=newClass; 
StructOut.ID=newiD; 
clear newiD newClass newData 

else % If replicates exist, combine the 2 column ID into a single ID 
ID= StructOut.ID; 

end 

if min(size(ID))==2 

end 

shortiD=ID(:,1)+(ID(:,2)*.001);% Now single entry is ID1.ID2 
StructOut.OldiD=StructOut.ID; 
StructOut.ID=shortiD; 
clear ID shortiD 

% Option 1: Normalize total ion count Apply the normalization factor to 
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%each row to normalizetotal ion count. We'll recalc norm factors in case 
% data was replicate averaged. 
if StructOut.Options(l) 

RowTotalionCount=sum(StructOut.Intensities, 2); 
AvgTotalionCount=mean(RowTotalionCount) ;%Population average 
NormFactor=AvgTotalionCount/RowTotalionCount; %Vector of norm factors 
StructOut.NormFactor=NormFactor; %save this in the structure 
NFmat=repmat(NormFactor, 1, cols) ;% match size of Intensities 
StructOut.Intensities=StructOut.Intensities.*NFmat; 
clear NFmat RowTotalionCount AvgTotalionCount NormFactor; 

end 

% Option 5: Work with log (data) 

if Struct0ut.Options(5) 
StructOut.Intensities=log(StructOut.Intensities); 

end 

% end function 

end 
Build network links 
function adjacency BuildBayesNet( data, class, ffact~, drop ) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% BuildBayesNet selects features and metafeatures based on mutual info. 
% 
% DESCRIPTION 
% This function takes a set of training data and an additional 
% variable called "class" and tries to learn a Bayesian Network 
% Structure by examining Mutual Information. The class variable C is 
% assumed to be the ancestor of all other variables V. Arcs from c 
% to V are declared if MI(C;V)>>Z, where zis a maximum expected MI 
% of similar, but random data ... multiplied by a "fudge factor." Arcs 
% from Vi to Vj are similarly declared. Then various tests are 
% performed to prune the network structure and combine variables that 
% eXhibit high correlations. Finally the network is pruned to be a 
% Naive Bayesian Classifier, with only e>V arcs remaining. 
% 
% USAGE 
% network structure BuildBayesNet( training_data, class ) 
% 
% INPUTS 
% training_data: cases in rows, v~iables in cols, integer array 
% containing the data used to build the Bayes net 
% class: the known class variable for each case (l:c col vector) 
% ffactor: multiple of auto MI to use to threshold C>V connections 
% drop: 
% 
% OUTPUTS 
% 
% adjmatrix: a matrix of zeros and ones, where one in row i, column j 
% denotes a directed link in a Bayesian network between 
% variable i and variable j. The class variable is the last 
% row/colunn. 
% 
% CALLED FUNCTIONS 
% 
% automi: finds an MI threshold based on data findmutualinfos: finds 
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% all values MI(V;C), MI(V;V) and MI(V;C!Vl 

% Initialize 

% Initialize the network object and some constants 
network.data=data; 
network.class=clas~ 

automireps=lO; %times to repeat the auto MI thresholding to find avg. 

% Check the sizes of various things 
[rows cols]=size(data); %#ok<NASGU> 
cases=max(size(class)); 
if rows==cases 

clear cases 
else 

disp('# of rows in the data and class must beequal. ') 
return 

end 

% network.adjmat=zeros(cols+l); % all variables plus class as last row/col 
dataalphabet=max(size(unique(data)));% number of possible values of data 
classalphabet=max(size(unique(class)));% Number of values of class 

% Step 0: Find all the necessary mutual information values, thresholds The 
% function below finds all values MI(V;C!Vl and other combos needed and 
% stores them in the network structure. 

network.mi_vc, network.mi_vv, network.mi vc v ) .. 
= findmutualinfos( dat~ class); 

% Find a threshold MI by examining MI under randomization 
network.vcthreshold = automi( data, class, automireps )*ffactor 
network.vvthreshold = network.vcthreshold ~ .. 

log(dataalphabet)/log(classalphabet); 

% Step 1: Find all the possib£ arcs. Find the variables with high MI with 
%the class, i.e. MI(V,C)>>O and connect a link in the adjacency matrix 
% C->V. Also connect variable Vi,Vj if MI(Vi;Vj)>>O 

network.adjmatl=getarcs(network.mi_vc,network.vcthreshold,network.mi_v~,.. 

network.vvthreshold); 

% Step 2: Prune the variable set by clearing irrelevant features If there 
% is no path from V to the class, clear all entries V<>Vi (all i) 
network.adjmat2 = clearirrarcs( network.adjmatl ); 

%Step 3: Cut connections to class Where twovariables are connected to 
% each other and also to the class, attempt to select one as the child of 
% the other amd disconnect it from the class. Use MI(Vi;C!Vj)<<MI(Vi;C) as 
% a test. 

temp= clipclassconnections (network.adjmat2, ... 
network.mi_vc,r.etwork.mi_vc_v, drop); 

% and once again clear features no longer near class and end function 
adjacency= clearirrarcs( temp); 

end 
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Attempt to find metavariables 
function [finaldata metamatrix leftbound rightbound] T .. 

ChooseMetaVars ( data, class, &j) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% ChooseMetaVars attempts to combine variables into better variables 
% 
% DESCRIPTION 
% Finds the V-V pairs in the adjacency matrix, and attempts to 
% combine them mto a metavariable with a higher mutual information 
% than either variable alone. If it is possible to do this, it 
% returns a new data matrix with the variables combined. 
% 
% USAGE 
% 
% 

[finaldata metamatrix leftbound rightbound] = 
ChooseMetaVars ( data, class, adj) 

% 
% INPUTS 
% data: double array of discrete integer (l:n) values, cases in rows 
% and variables in columns. 
% class: double column vector, also l:n. Classification of each case. 
% adj: Adjacency matrix, #variables+l by #variables. Last row is 
% class node. Logical meaning "there is an arc from ito j." 
% 
% OUTPUTS 
% metamatrix: logical whose (i,j) means "variable j was combined into 
% variable i (and eBsed)" 
% finaldata: The data matrix with the variable combined and rebinned 
% leftbound: The new left boundary (vector) for binning. rightbound: 
% The new right boundary (vector) for binning. 
% 
% CALLED FUNCTIONS 
% opt3bin: rebins mmbined variables to determine highest MI. 

% Intialize 
[rows cols]=size(data); 
[classrow numvars]=size(adj); 
bindata=zeros(rows,cols); 
metamatrix=false(cols); 

% Create a list of all the variables V to check by examining the adjacency 
%matrix's last row, i.e. those with C->V connections 
listvec=l:numvars; 
varstocheck=unique(listvec(adj (classrow, :))); 
l=zeros(l,numvars); 
r=zeros(l,numvars); 

% Now go through that list, testing each V>W connection to see if adding V 
% and W creates a new variable Z that h5 a higher MI with the class than V 
% alone. V is the list above, W is the list of variables connected to a V. 

for v=varstocheck % Pull out the W variables connected to V and test 
wlist=unique(listvec(adj (v,:))); 
[l(v), r(v), binned, mitobeat] =opt3bin(data(:,v), class); 
bindata(:,v)=binned; 
if -isempty(wlist) 

for w=wlist 
newdata=data ( : , v) +data (: , w) ; 
[left, right, binned, newmi] opt3bin(newdata, class); 
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if newmi>mitobeat 
mitobeat=newmi; 
data (:, v) =data (:, v) +data (:, w); 
metamatrix(v,w)=true;% record the combination 
bindata(:,v)=binned; 
l(v)=left; 
r(v)=right; 

end 
end 

end 
end 

%pull out just the V->C columns from the data matrix. 
finaldata=bindata(:,adj(classrow,:)); 
leftbound=l(adj(classrow,:)); 
rightbound=r(adj(classrow, :)); 
end 
Bayes classification 
function classprobs = TestCases( p, prior, data) 
% (c) Karl Kuschner, College ofWilliam and Mary, Dept. of Physics, 2009. 
% 
% classprobs uses Bayes rule to classify a case 
% 
% DESCRIPTION 
% Tests each of a set of data vectors by looking up P(datalclass) in 
% a probability table, then finding P(caselclass) by multiplying ffih 
% of those values in a product. Then uses Bayes' rule to calculate 
% P(classldata) for each possible value of class. Reports this as an 
% array of class probabilities for each case. 
% 
% USAGE 
% 
% 

classprobs Testcases( p, prior,data) 

% INPUTS 
% data: double array of discrete integer (l:n) values, cases in rows 
% and variables in columns. 
% p: 3-D double array of probabilities (c,d,v). The first dimension 
% is the class, the second is the data ~lue, the third is the 
% variable number. The entry is P(var v=value d I class=value c). 
% 
% OUTPUTS 
% 
% 
% 

classprobs: ~D double array whose value is P(class=cldata) for 
each case. Cases are in rows, class in cols. 

