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ABSTRACT PAGE 

We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the 
absence of forces. The classical trajectories freely propagate between elastic collisions. 
Bound trajectories, re_gular scattering trajectories, and chaotic scattering trajectories are 
present in the vase. Most importantly, we find that classical trajectories passing through the 
vase's mouth escape without return. In our simulations, we propa_gate bursts of trajectories 
from point sources located along the vase walls. We record the time for escaping trajectories 
to pass throu_gh the vase's neck. Constructin_g a plot of escape time versus the initial launch 
angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. 
This fractal structure can be understood by a suitable coordinate transform. Reducing the 
dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic 
.tangle, wbich .is formed by .the .union of infinitely long, intersecting stable and .unstable 
manifolds. 

This study is broken down into three major components. We first present a topological theory 
that extracts the essential topological information from a finite subset of the tangle and 
encodes this information in a set of symbolic dynamical equations. These equations can be 
used to predict a topologically forced minimal subset of the recursive structure seen in 
numerically computed escape time plots. We present three applications of the theory and 
compare these predictions to our simulations. The second component is a presentation of an 
experiment in which the vase was constructed from Teflon walls usin_g an ultrasound 
transducer as a point source. We compare the escaping signal to a classical simulation and 
find a_greement between the two. Finally, we present an approximate solution to the time 
independent Schrodinger Equation for escaping waves. We choose a set of points at which to 
evaluate the wave function and interpolate trajectories connecting the source point to each 
"detector point". We then construct the wave function directly from these classical trajectories 
using the two-dimensional WKB approximation. The wave function is Fourier Transformed 
using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak 
corresponds to an interpolated trajectory. Ourpredictions are based on an imagined 
experiment that uses microwave propagation within an electromagnetic waveguide. Such an 
experiment exploits the fact that under suitable conditions both Maxwell's Equations and the 
Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, 
while compared to the electromagnetic experiment, contain information about the quantum 
system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for 
an additional experimental verification of the intermediate recursive structure. Finally; we 
summarize our results and discuss possible extensions of this project. 
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-Introduction-

We present a study of an open chaotic dynamical system. A chaotic dynamical 

system is one that exhibits sensitive dependence on the initial conditions. This means 

that two nearby trajectories will remain close for some finite amount of time, but 

eventually, the two trajectories will begin to diverge such that as time approaches 

infinity, the two trajectories will be far away from each other. We will examine the 

dynamics of a specularly reflecting, open vase-shaped cavity. Reflections off the 

boundary respect the law of reflection, and the lack of forces results in free-particle 

motion between successive reflections. The vase is a simple open system in which both 

ray chaos and wave chaos can be studied. Also, the behavior of rays in the vase is 

surprisingly similar to the behavior of classical trajectories of an election in a hydrogen 

atom in constant parallel electric and magnetic fields [1]. The vase is essentially a 

macroscopic analogue of the hydrogen system and therefore it functions as an 

experimental tool to study the interesting phenomenon predicted for the hydrogen 

system. 

Let us consider the atomic system first. Mitchell et al. [1-4] studied the 

ionization of electron trajectories launched from the nucleus. They showed that under a 

suitable set oftransformations, one can find an unstable periodic orbit (UPO) near a 

saddle point in the potential energy. Points intersecting the UPO escape without return. 

Furthermore, near the nucleus, the electric potential dominates, leading to a potential 

well that contains orbits that are bound forever. Other trajectories can circulate within 
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the well for any length of time before escaping. Let us now consider a few sample 

trajectories and their counterparts in the vase. 

The left side of Figure 0.1 shows the potential contours and several ionizing 

trajectories launched from the proton, and the right side shows the analogous rays in the 

vase. On the left are the potential contours in cylindrical coordinates. The blue line is 

the unstable periodic orbit that divides the "bound" regions from the "free" regions of 

phase space. On the right, the unstable periodic orbit is the vertical ray connecting the 

two points in the vase's neck at which the tangent lines are horizontal. We see that the 

magenta trajectories escape directly. The red trajectories approach the UPO, but are 

turned back; then on a second approach to the UPO, they escape. The green trajectories 

are similar, but they have an additional up and down oscillation before being turned 

back. 

0.6 

-0.6 
04 0 2 -0 2 -0.4 -0 6 -0.8 -1 -1 

z 
0 0.5 1.5 

Figure 0.1: Trajectories in the H atom and the vase. The figure on the left can be 
found in [ 4,5]. 

Each of these systems possess regular and chaotic trajectories, the latter 

possessing a vastly complex structure. To reveal this structure, we consider an ensemble 
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of trajectories launched from a point, and examine the time for trajectories to intersect 

the UPO. For the atomic system, Mitchell et al. considered a burst of electronic 

trajectories launched from the vicinity of the nucleus. The initial conditions were 

parameterized by a launch angle. A detector array was imagined to lie past the UPO. 

They constructed a plot of the initial launch angle versus the arrival times for the 

escaping trajectories which is shown in Figure 0.2. In each figure, the horizontal axis is 

the initial launch angle 8. Figure 0.2a shows the continuous time for ionizing 

trajectories to reach the detector. The portion ofthe escape time shown is decomposed 

into a series of convex regions called icicles. Figure 0.2b shows a series ofline 

segments in which each segment matches to an icicle. Each of these so-called escape 

segments counts the "number of iterates" to escape and represents a rectified icicle. (In 

, Chapter 2, we will give a more rigorous definition of an escape segment.) Figure 0.2c is 

a magnification of the region 8 E [2.08, 2.24]. It hints at the presence of a recursive 

structure lying within these escape time plots. 
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Figure 0.2: Figure 1 of [1]. In each figure, the horizontal axis is the angle at 
which an electron is launched from the nucleus. a.) Time to arrive at a detector. b.) 

corresponding iterates to escape. c.) Magnification of a region in b. 

For the vase (as for the hydrogen system) we study the escape time. We launch a 

family of trajectories from a point on the upper wall. The initial launch angles form a 

half disk bounded by the tangent to the burst point. The initial velocities, set to unity, 

are uniformly parameterized by a polar angle. We choose a point x0 past the UPO and 

imagine a vertical line detector spanning the space between the walls at x0 . We record 
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the time to reach x0 , and plot this escape time versus the initial launch angle. Figure 0.3 

shows the escape time for a burst of trajectories. 

Escape times for a burst of rays as a function of the launch angle. 
20 

18 

We wish to understand 

16 the apparent structure. 

~ 

0 
-1 -0.8 -0.6 -0.4 

'--' 

-02 0.2 o.• 0.6 

Initial launch angle 
08 

Figure 0.3: Escape time plot for a burst of trajectories. 

A subset of the escape time plot for the vase is organized into collections of 

icicles. These regions hang down from infinity. Each icicle is in fact bounded by two 

trajectories that oscillate in the vase's neck forever, asymptotically converging to the 

UPO. Furthermore, the icicles are organized into infinitely long sequences where each 

sequence, called an epistrophe, converges to the endpoint of another icicle. We will now 

show that a complicated recursive structure lies in the escape time plot. Let us now 

magnify one region of Figure 0.3 and see the structure that appears. 
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Figure 0.4: Magnifications of regions in Figure 0.3. 

Figure 0.4a is a magnification of Figure 0.3. We magnify the region bounded by 

the red, vertical line segments and obtain Figure 0.4b. We see many more sequences of 

icicles. Furthermore, the two figures do not look as if they share a scaling factor. Again, 

we magnify the region bounded by the red, vertical line segments and shift our attention 

to Figure 0.4c. Again, we see the recursive appearance of additional sequences but the 

arrangements of the sequences are different compared to Figures 0.4a and 0.4b. Finally, 

we move to Figure 0.4d and we find something surprising. Again we see that there are 

more sequences present, yet we also see that the last two figures have almost identical 

arrangements. We conclude from Figure 0.4 that these escape time plots possess a 

vastly complicated recursive structure. We can now state one goal of this study: Our 
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goal is to compute a minimal subset of the recursive structure seen in numerically 

computed escape time plots. 

This study is organized into five chapters as follows. In Chapter 1, we will 

discuss the fundamentals of the vase. Specifically, we will see how to numerically 

propagate trajectories and we will see a coordinate transformation that reveals the 

complicated structure underlying the vase. In Chapter 2, we will examine a topological 

theory that generates a set of symbolic dynamical equations describing the evolution of 

chaotic systems similar to the vase. In Chapter 3, these dynamical equations will be 

used to predict minimal subsets of numerically computed sets of escape segments. 

Chapter 4 is an analysis ofthe results from Chapter 3. Finally, in Chapter 5, we will 

examine experimental and numerical results of the vase. 
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-Chapter 1-
The Vase: Part I 

i.) Introduction 

We begin our discussion of the vase. Here, we discuss how to numerically 

propagate large families of trajectories, and we give examples ofthe different kinds of 

trajectories present in the vase. Since this system is two-dimensional, the corresponding 

phase space for rectilinear motion is four-dimensional. We present a coordinate 

transformation that reduces the analysis to two dimensions. A brief introduction to how 

the chaotic trajectories are organized is given. It is meant as an introduction to the 

material in Chapter 2, which will give a more thorough explanation of the chaotic 

trajectories. 

ii.) Fundamentals of the Vase 

a.) Vase Boundary 

The vase is shown in Figure 1.1 below. The vase walls are given by the function 

y(x) = ±f;.( w + A(x -1)2
) = ± f(x) 

2 
(1.1) 

The parameter w controls the neck's width and A controls how much the vase lips flare 

outward. In choosing the parameter values, we tried several set of values and looked for 

a pair that generated an early onset of chaos. We found that A, w = 0.75 were suitable, 

and from now on, A and ware fixed at these values. Figure 1 shows that within the 

vase's neck and bowl, there is a pair of points, both symmetric about the x-axis, for 

which y'(x) = 0. One can imagine a vertical ray connecting either pair of symmetric 

critical points. The ray lying within the vase's bowl is a stable periodic orbit (SPO), 
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while the one in the neck is an unstable periodic orbit (UPO). A bundle of rays 

emanating from the vase wall at the UPO will diverge due to intersections with the 

concave segments of the boundaries. This UPO is crucial to our analysis because if a 

ray is launched from the interior of the vase and intersects the UPO, then the ray will 

escape without return. We will see other orbits that bounce up and down in the vase's 

neck, approach the UPO, and then return into the vase's bowl. Hence the UPO can be 

called a repellor. 

Vase sebJp for A,w = 0.75 

Tangentto reflection point 

~ 
04 

SPO UPO 

-0.4 

-O.fi 

-O.B 
0 01 04 05 06 1.1 14 16 

~m) 

Figure 1.1: The·vase for A, w = 075, a sample ray, the SPO, and the UPO 

The physical laws governing ray propagation are simple. No forces are present 

so we have free particle propagation between reflections. When a ray hits the vase wall, 

the law of reflection determines the outgoing velocity. For an arbitrary smooth curved 

surface, the law of reflection is 

10 



(1.2) 

where v0 is the incoming velocity, v1 the outgoing velocity, and T(x) is a unit vector 

tangent to the vase wall at the reflection point. T(x) can be calculated from the 

derivative ofthe vase boundary. Examining eq. (1.1) shows that y '(x) contains a factor 

of 11--Jx resulting in y '(x)~oo as x~O. Since we want T(x) to be finite, we must 

carefully choose the representation of the boundary wall so that the derivative is finite, 

i.e. we use either dy(x)/dx or dx(y)/dy. In his thesis, Hansen [2] examined the 

numerical errors in computing the derivatives using either x or y as the independent 

variable. He found that a useful cutoff is Xspo = Xcutoff· That is to say, for x ~ Xcutoff, we 
3 

use x as the independent variable andy as the independent variable otherwise. For our 

vase, this corresponds to a cutoff of about 0.12. Therefore, the tangent vector assumes 

one of the two following forms. 

~ 1 ( 1 : T(x) = ~ for X~ xcutoff 
. 1 + f'(x)2 ±f'(x) 

(1.3) 

1 [±-1-J T(x) = ----;:::==1= f'(x) for X< xcutoff 

1+-- 1 
f'(x) 2 

As we traverse the boundary wall from y = -oo toy= oo, this definition of T(x) possesses 

a clockwise orientation. Thus, for example, T(O) = (0, 1 ), T(xUPo) = (0, ± 1) where the 

plus and minus correspond to the upper and lower boundaries, respectively. 
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b.) Ray Propagation 

Before we describe the different types of trajectories we find in the vase, we will 

explain how we propagate rays. Between reflections, rays propagate according to the 

kinematic equations. 

(1.4) 

In eq. (1.4), tis the propagation time, vis the constant velocity vector, and ro and rr are 

the initial and final position vectors, respectively. To compute the time between two 

reflections, we first insert eq. (1.4) into eq. (1.1 ). 

(1.5) 

We then square eq. (1.5) to obtain a 51
h order polynomial in the variable t. If we assume 

that the ray starts on the cavity wall, then Yo = f(xo). One can verify that after squaring 

eq. (1.5), f2(x0) appears on the right-hand side resulting in the constant term canceling. 

Thus, one of the solutions is t = 0 which corresponds to the ray remaining stationary. 

Dividing by t removes this solution, resulting in a 4th order polynomial. We use 

Matlab's built-in routine roots to numerically compute the zeros to this "intersection 

polynomial", as it is a fast algorithm and allows us to propagate large ensembles of 

trajectories in a short time. 

In general, the roots of the intersection polynomial can be complex, real negative, 

and real positive. Complex roots are ignored because they do not represent actual 

propagation times. Real negative roots are discarded as we are propagating rays forward 

in time. The real positive roots correspond to future intersections. However, some roots 

will correspond to a ray that passes out through the boundary and then back in through 

12 



the boundary. Therefore, we take the smallest positive real root as the time for the ray to 

arrive at the next reflection point, and we discard the remaining solutions. If no real 

positive root exists, then the ray escapes. If there is a reflection, then we compute the 

reflection point, reflect the incoming velocity vector using eq. (1.2) and eq. (1.3), and 

then continue the path to the next reflection. 

For our simulations, we designate a point on the boundary as a source point. For 

rays propagating within the vase, the set of allowed velocity vectors spans a half-disk 

whose diameter is the line tangent to the vase at the source point. We choose a set of 

initial velocity vectors with unit length lying on this half-disk with uniformly-spaced 

initial polar launch angles. For each initial velocity, we propagate a ray from the source 

point for some specified number of reflections. At each reflection, we record its position 

and the outgoing velocity vector. Our primary interest is the set of rays that escape. 

Therefore, at some point past the UPO, we imagine a vertical line of detectors that span 

the space between the vase walls. At this detector line, we halt ray propagation and 

record the propagation time from the source to the detector. From now on, we fix the 

source at (0.3, 0.4067) and the detector line at x = 1.5. 

After we have propagated a family of trajectories and saved those that escaped, 

we then construct an escape time plot. The escape time for a source at (0.3, 0.4067) is 

shown below in Figure 1.2. The horizontal axis is the initial velocity component parallel 

to the tangent line at the source point (called the initial condition in Figure 1.2). The 

vertical axis is the time required for a path to arrive at the detector line. Each of the 

well-shaped regions is called an icicle and each represents the escape times for a family 

13 



of chaotic trajectories. The discontinuities in slope are due to changes in the number of 

bounces to escape the vase. We will defer an explanation of these discontinuities to 

Chapter 5. 
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Figure 1.2: Escape time versus initial launch angle for burst launched from (0.3, 0.4067) 
at a vertical line detector placed at x = 1.5. 

c.) Types of Trajectories 

Let us now consider the kinds of trajectories that are present in the vase. The 

trajectories can be broadly categorized as either bound or scattering trajectories. Figure 

1.1 shows that there is a stable orbit ofperiod-2 in the vase's bowl. Near this periodic 

orbit is a collection of stable orbits that remain with the vase's bowl for all time. An 

example is shown in Figure 1.3a. Stable orbits of larger period also exist. The orbit 

shown in Figure 1.3b is a stable orbit that lingers near a periodic orbit of period-7. 
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Figure 1.3: Two stable orbits in the convex region. 

The other broad category is the set of scattering trajectories. These can be 

categorized as either regular or chaotic. Since our study focuses on ensembles launched 

-from a point source, we will categorize the trajectories according to their future 

development. The simplest kinds of escaping trajectories launched from a point source 

are the direct trajectories. These rays escape the vase without reflecting off the cavity 

walls. Given a point source, the set of direct rays is a cone bounded by two grazing rays. 

The two grazing rays can be computed by solving the equation 

T•v = ±1 (1.6) 

This is a non-linear equation that must be solved numerically. A direct ray and two 

grazing rays are shown in Figure 1.4. 
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Figure 1.4: Direct ray and two grazing rays. 

We also find trajectories that oscillate within the vase's neck any number oftimes 

(Figure 1.5). We note that they are similar to the rays that oscillate between two 

infinitely long, parallel mirrors. In this simple case, one would observe rays that form a 

sequence of isosceles triangles. For lack of a better term, we will call these parallel 

m1rror rays. 
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Figure 1.5: Rays oscillating through the vase's neck 

Along the convex segments of the boundary walls we find whispering gallery 

trajectories. These trajectories hug the boundary walls and ar:e essentially polygonal 

approximations to the convex segments. Given a source point in the convex region of 

the boundary, we can have whispering gallery trajectories that circulate either clockwise 

or counterclockwise. Two of these trajectories are shown in Figure 1.6 below. 

0.6 

-0.6 

0 0.5 1.5 

X 

Figure 1.6: Clockwise (red) and counter-clockwise (blue) whispering gallery rays. 

Finally, we have chaotic scattering trajectories. These trajectories form a vastly 

complicated set. A few sentences cannot adequately characterize the chaotic trajectories. 

We present a single sample trajectory in Figure 1. 7 and defer discussing the chaotic 

trajectories to Chapter 5. 
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Figure 1. 7: A sample of a chaotic trajectory. 

iii.) Phase Space Transformation 

a.) Coordinate Transformations 

We have described how w~ propagate a ray and given a general classification of 

the rays found in the vase. Now we can examine the coordinate transformation that 

reveals the homoclinic tangle. Birckoff introduced the standard coordinates used to 

study ray propagation within a specularly reflecting cavity. To fully describe a 

trajectory within the vase, we use a collection of vectors each with four entries. Two of 

the entries give the position of the reflection and the remaining two give the outgoing 

velocity. Using this information and the kinematic equations contained in eq. (1.4), one 

can then construct the entire trajectory. Studying dynamics within a four-dimensional 

space is cumbersome and does not easily reveal the structure underlying the chaotic 

trajectories. So we define a pair of coordinates where each coordinate contains the 

essential information contained in the vectors rand v. The transformation ignores the 

free particle propagation and retains the location on the boundary wall and the outgoing 

18 



velocity. The position vector is replaced with the signed arclength measured along the 

vase boundary between the origin and the reflection point. 

X 

q(x) = Jdx ~1 + f'(x) 2 (1.7) 
0 

The integrand is finite except at x = 0, where f'(x) blows up. Therefore, we break up the 

integral into two pieces. The first piece is an integral evaluated near the origin and uses 

y as the independent variable. Far enough away from the origin, we can use x as the 

independent variable. Thus, we use the following sum to compute the arclength for x > 

Xcutoff. 

y(xcutoff) ( d )
2 

X ( d )
2 

q(x) = J dy 1 + ~ + J dx 1 + _l_ 
dy . dx 

0 Xcutofl 

(1.8) 

Ifx < Xcutoff, then we use the first term of the sum in eq. (1.8) to compute the arclength. 

We replace the velocity vector with a number we call the momentum. At a 

reflection point, we can construct an orthonormal basis using the tangent vector T(x) and 

the normal vector N(x), an inward pointing unit vector orthogonal to T(x). At the 

reflection point, we expand the velocity vector in the new basis. 

The velocity component parallel to the tangent vector, VT, is called the momentum. At 

each reflection, the momentum is computed by taking the dot product of the outgoing 

velocity vector and the tangent vector. 

P =T•v . outgomg (1.10) 
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(The same momentum results if the outgoing velocity is replaced with the incoming 

velocity.) Then we use eq. (1.8) and eq. (1.1 0) to transform a trajectory with n + 1 

position and velocity vectors into n+ 1 arclengths and momenta 

(1.11) 

The transformation just described gives signed arclengths, -oo < q<oo. We can 

further simply the transformation by taking into account the mirror symmetry of the 

vase. If q < 0, we replace (q, p) with (-q, -p). This is equivalent to propagating the 

trajectory within a vase in which the lower boundary is replaced by an infinitely long 

horizontal mirror. The transformation is shown in Figure 1.9. This additional 

transformation changes both the SPO and UPO into stable and unstable fixed points. ·In 

summary, the dynamics in the vase induces a dynamical mapping on the coordinates ( q, 

p) defined in eq. (1.8) and eq. (1.1 0). Now we can consider trajectories within this new 

representation. 
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Figure 1.8: Transformation to phase space coordinates. 

b.) Stable and Unstable Manifolds 

To reveal the interesting structure underlying the vase within the new 

representation, we propagate points starting near the unstable fixed point. In the new 

representation, the unstable fixed point is given by the vector (1.1 086, 0). We place a 

rectangle of initial points to the left of this vector. Points with negative momenta are 

propagated forward while those with positive momenta are propagated backwards. We 

first state a result: iterates of the rectangle of initial points approach two one-

dimensional curves that control the chaotic dynamics. Let us consider this statement 

with the aid of Figure 1.9, where the horizontal axis is q (the arclength) and the vertical 

axis is p (the momentum). In Figure 1.9a, the two rectangles plotted in green and black 

comprise the initial conditions. The black points are propagated forwards while the 

green points are propagated backwards. In all six graphs in Figure 1.9, the blue points 

represent the first nine images of the black initial conditions while the red points 

represent the first nine pre-images of the green initial conditions. In Figure 1.9b, the 
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black points are the first image of the initial conditions with negative momenta while the 

green points are the first pre-image ofthe initial conditions with positive initial 

momenta. The points appear to have been stretched to flow along a diagonal line. 

Figure 1.9c shows the second iterates of the initial conditions. We see that the two sets 

are once again symmetrical about the q-axis. Furthermore, the two sets have been 

stretched by the mapping, are much thinner, and are becoming more curved. Figure 1.9d 

shows that on the next iterate, the curves have once again been stretched and contracted. 

Now they both jut out of the eyeball-shaped region bisected by the q-axis. Figure 1.9e 

shows that both sets have now exited, re-entered, and re-exited the eyeball shaped 

region. Finally, Figure 1.9f shows that the two sets have now exited the eyeball shaped 

region three times and re-entered the eyeball shaped region twice. 

What general observations regarding the discrete flow phase points can we 

make? First, the two sets are not blobs of points rotating around the phase plane. Each 

set seems to have some points that remain near the unstable fixed point. Secondly, the 

mapping stretches and contracts the two sets in a complicated fashion. Third, it appears 

that the points are being guided along, or slowly approaching, smooth curves embedded 

in the phase plane. Finally, after some number of iterates, the points start a process of 

entering, exiting, and then re-entering the eyeball shaped region. 

At this point, we can give a preliminary explanation of how points transport 

through the phase plane. Transport through the plane is controlled by two smooth curves 

called the unstable and stable manifolds. Each is an infinitely long curve attached to the 

unstable fixed point. The initial points with negative momenta are guided by the 
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unstable manifold. This curve repels points from the unstable fixed point. The blue and 

black points in Figure 1.9 are being guided along the unstable manifold forwards in time. 

Figure 1.9: Traces of the stable and unstable manifolds. The red and green curves lie 
near the stable manifolds while the blue and black curves lie near the unstable manifolds. 

The two rectangles are the initial points. In each curve, the blue and green points 
represent iterates of the initial points: a.) zeroth iterate, b.) first iterate, c.) second iterate, 

d.) third iterate, e.) fourth iterate, f.) fifth iterate. 

The initial points starting with positive momenta are being guided by the stable 

manifold. This is a smooth curve that attracts points to the unstable fixed point forwards 

23 



in time. The green and red points in Figure 1.9 are being guided by the stable manifold 

backwards in time. 

Finally, we iterate points to the right of the unstable fixed point. Figure 1.10 

shows several iterates of a rectangle of points. Again, red points are guided by the stable 

manifold and blue points are guided by the unstable manifold. We see that the points are 

being pushed along curves that are nearly straight lines. The segments of the manifolds 

to the right of the fixed point do not intersect. The stable manifold attracts points from 

infinity and the unstable manifold pushes points to infinity. Since these segments of the 

manifolds do not intersect, they are of no interest to us. Furthermore, in a small domain 

about the fixed point, the manifolds are approximately linear. The four segments 

roughly form the letter "x" and thus, the unstable fixed point is also known as an x-point. 

In practice, we use the linearity of the manifolds near the x-point to find the exact 

manifolds. We first trace out the unstable manifold. We choose a test point near the x

point and propagate a set of initial conditions lying on the line segment connecting the 

test point and the x-point. We then check the points that are still near the x-point. If 

they are close to the line segment, then we use the slope and intercept of the line 

segment as the linear approximation of the unstable manifold. If the nearby points 

deviate from the line segment, then we repeat the procedure with a new test point. Due 

to the mirror symmetry, we only need to find an approximation to the unstable manifold. 
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Figure 1.10: Traces of the stable and unstable segments lying to the right of the unstable 
fixed point. Blue points lie near the unstable manifold while red points lie near the 

stable manifold. 

c.) Phase Space Representations of the Regular Trajectories. 

Let us now consider the phase space representations of the stable orbits. The 

stable region is embedded within a chaotic region. Figure 1.11 shows multiple orbits in 

the stable region plotted along with segments of the actual stable and unstable manifolds. 

The black circles represent quasi-periodic orbits lying in the continent of stability. The 

ray in Figure 1.3a lies within this region. Surrounding the stable continent is an island of 

stability of period 7 plotted in green. Now refer back to Figure 1.3b, the stable orbit that 

wanders around 7 regions of the cavity walls. This orbit lies within the seven islands of 

stability surrounding the stable continent. The orbit picture in Figure 1.3b hops from 

one island to the other within the chain. Both stable regions are embedded in a sea of 

chaos. Some of these chaotic orbits are plotted in cyan. The boundary between the 

stable region and the chaotic sea is complicated but has no impact on our study. This 

topic is discussed in more detail in [ 4]. 
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Figure 1.11: Stable regions near the stable periodic orbit and the homoclinic tangle. 

We will not consider the direct trajectories, as they immediately escape and thus 

cannot be represented in phase space. Let us then consider the trajectories that oscillate 

within the vase's neck, or the so called parallel mirror trajectories. Figure 1.12 shows 

the first few images of a set of these trajectories plotted in black. The first few iterates 

are labeled with their iterate number. All of the trajectories are launched from the same 

point so the initial conditions are a vertical line segment, which is labeled as the zeroth 

iterate. The first, second, and third iterates march along near the stable manifold and 

approach the unstable fixed point. At this point, we can say that the stable manifold is 

guiding the trajectories. After each iterate, some of the trajectories escape the vase and 

thus map out of the phase plane. 
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Figure 1.12: Phase space representations of the so-called parallel mirror 
trajectories. 

Finally, we discuss the phase space representations of the whispering gallery 

trajectories. Whispering gallery trajectories are essentially polygonal approximations to 

convex segments of the vase's bowl. For a whispering gallery trajectory with a large 

number of reflections, the outgoing velocity vectors will be nearly parallel to the tangent 

vectors at the reflection points. Therefore, their corresponding momenta will be near ±1. 

