
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2009

A privacy preserving framework for cyber-physical systems and A privacy preserving framework for cyber-physical systems and

its integration in real world applications its integration in real world applications

Haodong Wang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Haodong, "A privacy preserving framework for cyber-physical systems and its integration in real
world applications" (2009). Dissertations, Theses, and Masters Projects. William & Mary. Paper
1539623552.
https://dx.doi.org/doi:10.21220/s2-75t7-bw53

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-75t7-bw53
mailto:scholarworks@wm.edu

A Privacy Preserving Framework for Cyber-Physical

Systems and its Integration in Real World Applications

Haodong Wang

Shanghai, China

Master of Science, The Pennsylvania State University, 2000

Bachelor of Engineering, Tsinghua University, 1994

A Dissertation presented to the Graduate
of the College ofWilliam and Mary in Candidacy for the Degree of

Doctor ofPhilosophy

Department of Computer Science

The College of William and Mary
August, 2009

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor ofPhilosophy

Haodong Wang

Approved by the Committee, July 2009

7 Committee Chair
Dr. Qun Li

Computer Science Department

The College of William and Mary

~~:::=
Computer Science Department

The College of William and Mary

Dr. Weizhen Mao
Computer Science Department

The College of William and Mary

Dr. Haining Wang
Computer Science Department

The College of William and Mary

Dr. Gexin Yu
Mathematics Department

The College of William and Mary

ABSTRACT PAGE

A cyber-physical system (CPS) comprises of a network of processing and communication capable
sensors and actuators that are pervasively embedded in the physical world. These intelligent com­
puting elements achieve the tight combination and coordination between the logic processing and
physical resources. It is envisioned that CPS will have great economic and societal impact, and
alter the qualify of life like what Internet has done. This dissertation focuses on the privacy issues
in current and future CPS applications. As thousands of the intelligent devices are deeply embed­
ded in human societies, the system operations may potentially disclose the sensitive information
if no privacy preserving mechanism is designed. This dissertation identifies data privacy and lo­
cation privacy as the representatives to investigate the privacy problems in CPS. The data content
privacy infringement occurs if the adversary can determine or partially determine the meaning of
the transmitted data or the data stored in the storage. The location privacy, on the other hand,
is the secrecy that a certain sensed object is associated to a specific location, the disclosure of
which may endanger the sensed object. The location privacy may be compromised by the adver­
sary through hop-by-hop traceback along the reverse direction of the message routing path. This
dissertation proposes a public key based access control scheme to protect the data content privacy.
Recent advances in efficient public key schemes, such as ECC, have already shown the feasibility
to use public key schemes on low power devices including sensor motes. In this dissertation, an
efficient public key security primitives, WM-ECC, has been implemented for TelosB and MICAz,
the two major hardware platform in current sensor networks. WM-ECC achieves the best perfor­
mance among the academic implementations. Based on WM-ECC, this dissertation has designed
various security schemes, including pairwise key establishment, user access control and false data
filtering mechanism, to protect the data content privacy. The experiments presented in this disser­
tation have shown that the proposed schemes are practical for real world applications. To protect
the location privacy, this dissertation has considered two adversary models. For the first model
in which an adversary has limited radio detection capability, the privacy-aware routing schemes
are designed to slow down the adversary's traceback progress. Through theoretical analysis, this
dissertation shows how to maximize the adversary's traceback time given a power consumption
budget for message routing. Based on the theoretical results, this dissertation also proposes a sim­
ple and practical weighted random stride (WRS) routing scheme. The second model assumes a
more powerful adversary that is able to monitor all radio communications in the network. This
dissertation proposes a random schedule scheme in which each node transmits at a certain time
slot in a period so that the adversary would not be able to profile the difference in communication
patterns among all the nodes. Finally, this dissertation integrates the proposed privacy preserving
framework into Snoogle, a sensor nodes based search engine for the physical world. Snoogle al­
lows people to search for the physical objects in their vicinity. The previously proposed privacy
preserving schemes are applied in the application to achieve the flexible and resilient privacy pre­
serving capabilities. In addition to security and privacy, Snoogle also incorporates a number of
energy saving and communication compression techniques that are carefully designed for systems
composed of low-cost, low-power embedded devices. The evaluation study comprises of the real
world experiments on a prototype Snoogle system and the scalability simulations.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Privacy Issues

1.2 Data Privacy Protection

1.3 Location Privacy Protection .

1.3.1

1.3.2

Contributions

Organization

2 Public-key Cryptography Implementation on Sensor Platforms

2.1

2.2

2.3

RSA Introduction

ECC Introduction

2.2.1

2.2.2

Elliptic Curve Cryptography

Elliptic Curve Digital Signature Algorithm (ECDSA) .

Implementation

2.3.1 Large Integer Operations

ix

xi

xii

2

3

6

8

11

14

15

18

19

19

20

22

23

2.4

2.5

2.6

2.3.2

2.3.3

2.3.1.1

2.3.1.2

2.3.1.3

2.3.1.4

Multiplication and Squaring .

Modular Division .

Modular Reduction

Inversion

RSA Optimization

2.3.2.1

2.3.2.2

Montgomery Reduction

Chinese Remainder Theorem (CRT)

ECC Optimization

2.3.3.1

2.3.3.2

2.3.3.3

Addition and Doubling

Modular Reduction .

Further Optimization

RSA Evaluation

2.4.1

2.4.2

Experimental Results and Implementation Challenge

Performance Analysis

ECC Evaluation

2.5.1 The performance ofECC Implementation

23

25

26

27

27

28

28

29

29

31

32

34

34

35

37

37

2.5.1.1 A Performance Anatomy ofECC Point Multiplication on MICAz 40

2.5.2 Performance Comparison .

Conclusion

41

43

3 Data Privacy Protection 47

48

51

53

3.1

3.2

3.3

User Access Control

System Model and Assumptions

Pairwise Key and Local Access Control

ii

3.3.1

3.3.2

3.3.3

3.3.4

Pairwise Key Establishment Between Two Sensor Nodes

Local Access Control .

Cost Analysis . . .

Security Analysis .

3.4 Remote Access Control

3.5

3.6

3.4.1

3.4.2

Cost Analysis .

Security Analysis .

System Implementation . .

3.5.1

3.5.2

User Module and Other Components

Other Sensor Platform

Analysis and Evaluation .

3.6.1 Analytical Results

3.6.2

3.6.3

3.6.1.1

3.6.1.2

Pairwise Key .

Local User Access Control

Experimental Results

3.6.2.1

3.6.2.2

3.6.2.3

Experiment Test-bed and Parameter Setting

Pairwise Key Establishment .

Local Access Control

Remote Access Control

3.6.3.1

3.6.3.2

3.6.3.3

Local Endorsement

Complete Remote Access Control.

Porting to Other Sensor Platforms .

4 False Data Filtering

iii

53

57

58

59

61

65

66

68

68

70

71

72

72

76

77

77

79

81

84

84

86

87

88

4.1

4.2

4.3

Network and Security Model

Public-key based False Data Filtering (PDF) .

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

Shamir's Secret Sharing .

ECPVS Signature Scheme

Threshold Signature Generation

Cost Analysis . . .

Security Analysis .

Probabilistic False Data Filtering .

Performance Evaluation

4.3.1

4.3.2

4.3.3

Experiment Testbed and Parameter Setting

Evaluation of Threshold Signature Generation .

PDF Message Overhead and its Scalability . .

5 Location Privacy

5.1

5.2

5.3

5.4

Network and Adversary Model

Performance Bound Analysis .

5.2.1

5.2.2

5.2.3

Performance Bound for General Routing Schemes

Performance Bound Analysis

Simulation Results

Average Traceback Time .

Max-Min Traceback Time

5.4.1

5.4.2

5.4.3

Max-Min Trace-back Time for Length-adjustable Routes

Max-Min Traceback Time for Length-fixed Routes

Max-Min Traceback Time for Splicing Network

iv

91

92

93

94

95

98

99

101

102

102

104

107

109

114

117

117

119

120

121

124

125

127

130

5.5

5.6

5.7

5.4.4 Multiple Source Objects

Privacy-aware Routing Schemes

5.5.1

5.5.2

5.5.3

5.5.4

Random Parallel Routing .

Weighted Random Stride Routing

Evaluation

5.5.3.1 Simulation Setup and Metrics

5.5.3.2 Simulation Results .

Power Consumption Overhead

Adversary Sensor Network

5.6.1

5.6.2

5.6.3

Problem

Multiple Messages

Evaluation

Conclusion

6 A Search Engine for the Physical World

6.1

6.2

6.3

6.0.1 Challenges

System Design . .

System Components

System Architecture

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

Data Processing in Object Sensors

Data Processing and Storage at IPs

Additional Discussion

Communication Compression

Performing Query

v

133

135

136

137

139

139

141

145

147

148

149

154

157

158

159

160

160

162

163

163

166

167

169

6.3.1

6.3.2

6.3.3

Query Process

Improving Query Accuracy

Performing Top-k Query

6.4 Mobility and Security Support .

6.5

6.6

6.7

6.8

6.4.1

6.4.2

Supporting Mobile Objects .

Providing Security and Privacy .

Prototype Experience

6.5.1

6.5.2

System Setup and Parameters

Prototype Test .

Performance Evaluation .

6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

Workload Design

Data Input and Maintenance at IPs .

Local Query

6.6.3.1

6.6.3.2

6.6.3.3

Query Latency .

Compare to searching without IPs

Query Accuracy

Distributed Top-k Query .

6.6.4.1

6.6.4.2

6.6.4.3

Message Complexity

Query Response Time

Impact of IDF on Query Accuracy

Security Overhead for User Query

System Limitations

Conclusion

VI

169

170

171

174

174

175

176

176

179

181

182

182

187

187

189

190

192

192

193

195

197

198

199

7 Conclusion 201

Bibliography 204

Vita 212

vii

To my wife, Yawen, and my sons, Branden and Caden

ACKNOWLEDGMENTS

First, this dissertation would not have been possible without the expert guidance of my esteemed

advisor, Dr. Qun Li. Not only was he readily available for advising me, but he always carefully

read my paper drafts, sentence by sentence, and generously helped me to prepare for all sorts

of oral presentations. His comments are always extremely thoughtful, inspiring and helpful. His

constructive urgings pushed many of my projects to the frontier that I would never reach by myself.

His dedicate and passion for the high quality research has always been the criteria I want to pursue.

My thanks go out to the members of my dissertation committee, Dr. Phil Keams, Dr. Weizhen

Mao, Dr. Raining Wang and Dr. Gexin Yu. They have generously given their time and expertise

to better my work. I thank them for their contribution and their great support.

I must acknowledge as well the many colleagues and friends who supported my research and

projects over the years. Especially, I am grateful to my colleagues Bo Sheng and Chiu C. Tan for

many collaborative projects during my PhD study. I thank Fengyuan Xu for his great assistants

in the road tests for the vehicular wireless network project. My thanks also go to Hao Han, Lei

Xie, Yifan Zhang, and Wei Wei for many engaging discussions. My appreciation must go also to

Mengjun Xie for many discussions in various research topics.

I would like to extend my thanks to all the staff in the Computer Science Department. In

particular, I would like to appreciate Vanessa Godwin and Jacqulyn Johnson. Their kind assistance

on numerous administration issues and reimbursement saved me great amount of time and enabled

me to completely focus on my research.

I am especially grateful to my high school, Shanghai High School (SHS). I have the great

fortune of benefiting from SHS's rigorous curriculum, elite teachers and gorgeous campus. Not

only did SHS give me a solid foundation that allows me to pursue higher education, but it helped

ix

me to have the correct outlook on the world and on life.

Finally, I would like to dedicate this dissertation to my wife, Yawen, and our two little boys,

Branden and Caden. It is truly a bad idea to marry a PhD graduate student, who has to spend almost

all the time sitting in the lab or the library. I am blessed to have Yawen who has unwavering faith

in me, always stand my side, support and encourage me throughout the years. Branden and Caden

also cheered me during the final years in my PhD journey - teasing me as I struggled with paper

and thesis writing.

X

List of Tables

2.1

2.2

2.3

2.4

2.5

Execution time profiles of some important modules. . . .

ECC running time comparison on three sensor platforms

ECC implementation code size.

ECC performance comparison with other implementations

ECC implementation code size and data size comparison. .

35

38

39

41

42

3.1 ECC performance comparison across different platforms 70

4. 1 WM-ECC performance data . 1 03

5.1 Length of shortest 16 paths between the source and the sink. 15 5

6.1 The summary of Snoogle implementation. 177

xi

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

ECC-based pairwise key establishment scheme

The optimized ECC-based pairwise key establishment scheme

ECC based local access control scheme .

ECC-based remote access control scheme

User access control test-bed

(a) security resilience; (b) memory overhead in key establishing

55

56

58

64

69

73

3.7 (a) Key establishing delay; (b) The message complexity in key establishing 80

3.8 (a) Key establishing energy consumption; (b) Local authentication time . . 82

3.9 (a) Authentication memory overhead; (b) authentication message complexity 83

3.10 (a) Local authentication time; (b) remote access key establishing time

3.11 (a) Remote query delay; (b) Remote query performance comparison .

4.1

4.2

4.3

4.4

5.1

5.2

Threshold signature generation scheme .

Time to share a random secret . .

System signature generation time .

Overall time duration to forward a message with filtering enforced

Adversary's radio detection model

Network setup for performance bound simulation.

xii

85

87

97

105

106

106

115

119

5.3

5.4

5.5

The adversary's traceback time

Message distribution scheme with only two paths.

n routing paths are arranged to be parallel with each other.

5.6 n length-fixed routing paths between sk and A.

5.7

5.8

A portion of a splicing network.

Two data sources.

5.9 Weighted Random Stride routing scheme.

5.10 Pick the next hop with weighted probability.

5.11 Sensor topology for the simulation

5.12 Adversary's traceback time in Random Walk (lOrn)

5.13 Adversary's traceback time in Random Parallel routing (lOrn)

5.14 Adversary's traceback time in WRS routing (lOrn)

5.15 Adversary's traceback time in Random Walk (20m)

5.16 Adversary's traceback time in Random Parallel routing (20m)

5.17 Adversary's traceback time in WRS routing (20m)

121

121

125

127

130

134

137

138

140

141

141

141

143

143

143

5.18 The adversary's minimum traceback time with the detection range of 1 0 m. 144

5.19 The power consumption comparison among RW, RP and W RS routing schemes. 145

5.20 Message routing time . 156

6.1

6.2

6.3

6.4

6.5

Overview of Sensors, IPs and KeyJP Architecture

Sensor S 1 sending data to IP

Floorplan in the testbed . . .