% 
% CALLED FUNCTIONS 
% 
% None. 

% Intialize 

% Find the sizes of the inputs and the number of possible values 
[cases numvars]=size(data); 
classvals=size(p,l); 
pvec=zeros(classvals,numvars); 
classprobs = zeros(cases, classvals) ;% holds the classification results 

% Find the probabilities 
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% Create pvec, an array whose first row is P(V=vlc=l) for each V 
for casenum=l:cases 

casedata=data(casenum, :) ; %The case to be checked 
for c=l:classvals 

for v=l:numvars 
pvec(c,v)=max(p(c,casedata(v),v), .01); %Don't want any zeros 

end 
end 
% Now find P(caselclass) for each class by multiplying each individual 
% P(VICl together, assuming they are independant. 

Pdc=prod(pvec,2); 

%Use Bayes' Rule 

classprobs(casenum, :) =(Poc.*prior)/sum(Pdc.*prior); 

end 

end 
Optimized discretization 
function [1, r, binned, mi] = opt3bin (data, class) 
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% FunctionName short description 
% 
% DESCRIPTION 
% This function takes an array of continuous sample data of size 
% cases (rows) by variables (columns), along with a class vector of 
% integers l:c, each integer specifying the class. The class vector 
% has the same number of cases as the data. Thefunction outputs the 
% position of the 2 bin boundaries (3 bins) that optimize the mutual 
% information of each variable's data vector with the class vector. 
% 
% USAGE 
% 
% 

[l,r,binned, mi]=opt3bin(data,class) 

% INPUTS 
% data: doublearray of continuous values, cases in rows and 
% variables in columns. Distribution is unknown. 
% class: double column vector, values l:c representing classification 
% of each case. 
% 
% OUTPUTS 
% 
% 1 -row vector of left boundary position for each var. r 
% row vector of right boundary position for each var. binneddata 
% array discretized using boundaries in l and r mi - row vector of 
% mutual info between each discr. variable 
% and class 
% 
% CALLED FUNCTIONS 
% 
% opt2bin: Similar function that finds a single boundary. This is 
% used as a seed for the 3 bin optimization. 
% looklr: See below. 

% Intialize 
% 
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% Variable Prep find sizes of arrays and create paceholders for locals 

steps=l50; 
[rows cols]=size(data); 
boundary=zeros(2,cols); 

% Method Find starting point by finding the maximum value of a 2 bin mi. 
% Next, go left and right from that position, finding the position of the 
%next boundary that maxfuizes MI. 

[mi boundary(1, :)] = opt2bin (data, class, steps, 2); 

% We've located a good starting (center) bin boundary. Search L/R for a 
% second boundary to do a 3 bin discretization. 
[mi boundary(2, :)] = looklr (data, class, boundary(l, :), steps); 

% We've now found the optimum SECOND boundary position given the best 2 bin 
% center boundary. Now research using that SECOND boaundary position, 
% dropping the original (2 bin). The result should be at, or near, the 
% optimal 3 bin position. 
[mi boundary(1, :) binned] = looklr (data, class, boundary(2, :) , steps); 

% from the two boundaries found above, sort the left and right 
r=max (boundary) ; 
l=min(boundary); 

% Now retutn the vector of left and right boundaries, the disc. data, and 
% max MI found. 
end % of function 

Optimized binning search 
function [miout nextboundary binned] = looklr (data, class, startbd, steps) 
% given a start position, finds another boundary (to create 3 bins) that 
% maximizes MI with the class 
[rows cols]=size(data); 
farleft=min(data, 0 ,1); 
farright=max(data, [],1); 
miout=zeros(1,cols); 
binned=zeros(rows,cols); 
nextboundary=zeros(1,cols); 

for peak=1:cols% for each peak/variable separately ... 

% discretize this variables' values. Sweep through the possible bin 
% boundaries from the startbd to the furthest value of the data, 
% creating 2 boundaries for 3 bins. Record the binned values in a 
% "cases x steps" array, where "steps" is the granularity of the sweep. 
%The data vector starts off as a column ... 

testmat=repmat(data(:,peak),1,steps);% and is replicated to an array. 

% Create same size array of bin boundaries. Each row is the same. 
checkptsL=repmat(linspace(farleft(peak),startbd(peak),steps),rows,1); 
checkptsR=repmat(linspace(startbd(peak) ,farrigt(peak),steps),rows,1); 

% Create a place to hold the discrete info, starting with all ones. The 
% "left" array will represent data binned holding the center boundary 
% fixed and sweeping out a second boundary to the left; similarly the 
% right boundary starts at "startbd" and sweeps higher. 
binarrayL=ones(rows,steps); 
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binarrayR=ones(rows,steps); 

% Those in the L test array that are higher than the left boundar~> 2 
binarrayL(testmat>checkptsL)=2; 
binarrayL(testmat>st~tbd(peak))=3;% >center boundary-> 3 

% Similarly using center and right boundaries 
binarrayR(testmat>startbd(peak))=2; 
binarrayR(testmat>checkptsR)=3; 

% Now at each of those step positions, check MI (var;class). 
miout(peak) = 0; 

% THese vectors hold the MI with each step used to discretize. 
miL=Miarray(binarrayL,class) fa MI(V;C) using left/center 
miR=Miarray(binarrayR,class);% MI(V;C) using center/right 

if max(miL)>max(miR) %See which one is the largest 
[miout(peak) index]=max(miL); %record the max mi found 
nextboundary(peak)=checkptsL(l,index) ;% and record the boundary 
binned(:,peak)=binarrayL(:,index) ~and record the discrete data 

else 

end 

[miout(peak) index]=max(miR); %record the max mi found 
nextboundary(peak)=checkptsR(l,index) ;% and record the boundary 
binned(:,peak)=binarrayR(:,index)fo and record the discrete data 

end% of that variable's search. Go to next variable. 

end% of the search. Returnthe best boundary and the associated MI and data 
Automated MI thresholding 
function threshold= automi( data, class, repeats 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% automi finds a threshold for randomized MI(V; C) 
% 
% DESCRIPTION 
% Finds the threshold of a data set's mutual information with a class 
% vector, above which a variable's MI(class, variable) can be 
% expected to be significant. The threshold for mi (significance 
% level) is found zy taking the data set and randoomizing the class 
% vector, then calculating MI(C;V) for all the variables. This is 
% repeated a number of times. The resulting list of length (#repeats 
% * #variables) is sorted, and the 99th percentile rna MI is taken 
% as the threshold. 