Since these trajectories are not in the chaotic set, we will ignore their phase space 

representations. However, the whispering gallery trajectories in the vase will become 

important to results discussed in Chapter 5. 

iv.) Conclusions 

In this chapter, we presented an introductory description of our system of 

interest. In section ii, we discussed how to propagate trajectories within the vase. The 

first step in integrating trajectories is numerically computing the roots to a polynomial 

which represents the intersections of a line with the vase boundaries. If the position and 

velocity allow for a reflection, then the propagation time to the next reflection is given 

27 



by the smallest real positive root. The Law of Reflection is used to reflect an incoming 

velocity vector at a point of reflection. We saw that there is a complex set of trajectories 

in the vase. There are stable orbits that endlessly wander around the vase's bowl. The 

scattering trajectories can be decomposed into regular and chaotic trajectories. The 

regular scattering trajectories include those that escape without reflection, trajectories 

that oscillate within the vase's neck any number of times, and whispering gallery 

trajectories. We also presented a sample chaotic trajectory and deferred discussing the 

set of chaotic trajectories to another chapter. 

In section iii, we presented a coordinate transformation that hides the free particle 

propagation between successive reflections and transforms the reflection and velocity 

vectors into two coordinates that contain the same essential information. Using the 

transformation and the mirror symmetry of the vase, the unstable periodic orbit is 

transformed into an unstable fixed point. Propagating points near the fixed point allows 

us to trace out the stable and unstable manifolds that control the flow of points within the 

phase plane. Finally, we saw the phase plane representations of the stable and parallel 

mirror trajectories. 

Our focus for the remainder of this study will primarily be studying families of 

chaotic trajectories. Understanding them requires an understanding of the stable and 

unstable manifolds. The next chapter provides a more detailed understanding of how 

the manifolds control phase space transport. Chapter 2 presents a theory that extracts the 

essential topological information of the manifolds and produces a set of symbolic 

equations that encode the dynamical evolution of the manifolds 
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-CHAPTER2-
The Topology of Homoclinic Tangles 

i.) Introduction 

Previously, we described the vase and the complicated set of dynamics. We 

stated that underlying the system is a homoclinic tangle, the intersection of infinitely 

long stable and unstable manifolds emanating from the unstable periodic orbit lying in 

the vase's neck. In this chapter, we will discuss the topology of stable and unstable 

manifolds, called Homotopic Lobe Dynamics (HLD). Specifically, we will show how a 

topological analysis will allow us to graphically extract a set of symbolic dynamical 

equations from a homoclinic tangle. These equations will allow us to predict a minimal 

subset of the icicle sequences seen in numerically computed escape time plots. This 

chapter is organized as follows. In section ii, we will discuss the mathematics we use, 

which is the concept of homotopy. In section iii, we will discuss how the homoclinic 

tangle is a mechanism for phase space transport. Section iv discusses the first 

incarnation ofHLD to give the reader an intuitive understanding of the more general 

method laid out in section v. 

ii.) Homotopy 

Before we delve into the theory, we will discuss the underlying mathematics, 

which is the concept of homotopy. We are interested in curves in JR. 2 
. If a curve can be 

continuously deformed into another curve, we say that the two curves are homotopic 

([1]). A formal definition is unnecessary for the discussion but we present one for the 

sake of completeness. 
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Def: Let I= [0, 1] and a" a 2 :I~ JR. 2 be continuous with a1 (0) = a 2 (0) and 

a 1(1) = a 2 (1) with the orientation starting at a 1,2(0) and ending at a 1,2(1). We denote 

the inverse curves as a~~ with the orientation starting at a 1,2(1) and ending at a 1,2(0). 

Then,two curves are said to be homotopic to one another if.::l a continuous function 

H(t,s):Ixi ~ IR.2 such that H(t,O) = a 1(t), H(t,l) = a2(t), H(O,s) = a1(0) = a2(0), and 

H(l,s) = a1(1) = a2(1). 

It is a simple exercise to verify that a homotopy relationship is an equivalence 

relationship. If two curves, a 1 and a2, are homotopic, then we write a 1 ~ a2 and denote 

the class as either [ a 1] or [ a 2]. This definition may seem restrictive in that it assumes the 

endpoints remain fixed. However, we can alter the definition and allow for the 

homotopy mapping to move the endpoints as well. We will see in sections iv and v how 

this detail affects our discussion. 

If we consider IR. 2 endowed with the "usual topology", then for any point x all 

loops containing x homotope into x (i.e. any closed loop can be shrunk to a point), 

giving a single global homotopy class, which is defined to be the identity class. To 

obtain a nontrivial set of homotopy classes, we must alter the topology of IR. 2
• We can 

delete any number of open sets and alter what we mean by continuity in the plane. For 

example, by deleting a unit disk from JR. 2 
, and thereby prohibiting any portion of a curve 

from entering that disc, a nontrivial homotopy class is then a class of curves that wind 

around the hole an integer 
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y = a.J3 

Figure 2.1: Two examples of curves winding around deleted regions 
which are represented by black disks. 

number of times. The set of homotopy classes is isomorphic to Z, with the sign of the·. 

integer indicating the orientation of the curves ([2]). 

Figure 2.1 shows two examples ofhomotopy. In both cases, we have punched 

two holes from the plane, thereby creating a new topology. In discussing Figure 2.1, we 

allow the endpoints to slide along the red line. Consider the left figure in which two 

curves a and ~ are shown. Each encloses a disk of deleted points. Deforming either 

curve into the other would require the curve to pass through the deleted region, but this 

is not allowed. 

Therefore, the curves a and ~ each represent unique homotopy classes, called [a] and 

[~],respectively. On the right, we have a different situation in which the holes are 

punched on opposite sides of the red curve. Once again, a and~ each enclose a hole 
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thus representing different homotopy classes. This figure also shows that a and E 

represent different classes while y and 8 are equivalent. 

Again, consider the curves a and p in either figure. If we slide together the 

endpoints of a and p nearest to each other and lift the newly formed intersection off the 

red curve, we obtain the path y. Concatenation of the two classes [a] and [p] results in a 

new class [y] = [a][p]. But curves that belong to the class [a][p] can be homotoped into 

the curve formed by concatenating a and p. This implies [a][p] = [ap]. This path 

construction suggest that a group structure underlies the set of homotopy classes for 

curves with endpoints lying on the red curve. This is indeed the case. Since a is 

oriented, a-1 exists and encloses the same hole as a. Reversing the orientation of curves 

equivalent to a gives curves equivalent to a-1 and thus [a-1
] = [ar1

. The identity 

element (of which Eisa representative) is any curve that can be deformed to a point on 

the red curve. Taking the product of a curve and its inverse in either order gives a curve 

that can be contracted into a point. 

iii.) Homoclinic Tangles 

Now that we have explained the mathematics we will use, we will begin 

discussing homoclinic tangles. First, we will give definitions of the stable and unstable 

manifolds that make up a homoclinic tangle. Then we will discuss how the manifolds 

control the flow of points through phase space. 

We consider diffeomorphisms .M: IR.2 ~ IR.2 possessing a hyperbolic fixed point 

qx. We also assume that the mapping is orientation preserving, that is to say 

det(D.M(x)) > 0, where D.M is the Jacobian matrix of .M(x). The global and local 
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stable/unstable manifold theorems [3] guarantee the existence of smooth, one 

dimensional curves emanating from qx locally along the eigenvectors of DM. Stable 

and unstable manifolds are curves defined by their asymptotic behavior: 

Def: LetS and U represent the stable and unstable manifolds, respectively. The 

manifolds are invariant curves: M:S 0 Sand M:U 0 U and V XES and V yE U 

lim Mn (x) = qx and lim M-n (y) = qx. 
n~~ n~oo 

The first statement says that a point on either manifold does not map offthe manifold. 

The second statement says that for sufficiently large n, a point on either manifold is 

close to qx, but is always a finite distance away measured along the manifold. 

Generally, a stable manifold attracts points toward qx and an unstable manifold repels 

points away from qx. Neither manifold can self-intersect. This fact will have important 

consequences in our study of tangles. Finally, the manifolds are infinitely long. 

Sometimes, we may need to refer to a specific infinite segment of a manifold, called a 

branch. 

Def: A branch of either S or U is the segment starting at qx and running to infinity. 

We are interested in studying how the manifolds control the flow of points 

through a bounded region. We will be discussing specific segments of the manifolds and 

thus need a suitable notation. A closed segment of either manifold with endpoints q1, q2 

will be denoted by S[ q1,q2] and U[ q1,q2]. Half-open and open segments are denoted in 

the same way with the brackets replaced with parentheses. Since the manifolds are 

naturally oriented, we choose to reflect the orientation in the ordering of the points in the 

set notation. We write either U[x1, x2] or S[x1, x2] if following the natural orientation of 

34 



the manifold we encounter XI before encountering x2. Finally, if we are considering 

both the stable and unstable segments connecting XI to x2, then we let U/S[x~, x2] denote 

the phrase "U[xi, x2] and S[x~, x2]". 

Our analysis will concentrate on intersections between the stable and unstable 

manifolds. 

Def: If x E S n U, then x is called a homoclinic intersection or homoclinic point. We 

assume that all homoclinic points are topologically transverse [11]. 

Def: Two sub-manifolds X andY embedded in an ambient manifold M are said to 

intersect transversally at p E X n Y if 

TPX EE> TP Y = TPM and dim(TPX n TP Y) = dim(TPX) + dim(TP Y) - dim(M) 2 0 

This definition says that the tangent space of the ambient space at pis spanned by the 

vectors tangent to X and Y at p. If a tangential intersection is present, then one can use a 

sufficiently small perturbation to remove the intersection. 

For the remainder of this section, we will discuss the mechanism by which points 

enter and exit a bounded region (this material can be found in Wiggins [4]). To this end,· 

we will consider in a special type ofhomoclinic point called a primary intersection point. 

Def: a primary intersection point (pip) p is a homoclinic intersection such that S(p, qx) 

Figure 2.2 shows two manifolds intersecting at a pip p. We see that by starting at the 

hyperbolic point qx and following each manifold only as far as the pip p, the manifolds 

intersect only at the pip. We call the interior bounded by UIS[ qx, p] region I and its 

complement region II. We want to understand how points map between regions I and II. 
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First, consider M±1(p). Since p E S, mapping forward moves p along S towards qx. 

However, p E U as well, and the continuity of U requires that a segment of U passes 

through Sat M(p). We ask ourselves in which direction does U cut across S. We attach 

two tangent vectors at p pointing in the same directions as the manifolds. The 

orientation ofthe parallelogram formed by these tangent vectors is preserved under the 

mapping. Therefore, the vectors tangent to M(p) will possess the same orientations as 

those tangent to p. We see that for U to possess the same orientation and be continuous, 

it must run from region I to region II. For the segment U[p, M(p)] to be continuous, an 

additional homoclinic point in must lie in U[p, M(p)]. We call this point M(q). 

Mapping p backwards and following the same argument gives the homoclinic point q. 

Figure 2.2: Stable (red) and unstable (blue) manifolds intersecting at a pip p. 
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We can see from Figure 2.2 that U(qx, q) n S(q, qx) and U\qx, .M(q)) n S(.M(q), 

qx) are both empty implying that q and .M( q) are also pips. Furthermore, we see that the 

regions bounded by the segments U/S(M-1(p), q), U/S(q, p), WS(p, .M(q)), and 

U/S(M(q), ..M(p)) possess a lobe-like structure motivating a definition. 

Def: Let q1 and q2 be pips such that S[ q~, q2] and U[ q~, q2] contain no other pips. Then, 

the interior region bounded by S[q1, q2] and U[q1, q2] is called a lobe. 

In Figure 2.2, eight lobes have been drawn. Let E_1 denote the lobe bounded by U/S[M-

1(p), q]. Ifwe map E_1 forward, we have the region bounded by U/S[p, M(q)], or Eo. 

Immediately, we notice that by mapping from K1 to Eo, points have moved from region I 

to region II. In other words, points have escaped region I. Therefore, we call K1 and Eo 

escape lobes. Similarly, the lobe bounded by U/ S[ q,p] maps into the lobe bounded by 

U/S[.M(q), .M(p)]. Let the aforementioned lobes be called Co and C1, respectively. We 

see from the figure that by mapping from Co to C~, points have moved from region II to 

region I. If points map into region I, we can say that points have been captured by 

region I and call the lobes Co .and C1 capture lobes. The four lobes E_l, Eo, Co, and C1 

control how points enter and exit region I and are called the turnstile. From now on 

region I will be referred to as the complex. Objects lying inside the complex will be 

referred to as internal and those lying outside as external. 

iv.) Homotopic Lobe Dynamics I 

With the background material explained we can begin our discussion of 

Homotopic Lobe Dynamics (HLD). The central idea is to punch holes in regions in 

which the manifolds do not enter. The output ofHLD is a set of dynamical equations 
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acting on the set of path classes in the new topology that encodes how the manifolds 

wind through the plane. This material can be found in [ 5]. 

In this section, we discuss the first version ofHLD. Let us begin by examining 

the three different tangles shown in Figure 2.3. The complex is the region bounded by 

U/S[qx,Po]. In each tangle, the turnstile is composed of the four lobes labeled E~, Eo, 

C0, C1. We can iterate the escape and capture lobes forwards and backwards to generate 

a hi-infinite sequence of lobes. The boundaries of the nth escape and capture lobes, En 

and Cn, are defined by the segments UIS[Pn, Qn] and U/S[Qn-1, Pn], respectively. Going 

from left to right, we see that in these different tangles C2, C3, and then C4 respectively 

intersect E0. Points enter the complex by iterating from Co to C1. Each tangle possesses 

a capture lobe whose tip intersects E0. This intersection represents a subset of C1 that 

will land in Eo, hence escape the complex, after one iterate (2.3a), two iterates (2.3b ), 

and three iterates (2.3c). In general, let D be an integer called the minimum delay time. 

After entering the complex, D represents the minimal number of mappings for a point to 

escape the complex. In Figures 2.3a, 2.3b, 2.3c, the minimum delay times are D = 1, 2, 

3 respectively. In general, for a minimum escape time ofD, CDt1 intersects Eo. 

a.) 

Figure 2.3: Three tangles with minimum delay times equal to a.) 1, b.) 2, and c.) 3. 
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We stated previously that the minimum delay time is the minimum number of 

iterates that a point remains within the complex after mapping into e 1, and that in 

general, the D+ 1 th capture lobe intersects Eo. Let us consider the image of eDt I· The 

image will produce the set eDt2 n E1. The endpoints of eDt2 will remain on S[Po, qx] 

mapping closer to qx. Since U cannot self-intersect, we conclude that eDt2 must first 

wind under eDt1; then as it passes through Eo, it will wind over the tip ofeDt1; finally, 

eDt2 will wind under e 1 to intersect E1. We can follow a similar argument to determine 

how eDt3 will wind through the phase plane in order to intersect E2. However, the 

argument is a bit more complicated and needs to be explained in detail. We will now set 

D = 1 and explain how the mapping folds and stretches the images ofeJ. 

We consider the tangle shown in Figure 2.4 (this is a qualitative picture). What 

is important about this tangle is that there is a minimum delay time of 1 and that the 

unstable fixed point has attached to it two stable branches and two unstable branches. 

Two of the branches are not tangled and shoot out to infinity. The remaining two are 

tangled. Furthermore, we assume that once points have exited the complex, they can 

never re-enter the complex. 
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Figure 2.4: Qualitative sketch ofD = 1 homoclinic tangle. 

We assume a specific knowledge of the manifolds: namely we assume we have 

computed the segments U[qx, Pz] and S[P_z, qx]. Based on this information, we ask: 

How do we qualitatively construct the third capture lobe? For simplicity, we will also 

assume that the tangle possesses mirror symmetry along the axis connecting qx to Po. 

The mirror symmetric partner of the C3 will be K3. We can construct C3 by noting that 

its boundary curve, e3, must start at Q2 (which must lie between P2 and qx), it must pass 

through E1, and it must end at P3 (which must lie between Qz and qx), and it cannot 

intersect any other part ofU. That gives us the picture shown in Figure 2.7. 

Alternatively, we can construct it piece by piece using the following method. 
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Figure 2.5: Three segments ofe3. 

a.) Construction of C3 

Let us consider Figure 2.5, which shows three segments of C3 along with the 

known lobes. First, we state how we label homoclinic points. Each homoclinic point is 

assigned two integer subscripts separated by commas. The first subscript indicates the 

order of appearance in a sequence of points all labeled with the same letter. We choose 

to order the points as they are encountered traveling along the natural orientation of the 
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stable manifold. The first set ofhomoclinic points we consider are encountered along 

the segment S[P_~, Q_1]. We set the second subscript to be zero on each of these points. 

The second subscript will indicate the number of mappings applied to a point whose 

second subscript is set to zero. 

We will construct C3 by constructing pieces of its boundary and then connecting 

them. First, let us consider the segment of e2 lying in Eo, U[ X4,1, XJ,l]. The image of this 

segment, U[x4,2, X3,2], must lie in E1. Now, consider the intersection of Cz and K1 's 

boundaries which contains the four homoclinic points, x1,o, x2,o, x5,o, and X6,o, connected 

in pairs by U[x2,0, xs,o] and U[x6,o, Xt,ol The images of these segments are U[x2,1, xs,t] 

and U[x6,~, x1,1] and must lie in Eo, as indicated in Figure 2.5. Thus, we have found two 

segments that map out of the complex after one mapping. Since the mapping is 

orientation preserving, the ordering of the six homoclinic points is preserved along S[Po, 

Q0] allowing us to sketch the two curves lying in Eo shown in Figure 2.5. 
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Figure 2.6: Intersection of C3 and R1. 

Four more segments ofC3 's boundary can be constructed as follows. We 

consider the intersection of C2 and E_2, shown in Figure 2.6. This intersection produces 

eight homoclinic points, which we divide into two sets, the y-cluster on the left and the 

z-cluster on the right. These homoclinic points bound the segments U[y4,o, Yt,o], U[y2,o, 

Y3,o], U[z2,o, Z3,o], and U[z4,o, z1,0]. Mapping each of these four segments forward one 
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time gives four segments cutting across K 1. If we follow S[P_2, Q_2], we encounter the 

following points: Zt,o, z2,o, Xt,-h x2, -h Yt,o, Y2,o, XJ,-I, x4,-h YJ,o, y 4,o, xs,-h X6,-h ZJ,o, and Z4,0· 

For each element in this sequence, we increment the second subscript by one and obtain 

the sequence of points encountered traversing S[P_1, Q_1], = .M.(S[P-2, Q_2]). Figure 2.6 

shows the new sequence lying along the stable boundary of K 1. To obtain the segments 

ofe3lying in K1, we connect the following points: Y2,1 to Y3,h Y4,I to YI,I, z2,1 to ZJ,h and 

z 4,1 to z 1,1. We finish constructing e3 by connecting the following pairs ofhomoclinic 

points: Q2 to z2,1, ZJ,I to x2,1, xs,I to Y4,I, Yt,I to X4,2, X3,2 to x6,I, x1,1 to Z4,1, and Zt,I to P3. 

Figure 2.7 shows the third capture lobe and its mirror symmetric partner E_1. 

Figure 2.7: C3 and E-3· 
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b.) Digression: A First (Crude) Application of Homotopy Theory 

Before going on to the construction of C4, let us digress by discussing how we will 

apply homotopy theory. Based on the intersections of C2 with Eo, E_1, and K 2, we were 

able to deduce how C3 winds through the complex. We can make the interpretation that 

C2 forces C3 to wind through Eo to intersect E1 forcing the existence oftwo segments of 

C3 that lie in Eo. Homotopy theory will allow us to quantify how the lobes wind through 

the plane. First, let us attach continuous lines to the ends of the two segments U[x2,~, 

x5,I] and U[x6,I. x1,1] (Figure 2.5) thereby connecting the unstable segments to the pips 

Po and Q0. The new curves can be continuously deformed into the unstable boundary of 

Eo, a curve that connects the pips Po and Q0. Furthermore, we can attach' two continuous 

curves to the segment U[x41, X31] to connect it to the pips Po and Qo. This new curve 
' ' ' 

can also be continuously deformed into the unstable boundary of E0. We then delete a 

set of points from the intersection of C2 and E0 . This defines a new topology where 

curves cannot completely pass through the intersection ofC2 and Eo. We can define a 

unique homotopy class (and its inverse) that contains curves with endpoints Qo and Po 

that can be homo toped into the unstable boundary of E0 . After connecting the unstable 

segments U[x2,1. xs,t], U[x6,I. x1,1], and U[x4,1, X3,1] to Qo and Po, all of these curves 

represent a single homotopy class induced by the new topology. This class and its 

inverse classes are important in that they are represented by curves that have just 

escaped the complex. 

Let us now delete a set of points from C 1 n E_1 inducing two unique homotopy 

classes (a class and its inverse) for curves that surround C1 n E_ 1 and starting and ending 
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on the points Q0 and Pt. Now consider the two segments ofU that wind around C1 in 

Figure 2.5, U[xs,t, x4,2] and U[x3,2, X6,t]. To each segment we attach continuous lines 

connecting the unstable segments to the pips Q0 and Pt. With the endpoints fixed at the 

pips, these new lines can be homotoped into the homotopy class represented by the 

unstable boundary of C1, U[Q0, Pt] and its inverse. 

c.) Construction of C4 

Let us return to the discussion and construct the fourth capture lobe. The result 

of our piece-by-piece construction is shown in Figure 2.9. Figure 2.8 shows C1, C2, C3, 

and the images ofC3 that lie in Eo, E1, and E2. We know that the tip ofC4 will lie in E2. 

C3 was shown to possess two segments forced to wind through Eo around the tip of C2. 

The images of these two segments, U[x2,2, x5,2] and U[x6,2, Xt,2] will wind around the tip 

ofC3. Finally, we see that four segments ofC3 pass through E_1 giving four segments of 

C4 that will lie in Eo. C3 was forced to wind above and below C2. lfwe compare 

Figures 2.6 and 2.8, we can deduce that as C4 winds through Eo, it will be forced to wind 

above and below C3. 
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Figure 2.8: C1, C2, C3, and C4's intersections with Eo, E1, and E2. 

We could continue the analysis by examining the intersections of C3 with E-2 and 

E-3· However, for the sake of brevity, we will take a short-cut. Let us now refer back to 

Figure 2.7. We see that C3 n E_2 contains eight segments ofU. We see from Figure 2.8 

that we need another eight segments ofU that pass through E_1 to fully connect the 

known segments ofe4 (including the endpoints). The completed fourth capture lobe is 

shown along with its pre-images in Figure 2.9. 
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Figure 2.9: C1, C2, C3, C4, and E_J. 

We have discussed how to qualitatively compute the first few capture lobes 

based on a single piece of information: the minimum delay time. We have also 

discussed how segments of the unstable manifold can be assigned to unique homotopy 

classes once a new topology has been defined. We now discuss in detail how we alter 

the topology of the plane to induce a set of unique homotopy classes. We assume an 

arbitrary minimum delay time D. We begin the discussion by defining a hole. 
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d.) Defining Holes in the Plane 

A hole is an open set of points that have been removed from lR 2 
• The first hole, 

H0, is defined by the intersection CD+ In E0. Mapping this set forwards and backwards 

generates a hi-infinite sequence of open sets. Letting n be any integer, then the nth hole 

is given by Hn = CD+I+nn En. Setting n = -D-1 gives the hole formed from the set Con 

Kn_1. Since CD+ I is the first hole to intersect Eo, the first D capture lobes (mapping from 

Co) all lie within the complex giving D holes within the complex. We collect the holes 

00 

into the setH= U Hn. Finally, we endow the usual topology to the set IR2 \Hand call 
n=-oo 

this new set the punctured plane. We now consider the set of homotopy classes on the 

punctured plane which are naturally represented by the escape and capture lobe 

boundaries. 

The boundary of each lobe is comprised of one stable segment and one unstable 

segment, each connecting a P-pip and a Q-pip. The nth escape lobe and capture lobe are 

bounded by the segments U/S[Pn, Qn] and WS[Qn-1, Pn], respectively. To each ofthese 

segments, we assign a unique symbol. 

a.)8En = {Un uEn}, Un = U[Pn,Qn], En= S[Pn,QJ 

b.)8Cn ={en uSn}, en =U[Qn-PPn], Sn =S[Qn-PPn] 

Each ofthe symbols defined in eq. (2.1) represent curves with endpoints in the orbits 

(2.1) 

generated by iterating the pips Po and Qo forwards and backwards an infinite number of 

times. We collect these two "pip orbits" into a set we call a as we will refer to this set 

often. Now, let us consider Figure 2.10 below, which is a qualitative picture of a tangle 
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--~~ ~~~ ----

with minimum delay time D. For the sake of clarity, we have omitted the escape lobes 

internal to the complex. Each capture lobe is forced to intersect a particular escape lobe 

based on the minimum time delay. The hole prevents the stable boundary from being 

deformed into the unstable boundary. Thus, each boundary is assigned to a unique 

homotopy class. 
-----~~~~-

Figure 2.10: Qualitative tangle with minimum delay time D. 

For example, consider the lobe C0. The hole H0 prevents 'llo from being deformed into 

Eo. Thus the fou~ curves 'Uo, Eo, 'Uo:1
, and f.o- 1 each represent a unique homotopy class. 

Thus, a single hole formed from two intersecting lobes induces four homotopy classes 

represented by the stable and unstable segments bounding those lobes. 
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e.) Mapping Path-classes Forwards and Backward 

We have seen that puncturing the plane induces a set of homotopy classes 

naturally arising from the intersection of CD+ 1 and E0. Since the homotopy classes are 

represented by segments of the stable and unstable manifolds, the mapping on the 

punctured plane induces a new mapping (which we also call.M) on the set of homotopy 
---~--" --- ---" -------- ---""""~--- --- --- --- ---

classes. ,Letting lowercase letters denote homotopy classes, we can write out four 

dynamical equations, one for each ofthe curves in eq. (2.1). 

VnEZ 
a.).Mn(s~1 ) = s!1 where [SJ=sn 
b.)AC(u~) = u!1 where [UJ = un 
c.).Mn(e~1 ) = e!1 where [En]=en 
d.)AC(c~1 ) = c!1 where [en]= en 

Given the four symbols subscripted by 0 and all of their forwards and backwards 

iterates, no segment ofthe manifold is excluded. We note that the classes inherit the 

orientation of their representatives. 

(2.2) 

By definition, equivalency classes do not possess a preferred representative. This 

implies that a general curve can be assigned to a homotopy class. If this general curve 

represents a set of initial conditions for some dynamical system, then we can use eq. 

(2.2) to predict the dynamical development of those initial conditions. Therefore, we 

must establish a set of rules for assigning a general curve of initial conditions, which we 

will call .i!A.J, to a homotopy class. First and foremost, .I!A.J cannot pass through a hole. If 

this is the case, then we allow for a small perturbation of .I!A.J such that the intersection 

with the hole is removed. Secondly, .i!A.J must have its endpoints in the set a. If this is 
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not the case then we add continuous curves to £o linking it to points in a. All self

intersections in £o are removed. Finally, we desire [.f!.o] to be unique and well-defined. 

f.) A Basis of Path Classes 

In order to assign general curves to unique homotopy classes, we must select a 

set of classes whose representatives do not intersect. Let us consider a tangle with 

minimum delay time = 1. Figure 2.11 a shows such a tangle along with the relevant 

holes and a green curve homotopic to e1. Now consider the green curve in Figure 2.11 b. 