Picture of a P DA Query Device .

Mobility test with beacon method

xiii

161

165

178

179

180

6.6

6.7

6.8

6.9

Mobility test with timer method . . .

Time taken to transmit metadata to IP

The time delay to write 256 byte of data with different write granularity.

Insertion performance with buffer and without buffer at IP

6.10 The amount of time to delete an object with 10 terms.

6.11 Time taken for IP to respond to a query

6.12 Time taken for IP to respond to a query.

6.13 Query latency with and without!Ps

6.14 Accuracy of query answer

6.15 Message complexity of distributed top-k query.

6.16 Query response time of distributed top-k query.

6.17 Query accuracy of distributed top-k query. . . .

6.18 User perceived private object query response time.

xiv

181

183

184

184

186

188

189

190

191

192

195

196

197

A Privacy Preserving Framework for Cyber-Physical

Systems and its Integration in Real World Applications

Chapter 1

Introduction

A cyber-physical system (CPS) comprises of a network of processing and communication capa­

ble sensors and actuators that are pervasively embedded in the physical world. These intelligent

computing elements achieve the tight combination and coordination between the logic processing

and physical resources. CPS creates a new realm that computing can be closely interacted with

the physical world where it occurs. It is expected [57] that this tight link between the logical

processing elements and the physical world will dramatical improve the system performance in

terms of adaptability, autonomy, efficiency, functionality, reliability, safety and usability. The real

world examples of the CPS system include the Distributed Robotic Garden [23] and CarTel [47]

project by researchers in MIT. The potential applications of CPS are enormous and can be used in

aerospace, automotive, chemical processes, civil infrastructure, energy, health-care, manufactur­

ing, transportation, entertainment, and consumer appliances. It is envisioned that CPS will have

great economic and societal impact, and alter the qualify of life like what Internet has done.

Unlike the conventional resource-rich computing systems, each individual computing element

in CPS is fairly weak for complicated tasks. Unlike the traditional embedded systems, on the

2

3

other hand, CPS works in a form of tightly coordinated device network rather than a stand-alone

system. The new computing system concept of CPS does present the technical challenges across

computer science. In this dissertation, we target on the privacy preserving problems in this new

realm. It is our strong belief that security and privacy is an indispensable component as thousands

of, even millions of, intelligent small devices become deeply integrated in human societies. For

example, sensors today can be found on diverse objects such as buildings, trees, cars [~~ 7], and

even clothing [3 5]. As these tiny devices become more ubiquitous in our environment, the privacy

issues have become the main concern for the real world applications of CPS. To facilitate the

study, this dissertation selects the wireless sensor networks as the platform to study the privacy

issues because sensor networks can be considered as a pre-cursor generation of CPS, and sensor

devices have already become relatively affordable commodities. From now on, CPS and sensor

networks are used interchangeably in the rest of the dissertation.

1.1 Privacy Issues

Before going into the problem, let us first look at the definition of privacy. Privacy can be de­

fined as "the interest that individuals have in sustaining a 'personal space', free from interference

by other people and organizations" [20]. In the sensor network context, privacy can be easily

understood as the data privacy. The data sensed by the sensor nodes become the private interest

and should be protected. In addition to the data, there are other interests in sensor networks. For

example, routing is one of the main operations. As we will discuss later in detail, the message

routing paths are also very important information and may reveal some valuable system activities.

The privacy infringement occurs when the sensitive information of a certain private sector is

disclosed to an untrusted or unauthorized party. Note that the sensor networks can be considered

4

as a collection of many tiny devices that sense, collect and transport the information (including

the sensitive information) at their vicinity. The privacy problems emerge due to the deployment of

sensor networks because the information, previously was isolated and secluded within the private

sector, now can be more easily accessed through the sensor nodes. While sensor nodes provide

the efficient and automatic data collection capabilities, they also give the chance to the adversary

who can gather the information that is originally not easy to capture. If the privacy protection

technologies are not properly applied, the privacy concerns will lead to users rejecting the sensor

networks and thereby decrease the future deployments. This dissertation aims to provide privacy

protection for the sensor network and CPS related applications.

Privacy preserving in wireless sensor network is challenging. First, in contrast to the fact that

the privacy concerns in sensor network applications draw wide public discussions and attentions,

the privacy preserving technologies have only received a few attentions within the sensor network

research community. The main reason is that privacy is very broad term encompassing various

personal factors and corresponding legislations, so that the definition of privacy may vary a lot

given different application contexts. As the result, it is very hard to find the general technology

abstraction ofthe privacy model in the sensor network.

Second, it is difficult to implement security schemes in sensor networks. People often rely on

security schemes to solve the privacy problems. The security scheme implementation in sensor

networks, however, is not straightforward due to the extremely resource constrained sensor node

hardware platform. A typical sensor mote, such as MICAz [48], is only equipped with an 8MHz

processor and 4KB RAM. Given such a less powered tiny device, it is not feasible to directly

apply the existing security scheme, such as PGP. As we will show later, our experiments show that

it takes more than 20s for the MICAz mote to do a simple 1 024-bit RSA private key operation.

5

This poor performance indicates that the new security schemes become necessary to be used on

sensor nodes.

The sensor network is a tool that allows us to automatically perform the sensing tasks and

collect the sensed data. As we can see, while the services are provided, the potential privacy

infringement threats exist at every sensor network operation. Our goal is to investigate the privacy

problems and provide the right solutions. To better understand the privacy problems, let us first

look at the sensor network operations because the privacy leakage can happen at any operation

component. It is not difficult to learn that the basic sensor network operations are data collection

and data delivering. Sensor nodes are deployed to collect the sensed data and deliver the data to the

base station or the authorized user. Let us consider the privacy threats on these two components.

First, the sensed data normally contain sensitive information and should not be disclosed to the

unauthorized party. We thus identity the data privacy as the first privacy problem. Second, when

the data are moved from one place to another, it may also reveal some valuable system information.

For example, the adversary can use a radio detector to locate the transmitting sensor node in

its detection range since all parties in the wireless communication share the common medium.

Therefore, the radio detector can be used to find a specific routing path. Assuming the greedy

shortest path routing scheme is used, any two non-parallel routing paths can immediately reveal the

location of the base station. The adversary can also attempt traceback on the message route path

and finally find the source node location. The above location information, many times, also contain

system secrets and should not be disclosed to the untrusted third party. Therefore, we identifY the

location privacy as the second privacy problem in the sensor network. In this dissertation, we

consider these two privacy problems as the representatives of the general privacy issues in sensor

networks because they are the most important operation components.

6

The data content privacy threat is that an adversary can determine or partially determine the

meaning of the transmitted message or the data stored in the sensor node's storage. The data

content privacy can be preserved by security schemes including data encryption and access control.

Location privacy is the secrecy that a certain event or data is associated to a specific location in

the sensor network. The association of the location of the sensing nodes and the sensed data and

events, in many applications, is sensitive and needs to be protected. Location privacy suggests a

level of safety for the source against the adversary's discovery, or how hard for an adversary to

trace back to the source. As we discussed previously, the location privacy has its uniqueness in

wireless sensor networks.

There are more privacy problem besides the data privacy and the location privacy, but it is our

understanding that the two privacy issues we have addressed are the most important. We consider

this dissertation as the first step to study the privacy preserving in sensor networks. We believe the

experiences of solving the two privacy issues can be used to understand and identity other privacy

issues in sensor networks. In the following, we give the introduction to the two privacy problems

in details.

1.2 Data Privacy Protection

Recent trends in sensor networks have seen the development of in-network data storage appli­

cations [1 07, 63] on sensor platforms with large storage capacity. In addition to data collection

and forwarding, the sensor nodes now can store the data in local flash storage. As the result, the

sensor is now responsible for protecting the data privacy from illegal accessing. It is tempting

to simply implement existing access control schemes directly onto the sensor. However, due to

limited power, memory and processing capabilities of the sensor hardware, this is not feasible.

7

Furthermore, access control in sensor networks differs from regular access control in that it is not

enough to simply deny unauthorized users access to the data. An unauthorized user should not be

allowed to use the network since network bandwidth is very limited and, more importantly, the

battery power of each node may be depleted after malicious users aggressively effuse messages to

the network.

To achieve access control, it is essential for sensor nodes to authenticate the identities of the

requesters. The basic idea in this work is to authenticate the user locally by the sensors in the user's

vicinity and transfer the endorsement of the local sensors to the remote sensor for data access. In

this way, unauthorized data access request will be prohibited locally so that DoS attack trying to

deplete the battery power of the network will be blocked locally. The access control proposed in

this work is composed of several components to work in a secure fashion. First, the sensors in

proximity need to exchange pairwise keys for secure communication. Second, the user needs to

get authenticated by the local sensors either for local sensor data access or for remote sensor data

access. Third, the local sensors also need to help the user and the remote sensor to build a pairwise

key.

Current sensor security efforts like [28, 16, 15] have focused on solving the first component

while [1 09] proposes a solution for local access control. There is no known solution for remote

access control. The common primitive in these research is based on symmetric key cryptography.

The conventional wisdom was that public key based solutions are too expensive to be efficiently

implemented on the sensor platform. As a result, symmetric key has been widely accepted as a

basic primitive in sensor security.

However, symmetric key primitives are not without their drawbacks. Symmetric key yields

high memory overhead, increases complexity for key pre-distribution and key management, and

8

inherent security vulnerabilities. Since symmetric key based schemes mostly require complicated

key pre-distribution, either for secret keys [28, 16, 1 5] or secret key spaces [26, 60], a compromised

sensor node causes the system secret leakage and creates a security threat to the rest of commu­

nication links. Due to the complicated key pre-distribution and key management schemes, a large

portion ofthe memory space has to be devoted to store the key information. Since the sensor ar­

chitecture requires a low-power design, it is unlikely that memory scarcity will improve in recent

years [J9]. With the very limited memory budget, the real world deployment of symmetric key

schemes becomes very impractical.

Recent new implementations of public key [41, 59] on sensors have shown that public key

cryptography is feasible for sensor networks. However, there is little work in evaluating the public

key solution in the context of a realistic sensor network application, and there is little experi­

mental study to compare the performance of the public key and symmetric key systems on real

sensor network platform. We have implemented RSA on MICAz sensors and ECC (elliptic curve

cryptography) [43] on both MICAz and TelosB motes, which are widely used in sensor network

research community and the symmetric key system on MICAz motes. Our experiment results

clearly show that ECC is significantly more efficient than RSA for sensor networks.

1.3 Location Privacy Protection

A common communication paradigm is for the sensors to obtain information about objects or

events and send data back to a base station (or sink) for further analysis. The wireless com­

munication path from the object to the base station may jeopardize the safety of the object if an

adversary is capable of detecting message flow traces back to the message source by moving along

the reversed path. The object, e.g., an animal of an endangered species, or the vehicle of our aides,

9

may have to be protected for safety reasons and the related location information should not be

disclosed. This concern will become even more serious for future sensor network prevalence in

pervasive computing applications as the ubiquitous information collections doubtlessly encroach

on the privacy ofthe people involved.

In this dissertation, we specifically focus on the source location privacy protect because the

protection for destination location can be easily achieved by extending our work. We aim to hide

the location of the message source and make it more difficult for an adversary to trace to the source

location. We assume that the security infrastructure such as secure communication has already

been built in. That is, no information carried in the message (e.g., packet head) will be disclosed

for the adversary to gain any knowledge about where the message comes from. That is to say

the data privacy has already been achieved. The adversary observes the wireless communication

within a certain detection range and traces toward the message source by moving in each step to

the node that involves in the currently detected message transmission.

Many message routing protocols have been proposed for sensor networks [49,55, I 02,1 03,45].

None of them is designed for location privacy protection. More recently, [74, 53] propose the

Phantom routing to solve the similar privacy issue. However, as we will show in Section 5.5.3, the

random-walk based Phantom routing has very poor performance in defending against the adver­

sary's traceback even if the adversary has very limited traffic monitoring ability.

In our work, we address the location privacy issue under a complete adversary model. When

the adversary only has limited traffic monitoring ability, we design the Weighted Random Stride

(WRS) routing scheme by distributing messages flows to a geographic area with certain energy

constraints to maximize the adversary's traceback time. When the adversary is more powerful,

e.g., being capable of deploying an adversary sensor network to monitor the traffic, however, we

10

develop a random schedule scheme in which sensors transmit messages, either a valid message or a

dummy packet, at a certain slot within a fixed time period, so that the adversary has no idea which

sensor is delivering the real messages, and cannot determine the message flow without learning

the message contents.

Location privacy suggests a level of safety for the source against the adversary's discovery, or

how hard for an adversary to trace back to the source. Thus, the time for the adversary to trace back

to the source is a natural metric for the location privacy. If the adversary has limited monitoring

power, the adversary can follow any random message path and thus trace back to the message

source. We use average traceback time and the possible minimal traceback time it takes for an

adversary to reach the source starting from the sink as two metrics for location privacy. Average

traceback time signifies an expected performance for the location privacy. The minimal traceback

time, which shows the worst case scenario, assumes that the adversary has the best luck to take

the route with the shortest time to get to the source. We assume that the adversary starts from the

sink because in many applications the sink position is known and it is the best starting point for

the adversary to get clue about the message flow. Nevertheless, our results can be extended to any

starting point of the adversary.

When the adversaries has limited detecting power, we design routing algorithms to maximize

the traceback time. We formulate this problem as an optimization problem constrained by the

energy budgets that are allowed to use in message routing. To gain more understanding about

this issue, we have tried to look at the problem from different perspectives. First we give an

approximation to the performance bound in a generalized scenario as a guideline for network

routing design. The traceback time is related to the number of nodes involved in routing. The

number of nodes used to carry messages implies the degree of how spread out the scrambled

11

routes are, and how hard an adversary can catch a message for traceback. Then we show how to

optimize the routing performance by considering several special cases in which fixed routes are

given. The fixed routes are also categorized as routes that are well separated without intersection

in the middle and splicing routes. Although this seems quite restricted, many applications fit in

those constraints. For example, an application may requires the routes to be well separated so

that the adversary has little chance to capture sufficient messages for message content decryption.

And many applications also dictate fixed routes to avoid certain dangerous area that adversaries

gather or enforce the routes to pass through certain points for various reasons such as information

multi-cast or data aggregation.