% USAGE 
% 
% 

threshold automi( data, class ) 

% INPUTS 
% data: double array of discrete integer (l:n) values, cases in rows 
% and variables in columns. 
% class: double column vector, alsol:n. Classification of each case. 
% repeats: the number of times to repeat the randomization 
% 
% OUTPUTS 
% 
% threshold: the significance level for MI(C;V) 

159 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

% 
% CALLED FUNCTIONS 
% 
% Miarray(data,class): returns a vector with MI(Vi;Class) dt each V 
% in the data set 

% Intialize 

% Find the size of the data (cases x variables) and check against class 
[rows cols]=size(data); 
cases=max(size(class)); 
if rows==cases 

clear cases 
else 

disp ( 1 # of rows in the data and class must a equal. 1
) 

return 
end 

% Repeat a number of times 

mifound=zeros(cols,repeats);% stores the results of the randomized MI 
for i=l:repeats 

c=class(randperm(rows));% creates a randomized class vector 
mifound(:,i)=Miarray(data,c);% record MI(Ci;V) in an array 

end 

% pull off the 99th percentile highest MI 
mi_in_a_vector=reshape(mifound,repeats*cols,l) ;% prctile needs vector 
threshold=prctile(mi_in_a_vector,99); 

end 
Find arcs, build adjacency matrix 
function adjacency = getarcs( mvc, vcthreshola mvv, vvthreshold ) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% GETARCS builds the adjacency matrix for a set of variables 
% 
% DESCRIPTION 
% By comparing mutual information between two variables to thresholds 
% determined seperately, this function declares there to be an arc in 
% a Bayesian network. Arcs are stored in an adjacency matrix, 
% described below. 
% 
% The primary tests are: MI(Vi;Cj)>>Vcthreshold : tests for links 
% between Vi and the class MI(Vi;Vj)>>vvthreshold : tests the links 
% between variables 
% 
% USAGE 
% adjacency getarcs( mvc, vcthreshold, mvv, vvthreshold ) 
0 ., 
% INPUTS 
% mvc [mvv] : double vector [array] with mutual information between 
% variables and the class [variables and other variables] . The 
% (i,j) entries of mvv are MI(Vi,Vj). 
% vc/vvthreshold: scalar threshold used to test for existence linkz 
% 
% OUTPUTS 
% 
% adjacency: logical matrix whose entries "1" at (i,j) ean "an arc 
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% 
% 
% 
% 

exists from the Bayesian network node Vi to Vj." The class 
variable c is added at row (number of V's + 1). "0" values 
mean no arc. 

% CALLED FL~CTIONS 
% 
% None. 
% 
% For more information on the testsand the links, see my dissertation. 

% Initialize 
numvars=max(size(mvc)); %the number of variables 
classrow=numvars+l; %row to store links ~>V 
adjacency= false(classrow,numvars);%the blank adjacency matrix 

% Test for adjacency to class 
adjacency ( classrow )= mvc > vcthreshold; 

% Test for links between variables This test results in a symmetric logical 
% matrix since MI (X;Y) is symetric. To create a directed graph, these arcs 
% will need to be pruned. 
adjacency ( l:numvars, l:numvars ) = mvv > vvhreshold; 

end 
Clear irrelevant arcs 
function adjout = clearirrarcs( adjin ) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% CLEARIRRARCS clears arcs that are not G>V or C->V<->V 
% 
% DESCRIPTION 
% Given an adjacency matrix with V<->V arcs in a square matrix and an 
% additional row representing G>V (class to variable), this function 
% clears out all Vk>V2 arcs where Vl is not a member of the set of 
% V's that are clas&connected, i.e. have arcs in thefinal row. 
% 
% USAGE 
% adjout clearirrarcs( adjin ) 
% 
% INPUTS 
% adjin: a logical array where a true value at position (i,j) means 
% that there is an arc in a directed acyclic graph between 
% (variable) i and variable j. 
% 
% OUTPUTS 
% adjout: copy of adjin with unneeded arcs cleared 
% 
% CALLED FUNCTIONS 
% None. 

% Intialize Find the sizes of the input 
[classrow, numvars]=size(adjin); 

% Main processing Find out which variables are connected to class 
conntocls=(adjin(classrow, :)) ; 

% Remove all arcs that don't have at least one variable in this list, e.g. 
%all Vi<->Vj such that -(V~>C or Vj->C). These are all the entries in the 
% adjacency matrix whose i and j are NOT in the list above. 
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% Make a matrix with onffi where neither variable is in the list above 
noconnmat=repmat(-conntocls,numvars,l) & repmat(-conntocls',l,numvars); 

% Use that to erase all the irrelevant entries in the square adj matrix, at 
% the same time remove the diagonal (arcs vi~>Vi) 
adjout=adjin (l:numvars, l:numvars)& -noconnmat & -eye(numvars); 

% Bidirectional arcs are temporarily permitted between nodes coLnected 
% directly to the class, but not between nodes where only one is connected 
% to the class- those are assumed to flow G>Vl->V2 only. Remove V2->Vl. 

% Get a matrix of ones in rows that are class connected. V>V arcs are only 
% allowed to be in these rows: 
parents=repmat(conntocls',l,numvars); 
% Remove anything else 
adjout=adjout & parents; 

% Now add back in the class row at the b~tom of the square matrix 
adjout(classrow, :)=adjin(classrow, :) ; 

end 

Attempt to prune relevant arcs 
function adjout = clipclassconnections( adj, mivc_vec,mivcv,dropthreshold 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% clipclassconnections delinks variables from class 
% 
% DESCRIPTION 
% 
% 
% 
% 

Where two variables are connected to each other and also to the 
class, attempt to select one as the child of the other and 
disconnect it from the class. Use MI(Vi;cyj)<<MI(Vi;C) as a test. 

% USAGE 
% 
% 

probtable FindProbTables(data, class) 

% INPUTS 
% adj: (logical) matrix where "true" entries at (i,j) mean "an arc 
% exists from the Bayesian network node Vi to Vj." The class 
% variable C is added at row (number of V' s + 1). "0" values 
% mean no arc. 
% mivc vee: (double) row vector containing MI(C;Vi) for each variable 
% mivcv: (double) array whose (i,j) entry is MI(Vi,CIVj). 
% dropthreshold: percentage ocop from MI(Vj;C) to MI(Vj;CIVi) before 
% declaring that Vi is between c and Vj. 
% 
% OUTPUTS 
% adjout: copy of adj with the appropriate arcs removed. 
% 
% CALLED FUNCTIONS 
% None. 

% Intialize 
[classrow, numvars]=size(adj); 
classconnect=adj (classrow, :) ; % the last row of adj stores arcs G>V 
adjout=false(classrow, numvars);% placeholder for output array 

% Identify triply connected arcs 
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% First look for pairs that are connected to each other and connected to 
% the class. 

% Connected to each other: build logical array with (i,j) true if Vi<>Vj 
vv_conn=adj(l:numvars, l:numvars); 

%Connected to the class: logical array with (i,j) true if C>Vi and C->Vj 
vcv_conn=repmat(classconnect, numvars,l) & repmat(classconnect',l,numvars); 

% Find all (i,j) with both true 
triple_conn = vv conn & vcv_conn; 

% Determine preferred direction on v~>V arcs 

%Determine the vi~>Vj direction by finding the greater of MI(C;i[j) or 
% (C;j [i). Greater MI means less effect of the instantiation of i or j. 
arcdirection=mivcv > mivcv'; %Only the larger survive 
dag_triple_conn=arcdirection & triple_conn;% Wipes out the smaller-> 

% find links should NOT be kept under the test above, 
linkstoremove=(-arcdirection) & triple_conn; 
% and if they are in the connecuon list, remove them 
adjout(l:numvars, l:numvars)=xor(vv_conn,linkstoremove); 

% Now we need to test whether we can remove the link between C and which 
%ever V (i or j) is the child of the other. We look for a "significant" 
%drop in MI(Vj;C) when instattiating Vi, e.g. MI(Vj;C[Vi)<<MI(Vj;C). 
% 
% dropthreshold of .7, for example, means link breaks if 1st term is less 
% than 30% of the second term. 
% 
% If there is a big drop in MI(C;Vj) when Vi is given, and V~Vj exists in 
%the DAG, then we can remove me link C->Vj and leave C->Vi->Vj. 