This line represents the class e~ 1 c~'u=ie_1c0e0s 1 • However, if we detach the curve from 

the points Q0 (the counter-clockwise curve connecting Po to Qo), Po, Q_~, and P_~, we 

have the curve in Figure 2.11c. The curve in Figure 2.11c encircles H_1 in a 

counterclockwise sense just as the curve in Figure 2.11 a. One can imagine distorting the 

curve in Figure 2.11c into the curve shown in Figure 2.11a. 

Figure 2.11: Homotopic curves assigned to different path classes. 

The situation discussed in the previous paragraph illustrated the crucial fact 

behind choosing a suitable basis: each hole must be encircled by two path classes that do 

not intersect. The boundary of each hole is comprised of two segments, one from each 
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of the two lobes enclosing the hole. One segment is chosen so that the hole is uniquely 

enclosed by one class. For the internal holes, the simplest choices are either the unstable 

boundaries of the capture lobes or stable boundaries of the escape lobes. Since we are 

studying the evolution of some dynamical system forwards in time, we choose to let the 

classes represented by the unstable boundaries of the internal capture lobes, { c!1
} ~=1 , 

enclose the holes. The classes represented by the stable boundaries of the escape lobes 

are then ignored.' 

Now consider the sequence ofholes lying within the external escape lobes. We 

choose to encircle them with the sequences {u!1 }:=a and {e!1 }:=a. For the sequence of 

holes within the external capture lobes, we use the sequences {c!1 }~=-oo and {s!1 }~=-oo. 

·.Finally, we desire to connect any pair of pips by a finite number of symbols and thus 

include the sequences { s!1
} :=a and { u!1

} ~=-oo . The basis is then 

B- { ±I ±I . ±I ±I ±I . ±I ±I ±I • ±I ±I ±I . ±I ±I ±I } - ... ,c_pc0 , c1 ,c2 , ••• ,cn, e0 ,e1 ,e2 , ••• , .•• ,s_ps0 ,s1 , ••• , ••• ,u_pu0 ,u1 , •.. (2.3) 

We call this set the untangled basis. We see that the sequence { c!1
} :=D+I has been 

excluded from B for reasons described above but each of these cn's (in fact every class 

omitted from B) possesses a unique expansion within the untangled basis. 

g.) Mapping a Line of Initial Conditions 

So far, we have discussed the set of homotopy classes without mentioning how it 

relates to the escape time plot. For a dynamical system controlled by a homoclinic 

tangle, we choose a set of initial conditions represented by a continuous curve in the 

plane. We parameterize the initial conditions as the arclength measured along the curve 
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from some reference point. For all points on that line that start within or enter the 

complex, we count the number of iterates for those points to map out of the complex. 

' We have stated that points that exit the complex must arrive in E0 . If points arrive in Eo 

at the n1
h iterate, then these poi~ts lie in the intersection of Eo and ..Mn(.fo). Iterating 

backwards n times reveals that a point escaping at n iterates lies in the intersection of £o 

and En. This fact motivates an important definition. 

Def: We call a connected set of points in £o n En an escape segment. Henceforth, we 

refer to a plot of the iterates to escape the complex versus the parameterized initial 

conditions as the discrete escape time. 

When we compare the continuous and discrete escape times for some .fo, the structure 

underlying the former becomes clear. Each icicle corresponds to a single escape 

segment. Sequences of icicles are rectified into sequences of escape segments. We call 

a sequence of escape segments an epistrophe. The relationship between the two escape 

time plots is shown below in Figure 2.12. 
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Figure 2.12: Continuous and discrete time plots on the left and right respectively. 

Let us now state a few facts concerning epistrophes [ 6]. If the first segment 

appears at the nth iterate, then segments appear at n + m iterates for all m > 1. 

Asymptotically, the lengths and distances between adjacent segments in a single 

sequence go to zero geometrically at a rate given by the Lyapunov factor ofthe unstable 

fixed point. Finally, we assign an orientation to escape segments. We see from Figure 

2.12 that the two sequences En and Bn starting at four and five iterates point in opposite 

directions. We want to define an orientation for the escape segments so that they point 

in the same direction as that of the corresponding sequence in the escape time plot. 

Figure 2.13 shows our convention. Running along the stable segment Rn, we encounter 

the endpoints of the escape segment. The first point encountered is defined as the head 

and the second is defined as the tail. 
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Figure 2.13: Convention for orientation of an escape segment. 

h.) Minimal Sets 

Before moving on to deriving the symbolic dynamical equations, we must 

discuss the concept of a minimal set. Let us consider Figure 2.14 below, which shows a 

D = 1 tangle and two curves. We immediately see that the brown curve is homotopic to 

the green curve. However, we see that the green curve will produce a single escape 

segment at the first iterate whereas the brown curve will produce five. As a result, the 

escape time plots will be drastically different. To go beyond the minimal set, i.e. for the 

symbolic dynamics to predict the additional structure due to the oscillations in the brown 

curve, additional sequences of holes would have to be removed. These holes would be 

have to be placed such that the brown curve does not represent the same path class as the 

green curve and none of the oscillations can be homo toped out. 
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Figure 2.14: The green and brown curves are homotopic. Therefore, the minimal set for 
the brown curve contains a single escape segment just as the green curve. 

To seek the minimal set means that we must seek the simplest possible development of 

the tangle. Figure 2.15 shows an alternative geometry for a tangle [7] (we will encounter 

this figure again in the following section and Chapter 4). In this case, C2 intersects Eo 

but overshoots Eo to intersect E 1. C3 is topologically forced to wind over C2 as itpasses 

through Eo. However, C3 contains a tendril that intersects Eo just under the "finger" in 

C2. This tendril will have a profound impact on the topologically forced development of 

the unstable manifold. However, for the dynamical equations we are about to examine, 

intersections like the one we just described are not considered. Another perspective is 

that we are considering the minimal sets of a class of tangles in which the intersection of 

the curve eDt 1 and Eo is a simply connected set. 
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Figure 2.15: A D = 1 tangle in which C2 intersects E_1 contains additional intersections 
' that lead to a more complicated minimal set. 

i.) Dynamics of Path Classes 

We are now ready to derive the dynamical equations acting on the untangled 

basis for an arbitrary minimum delay time. We start by defining a path class that will 

simplify our calculations. 

(2.4) 

One can see from Figure 2.10 that this class encloses all ofthe internal holes. From the 

same figure, one can then obtain the expansion of cD+1 which is the forward mapping of 

(2.5) 
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We first note that cD+ 1 is expressed entirely within the untangled basis. Secondly, JK( en) 

contains the symbol u~1 • Following eD+1 along the direction ofU indicates that this 

symbol is represented by the tip of eD+ 1. But this curve is an example of an escape 

segment. Therefore, the symbols uo and u~1 represent escape segments. Finally, to 

~~-ehtain-€q.-(2.5),en€-Il€€ds-tG-verify the-following-somewhat .unrul~-equation .... 

(2.6) 

This equation can be derived from a figure. The image ofF follows directly from 

iterating eq. (2.5). 

(2.7) 

Given any curve assigned to a homotopy class, we can use eq. (2.2), eq. (2.5), 

and eq. (2.7) to compute the topologically forced, minimal set of escape segments. We 

will use the dynamical equations to compute a minimal set for D = 3 in section ii of the 

following chapter. The purpose of this section is to build an understanding for section v, 

which will explain a more general framework for extracting symbolic dynamics from 

homoclinic tangles. Finally, we state two important facts that can be derived from the 

dynamical equations. These are stated as the Epistrophe Start and Continuation rules. 

The theorem and its proof can be found in ([5]). 

Theorem: Let M be a diffeomorphism possessing a hyperbolic fixed point with 

minimum delay time D ~ 1 and ~ a line of initial conditions assigned to a homotopy 

class. There exists an integer No > 0 such that the minimal set of escape segments at 

iterates larger than No can be computed using the following rules. 
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Epistrophe Continuation Rule: Every escape segment at n-1 iterates has on the side of 

its arrowhead an escape segment at n iterates pointing in the same direction. 

Epistrophe Start Rule: Every escape segment at n iterates spawns immediately on both 

sides two escape segments at n+D+ 1 iterates pointing towards the segment at n iterates. 

We will not directly apply these rules. We use them as a benchmark when applyingthe 

more general method. 

v.) Homotopic Lobe Dynamics II 

Now that we have discussed the original theory, we can move on to the more 

refined bridges approach. The approach presented in sec iv assumed the simplest 

development of the manifolds. We were able to derive a set of dynamical equations 

based on removing a single sequence of holes from the plane. The dynamical equations 

implied a minimal set of escape segments. However, one can examine an escape time 

plot, compare the actual set of escape segments to the predicted set, and find unpredicted 

segments. We want a method that will both reproduce and refine the minimal sets 

predicted by the Epistrophe Start and Continuation Rules. The key to refining the 

minimal set is to allow a more flexible way in which we alter the topology. In this 

section we will describe a method that allows us to construct symbolic dynamics on 

different topologies [7, 12]. As we encounter each concept within this method, we will 

apply it to the tangle in Figure 2.15 for a single topology (see [12] for the derivations). 

We will then apply the method to the same tangle but for a different topology. We will 

see how different topologies result in different sets of dynamical equations. 
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a.) Preliminaries 