We extend our adversary model to a more powerful one, that is, the adversary can deploy an­

other sensor network to monitor all the communications in our network. We propose a random

schedule scheme in which each node transmits at a certain time slot in a period so that the adver­

sary would not be able to profile the difference in communication patterns among all the nodes.

Our goal is to minimize the message transmission delay so that to keep the flooding period as

short as possible, which is equivalent to find as many disjoint routing paths as possible. We give

an approximation algorithm to find optimal k disjoint routing paths to deliver the data messages.

1.3.1 Contributions

In this dissertation, we propose a privacy framework to address data privacy and location privacy

issues in the current and future CPS applications. The contributions of this dissertation can be

summarized as followings.

We develop the open-source public-key cryptosystems [95], including RSA and Elliptic Curve

Cryptography (ECC), for two popular sensor motes. Our further optimization work [Y2, 98], WM-

12

ECC, has significantly improved the ECC performance and established the leading position among

the ever published open-source software. On TelosB/Tmote Sky motes, WM-ECC achieves 0.77s

for signature time and 1.12s for verification time, three times faster than TinyECC, another popular

ECC implementation done by researchers in North Carolina State University. On MICAz motes,

WM-ECC also tops TinyECC by the margins of 0.65s in signature time and 0.48s in verification

time. Besides the sensor motes, WM-ECC has also been ported to more resource-rich devices like

PDAs ('1-4], and effectively reduced the running time by five times compared to standard cryptogra­

phy library on the market. The impact ofWM-ECC is immediate. Due to its superior performance

in execution time, small memory footprint and portability on all three popular sensor platforms,

WM-ECC has being used by UCLA, USC, Michigan State University, Iowa State University, and

more than a dozen of universities and companies around the world.

Based on WM-ECC, we investigate the user access control as an effective security mechanism

to protect the data privacy. We consider two access control scenarios depending on the location

that the interested data resides. When the information is stored in a local network node (within

the one-hop wireless communication range), we explored local access control schemes [96, 91] to

protect the information with the combination of communication efficiency and power efficiency.

The local access control scheme effectively defends against the user collusion attack, which is a

significant security vulnerability in the schemes based on symmetric-key cryptography. When the

interested data resides in a node located at multi-hop away, we proposed a threshold based remote

access control scheme [91, 99] that use local nodes to screen the unauthorized queries and endorse

the legitimate request to the remote node. The beauty of the threshold based schemes is that data

protection and network protection are achieved simultaneously. The threshold based idea can also

be extended to address the denial of service (DoS) attack. In the PDF scheme['):'] that is designed

13

to detect the adversary's fake messages, a group of neighboring nodes jointly generate a system

digital signature for each event report. As the result, false data filtering becomes straightforward

because only the report attached with a verified signature can be transmitted in the network.

Our work (97] in the privacy-aware routing design is the first to formulate the location privacy

as an optimization problem. We explore the theoretical foundation for privacy-aware routing in

sensor networks. Even though other research groups have worked on different routing schemes

for location privacy preservation, little is known about the theoretical bounds for those schemes.

We also show how to mathematically analyze the performance in terms of location privacy. This

work does not consider all schemed for preserving location privacy, but examines only routing

protocols in which messages follow predefined routes.

Finally, Snoogle (4il] is the first research work to propose and build Information Retrieval

(IR) for the physical world based on sensor devices. IR has only been used on large systems

such as servers and desktop machines, and not on tiny, low cost, resource limited devices used

in this dissertation. Prior work on sensor network data management investigated data query, or

index building for sensor databases, but not IR. To address energy constraint and memory space

limit issues, Snoogle also innovatively combines traditional techniques, such as Bloom filters and

distributed top-k query, with the resource constrained sensor devices. While bloom filters have

been used in other systems, the combination of this part into an IR based physical world search

engine, which is built on top of sensor devices, is a new concept. Unlike the top-k algorithm

proposed in prior work [29], our algorithm design addresses the challenges of message complexity

problem on resource constrained sensor devices. The ECC-based flexible user access control

schemes proposed in this dissertation are the first to integrate the resilient public key scheme into

an access control security scheme for a practical sensor network application.

14

1.3.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the public key primi­

tive (ECC and RSA) implementation, the foundation of our access control schemes, on MICAz,

TelosB, Tmote Sky, and shows ECC is more efficient than RSA for sensors. In Chapter 3, we

present our access control schemes, including pairwise key establishment, local access control

and remote access control, to protect the data privacy. We evaluate the access control schemes by

real world implementations. Chapter 4 investigate an effective way to discard adversary's false

reports. Chapter 5 discusses the privacy-aware routing schemes to deter the adversary's traceback

and protect the location privacy. Chapter 6 presents the Snoogle search engine that is based on

sensor devices. Finally, chapter 7 concludes the dissertation.

Chapter 2

Public-key Cryptography

Implementation on Sensor Platforms

Public-key cryptography (PKC) has been used extensively in data encryption, digital signature,

user authentication, and so on. Compared to the popular symmetric key based schemes proposed

for sensor networks, PKC not only provides a more flexible and simpler interface that requires

no complicated key pre-distribution, but has stronger security resilience to node compromise at­

tacks. It is a popular belief, however, in sensor network research community that public-key

cryptography, such as RSA and Elliptic Curve Cryptography (ECC), is not practical because the

required computational intensity is not suitable for sensors with limited computation capability

and extremely constrained memory space. The nascent exploration has already disabused of this

misconception. The recent progress in 1024-bit RSA implementation on Atmel ATmega128, a

CPU of 8Hz and 8 bits [40], shows that a public key operation takes less than one second, which

proves public-key cryptography is feasible for sensor network security related applications.

In this chapter, we details our implementation of 160-bit ECC cryptosystem on three com-

15

16

mercia! off-the-shelf sensor motes: MICAz, TelosB and Tmote Sky, which are the size of two

AA batteries integrating USB programming capability, an IEEE 802.15.4/ZigBee Compliant ra­

dio with integrated antenna. The MICAz mote features a 8-bit, 8MHz Atmel microcontroller with

4KB RAM, 128KB programmable ROM, and optional external memory for data collection. The

TelosB and Tmote Sky share the same hardware platform, they both are equipped with a 16-bit,

8MHz TI MSP430 processor with IOKB RAM, 48KB programmable ROM and 1MB on-board

flash memory for data collection. For the comparison purpose, we also implement the 1 024-bit

RSA cryptosystem on MICAz. Our results show why ECC is a better public key scheme than

RSA for the sensor motes.

The fundamental operations in RSA and ECC cryptosystems are large integer arithmetics over

the finite field. To efficiently perform RSA and ECC exponentiations on the low-power CPUs

of sensor motes, it is essential to optimize the expensive large integer operations. In particular,

multiplication and reduction are most dominant operations in both RSA and ECC. Since most CPU

cycles are consumed in these two integer operations, the efficiency ofthese two integer operation

modules directly determines the performance of the encryption and decryption. The low-power

CPUs have very limited number of registers (only 32 8-bit registers in ATmega 128). The large

integer operands cannot be loaded into the registers at one time, so that the latency of memory

accesses have to be paid for operand loading and storing between registers and memory. The

implementation challenge is to reduce the number of such memory accesses. In this work, we

adopt the hybrid multiplication method [~ l], which is a very effective way to reduce the number

of memory accesses. To precisely control the register and memory operations, we implement

this module in assembly language. Our experiments demonstrate that the hybrid multiplication

is at least 7 times faster than the conventional multi-precision multiplication programmed inC

17

language. The modular reduction can also be optimized under certain conditions. For example,

when the modulus is a pseudo-Mersenne number, the reduction can be greatly optimized and be

finished more than 1 0 times faster than the classic long division method.

In addition to the optimizations of the big integer operation. RSA and ECC can be further

optimized. Montgomery reduction can be applied to efficiently calculate the RSA exponentiation.

Chinese Remainder Theorem (CRT) can be used to reduce the exponent sizes and speed up the

RSA exponentiation for up to 4 times. In ECC, we apply a mixed coordinate, the combination of

Affine coordinate and Jacobian coordinate, to do ECC exponentiation, so that some expensive op­

erations can be avoided (e.g., inversion) or reduced (e.g., multiplication and squaring). The rest of

optimizations include Sliding-Window method [56], Non-adjacent Form [68], and Shamir's trick.

It is possible to further reduce the computation time by using extended instruction set proposed

in [4].

Our experiments show that ECC can efficiently run on all three sensor platforms. On MICAz

motes, it takes 1.35s to generate a signature, and 1.96s to perform a signature verification. ECC

is more efficient on Tmote Sky by taking the advantage of 8MHz and 16-bit CPU. The signature

generation and verification on Tmote are 0. 77s and 1.12s, respectively. Since TelosB mote, sharing

the same hardware with Tmote, can only run at 4MHz, the performance on TelosB is 1.54s for

signature and 2.25s for verification. In comparison, RSA has more computational overhead than

ECC on sensor motes. Even though the RSA public key operation can be efficient, which takes

0.79s on MICAz with a 17-bit public key, its private key operation consumes 21.5s on the same

hardware.

18

2.1 RSA Introduction

In RSA cryptography, a user, say Alice, has two keys: a'public key (e) and a private key (d). Alice

publishes her public key and keeps private key in secret. When Bob wants to send a message m

to Alice, and does not want any other to know the message contents, he just encrypts m by using

Alice's public key. Without the private key, it is computationally infeasible for others to decrypt

the ciphertext. After receiving the encypted message from Bob, Alice uses her private key to

decrypt the message.

The security of RSA scheme is based on the difficulty to factor a large integer (n). Here we

briefly go over the key generation procedure and encryption/decryption in RSA. Alice needs to

take following steps to get her public key e and private key d.

• Pick two random large prime number p and q, so that p 1- q;

• Compute n = p x q;

• Compute the totient: cp (n) = (p- 1)(q- 1);

• Choose an integer e as the public key so that 1 < e < cp (n), and e is co-prime to cp (n);

• Compute the private key d = e-1 (mod cp(n)).

To encrypt a message m, Bob computes c = me and sends cipher text c to Alice. The decryption

for Alice is to raise the value of her private key to the power of the ciphertext c, so that cd =

(me)d = med = m (mod n). The decryption procedure works due to following reasons. Because

ex d = 1 (mod (p-1)(q-1)), we have ex d= 1 (mod (p-1)) and ex d = 1 (mod (q-1)).

Applying Fermat's little theorem, we get med = m (mod p) and med = m (mod q). Applying

Chinese Remainder Theorem (CRT), we have med = m (mod n).

19

In practice, RSA must be combined with certain padding scheme to defend against secu-

rity attacks, such as Adaptive Chosen Cipher Text attack. The popular padding schemes include

Optimal Asymmetric Encryption Padding (OAEP) and Probabilistic Signature Scheme for RSA

(RSA-PSS). For the simplicity, we do not cover the padding scheme implementation in this work.

2.2 ECC Introduction

We briefly give a background introduction about elliptic curve cryptography, and corresponding

elliptic curve Digital Signature Algorithm.

2.2.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as the security solutions for wireless networks

due to the small key size and low computational overhead. For example, 160-bit ECC offers the

comparable security to 1 024-bit RSA. An elliptic curve over a finite field GF (a Galois Field of

order q) is composed of a finite group ofpoints (xi,Yi), where integer coordinates xi,Yi satisfY the

long Weierstrass form:

(2.1)

and the coefficients a; are elements in GF(q). Since the field GF(q) (q is a prime) is generally

used in cryptographic applications, (2.1) can be simplified to:

(2.2)

where a,b E GF(q).

The elliptic curve points form an additive abelian group, so that the addition of any two points

is a point in the group. Given two points P and Q, with the coordinates (x1 ,y1), (x2 ,y2), respec-

20

tively, the addition results in a point Ron the curve with coordinate (x3 ,y3), where x3 and Y3

satisfy

such that

X3 = L2 +L+x1 +x2 +a,

where

L = (y 1 + y2) / (x 1 + x2)

(2.3)

(2.4)

(2.5)

(2.6)

If XJ = x2 (note x1 + x2 is 0), then R is defined as a point at infinity, 0. 0 is an identity element of

the group. Each element in the group has an inverse that satisfies P + (-P) = 0, and (-P) + P = 0.

Also, P + 0 = 0 + P = P. If P = Q, then R = P + P = 2P, and coordinate (x3 ,y3) is derived by

(2.7)

(2.8)

where

(2.9)

The ECC relies on the difficulty of the Elliptic Curve Discrete Logarithm Problem, that is,

given points P and Q in the group, it is hard to find a number k such that Q = kP.

2.2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECC signature is based on Digital Signature Algorithm. We assume Alice sends a message to Bob.

To convince Bob that the message does come from Alice, Alice needs to apply a digital signature

21

for the message so that Bob can verify it by using Alice's public key. Initially, Alice and Bob

have to agree on a particular curve with base point P over the field GF(p), and the order of Pis q.

When Alice sends a message to Bob, she attaches a digital signature (r, s) generated by following

steps (suppose Alice has a private key x and a public key Q = xP).

1. Choose a random key kin [1, q- 1];

2. Compute kP, yield a point with coordinate (xi ,yi). Let r = x1 (mod q). Check r, go back to

the first step if the result is zero;

3. Compute k- 1 (mod q);

4. Computes= k- 1(Hash(m) +xr), where Hash is a one-way hash function. Again, checks,

go back to the first step if s = 0;

5. (r,s) is the digital signature.

To verify the message m and the signature, Bob needs to do following steps.

1. Compute w = s- 1 mod q and H(m);

2. Compute UJ = H(m) ·w mod q and u2 = r·w mod q;

3. Compute u1P+ u2Q, get the result point (x2,y2);

4. The signature is verified if x2 = r.

Finally, Bob compares the value of x2 and r, and accepts the message only if x2 equals to r.

22

2.3 Implementation

In this section, we describe the implementation of RSA on MICAz motes and the implementation

of ECC on three most popular sensor devices: MICAz, TelosB and Tmoet Sky. Given the lim­

ited processor resources, we concentrate most of our efforts on computation optimization. The

fundamental RSA operation is large integer exponentiation over a finite field GF(n), where n is

the product of two large prime number p and q. The computation of the exponentiation can be

decomposed to a series of squaring, multiplications and reductions. In addition, we also need an

inversion module to calculate the public key and private key pair given two prime numbers p and

q. In this section, we first present our optimization in general large integer operations. Based

on that, we describe our further optimization by using Montgomery reduction and Chinese Re­

mainder Theorem (CRT) to significantly improve the computation efficiency. The fundamental

ECC operation is large integer arithmetics over either prime number finite field GF(p) or binary

polynomial field GF(2m) (where m is a prime). Because the two heavily used operations: mul­

tiplication and modular reduction, can be more effectively optimized if pseudo-Mersenne primes

are picked for elliptic curves compared with those of binary field [41], we limit our discussion

in prime number finite field GF(p) in this thesis. Without further clarification, our discussion

ofECC implementation is based on SECG recommended 160-bit elliptic curve: secp160rl. We

first describe the optimized large integer operation modules, which can be used for both RSA and

ECC cryptosystems. Then we focus on the protocol related optimizations specifically for RSA.

and ECC, respectively.