% Build an array out of the mivc_vec vector 
mivc=repmat(mivc_vec',l,numvars); 
% Test for the large drop described above 
bigdrop=((mivc-mivcv) ./mivc) > dropthreshold; 
% Test for the big drop and the VV connection 
breakcann = bigdrop' & dag_triple_conn; 
% If any of the elements in a column of the result are true, remove that 
%variable's C->V link, since it is a child. 
linkstokeep=-any(breakconn); 
adjout(classrow, :)= adj (classrow,:) & linkstokeep; 

% With V->V links now only one way, and ~>V removed where needed, we can 
end 

Find all necessary mutual information values 
function [ mi_vc, mi_vv, mi_vc_v ] = findmutualinfos( data, class ) 
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% FINDMUTUALINPOS finds the various mutual info combos among variables. 
% 
% DESCRIPTION 
% Given a set of data (many cases, each with values for many 
% variables) and an additional value stored in the vector class, it 
% finds various combinations of Midescribed below in "OUTPUTS." 
% 
% USAGE 
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% 
% 
% INPUTS 

mi_vc, mi_vv, mi vc v findmutualinfos( data, class ) 

% data: A number of cases (in rows), each with a measurement for a 
% group of variables (in columns). The data should be ±Bcretized 
% into integers 1 through k. The columns are considered variables 
% Vl, V2, 
% class: an additional measurement of class C. A column vector of 
% length "cases" with integer values 1,2 ... 
% 
% OUTPUTS 
% 
% mi vc: a row vector whose ith value is MI(Vi,C). mi_vv: Symmetric 
% matrix with values MI(Vi,Vj). mi vc v: NoRsym matrix with values 
% MI(Vi;CIVj). 
% 
% CALLED FUNCTIONS 
% 
% findentropies: returns entropy values [e.g. H(Vi,Vj)] 

% Intialize 

%Find the data size and declare some blank arrays 
[rows cols]=size(data); 
mi_vv=zeros(cols); 
mi_vc_v=zeros(cols); 

% Find Entropies and Calculate Mutual Informations 

%Find the various entropies needed to calculate the MI's 
h_c, h_v, h_vc, h_vv, h_vcv] = findentropies( data, class); 

% Calculate the value MI(Vi,C) 
mi VC = h V + h _ C - h _ VC ; 

%For each variable Vj, calculate MI(Vi,Vj) and MI(Vi;C!Vj) 

for i=l:cols 
for j=l:cols 

mi_vv (i,j) = h_v(i) + h_v(j)- h_vv(i,j); 
mi_vc_v(i,j) = h_vv(i,j)- h_v(j)+ h_vc(j) - h_vcv(i,j); 

end 
end 

end 

Coarse optimized binning, 
function [mi boundary binneddata] = opt2bin (rawdata, class, steps •.. 
typesearch, minint, maxint) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Pheyics, 2009. 
% 
% opt2bin finds the best single boundary for each variable to maximize MI 
% 
% DESCRIPTION 
% This function takes an array of continuous data, with cases in rows 
% and variables in columns, along with a vector "class" which holds 
% the known class of each of the cases, and returns an array 
% "binneddata" that holds the 2 bin discretized data. The 
% discretization bin boundary is found by maximizing the mutual 
% information with the class; the resulting MI andboundary are also 
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% 
% 
% 
% 

returned. The starting boundaries for the search can be given in 
the vectors min and max, or either one, or neither, in which case 
the data values determine the search boundaries.% 

% USAGE 
% 
% 
% 

[mi boundary tinneddata] 
min, max]) 

maxMibin(rawdata, class, typesearch [, 

% INPUTS 
% 
% 
% 

rawdata: double array of continuous values, cases in rows and 
variables in columns. Distribution is unknown. 

% 
class: double column vector, valas 1:c representing classification 

of each case. 
% 
% 
% 
% 
% 
% 
% 
% 

steps: Number of steps to test at while finding maximum MI 
typesearch =0: starting bndry based on data's actual max/min values 

=1: use the value passed in max a maximum (right) value 
~1: use the value passed in min as minimum (left) value 
=2: used values passed via max, min 

the two optional arguments are vectors whose values limit the range 
of search for eam variables boundaries. 

% OUTPUTS 
% 
% 
% 
% 

mi: row vector holding the maximum values of MI(C;Vi) found 
boundary: The location used to bin the data to get max MI 
binneddata: The resulting data binned into "1" (low) or "2" (hi) 

% 
% CALLED FUNCTIONS 
% 
% 
% 

Miarray: Finds the MI of each col in an array with a separate 
vector (the class in this case) 

% Intialize 
[rows cols]=size(rawdata); 
mi=zeros(1,cols); 
boundary=zeros(1,cols); 
binneddata=zeros(rows,cols); 
currentmi=zeros(steps,cols); 

% if not passed, find the left and rightmost possible bin boundaries from 
% data 

if nargin-=6 
minint=min(rawdata, [] ,1); 
maxint=max(rawdata, [] ,1); 

elseif typesearch==1 
minint=min(rawdata, [] ,1); 

elseif typesearch==-1 
maxint=max(rawdata, [] ,1); 

elseif typesearch==2 
disp ('using passed values') 

else 

end 

disp ('type search must = 0, 1,-1, 2 ') 
return 

% Find best boundary 

for peak=1:cols %look at each variable separately 
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end 

end 

% Create an array of bin boundary's possible locatioa min->max 
checkpoints=repmat(linspace(minint(peak),maxint(peak),steps),rows,l); 

% discretize the variable's values at each of these possible 
%boundaries, putting 2's everywhere (value> boundary), 1 elsewhere 
binarray=(repmat(rawdata(:,~ak), 1, steps)>checkpoints)+l; 

%Send this array off to find the MI(C,V) for each possible binning 
currentmi(l:steps,peak)=Miarray(binarray,class); 

%Now pick out the highest MI, i.e. best bin boundary 
[mi(peak) atstep]=max(currentmi(:,pak)); 
boundary(peak)=checkpoints(l,atstep); 

% and record the binned data using that boundary. 
binneddata(:,peak)=binarray(:,atstep); 

Find Bayes network parameters 
function p=FindProbTables(data, class) 
% (c) Karl Kuschner, College ofWilliam and Mary, Dept. of Physics, 2009. 
% 
% FindProbTables estimates the probabilities P(class=c[data=D) 
% 
% DESCRIPTION 
% Input a training group of data arranged with cases in rows and 
% variables in columns, as well as the class value c fo that vector. 
% Each case represents a data vector V. For each possible data value 
% vi, and each variable Vi, it calculates P(C=c[Vi=vi) and stores 
% that result in a ~D table. The table is arranged with the 
% dimensions (class value, data value, variable number). 
% 
% USAGE 
% 
% 

probtable FindProbTables(data, class) 

% INPUTS 
% data: double array of discrete integer (l:n) values, cases in rows 
% and variables in columns. 
% 
% 

class: double column vector,also l:n. Classification of each case. 

% OUTPUTS 
% 
% probtable: ~D array whose (c,d,v) value is P(class=c[data=p) for 
% variable v. 
% 
% CALLED FUNCTIONS 
% 
% None. 