First, we must define the complex. We choose a pip Po and let the complex r be 

the closed region bounded by the segments ru = U[qx, Po] and rs = S[qx, Po]. The 

segment r sis the sole segment of S that we will use to obtain the dynamical equations. 

~~~~-The dynamical ~quations will encode the evollltion of the unst~ble manifold. WI_·t_h_P_o __ _ 

chosen, we define the fundamental U and S -segments. 

Def: Let st = S[P0 , P1 ) and 'u;' = U[P_p P0 ) be the fundamental Sand U -segments. 

The fundamentalS-segment is a connected component of the stable boundary of the 

complex. Furthermore, the stable boundary of Eo is contained within st. This segment 

is special in that we are interested in examining how the images of 'u;' intersect st . 
This motivates us to define the transition number. 

Def: For any homoclinic point x, letm E Z such that .Mm(x)E 'u;'. The transition 

number n is an integer such that.Mm+n(x) ESt. 

For points in 'u;' ,the transition number is the number of iterates for a homoclinic point 

to land inSt. If we let n > 0, then for points inSt nu: the transition number is n. 
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Figure 2.16: The first two capture lobes and corresponding 2-neighbors. 

b.) Defining Holes in the Plane 

We will use the notion of transition number to construct a new definition of a 

hole. We desire to remove more than one sequence of holes in order to predict more 

complex structure of a tangle. We begin the discussion by considering regions in which 

the manifolds do not enter. 

Def: Let x and x' be homoclinic points. If S(x, x') and U(x, x') contain no additional 

homoclinic points, then x and x' are said to be neighbors. 

If we have a region bounded by manifolds connecting a pair of neighbors, then by 

definition, the manifolds do not enter this region. If either manifold entered such a 

region, then the manifold would have to intersect the region's boundary, thus resulting in 

a homoclinic point. 
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In order to prove that a pair ofhomoclinic points are neighbors, we need to know 

the behavior of Sand U for arbitrary iterates of the map. We want a theory for which we 

input information from a finite number of iterates, and then predict future iterates. 

Therefore we present the following weaker definition. 

Def: Let x and x' be homoclinic points. If x and x' have transition number less than or 

equal to j and both S(x, x') and U(x, x') contain no homoclinic points of transition 

number less than or equal to j, then x and x' are said to be pseudoneighbors of index j or 

}-neighbors. 

Let us consider the concept of pseudoneighbors with regards to Figure 2.16. It 

shows the first two capture lobes of the tangle shown in Figure 2.15. We have two pairs 

ofhomoclinic points we must consider: (a.2, ~2) and (~2 , y2). We immediately see that 

the segments S( a.2, ~2) and S(~2, y2) contain no homoclinic points of transition number ~ 

2. U( a.2, ~2) and U(~2, y2) also possess no homo clinic points with transition number ~ 

2. Therefore, by definition, the points a.2, ~2, and y2 are each pseudoneighbors of index 

=2. 

In other words, computing the first two capture lobes reveals two pairs ofhomoclinic 

points, ( a.2, ~2) and (~2 , y2), that appear to be neighbors up to the 2nd iterate. In general, 

we compute J iterates of 'u;' and graphically obtain all pseudoneighbors of index J. For 

the tangles we are considering, the J-neighbors are found from the intersection of Eo 

J 

and U ~F. We note that there are instances in which the manifolds tangentially 
i~O 
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J 

intersect. If we find tangential intersections in S0F n U Ut , we remove them with a 
i~O 

small perturbation. 

Once we have identified the J-neighbors, we are ready to alter the topology. Let 

us now examine the new definition of a hole. The exact details of constructing a 

sequence oflioles can oefound--in ReC[7]~For simplicity, we willsK:etcntlie 

construction process. A hole is essentially a small, open set with a teardrop-shaped 

boundary. Each pair of J-neighbors is assigned a hole. Let x and x' be such a pair. We 

arbitrarily choose one point and anchor the hole to that point so that the hole lies in the 

region bounded by the two segments S(x,x') and U(x,x') and is infinitesimally close to 

the anchor. Mapping a hole forwards generates an infinite sequence of holes that lie 

infinitesimally close to the stable segment rs that may or may not lie insider. Mapping 

each hole backwards results in a finite number of holes within the complex and a finite 

distance away from the complex's boundary. At some point a pre-image's anchor lands 

in U: and thus lies an infinitesimal distance from ru. The remaining pre-images lie 

within an infinite sequence that asymptotically approach qx (but all lie an infinitesimal 

distance from ru that again, may or may not lie insider). 

c.) Holes: Example 

For the tangle in Figure 2.15, we have already identified the 2-neighbors. Our 

next step is to identify the holes and alter the topology. We first construct the holes for 

the pseudoneighbors shown in Figure 2.16. Then, we generate the bi-infinite orbit of 

each pseudoneighbor and thus the holes. Figure 2.17 shows the holes. For the sake of 
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clarity, we have displaced each of them a small distance away from their anchor points. 

Before we discuss these holes, we state a convention. When we plot holes using figures 

such as a square or a disk, we will refer to the hole by its name followed by an integer. 

For example, the disk-shaped hole in Figure 2.17 with a "2" adjacent to it will be called 

disk-2. The "2" follows from the fact that the hole is associated with the second iterate 

of a homoclinic point lying in U: . 

Figure 2.17: The sequences ofholes constructed from the 2-neighbors. 

Figure 2.18 shows that we have two sequences ofholes, the square and disk 

sequences, for the case J = 2 because we found two pairs of2-neighbors. Now, we must 

identify the holes lying within the complex. We need to compute the first and second 

pre-images of the two holes square-2 and disk-2. Taking the first pre-images result in 

square-1 and disk-1. We see that square-2 does not lie within C2 thus indicating that all 
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of its images and pre-images will lie outside the corresponding capture lobes. We find 

that the second pre-image of disk-2 (disk-0) has mapped out of the complex whereas the 

second pre-image of square-2 remains inside the complex. All of the pre-images of disk-

0 will remain outside the complex. As we shall see, we can ignore these pre-images as 

they will not be used in constructing the set of homotopy classes. The pre-images of 

square-0 will also play no role in constructing the set of homotopy classes. The future 

images of square-2 will remain outside the complex. Square-2 is the beginning of an 

infinite sequence ofholes that are anchored to the stable boundary of the complex. The 

no recapture assumption prevents these holes from re-entering the complex. The future 

images of disk-2, however, lie inside the complex. 

d.) Bridges and Bridge Classes 

Now that the topology of the plane has been modified, we can identify the 

homotopy classes. We want to construct the set ofhomotopy classes in a way that is 

naturally accommodating to the intricate manner in which U intersects the stable 

boundary ofthe complex (see Figure 2.15). Therefore, we make the following 

definition. 

Def: A closed segment of U that intersects r s only at its endpoints is called a bridge. 

Two bridges can intersect only at their endpoints as U cannot self-intersect. This 

definition also includes the unknown segments of U. This motivates us to define a 

homotopy class as a set of equivalent curves with endpoints lying in rs. We allow for 

the endpoints to move but they cannot be lifted off the stable boundary of the complex. 

The new definition of a homotopy class implies that the identity class is the class of 
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curves that can be contracted into a point in I's. Given this definition, we can define a 

class ofbridges. 

Def: A homotopy class represented by a bridge is called a bridge class. The orientation 

of a bridge class is defined such that measured along S, the final point of the curve is 

closer to qx than the initial point. A bridge (and a bridge class) lying in 1 (the complex) 

is said to be internal and outsider external. Given that U can be decomposed into 

known and unknown segments, we can have several types of bridge classes. If a path 

class is represented by a known segment of U, then we call the class a bridge class. 

However, there will be instances in which we will need to define a bridge class that is 

not represented by a known segment ofU (i.e. a segment in {U,F}[=1 ). We call these 

phantom bridge classes. The word phantom means "merely apparent, illusory" [10]. 

We choose this modifier because certain bridge classes will appear that seem essential to 

the analysis but will not appear when a longer segment ofU is used. 

e.) Bridges and Bridge Classes: Example 

Figure 2.18 shows the bridge classes enclosing the holes shown in Figure 2.17. 

The unstable boundary ofE0 is a bridge surrounding square-2. This bridge defines the 

bridge class uo. At this point, we can introduce a new notation. We let the 

symbol" <l "denote the verb "encloses". So, u0 <l square-2 means that curves in the class 

Uo (together with a portion of the stable manifold) enclose the hole labeled square-2. A 

bridge in e2 encloses disk-2. This bridge represents the class Vo. We see that the 

boundary of the first capture lobe is a bridge enclosing disk-1. We denote the 

corresponding bridge class by c1. We also have square-11yingjust outside the bridge 
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representing c1. The manifold does not naturally possess a bridge enclosing square-1 as 

it does disk-1. But Figure 2.15 shows that C2 must wind under C1 so C2 must possess 

bridges that enclose square-1 (as well as disk-2 and disk-3). Therefore, we conclude that 

the bridge class a1 must exist despite the fact that it is not represented by a known 

bridge, and that a1 <l square-1. This class is a phantom bridge class because our intuition 

tells us that the unstable manifold will wind under C1 and thus will contain a segment 

that encloses square-1. 

Figure 2.18: Bridge classes for J = 2. 

f.) Dynamical Equations and the Bridge Basis 

Now that we have identified the bridge classes, we can graphically derive a set of 

dynamical equations acting on the homotopy classes. As in the last section, the 
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dynamical mapping M induces a mapping on the set of homotopy classes which is also 

called M. First, we consider the inert classes. A class is inert if mapping the class 

forward any number oftimes never produces an intersection with E0 . For our example, 

we have found two inert classes: u0 and vo. Square-2 is enclosed by the two classes u~1 
• 

Therefore, the images of square-2 are enclosed by the images of u~1 
• We can write 

down the following dynamical equation: 

The second sequence of inert classes starts at v~1 , which encloses disk-2. The same 

argument applied to v~1 leads to the following dynamical equation: 

(2.8) 

(2.9) 

The images ofv0 are phantom bridge classes. Given our assumptions, we designate the 

bridges that enclose the images of disk-2 inert. However, our intuition tells us that since 

v0 lies in the complex, the mapping will stretch and fold images ofv0 and eventually, 

force an intersection with E0• Examining Figure 2.15 shows that the image ofvo 

intersects E0. But this results from setting J = 3. 

The dynamical equation M(e) = e+I implies that M([e]) = [e+IJ. We use this 

fact to obtain the dynamical equations for the non-inert symbols. Let us assign the 

capture lobe boundaries to their respective homotopy classes. 

a.)[~]= c1 
(2.10) 

b.)[l;] = f1-
1u0v0u;1f1 
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Since .M([el]) = [e2], we conclude that eq. (2.10b) is the dynamical equation for the path 

class c1. The equation for a1 can be found from Figure 2.18. We see that a1 is 

represented by curves that enclose disk-1 and square-1. The image of a1 is represented 

by curves that must enclose disk-2 and square-2. Considering this and the fact that a1 

looks a great deal like c1, we have 

.M(a1) = f1-
1v0u;1f1 (2.11) 

Using eq. (2.11) and the fact f1 = v0a1v1, we can obtain the equation for f1. 

M(f1) = a;1u;1f1v2 (2.12) 

Now that we have obtained the dynamical equations, we must identify those 

symbols that can be used to uniquely express general curves of initial conditions. We 

must choose a set of symbols that allows us to uniquely expand general curves in the set 

of homotopy classes. In other words, we desire an untangled basis similar to the basis 

discussed in the last section. We call this set the bridge basis. 

Def: An element in the bridge basis must directly enclose a finite number ofholes with 

no other element directly enclosing those holes. In other words, if a is a bridge class and 

encloses hole H, then there is not a bridge class that satisfies the ordering a <l b <l H . 

It follows from the definition that elements in the bridge basis are irreducible, i.e. they 

cannot be expressed as a product of other elements of the bridge basis. Let us now 

identify the bridge basis for Figure 2.18. Each of the inert classes encloses a single hole 

so each is an element of the bridge basis. The figure shows us that c1 <l disk-1 and 

a1 <l square-1 and that no other bridges enclose disk-1 or square-1. Therefore, the basis 

is the set 
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{ ±I ±I . ±I ±I . C±l a ±I} 
Uo 'Ul '· · · 'V 0 'VI ''' '' I ' I (2.13) 

We have not included the class f1 in the basis as it can be expressed as the sequence 

v0a1v1, each of which is a member of the bridge basis. Therefore, the topological 

analysis is complete. 

vi.) A Second Application of the New Method 

Let us go over the method again by constructing a set of dynamical equations 

from 3-neighbors. In this case, we will compute a set of dynamical equations based on 

the development ofthe 3rd iterate of 'lft (see [7] and [12]). We do this because of 

phenomena that will appear in calculations that we will examine in the next chapter. 

a.) Identifying the Pseudoneighbors and Attaching the Holes 

The first step is to graphically find the 3-neighbors and attach the holes. Figure 

2.19 shows the tangle with the 2-neighbors and 3-neighbors plotted. We find one pair of 

3-neighbors: the pair (83, s3). The figure shows us that S(a2, ~2) contains 83 and s3 thus 

indicating that a 2 and ~2 are not 3-neighbors. If we consider the segment U(~2, y2), we 

find that the pre-images of 83 and s3 , 82 and s2, lie within this segment. By definition of 

J-neighbors, we conclude that ~2 and y2 are not 3-neighbors. Since we have a single pair 

of3-neighbors, we have a single sequence ofholes. We will attach a hole, called disk-3, 
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Figure 2.19: 2-neighbors and 3-neighbors for tangle the in Figure 15. 

b.) Identifying the Bridge Classes and Their Dynamical Equations. 

The next step is to map disk-3 forwards and backwards and identify the bridge 

classes. Figure 2.20 shows several ofthe holes in this sequence and the labels for the 

bridge classes. Mapping disk-3 forward generates an infinite sequence ofholes lying 

outside the complex. The unstable boundary of Eo encloses disk-3 and therefore the 

unstable boundary of each external escape lobe encloses an image of disk-3. We call the 

class enclosing disk-3 u~1 . Its dynamical equation is 

(2.14) 

Disk-0 and all of its pre-images lie outside the complex and thus can be ignored. 

The two pre-images of disk-3 (disk-2 and disk-1) lie within the complex. Disk-2 is 
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enclosed by a segment of the unstable boundary of C2 . Disk-1 is surrounded by a bridge 

from the unstable boundary of C1. Since each of these two holes is surrounded by a 

bridge, we have two bridge classes. 

at1 
<l disk-1, a~1 

<l disk-2 (2.15) 

Figure 2.20 also shows that the known segment of U possesses multiple bridges that 

enclose both disk-1 and disk-2. These bridges represent the classes f±1
• Finally, we can 

compute the dynamical equations and identify the bridge basis. 

Figure 2.20: Holes constructed from the 3-neighbors. 

We've already identified the dynamical equation for u~1 • The dynamical 

equations for a1, a2, and f remain to be determined. Figure 2.20 immediately tells us that 

[~] = a1 ~ M(a1) = M([~]) = [c;J 
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[e2] can be found directly from Figure 2.20. Starting at Q1 we follow the natural 

orientation of e2 . We see that the first'and last bridges are f 1 and f, respectively. Two 

bridges wind through Eo giving two escape classes with opposing orientations. Finally, 

the finger represents the class a2 . The dynamical equation for a1 is then 

(2.17) 

We need to find the dynamical equation for f and a2 . First, we'll apply the map to eq. 

(2.17). 

(2.18) 

Expanding [e3] in the basis and equating it to the right hand side of eq. (2.18) will 

determine the unknowns. Assigning e3 to its proper homotopy class is done by 

examining Figure 2.20. 

(2.19) 

Before we identify the bridge basis, let us consider the analyses for J = 2 and 3. 

In the first example, the analysis resulted in defining the phantom bridge classes 

{vn}; =land a1. Our assumptions led to v0's role as the first element of an infinite 

sequence of inert classes despite v0 lying in the complex. And the class a1 resulted from 

a judicious guess that the images of [ e2] must wind under el and enclose square-1. 

Again, we must state that the known segment of U did not contain a bridge that 

represented a1. We then redid the calculation by including an additional capture lobe. 

We found a single pair of 3-neighbors and that each bridge class was represented by a 
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bridge lying in the known segment ofU. Furthermore, the class v0 (or a2 in the J = 3 

analysis) did not map into an inert class but stretched across the complex to intersect Eo. 

In summary, these two calculations demonstrate that phantom bridge classes can 

disappear upon increasing J. 

c.) Identifying the Bridge Basis. 

Figure 2.20 shows that f= a2a1• Thus, all ofthe bridge classes discussed so far 

excluding f±1 are in the bridge basis. 

{ ±1 ±1 . a±1 a±1} 
Uo 'u1 , ... , 1 ' 2 (2.20) 

The topological analysis is complete. In Chapter 4, the dynamical equations derived 

within this section will be used to compute the topologically forced sets of escape 

segments (or equivalently homoclinic intersections) for U:. 

vii.) Topological Entropy 

We will now discuss the complexity encoded in a set of dynamical equations. If 

we are given a continuous function acting on a compact space, then the topological 

entropy measures to what extent the mapping "mixes" regions of its domain [8]. It can 

also be viewed as a measure of the dynamical system's complexity. In our case, we 

want a simple measure of the growth rate in the number of symbols as the mapping is 

applied to an initial homotopy class. Thus, an increase in the topological entropy should 

correspond to higher complexity ofthe iterates of the initial homotopy class. Mitchell 

[7] proposed a new definition oftopological entropy that is suitable for our purposes. 

However, it requires use of a particular representation ofthe symbolic dynamics, called 

the concise representation. To compute the topological entropy for a set of dynamical 
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equations we will construct a matrix representation of the symbolic equations in the 

concise representation. The entropy results from taking the natural logarithm of the 

largest positive eigenvalue of this matrix. 

The purpose of the concise representation is to ensure that when the map is 

applied to a symbol sequence, it will give a new sequence in which there are no 

cancellations of symbols. Then the growth rate of the number of symbols will not be 

overestimated. We define a concise representation such that each iterate of 'lloF is 

comprised of a sequence of alternating internal and external symbols. For example, in 

the case where f= c1c2c3, the right-hand side consists of three adjacent internal symbols. 

A concise representation is one in which all sequences of the form ( c1c2c3 tare replaced 

by f±l and f±l must be directly surrounded by external symbols: A concise 

representation produces a minimal set of intersections with the stable manifold. The 

topological entropy measuring the growth rate of the symbol strings also measures the 

growth rate of the number ofhomoclinic intersections. Consideration of the definition 

of a concise representation and the fact that internal symbols map to sequences that 

begin and end with internal symbols leads to the conclusion that the cancellation of 

symbols is impossible. To compute the topological entropy, we must construct a matrix 

representation of the concise symbolic dynamics. 

First, consider an arbitrary symbolic sequence in a concise representation. We 

count the number of times a symbol and its inverse appear in the sequence. This 

collection of integers is organized into a column vector where each element of the vector 

is uniquely assigned to one ofthe symbols. If a symbol does not appear in the symbolic 
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expression, the corresponding element in the vector is assigned a 0. Let us consider an 

example using eq. (2.1 Ob ), which is the expansion of e3 in the basis constructed from the 

2-neighbors. 

(2.21) 

C
±l a±l f±l u±J ±I 
I I I 0 Ul 

(0 0 2 2 0 

The string contains three distinct symbols (for this calculation, u 0 and u~1 are identified) 

so only three elements of the vector are non-zero. The vector is infinitely long, with 

zeros assigned to the vector elements corresponding to all Un and Vn for n > 1. We also 

note that with the exception off1, all of the slots in the vector correspond to members of 

the bridge basis. We will explain the reasoning behind this shortly. 

Each of the dynamical equations represents a relationship between a symbol and 

a string of symbols. Therefore, the dynamical equation for an arbitrary symbol Si is a 

relationship between two vectors. These two vectors are related by a matrix containing 

the dynamics; i.e. dynamics on the symbols induces dynamics on the vectors 

(2.22) 

The vector representing Si is a basis vector in that it contains one non-zero element. 

Therefore, the matrix equation in eq. (2.22) tells us that the ith column of I is the vector 

representing the string M( si). The matrix I is defined to have elements 

T = {j if M(g[l)containsjfactorsofg~l 
g2,gl 0 otherwise (2.23) 
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Eq. (2.23) has the same form as that of a transition matrix for a topological Markov 

chain [9]. The difference is that for a transition matrix representing a Markov chain, 

each matrix element is either 0 or 1, representing whether or not the dynamics connects 

two states. Ref. [8] provides an example of a dynamical system (Arnold's Cat Map) in 

which the topological entropy defined therein is shown to be directly related to the 

largest eigenvalue of the mapping. 

Let us consider the infinite sequences of inert classes whose existence forces the 

matrix to have an infinite size. For our purposes, the matrix must have a finite size. We 

can circumnavigate this problem by identifying all of the inert classes as a single 

symbol, u* = {u!1
} ~=o, Mu*~u* since M(u~1 ) = u!1 

• By replacing the rows and 

columns associated with the un's and vn's by u* and v *,the matrix is transformed into a 

finite dimensional matrix. Once we have a finite-dimensional matrix, we can compute 

its eigenvalues. We define the natural logarithm of the modulus of the largest 

eigenvalue to be the topological entropy. 

Let us now obtain the matrix representations and topological entropies for the 

two examples we have considered in the last section. First, we must obtain concise 

representations. To compute the eigenvalues of the matrix representation, we use 

Matlab's built-in function eig. The two sets of dynamical equations are 

J=2 
a.)M(c1) =f1- 1u0v0u~

1f1 
b.).M(a1) = f1-

1v0u~
1f1 

c.)M(f1 ) = a;1u~1 f1v2 
d.)Mn(u0 ) =Un 
e.).AC(v0 ) = vn 
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I=3 
f.)M(a1 ) = C1u0a 2u~

1f 
g.)M(f) = a;1u~ 1 f 
h.)M(a2 ) = C1u~1f 
i.)Mn(u0 ) = Un 

(2.24) 



Consider the dynamical equations for J = 3. Each equation is a sequence of symbols that 

alternate between internal and external symbols. These equations are already in concise 

form. However, if we examine the equations for J = 2, we see that in eq. (2.24b), the 

sequence f1-
1v0 is a sequence of two internal classes. The same applies to the sequence 

f1v2 in eq. (2.24c). Therefore, we must construct a concise set of dynamical equations. 

First, let us define a new bridge class a2 = a1v1• Since f1 = voatVJ, we have f1 = v0a2 and 

(2.25) 

Defining the bridge class a2 puts eq. (2.24b) in concise form . .M(a2) comes directly from 

eq. (2.24b) and eq. (2.24e). 

Now, let us define the sequence of classes fk = f1v2v3 .•. vk. Using eq. (2.24), the 

dynamical equation for fk is 

U(f ) -1 -If -1 -If 
.,~.," k = a I Uo 1 v 2 v 3 v 4 • • • v k v k+I = a I Uo k+I 

Eq. (2.24c) is replaced by eq. (2.27). The concise dynamical equations are 

a.)M(c1) = f1-
1u 0 v0u~1 f1 

b.)M(a1) = a;1u;1f1 

c.).M(a2 ) = a;1u;1f2 

d.)M(fk) = a;1u;1fk 
e.)Mn(u0 ) = un 
f.)Mn(vo) = vn 

Inspection shows that each equation is a sequence of symbols alternating between 

internal and external symbols. To construct a finite matrix representation, we will 

consider {fJ:1 = f*as a single set so that Mf*~f*. The matrix representation of eq. 

(2.28) is 

79 

(2.26) 

(2.27) 
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c a a f*u*v* 1 1 2 
c1 0 0 0 0 0 0 

a1 0 0 0 1 0 0 

a2 0 1 1 0 0 0 (2.29) 
f* 2 1 1 1 0 0 

u* 2 1 1 1 1 0 

v* 1 0 0 0 0 1 

The topological entropy of this matrix is ln(2). The matrix representation for J = 3 is 

a1 a2 f u * 
a1 0 0 1 0 

a2 1 0 0 0 

f 2 2 1 0 

u* 2 1 1 1 

Its topological entropy is ln2.2695. These calculations tell us that the dynamical 

(2.30) 

equations constructed from the 3-neighbors are more complex than those constructed 

from the 2-neighbors. Alternatively we can say that we have acquired more information 

about the tangle by using the 3-neighbors. In fact, the topological entropy for aD = 1 

tangle with no overshoot is ln2. The dynamical equations constructed from the 2-

neighbors essentially the same information as aD= 1 tangle. The number ofhomoclinic 

points grows at the same rate for both of these tangles. 

viii.) Conclusions 

In this chapter, we have explained how the homoclinic tangle arises from the 

intersection of stable and unstable manifolds emanating from an unstable fixed point. 

c 

The tangle's function is to stretch and fold sets within the plane. In sec. iv, we showed 

the most basic approach towards characterizing the stretching and folding. By 

judiciously removing a set of holes from the plane, we were able to obtain a set of 
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nontrivial homotopy classes represented by segments ofthe manifolds. The dynamical 

mapping acting on these homotopy classes induced a set of dynamical equations on the 

set of homotopy classes. These dynamical equations imply the existence of a 

topologically forced minimal set of escape segments resulting from the dynamical 

equations. 

The method laid out in sec iv was a first step towards a more general 

characterization ofhomoclinic tangles. In reality, tangles possess a great deal more 

structure that cannot be characterized by the first method. We altered the definition of 

homotopy class to allow for the endpoints of curves to move. We then created a 

different but more general definition of a hole that allowed for using multiple sequences 

ofholes based on a finite development of the unstable manifold. We saw that these 

modifications also led to a set of dynamical equations that encoded the evolution of the 

unstable manifold. 

We presented two applications of the theory to a tangle with minimum delay time 

of 1 but with a capture lobe that overshot E0. The first application was based on 2-

neighbors. We calculated a set of dynamical equations that included so-called phantom 

bridge classes. The first phantom class, a1, seemed to exist due to the hole (square-1) 

outside the first capture lobe. This hole was not directly enclosed by a known bridge. 

Furthermore, we found a sequence of inert classes internal to the complex. Since points 

are stretched and folded in the complex, we believed that these bridge classes should not 

exist. Our intuition was confirmed upon calculating dynamical equations based on 3-

neighbors. We found that no hole lay outside C1 and thus were not forced to postulate 
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that an additional bridge class was present. We also found that instead of mapping to an 

inert class, the class represented by the overshoot was mapped to a lobe that stretched 

through the complex to intersect Eo at the 3-neighbors. 

Finally, we discussed topological entropy as a means of calculating the 

asymptotic growth rates of symbolic expressions for a given set of dynamical equations. 

The dynamical equations were first converted into a representation known as a concise 

representation. Images of [ 'lJt] were represented by symbolic sequences that alternate 

between internal and external symbols. In this representation, the dynamical equations 

were then organized into a kind of transition matrix whose largest eigenvalue was the 

topological entropy. We showed that for the case of the 2-neighbors, the topological 

entropy was the same as if there were no overshoot present. This result implied that the 

information contained within both sets of dynamical equations is the same. However, 

the topological entropy for the 3-neighbors was larger indicating that the symbolic 

sequences would grow at a faster rate. 

While we have said that these methods allow us to compute minimal sets of 

escape segments, we have not shown these segments in an escape-time plot. The 

following chapter will be concerned with comparing minimal sets to numerically 

computed sets of epistrophes. In Chapter 3, we will compute minimal sets using both 

methods for comparison to numerically computed sets of escape segments. We will also 

compare the theoretical predictions to the actual results for a point burst of rays. 
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-Chapter 3-
Topological Analysis of a Homoclinc Tangle 
Underlying an Open, Specularly-reflecting 

Vase-Shaped Cayity 

i.) Introduction 

In the last chapter, we discussed the development of Homotopic Lobe Dynamics 

applied to homoclinic tangles. We compute finite segments ofthe stable and unstable 

manifolds and punch holes in regions in which the manifolds are assumed to never enter. 

We then graphically obtain a set of symbolic dynamical equations that encode how the 

known segment of the unstable manifold stretches and folds through phase space. We 

now apply the theory to the homoclinic tangle shown in Figure 3.1. 

We present three calculations showing how increasing J in ~F allows one to 

compute a new bridge basis that enlarges the topologically forced, minimal set of 

homoclinic points (or escape segments). For each basis, we derive a set of dynamical 

equations acting on the basis encoding how {~F}~ ~ 1 stretches and folds through phase 

space. Each basis allows one to expand the sequence of capture lobes {eJt~ 1 • From 

these sequences we can obtain the minimal set ofhomoclinic points appearing at each 

iterate. We compare these minimal sets to the actual set of homoclinic points up to 

iterate 20 for the tangle shown in Figure 3 .1. We then apply the theory to a point burst 

in the vase represented as the vertical line in Figure 3 .1. We show the minimal set of 

escape segments predicted by two of these bases and compare them to the numerically 

computed set of escape segments. 
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The input to the theory is .M\'Ut) for J = 4, 12, and 16 and U: = U(P_1, Po). An 

examination of the tangle would show that there is no new information appearing at 

intermediate values of J. We begin by stating our conventions. Unless indicated 

otherwise, red and blue curves denote the stable and unstable manifolds respectively. 

The region bounded by S/U[ qx, Po] is called the complex and denoted by r. We call the 

region bounded by S/U[P0, Q0] escape zone 0 or Eo. Points escaping r must arrive in 

E0• Let~= U(Q_1, Po) denote the unstable boundary of capture lobe 0 and Co the lobe 

itself. Then, the unstable boundary of the i1
h capture lobe is~= .Mi(~) and lobes 

themselves are Ci = .Mi(C0). Finally, to differentiate the path classes within different 

bases, we choose the following notational convention. Let [ 91]I denote the homotopy 

class of curve 91 in basis J where J indicates the number of times U: has been iterated. 

Finally, the axes in our figures are labeled as either "q" or "p". 
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Figure 3.1: Vase's homoclinic tangle for A,w = 0.75 with vertical line representing a 
point burst. 
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Figure 3.2: Punctured plane used to derive eq. (3 .1 ). 

ii.) The 4-basis. 

a.) Derivation of the 4-basis 

1 4 

We begin our discussion with the 4-basis. We compute {~F}~1 , or the first three 