23

2.3.1 Large Integer Operations

Large integer arithmetic operations include addition, subtraction, shifting, multiplication, divi­

sion and modular reduction. Here we focus on the four most important functions: multiplication

(including squaring), modular division, modular reduction and inversion.

2.3.1.1 Multiplication and Squaring

The multiplication (or squaring) is the key component in RSA implementation because the expo­

nentiation is basically computed by multiplications and squaring. We have compared three differ­

ent multiplication implementations ['t I, ()2, 50], and finally decided to use Hybrid Multiplication

proposed in ['1!]. To ease our explanation, we use three large integers as the examples for our fol-

lowing discussion: A(an-1, an-2 1 • • • , a1, ao), B(bn-1, bn-2, · · · , b1, bo), and C(n2n-l, C2n-2, · · · , c1, co),

where C =A *B. A and B both have length of n words, each word has k-bit size. The product C

has 2n words.

The Hybrid multiplication is the combination of Row-wise multiplication and Column-wise

multiplication. The Row-wise method fixes the multiplier bi (0 ::; i :S n), and multiplies it with

every word of multiplicand A. Partial results are stored in n + 1 accumulator registers. Every time

one row is finished, the last accumulator register can be stored to memory as the part of final

results. On average, one memory load is required for each k x k multiplication. When integer size

n is increased, the required number registers increase linearly in Row-wise method. For 1 024-bit

RSA, a typical multiplication is between two 128-byte large integers. Given only 32 registers in

ATmega128, Row-wise multiplication can not be directly applied.

The Column-wise method, on the other side, computes the partial results of ai * b1 (where

i + j = l) for column l. After one column finishes, the last word of accumulator registers is stored

24

as the part of final result. The Column-wise method only requires three accumulator registers

and two more for operands. However, two memory load operations are required for each k x k

multiplication.

The Hybrid method takes advantages of Row-wise and Column-wise strategies. To optimize

the memory operation, the Hybrid method merges a number (d) of columns together, and then

conducts Row-wise multiplication in each merged column. When d equals to 1, the Hybrid method

becomes the Column-wise multiplication. When d equals ton, then it becomes Row-wise method.

A larger d leads to fewer memory operations, but requires more registers. A small d, however,

requires more memory operations and consumes more CPU cycles. Balancing the advantages and

disadvantages, we implement the Hybrid multiplication with column width d = 4, which requires

9 accumulator registers, 5 operand registers, 6 pointer registers (point to A, B and C), and others

for temporary storage and loop control.

We implement the Hybrid multiplication in assembly language. For the comparison purpose,

we also implement a standard multi-precision multiplication program in C language. Our ex­

periments show the standard C program needs 122.2ms to finish the multiplication between two

128-byte integers, while it only takes 17 .6ms for our Hybrid multiplication to do the same com­

putation, which is more than 7 times faster.

The squaring is a special case of the multiplication, which has the same the multiplicand and

the multiplier. Given an m-bit large integer A= (At,Ao), where A 1,A0 are two halves, A2 =

A tAt x 2m+ 2AtAo x 2m/Z +AoAo. Therefore, we can take advantage of the fact that A tAo only

needs to be calculated once. Compared with the multiplication, the optimized squaring can reduce

the computational complexity up to 25%.

file:///22.2ms
file:///7.6ms

25

2.3.1.2 Modular Division

Modular division is another expensive operation in ECC. In Affine coordinate, each ECC operation

of point addition and doubling requires a modular inversion. The integer inversion is also required

for ECC digital signature generation and verification. In our implementation, we adopt the Great

Divide scheme proposed in [K3]. We briefly explain the algorithm in the followings.

Given an denominator x and numerator y, we want to compute the modular division K over
X

GF(p). This is equivalent to find r, so that

_y
r =-(mod q). (2.10)

X

To find r efficiently, the algorithm maintains following two invariant relationship:

A *Y= U*x, andB*Y = V*x, (2.11)

where A,B, U,and V are four auxiliary variables and initialized with values x,q,y, and 0, respec-

tively. Note the two relationship is true with the initial values. The algorithm intuition is to reduce

the value of A to 1, so that the first relationship in (2.11) will become y = U * x, and U will be

the result. The procedure is conducted in following way. When A is even, we can divide A by

2. Correspondingly, U has to be divided by 2 to keep the relation true. If U is not even at that

time, we can make it become even by adding U with the modulus. When A is odd, we use the 2nd

relationship to help to reduce A. If B is even, we keep dividing B by 2 similarly to make B odd.

Then we add the two relation together and the divide the result value by 2 at the both sides. By

repeating this process, it is guaranteed that either value of A or B reduces one bit in one iteration.

The procedure stops when A = B = 1, the first equation becomes y = U * x. The value of U is

26

our final result. If we initialize U with 1, this routine can be used to calculate an inversion of

x. This algorithm works when x and q are relatively prime. The Great Divide finishes division

or inversion operation in 2(/og(x)- 1) steps. Great Divide is much faster than the long division

method because Great Divide only needs addition operations in each iteration, while long division

method requires multiplications. Unfortunately, Great Divide cannot be used in RSA to calculate

the public key and private key. The reason is that Great Divide only works when the modulus is

an odd number, but the totient </> (n) = (p- 1) (q - 1) in RSA is always even. Therefore, we use

Extended Euclidean algorithm instead.

2.3.1.3 Modular Reduction

The modular reduction operation is another important module because each multiplication or

squaring must be followed by a reduction operation. The classic reduction method is using long

division. Although the long division method is a general method for calculating the modular re­

duction, it is also the slowest method. In ECC cryptosystem, the modular reduction operation is

as important as modular multiplication. Each multiplication must be followed by a reduction op­

eration. Since we choose to use pseudo-Mersenne primes as specified in NIST/SECG curves, the

modular reduction can be optimized by conducting a fixed number of integer additions. Because

the optimization is curve specific, we will explain in more details in the section ofECC operation.

Now, we discuss the modular reductions in RSA and ECC digital signature generation and

verification. In most cases, the modulus is not a pseudo-Mersenne prime, the optimization cannot

be applied for those reduction calculation. We choose the classic long division method to imple­

ment this operation. Fortunately, the number of this type of modular reduction is very limited, it

does not affect the overall performance much. We briefly describe the long division method as in

27

Algorithm 1.

The long division producer reduces the remainder of x by one byte in each iteration.

2.3.1.4 Inversion

The multiplicative inversion is required to calculate the RSA public key and private key pair. A

RSA public key e and a private key d should satisfy the condition: ex d = 1 mod cp(n), where

totient cp(n) = (p-1)(q-1). Given a public key e, the corresponding private key is the multi­

plicative inversion of e. Since both p and q are prime numbers, cp(n) must be even. Thus, the

efficient Great Divide scheme [83] can not be used because Great Divide requires the modulo to

be an odd number. We use the classic Extended Euclidean Algorithm to compute the private key.

The algorithm is described as below.

2.3.2 RSA Optimization

With the basic large integer operation modules implemented, we have conducted the first perfor­

mance test for RSA public key operation (17-bit public key) and private key operation (1 024-bit

private key). Surprisingly, both operations are very slow. It takes 4.6s to finish the public key

operation and 389s to do a private key operation.

To learn the reason for the poor performance of our initial implementation, we profiled the

every operation in RSA exponentiation. We found that the modular reduction following each

multiplication consumes 0.13s on the average. For 17-bit public key, there are totally 17 such

reductions, which spend 2.2s in total, almost 50% of the execution time of the public key operation.

We explore two optimization schemes which aim to reduce the costs of the reduction and

multiplication operations.

28

2.3.2.1 Montgomery Reduction

Montgomery reduction [6(l] is a method to efficiently perform the modular reduction without

doing expensive division. For example, suppose we want to compute T modulo N, the algorithm

says it is easy to compute TR- 1 (mod N) (without any division), where R is a radix (R > N) and

co-prime toN. We do not validate this algorithm in this chapter. Interested reader may refer to [M1]

for details. It seems this algorithm does not save anything because an extra step to convert T R- 1

(mod N) to T modulo N is required. However, this method is useful if a number of computations

are needed for the same modulus N. That is the reason that Montgomery reduction is widely used

to reduce the reduction cost for the exponentiation operation in RSA. The efficient exponentiation

by using Montgomery reduction is described as below. The idea is to convert integer b to an

N-residue so that ba * 2k (mod n) can be quickly computed without doing any reduction. As the

result, we only need to do two reductions for the exponentiation. The first one is to convert b

to N-residue before the Montgomery reduction, the second one is to convert the exponentiation

result from N-residue back to integer. Having implemented the Montgomery reduction module,

the performance of RSA public key and private key operations have been improved significantly

to 1.2s and 82.2s, respectively.

2.3.2.2 Chinese Remainder Theorem (CRT)

The complexity of the exponentiation in RSA largely depends on the the size of modulus nand the

exponent (either public key or private key). Chinese Remainder Theorem (CRT) can be used to

effectively reduce the computational complexity of exponentiation by reducing the size of both n

and the exponent. CRT can be found in any number theorem textbook, here we only give a simple

example to serve for this chapter. Let number n1, n2 be positive integers which are co-prime to

29

each other, i.e., GCD(n1, nz) = 1. Let n = n1 * n2 and XJ ,xz be integers. CRT states that if there

are congruence: x = XJ (mod n1), x = xz (mod nz), then there is only one solution x between 0 and

n- I, inclusively. The value of x can be determined by

x = XJ *r1 *SJ +xz *r2*sz(mod n), (2.12)

where ri = -!!;, si = rj 1 (mod ni) for i = 1,2. Based on the above simple version of CRT, we

describe our RSA optimization (adapted from [7]) by using CRT. Note step 3 and 4 can be

precomputed. Th above algorithm reduces the size of a and d in half. Consider a and d are both

1 024-bit integers, the computation of ct' is reduced to 2 modular exponentiation with both base

and exponent size of 512 bits. Thus, the overall computational complexity is reduced to roughly

1/4 of the original exponentiation. The CRT can also be applied for public key operation, but

the computational complexity can only be reduced by 50%. The reason is that public key size is

normally very small (17 bit in our experiment), so the exponent size cannot be reduced in this case.

With CRT implemented, the public key operation has been reduce to 0. 79s. Correspondingly, the

private key operation is reduced to 21.5s, approximately 1/4 ofthe time before doing CRT.

2.3.3 ECC Optimization

2.3.3.1 Addition and Doubling

The fundamental ECC operation is point addition and point doubling. The point multiplication can

be decomposed to a series of addition and doubling operations. As discussed in previous section,

point addition and doubling in Affine coordinate require integer inversion, which is considered

much slower than integer multiplication. Cohen et al. showed that these operations in Projective

coordinate and Jacobian coordinate yield better performance [21]. They further found addition

30

and doubling in mixed coordinate, with the combination of Modified Jacobian coordinate and

Affine coordinate, lead to the best performance [2::~]. Consider an ECC point in Modified Jacobian

coordinate, PI (XI, YI, ZI, aZi), and a point in Affine coordinate, Pz (xz,y2), their addition results

in the third point P3 = (X3,Y3,Z3,aZj) in Modified Jacobian coordinate. The result is given by

following equations.

X3 = -H3-2XIH2 +r2
,

Y3 = -YIH3+r(XIH2 -X3),
(2.13)

aZj = aZj,

where H = xzZf -XI, and r = yzZi - YI. The result of point doubling for P3 = 2PI is given by

following formula.

Y3 =M(S-T)-U,
(2.14)

aZ3 = 2U(aZi)

To estimate the computational complexity, we only consider large integer multiplication and squar-

ing operations, and ignore those addition and subtraction since they are much faster. According

to Eq.2.13 and Eq.2.14, point addition requires 9 large integer multiplications and 5 squaring, and

point doubling requires 4 multiplications and 5 squaring.

The basic point operations can be further optimized for specific elliptic curves. In our case,

the curve parameter a of secpl60rl equals to -3. For point doubling, M can be further reduced to

M = 3Xf- 3Zi = 3(XI + Zf)(XI- Zi). (2.15)

31

As the result, point doubling operation reduces to 4 multiplications and 4 squaring. Actually,

aZj does not have to be calculated in point addition, so the computational complexity reduces to

8 multiplications and 3 squaring. Our observation supports the choice of mixed coordinate, the

performance of point multiplication improves around 6% compared with our previous implemen­

tation in Jacobian coordinate.

2.3.3.2 Modular Reduction

Recall that modular reduction has to be applied after every large integer multiplication, it is also

a performance critical operation. By taking advantage of pseudo-Mersenne primes specified in

SECG curves, the complexity of the modular reduction operation can be reduced to a negligible

amount. In this section, we use curve secp160rl as the example to show how to do efficient

reduction.

Suppose we use the 8-bit architecture, the multiplication result oftwo 160-bit integers can be

represented by

C(c39, · · · ,c2o,C!9, · · · ,C!,co),

where c; (0 :::; i :::; 39) is a word with 8 bits, and c39 is the most significant word. The 40-word

integer can also be written as:

(2.16)

Given the field of curve secp160rl q = 2160 -231 -1, we can have 2160 = 231 + 1. Therefore,

C = (c39, · · · ,c2o) * (231 + 1) + (c19, · · · ,c1,co)
(2.17)

= (c3g,··· ,c2o)*231 +(c3g,··· ,c2o)+(c1g,··· ,c1,co)

32

Since each word has 8 bits, the first term in the result of Eq. 2.17 can be further reduced to

() 231 - () 2167 2159 () 231 c39,··· ,c2o * = c39,c3s,c37 * +c36* + c3s,··· ,c2o *
(2.18)

where (d7, · · · , d1, do) are 8 bits of c36. Now, all terms in Eq.2.1 7 and 2.18 have at most 159 bit

length, the reduction result is simply the addition of these terms.