% Intialize Find the sizes of the inputs and the number of possiba values 
[cases numvars]=size(data); 
datavals=max(size(unique(data))); 
classvals=max(size(unique(class))); 
% Build some placeholders and loop indices 
p=zeros(classvals, datavals, numvars );% triplet: (class, value, variable#) 
databins=l:datavals; 
classbins=l:classvals; 
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% Find Probabilities For each classification value, extract the data with 
% that class 
for c=classbins 

datainthatclass=data(class==C, :); %array of just cases with class=c 
% find the percentage of data with each possible data value 
p(c,:, :)=histc(datainthatclass,databins)/cases; 

end 

end 
Find all variable entropies 
function [ h_c, h_v, h_vc, h_vv, h_vvc ] = findentropies( data, class ) 

% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% findentropies finds all the entropies H(V), H(V,V), etc. 
% 
% DESCRIPTION 
% Give a set of data arranged with cases in rows and variables in 
% columns, and an additional variable labeled the "class", this 
% function returns the entropy of each variable's ~a, the class' 
% data, and the joint entropy of all pairs of two variables, all 
% variables with the class, and all pairs of variable and the class. 
% 
% USAGE 
% 
% 
% INPUTS 

h_c, h_v, h_vc, h_vv, h vvc findentropies( data, class ) 

% data: double array of discrete integer (l:n) values, cases in rows 
% and variables in columns. 
% class: double column vector, also l:n. Classification of each case. 
% 
% OUTPUTS 
% 
% h_v: entropies of the variables, H(Vi), storedin a row vector. 
% h_c: scalar entropy of the class vector, H(C) h_vc: vector whose 
% ith entry is the joint entropy H(Vi,C) h_vv: matrix whose (i,j) 
% entry is the joint entropy H(Vi,Vj) h vvc: matrix whose (i,j) entry 
% is the j o:int entropy H (Vi, Vj, C) 
% 
% CALLED FUNCTIONS 
% 
% entropy (vector, num_poss_vals [vector, numvals, ... ]) see below 

% Initialize 
% Find the number of variable (cols) and number of cases, as well as the 
% number of possible values (k) and class values l) 
[rows cols]=size(data); 
k=max(size(unique(data)));% #of possible values of data 
l=max(size(unique(class)));% #of possible values of class 

% Intialize the output matrices 
h_v=zeros(l,cols); 
h vc=zeros(l,cols); 
h=vv=zeros(cols,cols); 
h_vvc=zeros(cols,cols); 

% Main processing Calculate all the various entropy combinations 
h c =entropy (class, 1);% see function below 
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for i=1:cols 

h_v(i) =entropy (data(:,i), k); 
h_vc(i) =entropy (data(:,i), k, class, l); 

for j=1:cols 
h vv(i,j)= entropy (data(:,i), k, data(:,j), k); 
h=vvc(i,j) =entropy (data(:,i), k, data(:,j), k, class, l); 

end 

end 

end 
Entropy equation implementation 
function ent=entropy(vector1, k, vector2, l, vector3, m) 
% (c) Karl Kuschner, College of Williamand Mary, Dept. of Physics, 2009. 
% 
% entropy finds all the entropies H(V), H(V,V), etc. 
% 
% DESCRIPTION 
% Calculates the entropy (or joint entropy if more that one argument 
% pair) of a vector (or vectors) whose values are {1,2, ... k}. Must 
% send in one or more pairs of arguments ("vector", "num poss vals") 
% 
% USAGE 
% ent=entropy (vector, num_poss_vals [,vec,numvals [,vec,numvals] ]) 
% 
% INPUTS One to three pairs of 
% vector: vector of integers 1,2, .. k representing values ofrandm var 
% k: number of possible values in vector 
% 
% OUTPUTS 
% ent: information entropy H(Vl) [or H(Vl,V2) or H(V1,V2,V3)] 
% 
% CALLED FUNCTIONS 
% 
% None. 

% Initialize 
n=max(size(vector1));% Number of possible cases (not error checked) 

% Calculate the Entropy 

% single variable entropy formula 
if nargin==2 

end 

P_k=hist(vector1,1:k)/n; 
Nonzero=find(P_k-=0); % See Note 1 
ent=-sum(P_k(NonZero) .*log2(P_k(NonZero))); 

%two variable joint entropy H(V1,V2) 
if nargin==4 

end 

ent=O; 
for i=1:l 

end 

P_lk=hist(vector1(vector2==i) ,1:k)/n; 
NonZero=find(P_lk-=0); 
ent=ent-sum(P_lk(NonZero) .*log2(P_lk(NonZero))); 
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% three variable joint entropy H(Vl,V2,V3) 
if nargin==6 

end 

ent=O; 
for i=1:1 % for all possible values in V2 

end 

for j=1:m % for all possible values in V3 

end 

% empirically find probability and sum entropy each 
% step 
P lkm=hist(vector1(vector2==i & vector3==j),1:k)/n; 
NonZero=find(P_lkm-=0); % See Note 1 
ent=ent-sum(P_lkm(NonZero) .*log2(P_lkm(Nonzero))); 

% Note 1: we can skip terms with p(a,b,c)=O since 
% p log (p) = 0 log 0 = 0 
% in that case and it does not contribute to ta sum. 

end 
Find mutual information of a vector with all columns of an array 
function MIOut = Miarray(Matrixin, class) 
% by Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% 
% Miarray finds MI of each column of a data set with a separat vector 
% 
% DESCRIPTION 
% This function finds the mutual information between a single 
% discrete variable (class) and a matrix of discrete variables 
% (Matrixin) which have the same number of cases (variables in 
% columns, cases inrows). A row vector containing the values 
% MI(Vi,C) for each variable Vi in the matrix is returned. 
% 
% USAGE 
% MIOut MI(Matrixin, class) 
% 
% INPUTS 
% data: double array of discrete integer (l:n) values, cases in rows 
% andvariables in columns. 
% class: double (col) vector, values l:c representing class of each 
% case. Number of values c can be different than n in the data. 
% 
% OUTPUTS 
% MIOut: double (row) vector whose entries are the Mutual informatio 
% between each corresponding column of Matrixin and the class. 
% 
% CALLED FUNCTIONS 
% None. 
% 

% Intialize and Data Check check arguments 
if nargin-=2 

end 

disp('wrong number of input arguments? 
disp ('need (data_array, class) '} 
disp(' '} 
disp('Type "doc MI" for more info'} 

%class and Matrixin must have the same number of rows 
[rows cols]=size(Matrixin}; 
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if size(class,2)==rows 
class=transpose(class); 

elseif size(class,1)-=rows 
disp('Dimension mismatch in rows of MI arays') 
disp('Input arrays must have the same number of rows' 
return 

end %row dimension check 

% States must be integer values, typically 1 to n. If so, record n. 
% Similarly, find out the number of states of the class variable. 
if sum(any(Matrixirrround(Matrixin))) 

disp('Matrix in should be integers 1 to nl 
return 

else 
n=max(size(unique(Matrixin)));% Number of data states 
c=max(size(unique(class))) fo Number of class states 

end % check if integer 

% Variable Prep 
Matrixin=int8 (Matrixin) ; %optional 
class=int8(class); %optional 
Pcv = zeros(c,n,cols); 

% Compute probability tables. P_ij is a matrix whose entries are 
% Prob(Variable l=state i and Variable 2= state j). Others are similar. 

if C==1 %trap for errors in the case where allclasses are the same 
Pc = 1; 

else 

end 

% Create a 3-D array with c rows, each row filled with P(C=ci) 
Pc = repmat((hist(class,1:c)/rows)', [l,n,cols]); 

%Create a 2-D array where (j,k) is P(Vk=vj). Replicate it to a third 
% dimension to prepare for multiplication with the above. 
Pv =repmat( reshape ( hist(Matrixin,1:n)/rows, [l,n,cols] ), [c,l,l] ) ; 

% Now multiply these together, The result is a c by n by cols matrix whose 
% (i,j,k) entry is P(C=ci)*P(Vk=vj) for each value of class ci and dro vj. 
PCPV= PC. *Pv; 

%Now we need a similar sized array with the (i,j,k) entry equal to P(C=ci 
%and Vk=vj) -- the joint probability. 
for classstate=l:c 

Pcv(classstate, :, :) = hist(Matrixin(class==classstate, :),l:n)/rows; 
end 

% Now we can compute tre mutual info using 
% 
% MI(C=i;Vk=j) =sum i (sum j (Pcv(i,j,k) log [Pcv(i,j,k)/PcPv(i,j,k)] ) ) 
% 
miterms=Pcv.*(log2(Pcv)-log2(PcPv));% The term inside the log above ... 
miterms(isnan(miterms))=O;% with all the 0 log 0 entries removed 

% Do the double sunmation and squeeze the unused dimensions 
MIOut = squeeze(sum(sum(miterms,l),2)) '; 

end 
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Code for Creating Generated Data 

The code that follows takes a real data set and creates a generated data set that models the 

parameters of the real data, and is suitable for input to the classifier code. 