internal capture lobes and the first lobe to intersect Eo. C4 n Eo gives a pair of 4-

neighbors, a4 and ~4 in Figure 3.2, giving the minimal amount of topological 

information necessary to obtain nontrivial dynamics. To obtain the sequence of holes, 

we arbitrarily choose one homoclinic point from the pair ( U4, ~4) and punch a hole as 

described in Chapter 2. We call that hole H4, and represent it by the black disk labeled 4 

in Figure 3.2. We then iterate that hole forwards and backwards an infinite number of 

times. Figure 3.2 shows a subset of the hole sequence as disks with integer labels. 

Iterating H4 (or hole 4) forwards gives a sequence of inert bridge classes representing the 

unstable boundaries ofthe external escape lobes. We call the bridge class surrounding 

H4 Uo and its nth image Un = ..Mn(Uo). Iterating H4 backwards 3 times gives the internal 
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holes labeled 3, 2, and 1. Around each of these holes is a bridge from an internal capture 

lobe defining the bridge classes [~]4 = Ci <l Hi for i=1,2,3. 

The dynamical equations acting on the bridge basis are 

a.) M(c1) = C2 
b.) M(cJ = c3 

c.) M(c3 ) = f- 1u~1 f wheref= c1c2c3 

d.) M(f) = c; 1u~1 f 
e.) Mn(u0 ) = un 

Let us first discuss eq. (3.1). The minimum delay time for the tangle under 

(3.1) 

consideration is three. This means that a point maps into the complex and must iterate at 

least three times to escape. The first two equations say curves in c1 will map into the 

class represented by e3 after two iterates. An additional iteration will force a segment of 

any one of those curves to wind through Eo producing an escape segment represented by 

the symbol u~1 • The symbol fis represented by curves that traverse the breadth ofr 

enclosing the internal holes. 

b.) Predictions of the 4-basis 

Using these dynamical equations, we can iterate [e4] past the 4th iterate to 

compute the topologically forced development of the tangle. This calculation also 

produces the minimal forced set ofhomoclinic intersections. We show the first 8 iterates 

of 'lfoF in eq. (3.2). At each iterate, the newborn escape segments are in boldface. 
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a.) [~F]4 = UoC1 

b.) ['i4F]4 = u1c2 

c.) [~F]4 = uzc3 

d.) [UJ]4 = u3f-
1 un~1f 

) [cuF] f-1 -1 -1 -lif e. "s 4 = u4 un 41 c1u1 c1 un 41 
(3.2) 

Each symbolic expression starts with an inert class because U[P.1, Q_1] maps into 

the unstable boundary of Eo which is represented by u0. Therefore, ['ll/]4 = uj_ 1 [~]4 for 

i>O. Eq. (3.2d) shows that an epistrophe starts at the 41
h iterate pointing to the right. Eq. 

(3.2e) contains a factor of u~1 to the right of u~1 representing the continuation of the 

epistrophe started in eq. (3.2d). The factor u0 represents the birth of a new epistrophe 

with left-pointing orientation. The escape segments in eqs. (3.2£) and (3.2g) merely 

propagate the two known sequences. Finally, eq. (3.2h) shows the birth of two new 

epistrophes. The symbol u~1 in [e8]4 is flanked by its children, u0 and u~1 . Note that the 

orientations indicate that the segments point toward u~1 
• The second and next to last 

symbols represent the continuation of the first two epistrophes. All subsequent escape 

segments will result from the continuation of the existing epistrophes and the spawning 

of new epistrophes from the segments in eq. (3.2). 
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c.) Predictions of the First Theory 

We can compare these results to those ofthe first incarnation of the theory. 

Using the dynamical equations in eqs. (2.2), (2.4), (2.5), and (2.7) with D = 3 we find 

a.)[~]= c1 

b.) [l;] = c2 

c.)[l;] = c3 

d.) [e4 ] = F-1 U 0~F 

e.)[£;]= F-1 u!lc1u~
1 c~1 u~~F 

h.) [l;] = F-1 1lJJ 0 c1u 1 c2u2c3u3V1u~1Fu~1 

F-1u0Fu;
1 c; 1u;1 c; 1u~ 1 c~ 1U0~F 

Comparing the minimal set predicted by eq. (3.3) and eq. (3.2), we see they match in 

number and orientations at each iterate. We can apply the Epistrophe Start and 

Continuation rules to eq. (3.3h) to predict the minimal set to any arbitrary iterate. 

However, within the more general bridges framework, we cannot use those rules for 

(3.3) 

dynamical equations constructed from pseudo-neighbors as they have not been proven 

within the bridges framework. 

iii) The 12-basis 

a.) Derivation of the 12-basis 

The homoclinic points ( a 4, ~4) are true neighbors thus giving a region to which 

both manifolds are denied entry. This tells us that they must appear for any value of J. 

But for a new value of J, the pair (a4, ~4) will be called J-neighbors. For convenience, 
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we will leave their subscripts unchanged. Going past the 4th iterate of U:, we find the 

two new pairs ofpseudoneighbors (y12, 012) and (012, E12) in '11}: 2 shown in Figure 3.3. 

We choose B12 as the anchor for the holes and (y12, Bu) and (B12, en) are associated with 

the "square" and "plus" holes respectively. Again we attach the "circle" hole to J34. 

Mapping the circle hole forwards and backwards generates the same holes shown 

in Figure 3.2. Again, we let the inert sequence generated by mapping the hole forward 

Un = .Mn(Uo). Mapping the square and plus holes forward generates an infinite sequence 

of inert classes that asymptotically converge to qx. We call Vn = .Mn(vo) and Xn = .Mn(xo) 

respectively. The forward iterates ofthe square lie outside the complex while those of 

the plus lie inside. Mapping the square and plus sequences backwards produces 

additional holes in the complex. Since the known segment ofU is long, we present a 

schematic representation of the holes and bridge classes in Figure 3.4. 

Figure 3.3: Holes attached12-neighbors found from computing{'un::1 . 
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Figure 3.4: Schematic representation of the 12-basis. 

The schematic in Figure 3.4 shows the orientations and the nesting of the bridge classes. 

Each bridge's label lies below the bridge itself. For instance, a1 encloses the holes plus-

1 and disk -1 and b 1 encloses square-1. We define a convention for labeling the bridge 

classes that naturally follows the nesting of the bridge classes. Since there are three 

internal capture lobes, bridge classes represented by bridges that wind around the 

internal lobes will be given the same subscript. Moving outward away from the internal 

lobe, we follow the standard ordering of the alphabet in labeling in assigning a label to a 

bridge. The topological analysis gives eq. (3.4), the dynamical equations that act on the 

bridge basis shown in Figure 3.4. 
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a.)M(a1) = a2 
b.)M(a2) = a3 
c.)M(a3) = c~ 1u~1 d4 
d.)M(a4) = f1-1 w~1 d4x4 
e. )M(b1) = b2 
f.)M(b 2) = b3 
g.)M(b3) = b~1u~1d4 
h.)M(b4) = d;1w~1d4x 4 
i.)M(c1) = c2 
j.)M(c2) = c3 
k.)M( c3 ) = a~1u~1d4 
l.)M(c4) = c;1w~1d 4x 4 
m.)M(d1) = d2 
n.)M(d2) = d3 
o.)M(d3) = g-1u~1d4 
p.)M(d4) = b;1w~1d4 x 4 
q.)M(f1) = f2 
r.)M(f2) = f3 
s.).M(f3) = g-lVoXo w~ld4 
t.)M(gl) = g2 
u. )M(g2) = g3 
v.)M(g3) = g-lxo w~ld4 
w.)M(g) = g;1w~1d 4x4 with g = x0g1x1g2x2g3x3 
x.)Mn(v0 ) = Vn (3.4) 
y.)Mn(u0 ) = Un 
let w 0 = v0u 0 

z.)Mn(w 0 ) = wn with w 0 = v0u 0 

aa.)Mn(x0 ) = xn 

Before deriving eq. (3.4), we must comment on the inert sequence {xJ:o. Figure 

3.3 shows that x0 is indeed a bridge class as it encloses plus-12 and is represented by a 

known segment of the unstable manifold. Given the known segment of U, we predict 

that the i1
h image of e12 will contain a small "bump" representing the class Xi. In 

actuality, only the first three images ofx0 's representative bridge remain within the 

complex (we will see this in the J = 16 calculation). However, even without this 

knowledge, we can make the claim that {xi}~=l is not really a sequence of inert classes 
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because they lie in the complex, and eventually must map out of the complex. 

Therefore, the sequence {xJ~=l is a sequence of phantom bridge classes. 

In the remainder of this section, we show why Eqs. (3.4) are true. After 

punching the holes in the complex, we expand a capture lobe and its image in the basis 

by plotting the lobes along with the holes. Equating the two bridge classes gives an 

algebraic relationship containing at least one dynamical equation. We start by 

examining the first four capture lobes in Figure 3.5. We note that in practice, the holes 

are placed a distance of about 1 o-6 away from the homoclinic point. The sizes and 

locations of the holes in our figures are altered to make the figures clear . 
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Figure 3.5: First four capture lobes and the 12-basis holes. 

The unstable boundaries of capture lobes one, two, and three each define a bridge 

enclosing plus and disk holes. The mapping acting on the lobes induces two dynamical 

equations eq. (3.4a) and eq. (3.4b) 
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.M([~]l2) = [£;]12 <=> .M(ai) = a2 

.M([ £; J1J = [ £; b <=> M( az) = a3 
(3.5) 

Iterating the 3rct lobe gives C4, the first lobe to intersect E0• Following the natural 

orientation, one bridge encloses the hole square-4, giving a factor of c~ 1 • The bridge 

lying in Eo encloses disk-4 giving a factor of u;1
• Finally, the last bridge encloses plus-

4. Expanding the 41
h capture lobe in the basis results in eq. (3.5c) . 

.M([£;]12)=[e4]12 =M(a3 )=c~
1u;1d4 (3.6) 

Figure 3.6 shows C5 and its associated holes. Since C4 intersects E0, applying the 

map once implies that C5 intersects E1. Furthermore, C4 's endpoints must approach qx 

under the mapping. Since the unstable manifold cannot self-intersect, C5 must wind 

under and over C4 to intersect E1. This means that [e5]t2 must start with d~1 and end with 

d4 . Furthermore, two bridges are forced to wind through Eo to connect to E1. In this 

case, the two bridges enclose disk-4 and square-16. Finally, the two remaining bridges 

winding around C1 represent two new classes. We let b1 denote the class enclosing 

square-1 and c1 denote the class enclosing plus-5. Computing .M([e4] 12) and equating it 

with [e5] 12 gives eq. (3.41) and eq. (3.4p) . 

.M([e4 ] 12 ) = .M(c~1 )u~1.M(d4 ) = [l; ]12 = x~1d~ 1w 0c1u~
1b~ 1w;1d4x 4 (3.7) 
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Figure 3.6: C5 and the 12-basis holes around which the lobe winds. 

We will now determine the action of the map on c1 and b1 using Figure 3.7. Applying 

the map to the representatives of c1 and b 1 we find two bridges enclosing the holes plus-

6 and square-2, respectively. These new bridges represent two new classes c2 and b2 . 

Applying the map to the representatives of c2 and b2 we find two bridges enclosing the 

holes plus-7 and square-3 representing the classes C3 and b3. These simple results reflect 

the existence of the minimum delay time. If a curve nests around C1 (with endpoints on 

rs), then that curve is forced to intersect E_3 due to E_3's intersection with C1 (see Figure 

3.1 ). 
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Figure 3. 7: Representatives of the "b" and "c" classes. 

Nontrivial dynamical equations result when we iterate the representatives of c3 

and b3. Both representatives can be thought of as lobes that enclose the holes square-3 

and disk-3 (not shown). Therefore, their images must enclose the holes square-4 and 

disk-4. We consider the blue curve in Figure 3.7 first, which is the image ofb3 's 

representative. Following the natural orientation ofthe curve, we see that the first bridge 

encloses plus-8, representing the bridge class b~1 • Since b3's representative directly 

encloses disk-3, its mapping produces an escape segment representingu~ 1 • Finally, we 

find the last bridge represents d4 thus completing the dynamical equation for b3 ( eq. 

(3.4g)). 

(3.8) 
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Now consider the black curve representing c3, which surrounds b3's representative. 

Thus, this curve encloses the same holes as b3 in addition to plus-7. Mapping the 

representative forward gives a lobe enclosing plus-8 in addition to disk-4 and square-4. 

Enclosing plus-8 forces the nose in Figure 3.7. Again, we follow the natural orientation 

of the black curve to determine the bridge classes. The first bridge, the bridge 

containing the nose, encloses square-8 and therefore represents the class a~1 
• Again, the 

lobe intersects the escape zone giving an escape segment u~1 • The third and final bridge 

directly encloses square-4 and is thus assigned to the class d4 completing the dynamical 

equation for c3 (eq. (3.4k)). 

(3.9) 

The dynamical equations obtained thus far were found from expanding the first 

eight capture lobes in the 12-basis. To obtain the remaining dynamical equations, we 

can decompose e9, elO, ell, and el2 into bridges and assign each to a well-defined bridge 

class. Arriving at this goal is hastened by making an observation. e9, e10, and e11 each 

possess two bridges that are forced to wind around the lobes C1, C2, and C3 respectively. 

Furthermore, each of the lobes C9, C10, and C11 will contain a "plus" hole and wind 

under a "square" hole. These observations indicate that the three aforementioned 

capture lobes each contain within their boundaries two segments representing new 

distinct basis elements. We denote these basis elements by di and fi fori= 1, 2, and 3. 

Figure 3.8 shows the d series of basis elements. The classes d1, d2, and d3 each 

are represented by a bridge contained in e9, e10, and e11, respectively. We can 

immediately derive two dynamical equations. 
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a.).M(d,) = d2 

b.).M(d2) = d3 
(3.10) 

Mapping the representative of d3 produces a curve that is decomposed into three bridges. 

Again, we follow the natural orientation of the curve to determine its expansion in the 

bridge basis. The first bridge does not represent an element in the bridge basis. 

However, if we define g = x0g1x1g2x2g3x3 and compare the figure to the schematic in 

Figure 3.4, we can see that the first bridge indeed represents g-1
• The second bridge 

encloses disk-4 giving a factor of u;'. Finally, the last bridge is simply d4 giving the 

dynamical equation 

0.4 0.5 

~-~-------------------·----·-·--···-·~-
-.,, ___ _ 

_,, .. --
-~ ~ ---·-----------------------················ 

q 

Figure 3.8: The "d" basis elements. 
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The same argument is applied to the "f' basis elements shown in Figure 3.9. Since a 

representative of f1 bounds C9, the lobe encloses plus-9. Applying the mapping once and 

then twice to the representative of f1 produces two dynamical equations. 

a.).JK([~J12) = [~oJ12 ~ M(f1) = f2 

b.).M([~oJ12) = [~1J12 ~ .M(f2) = f3 

Mapping a representative off3 forward produces an intersection with E0. Figure 3.9 

shows that the representative's image contains an additional finger. The first bridge 

does not directly enclose any holes meaning it does not represent an element in the 

(3.12) 

bridge basis. However, if we deform the bridge into the nearest bridge basis elements, 

we can assign the bridge to the bridge class g-1
. The last bridge is again d4. To 

determine the remaining classes, we use Figure 3.10 which shows a close-up of the 

escape zone E0. We see that mapping f3 forward produces two escape classes, v0 and 

w~1 • Using the two figures we can obtain the dynamical equation off3. 
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Figure 3.9: Unstable representatives of the "f' elements. 
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Figure 3.10: Close up of escape zone in Figure 3.9. 

Now we consider the dynamical map acting on the basis elements g1, g2, and g3 

which enclose squares-9, 10, and 11, respectively. Figure 3.9 shows that segments ofe9, 

e 10, and en enclose pluses-9, 10, and 11. The known segment ofU does not possess any 

bridges that naturally enclose squares-9, 10, and 11. However, we found a bridge, 

representing the class g-1
, that can be homotoped into a curve directly enclosing squares-

9, 10, and 11 simultaneously. Furthermore, we expect the unknown segment ofU to 

directly enclose one of these holes. Therefore, g1, g2, and g3 are phantom bridge classes. 

Given that .M(square-9) = square-10 and .M-(square-10) = square-11, we can derive two 

dynamical equations. 

a.).M(g,) = g2 

b.).M(g2) = g3 
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To obtain the action of the map on g3, we use one fact: all bridge classes, and hence the 

corresponding holes, with the subscript "3" are nested within g3. The image of g3 must 

enclose the images of the holes enclosed by g3. Furthermore, g3 looks comparable to f3 

so M(g3) should be comparable to .M(f3). Therefore, .M(g3) should begin with g-1 and 

end with d4. If we consider M(g3) as a lobe, the lobe must contain disk-4, square-12, 

and plus-12. The lobe M(f3) only contained disk-4 and plus-12 implying that M(g3) 

does not contain a factor ofv0. Finally, the tip of M(g3) must wind around square-12 

and disk-4 implying that M(g3) contains a factor of w~1 • 

(3.15) 

We complete the derivation by computing the dynamical equation for~- Figure 

3.11 shows ~ and its image. Fallowing the orientation of M( ~), we see the first class is 

simply f1-
1

. The second bridge winds around disk-4 and square-16. Finally, thelast 

bridge is simply d4• The dynamical equation for a4 is 

(3.16) 
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Figure 3.11: The basis class Cl4 and the bridge class M(CL~). 

b.) Predictions of the 12-basis. 

···. 

We can use the dynamical equations to compute the 1st eight iterates of [ u;' ] 12 

for comparison to the 4-basis. Again, we remind the reader that ['ll/]12 = ui_1[£;]12 • 

a.)[~F]l2 =unoa1 

b.)['lfi]12 = u 1a2 

c.)[UtJ12 = u 2a3 
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The new escape segments appearing at each iterate of {['lln12 }:: 1 are in boldface. 

Eq. (3 .17) the new basis predicts epistrophes starting at the 4th and 5th iterates with 

opposing orientation. However, we see there are two different classes representing 

escape segments. The segment at four iterates is given by u~1 which winds around only 

disk-4 while the segment at five iterates is given by w0 and winds around both disk-4 

and square-4. Furthermore, [ UsF] 12, [ 'Ui] 12, and [ 'U,F] 12 also possess segments that wind 

around both of these holes. In [ UoF ]12, the 2nd and nextto last escape segments represent 

SUCh curves but the inner symbols are Uo, indicating that the segments wind only around 

disk-4. The appearance of different escape segment classes indicates a more complex 

behavior in how images of u: wind through r. 

Computing [ ~F] 12, [ U,~] 12, and [ U,~] 12 one finds the same number of escape 

segments as in [ ~F ] 4, [ U,~ ]4, and [ U, ~ ]4. However, there is a difference between the 

aforementioned classes. [ ~F ] 4, [ U,~ ]4, and [ U,~ ]4 are considered output of the theory 

while [ ~F] 12, [ U,~] 12, and [ U,~] 12 are input. Comparing [ U,~ ]4 to [ U,~] 12 we find that 

the class represented by the finger, v0, appears for the first time in [ U,~] 12· 

(3.18) 

The Epistrophe Start Rule tells us that the symbol v4 in [e16] 12 might contain epistrophes 

on either side ofv4 pointing towards v4. However, when we examine [e16]I2, we find 

that this is not the case. The symbols immediately surrounding w4 are 

(3.19) 
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Figure 3.12 below schematically represents the escape segments in the subsequence 

shown in eq. (3 .19). Contrary to our expectations, no escape segments are predicted to 

lie between v4 and w~1 • This lack of epistrophe birthing is not confined to the finger. 

The number of escape segments appearing in (~F ]12 fori =13, 14, ... , 20 matches the 

numbers predicted by the 4-basis. The escape segment counts for all 3 bases up to 

iterate 20 are shown in Table 3.1 at the end of section vii. 
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10 
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Figure 3.12: Minimal set generated by subsequence in eq. (3.19). 

iv.) The 16-basis 

a.) Derivation of the 16-basis 

Finally, we examine the 16-basis which is generated by the 16-neighbors ( 04, 

~4), (816, 116), (~16, T}16) shown in Figure 3.13. The left side of Figure 3.13 shows C16 

winding through E0. Since the curves are pushed closely together, we present a 

schematic of C16 with the holes and 16-neighbors labeled. Again, ( a.4, ~4) are present 

with a "disk" hole attached to ~4 . In addition, two new 16-neighbor pairs have been 

found: (816, 116) producing a long narrow tendril and (~16, T}16) producing a finger to the 
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right of the circle hole. We let t0 <l "plus" hole, u0 <l "circle" hole, v0 <l "square" hole . 

Mapping the holes forwards generates three sequences of inert classes representing 

escape segments: tn = Mn(to), Un = Mn(Uo), and Vn = Mn(v0). Mapping the 16-neighbors 

backwards generates the holes internal to the complex. Computing the first three pre

images of ~4 will give three internal holes. All other pre-images will lie outside the 

complex and are ignored. Computing the first 15 pre-images of ~16 and 1.16 generate 30 

internal holes. All other pre-images lie outside the complex and are also ignored. 

Figure 3.13: 16-neighbors found from computing {Uj. }:~1 . 

To discuss the 16-basis, first we present a schematic of the basis in Figure 3 .14. 

In Figure 3.14, the thick red line represents f's. To denote a hole, we will again use a 

noun describing the hole's shape followed by a hyphen and an integer giving its place in 

the sequence generated by the 16-neighbors. An example is given in eq. (3 .20). Each 

bridge's symbol is given under the representative curves. Now we explain how to 

construct the dynamical equations that act on the basis. 
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~~~ 
0 

f1 

d1 <l square-12 
c1 <l square-9, plus-9 
b1 <l square-S, plus-5 
a1 <l disk-1, square-1, plus-1 

llJ rJ ~ .~ 1 2 
a1 f2 2 f3 

.5 +5 .6 +6 

~ 3 
a3 

.7 +7 

iig +g b1 =10+10b2 1111+11 b3 

•13 C1 1114 c2 .15 

.12d, d2 

+a • a4 
8 

+4 = b4 4 

Figure 3.14: Schematic of 16-basis. 

The dynamical equations acting on the 16-basis are given below. 

a.)M(a1) = a2 

b.)M(b1) = b2 

c.)M(c1) = c2 

d.)M(d1) = d 2 
e.)M(f1) = f2 

f.)M(a 2 ) = a3 

g.)M(b2 ) = b3 

h.)M(c2 ) = c3 

i.)M( d2 ) = d3 
j.)M(f2 ) = f3 

p.)M(a4) = c; 1 w~1c4 
q.)M(b4) = b;Iw~Ic4 
r.)M(c4) = a; 1 w~1c4 
s.)M(f4) = c~1 t~1 c4 

Mn(to) = tn 
Mn(uo) = un 
Mn(vo) = vn 

let x0 = u 0v0 

Yo = touo 
wo = touo Vo 

Mn(xo) = xn 
Mn(Yo) = Yn 
Mn(wo) = wn 

We begin the discussion with the 1st three internal capture lobes. 
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Figure 3.15: et, e2, and e3 and the holes each encloses. 

The lobes' unstable boundaries each enclose three holes. Therefore, each boundary 

represents a unique bridge class in the 16-basis. Each class is denoted by "a" and 

subscripted with an integer indicating the lobe. 

(3.22) 

Using the facts M(C 1) = C2 and M(C2) = C3 result in eq. (3.21a) and eq. (3.21±). 

The next capture lobe, C4, will be a sequence of three bridges as it intersects r s 

four times. Mapping C3 to C4 induces a mapping on the basis. 

(3.23) 

Figure 3.16 shows C4 in blue, the holes lying in C4, and square-8 and plus-8. Following 

the natural orientation, the 1st bridge encloses square-8 and plus-8 and represents the 

bridge b~'. This bridge class will in fact be represented by a bridge contained in es. 

The second bridge winds through Eo around disk-4 representing the escape segment 
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class u~1 
. Finally, the last bridge encloses square-4 and plus-4 as well as b4 . We call the 

class represented by this bridge c4. Using eq. (3.23), we can compute the dynamieal eq. 

(3.21f). 

(3.24) 
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Figure_ 3.16: e4' s expansion in the 16-basis. 

To find the dynamical equations for b4 and c4, we must expand e5 in the 16-basis. 

Mapping the previous equation forward gives a factor of u~1 Figure 3.17 shows es in 

blue and e1 in green. Since the tip of C4 intersects Eo, the tip of Cs must intersect E1. 

And since the manifold cannot self-intersect, C5 will wind under C4, indicating that e5 

(in fact, all images of C4) starts with c~ 1 and ends with c4. The second and next-to-last 

bridges wind around the three holes lying in Eo thus giving factors ofw0 and w~1 • 

Finally, we see two bridges winding around C1. We see one bridge homotopes into the 

class a~1 
. The other bridge surrounding C1 encloses square-5 and plus-5 and represents 
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the class b1. We can now write out [e5]I6 and equate it with .M{[e4]I6) to obtain eq. 

(3.21q) and eq. (3.21r). 

(3.25) 

Figure 3.17: es expanded in the 16-basis. 

Let us compute the image of the previous equation. 

(3.26) 

We need only compute the image ofthe class b1. Figure 3.18 shows C6 and the holes 

contained therein along with C1, C2, and C3 and their respective holes. The class b1 is 

represented by curves that enclose square-5 and plus-5. We see that e6 possesses a 

bridge that encloses the images of square-5 and plus-5 indicating thatb1 's image is 

simplyb2. 
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Figure 3.18: e6 expanded in the 16-basis. 

Substituting b2 for b1 in eq. (3.26), we see that all the images of the symbols present are 

known except for that ofb2. To compute b2 's image, we examine a figure ofC7. Figure 

3.19 shows that e7 possesses a bridge that encloses the holes square-7 and plus-7 

representing a class designated as b3. Since the holes square-7 and plus-7 are the images 

of square-6 and plus-6, b3 is the image ofb2 . We can now expand the unstable boundary 

of c7 in the 16-basis. 

(3.27) 
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0.5 

q 

Figure 3.19: e7 expanded in the 16-basis: 

We compute the image of the last equation and find that we must obtain the 

dynamical equation for b3. 

From the previous figures, it is obvious the unstable boundaries of the capture lobes are 

becoming long and squeezed tightly together. Instead of plotting the entire boundary 

and graphically obtaining the bridge class it represents, we choose to examine individual 

bridges. We will consider a bridge representing a class whose dynamical equation has 

not been discussed. We then graph the bridge's image to graphically obtain the 

corresponding bridge class and desired dynamical equation. 

We use Figure 3 .20 to determine the desired bridge class. The black curve is a 

bridge contained in e7 representing the class b3 and the blue curve is its image. The 
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figure shows that the blue curve is decomposed into three bridges (in parenthesis below) 

thus giving the dynamical equation for b3. 

0.5 

0.4 ----···-·······-········---· 
.............. 

···--- ...•. 

_, .. ~---· 
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-0.5'------'--~----'--------'----...l...._ ___ _J_ ___ __J_ ___ ____J 

0.4 0.5 0.6 0.7 0.8 0.9 1.1 

q 

Figure 3.20: Image ofthe class b3. 

We make an observation to expedite the explanation of the dynamical equations. 

The bridge-classes a1 and b1 map to a2 and b2, which in tum map to a3 and b3. 

Furthermore, each of the aforementioned classes is represented by curves that wind 

around an internal capture lobe with the same subscript. Therefore, the same will apply 

to the bridge-classes c1, c2, c3, d1, d2, d3, f~, f2, and f3. Figure 3.21a shows the bridges 

representing the classes c1, c2, and c3 . For comparison to Figure 3.14, we have included 

the bridges representing a1, a2, and a3 nested within the corresponding "c" classes. Since 

c1 encloses square-9 and plus-9, we call the classes enclosing square-1 0 and plus-1 0 c2 = 

.M( c1) and square-11 and plus-11 c3 = .M( c2). 
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Now consider the "d" and "f' classes. Figure (3.21b) shows d1, d2, and d3. The 

same argument applied to the "c" classes in the previous paragraph gives d2 = .M(d1) and 

d3 = .M(d2). However, Figure 3.2lb shows a difference: Each of the "d" classes 

encircles only square holes. The plus holes, plus-12, 13, 14, and 15 are now enclosed by 

the "f' classes shown in Figure 3.21c. While these bridges appear to be single curves 

they are in fact tightly folded bridges. We have surrounded f1 by a rectangle and 

provided a close-up of the bridge to the right to verify its nature as a bridge. The 

remaining three bridges are iterates of the bridge representing f1. The mapping acting on 

the groupoid then induces the three dynamical equations f2 = .M(f1), f3 = .M(f2), f4 = 

.M(f3), or eq. (3.21e), eq. (3.21j), and eq. (3.21o). 
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Figure 3.21: The "c", "d", and "f' sequence of bridge basis elements. 

Now, we consider the dynamical equation of c3. Figure 3.22 shows the image of 

the bridge representing c3 shown in Figure 3.21 a in green. The curve possesses a 

counterclockwise orientation. The blue curves are the "d" classes and the black curves 

are the "f' classes. Following the natural orientation, the 1st bridge stretches across the 
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breadth of the complex. There are no holes between the bridge of interest and the 

bridges it encloses. Therefore can be written as a product of the bridges it encloses. 

winds under C4 giving a factor of C4. 

0.5 

0.4 -----------~-------------------------------------

03 

0.2 

0.1 

c. 0 

·0.1 

-0 2 

-03 

-0.4 

Figure 3.22: Image of c3. 

To determine the bridge classes near the escape zone, we will examine a close-up of the 

escape zone presented in Figure 3.23. The figure shows an escape class containing disk-

4 and square-16, denoted by x~1 
• Furthermore, we see an additional bridge enclosing 

only square-12 and a bridge enclosing plus-12 yielding a factor off1. From these 

observations, we can write out the desired dynamical equation. 

(3.30) 
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Figure 3.23: Close-up of escape zone along with a representative of M( c3). 

We move on to the dynamical equation of d3 for which we use Figure 3.24 to 

determine eq. (3.21n). Figure 3.24a shows the representative segment in green, the "d" 

representative bridges in blue, and the "f' representative bridges in black squeezed 

between the "d" representatives. Following the natural orientation, we see that the first 

bridge spans the width of r and does not enclose square-12 but homotopes into the 

escape zone. One sees why the previously mentioned sequence does not end in f1-
1 

• The 

fold in the bridge (just after the nose following the natural orientation) does not intersect 

r s and can be distorted in such a way so as to not enclose plus-12. Continuing along the 

segment, we see a bridge enclosing disk-4 and square-16 giving a factor of x~1 • The 

final bridge is simply c4 and completes the expansion in the bridge basis. 

(3.31) 
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Figure 3.24: a.) .M-(d3) expanded in the 16-basis. b.) Close-up ofE0. 

Finally, we come to the dynamical equation for f4. The bridge representing f4 is 

shown in Figure 3.21c. The image of this bridge is shown in Figure 3.25. This curve is 

comprised of three bridges, two ofwhich wind under C4 as shown in Figure 3.25. The 

class f4's representative curves possess a counter-clockwise orientation which is 

preserved under the mapping. For .M-(f4) to possess this orientation, it must start with 
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c~ 1 and end with c4. The middle bridge encloses plus-16, the long thin tendril winding 

through E0. Considering the counter-clockwise orientation, we can write down the last 

dynamical equation. 

(3.32) 

q 

Figure 3.25: Bridge class of M(f4). 

We conclude our discussion by deriving the dynamical mapping acting on class 

~'or eq. (3.21p). Figure 3.26 shows the bridge, which is a segment ofe12, representing 

~in blue and its image in green. Following the orientation ofthe green curve we can 

pick off its bridge class to obtain the desired dynamical equation. 

(3.33) 
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Figure 3.26: The bridge class '4 and its image. 

b.) Predictions of the 16-basis and a Comparison to the Previous Predictions 

Now that we have explained the calculation of the dynamical equations, we can 

compare the predictions of the three bases. Within the context of the 16-basis, the bridge 

classes of the first 16 capture lobes are not predictions. However, we present 

{[~F]16 }~~~ in eq. (3.34) for comparison to eq. (3.2) and eq. (3.17). At each iterate, the 

newborn escape segments are in boldface. 
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a.)['llnl6 = \!ll®al 

b.)[UiJ16 = ulaz 

c.)[~F]l6 = u2a3 

(3.34) 

We see that the number and relative orientations of the escape segments match those in 

eq. (3.2) and eq. (3.17). The class uo is represented by curves that wind around (a.4, ~4) 

in all three bases. In either the 12 or 16-bases, w0 winds around all of the holes in E0. 

Symbolically, the minimal sets produced by the 12 and 16-bases are identical up to eight 

iterates. In fact, one would find that the minimal sets are identical up to 11 iterates. At 

this level, however, the symbolic expressions are so long that their display would slow 

the discussion. 

New structure appears in C12• Therefore, we will jump ahead and examine the 

finger v0 in [ ~~] 16. We choose not to show the entire bridge class as it contains far too 

many symbols and instead elect to show a subsequence containing the segment 

representing the finger. 

(3.35) 

120 



Again, v0 's appearance is forced by construction as it represents the finger in C12 . 

Counting the total number of escape segments, one finds 25 escape segments in [ ?1,~ ]16 , 

matching the number in [ U,~] 12· However, examining [ ?1,~] 16, we find 