2.3.3.3 Further Optimization

Examining the computational complexity, we notice that point addition is more expensive than

point doubling. As we have discussed, point multiplication can be decomposed to a series of point

addition and doubling, we would rather use more point doubling than point addition to compute

the point multiplication. Morain et al. found Non-adjacent forms (NAFs) is an effective way to

achieve the lightest Hamming weight for scalar kin point multiplication k*P, which results to use

the least number of point additions to calculate hP [68]. For example, 255 *P, or (11111111) *P,

requires 7 point additions. But if we transform it to (10000000- 1) *P, which is 256 *p- P, only

one addition is required. Note the point subtraction can be replaced by point addition because the

inverse of an Affine point P = (x,y) is -P = (x, -y). We implement NAFs technique in random

point multiplication. According to our experiments, point multiplication with NAFs contributes at

least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, component r is generated by a point

multiplication with the fixed base point of a selected elliptic curve. To further reduce the execution

time, we precompute some partial results and apply sliding window method [56] to speed up fixed

point multiplication. Different from NAFs, sliding window scheme groups scalar k into a number

of s- bit bit-clusters, where s is also called window size. So, k can be represented by km * 2sm +

33

km-1 * 2s(m-I) + · · · + ko, where k; is a bit-cluster. If we precompute the point multiplication with

every possible value of k;, the number of point addition is bounded by [1 ~0 l - 1. Note the sliding

window method does not reduce the number of point doubling operations. Obviously, this scheme

requires extra memory space for storing partial results. In practice, we select window size s = 4.

Correspondingly, there are 16 entries in the partial result table. Our experiments show sliding

window method is more effective than NAPs for fixed point multiplication, the performance of

sliding window method is more than 10% better than that ofNAFs.

Our initial experimental results indicated that it took double amount of time to perform an

ECDSA verification than to do an ECDSA signature: signature is 1.35s, while verification is 2.85s.

The reason is that the verification requires two ECC point multiplications (while the signature only

needs one point multiplication); the verifier has to perform u1P + u2Q as shown in Section 2.2.2.

To speed up the verification time, we adopt Shamir's trick [43) to do multiple point multiplication

simultaneously. The idea of Shamir's trick is similar to the sliding window method discussed

previously. Given t-bit u1 and u2, we use the window size wand precompute the values iP+ jQ

for 0::; i,j::; 2w. At each of [t / w l steps, we perform w doubling and the (precomputed) additions

determined by the window contents. The larger the window size (w) is, the more memory is

required for storing the precomputed values. In practice, we choose the single bit window size,

w = 1. Therefore, only the value of P + Q needs to be precomputed and stored. As the result,

the performance of ECDSA verification has been improved more than 30%, from 2.85s to 1.96s.

There is still further improvement space if multi-bit window size is used, but the trade-off is more

memory overhead.

34

2.4 RSA Evaluation

In this section, we describe the experimental performance of 1 024-bit RSA on our MICAz motes.

We first present our experimental results and related issues during the implementation. We then

give the performance analysis to quantifY the computational complexity.

2.4.1 Experimental Results and Implementation Challenge

In the experiment, we randomly select two 512-bit prime number asp and q. For the public key

operation, we choose a small exponent of e = 216 + 1, which is commonly used value for e. Our

program uses 15,832 byte code size and 3,224 byte data size. Compared with RSA implementation

in [41], our code size is much larger because of the assignments of precomputation values during

initialization stage. Our implementation spends 0. 79s to finish a pub lick key operation and 21.5s

to do a private key operation.

The biggest challenge to implement 1 024-bit RSA on MICAz motes is the memory constraint.

MICAz mote only has 4KB RAM, which is the total space can be used by data and program

stack. Since the operands in 1024-bit RSA are mostly 128 integers, the subroutines, such as

modular reduction, Extended Euclidean Algorithm and Montgomery reduction, have to reserve

considerable amount of memory space for storing temporary results. In addition, for optimization

purpose, a number of pre-computations are required. In our program, 1152 bytes of memory are

used for storing system parameters, such asp, q and n, and precomputation results, such as Rp, Rq

in CRT. Therefore, attentions need to be paid not to waste any memory usage. In practice, we have

adopted two methods to save the memory space. First, we declare more global variables. The idea

is to share the memory space among different subroutines in each module. Note this method is

only good for those subroutines do not call each other. Otherwise the intermediate data will be

35

lost. Second, we conduct every possible precomputation so that some module may not be required

during the RSA operation in the real time. For example, the Extended Euclidean algorithm is only

used to find the public/private key pairs and to precompute the parameters used in Montgomery

reduction. Actually we do not need this module in the real time. This helps us a lot because it

consumes almost 1KB temporary space.

2.4.2 Performance Analysis

To analyze the computational complexity distribution among the components in RSA exponenti­

ation, we profile the execution time of multiplication, squaring, and modular reduction modules,

the three most time consuming operations in RSA exponentiation. The profiling information is

shown in Table 2.1.

Module Operand Sizes (bytes) Execution Time (ms)

MUL. 128 by 128 17.1

MUL. 64 by 64 4.48

SQR. 128 by 128 14.1

SQR. 64 by 64 3.87

MOD. 256/128 132

MOD. 192/128 74

MOD. 128/64 40

Table 2.1: Execution time profiles of some important modules.

Our analysis assumes that all optimization schemes have been applied in RSA exponentiation.

To simplify the presentation, we denote "MUL'' as, large integer multiplication, and let "SQR" be

36

large integer squaring, and let "MOD" be large integer modular reduction. A "m/n" MOD means

a MOD operation for am-byte integer over a modulus with n-bytes. For example, 128/64 MOD

denotes a modular reduction of a 128 byte integer with a 64 byte modulus.

Let us consider an example of RSA operation to calculate M =ex (mod n), where x can

be either public key or private key. Following the CRT algorithm, we first do two MODs to

calculate Cp and Cq. Then, we conduct two Montgomery reductions to get Mp and Mq. Finally,

two MULs, one MODs and one addition are required to compute M. Note the last two steps in

CRT, which requires 2 MODs, can be simplified by doing addition first and then only one MOD.

Except the Montgomery reduction, both public key and private key operation need to do two

128/64 MODs, two 128 x 128 MULs, one 192/128 MODs operations, which totally account for

2x40+2x 17.1+74= 188.2ms.

The difference of execution time between public key and private key operations is at expo­

nentiation part. Each Montgomery reduction requires two 64 x 64 MULs, one 128-byte addition

and possible another I28-byte subtraction. The cost of addition and subtraction can be ignored.

Therefore, the execution time of each Montgomery reduction is 2 x 4.48 = 8.96ms. Since we

choose the public key to be 216 +I, there are totally 16 64 x 64 SQRs and I 64 x 64 MUL in

the exponentiation. According to Table 2.1, the total time for SQRs and MUL with Montgomery

reduction should be I6 x 3.87 + 4.48 + I7 x 8.96 = 218.7ms. In addition, two 128/64 MODs are

needed to convert operands between integer and N-residue before and after each exponentiation.

For CRT optimization, we need to do two 512-bit exponentiations. Therefore, the exponentiation

execution time for public key operation is 2 x (218. 7 + 2 x 40) = 597 .4ms. Combined with the rest

operations in CRT, the public key operation consumes 594.4 + 188.2 = 782.6ms, which matches

our test result very well.

37

For the private key operation, the number ofSQRs is 511 (after CRT) in each reduced exponen­

tiation. The number ofMULs depends on the Hamming weight of the exponent. Our experiment

shows the average Hamming weight of Dp and Dq of our private key is 278. Hence, there are

277 MULs required in each exponentiation. Therefore, the execution time for each exponentia­

tion is 511 x 3.87 + 277 x 4.48 + 788 x 8.96 = l0279ms. Since the exponentiation execution time

in private key operation overwhelmingly dominates other operations, we only need to consider

the execution time of expom!'ntiations only. Two such exponentiations consumes 20.5s, closely

matching our experiment result of 21. Ss.

2.5 ECC Evaluation

In this section, we first present the performance of our implementation. Then we give an overall

analysis to quantity the computation complexity.

2.5.1 The performance of ECC Implementation

In experiments, we measure execution time and code size of our implementation. We choose

secp160rl as the elliptic curve in all experiments. We use the embedded system clock (921.6kHz

for MICAz and 32.6kHz for TelosB/Tmote Sky) to measure the execution time of major operations

in ECC, such as point multiplication, point addition and point doubling.

We first test point multiplication operation, which is comprised of point addition and dou­

bling. We consider two cases in point multiplication. One is multiplying large integer with a fixed

point(base point), and the other one is with a random point. Fixed point multiplication allows for

optimization by precomputing. We apply sliding window technique [56] and set window size to

38

4, i.e., precomputing 24 - 1 = 15 points. In experiments, we randomly generate 20 large integers

to multiply with the point and take the average execution time as the result.

Since ECC point multiplication consists of addition and doubling operations, we further eva!-

uate these two operations individually. We generate random points and large integers for tests.

Since a single operation takes very little time, to reduce the error of clock inaccuracy, we measure

100 operations every round and take the average value.

FPM RPM PAdd PDbl SIGN VERIFY

MICAz 1.24s 1.35s 6.2ms 5.8ms 1.35s 1.96s

Tmote 0.74s 0.77s 3.7ms 3.5ms 0.77s 1.12s

TelosB 1.44s 1.55s 7.3ms 7.0ms 1.55s 2.25s

Table 2.2: The comparison ofECC execution Time on three mote platforms, including fixed point multi­
plication (FPM), random point multiplication (RPM), point addition (PAdd) and point doubling (PDbl) and
ECDSA signature generation (SIGN), verification (VERIFY) time.

We summarize the performance in Table 2.2, including ECC fix point multiplication (with

size-4 sliding-window optimization) (FPM), random point multiplication (RPM), point addition

(PAdd), point doubling (PDbl), ECDSA signature (SIGN) and verification (VERIFY). It clearly

shows that the performance of ECC operation on MICAz is slightly better than that on TelosB,

even though TelosB is equipped with an 8MHz, 16-bit CPU. After a careful investigation, we

found the performance degradation on TelosB is due to the following two reasons. First, the

8MHz CPU (MSP430) frequency on TelosB is just a nominal value. The maximum CPU clock

rate is actually 4MHz. Second, the hardware multiplier in MSP430 CPU uses a group of special

peripheral registers which are located outside of MSP430 CPU. As the result, it takes MSP430

eight CPU cycles to perform an unsigned multiplication, while it at most takes four cycles to do

39

the same operation in ATmega CPU. The above two reasons explain why TelosB cannot perform

better than MICAz.

Tmote Sky is capable of running at 8MHz CPU frequency instead of 4MHz on TelosB because

it is equipped with an external resistor on the ROSC pin of MSP430 that enables the DCO to

operate at a higher frequency. We simply enable the external resistor on Tmote and achieve the

ECC performance twice faster than that on TelosB. As shown in Table. 2.2, it only takes 0. 77s to

finish a signature generation and 1.12s to verify it.

ECC library ECDSA UARTComm.

ROM RAM ROM RAM ROM RAM

MICAz 10,360 978 8,244 202 3,452 147

TelosB/Tmote 7,018 1,012 4,420 164 3,202 233

Table 2.3: ECC implementation code size.

Table 2.3 presents code sizes and data sizes of the ECC implementations. For TelosB and

Tmote Sky platforms, the ECC library uses 7,018 byte ROM (for code) and 1,012 byte RAM (for

data). Note more than 60% of data size is used to store the 15 elliptic points which are used in

sliding-window optimization. When the data size budget is tight, the sliding-window optimization

can be removed to have more data space. ECDSA module accounts for 4,420 bytes on TelosB and

Tmote Sky. The reason is the included SHA1 module consumes around 3KB code size. Finally,

for the 10 purpose, we also have the UART communication module, which uses 3,202 bytes for

code and 233 bytes for data. The total code size of our test program is 19,290 bytes.

Compared to TelosB and Tmote Sky, our ECC package is more space demanding on MICAz

platform. The ECC library requires 10,360 bytes in code size for MICAz, 46% more than that

40

on TelosB/Tmote. This is due to our assembly codes for optimizing the large number integer

operations. Since the CPU register number in MICAz is twice the amount that in TelosB/Tmote,

more instructions are needed to handle the extra register operations. For the same reason, the code

size ofECDSA requires 8,244 bytes. Overall, the test program on MICAz uses 24,258 bytes for

code and 1507 bytes for data.

2.5.1.1 A Performance Anatomy ofECC Point Multiplication on MICAz

Since ECC point multiplication dominates the computational complexity in ECC signature and

verification, we are curious to learn the performance anatomy in ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use seep 160rl as the example. We also

assume 4-bit sliding window method is used, and partial results are precomputed. The computa­

tional cost for each window unit is 4 point doubling and 1 point addition. Given a 161 bit private

key, there are 41 window units. Totally , 164 point doubling and 41 point additions are required to

finish 1 point multiplication.

Large (160-bit) integer multiplication, squaring and reduction are the most expensive opera­

tions in point doubling and point addition. To learn the amount of time contributed by the above

three operations in a fix point multiplication. We first individually test the performance of large

integer multiplication, squaring and reduction. Our results show that it takes 0.47ms, 0.44ms and

0.07ms to perform a 160 x 160 multiplication, squaring and reduction, respectively. Next, we

count the the number of each operation required in a point multiplication. Since we adopt the

mixed coordination (the combination of Jacobian coordinate and Affine coordinate); each point

addition requires 8 large integer multiplications and 3 large integer squaring, and each point dou­

bling requires 4 large integer multiplications and 4 large integer squaring. In addition, each multi-

41

plication, squaring or shifting operation has to be followed by a modular reduction. Our program

shows the point addition requires 12 modular reductions, and the point doubling requires 11 mod-

ular reductions. In total, each point multiplication costs 164 x 4 + 41 x 8 = 984 large integer

multiplications, 164 x 4 + 41 x 3 = 779 large integer squaring and 164 x 11 + 41 x 12 = 2, 296

large integer modular reductions. Plugging in the results of the individual tests, we get the total

amount of time consumed on the three operations is 0.97s, roughly 78.2% of the total time to do

a fix point multiplication. The rest of21.8% ofthe time is spent on various operations, including

inversion operation (to convert the Jacobian coordinate to Affine), addition, subtraction, shifting

and memory copy, etc. Based on above analysis, we believe the performance of ECC operations

on MICAz can be further improved by more refined and careful programming.

2.5.2 Performance Comparison

In the last part of the evaluation, we compare the performance of our implementation with existing

research results [01, 62] and give the possible explanation of the performance gap.