Contents 

• Find baseline values for all peaks 
• Build randomized peaks from baseline values 
• Designate disease class, separate subgroups 
• Build diagnostic features 
• Replicate and de-normalize cases 

function [GenData, A,B] = CreateGenData (LeukData) 
% (c) Karl Kuschner, College of William and Mary, Dept. of Physics, 2009. 
% This function creates a generated data set with parametes modeled from 
% the 2004 Leukemia data set. 
% 
% INPUTS 
% LeukData: Data repository structure with fields: 
% Intensities: Array of intensity values of size 
% #cases x #variables 
% Class: Vector of length "#cases", with discrete arlues 
% identifying class of each case (may be integer) 
% ID: Patient ID array of length #cases, with one or more cols 
% MZ: Vector of length "#variables" holding labels for variables 
% 
% OUTPUTS 
% GenData : Data structure exacfi.y like "LeukData" 
% A,B : The subgroups (class 1,2) of the Intensities matrix 
Find baseline values for all peaks 
GenData = LeukData; 
int=GenData.Intensities; 
intN=int(GenData.Class==l, :); clearint; 
intN(intN<l)=l; 
intN(:,200)=intN(:,l48); %add an extra variable, copying a peak from Leuk 
GenData.MZ(200)=GenData.MZ(l99)+100;% Fill in an artificial m/z 
mu=mean ( intN) ; 
sig=std ( intN) ; 
CV=Sig./mu; 
cv(cv>.2)=.2; %from data 
sig=cv. *mu; clear cv; 
Build randomized peaks from baseline values 

A set of spectra, with the number of cases approximating the number of unique patient 
identification numbers in the Leukemia data, is generated via a draw from a N (mu,sigma) (normal) 
distribution for each variable individually. mu is the value of the average spectrum at that peak 
position, sigma is estimated from the Leukemia data set population. At this point there should be 
no real distinction between any variables. 

for i=l:l50 

171 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Genint (i,:) =random('normal ',mu, sig); 
end 
clear i mu sig; 

Designate disease class, separate subgroups 

One half of the population is designated to be in the disease class. A class vector representing this 
choice is created and attached to the data. 

class(1:75)=1; 
class(76:150)=2; 

Build diagnostic features 

One feature (labeled 200) is chosen as "highly diagnostic" and the mean values of the two 
subpopulations (normal and disease) are separated by at two times the population's average 
standard deviation. Specifically, the disease cases are redrawn from N(mu+3sig,sig). 

mu=mean(Genint); 
sig=.2*mu(200); 
v200(1:75)=normrnd(mu(200) ,sig, 75,1); 
v200(76:150)=normrnd(mu(200)+2*sig,sig, 75,1); %Note mean is mu+2sigma 
v200=v200';figure();bar(v200); 
Genint(:,200)=v200; 
clear mu sig 

% A random fraction (about a tenth) of the total value of this 
% feature is placed into each of four adjacent features (labeled 195199) . 
% In this manner, five diagnostic features are created, correlated to the 
% parent feature. This procedure mimics the measurement of 
% adducts or modifications in the real data set, wherein slightly modified 
% molecules show up as a peak separate from the original. 
v196to9fact=(rand(150,4)*.04)+.08;% 8 to 12% 
for i=1:4 

v196to9add(:,i)=v200.*v196to9fact(:,1);%#ok<*AGROW> 
end 
Genint(:,196:199)=Genint(:,196:199)+v196to9add; 

% Another small fraction of the value of the key peak is moved into 
% a feature some distance away in the list (labeled 100), representing a 
% multiply-charged ion (m/2z) . This is repeated to a different feature 
% (labeld 99) for one of the adducts. 
v99to100fac=(rand(150,2)*.1)+.1; 
v99to100add=Genint(:,199:200) .*v99to100fac; 
Genint(:,99:100)=Genint(:,99:100)+v99to100add; 
clear v99to100add v99to100fac 

% Another diagnostic feature (1.5 sigma separation) is created but 
%not added to the feature list. Instead, a random amamt of the total 
% value of that feature (itself chosen from a normal distribution) is 
% placed in two nofradjacent features (labeled 50 and 150). This 
% represents the breaking apart of a biomarker protein, whose mass is too 
% great to be detected, into ~veral fragment molecules that are in the 
% range of measurement. 
mu=mean(Genint(:,50)); 
sig=.2*mu; 
v201(1:75)=normrnd(mu,sig, 75,1); 
v201(76:150)=normrnd(mu+1.5*sig,sig, 75,1); 
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v201=v201'; 
fragfac1=(rand(150,1))*.4; 
fragfac2=1-fragfac1; 
v50add=v201. *frag:fac1; 
v150add=v201.*fragfac2; 
Genint(:,50)=Genint(:,50)+v50add; 
Genint(:,150)=Genint(:,50)+v150add; 
clear fragfac1 fragfac2 mu sig v150add v50add v201 

Two more features (labeled 1 and 2) are selected as "moderately diagnostic" and the values chosen 
from two normal distributions whose means are separated by about two standard deviations of 
either group. Specifically, the disease cases are redrawn from N(mu+l.Ssig,sig). One of these two 
features has a portion of the other feature's value added to it to represent an unsuccessful 
deconvolution of two peaks that are so close together the peak value of one is "riding up" on the 
tail of another. Two mildly diagnostic features (3 and 4) are created without this effect. 

for i=1:2 
mu=mean(Genint(:,i)); 
sig=.2*mu; 
Genint(1:75,i)=normrnd(mu,sig, 75,1); 
Genint(76:150,i)=normrnd(mu+1.5*sig,sig, 75,1); 

end 
shoulder=rand(150,1)*.1+.1;% 10-20% 
Genint(:,1)=Genint(:,1)+shoulder.*Genint(:,2); 
for i=3:4 

mu=mean(Genint(:,i)); 
sig=.2*mu; 
Genint(1:75,i)=normrnd(mu,sig, 75,1); 
Genint(76:150,i)=normrnd(mu+1*sig,sig, 75,1); 

end 
clear i mu sig shoulder 

Replicate and de-normalize cases 

The cases are replicated three times (the original of each case is discarded) by multiplying each 
value by normalization factor. For a single data vector X a factor f is flrst selected from -U(O.S, 
2.0) to replicate the range of total ion current normalization factors found in the Leukemia data. 

for i=1:150; 
for j=1:3 

casenum=(i-1)*3+j; 
% thiscase=Genint(i, :) ; 

basefactor = rand*1.5+.5; 
% factorvec=rand(l,200)*.1+basefactor; 

Finint(casenum, :)=Genint(i, :)*basefactor; 
FinCl(casenum)=class(i); 
FiniD(casenum,1)=i; %patient ID 
FiniD(casenum,2)=j; %replicate number 

end 
end % de-normalization 
figure();imagesc(log(Genint)); 
GenData.Intensities=Finint; 
GenData.ID=FiniD; 
GenData.Class=FinCl'; 
Int=GenData.Intensities; 
A=Int(1:225, :); 
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B=Int(226:450, :) ;clear Int; 
end %of CreateGenData function 
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APPENDIX C: RESULTS 

This section lists the detailed results for the three data sets under repeated 

application of the naive Bayesian classifier. 

Generated Data 

The error rates for the forward selection of the generated data features are listed 

below. Each trial is a column listing the error rate resulting from a feature set size 

as listed in the leftmost column. 