(3.36) 

We can graph the subset of the minimal set presented in eq. (3.36). Figure 3.27 shows 

that between the 4th iterate of the finger in [ ?1,~] 16 ( v 6 ) and its nearest neighbor ( x~1 ) 

there exists five escape segments. Again, the Epistrophe Start Rule suggests (for the 

tangle in Figure 3 .1) that an escape segment will spawn on both sides two new 

sequences after four iterates. Here, we see that v4 spawns one sequence after four 

iterates and the second sequence after five iterates. This new spawning rule is not a 

consequence of the 12-basis. 
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Figure 3.27: Schematic of escape time plot derived from eq.(3.36). 
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v.) Comparison of the Predicted Minimal Sets to the Simulation. 

We compare the numerically computed escape time plot shown in Figure 3.28 to 

the predictions of the three different bases. We remind the reader that each escape 

segment in Figure 3.28 is bounded by two homoclinic points. The abscissa in Figure 

3.28 is the initial condition, which we have chosen to be the arclength measured along U 

from the pip Qo, or ~qo. The ordinate is the number of iterates to map into E0. We see 

that the earliest epistrophes start at 4 and 5 iterates and possess opposing orientations. 

The earliest epistrophes and their progeny are produced by all three bases. 

Escape lime plot for the unstable boundary of C
0 

25~----------,------------,-----------,------------,-----------. 

0 w 

·= 15 
Gl 

·~ .. 
I'll 

0o'-------------O_j_.05------------0.'-1 -----------O_j_.15 ____________ 0.'-2 ---------------'0.25 

Arclength measured from 0
0 

Figure 3.28: Numerically computed escape time plot foru;/. 

Looking closely at (0.05, 12) in Figure 3.28 reveals an isolated escape segment. 

A close-up is shown in Figure 3.29. This isolated escape segment is in fact the segment 

U[y12, 812]. Comparing Figures 3.12 and 3.29 shows that the 12-basis fails to predict the 
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structure seen in the numerical escape time plot. Comparing Figure 3.29 to Figure 3.27 

shows that the actual structure is correctly accounted for by the 16-basis. 

Escape time plot for the unstable boundary of C
0 
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Q) 
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Figure 3.29: Close up of finger in e12. 

In addition to the new structure shown in eq. (3.36), a factor of v~1 appears in 

[ ~~ ]16. Eq. (3.37a) shows the additional factor in a subsequence lying to the right ofv4. 

This new factor is represented by the unstable segment U[~16 , rt 16], which is bounded by 

two of the 16-neighbors. We compute [ ~ ]16 and examine the structure immediately 

surrounding the factor ofv;1
• This is shown in eq. (3.37b) where the relevant symbols 

are shown in bold. 

(3.37) 
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The subsequence shown predicts the same structure seen in Figure 3.27. More 

importantly, the factor ofv~1 spawns its left sequence at five iterates and its right 

sequence at 4 iterates. We can compare this predicted structure to the actual escape 

segments near the isolated escape segment in Figure 3.29. Figure 3.30 shows the finger 

in the homoclinic tangle (in black) on the left and the escape segments near the isolated 

segment on the right. In actuality, this segment spawns both sequences at four iterates. 

25 

20 

15 

10 

0°2084 0.2086 0.2088 0.209 0.2092 0.2094 0.2096 0.2098 0.21 

Figure 3.30: U[~16, llt6] and its location in the escape time plot. 

Examining[~~ ]1 6 we find a factor ofv0 and a factor ofv~1 . Examining the 

neighbors ofv4 and v~1 in [~]16, one finds that v4 and v~1 each spawn one sequence 

after 4 iterates. When one examines the escape time plot, shown in Figure 3.31, one 

indeed finds two isolated escape segments at 17 iterates. However, upon examining the 

figure we find that each segment in fact spawns two sequences at 21 iterates. 
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Figure 3.31: Isolated escape segments at 17 iterates; each is marked by an 
asterisk. 

To conclude our discussion on the three bases, we present a gross summary of 

our results in the form of a table showing the number of escape segments appearing in 

[~F ]J fori= 1, 2, ... , 20 and J = 4, 12, and 16. We see that the first 11 classes expanded 

in all three bases contain the same number of escape segments. New pseudo-neighbors 

appear at the 1ih iterate. At iterate 12, the [ ~; ]4 predicts 24 segments in the minimal 
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set while [ ~~] 12 and [ ~~] 16 both correctly account for 25 segments. However, we see 

that up to 20 iterates, the 4 and 12-bases predict the same number of segments. This 

says that the additional pseudo-neighbors used in constructing the 12-basis were not true 

topological information and that the only true topological information came from the 4-

neighbors. 

Iterate J=4 J= 12 J= 16 Iterate J=4 J= 12 J= 16 
1 0 0 0 11 16 16 16 
2 0 0 0 12 24 25 25 
3 0 0 0 13 40 40 40 
4 1 1 1 14 64 64 64 
5 2 2 2 15 96 96 96 
6 2 2 2 16 144 144 146 
7 2 4 2 17 224 224 22& 
8 4 4 4 18 352 352 356 
9 8 8 8 19 544 544 548 
10 12 12 12 20 832 832 841 

Table 3.1: Number of escape segments in [ u: ]J, n = 1, .. . , 20 and J = 4, 12, and 

16. 

Since a new escape segment appeared at the lth iterate, we expect the new 

segment to spawn two epistrophes at 16 iterates. It is not a surprise that no additional 

structure will appear in [ ~~ ]16, [ ~~] 16, and [ ~~ ]16. Furthermore, we know that at the 

16th iterate, the 16-neighbors (816, t 16) and (~16, 1116) appear accounting for the two 

additional escape segments seen in [ ~~ h6· [ ~~ ]r6, [ ~~ ]r6, and [ ~~ h6 each contain 4 

more escape segments than their counterparts in the 4-basis and 12-basis. [ ~~ ]r6, 

[ ~~ ]r6, and [ ~~ h6 each will contain two children of the isolated escape segment v0 
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appearing in [ ~~] 16. The remaining two segments predicted at each iterate are therefore 

additional isolated segments. 

vi.) Expanding a General Line of Initial Conditions in Each Basis 

Finally, we use the three bases to make our predictions for a point burst launched 

from within the vase. In the surface-of-section coordinates, a point burst with all 

allowed launch angles is rectified into a vertical line segment oflength two. This line, 

plotted in Figure 3.1, represents the initial conditions for a particular family of 

trajectories to be examined in Chapter 5. The numerically computed set of epistrophes is 

given in Figure 3 .3 2. Possibly the most obvious aspect of the escape time plot is the area 

devoid of escape segments. The line passes through a continent of stability surrounding 

the stable periodic orbit (p = 0). Thus it includes trajectories that never escape. 

15,-,---------,--------,---------,---------,--~----.---------,-~ 

10 ·-

-0 3 -0 2 -0.1 0.1 0.2 0.3 

Figure 3.32: Epistrophes for ultrasound burst. 
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The line of initial conditions, .f!.o, must be iterated once so that both endpoints 

intersect rs for assignment to a well-defined path-class in the 4 and 16-bases. We will 

not discuss the expansion of .f!.o in the 12-basis as the minimal set is identical to that 

produced by the 4-basis. Figure 3.1 shows that l!..o intersects E_1 producing an escape 

segment appearing at the first iterate. Therefore, [£1]4 and [£1]16 both start with an inert 

class representing this segment. We can ignore the first symbol since it will not produce 

any additional non-inert classes. To obtain [£1]4, we plot £ 1 along with the known 

segment ofU and the internal holes to find [£1]4 = c1. Since c1 is the class represented 

by the unstable boundary ofCI. the minimal set generated by iterating [£1]4 is already 

given by eq. (3.2). To compute [£1]16, we present the schematic of the 16-basis given in 

Figure 3.33 with an additional curve topologically equivalent to £ 1. We immediately see 

from Figure 3.33 that [£1]16 = d1f2. 
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Figure 3.33: a.) Tangle with 4-basis holes and first iterate ofburst b.) Schematic 
of 16-basis with curve topologically equivalent to first iterate ofburst plotted in green 

a.) Digression: Phase Space Representations of the Chaotic Trajectories 
and the Symbolic Dynamics 

Before we iterate [ .fo] 16, we will digress to examine the images of £o and their 

homotopy classes. To show the relationship between the curve and its homotopy class, 

we will examine the first eight iterates of £o and their expansions in the 4-basis. These 

eight path classes are reproduced in eq. (3.39) below. 
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a.) [~ ]4 = ll!loCJ 

b.)[~ ]4 = ulc2 

c.)[~ ]4 = u2c3 

d.) [£4]4 = u3f-Jll!l~1f 
(3.39) 

First, recall that f= CjC2C3. Let us consider the first three images of eo in Figure 3.34 

below and their path classes. The burst is plotted in black, the first image in green, the 

second in yellow, and the third in brown. The first three classes correspond to curves 

that homotope into the unstable boundaries of the first three capture lobes. We see that 

each image of £o homotopes into a capture lobe. 

0.6 

0.4 

0.2 

-0.2 

-0.4 

-0.6 

Figure 3.34: The point burst, and its first three images. The burst is plotted in black, the 
first iterate is plotted in green, the second iterate is plotted in yellow, and the third iterate 

is plotted in brown. 
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Eq. (3.39d) predicts that the 4th image of i!{) is predicted to look a lot like the 

fourth capture lobe. Figure 3.35a shows that this is indeed the case. Figure 3.35a also 

shows that £ 4 has developed a nose-like structure. This nose does not enclose any holes 

and therefore can be removed by distortion. This implies that the nose represents 

structure that cannot be predicted by the 4-basis. The symbolic dynamics predicts that 

the remaining path classes begin with a factor off 1 and end with a factor of f. This class 

represents curves that enclose all three internal holes. Figures 3.35b, 3.35c, and 3.35d 

show the 5th, 6th, and 7th iterates of i!{). The initial and final curves of £ 5, .ft, and £7 each 

enclose all three holes. 

The 4th and 6th factors in [£5] 4 are c1 and c~1 . To intersect E1, £ 5 is forced to 

wind under C1 and thus possess two segments that homotope into C1. The 4h and lOth 

factors in [.ft]4 correspond to two curves that homotope into C1. The 6th and gth factors 

correspond to curves that homotope into C2 . In other words, £ 6 is predicted to wind 

under both C 1 and C2. Figure 3.3 5c shows that £ 6 possesses segments that homo tope 

into C1 and C2. [£7]4 is predicted to wind under C1, C2, ad C3. Again, Figure 3.35d 

shows that £ 7 'indeed possesses the predicted segments. Finally, Figure 3.36 shows £s. 

The nose has become fairly distorted at the eight iterate. Again, if we homotope the 

nose away, we can compare the bridges in £ 8 to [£8] 4 and verify that each bridge class in 

[£8] 4 is represented by a bridge in £ 8. 
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Figure 3.35: a.) 4th, b.) 5th, c.) 6th, and d.) ih iterates ofburst shown in Figure 3.34. 

Figure 3.36: Eight iterate of Al. 
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b.) Predicted Minimal Set of .f!.o in the 16-basis. 

We use eqs. (3.21) to iterate d1f2 seven times to obtain the minimal set to eight 

iterates. 

a.)[~],6 =d/2 

b.)[~]l6 = d2f3 

c.)[~],6 = d3f4 

d.)[£4]16 = f~'d;'f;'d;'f;'d;'w~1c4 
(3.40) 

Comparing eq. (3.40) to eq. (3.2) shows that the minimal sets are identical. However, 

the 16-basis allows for more variation in how the curve winds around the holes in E0. 

Let us compare the minimal set to how Mn(.fo) actually winds through Eo for n = 

4,5, ... ,8. Figure 3.37 shows iterates of .fa winding through Eo plotted in black. The 

holes are placed near their actual anchors. £ 4, £ 5, £ 6, and £ 7 each contain segments that 

wind around all three holes. This is reflected in the symbolic sequences by the 

appearance of either w0 or w~'. Examining the gth iterate, we see three segments 

winding around the three holes while one winds around disk-4, which again is produced 

by the intersection C4nE0. This variation is reflected in eq. (3.40). The third segment 

predicted is u0, which encloses only disk-4 and remaining three predicted escape 

segments enclosing all three holes. 

133 



:r~ ::r~ 
0.3 0.35 0.4 0.45 0.5 0.55 0.3 0.35 0.4 0.45 0.5 0.55 

04~ 
0:~ 

0.3 0.35 0.4 0.45 0.5 0.55 

04~ 
0:~ 

0.3 0.35 0.4 0.45 0.5 0.55 

04~~ 

u:~ 
0.3 0.35 0.4 0.45 0.5 0.55 

q 

Figure 3.37: Escape segments of ultrasound burst for iterates: a.) 4, b.) 5, c.) 6, d.) 7, 
e.)8. 

We have shown that by computing a longer segment of U, we have been able to 

predict more complicated structure. However, the 16-basis does not predict all the 

escape segments. The first isolated escape segment appears at the 11th iterate near p0 = 

0.15 in Figure 3.32 (a close-up is presented in Figure 3.39). This segment will spawn an 

unending lineage of epistrophes that will not appear in the symbolic expressions. The 

reason this segment goes unpredicted is simple. If we examine a figure of~ n E_ 11 

(Figure 3.38), we see that the isolated segment is due to the intersection of~ with a 

finger in E_11 • If we slightly perturb ~to the left removing the intersection with the 

finger and iterate the new line one time, we can assign it to a homotopy class. The 

perturbed line in fact belongs to the same homotopy class as ~ and possesses the same 
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minimal set. There is topological information unaccounted for that would produce a 

hole in the finger and thus result in the perturbed line being assigned to a different class. 

q 

Figure 3.38: £ 1 and perturbed source expanded in 16-basis. 
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Figure 3.39: 1st unpredicted escape segment for the point burst. 

Before continuing, we summarize our results in Table 3.2 below. The second 

and third columns give the number of escape segments predicted in {[£..]I }:~1 for J = 4 
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and 16, respectively. The fourth column shows the actual number of escape segments. 

Up to the 1oth iterate of the burst, both sets of dynamical equations correctly predict the 

number of escape segments. At the 11th iterate, one escape segment is unpredicted as we 

previously stated. No new escape segments appear at iterates 12, 13, and 14. At the 15th 

iterate, both bases predict that 96 segments appear compared to the actual 98. The 

isolated escape segment at 11 iterates spawns its first children at 15 iterates accounting 

for the two unpredicted segments. 

Iterate 4-basis 16-basis Actual Iterate 4-basis 16-basis Actual 
1 0 0 0 9 8 8 8 
2 0 0 0 10 12 12 12 
3 0 0 0 11 16 16 17 
4 1 1 1 12 24 24 24 
5 2 2 2 13 40 40 ~40 

6 2 2 2 14 64 64 64 
7 2 2 2 15 96 96 98 
8 4 4 4 16 144 145 149 

Table 3.2: Predicted number of escape segments for [£a] 

At the 16th iterate, the minimum number of escape segments is predicted to be 

144 segments by the 4-basis. In actuality, there are 149 segments, two of which are the 

children of the isolated segment at 11 iterates. The 16-basis predicts only one of the 

remaining three segments. In Figure 3 .40, we present the five additional segments as 

they wind through E0. 
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Figure 3.40: The phase space representations of the four isolated escape 
segments born at 16 iterates. 

Let us focus on the lower right figure which shows the additional segment predicted by 

the 16-ba~is. This segment represents the class v0. We iterate five more times and find a 

subsequence containingv;1
, which is shown in eq. (3.41). 

(3 .41) 

Eq. (3.41) predicts one epistrophe starts four iterates later and the other starts after five 

iterates. However, when we examine the escape time plot about the isolated segment 

(Figure 3.41), we see that both epistrophes start after four iterates. 
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Figure 3.41: Predicted isolated escape segment at 16 iterates and its children. 

Let us return to Figure 3.40. The upper right and lower left figures are children 

of the isolated escape segment at eleven iterates. It is interesting to note here that while 

these segments are not predicted, we see that each belongs to a well-defined bridge class 

(w0). The upper left comer shows two unpredicted segments sandwiched together. We 

make two observations with regards to these two isolated segments. Figure 3.42a shows 

their location in the escape time plot, contained within the range p0 E [ -0.125 -0.11 ], 

which is a bundle of rays spread over a ninth of a degree. Despite how small this bundle 

of rays this is, there is a vast amount of structure present. Our second observation 

concerns Figure 3.42b, which shows a close-up ofthe epistrophes lying between the 

isolated escape segments shown in Figure 3.42a. Since the isolated segments at 16 

iterates in Figure 3.42a were not predicted, their descendants also remain unpredicted. 

In Figure 3.42b, we see that their second generation epistrophes share an escape segment 

yet they remain unpredicted. 
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Figure 3.42: Subsets of the discrete escape time plot shown in Figure 3.32. a.) Two 
unpredicted isolated segments at sixteen iterates. b.) Unexpected spawning appearing 

between the strophes in a. 

vii.) Conclusions 

In this chapter, we have studied the homoclinic tangle underlying an open vase-

shaped billiard using Homotopic Lobe Dynamics. For each set of dynamical equations, 

we obtained the minimal set of escape segments for 'ZloF and a point burst of rays (.fo). 

Each minimal set was compared to the numerically computed set of escape segments. 

The first calculation used the minimal amount of information: the 4-neighbors that 
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resulted from the intersection of C4 and E0. The minimal sets were contained within the 

numerically computed escape time plots. We also found that the minimal set predicted 

by the original theory was identical to that of the 4-neighbors. 

As expected, additional structure was found in both numerical escape time plots. 

A finger in C12 resulted in an isolated escape segment. At the 11th iterate, an isolated 

segment at the 11th iterate appeared in the escape time plot for AJ. We then set out to 

refine the 4-basis with the goal of predicting these isolated escape segments. We found 

that new pseudoneighbors appeared in ~~ . The number of dynamical equations became 

very large compared to the set acting on the 4-basis. We saw that the new equations 

predicted the additional segment but otherwise the same minimal set as the equations 

acting on the 4-basis. Furthermore, the minimal set predicted for AJ was identical to that 

predicted by the 4-basis. 

Afterwards, we recalculated the basis using 16-neighbors. Again, we graphically 

derived a set of dynamical equations and computed the minimal sets for 'u;' and AJ. For 

the minimal set of 'u;', we correctly predicted the isolated segment at twelve iterates. 

Furthermore, we found a surprise. Near the isolated segment at 12 iterates, the 

epistrophes spawn in an unexpected way. We expected each escape segment to spawn 

two epistrophes after four iterates. However, the isolated segment at twelve iterates 

spawned one at 16 iterates and the second at 17 iterates. This unexpected epistrophe 

spawning was predicted by the dynamical equations. In addition, two new isolated 

escape segments appeared at 17 iterates that were also correctly predicted by the 

dynamical equations. However, we predicted that each of these segments would 
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produce one epistrophe at 21 iterates and one epistrophe at 22 iterates where in fact both 

spawned two epistrophes at 21 iterates. 

Finally, we computed the minimal sets within the three bases for a burst of rays 

launched from the upper vase boundary. The minimal sets generated by the 4 and 12-

bases were identical. The minimal set generated by the 16-basis reproduced the results 

of the 4 and 12-bases and predicted one additional escape segment at the 16th iterate. 

The isolated escape segment at 11 iterates was not predicted within any of the three 

bases. The escape time plot showed that this isolated segment spawns two children at 15 

iterates which also could not be predicted. At 16 iterates, there were four isolated escape 

segments. Two of these are the children of the isolated segment at 11 iterates. One is an 

additional isolated segment that was also not predicted. The last isolated segment 

represented the finger class v0, which was correctly predicted. The 16-basis predicted 

that this isolated segment would spawn an epistrophe after four iterates and an 

epistrophe after five iterates. The escape time plot showed however that both 

epistrophes were spawned after four iterates. 

Now that we have completed our topological analysis of the vase's escape time 

plot, we will move on to examining the three bases. Specifically, we will address why 

the 12-basis reproduced the results of the 4-basis. We will compare our topological 

calculation of the vase with those of the overshoot example we used in Chapter 2. 

Specifically, we will examine the parallels between both sets of calculations. We will 

also take into consideration the topological entropies of the vase calculation 

141 



-Chapter 4-
Comparison of the Dynamical Equations 

Acting On the 4, 12, and 16-Bases 

i.) Introduction 

We have seen that the bridges theory allows us to obtain minimal sets of escape 

segments for comparison to the numerically computed escape time plots. Our three 

calculations show that one can compute more than one segment U, obtain a set of 

dynamical equations for each segment, and find that the new calculation doesn't change 

the minimal set. We want to understand the difference in constructing symbolic 

dynamics from approximate neighbors and true neighbors. We approach this problem in 

two ways. First, we will compute the minimal sets of 'lit generated by the dynamical 

equations derived in sec v of Chapter 2. We will see differences in the minimal sets 

similar to those between the minimal sets generated by the 12-neighbors and 16-

neighbors in the last chapter. Secondly, we will construct flow charts that qualitatively 

represent the dynamical equations acting on the 4, 12, and 16-bases. We will use these 

flow charts to show why the 12-neighbors fail to enlarge the minimal set generated by 

the 4-basis. Finally, we will compare the topological entropies of the matrix 

representations of the three sets of dynamical equations derived from the vase's tangle. 

These calculations quantify our observations about the difference between approximate 

neighbors and true neighbors. 
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ii.) Minimal Sets for the Finger Overshoot Tangle 

We consider the D = 1 tangle shown in Figure 4.1. This is the same tangle 

shown in Figure 2.15. The tangle shown in Figure 4.1 is a sketch of a tangle produced 

from the Hydrogen atom in parallel electric and magnetic fields [1]. From now on, we 

will refer to it as the hydrogen tangle. We derived two bases and two sets of dynamical 

equations for the hydrogen tangle in Chapter 2. We will now compute the minimal sets 

of u;' = U[P_1,P0 ] up to the fifth iterate within the 2 and 3-bases. A comparison of 

these two minimal sets will help illuminate differences between minimal sets generated 

from the 4, 12, and 16-bases. 

Figure 4.1: Tangle with finger in C2 forced by C3. 
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First, let us compute the minimal set in the absence of the overshoot. We can refer to 

Figure 2.14. In this case, there is one internal hole surrounded by the bridge class which 

we call c1. The unstable boundary of Eo represents the inert class UQ. This class is the 

first member of an infinite sequence of inert classes. We can immediately write down 

the two dynamical equations. 

M(c1) = c~1u~1c1 where c1 = [~] 
Mn(u~l) = u~l 

We use these two equations to compute the first five iterates of U: and construct the 

(4.1) 

escape time plot up to the fifth iterate. Figure 4.2 graphically represents the escape time 

plot given by eq. (2). 

a.)['U/] = u0f 

b.)[uJ] = u 1C
1u0if 

C )[l)lF]- U f-IIUJ fu-lf-1lt{1f 
· ""3 - 2 () I 0 

d )[UF] _ f-1 fu f-1 ·ifu-lf-1 fu-lf-1 ·if 
• " - u3 ILlo 1 fi.!lo 2 I!Jl!l 1 ILlo 

)[l}lF] _ f-1 fu f-1 -~fu f-1 fu-lf-1 ·ifu-lf-1 fu f-1 ·ifu-lf-1 fu-lf-1 -if e. ""5 - u4 Ulo 1 I!Jl01 2 I!Jl10 1 I!Jlo · 3 Ul() 1 I!Jlo 2 Ulo 1 Ulo 

5- - - - - -
- - -

---

Figure 4.2: Escape time plot generated from eq. (4.2). 
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Since C2 is the first capture lobe to intersect Eo, the first escape segment must appear at 

the second iterate. The sequence is continued by the right-pointing segments extending 

to the right edge of the figure. The second sequence starts at the third iterate and extends 

to the left edge of the figure. 

We will compare this minimal set to one generated by the dynamical equations 

acting on the 2-basis for the hydrogen tangle. Recall that the 2-basis incorporates the 

overshoot. The following dynamical equations are taken from Chapter 2, section vi. 

a.)JK(c1) =f1-
1u0v0u~1 f1 

b.)M(a1) = a~1u~1f1 
c.)M(aJ = a~1u~ 1 f2 
d.)M(fk) = a~1u~1 fk 
e.)Mn(u0 ) = un 
f.)Mn(vo) = Vn 

(4.3) 

Iterating [ ~F h we obtain the following symbolic expressions and compute the first five 

iterates of 'ZloF in eq. (4.4). The minimal set is graphed in Figure 4.3 below. 

a.) [~F]2 = I!JIIOCI 

b.) [~F J2 = ull-l!J]IO V oi!Jlo
1
fi-l 

(4.4) 
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5 - - --

Figure 4.3: Escape time plot generated from eq. (4.4). 

Comparing eq. (4.4) to eq. (4.2), we see that the minimal sets are almost 

identical. We see an additional segment in Figure 4.3 at the second iterate adjacent to 

the segment predicted by eq. (4.2). The most important aspect of Figure 4.3 is its 

relation to the minimal set of UuF generated by the 12-basis in the vase tangle. Once 

again, we see two adjacent escape segments with their tails facing each other and no 

escape segments predicted to lie between the tails. The Epistrophe Theorem tells us that 

each escape segment must spawn a sequence converging to its tail. The theorem does 

not tell us at what iterate this sequence begins. Here we see that the topological theory 

using the 2-basis (hydrogen) or the 12-basis (vase) also does not contain enough 

information to predict the beginnings of these sequences. 

Finally, let us consider the dynamical equations acting on the 3-basis. Again, we 

reproduce results from Chapter 2, section v. 

a.) f = a2a1 

b.) M(f) = a; 1u~1 f 
c.) M(a1) = f- 1u0a2u~

1f 
d.) M(a2 ) = f- 1u~1 f 
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\ 

a.) [UtJ3 = u 0a1 

b.) [Ui\ = u1f-
1

1L!l0 a 2!Jlg'if 

C) [CIJF] U f-Inn aU f-In n"~fu-la-ln n·'if 
"'3 3 = 2 "'"O I I "'"() I I "'"O 

(4.6) 

We see in [ ~ ]3 that two escape segments are predicted. However, upon examining 

their neighbors in [ U,F ]3 (the neighbors ofthe factors u
3 

and u;1 
), we see that each has 

spawned two epistrophes~ Furthermore, if we count the total number of escape segments 

lying between u3 and u;1
, we see that nine escape segments are predicted to appear by 

the fifth iterate. 

Let us consider our results. We saw in Figure 4.3 that the 2-basis predicted the 

correct escape segments at the second iterate. The Epistrophe Theorem tells us that each 

of these escape segments must spawn two epistrophes. However, our calculations 

predicted that each segment spawns one epistrophe. Furthermore, the minimal set was 

almost identical to that produced by a tangle without the overshoot. We conclude that 

constructing a basis using the 2-neighbors is (almost) identical to removing the 

overshoot. However, we found that the 3-basis predicts that each of the earliest escape 

segments must spawn two epistrophes. This is due to the fact that the 2-neighbors are 

not true neighbors whereas the 3-neighbors are true neighbors (see Figure 2.19). 
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In Figure 4.1 we see that C2 is forced to wind under C1 and thus includes two 

bridges that span most of the width of the complex. Within the 2-basis, these two 

bridges represent the factors of ft . If we examine Figure 2.17, which shows the holes 

resulting from the 2-basis, we see that square- I prevents a representative of f1 from 

homotoping into the unstable boundary ofC1. In fact, eq. (4.3) shows that none of the 

bridge classes produce a factor of c1 under the action of the map. This observation tells 

us that unless c1 appears in the initial string of symbols, then c1 cannot appear in any 

symbolic expression. Furthermore, the class c1 is the only symbol whose image 

produces two classes represented by escape segments. This observation suggests that if 

c1 appears in the initial symbol string, then the minimal set will contain two escape 

segments whose tails face each other and that each spawn a single epistrophe. We also 

saw that excluding one escape segment, the minimal set for 'lloF was identical to the 

minimal set in the absence of the overshoot. Given these observations, we conclude that 

the 2-basis contains essentially the same information as the case of no overshoot. 

Given the conclusions concerning the 2-basis from the hydrogen tangle, we now 

ask if the 3-basis contains more information than the 2-basis. In other words, is eq. ( 4.5) 

a refinement of eq. (4.3)? First, we believe that the 3-neighbors are indeed true 

neighbors whereas introducing the 3-neighbors revealed that the 2-neighbors were not 

true neighbors. Secondly, our strongest evidence concerns the bridge class a1 (see 

Figure 2.20). Eq. (4.6c), eq. (4.6d), and eq. (4.6e) each contain multiple factors ofa1 and 

a~' . This bridge class represents the unstable boundary of C1. Since there is not a hole 

anchored to C1 and lying outside the lobe, curves can be distorted into e1. Therefore, the 
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dynamical equations acting on the 3-basis allow for a1 to recursively appear, thus they 

allow for the two escape segments in .M.(ar) (eq. (2.17)) to recursively appear. In 

conclusion, a minimal set generated by eq. (4.5) will contain more escape segments than 

one generated using either eq. (4.1) or eq. (4.3). 

The previous discussion on the minimal sets for 'u;' generated by the 2 and 3-

bases from the hydrogen tangle has a single purpose. The conclusions drawn are similar 

to those drawn regarding the 12 and 16-bases from the vase tangle. Furthermore, the 

hydrogen tangle allows for a simpler presentation than plotting in one figure 12 or 16 

capture lobes of the vase tangle. In Chapter 3, we saw that the minimal sets for [ ~F] 

derived from the 4 and 12-bases were quite similar. The only difference was that [ ~; ]12 

contained one additional escape segment compared to [ ~; ]4. This additional segment 

corresponded to the finger in C12 (refer to eq. (3.18), eq. (3.19), and Figure 3.12). 

Examining the structure near the finger (the class vo) showed the tail ofv0 facing the tail 

of its nearest neighbor. The region between the tails of these two escape segments qjd 

not contain any epistrophes. Furthermore, the 12-basis incorporated two pairs of 

pseudo-neighbors that were replaced with a pair of true neighbors in the 16-basis. The 

additional finger that appeared in C12 spawned epistrophes as we had expected but one 

sequence was predicted to start at five iterates where we expected (by the Epistrophe 

Start Rule) for both sequences to start at four iterates. We will study this discrepancy by 

constructing flow charts directly from the dynamical equations. In constructing the 

charts, we will assign each symbol a positive orientation for convenience. Also, we will 

not include a directed edge if a symbol maps to itself. Before we proceed, we stress that 
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we are not aiming at mathematical rigor, but a qualitative understanding of how new 

structure may recursively appear. 

iii.) Flow Charts Representing the Dynamical Equations 

First we present a simple example. We consider a tangle with minimum delay 

time D. The intersection of CD+1 with Eo produces a pair oftrue neighbors with 

transition number D+ 1. This is the minimal amount of information one can put into the 

theory in order to obtain nontrivial dynamics. One can easily derive the dynamical 

equations in eq. (4.7) and the flow chart (Figure 4.4) without resorting to a figure. 

M(cJ = ci+l for 0 < i < D-1 
M(cD) = f-1u~ 1 f where f = c1c2 ···CD 
M(f) = c~ 1u~1 f 

(4.7) 

Figure 4.4 immediately tells us that by starting with any non-inert symbol in the D-basis, 

one will return to it D+ 1 iterates later. Completing this loop once will generate two 

escape segments. Our search for recursive structure in a flow chart is then a search for 

similar loops. Let us now look for such loops in the flow chart representing the 

equations acting on the 16-basis. 

Figure 4.4: Flow chart for true (D+ I)-neighbors. 
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Figure 4.5 shows the flow chart for the 16-basis. The reader can verify that by 

starting at any non-inert symbol, the mapping will produce a path leading to every node 

in the graph, including the starting node. We start with a1 (represented by el) in the 

upper right hand comer. Starting at a1 leads one around the right-hand circuit counter-

clockwise, hitting each symbol in the loop with the net effect of spawning 4 factors of c4• 

Mapping each factor of c4 forward produces a1 thus restarting the cycle. Mapping~ 