MICAz TelosB

WM-ECC Sun-ECC TinyECC EccM2.0 WM-ECC TinyECC

SIGN 1.35s 0.81s 1.92s 30s 1.55s 4.36s

VERIFY 1.96s - 2.43s - 2.25s 5.44s

Table 2.4: The performance comparison of our ECC implementation, WM-ECC, with other research re­
sults, including Sun-ECC [ill], TinyECC [59] and EccM2.0 [62]. We use MICAz and TelosB as the two
platforms.

We first compare the computation time of ECC operations. We denote our ECC implementa-

tion as WM-ECC, and compare the ECDSA signature generation and verification time with other

42

implementations in Table 2.4. Obviously, our WM-ECC is more computationally efficient than

TinyECC and EccM2.0. On MICAz platform, TinyECC is 42% slower in signature generation

than our implementation. On TelosB platform, the performance gap increases to 180%.

We also notice than Sun-ECC is more efficient than our WM-ECC. Their result, 0.8ls for a

random point multiplication, is about 40% faster than 1.3 5s of our result. We notice that the time

for their 160 x 160 multiplication is 0.39ms, roughly 17% faster than our 0.47ms. In general, we

believe their code is more polished and optimized in many aspects than our code. Furthermore,

Our code is implemented in TinyOS, and mostly written with NesC (except several critical large

integer operations), which could introduce more CPU cycles.

ECC+ECDSA MICAz TelosB

ROM RAM ROM RAM

WM-ECC 18,604 1,180 11,438 1,176

TinyECC 13,858 1,440 12,564 1,526

EccM2.0 43k 820 - -

Table 2.5: ECC implementation code size and data size comparison.

Since memory storage is extremely limited in sensor motes, the program code size and data

size determine the feasibility of the ECC package. We compare our WM-ECC with TinyECC and

EccM2.0. We do not compare Sun-ECC because it is not based on TinyOS so it is not comparable.

To compare with the code size and data size ofTinyECC that only has ECC and ECDSA modules,

we combine ECC library and ECDSA of our WM-ECC, but not UART communication module.

Note EccM2.0 only has the ECC module, there is no ECDSA available. Table 2.5 shows WM-ECC

has the similar program code size and data size as TinyECC. The code and data sizes shown for

43

Comparatively, EccM2.0 consumes much more code space. Given 128KB ROM, 4KB RAM on

MICAz, and 48KB ROM, 10KB RAM on TelosB, WM-ECC can easily fit in existing applications.

One may notice that WM-ECC requires extra 5KB code size than TinyECC on MICAz platform.

This is due to the trade-off of the computation efficiency. We have extensively optimized the large

integer operations on MICAz platform. As the result, the code size is slightly inflated due to the

techniques such as loop unrolling. Considering the programming space MICAz is relatively large,

128KB, we believe this trade-off of 5KB code size is worthwhile.

2.6 Conclusion

In this chapter, we present a number of optimization schemes to efficiently implement the pub­

lic key cryptosystems in small, less-powerful sensor devices. We implement 1 024-bit RSA and

160-bit ECC on various commdity sensor motes. Our experiments show that the times for ECC

signature generation and verification are 1.35s and 1.96s respective for Mica motes, 1.55s and

2.25s for TelosB motes, 0.77s and 1.12s for Tmote Sky. Comparatively, RSA not only has much

longer key size, which potentially introduces more memory and communication overhead, it also

runs much slower. The running time of RSA private key operation on MICAz motes is 21.5s, even

though its public key operation (with the 17-bit key size) only takes 0.79s. Considering that pri­

vate key operations are also necessary in many sensor security schemes, we pick ECC over RSA

as the cryptosystem for sensor networks.

44

Algorithm 1 Reduction by using long division.
1: Input: x, n;

2: Output: r = x mod n;

3: whilex ~ n do

4: Align the most significant byte (MSB) of modulus n to the MSB of x, the lower bytes of n

can be filled with zeros;

5: Starting with the MSB of x, divide the first two MSBs of x by the MSB of modulus n, and

get the quotient;

6: Multiply the quotient with the modulus and get a subproduct;

7: If the subproduct is greater than the remainder of x (over estimation), subtract the modulus

from the subproduct;

8: Then subtract the subproduct from the remainder of x;

9: The procedure continues and goes back to step 2 if the MSB of the remainder becomes

zero;

10: If the MSB of the remainder is not zero (under estimation), subtract the modulus from the

remainder, and then go back to step 2;

11: The procedure stops when the remainder is less than modulus n;

12: end while

13: return x;

45

Algorithm 2 Extended Euclidean Algorithm

1: Input: e, cp(n)

2: Output: d

3: x t- 0, lastx t- 1

4: at- e,b t- cp(n)

5: while b! = 0 do

6: qt---a/b

7: r t- a mod b

8: at- b

9: b t- r

10: tempt- lastx

II: x t- l astx + q *X mod cp (n)

12: lastx t- temp

13: end while

14: return lastx

46

Algorithm 3 An efficient exponentiation by using Montgomery reduction.

1: Input: b, a, n

2: Output: c = ba (mod n)

3: c ,._ b · 2k (mod n), (2k > n)

4: t f-- c

5: for from i = msb(a) to i = 0 do

6: c ,._ c2 · 2-k (mod n)

7: if i's bit of a is set then

8: c ,._ c *f ·2-k (mod n)

9: end if

10: end for

12: return c

Algorithm 4 Calculate ctl (mod n) by CRT

1: Input: a, d, n, p, q (n = p*q)

2: Output: m = ctl (mod n)

3: Rp ,._ qP- 1 (mod n), Rq ,._ pq-l (mod n)

4: Dp ,._ d (mod p- 1), Dq ,._ d (mod q- 1)

5: Ap ,._a (mod p), Aq ,._a (mod q)

6: Mp ,._ A~P (mod p), Mq ,._A~'~ (mod q)

8: m = Sp +Sq (mod n)

9: return m

Chapter 3

Data Privacy Protection

A main challenge of large scale sensor networks is the deployment of a practical and robust secu­

rity mechanism to mitigate the security risks exposed to the unattended and resource constrained

sensor devices. The security challenges have attracted extensive attentions in the research com­

munity. Eschenauer and Gligor proposed a random graph based key pre-distribution scheme [28].

The scheme assigns each sensor a random subset of keys from a large key pool, and allows any two

nodes to find one common key with a certain probability and use that key as their shared symmet­

ric key. Based on their contribution, a number of researches [J 6, 26, 60, 15,61] have been delivered

to strengthen the security and improve the efficiency. Researchers found the sensor deployment

information can be used to reduce the number of pre-loaded keys and meanwhile improve the key

connectivity. Instead of pre-distributing random keys, schemes [26, 60] pre-loads either secret ma­

trices or secret polynomials in the sensors to improve the connectivity and reduce the overhead.

Recently, this method is also adopted in heterogeneous sensor networks [90, 89]. Although the

symmetric-key-based schemes are efficient in computation, they require complicated key man­

agement that may cause high memory and communication overhead. This drawback has not yet

47

48

been investigated by experimental work so it is not clear how these schemes perform in a realistic

system.

Recent progresses in implementation of elliptic curve cryptography (ECC) on sensors as we

have presented in the previous chapter and other research work [11~., 41, 5f)] prove public key cryp­

tography (PKC) is now feasible for resource constrained sensors. Given the efficient low-layer

primitive in place, the high-layer PKC-based security scheme design in sensor networks, however,

is not straightforward due to the special hardware characteristics and requirements of sensor net­

works. Zhang eta!. proposed several PKC-based pairwise key establishment schemes [l :, 11 0]

by using ID-based cryptography and achieve some nice security features. Unfortunately, it is still

a doubt that the ID-based cryptography is feasible for resource constrained sensors. Therefore the

performance of PKC-based security schemes is still not well investigated.

In this chapter, we compares the symmetric cryptography and PKC-based schemes through

an experimental study on an important sensor network security problem: user access control.

Our results suggest the PKC-based user access control scheme is more advantageous in terms

of the memory usage, message complexity, and security resilience. Then, we explore effective

and practical security solutions for sensor networks. Finally, we discuss other applications of our

proposed public-key security infrastructure.

3.1 User Access Control

Recent advances in sensor systems have seen the introduction of sensor platforms with large stor­

age capacities up to hundreds of megabytes [I 07, 63]. Novel sensor file systems [24] and storage

solutions [l 07] have been proposed to take advantage of this large storage. Research in this area is

motivated by fact that large amounts of energy is needed to send data back to a sink, which is even

49

more wasteful when not all the data is useful. Instead, it more efficient to store the data within the

sensor network. When a user has a query, he queries the sensor network itself, and the query is

routed to sensors that can provide the answer.

One aspect of the in-network data storage model is that each individual sensor has a larger

role to play. Instead of simply collecting data and forwarding it to the sink, the sensor is now

responsible for routing queries to the right sensor, authenticating the user, and controlling access

to its data. In other words, many of the previous tasks performed by the powerful sink must now

be performed by the relatively resource constrained sensor. It is tempting to simply implement

existing access control solutions directly onto the sensor. However, due to limited power, storage

and processing capabilities of the sensor hardware, this is not feasible. Furthermore, access control

in sensor networks differs from regular access control in that it is not enough to simply deny

unauthorized users access to the data. An unauthorized user should not be allowed to use the

network since network bandwidth is very limited and, more importantly, the battery power of each

node may be depleted after malicious users aggressively effuse messages to the network.

To protect the data, sensors have to authenticate the user, and control the access to their data.

The user authentication and communication encryption have received extensive attentions [71, 3 2,

75] for security in large network system. Kerberos [7l] has been widely used in distributed client­

server authentication and session key establishment. Fox et al. proposed a lightweight version

of Kerberos, Charon [32], for mobile devices. Both schemes are centralized; a central server has

to be on-line to assist user's request. In sensor networks, SPINS protocol [75] shares the same

security architecture. While the centralized schemes have many attractive security features, the

communication overhead becomes a major issue when the network size scales, specially for the

extremely energy constrained sensor nodes in a large network. For the same reason, the security

50

schemes [J 1-1, 79] relying on a central server are not desired in the security mechanism design in

large-scale sensor networks. Access control in sensor networks also differs from the conventional

schemes in that it is not enough to simply deny unauthorized users' accesses to the data. An

unauthorized user should not be allowed to use the network since the network bandwidth is very

limited and, more importantly, the battery power of each node may be depleted after malicious

users flood messages to the network.

The aforementioned special sensor hardware and network requirements motivate us to design

the user access control scheme in a very different fashion. Our basic idea is to authenticate the

user locally by the sensors in the user's vicinity and transfer the endorsements of the local sensors

to the remote sensor for data query. In this way, unauthorized data access request will be rejected

locally so that DoS attacks trying to deplete the battery power of the network will be blocked

locally. The access control proposed in this chapter is composed of several components. First, the

sensors in proximity need to exchange pairwise keys for secure communications. Second, the user

needs to get authenticated by the local sensors either for local sensor data access or for remote

sensor data access. Third, the local sensors also need to help the user and the remote sensor build

a pairwise key to achieve end-to-end security.

While existing symmetric key schemes [28, 16, 60, 15, I 09] can achieve some of the secu­

rity goals, several significant drawbacks such as high memory and communication overhead in

key management, and security vulnerabilities, as we will show in our experimental study, make

the symmetric cryptography bases solutions not desirable. The PKC-based pairwise key schemes

proposed by Zhang eta!. [l l 0, 112] achieve some nice security features by using ID-based cryp­

tography. Although the schemes are very novel, the ID-based cryptography is still not feasible for

resource constrained sensors. We propose an ECC-based, practical and security resilient PKC-

51

based user access control suite. Our approach not only embraces the cryptographic primitive

tweaking to achieve the computation and communication efficiency, but composes of a carefully

designed and novel threshold-endorsement protocol to address the issue of denial-of-service (DoS)

in remote access control. We have implemented all protocols on widely used MICAz and TelosB

motes. Our performance evaluation compares the proposed access control suite with prior work

which are based on symmetric-key and the prevalent RSA on Internet through comprehensive

experiments and rigorous analysis.

3.2 System Model and Assumptions

We consider a large scale wireless sensor network deployed in a variety of environments. Data

access to the stored data on each node is protected according to the attributes of the data. The

examples include data type (temperature, light, or noise), data location, and data collection time.

A user equipped with a portable computing device, such as a PDA, interacts with the sensor

network for data query and retrieval. This device is more powerful than the sensor nodes, so it is

capable of more computationally intensive tasks. User can query either "local" sensors through

direct communication links, or "remote" sensors (that are outside of direct communication range)

through multihop routing by intermediate sensor nodes.

We assume a certification authority (CA) is responsible for generating all security credentials

for sensors. During the deployment, each sensor is pre-loaded its private key, public key and the

corresponding certificate. The user acquires his certificate from the CA through an out-of-band

security channel. The certificate includes an access control list which defines his access privilege.

The user access list defines the user's access privilege. A typical access list is composed of uid

and user access privilege mask. The uid is a unique number that identifies the user. The privilege

52

mask defines the certain level of the user access right. To query the sensor network, the user

needs to attach the certificate with the query message. The contacted sensor checks the access

list and verifies the user's privilege. The verification is performed in a distributed fashion without

involvement of the CA. The contacted sensor grants the user the answers that are compliant with

the access privilege. If the users cannot be verified, the query will be denied.

The adversary may launch either passive attacks or active attacks, or both. The passive attack

includes message eavesdropping, traffic monitoring and analysis. For active attack, we mainly

focus on following three types. The first is node compromise. The compromised sensor may cap­

ture the legitimate user information while being accessed and reveal it to the malicious third party.

Second, user collusion can help malicious users to subvert the system and gain more access priv­

ilege. Third, the adversary may inundate user queries in the network to deplete the battery power

of sensor nodes. We assume that at most t- 1 sensors (where t is a security parameter) can be

compromised and an unbounded number of users can collude since it is not hard for mischievous

users to share information and orchestrate an aggregated analysis to the collected information.

In this chapter, we do not address disruption attacks. Disruptions occur when the adversary, by

compromising a sensor node, drops legitimate messages or contributes a bogus endorsement share

in remote access control (as we will describe later) to invalidate user remote queries. Even though

disruption attacks in general are difficult to defend against in sensor networks, a smart adversary is

not willing to launch such attacks because incidents of message dropping and user remote access

failure may easily trigger system attentions and thus expose the compromised sensors.