Size Trial1 Trial2 Trial3 Trial4 TrialS Trial6 Trial7 TrialS Trial9 Trial10 
1 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 16.6% 
2 12.5% 12.5% 12.4% 12.5% 12.5% 12.5% 12.5% 12.5% 12.4% 12.3% 
3 9.9% 9.8% 9.9~/o 9.9% 9.7°/o 9.9% 9.9°/o 9.6% 10.0% 9.8% 
4 8.1% 8.2% 8.1% 8.1% 8.3% 8.0% 8.1% 8.2% 8.1% 8.1% 
5 7.6% 6.9% 7.0% 7.5% 7.1 ~lo 7.5% 7.1°/o 7.0% 7.0% 6.9% 
6 6.6% 5.0% 6.1% 6.4% 5.2% 6.8% 5.1 ~/0 5.4% 5.3% 5.2% 
7 5.7% 4.1% 5.4% 5.7% 4.2% 5.9% 4.0% 4.2% 4.2°/o 4.1% 
8 5.0% 3.3% 4.9% 5.4% 3.5% 5.0% 3.5% 3.4% 3.5% 3.5% 
9 4.1% 2.8% 4.6% 4.9% 2.9% 4.7% 2.8% 3.0% 3.1% 3.0% 

10 3.3% 2.8% 4.3% 4.5% 2.6% 4.6% 2.9% 2.8% 2.8~1o 2.7% 
11 2.7% 2.6% 3.8% 4.3% 2.5% 4.7% 2.6% 2.7% 2.7°/o 2.5% 
12 2.3% 2.0% 3.8% 4.0% 2.4% 4.4% 2.3% 2.4% 2.6% 2.6% 
13 2.1% 1.9% 3.6% 3.8% 2.0% 3.8% 2.2% 2.0% 2.5~/o 2.0% 
14 1.7% 1.7% 3.5% 3.8% 1.9% 3.6% 2.1% 1.9% 2.5% 1.9% 
15 1.6% 1.7% 3.6% 3.0% 1.9% 3.4% 2.2% 1.9% 2.3% 1.9% 
16 1.5% 1.5% 3.5% 2.5% 2.0% 3.5% 2.1% 1.8% 2.1% 1.8% 
17 1.2% 1.5% 3.4% 2.3% 1. 7~1o 3.5% 2.0% 1.8% 2.0°/o 1.7% 
18 1.1% 1.4% 3.3% 2.2% 1.7% 3.5% 1.9% 1.5% 1.9°/o 1.7% 
19 1.0% 1.4% 3.0°/o 2.1% 1.7% 3.6% 1.7% 1.5% 1.5% 1.6% 
20 1.0% 1.2% 3.0% 2.0% 1.7% 3.6% 1.6% 1.2% 1.3°/o 1.8% 
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Leukemia Data 

The following table lists the first twenty features from the Leukemia data set 

selected via forward selection in each of ten trials. 

Size Triall Trial2 Trial3 Trial4 Trial5 Trial6 Trial7 TrialS Trial9 TriallO 

1 199 199 199 199 199 199 199 199 199 199 
2 198 198 198 198 198 198 198 198 198 198 
3 141 141 141 141 141 193 141 141 141 141 
4 43 43 43 43 122 18 80 122 43 122 
5 31 122 4 4 9 93 122 9 4 9 
6 90 151 18 27 102 122 193 102 122 193 
7 102 76 122 44 10 151 151 10 151 151 
8 122 118 151 18 5 118 116 5 76 120 
9 151 27 10 142 191 71 173 105 118 41 

10 68 68 74 42 109 76 119 151 55 173 
11 93 109 11 3 193 11 30 193 38 27 
12 104 70 158 151 151 54 5 182 179 133 
13 39 62 68 193 110 48 10 136 3 99 
14 169 33 171 1 68 86 68 71 144 182 
15 120 193 39 10 71 128 25 48 74 186 
16 3 172 193 68 4 33 104 24 68 38 
17 110 158 5 171 86 44 38 70 135 25 
18 167 3 53 186 118 56 3 192 193 3 
19 191 115 188 30 39 158 56 39 30 188 
20 38 38 179 38 101 148 27 68 168 26 

The error rates associated with the selections listed above are shown in the table 

below. 

Size Trial1 Trial2 Trial3 Trial4 Trial5 Trial6 Trial? TrialS Trial9 Trial10 

1 17.2% 17.2% 17.1% 17.2% 17.1% 17.1% 17.2% 17.2% 17.2% 17.1% 
2 12.6% 12.4% 12.6% 12.6% 12.4% 12.5% 12.5% 12.5% 125% 12.4% 
3 9.7% 10.0% 9.9% 9.9~/0 9.8% 10.0% 9.9% 9.8% 9.7% 10.0% 
4 8.6% 8.7% 8.6% 8.6% 8.7% 8.7% 8.8% 8.7% 8.8% 8.7% 
5 8.2% 8.2% 8.2% 8.1% 7.5% 7.9% 8.0% 7.6% 8.3% 7.3% 
6 7.9% 7.1 °/o 7.8% 7.9% 6.6% 7.2% 7.1% 6.7% 7.8% 6.5% 
7 7.6% 6.3% 7.5% 7.7% 6.0% 6.1% 6.3% 6.2% 6.7% 6.0% 
8 7.3% 5.8°/o 6.3% 7.5% 6.1% 5.2% 5.6% 6.1% 5.9% 5.6% 
9 6.2% 5.4% 5.7% 7.2:'/o 5.9% 5.0% 5.2:'/o 6.0% 5.6% 5.1% 

10 5.8% 5.2% 5.5% 6.8% 5.9% 4.5% 4.9% 5.9% 5.4% 4.5% 
11 5.4% 5.1% 5.3% 6.3% 5.8% 4.1% 4.7% 5.2% 5.4% 4.4% 
12 5.3% 4.9% 5.3% 6.0% 5.4% 4.1% 4.5% 4.6% 5.0% 4.2% 
13 5.1% 5.0% 5.2% 5.3% 5.0% 3.9% 4.3% 4.3% 4.9% 4.5% 
14 5.1% 5.0% 5.0% 5.0% 4.7% 4.0% 4.2:'/o 4.3% 4.2:'/o 4.4% 
15 4.8% 4.9% 4.8% 4.7% 4.5% 3.9% 4.1% 4.2% 4.1% 4.4% 
16 4.7% 4.7% 4.7% 4.6% 4.3% 3.8% 3.9% 4.2% 3.9% 4.3% 
17 4.5% 4.5% 4.5% 4.6% 4.3% 3.9% 4.1% 4.2:'/o 3.9% 4.0% 
18 4.3% 4.5% 4.4% 4.3% 4.3% 3.7% 4.0% 4.3% 3.7% 3.8% 
19 4.2:'/o 4.4% 4.3% 4.4% 4.1% 3.8% 3.6% 4.3% 3.6°/o 3.4% 
20 4.0% 4.1% 4.1% 4.3% 4.1% 3.7% 3.4% 4.3% 3.5% 3.4% 
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PCAData 

The next table gives the first thirty features selected from the PCA data set in each 

of ten trials. 

Size Triall Trial 2 Trial3 Trial4 TrialS Trial6 Trial 7 TrialS Trial9 Trial10 
1 71 71 71 71 71 71 71 71 71 71 
2 1 1 1 1 1 1 1 1 1 1 
3 9 72 77 9 77 77 77 9 77 77 
4 23 77 37 23 37 37 37 23 37 37 
5 99 37 75 99 75 75 75 73 75 75 
6 38 25 65 73 83 65 84 77 84 25 
7 73 75 19 38 25 83 65 91 25 83 
8 77 84 84 80 6 81 81 66 66 66 
9 4 38 38 17 66 19 68 38 19 91 

10 19 81 66 58 38 66 19 27 85 81 
11 57 64 25 25 9 25 38 48 95 19 
12 49 6 2 77 57 6 58 6 11 9 
13 84 9 11 91 91 9 6 62 9 58 
14 78 57 52 84 84 38 46 75 38 38 
15 54 3 72 78 7 11 9 20 58 20 
16 80 52 6 6 58 57 57 41 6 64 
17 6 86 78 3 81 3 17 7 46 6 
18 66 19 3 20 78 2 3 25 73 52 
19 58 11 5 33 20 72 78 83 80 86 
20 91 78 99 57 46 91 90 47 83 90 
21 25 74 81 56 97 14 69 81 23 74 
22 74 21 20 8 19 80 25 11 31 62 
23 83 20 57 31 23 64 83 5 8 47 
24 75 98 12 75 73 52 47 37 7 89 
25 20 79 83 10 5 82 63 58 90 78 
26 10 17 21 64 17 29 5 31 29 21 
27 60 43 17 81 45 16 74 65 99 GO 
28 17 58 80 54 68 7 54 84 43 11 
29 90 48 93 4 13 31 12 33 17 17 
30 81 29 31 37 3 73 20 57 91 41 
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The fnal table lists the error rate associated with the selections listed above. 