produces two directed edges to two non-inert classes. One leads to c4 which restarts the 

cycle again. The other directed edge leads to c1. Mapping that one forward leads from 

c1 to c2 to c3. Iterating c3 once again produces a factor of c4 leading to the cycle 

restarting one iterate later. Most importantly, C3 spawns all of the "d" and "f' bridge 

classes and the class v0. The escape class t0, which appears in the 16-basis, arises by 

mapping forward any "f' node. 

Figure 4.5: Flow chart for the 16-basis. Escape segments are colored red. Blue directed 
edges lead to the sequence .At( c3) and green directed edges lead to the sequence .At( d3). 
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Mapping d3 produces all the "d" classes and all the "f' classes except for f1. Thus, the 

cycle starting at c4 starts several times in succession. For our comparison of the 12 and 

16-bases, we must consider the class v0. Within the 12-basis, this class is represented by 

the finger in el2 (see Figures 3.3 and 3.4). Within the 16-basis, Vo is represented by both 

fingers in e12 and e16 (see Figures 3.13 and 3.14). This escape class appears in the 

image of c3 which will repetitively appear starting with any non-inert symbol. Thus, the 

symbol v0, and the structure encoded in it, will also repetitively appear. We now ask 

does v0 repetitively appear by starting from any symbol within the 12-basis. 

Let us now consider the flow chart representing the dynamical equations acting 

on the 12-basis shown in Figure 4.6. This flow chart will suggest to us what initial 

conditions eventually lead to the appearance of the class vo. Starting on the right with a1 

and following the arrows downward to c3 then moving left, avoiding arrows leading to 

~'we come to f3. Iterating f3 produces a factor ofvo. We see that this is the only path 

containing a1. Thus, there are no closed loops containing the symbol a1 and therefore, 

the symbol v0 can appear only once. To find the reason that v0 cannot repeatedly appear 

within the 12-basis, we must consider the holes that generate the 12-basis. Specifically, 

we must consider Figure 3.5. In the punctured plane, curves cannot homotope into the 

three boundary curves el, e2, and e3 because of the holes that lie just outside each of 

these lobes. Ifwe consider a curve .Eo that is homotopic to any one of these curves and 

iterate this curve 13 times, the 13th image of .Eo cannot contain any of the factors a1, a2, 

or a3. In fact, no image of .Eo will contain any of these three factors. This fact is 

represented in the flow chart by the absence of a directed edge leading to a1. In other 
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words, the three flow charts demonstrate that one must find a closed circuit within this 

representation of the dynamical equations such that escape classes will periodically 

appear. 

Figure 4.6: Flow chart for the 12-basis. The escape classes are in red. Blue direct edges 
lead to the symbolic expression .M(g3). Green directed edges lead to the symbolic 

expression .M(f3). 

iv.) Topological Entropies of the 4, 12, and 16-bases from the Vase Tangle. 

Finally, we compute the topological entropies of the 4, 12, and 16-bases as a 

means of comparison. The topological entropies will quantify the conclusions we've 

drawn from examining the minimal sets and the flow charts. We remind the reader that 

to compute the topological entropy we construct a matrix representing the concise 
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dynamical equations. The topological entropy is the natural logarithm of the matrix's 

largest eigenvalue. We will present each of the three matrix representations and their 

topological entropies. 

Eq. (3.1) contains the dynamical equations acting on the 4-basis of the vase 

tangle shown in Figure 3.1. This basis constitutes the simplest possible behavior for aD 

= 3 tangle. The equations acting on the 4-basis are already in concise form. Therefore, 

the matrix representation is 

cl c2 c3 f u* 
cl 0 0 0 1 0 

c2 1 0 0 0 0 

c3 0 1 0 0 0 
(4.8) 

f 0 0 2 1 0 

u* 0 0 1 1 1 

The topological entropy is ln(1.5437). Recall that the topological entropy for aD= 1 

tangle is ln(2). The difference between these two results is due to the difference in 

minimum delay times. As the minimum delay time increases, curves are stretched and 

folded at a slower rate due to the larger number of iterates required to cycle through the 

complex. 

Now let us compute the topological entropy for the 12-basis. However, we must 

first put the dynamical equations in concise form. Eq. (3.4) contains the dynamical 

equations acting on the 12-basis. The following equations are not in concise form: 

(3.4d), (3.4h), (3.41), (3.4p), (3.4w), and (3.4v). The first four equations in this list each 

end in d4X4, which is a sequence of two internal bridge classes. Eq. (3.4v) contains the 

sequence g-1x0, which is also a sequence of two internal bridge classes. Since d4X4 and g-
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1x0 both represent internal bridge classes, each can be substituted with a single bridge 

class. We first define the following two bridge classes. 

(4.9) 

Substituting eq. (4.9) into the non-concise expressions of eq. (3.4) yields concise 

expressions. However, we have introduced new bridge classes (note that they are not in 

the bridge basis) so their dynamical equations must be found. The dynamical equation 

for ki comes from the group homomorphism property and eq. (3.4p). 

( 4.1 0) 

The classes b 1 and ki+l are both internal and w0 is external and thus .M(ki+I) is concise. 

Using eq. (3.4w) we can obtain the dynamical equation of the bridge class h. 

(4.11) 

The sequence x~1g~ 1 is an internal bridge class. Now let us define the bridge class hi= 

gixi for i = 1, 2, and 3. Each of these three classes is an internal bridge class. The 

definition ofh1 places .M(h) in concise form. Using the facts that Xi represents an inert 

We use eq. (3.4v) to compute .M(h3). 

a.).M(h1) = h2 

b.)..M(h2) = h3 
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Since h and~ are internal and w0 is external, .M(h3) is concise. In summary, 

introducing the bridge class h forced us to introduce h, ki, h1, h2, and h3 into the 

dynamics. The concise dynamical equations acting on the 12-basis are 

a.).M(a1) = a2 
b.).M(a2) = a3 
c.).M(a3) = c~1u~1d4 
d.).M(a4) = f~-~w~~k4 

m.).M(d1) = d2 
n.)M(d2) = d3 
o.).M(d3) = g-~u~~d4 
p.).M(d4) = b~1w~1k4 

Let hi= gixi, i = 1,2,3 
X. )JK(h1) = h 2 

y.).M(h2) = h3 
z.).M(h 3) = h-1w~1k4 

dd.).Mn(v0 ) = Vn 
ee.).Mn (uo) = un 
let w 0 = v0u 0 

ff.).Mn(wo) = wn 
gg.).Mn(xo) = Xn 

e.).M(b1) = b2 
f.).M(b2) = b3 
g.).M(b3) = b~1u~1d 4 
h.).M(b4) = d~1w~1k4 

Let g = x0g1x1g2x2g3x3 
aa.).M(g) = g~1w~1 k 4 
Let h = g1x1g2x2g3x3 
bb.).M(h) = h~1w~1 k 4 

i.).M(c1 ) = c2 
j. ).M( c2) = c3 
k.).M(c3) = a~~u~~d4 
l.).M(c4) = c~~w~~k4 

ki = d4x4xs ···xi-Jxi 
cc.)M(kJ = b~1w~1ki+J 

(4.14) 

We will not show the matrix representing these concise dynamics as it is too large (32 by 

32). The topological entropy ofthe matrix representation is ln(1.5437) which is the 

same as the 4-basis. Based on this calculation, we conclude that for the vase's tangle, 
\ 

the differences between the 4 and 12-bases are "almost negligible". We use this phrase 

because the minimal sets of ['lioF ]4 and [U: ]12 differ by a single escape segment up to the 

16th iterate (see Table 3.1). 

Finally, we need to place into concise form the dynamical equations acting on the 

16-basis. Two of the equations need to be corrected: (3.2lm) and (3.21n). We first 
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form. 

( 4.15) 

The classes g, f1, and c4 are all internal while v0 and x0 are both escape classes thus they 

are external. Since we have introduced the bridge class g, we must calculate its 

dynamical equation. 

(4.16) 
u( ) f d f d f f·ld-1£-ld-lf-ld-1 -1 -lt-1 d-1 -1 .;"" g = 2 2 3 3 4 4 3 3 2 2 1 Xo c4c4 o c4 = 1 w o C4 

The classes d1 and c4 are internal and w0 is external so M(g) is concise. Eq. (3.21n) 

presents a bit more of a challenge. We can use the definition of g and rewrite eq. 

(3.21n). 

u(d ) -1£-1 -1 
.;"" 3 = g 1 Xo C4 (4.17) 

This equation is not in concise form due to g and f1 both being internal classes. 

Therefore, we must define a new bridge class, h = f1-
1g, that puts eq. (4.17) into concise 

form. Again, we must calculate the dynamical equation for h. Using eq. ( 4.16) and the 

homomorphism property we find 

(4.18) 

Again, we encounter the problem of an equation that is not concise. By defining the 

class h1 = d1f2, M(h) is placed into concise form. However, we must obtain the 

dynamical equation for h1. First, let us define two additional classes: h2 = d2f3 and h3 = 
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a. ).M(h1) = .M( d1 ).M( f2) = d2 f3 = h 2 

b.).M(hz) = .M(dz).M(f3) = d3f4 = h3 

Finally, we must compute the dynamical equation for h3. 

( 4.19) 

(4.20) 

The bridge classes h and c4 are internal and w0 is external. Therefore .M(h3) is concise 

and we are finished defining new bridge classes. The concise dynamical equations are 

a.).M(a1) = a2 
b.).M(bl) = b2 
c.).M(c1) = c2 
d.).M(dl) = d2 
e.).M(f1) = f2 

f.).M( az) = a3 
g.).M(b2) = b3 
h.).M(c2) = c3 
i.).M( d2) = d3 
j.).M(f2) = f3 

k.).M(a3) = b~~u~Ic4 
l.)M(b3) = a~~u~Ic4 
m.)M(c:J) = ~-1 v0f1 x~

1 c4 
n.).M(d3) = h-1 x~1 c4 
o.).M(f3) = f4 

Let g = f1d1f2d2f3d3f4 
.M(g) = d;Jw~~c4 

hi= d/i+Pi = 1, 2,3 
M(h1) =h2 

Let h = dl2d2f3d3f4 
.M(h) = h; 1w~1 c4 

M(hz) = h3 

.Mn(to) = tn 

.Mn(uo) = un 

.Mn(vo) = vn 

M(h3) = h-1w~1 c4 

let x 0 = u 0 v0 

Yo = touo 
Wo = touovo 

.Mn(xo) = xn 
.Mn(Yo) = Yn 
.Mn(wo) = wn 

p.).M(a4) = c;Iw~Ic4 
q.)M(b4) = b;1w~1c4 
r.)M(c4) = a; 1w~1c 
s.).M(f4 ) = c~\1c4 

( 4.21) 

Again, we will not show the matrix representation as it is far too large. The topological 

entropy = ln (1.5449), which is slightly larger than the entropy for the 4-basis. Thus, the 

16-basis incorporates additional topological information of which the 12-basis was 

ignorant. 

v.) Conclusions 

Our calculations of the topological entropy for the vase's tangle mirror those of 

the tangle we examined in Chapter 2. We obtained topological entropies using the 

minimal amount of information one can put into the theory. We then performed the 

analysis using pseduoneighbors of finite index and found that the topological entropies 
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did not increase. However, when we performed the analysis with what we believed to be 

true neighbors, the topological entropies increased. Based on these results, we conclude 

that an increase in the topological entropy of a concise matrix representation is an 

indicator that one has increased the amount of topological information contained within 

the dynamical equations. 

This last chapter concludes our topological analysis of the vase's underlying 

homoclinic tangle. We will now move on to our studies ofthe vase itself. In the next 

chapter, we will cover the basic information about the vase, ray propagation, and how 

we numerically compute the tangle and epistrophes. We have elected to present this 

material first as we will examine how the epistrophes manifest within an approximation 

to the quantum mechanical wave function in Chapter 5. 
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-Chapter 5-
The Vase: Part II 

i.) Introduction 

The last three chapters were devoted topological analyses ofthe vase's 

homoclinic tangle. The topological analysis reveals the origin of the recursive structure 

organizing an escape time plot. Now we conclude the analysis of the vase-shaped cavity 

with experimental and numerical results. Several sample trajectories were shown in 

Chapter 1 that illustrated the different kinds of trajectories present in the vase, but there, 

we examined only one chaotic trajectory. In this chapter, we will first consider several 

escape segments and their associated trajectories, including many chaotic trajectories. 

Then we will consider the results of an experiment in which ultrasound pulses escaped a 

macroscopic vase and compare these results to a classical simulation. Finally, we will 

see the results of a numerically computed approximation to Schrodinger's Equation for 

waves escaping a quantum mechanical vase. 

ii.) Chaotic trajectories and the Epistrophes 

First we examine the chaotic trajectories and their relation to the epistrophes. 

Figure 5.1 shows the continuous and discrete escape time plots side-by-side. We will 

consider a few of the labeled escape segments in Figure 1 and look for common 

characteristics amongst trajectories from different escape segments within a single 

epistrophe. 
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Figure 5.1: Continuous (left) and discrete (right) escape time plots for burst at (0.3, 
0.4067). 

The earliest escape segment is labeled A1 and it represents the intersection of £o with E_ 

1. Figure 5.2 shows a trajectory selected from escape segment A1. This ray escapes after 

two reflections. A1 is considered an isolated segment and since it escapes immediately, 

it is oflittle interest. 
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Figure 5.2: Ray with initial launch angle from escape segment A1 

Let us now consider the epistrophe labeled "B". Trajectories corresponding to 

segments in the B-epistrophe are shown in Figure 5.3. This sequence converges to the 

right side of segment A1. The corresponding trajectories possess more complicated 

structure than those associated with escape segment A1. Each trajectory approaches the 

UPO once, turns back into the bowl, and then has a final reflection deep in the bowl 

before escaping. As the number of iterates to escape the complex increases, the number 

of oscillations within vase's neck increases before being repelled back into the vase's 

bowl. Counting the number of reflections of each trajectory, we see that the number of 

reflections to escape the vase is the same as the number of iterates to escape the 

complex. 
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Figure 5.3: Rays with launch angles in the first six segments ofthe B-epistrophe. 

Let us consider epistrophe E and a trajectory chosen from each of the first six 

segments of the sequence. The trajectories are shown in Figure 5.4. The pattern is 

comparable to that of the B-epistrophe. The trajectories approach the UPO with the 

number of reflections increasing as the number of iterates to escape the complex 

increases. After being repelled by the UPO once, each trajectory experiences its last 

reflection deep within the vase's bowl and then escapes the vase. 
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Figure 5.4: Rays with launch angles in the first six segments of the E-epistrophe. 

Figure 5.5 shows four trajectories, one from each of the first four segments of the 

F-sequence. This sequence appears at eight iterates and demonstrates more complicated 

behavior than trajectories from the previous epistn?phes. These trajectories first 

approach the UPO in the neck, return into the bowl, then approach the neck a second 

time, and are repelled again before a final reflection in the bowl. However, they are 

directed towards the neck and are repelled again before landing in the bowl and 

escaping. As the number of iterates to escape the complex increases, so do the number 

of bounces during the second approach to the vase's neck. 
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Figure 5.5: Rays with launch angles in the first six segments of the F-epistrophe. 

Finally, Figure 5.6 shows trajectories from the first four segments of the G-

epistrophe. We see a similar structure comparedto the trajectories from the F-

epistrophe. However, there is a difference. If we imagine locating the center of the 

convex region, then we see that the trajectories here loop around the center twice 

whereas they did so only once in the F-epistrophe. 
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Figure 5.6: Rays with launch angles in the first six segments ofthe G-epistrophe. 

iii.) A Macroscopic Realization of the Vase 

Dr. Matthew Len Keeler of the University of Minnesota, Morris, and his 

undergraduate student Joshua Geifer constructed the vase shown in Figure 5.7. The 

curved walls of the vase are made of Teflon and are about 4.25 mm thick. These two 

boundary walls are sandwiched between two large aluminum plates. The vase drawn on 

the aluminum plates shows the location of the Teflon boundaries. On the lower right is a 

fixed ultrasound transducer which produces asource of sound waves. The initial pulse's 

temporal profile is like a Gaussian modulated sine wave. The cylindrical object on the 
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left side of the wall is a microphone which acts as a detector. First the microphone 

position is fixed, a burst of ultrasound is released into the vase, and the escaping signal is 

recorded. Then, the microphone is vertically translated and the escaping signal is 

recorded again. Thus, the experiment gives the escaping signal as a function of time and 

vertical position. We will compare this signal to a classical simulation. 

Figure 5.7: Setup of the ultrasound experiment. 

a.) Classical Simulation 

We launch an ensemble of trajectories from the point (0.3, 0.4067) and end ray 

propagation at x = 1.5. A plot of the escape time versus the detector position is shown in 

Figure 5.8. The signal consists of a complicated set of sawtooth oscillations. 

168 



4 

Escape time 

Figure 5.8: Detector position versus the escape time. 

Since a family of rays is launched from a small source, we can parameterize the initial 

velocities by the polar angle measured with respect to a Cartesian coordinate system 

translated to the burst point. The first five rows of Table 5.1 show the initial conditions 

for the different sets of trajectories that contribute to the current in Figure 5.8. The 

remaining rows give the initial conditions for the two grazing rays and the two rays 

resulting from the intersection of~ with the boundaries of the complex. 

Trajectory Initial polar angle (rad) Initial momenta 
Clockwise WG -0.0918 <So< 0.1023 0.9812 <Po< 1 

Direct Rays -0.734 <So< -0.0918 0.6702 <Po< 0.9812 
Parallel Mirror Rays -1.1417 <So< -0.734 0.321 < p < 0.6702 

Chaotic -1.7952 <So< -1.1417 -0.321 <Po< 0.321 
Counter-clockwise WG -3.0393 < S0 < -1.7952 -1 <po<-0.321 
Graze with upper wall -0.0918 0.9812 
Graze with lower wall -0.734 0.6702 

~nrs -1.1417 0.321 

~nru -1.7952 -0.321 
Table 5.1: The first five rows are the ranges of initial conditions in which we find the 

different kinds of trajectories. The remaining four rows are the initial conditions for four 
of the trajectories that partition these sets. 
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Let us now consider each type of ray and its contribution to the current. In 

Figures 5.9 through 5.13, the whole current is plotted in black, the contribution from a 

particular kind of trajectory is plotted in red, and the caption indicates the type of 

trajectory. 
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Figure 5.9: The contribution from the direct trajectories. These possess the shortest path 
lengths so they must be the earliest detected. 
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Figure 5.10: The set of parallel mirror trajectories are bounded by the ray that grazes the 
lower boundary and the trajectory that results from the intersection of the line of initial 
conditions and the stable boundary ofthe complex. Trajectories on the stable boundary 
do not escape and nearby trajectories are guided along the stable manifold toward the 
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unstable fixed point. Therefore, the parallel mirror trajectories are found by 
continuously rotating a direct ray through the ray that grazes the lower boundary. 

Though it is not shown, this set contains trajectories that escape after any number of 
bounces resulting in an infinitely long pulse saw-tooth. 
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Figure 5.11: Here we see the contribution from the counter-clockwise whispering 
gallery trajectories. They escape early and accumulate within a finite region. Since we 
can construct a whispering gallery trajectory escaping after any number of reflections, 

there will be an infinite number of oscillations detected. 
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Figure 5.12: Here we see the contribution from the clockwise whispering gallery 
trajectories. These lie on the tip of the curve corresponding to the direct rays. These 
oscillations possess a similar structure to those of the counter-clockwise whispering 

gallery rays. However, the clockwise whispering gallery rays traverse a region of small 
curvature and thus accumulate in a small region of the detector. Furthermore, this set is 
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bounded by the ray that grazes the upper boundary. Therefore, this set can be found by 
continuously rotating a direct ray from the upper grazing ray to the tangent ofthe vase. 
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Figure 5.13: Finally, we see the contribution from the chaotic trajectories. Their initial 

angles correspond to the intersection of f!.o with the complex. 

b.) Measuring the Speed of Sound 

Before we compare the simulation to the signal, we must first rescale the detector 

position and escape times of the simulation. The Teflon vase was constructed to be 87 

ern along the horizontal direction. It was scaled so that in the arbitrary units of eq. ( 5.1) 

so that 1.5 units = 87 ern. This results in two conversions. 

0.0172 units/em 
(5.1) 

58 em/unit 

Next, we must rescale the time units. For this, we need the speed of sound in air. 

Normally, the speed of sound in dry air at 1 atrn is 343.4 rn/s [1]. We decided to obtain a 

numerical approximation to the speed of sound with data obtained from another 

experiment. 

This second experiment involved an ultrasound burst propagating through a pair 

of parallel Teflon slabs. The recorded signal is a series of pulses. In the absence of 
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phase shifts and absorption, we expect the pulses to arrive near the arrival times of the 

classical rays in the classical system. By inspecting the data, we estimate the time at 

which the peak of each pulse is observed. 

The slabs were 56.2 em long and separated by a distance of 17.78 em. We 

imagine a set of axes to be centered at the lower left hand corner of the bottom slab. The 

source is then located at (0, 17.78) em with the detector at (56.2, 0) em. The signal 

recorded for this setup is shown in Figure 5.14. The horizontal axis is the detection time 

with units of ms and the vertical is the strength of the signal measured in m V. The 

signal recorded from 5 to 11 ms has been multiplied by a t4 time gain as attenuation 

quickly weakened the signal. 
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Figure 5.14: Signal recorded in the parallel slab experiment. 
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The red circles plotted in Figure 8 represent the estimated pulse centers. After 

estimating these points, we then compute the corresponding classical ray for each pulse 

and obtain the path length from source to detector. The path lengths, number of 

bounces to escape, and the detection times are recorded in Table 5.2. 

Path length (em) Number ofbounces Detection times (s) 
to arrival 

58 .. 9455 0 0.0018 
77.4829 2 0.0023 
105.1744 4 0.0031 
136.5604 6 0.0040 
169.6020 8 0.0049 
272.5570 14 0.0078 
307.4403 16 0.0087 
342.4628 18 0.0097 
377.5858 20 0.0107 

Table 5.2: Classical path lengths, number of bounces to arrival, and times at which 

ultrasound pulses are detected in the parallel plate experiment. 

We then fit the data to an equation of the form 

path length 
tpulse =to + ..::___ _ __::..__ 

v 
(5.2) 

where tpulse is the estimated pulse time, to is a delay, and v is the speed of sound. Figure 

5.15 shows both the data in Table 5.2 and the linear fit in the top graphs and the 

residuals between the actual data and the linear fit on the bottom. We see that the data in 

Table 5.2 is in good agreement with a straight line. The units in Figure 5.15 are seconds 

and meters. We found to= 0.1523 ms and v = 35.86 cm/ms. 
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Figure 5.15: The top graph shows the data and the linear fit. The bottom shows the 
residuals between the fit and the actual data computed at the classical path lengths. 

c.) Comparing the Simulation to the Experiment 

Now that we have the correct scaling, we can compare a classical simulation to 

the recorded escaping ultrasound signal. To compare the two results, we take the 

absolute value of the natural logarithm of the signal, and assign a color coding to the 

signal with dark blue indicating a small amplitude and a dark red indicating a strong 

signal. We then plot the color coded signal in two dimensions. For the classical 

simulation we show the time vs .. the detector position with no amplitude. 

Figure 5.16 shows the data from 2 to 7.5 rns. We see that the maxima in the 

signal are organized into saw-tooth oscillations similar to those in the classical 

simulation, which is represented by the black line. The earliest signal that was detected 

(between 2 and 2.75 rns) corresponds to the direct and clockwise whispering gallery 

trajectories (compare Figure 5.16 with Figures 5.9 and 5.12). We see that between 10 

ern and 20 ern there is a somewhat larger amplitude in the region where the whispering 

gallery modes accumulate. 
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Figure 5.16: Rescaled simulation (black) versus the signal escaping the actual vase 
recorded between 2 and 7.5 ms. 

The direct rays continuously tum into the so-called parallel-mirror rays (compare 

Figures 5.16 and 5.10). These form the first saw-tooth oscillation which starts at about 

2.75 ms. Again, we see agreement between the classical simulation and the maxima of 

the signal. Around 4 ms there is a great deal of constructive interference between -20 

em and 30 em. In this region, we have the counter-clockwise whispering gallery rays 

accumulating and the beginnings of a "chaotic saw-tooth" (see Figure 5.13). Again, we 

find agreement between the signal and the classical simulation. 

Let us now examine the remainder ofthe data which is shown in Figure 5.17 

below. The complex saw-tooth structure represents many chaotic trajectories escaping 

the vase. At these times, the signal does not resolve peaks very well, but nonetheless, 

we can still make out saw-tooth oscillations starting and 8 and 9 ms. The signal 

recorded at negative detector positions for times past 12 ms seems to be unreliable. 
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Figure 5.1 7: Rescaled simulation (black) versus the signal escaping the actual vase 
recorded between 7.5 and 16 ms. 

iv.) Semi-classical Approx~mation 

Let us now construct a semi-classical approximation to the wave function at the 

mouth of the vase. Our semi-classical wave function is an approximation to a complex 

solution to the two-dimensional Helmholtz Equation. 

subject to boundary conditions near the source (r ~ ro) 

iklr-r0 1 e 

(5.3) 

(5.4) 

Such a wave represents the Green function for the Schrodinger Wave Equation. Its real 

or imaginary parts may represent sound waves (or in the case to be discussed, 

microwaves) in the vase. As we are interested in escaping flux, we compute the 
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wavefunction along a vertical line segment lying to the right ofthe UPO. To compute 

this wave function, we must identify trajectories going from a point source to a point 

detector by numerical interpolation of computed trajectories. 

a.) Interpolating Classical Trajectories 

We use a large family of trajectories to interpolate trajectories connecting source 

and detector points. After choosing a point source, we choose a point x0 at which we 

imagine a vertical array of point detectors spanning the space between the vase walls. 

All escaping trajectories are assumed to be "absorbed" at this vertical line segment. 

After propagating a family oftrajectories, we discard those that do not escape after some 

specified number of reflections. For the set of escaping trajectories, we construct a plot 

of final position along the detector vs. initial momentum (Figure 5.18) 
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Figure 5.18: Detector position versus initial momentum for the source at (0.3, 
0.4067). 

Figure 5.18 shows that yt(p0) possesses a complicated set of oscillations. We see 

that globally, this curve is disconnected near p0 = 0 and possesses many discontinuities 
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in slope. The former discontinuity is where the source overlaps the stable continent, so 

the trajectories do not escape. The discontinuities in slope occur where the number of 

bounces to escape changes. If we compare yt{p0) and the number of bounces to escape, 

Be(Po) (Figure 5.19), we see that the discontinuities in yt{po) line up where Be changes. 

Be(Po) can change in one of two ways. The first is what we call a natural discontinuity. 

This results from rotating a trajectory until it encounters a grazing trajectory, at which 

point Be(po) changes by ±1. The second discontinuity is what we call an artificial 

discontinuity. This kind of discontinuity arises when a velocity vector is rotated until the 

last reflection encounters the point at which the vertical detector line intersects the vase 

boundary. Essentially, the detector prevents the velocity vector from rotating into a 

grazing trajectory. Regardless of the type of discontinuity, the number of reflections 

changes by ± 1. The slope of the escape time is also discontinuous where the number of 

reflections changes. 
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Figure 5.19: The black points are yt(po) and the red points are Be(Po). 
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We choose a detector point YD and draw a horizontal line through yt(po) and 

numerically solve for those p0 that satisfy 

(5.5) 

To simplify the problem of numerically computing the zeros, we break up the curve at 

points of discontinuous slope. Consider Figure 5.20 below which shows two sets of 

points generated from escape segment E1 (see Figure 5.1). The red points are the 

bounces to escape (Be) vs. po while the black points are Yf vs. po. Again, we see that 

each discontinuity in slope ofyt(p0) corresponds to a change in the number ofbounces, 

which is due to either a grazing trajectory or a trajectory landing at ±f(x0 ). This figure 

demonstrates an important fact about the escape segments: each escape segment 

produces two infinite sequences of pulses. Each smooth segment of the curve 

contributes 0, 1, or 2 interpolated trajectories at the detector point. For the interpolation, 

we break up Yf into smooth sets of points that escape the vase after the same number of 

bounces, and then, we apply the secant method to each smooth set to numerically 

compute the zeros of eq. (5.5) [2]. 
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Figure 5.20: Bounces to escape (red) and position along the vertical line detector (black) 
for a family of trajectories with launch angles bounded by the endpoints of escape 

segment Et. 

_b.) Computing the Semi-classical Wave Function 

Once we have interpolated the trajectories connecting a source to a detector 

point, we are ready to calculate the semi-classical wave function. The wave function is 

given by 

(5.6) 

This form of the wave function can be found in [ 4] where it is used in the construction of 

a model of electronic transport through a semiconductor microjunction. The sum runs 

over the interpolated trajectories connecting the source to a detector point. This function 

is the WKB approximation in two dimensions. Let us consider each term in eq. (5.6). 

Aj(r) is the amplitude of the wave function. In one dimension, the amplitude is 

proportional to the inverse square root of the classical momentum. In two dimensions, 

this function is a ratio of Jacobians in the representation (x(t, 8;), y(t, 8;)) where x andy 
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are the position of a classical trajectory as a function of time and initial launch angle of 

the /h trajectory. We use the fact that the amplitude function is proportional to the 

probability density of the quantum function to rewrite it in terms of J(t,8J = B(x,y) [ 4]. 
8(t,8J 

I 1
2 J(o,e.) 

A.(r) = p(r) = p (r) ' 
J 

0 J(t,8J 
(5.7) 

The initial Jacobian can be evaluated analytically. We assume that we have a 

collection of trajectories starting along a small circle centered at the burst. Locally, the 

elements of the Jacobian then come directly from the kinematic equations. 

a.) ax= cos(8) b.) ax = -sin(8)t 
at ae. J , 

(5.8) 

c.) 8y = sin(ei) d.) 8y = -cos(8)t at · aej 

We see immediately from eq. (5.8) that the determinant of the Jacobian matrix is t. 

Using the fact that the speed is set to 1 and we are evaluating the matrix at the initial 

time, the determinant evaluates to the radius of the initial distribution oftrajectories, r0. 

Inserting det(I(0,8)) = r0 into eq (5.7) yields ..{r;, which cancels with the factor of 

..{r; appearing in the denominator of \j/0 (r0 ). 

The denominator of(5.7) is evaluated numerically. However, we can use a 

change of representation to write out a simple analytical expression for the denominator. 

The denominator is 

(5.9) 
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Along a trajectory passing through the detector point, the partial derivatives with respect 

to time are the components of the velocity vector at (xn, y0 ). We want to rewrite the 

partial derivatives with respect to 8 in such a way that it incorporates the fact that along 