53

3.3 Pairwise Key and Local Access Control

We start the discussion with the secure pairwise key establishment. A lot of sensing tasks (e.g.,

event detection and user remote access endorsement described in Section 3.4) are achieved through

collaborations of multiple neighboring sensors, which require secure peer-to-peer communication

to prevent the adversary from eavesdropping. For the same reason, the secure communication

channel is also desired when a user queries sensors.

In this section, we design an ECC-based pairwise key establishment scheme for neighboring

sensors. A common way to share a secret between two parties is to use Diffie-Hellman (DH)

scheme. However, DH cannot be directly used in sensor networks due to the potential Man-In­

The-Middle (MITM) attack. We thus develop our key establishment scheme based on ephemeral

DH protocol over elliptic curve. We tweak the original DH protocol to defend against MITM at­

tacks. As we will explain later, our scheme is to achieve the best communication and computation

efficiency. This PKC-based pairwise key scheme can also be applied for local user access control

with a slight modification. We give the brief security and cost analysis in the end.

3.3.1 Pairwise Key Establishment Between Two Sensor Nodes

We assume the system certification authority (CA) selects an elliptic curve E over the finite field

GF(p), where p is a large prime number. We denote Pas the base point of E, where P has the

order of q (q is a prime number too). CA keeps a system secret x, and publishes the system public

key Q = xP. We will continue to use this cryptosystem setup throughout this chapter.

Similar to the conventional PKI, sensors' public keys need to be certified. Since it is not

realistic to have an online CA that can verifY the public key in real time, each sensor has to pre­

load its certificate that is pre-computed by CA. We first discuss how to generate the private key,

54

the public key and the certificate for each sensor. We first define two one-way cryptographic hash

functions, ht : {0, 1} * 1----t [0, q- 1], hz : {0, 1} * 1----t {0, 1 }1, where l is the pairwise key length. Let

us consider a sensor node u (we denote u as the sensor ID). CA first selects a random number Cu,

generates its certificate Cu =cuP, and calculates eu = ht(uiiCu). The private key ofu is derived

as qu = eucu +x, and the corresponding public key is Qu = quP. Note Cu, qu and Qu satisfy the

following property:

(3.1)

The function of eu is to bind sensor ID, u, with its certificate, Cu, so that the sensor cannot claim

itself as another ID v. As we will explain later, eu can be utilized to bind a user's access control

list with her certificate.

Before the deployment, sensor u is pre-loaded with qu, Qu and Cu. Considering a typical160-

bit elliptic curve, these credentials require 100 bytes of memory space.

For two sensors u and v with (qu, Qu,Cu) and (qv, Qv,Cv) respectively, the ECC-based pairwise

key establishment protocol is illustrated in Fig. 3.1. We denote (.)t as a symmetric key encryption

operation by using key k, and denote (.)-,; as a symmetric key decryption operation by using key

k. The symmetric key scheme can be any existing scheme, such as AES. Sensor u sends v the

key establishment request, which includes u's public key Qu, certificate Cu and nonce no. Sensor

v calculates eu = ht (uiiCu), and verifies u's public key by plugging eu and Cu in Eq.(3.1). The

request will be immediately dropped if the derived public key does not match Qu. If the verification

is successful, v picks a random rv and generates the challenge in the following steps:

1. v multiplies rv with Qu to get a secret ECC point Rv.

2. The hash value of Rv, denoted as h2 (Rv), is used to encrypt the randomly picked secret

55

(1)

(2) v: verifies Qu, picks random number rv E [1,q-1J,kv E {0, 1}1

(3)

(4)

(5)

(6) u : verifies Qv, picks random number ru E [1, q- 1], ku E { 0, 1}1

(7)

(8) U---+ V: ~uiiYu

(9)

(1 0) u, v : agree on kuv = ku EB kv

Figure 3.1: ECC-Cert: ECC-based pairwise key establishment scheme between two neighboring sensors:
u and v.

key, kv. The hash of no, denoted as n1, forms a nonce chain to defeat the potential security

attacks.

3. v computes Yv by multiplying rv with the base point P.

Upon receiving ~v and Yv, u can recover kv because quYv = qu · rvP = rvQu = Rv, which is used

to encrypt kv and n1 by v. After the decryption, u verifies n1 and continues the execution of the

protocol if n1 is correct. Otherwise, u exits the protocol immediately.

In addition to the challenge generation, v also sends its public key Qv and the certificate Cv to

u. The same verification and challenge are performed by u. Finally, u and v agree on their pairwise

key kuv = ku EB kv.

The protocol presented in Fig. 3.1 is a general purpose scheme which provides security re-

56

U -7 V: Qu

v: selects a random rv

u, v: agree on key rv

Figure 3.2: The optimized ECC-based pairwise key establishment scheme between two neighboring sen­
sors: u and v, without checking the certificate.

silience even in an extremely adverse environment. Considering the fact that most pairwise key

establishment happens in the network initialization period and, many times, this period of time can

be considered active security attack free (e.g., there is no compromise and Man-In-The-Middle at-

tack), the following two optimizations can be applied to achieve better efficiency. First, since all

sensor nodes are honest at that time, the verification of public key is not required. Second, the

challenge is only required on one direction when two neighboring sensors try to establish the key.

As the result, step (6), (7), (8) and (9) in Fig. 3.1 are not required in the optimized scheme, and

there is not necessary either to verify the public key in step (2).

The optimized pairwise key protocol is shown in Fig. 3.2. The optimized scheme requires only

two ECC point multiplications compared to three in the general scheme. The further optimization

is possible if the sensors have additional storage space. The idea is to select a set of random number

{rv }, pre-compute the corresponding points, {Yv = rvP}, and store them in the flash memory.

When v receives the request, it randomly pick one entry (rv, Yv) and immediately sends Y,., to u,

and then computes the challenge. In this way, the two ECC point multiplications, Rv = rvQu at

57

v and Rv = quYv at u can be computed simultaneously. As the result, the processing overhead of

pairwise key establishment reduces to only one ECC point multiplication. After the pairwise key

is established, v erases the selected (rv, Yv) from the storage so that the same random number/point

will not be used again. Note the optimized protocol is resilient to passive security attacks. The

traffic analysis (if the adversary monitors all network activities) does not reveal any pairwise key

secret.

From now on, we denote "ECC-Cert", "ECC-NoCert", "ECC-PreComp" as the general pur­

pose scheme, the optimized scheme and the optimized scheme with pre-computation, respectively,

throughout the rest of chapter. "ECC-Cert" also can be directly applied for one-hop user access

authentication. In that case, the user, say Alice, has to give her access list alA and certificate CA,

where alA composes of the user id and the corresponding privilege mask. The contacted sensor

builds Alice's public key based on alA and CA, and then perform the rest of authentication protocol.

3.3.2 Local Access Control

To achieve user access control, it is essential for the queried sensor node to verifY the user's

access privilege. After the access privilege verification, a secure communication channel has to

be established between the sensor and the user for secure information delivery. The ECC-based

pairwise key establishment scheme can be applied in the local access control with only a slight

adjustment.

Our ECC based user access control protocol is presented in Fig. 3.3. The sensor u first verifies

the user certificate, which includes the access list alA and CA, then challenges the user by using the

method described in "ECC-Cert". Nonce NA is used to prevent the message replay attack. Again,

the pre-computation described previously is used to improve the efficiency. Note our local access

58

u : picks r A E [1, q- 1], and kA E { 0, 1 }1
, compute YA =rAp

u ----7 Alice: YA

Alice: verify kA by comparing the nz,nz = hz(nl)

Alice ----7 u: (nz)t

u : verifies nz

Figure 3.3: ECC based local access control and pairwise key sharing scheme. We denote "Alice" as the
user, and "u" as a local sensor.

control protocol does not require the user to authenticate the sensor, even though this authentica-

tion can be easily applied. One may be concerned that the compromised sensor may provide false

information to the user. This problem is beyond the scope of user access control, and there is no

way to prevent it.

3.3.3 Cost Analysis

The cost of the pairwise key establishment and local access control is determined by the com-

munication and the computation overhead. The communication overhead can be measured by

59

the message complexity. "ECC-Cert" shows u has to send three elliptic curve points (Qu,Cu and

Yu) and one scalar value (~u). Given a 160-bit ECC cryptosystem, each point has the size of 40

bytes, and each scalar value has the size of 20 bytes. Therefore, u and v have to transmit 140

byte data, and the message complexity for u and vis 280 bytes. Comparatively, in "ECC-NoCert"

and "ECC-PreComp", neither sensor needs to send the certificate, then the message complexity

reduces to 100 bytes.

In ECC, the point multiplication is much more expensive than other operations, we approxi­

mately estimate the computational cost by counting the number of point multiplications. As shown

in Fig 3.1, "ECC-Cert" requires three point multiplications. Comparatively, "ECC-NoCert" and

"ECC-PreComp" only require two and one point multiplication, respectively. In the local access

control, with the optimization of pre-computation, the sensor has the similar message overhead as

in "ECC-Cert", but has less computation overhead because the pre-computation saves one point

multiplication.

3.3.4 Security Analysis

In the security analysis, we consider the following potential threats that an adversary may employ

to defeat the proposed challenge-response pairwise key establishment and the local access control

protocols.

• Impersonation. Suppose an adversary forges an identity w and the corresponding public

key Qw and certificate Cw. Note any one can generate his public key and the certificate by

using system public key Q, but no one can derive his private key qw without the system

secret x. It is computationally infeasible to compute his private key qw without the system

secret x. To get qw from Qw is equivalent to solve the discrete logarithm problem. Without

60

qw, the adversary cannot correctly respond the challenge so that the pairwise key request or

local query will be immediately rejected by a legitimate sensor. For the same reason, the

adversary cannot impersonate the legitimate sensors and users even if he can capture Qu,

Cu, Qv, Cv in step (1) and (4) in the pairwise key establishment protocol shown in Fig. 3.1.

• Replay attack. The since the chained nonces are used in the protocol in Fig. 3.1, any

replayed message except in step (1) will be dropped immediately. The adversary cannot

gain any advantage by replaying the message in step (1) because there is no way to respond

the challenge without the corresponding private key.

• Interleaving. In the interleaving attack, the adversary selectively combines the messages

information from previous or parallel sessions. Due to the challenge-response nature of the

protocol, the adversary cannot impersonate or deceive the sensor in the interleaving attack.

The reason is that the sensor ID or the user access list is bind with the certificate, so the

private key is required to correctly respond the two-way challenge. In addition, the chained

nonces allow the legitimate sensors immediately drop the messages from other sessions.

• Reflection. A reflection attack is that an adversary sends the identical message back to the

message originator for the impersonation purpose. As we explained above, the adversary

cannot correctly respond the challenge generated by a legitimate sensor, the attack attempt

will fail. Further, a sensor can easily drop a reflected message once the wrong nonces are

detected.

• Forced delay. The adversary may also block the message between two legitimate parties

and resend it in a later time, which is so called the forced delay attack. Obviously, our

challenge-response protocol is immured to this attack. The only effect of this attack is to

61

force the two parties to drop the protocol session, assuming the time-out mechanism has

been employed in both parties.

• Chosen-text attack. In the chosen-text attack, an adversary tries the strategically arranged

challenges and tries to extract the other parties private key. As indicated in our protocol, the

sensor always uses a ephemeral random number, ru and rv, it is impractical for the adversary

to compute the private key of a legitimate sensor.

3.4 Remote Access Control

Theoretically, a simple extension of the certificate-based local authentication scheme can be used

in the remote query. In that case, the challenge-response messages between the user and the

remote sensor are routed by a number of intermediate sensors on the routing path. This multi­

hop communication pattern, however, poses new security and efficiency issues: (I) potential DoS

attacks; (2) high communication overhead for the user authentication and end-to-end security.

The two issues are not found in the local query and can not be addressed by the certificate-based

scheme due to the following two reasons.

First, because the certificate-based access control achieves end-to-end security, any interme­

diate sensor has no knowledge about the challenge-response message and cannot detect the DoS

attack had the adversary injected a large number of fake queries.

Second, the message overhead becomes critical in the multi-hop communication to reduce

the energy consumption of intermediate sensors. The certificate-based scheme requires public key

exchanges between two parities. In practice, the public key size (40 bytes) is larger than the typical

message size in sensor networks (29 bytes). This overhead may force the sensor to use multiple

62

data packets to transmit the query that otherwise would be done by just one packet. While the

certificate-based scheme achieves the user authentication and end-to-end security, it requires two

rounds of communications that carry the public keys and incurs the large overhead.

Therefore, we develop a threshold endorsement scheme (inspired by Shamir's secret shar­

ing [82]) to perform the remote access control. The basic idea is that any user has to be authen­

ticated and endorsed by t local sensors before she can send the remote query. Not only do the

t local sensors block any DoS attack attempt and transfer the trust (of the authenticated user) to

the remote sensor, given the assumption that the adversary can not compromise t sensors, their

endorsements also naturally serve as the pairwise key between the user and the remote sensor

without any public key transmission. The three components: DoS prevention, user authentication,

and message security are integrated organically in the remote access control scheme.

Our scheme is presented as follows. Again, we have an elliptic curve E over finite field GF(p)

and a base point P with the order of a prime q. CA maintains a secret polynomial:

(3.2)

where ai E GF(q) for 1 :::;: i:::;: t. Note that this secret polynomial is slightly different from the

one in Shamir's secret sharing scheme in that the term ao is equal to 1, which implies one share

ofthis polynomial, namely the share (0, 1), is already known. As the result, only t shares of this

polynomial, instead oft+ 1 shares, are enough to reconstruct the polynomial because the known

share can serve as the (t + 1)1h share. Therefore, to prevent the secret polynomial from being

revealed, the number of malicious sensors must not be more than t- 1. In this work, we assume

only up to t - 1 sensors can be compromised.

Before the deployment, each sensor si (si denotes the sensor ID) is pre-loaded with a secret

63

share zi, where zi = f(si)· Any t + 1 shares from t + 1 sensors, without the known share, can

reconstruct the secret polynomial by Lagrange interpolation:

When y = 0, the t + I secret shares satisfY:

t+l

l:.zili = 1,
i=l

(3.3)

(3.4)

where li is the Lagrange coefficient, and determined as li = If~11 __,_. _!)_. It is true that any t
}- ,}rl Sj-Si

shares, z1, ... ,z1, plus the known (0, 1) share, also satisfY the above equation with different La-

grange coefficients. However, the known share is not the interest of our remote access control

scheme, and we focus on the t + 1 shares from the sensors in the following discussion.