Size 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 

Trial1 
38% 
37% 
37% 
36% 
35% 
34% 
32% 
32% 
31% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
29% 
29% 
29% 
29% 
29% 
29% 
28% 
28% 
28% 
29% 
29% 
29% 

Trial2 
38% 
37% 
37% 
38% 
35% 
34% 
33% 
32% 
32% 
31% 
31% 
30% 
29% 
28% 
28% 
28% 
28% 
29% 
28% 
29% 
29% 
29% 
29% 
29% 
30% 
30% 
30% 
30% 
30% 
30% 

Tria13 
38% 
37% 
37% 
35% 
34% 
33% 
33% 
32% 
31% 
31% 
30% 
30% 
30% 
30% 
31% 
31% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
31% 
30% 
31% 
31% 
31% 

Trial4 
38% 
37% 
37% 
36% 
35% 
34% 
33% 
32% 
32% 
32% 
31% 
31% 
30% 
30% 
29% 
29% 
28% 
28% 
29% 
29% 
29% 
29% 
30% 
30% 
30% 
30% 
29% 
30% 
30% 
30% 

TrialS 
38% 
37% 
37% 
35% 
34% 
33% 
32% 
32% 
31% 
30% 
30% 
29% 
28% 
29% 
29% 
29% 
28% 
28% 
28% 
28% 
28% 
28% 
29% 
28% 
28% 
28% 
28% 
28% 
29% 
29% 
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Trial6 
38% 
37% 
37% 
34% 
34% 
33% 
33% 
31% 
31% 
31% 
30% 
30% 
30% 
29% 
29% 
29% 
29% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
31% 
31% 
31% 
31% 

Trial? 
38% 
38% 
37% 
35% 
34% 
34% 
32% 
32% 
31% 
30% 
31% 
30% 
30% 
30% 
29% 
29% 
29% 
29% 
29% 
29% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
31% 
31% 
31% 

TrialS 
38% 
37% 
37% 
36% 
35% 
33% 
32% 
31% 
30% 
30% 
30% 
30% 
29% 
29% 
29% 
29% 
29% 
28% 
28% 
28% 
29% 
29% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 
30% 

Trial9 
38% 
37% 
37% 
35% 
34% 
33% 
32% 
31% 
31% 
30% 
30% 
30% 
31% 
31% 
31% 
31% 
30% 
30% 
30% 
30% 
29% 
28% 
28% 
28% 
28% 
28% 
28% 
29% 
29% 
29% 

Trial10 
38% 
37% 
37% 
34% 
34% 
34% 
32% 
31% 
31% 
30% 
30% 
30% 
29% 
29% 
29% 
28% 
28% 
28% 
28% 
29% 
29% 
29% 
30% 
30% 
30% 
30% 
30% 
31% 
31% 
31% 
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INDEX 

Adducts and modifications 
combination into metavariables, 92 

Adjacency matrix, 82 
Approximate searches, 50 
Background Subtraction, 29 
Bayes' Theorem 

description, equation, 13 
example, 15 
prior, 15, 40 

Bayesian network 
algorithm, 7 6 
and causality, 4 7 
definition, 42 

Bayesian network structures 
diverging (inverted V) connection, 45 
isolated node, 46 
number of possible DAGs, 49 
serial connection, 44 
triply connected structure, 7 6 
V connection, 45 

Bias avoidance, 1 7 
Binning, bin. See Discretization 
Biomarkers, 4 
Classifier 

construction, 34 
deterministic vs. probabilistic, 35 

Conditional probabilities, 8 
Cross-validation 

general, 56 
leave one out method, 57 
methods, 57 
n-fold, 58, 62 
stratification, 59 

Deconvolution, 29 
Directed acyclic graph 

ancestors and descendants, 43 
DAG,42 
encoding joint probability distributions, 44 
example, 42 
parent and child, 43 
representing a probability distribution, 43 

Discretization, 55, 83 
boundary optimization, 86 
naive, 83 
optimized, 83 

Entropy 
conditional, 10 
definition, 9 
equation, 10 
information vs. thermodynamic, 9 
joint entropy, 10 
maximum and minimum, 10 
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Shannon,9 
Error rate 

cross-validated, 58 
Feature selection 

backward elimination, 37, 64 
definition, 34 
filter and wrapper techniques, 36 
forward selection, 37, 64, 97 
pseudo-code, 3 7 

Independence 
condition, 40 
problem caused by, 41 

Instantiation, 45 
Instrument function, 53 
Marginalization, 14 
Markov blanket, 51, 7 5 
Mass spectrometry, 1 
Metavariables, 91 
Multiply charged ion, 48 
Mutual information, 11 

as a function of entropy, 12 
between variables and the class, 54 
conditional, 13 
equation, 11 
maximum and minimum, 12 
threshold, 55, 82 
threshold factor, 82 
used for structure learning, 79 

Naive Bayesian classifier, 38, 60 
Normalization 

by total ion current, 31 
Parameter learning, 51 

use of maximum likelihood, 52 
Peaks, 2 
Probability 

conditional, 7 
Probability distribution function (PDF), 8 
Probability tables, 51, 77, 93 
Product Rule, 8 
Quality control, 18 
Replicates, 19, 20, 33 

replicate averaging, 29 
Satellite. See Multiply charged ion 
Structure learning, 49 

approaches, 77 
classification tree, 78 
first level, 83 
maximum weight spanning tree, 78 
parent-child identification, 88 
triply-connected structures, 87 

Sum Rule, 8 
Training set, 38 
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GLOSSARY 

Adjacency matrix- A square matrix of logical (true of false) values. The entry at 
the row i and column j position represents the truth value of the statement "in the 
Bayesian network represented by this adjacency matrix, there is a directed arc 
between node i and node f' 

Cross-validated error rate -The error rate that is found by first classifying a sub­
population based on parameters derived from the remainder of the population, 
repeating this process until all samples in the total population have been classified, 
then comparing each sample's predicted class to its known class. 

Deterministic Classifier -A classifier that assigns a case to a specific class, rather 
than assigning the probability of being in a class. 

False Positive/False Negative - A classifier error where a case is 
deterministically labeled with the wrong class. In this document, a false positive 
refers to a classification that a disease is present, when the clinical diagnosis was 
that a disease was not present. A false negative refers to a classification that the 
case was normal, when the clinical diagnosis was that a disease was present. 

Instantiation - A node in a Bayesian network is instantiated when its value 
becomes known. This knowledge is propagated throughout the network, and the 
probability tables of nodes whose values are unknown are adjusted. 

N alve binning - Discretizing data based on parameters derived from the entire 
population. For example, a continuous variable can be discretized by the test b=O 
if x>f-L, b=1 otherwise, where xis the continuous value, b is the discrete value, and 
fl. is the population mean. 

Probabilistic Classifier- a classifier whose output is the probability (from 0 to 1) 
that the case being classified is one of a set of possible class outcomes. 

QC Spectra- Set of spectra created from a mixed pool of blood sera from many 
people, then sampled many times. Variations in the results are assumed to 
represent the variability of the preparation and measurement processes, rather 
than the population. 

Replicates - A blood serum sample from a single patient is divided into several 
samples and the entire process of chemical preparation, mass spectrometry, and 
signal processing is completed independently on each. The resulting data is called a 
replicate and may be treated independently, or averaged with other replicates to 
reduce experimental variation. 
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Markov blanket - In a Bayesian network, the Markov blanket of a node N is the 
minimum set of other nodes S such that if all the nodes in S are instantiated, the 
probability of N is fixed, regardless of the values of nodes not in S. Once the 
Markov blanket is determined, additional structures are irrelevant to N, and can be 
ignored if N is the only node of interest. 
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