the line detector, xis a constant. First, we calculate the perfect differentials of the two 

pairs offunction (x(t, 8), y(t, 8)) and (t(x, 8), y(t, 8)). 

a.) dx =(ax) d8+(ax) dt b.) dy= (ay) d8+(ay) dt 
aet ate aet ate 

(5.10) 

c.)dt= (~) d8+(~) dx d.)dy= (ay) d8+(ay) dx oox axe oox axe 

Substituting eq. (5.8a) into eq. (5.8d) and equating eq. (5.8b) and eq. (5.8d) results in an 

equation that is a function of the variables (t,8). By solving for the coefficients in front 

of the differentials dt and d8 results in the following equations. 

(5.11) 

We substitute (5.11) into (5.9) and use the fact (: )e = vx to obtain 

(5.12) 

Then the amplitude for the jth wave function evaluated at the detector point is 

(5.13) 
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In practice, the denominator is approximately computed using two trajectories: the 

interpolated trajectory and a closely-spaced neighbor. 

The function Sj(r) is the classical action [6] and is given by 

S(r) = fp(q)•dq (5.14) 

The integral is evaluated along a classical trajectory. For us, the momentum is constant 

along a path connecting two successive reflections. For a trajectory with n+ 1 reflections, 

the characteristic function is given by eq. (5.15). 

(5.15) 

We set the mass m to unity. Since the velocity components are constant between 

reflections, the integrals are immediately evaluated to be the horizontal and vertical 

displacements for each line segment connecting successive reflections. Using the 

kinematic equations we obtain eq. (5.16). 

n 

S(r) =I( (vx); + (vy); )t (5.16) 
i=O 

Now we use the facts that I vi= IPI and that the quantum mechanical momentum for a 

plane wave is p = nk to obtain eq. (5.17). 

n 

S(r) = nkiivli t (5.17) 
i=O 

The magnitude of the velocity vector times the propagation time is the length of the line 

segment. Therefore, the characteristic function for the lh trajectory is proportional to the 

length of that trajectory. 
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(5.18) 

Lj is the length of the trajectory from a small circle of radius r0 about the source to the 

detector. It can be combined with the factor exp(ikro) in eq. (5.6) to give k(Lj + ro), 

which is the full phase from source to detector. 

Finally, I-Lj is the Maslov index of the lh trajectory. This index records phase 

shifts due to focal points and reflections. It assumes integer values [6]. For hard each 

wall collision, the Maslov index is increased by two. For each focal point the 

interpolated trajectory encounters, the Maslov index increases by one. To find focal 

points, we consider the interpolated trajectory and a perturbed trajectory. Using these 

trajectories, we compute finite differences (L1x, L1y, 118) and use these to approximate the 

partial derivatives in eq. (5.9) (and hence the determinant of the Jacobian) along an 

interpolated trajectory. We look each instance in which the determinant ofthe Jacobian 

goes smoothly through zero. 

Two of the partial derivates are evaluated at constant time. Therefore, we must 

fix a time-step L1t and interpolate the trajectories at integer multiplies of this time-step. 

For each interpolated point, we also obtain the velocity field at that point. Then an 

approximation of eq. (5.9) can be constructed from interpolating the two trajectories. 

Focal points and reflections show up as points at which eq. (5.9) changes sign. At a 

focal point, eq. (5.9) changes sign continuously while at a reflection it changes 

discontinuously. By counting the number of sign changes, we can obtain part of the 

Maslov index. 

Now let us substitute our results into eq. (5.6). 
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N i(kr0 + kLj (rn) - (1/2)~J7t) 

\j/(ro) = I-e-;======-
i=I /( vx)j ( 8yjaetD I 

(5.19) 

The wave function is evaluated at the detector point rn = (xD,YD). At a detector point, 

the wave function is evaluated over an interval of wave numbers k. The Fourier variable 

conjugate to the wave number is the path-length of the trajectory. Therefore, we 

compute the Fourier Transform of eq. (5.19). 

(5.20) 

The sum over interpolated trajectories is finite and thus can be removed from the 

integrand. The denominator and the Maslov phase shift both come out of the integrand 

as each is independent ofk. Immediately, we see that the integral is the Dirac Delta 

function. Therefore, the Fourier Transform of the semi-classical wave function is 

(5.21) 

Our final result is a collection of peaks centered near the lengths of the classical 

trajectories with the amplitudes depending on the phase shifts due to reflections and 

focal points. 

In practice, we do not use eq. (5.21 ). For each detector point, we compute eq. 

(5.6) over a distribution ofk. We calculate the Fast Fourier Transform (FFT) of eq. (5.6) 

with Matlab's own FFT algorithm giving us an approximation to eq. (5.21). Before we 

discuss our results, we must discuss the function of the wave number k. This variable is 

an experimental input. 
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c.) Imagined Experiment with an Electromagnetic Waveguide 

The vase was designed as a relatively simple means of numerically and 

experimentally probing a system controlled by a homoclinic tangle. As stated earlier, 

the wave function we have computed is an approximation to the time independent 

Schrodinger Equation, or the Helmholtz Equation. One can construct another realization 

of the vase using an electromagnetic waveguide. S Sridhar and his group at 

Northeastern University construct electromagnetic waveguides as a means of studying 

chaotic eigenfunctions and chaotic scattering (see [7-10] and references therein). 

Their waveguides are typically constructed from copper. A coaxial cable feeds 

microwaves into the cavity with the initial frequency controlled. Furthermore, they 

typically study two-dimensional systems with three-dimensional systems that are small 

and flat along the z-axis. For instance, a vase-shaped waveguide could be constructed 

using copper plates with a spacing of 6 mm. To simulate an open cavity, the space 

between the plates can be filled with a material that absorbs escaping microwaves. 

The idea behind these experiments is to construct a system in such a way that 

Maxwell's Equations for the vector electromagnetic fields are reduced to the scalar 

Helmholtz Equation. The following material can be found in Chapter 8 of Jackson's 

Classical Electrodynamics, 3rd Ed [11] and [7]. We start with Maxwell's Equations in 

the absence of point sources and currents. 

8B 
a.)VxE=-

at 

1 8E 
b.) VxB=---

c at 
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We assume that the fields possess a sinusoidal time dependence e -iwt and plane waves 

along the z-axis e±ikzz . The decoupled wave equations can then be written as 

(5.23) 

where F(x,y) represents either E(x,y) or B(x,y). We can decompose either field into two 

components, one along the z-direction and one in the xy-plane (or the transverse 

component). Then, the transverse components of the fields can be computed directly 

from the z-components. Letting k =role we have 

a.)Et = k2 ~k2 (V1Ez -ikixV1Bz) 
z 

(5.24) 

b.)Bt= k2 ~k2 (V 1Bz +ikixV1Ez) 
z 

Eq. (5.24) says that the z-components ofboth fields allow us to compute the transverse 

components. 

We desire a standing wave solution along the z-axis. If d is the distance between 

the two plates measured along z, then the wave number along the z-direction is given by 

the quantization rule kz = p: where p is an integer. The two classes of allowed modes 

are Transverse Electric (TE) modes, for which Ez = 0 everywhere, and Transverse 

Magnetic (TM) modes for which Bz = 0 everywhere. For the two modes, the allowed 

solutions are given by eq. (5.25). 

a.) TE: Bz =BJx,y)sin(pnz/d) 

b.) TM: E z= Ez(x,y)cos(pnz/d) 
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The TM modes are the only modes in which there is no variation along the z-axis (i.e. p 

= 0) and there is a nonzero field. For scattering systems, a network analyzer is used to 

experimentally obtain the transmission probabilities (S-matrix elements) [12]. 

The setup of our calculations is based on the previous work of Sridhar and his 

group. First, we must define a cutoff frequency, which is found by computing the 

frequency for the p = 1 mode. For a cavity of thickness 6 mm, the cutoff frequency is 25 

GHz. However, we will assume a maximum frequency of 20 GHz which corresponds to 

2nf 400n _1 . 
a wave number of kmax = max = --m . They can mcrement the frequency of the 

c 3 

microwaves fed into the cavity in increments of 0.001 GHz, which corresponds to a 

2nilf 2n10-
2 

1 s· h. . h wave number increment of ilk = = m- mce t IS expenment as not 
c 3 

been carried out, we do not have a scaling factor for rescaling the distances in our 

calculations. Therefore, we will assume the change of units 1.5 units= 1m. Using kmax 

and ilk, we compute a uniformly spaced set ofwave numbers with units of meters, 

divide each one by 1.5 to obtain the wave numbers with our unsealed units, evaluate 

(5.19) over the new wave numbers, and then compute the corresponding FFT. Finally, 

we consider 21 detectors in the range from -0.3333 units to 0.3333 m located at x = 1 m. 

For a wave function to be constructed from an interpolated trajectory, that trajectory 

must land within a distance of 1 e-8 of the detector point. 

d.) The Semi-classical Calculation: 21 Point Detectors 

We will focus onl\j/(L,rn)l for all21 detectors. We present three two-dimensional 

surface plots showing 1\j/(L,rn)l multiplied by an exponential factor. 
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(5.26) 

Multiplying the magnitude of the Fourier transformed wave function increases the 

amplitudes of the peaks centered at the longer trajectories. These peaks tend to be small 

and thus require amplification for better visualization. The peaks centered at path 

lengths between 0 and 5 mare shown in Figure 5.20 below. We first note that 

crm(L,rv)is plotted in the range 0 to 0.5x10-5
. The regions in which the surface appears 

to be discontinuous are due to cutoff along this axis. The most prominent aspect of this 

figure is the appearance of saw-tooth oscillations similar to those seen in the ultrasound 

experiment. The peaks between 0.5 and 1 m are organized into a curve similar to the 

curve resulting from the direct rays in Figure 5.9. Between 1 and 2m, we see an 

accumulation of peaks where the counter-clockwise whispering gallery trajectories 

accumulate. 

_, 

0 
l(m) 

Figure 5.20: The amplified magnitude of the semi-classical wave function for path 
lengths in the range 0 to 5 m. 
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After the direct and whispering gallery trajectories have escaped, the 

intermediate to long path lengths result from the parallel mirror and chaotic trajectories. 

Figure 5.21 shows the path length spectrum for path lengths in the interval 5 m to 10m. 

Despite the fact that these are relatively short path lengths, the spectrum has become 

immensely complex. Regular scattering trajectories are still present, namely the so-

called parallel mirror trajectories. This set of trajectories results in an infinitely long 

saw-tooth oscillation. The other peaks in Figure 5.21 result from chaotic trajectories. 

5 
L(m) 

Figure 5.21: Semi -classical calculation for path lengths in the range from 5 to 1 0 m. 

Let us now consider the spectrum resulting from longer paths. ·Figure 5.22 shows 

our calculations for path lengths in the interval from 10 m to 15 m. The figure shows 

few peaks. The sparseness in oscillations is not due to destructive interference but a lack 

of interpolated trajectories. At this resolution, the escape segments are short in length. 

Our interpolation is based on a simulation comprised of two million trajectories. If we 

did not pick up enough points in an escape segment for an interpolation, then we do not 
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interpolate yt{p0) for that escape segment. Here we have gone past the limits of 

reliability of our calculation. We will discuss a possible refinement of the semi-classical 

approximation in Chapter 6. 

L(m) 

Figure 5.22: Path length spectrum for path lengths in the interval of 10m to 15m. 

e.) Semi-classical Calculation: Point Detector at y = 0 

Figures 5.20, 5.21, and 5.22 give a global picture ofthe transmission 

probabilities for a vertical detector line past the vase's neck. We will now examine the 

spectrum for one detector point. We present the spectrum observed at the detector point 

y = 0, which is situated along the axis of symmetry. Sixteen trajectories with path 

lengths up to 3m are shown in Figure 5.23 below. Around the peaks we have plotted 

the trajectories that correspond to each peak. Underneath each trajectory is an integer 

indicating to which peak the trajectory corresponds. 
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The first peak is obviously due to the direct trajectory. The second peak results 

from the first parallel mirror trajectory. After this trajectory comes a cluster of eight 

peaks constructively interfering. Trajectory 3 may be regarded as the first in a sequence 

of counterclockwise whispering gallery trajectories (we find only counter-clockwise 

whispering gallery trajectories at this detector point as the clockwise whispering gallery 

trajectories are focused into a narrow band above the point detector under consideration). 

Trajectories 4 and 6 are also both whispering gallery trajectories that escape after two 

reflections. We can see that trajectory 4's last reflection occurs close to the inflection 

point while trajectory 6's is far from the inflection point. Trajectory 5 is another parallel 

mirror trajectory. Trajectories 7 and 8 are whispering gallery trajectories that escape 

after 3 reflections. Again, we see that trajectory 7's last reflection is near the inflection 

point while trajectory 8's is far away from the inflection point. Trajectories 9 and 10 are 

also whispering gallery trajectories that escape after four reflections. 
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Figure 5.23: Path length spectra for path lengths up to 3m. 
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Trajectories 12, 14, and 16 are also parallel mirror trajectories. We see that as the 

number of reflections increase, the amplitudes of the peaks decrease. Trajectories 11, 

13, and 15 are the first chaotic trajectories to escape. They are members of the escape 

segment AI (see Figure 5.1), which results from the intersection of~ and KI. 

Let us now consider Figure 5.24, which shows the first six trajectories arriving at 

the point detector from segment AI. We see that as L increases, the number of 

reflections also increases. Furthermore, the amplitudes are also decreasing with 

increasing path length. We see that just following peak 4 a cluster of peaks containing 

many trajectories appears. Trajectories 5 and 6 contribute to this cluster. Given that 

there are many trajectories contributing to this cluster and the amplitudes are large 

enough to be apparent, we conclude that there is little destructive interference occurring 

and thus these peaks should be measurable. 

3 

.J 2.5 

2 

1.5 
1 2 

3 4 

Figure 5.24: First 6 trajectories arriving at Yn = 0 from escape segment AI and their 
corresponding peaks in the transmission spectrum. 
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Finally, let us consider the path length spectrum for path lengths 3 m to 6 m 

shown in Figure 5.25. At this point, the chaotic trajectories dominate the spectrum. Let 

us consider just a few of the chaotic trajectories contributing to the spectrum. We first 

consider trajectories from the escape segments E1, E2 and E3. Figure 5.25 shows that as 

the number of reflections to escape the complex increases, the amplitude also decreases. 

This observation seems to hold for the peaks corresponding to trajectories from the 

escape segments B1, B2, and B3. Finally, consider the first two escape segments from the 

F and G-epistrophes. These two epistrophes are spawned by the segment E1. We see 

that their peaks overlap to form one peak, because the resolution is inadequate to 

separate them. The same applies to the two peaks corresponding to trajectories from the 

segments F2 and G2. If the electromagnetic waveguide experiment is realized, we can 

verify the existence of the early and some intermediate epistrophes and their children by 

matching peaks in figures such as Figure 5.25 to the experimentally obtained 

transmission probabilities. 
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Figure 5.25: Spectrum for path lengths in the interval from 3m to 6 m. The peaks 
corresponding to several escape segments are given the same labels as in Figure 5.1. For 

each labeled escape segment, one interpolated trajectory is also presented. 

v.) Conclusions 

In this chapter, we have examined the chaotic trajectories present in the vase. 

We first examined several chaotic trajectories that are members of escape segments 

labeled in Figure 5.1. We saw that trajectories belonging to a single epistrophe possess 

some similarities and thus characteristics of the trajectories can be assigned to 

epistrophes. We then examined the results of an experiment conducted by Dr. Mathew 

Len Keeler and Joshua Geifer at the University of Minnesota, Morris. They constructed 

a life-sized vase with the curved boundary walls constructed from Teflon, which were 

then sandwiched between large aluminum plates. An ultrasound transducer was used as 

a point source and the escaping signal was recorded for a number of detector positions. 

We compared the escaping ultrasound signal to a classical simulation. We 

started a large family of trajectories and discarded those that did not escape. For each 

escaping trajectory, its escape time and detector position was recorded. This "current" is 
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organized into a complex series of saw-tooth oscillations in which each type of trajectory 

makes a specific contribution. Comparing the classical simulation to the recorded 

ultrasound signal showed good agreement as the ultrasound burst escaped in a similar set 

of saw-tooth oscillations. This experiment demonstrates that classical chaos showed up 

in the escaping classical waves in that at points at which the escaping ultrasound signal 

is highest corresponds to the escape times and positions of classical trajectories. By 

isolating the contribution to the classical current due to the chaotic trajectories, we 

concluded that the early epistrophes we have found in numerical simulations indeed 

exist. 

Our final set of results is an approximation to the time independent Schrodinger 

Equation for waves escaping the vase. We used the two-dimensional WKB 

approximation to solve for the wavefunction along a vertical line past the vase's neck at 

x = 1.5. The approximate wave function is a sum of terms, where each term itself is a 

wave function constructed from a classical trajectory. These classical trajectories are the 

result of an interpolation in which we numerically compute trajectories connecting 

source and detector points. 

These predictions can describe a quantum particle traveling through a vase

shaped cavity. Also, however, quantum chaos can be probed with an electromagnetic 

cavity. The idea is to construct a system with identical geometry in such a way that 

Maxwell's Equations for one component of the electric field reduces to the Helmholtz 

Equation, which is identical to the time independent Schrodinger Equation in form. We 

imagine such a cavity of length 1 m along the axis of symmetry. We imagine moving a 
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detector amongst 21 points along a vertical line segment past the vase's neck spanning 

the space between the boundaries. 

We presented not the actual wave function, but its Fourier Transform. The 

experimental input included in our model is a wave number. For a single detector point, 

the wave function is evaluated for all trajectories over a set of wave numbers. Fourier 

transforming these functions results in a function dependent on classical path lengths. 

We then scaled this Fourier transform by an exponential to amplify the data at larger 

path lengths. We presented this scaled Fourier Transform as a function of path length 

and detector position. Our model for the wave function results in a set of peaks that are 

organized into a set of saw-tooth oscillations similar to those seen in the ultrasound 

experiment. This should come as no great surprise as the same oscillations appeared in 

the classical simulation, and our model wave function is constructed directly from these 

classical trajectories. 

We then examined the spectrum at the detector pointy= 0. We first saw that for 

path lengths up to 3m, there were 16trajectories contributing to the spectrum. We 

examined the trajectories corresponding to these peaks. The smallest path lengths 

belonged to the direct trajectory and the first so-called parallel mirror trajectory. 

Following the latter trajectory, we saw a large cluster oftrajectories that were 

constructively interfering. This cluster included the interpolated whispering gallery 

trajectories. These trajectories escape early, and thus do not contribute to the spectrum 

at longer path lengths. 
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We then examined a figure emphasizing six peaks due to trajectories that are 

members of the escape segment A1. We saw that their amplitudes were large enough for 

verification in an experiment. Afterwards, we moved onto examining other peaks 

associated with chaotic trajectories. We saw that the early escape segments contributed 

discernible peaks. Furthermore, we were able to discern peaks associated with the F and 

G-epistrophes, which are spawned by the segment E1. For the sake of brevity, we did 

not examine all peaks contributed by the early escape segments. However, our results 
I 

show that by identifying the peaks to their classical trajectories and matching these 

trajectories to their escape segments, the epistrophic structure can be experimentally 

verified. 

Our study of the vase is now complete. In the next and final chapter, we will 

make concluding remarks and discuss potential problems of study regarding the vase. 
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-Chapter 6-
Conclusions and Future Work 

i.) Introduction 

In this final chapter, we will summarize the important results of this study. We 

will discuss the remaining problems concerning the vase itself and the homoclinic 

tangle. We will discuss additional applications ofthe HLD to the vase's tangle. We will 

discuss possible refinements to the Teflon vase experiment. Finally, we will discuss a 

refinement of the semi-classical calculation. 

ii.) The Vase, Part I 

We have seen that the vase possesses a complicated set of trajectories, comprised 

of both trapped and scattering trajectories. The scattering trajectories themselves can be 

categorized as either regular or chaotic trajectories. The time for chaotic trajectories to 

escape the vase possesses a complicated recursive structure. We saw that by 

transforming to a specific phase space of variables defined on the vase's boundary walls, 

the structure underlying the escape time was revealed. However, we saw that to 

compute the phase space coordinates of a trajectory. We had to first numerically 

compute the trajectory and then numerically compute the phase space coordinates at 

each point of reflection. One potential problem is searching for an analytic mapping 

acting on the phase plane such that given any set of initial conditions, the entire phase 

space trajectory can be calculated without propagating a trajectory within the vase first. 

This would most likely require finding an exact solution for the arclength integral ( eq. 

(1.8)). Another potential problem is the determination of how the minimum delay time 
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depends on the parameters A and w. This would be made easier with an analytic 

mapping acting on the coordinates (q,p). However, most likely such a search would 

result in a numerical plot of D as a function of A and w. 

iii.) Homotopic Lobe Dynamics 

We have applied HLD three times to the homoclinic tangle underlying the vase. 

We computed four, 12, and 16 iterates of U: and derived sets of dynamical equations 

that encoded the folding and stretching of 'UaF after four, 12, and 16 iterates. The 4-basis 

encodes the minimal amount of information of the tangle and reproduces the predictions 

of the older method. We saw that the dynamical equations acting on the 4 and 12-bases 

resulted in almost identical minimal sets for 'UaF and the burst of trajectories. C12 's 

unstable boundary was the first segment of U: to contain an additional pair of 

homoclinic points. Since the 4-basis was not constructed using C12, the dynamical 

equations acting on the 4-basis were unable to predict this additional escape segment at 

12 iterates. However, excluding the additional segment at the 12th iterate, we saw that 

the minimal sets for [ 'UaF ]4 and [ 'UaF ] 12 were identical. 

Increasing J to 16, we found two additional fingers in C16, one of which wound 

under the finger in C12. This observation seems to suggest that the finger in C16 forces 

the finger in C12. Since we do not know the entire unstable manifold, we cannot say this 

for certain. The minimal set of [ U: ]I6 contained the finger in C12 . Furthermore, we saw 

an unexpected kind of epistrophe spawning appear near the finger in C12 in the predicted 

minimal set of [ U: ] 16. We expected that each escape segment would spawn two 
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epistrophes on either side after four iterates. However, we found an instance in which an 

escape segment was predicted to spawn one epistrophe at four iterates and its second 

epistrophe at five iterates. This unexpected prediction matched the numerically 

computed escape time of 'u;. However, we also saw an instance (eq. (3.37b)) when an 

escape segment was predicted to spawn a sequence after four iterates and a sequence 

after five iterates but in fact, the actual escape segment spawned both sequences after 

four iterates. In conclusion, Homotopic Lobe Dynamics recovers all homoclinic 

intersections up to J iterates. Furthermore, our calculations show that it correctly 

predicts some of the epistrophes topologically forced to exist past J iterates. 

We predicted the minimal sets for the burst of trajectories launched from the vase 

boundary at the·point (0.3, 0.4067) within each of the three bases. Again, we found that 

the 4 and 12-bases predicted identical minimal sets, the same minimal set predicted for 

['lit ]4. An isolated escape segment appeared at the 11th iterate. This segment was not 

predicted by any of the three bases. We saw in Table 3.3 that £ 16 contains 149 escape 

segments, the 4-basis predicts 144 escape segments, and the 16-basis predicts 145 

segments. The additional work predicted one additional escape segment in [.fo]l6. 

Indeed, HLD can generate minimal sets for general curves of initial conditions. 

Furthermore, our calculations have shown that by increasing J, we can in fact enlarge the 

predicted minimal sets. 

One potential problem is to continue with this analysis and search for 

pseudoneighbors past the 16th iterate of 'lit . However, this would require getting 

around the nature of the unstable manifold: that is to repel nearby points. This is not a 
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problem as interpolation algorithms have been developed specifically for computing 

long segments of stable and unstable manifold [ 1-2]. Computing a longer segment of 

U: could result in the prediction ofthe isolated segment contained in £ 11 . However, this 

is something that cannot be ascertained a priori. 

In Chapter 4, we discussed the information contained within the three bases. We 

used another tangle, the so-called hydrogen tangle, to help clarify the discussion. For 

both tangles, we found that when one uses pseudoneighbors that are found not to be true 

neighbors, the bases contained no additional information (hydrogen tangle: J = 2; vase 

tangle J = 12). This suggests that while one can apply the algorithm if given a pair of 

pseudoneighbors that are not genuine neighbors, the pseudoneighbors do not represent 

"real topological information". In both tangles, the pseudoneighbors belonged to fingers 

that upon inclusion in the dynamical equations, should have produced additional escape 

segments in the minimal sets. When we increased J (hydrogen tangle: J = 3; vase tangle: 

J = 16), we found pseudoneighbors that appeared to represent real topological 

information. The corresponding topological entropies increased, which predicts an 

increase in complexity in the dynamical equations. These results further support the 

claim that the minimal sets will be enlarged only if (apparently) real topological 

information is used to construct the dynamical equations acting on a bridge basis. 

Another potential problem is to include additional structure in the form of a 

heteroclinic tangle. This is a structure similar to a homoclinic tangle except that the 

stable and unstable manifolds are attached to an unstable periodic orbit instead of an 

unstable fixed point. It has been shown that Homotopic Lobe Dynamics can be applied 
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to heteroclinic tangles [3]. In the case of the vase, there appears to be a heteroclinic 

tangle associated with an unstable periodic orbit of period-7 surrounding the stable 

continent. This heteroclinic tangle is said to be nested within the prominent homoclinic 

tangle studied in Chapters 3 and 4. One could compute finite segments of the unstable 

manifold emanating from each point in the unstable periodic orbit and essentially follow 

the same algorithm outlined in Chapter 2 in order to derive symbolic dynamical 

equations that describe the folding and stretching ofboth tangles. 

iv.) The Teflon Vase Experiment 

In all theoretical considerations, there is always the question of whether or not 

the interesting phenomena appearing in simulations appear in the real world. One of the 

primary reasons for studying the vase was to make a set of predictions for a system that 

is more conducive towards experimental realization than the hydrogen system discussed 

in the introduction. The vase was realized as a cavity with an ultrasound source. 

Comparing the classical simulation to the escaping signal revealed that the classical 

waves were organized by the classical rays. Specifically, we saw that the escaping 

signal was strongest near the arrival of a classical ray. We saw a strong correlation 

between oscillations due to the chaotic trajectories and oscillations in the detected signal. 

This is evidence that the early escape segments do indeed exist. In conclusion, the 

Teflon vase is a reasonable experiment for studying the chaotic structure seen in our 

numerical simulations. 

However, there were problems with the experiment. First, the detector was 

limited in resolving late arriving epistrophes due to attenuation and absorption. The 
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primary reason for constructing the vase boundaries out of Teflon was due to the 

material's flexibility [ 4]. To minimize absorption, a more reflective material would need 

to be used. Furthermore, there is a distinct ringing following the directly escaping 

pulses. It is unknown if the ringing originates in the source (multiple pulses released) or 

actual ringing in the detector due to a single pulse. If the ringing originates in the 

detector, then it would contribute to the recorded signal each time a pulse of energy 

enters the microphone. Refining the experiment would require determining the origin of 

the ringing and filtering it from the recorded signal. However, the ex;reriment itself may 

not be adequate at resolving the intermediate and long-time structure due to the 

attenuation of ultrasound traveling through air. The problem of attenuation could be 

removed by choosing a medium in which ultrasound is slowly attenuated. However, this,-, 

is a deviation from geometric ray optics and the media's properties would need to be 

included in ray propagation. 

v.) Semi-classical Calculation 

We saw that the semi-classical calculation contained oscillations similar to those 

seen in the ultrasound experiment. Furthermore, we also saw that peaks in the 

calculation can be matched to their corresponding trajectories. If these trajectories are 

chaotic, then they can be matched to their escape segments, thus verifying the existence 

of particular escape segments and epistrophes. 

Refining the semi-classical calculation is feasible. The central task is developing 

an efficient method for interpolating chaotic trajectories connecting a point source to a 

point detector. The escape segments result from the intersection of the stable manifold 
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with a vertical line representing a point burst. Therefore, the first step would be an 

efficient method for computing the endpoints of the escape segments. We have 

hypothesized that each escape segment itself contributes a hi-infinite pulse train of 

escaping trajectories. This is due to the fact that after escaping the complex, the escape 

segment's endpoints lie on the stable manifold and thus never escape. At each iterate, a 

setoftrajectories escape the vase while segments remain due to their attachment to the 

stable manifold. Once the endpoints of the escape segment have been identified, the 

second step would be to interpolate the trajectories escaping after each bounce following 

the segment's escape from the complex. 
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