CA also defines a cryptographic hash function H, mapping a number { 0, 1} * to a nonzero

elliptic curve point on E. The remote access control protocol is given in Fig. 3 .4. We denote

s1, s2, · · · , s1 as the local sensors, sr as the remote sensor. We assume that the ID of the remote

sensor for data access is known by some scheme that is beyond the scope of this dissertation, e.g.,

resource discovery protocols. The user, Alice, first performs local access control protocol with t

local sensors, s1, · · · , s1• After the successful authentications, each local sensor si endorses Alice

in the following way. First, si calculates RA = H(a!A)· Note RA is a point on the elliptic curve E.

Then si generates its endorsement: ziliRA, where the Lagrange coefficient li = IT}=!,Ji-i sj~s; · s,:_s;

(here we use sr instead of st+l). In the next step, si sends the endorsement to Alice through the

secure communication channel established in the local access control as described in Section 3.3.

With the t endorsements collected, Alice calculates the elliptic point VA, which is the summation

of the t endorsements. Note only Alice knows the value of VA. None oft local sensor knows VA

for(eachsensorsi,i= 1,2,··· ,t)

si :perform user authentication

t

Alice: gets VA= LziliRA
i=l

64

Figure 3.4: ECC-based local threshold endorsement scheme to establish remote pairwise key between the
user and the remote sensor.

because each sensor only knows its own share of VA. Now, VA becomes the shared secret between

Alice and the remote sensor Sr. Alice encrypts her access list and query by using h2 (VA), and

then sends the encrypted query along with her access list and lr Ur = fl}= 1 sj~sr, also calculated

by Alice) to the remote sensor Sr. Upon the receipt of the remote access request from Alice, sr

first calculates RA = H(alA) and computes V~ = RA -zrlrRA. According to (3.4), V~ should be

equivalent to VA because:

t t

LZiliRA +zrlrRA = (Lzili+zrlr) ·RA = RA. (3.5)
~I ~I

Therefore, sr can successfully decrypt alA and query. Finally, sr replies Alice with the query result,

again encrypted by h2 (VA).

65

In summary, the main idea of remote access control is to design a mechanism that allows

a set of local sensors (because we do not trust a single sensor) to transfer the trust (if the user

is authenticated) to the remote sensor, so that the remote sensor does not need to perform the

interactive user authentication employed in local authentication, which requires several rounds

of communications. This endorsement scheme can be combined with existing en-route filtering

schemes, such as SEF [I (H] and IHA [I I], to further prevent the adversary from injecting the

data queries through a compromised sensor.

Our scheme can also be extended to work in a sparse network, where t local sensors are

difficult to find at one time. In that case, the user moves around and finds t sensors at different

locations. All these t sensors perform the same location authentication as described. To produce

the endorsement shares, t sensors need to communicate with each other and exchange their ID

list and agree on the remote sensor s7 • Note the communications cannot be initiated by sensor

themselves since multi-hop communications have to be endorsed as we described previously. For

this reason, the user moves back and force, as a carrier, to distribute the node IDs to each of t

sensors. Once t sensors share their IDs and agree on s7 , the rest of scheme is the same as described

previously.

3.4.1 Cost Analysis

To endorse the user, each local sensor only needs to perform one ECC point multiplication and

one hash function H. H is a special hash function that maps { 0, 1} * onto the elliptic curve E.

According the study by Boneh et al. [9], this special hash function can be efficiently achieved by

two steps: first we hash onto a certain subset F s:;; { 0, 1} *;then we use a deterministic encoding

function to map F onto E. The message complexity for the threshold local endorsement is small.

66

Each sensor only needs to send an elliptic curve point to the user, which has the message size of

40-bytes (for the 160-bit ECC).

3.4.2 Security Analysis

The proposed remote access control scheme is resilient to any sensor compromising attack with

no more than t- 1 compromised sensors due to the property of the threshold cryptography. Each

sensor s i has its own unique secret zi. Any t- 1 or less shares of secrets are not enough to recover

the secret polynomial [f\2], and cannot be utilized to deduce the value of Zr hold by the remote

sensor.

As described in the protocol, the user knows each share of endorsement: zJiRA, and even

zrlrRA. Combining all these shares only allows the user to establish shared secret with the re­

mote sensor. These shares can not be used to generate the endorsement for any other access list.

Suppose the user has a forged access list al~, and the corresponding R~ = H(al~). To generate

the endorsement shares ziR~ (1 :::; i:::; t), the user has to know zi. However, it is computationally

infeasible to retrieve zi from ziliRA. Meanwhile, the knowledge of ziliRA cannot be used to derive

ziliR~. The reason is that RA,R~ are random elliptic curve points, it is computational infeasible to

derive rA,r~ E GF(q), so that RA =rAP and R~ = r~P. As the result, it is impractical to derive

ziliR~ from ziliRA. For the same reason, the user cannot reuse the acquired secret endorsement to

access a different remote sensor.

Since each endorsing sensor establishes a secure communication channel with the user during

the local authentication, the adversary cannot capture any share of the endorsement by eavesdrop­

ping. Therefore, only the user and the remote sensor share the secret, which is to build the secure

communication channel for the remote access.

67

Finally, we specifically discuss the following potential attacks for the impersonation attempt.

Since the first part of the protocol is the user local access control that is executed between the user

and the local endorsing sensors, our analysis mainly focuses on the second part, which is between

the user and remote sensor.

• Impersonation. Since the user has to be authenticated by a group of local sensors before

he can access the remote sensor, the impersonation attack is easily defended by the local

screening. When the user himself is malicious, the impersonation can be in a different form

that the user forges his access list after he is authenticated by the local sensors. However,

as we have explained above, the malicious user cannot decrypt the reply from the remote

sensor because he does not possess the private key associated to his forged access list.

• Replay attack. The remote query answer replied by the remote sensor is encrypted by the

secret key, the adversary cannot capture any information through the replay attack. The

remote access control protocol, shown in Fig. 3.4, can be easily modified by including a

nonce to allow the remote sensor to detect the reply attack.

• Interleaving. There is only one round communication between the user and the remote

sensor. The remote sensor receives the query, and then encrypts the reply by using the

constructed pairwise key. Without the pairwise key, which is jointly constructed by the

local endorsing sensors, the adversary cannot decrypt the reply.

• Reflection. The reflection attack cannot be a threat because the protocol between the user

and the remote sensor is not a challenge-response authentication. The user cannot under­

stand the remote access request sent by himself, and neither can the remote sensor under­

stand the reply message.

68

• Forced delay. The adversary cannot gain anything from the forced delay attack. As we

explained, the reply message from the remote sensor is encrypted.

• Chosen-text attack. Our protocol can be easily improved to defeat the chosen-text attack

by including a random number, e.g., nonce, in the remote query access request from the user

and the reply message from the remote sensor.

3.5 System Implementation

We implement our ECC-based user access control on MICAz motes [48], the most recent MICA

family motes from UC Berkeley. MICAz is powered by a ATmegal28 micro-controller, which

features an 8MHz, 8-bit RISC CPU, 128K bytes flash memory (ROM) and 4K RAM. The RF

transceiver on MICAz is IEEE 802.15 .4/ZigBee compliant, and can achieve maximum 250kbps

data rate. The MICAz runs TinyOS [88] version 1.1.15.

3.5.1 User Module and Other Components

Our user module is composed of two parts. We choose an HP iPAQ pocket PC as the user comput­

ing module to perform all backend computations. The HP iPAQ features a 522MHz ARM920T

PXA270 processor, 64MB RAM and 128MB flash memory. The HP iPAQ is powered by Mi­

crosoft Windows Mobile 5.0. Since the iPAQ wireless communication module is not compatible

with IEEE 802.15.4/ZigBee on MICAz, we use a MICAz sensor mote to bridge the communica­

tion between the user and the sensor motes. The MICAz mote is responsible for communications

with the sensor motes in the network. All the data processing is performed at the iPAQ. The two

parts communicate through a USB cable. The MICAz mote acquires the USB port through the

69

Figure 3.5: An example of user access control experiment setup including local sensors and the user mod­
ule. An HP iPAQ is used as the interface for user to interact with the network (inject query and get back the
data reply) through the sensor attached to the iPAQ.

MIB520 programming board [W]. However, the iPAQ does not have the USB hoster. We solve

this problem by mounting a USB Hoster Compact Flash Card on the iPAQ. To utilize the Serial

Forwarder facility from TinyOS 1.1.15 to regulate the communication between the MICAz and

the iPAQ, we install Mysaifu Java Virtual Machine [69] on the iPAQ. Fig. 3.5 shows the testbed

and the user module setup for our experiments. We implement the same ECC primitive on the

iPAQ. Given the powerful processor and plenty of memory, the ECC performance on iPAQ was

expected to be much faster. To our surprise, initial test showed the ECC point multiplication still

costs 200ms, only 6 times faster than MICAz with a more than 60 times faster CPU. The further

investigation reveals that C compiler for the mobile devices has poor optimization capability, so

that the multi-precision integer operation is not optimized. Therefore, we again re-write the crit-

ical components in ARM assembly language. The judicious decision improves the performance

from 200ms down to 40ms. We summarize the ECC performance results on both platforms in

Table 3.1.

For the hash function, we adopt SHA-1 160-bit implementation from a standard crypto li-

brary. For MAC (Message Authentication Code) module, we adopt the RC5 block cipher from

70

Platform PrivKey Pub Key PM Sign Verify

MICAz 20 bytes 40 bytes 1.24s 1.35s 1.96s

iPAQ 20 bytes 40 bytes 40ms 48ms 68ms

TelosB 20 bytes 40 bytes 1.44s 1.60s 2.26s

Table 3.1: The comparison of ECC execution Time on various platforms, including MICAz, HP iPAQ
and TelosB, for ECC point multiplication (PM), signature generation (Sign), signature verification (Verify)
time.

Tiny Sec [:')ol]. Both hash and MAC modules are computationally efficient. It takes several mili-

seconds to do a hash operation. The RC5 encryption and decryption take less than 1 ms.

3.5.2 Other Sensor Platform

Our ECC based access control schemes are not only practical for MICAz motes, but can be

deployed on other sensor platform. We have successfully ported our whole software suite to

TelosB motes, the latest research oriented motes developed by UC Berkeley. TelosB is powered

by MSP430 micro-controller. MSP430 incorporates an 8 MHz, 16-bit RISC CPU, 48 KB flash

memory (ROM) and 1 OK RAM. The RF transceiver on Te\osB is IEEE 802.15.4/ZigBee compli-

ant, the same as on MICAz. Therefore, TelosB and MICAz motes can be mixed together to form

a heterogeneous sensor network.

Since TelosB mote has a different hardware architecture, all hardware dependent security

primitives have to be re-written for TelosB. We adopt the same optimization techniques explained

previously, and find ECC is also practical for Te\osB motes. The ECC performance on TelosB is

shown in Table 3 .1. Overall, ECC operation on TelosB is only slightly slower than that on MICAz.

71

3.6 Analysis and Evaluation

We evaluate our access control schemes using a combination of theoretical analysis and actual im­

plementation on a sensor platform. The symmetric key schemes compared are: Random-key [2R],

PIKE [!1], BJorn [:::6], and Blundo [I 0')]. Random-key, PIKE and BJorn are used to compare the

performance of our public key solution when performing pairwise key establishment. Note that of

the different symmetric schemes considered, only Blundo is explicitly designed for access control.

Thus, we only compare our local access control solution with Blundo.

The metrics used to compare pairwise key establishment are memory overhead, message

complexity and security resilience. Since all symmetric-key-based key establishing schemes re­

quire key pre-distribution, the memory overhead measures the amount of memory space required

for each sensor to achieve a certain degree of key connectivity with its neighboring nodes. The

more keys pre-distributed, the higher key connectivity can be achieved. The message complexity

measures the amount of communications required for a certain sensor node to establish pairwise

keys with its neighboring sensors. In security resilience against the node compromise, we measure

the fraction of the compromised communication links as a result of sensor compromise. The com­

munication links here are the direct communication links between any two neighboring sensors.

We implement Random-key scheme and Blundo user access control scheme as the real world

comparison. We use the following four metrics: key establishing time, memory overhead, mes­

sage complexity and energy consumption. The key establishing time measures the time duration

for a random sensor to establish secret pairwise key with its neighbors. Similarly, the memory

overhead measures the exact amount of data space required (in the real implementation) in the

access control. The message complexity then shows the amount of messages transmitted during

72

the key establishing procedure. The energy consumption estimates the average communication

energy consumed during the key establishment.

Finally, we implement all components in the proposed remote access control. By focusing on

the processing delay, we demonstrate the delay is small, which makes our scheme practical in the

real world.

3.6.1 Analytical Results

3.6.1.1 Pairwise Key

Random-key [28] can be considered as a base line pairwise key establishment protocol. Each

sensor is randomly pre-distributed with a number of secret keys from a system key pool. Any two

neighboring sensors try to find a common key to establish a pairwise key by exchanging the key

indices. BJorn [26] is a variation of Random-key scheme. Instead of pre-distributing random keys,

BJorn pre-distributes secret vectors from the key spaces (or matrices) maintained by the system.

Any two sensors having the vectors from a common key space can establish the pairwise key.

PIKE [15] (we only consider PIKE-2D in this work) is different from the above two schemes in

that each sensor, identified by a two-dimensional ID, is pre-distributed at least one common secret

key with determined 2 x Jill sensors (where N is the number of sensors in the network), which

have either the same row-ID or column-ID. Any two sensors establish the pairwise key through

the sensor that has the same row-ID with one of the two sensors and the same column-ID with the

other.

We provide three variations of our ECC-based pairwise key schemes: ECC-Cert, ECC-NoCert,

and ECC-PreComp, which were discussed in Section 3.3.

Our analysis is based on a randomly, uniformly deployed sensor network with 10,000 nodes.

(a)

U) 4

-E 2 ~x"'=10=.=::=====j--~-~-7-.----,
::::; - •- Random , , J/1'
B - El- PIKE
"" -A- Blom 11'
-~ 1.5 - ECC-Cert ''
::J - ECC-NoCert , , J/1,
~ - ECC-PreComp ,

8 , ... * u ,
~ ,¥

:.0 ,
.E ,
-o
~ 0.5 , ,
.E ~-
e a.
E
0
()

-"" -""-- 111---m. -- .m-.-- -m--- -t
5 10 15 20 25 30

Compromised Sensors

(b)

73

Figure 3.6: (a). The trend of percentage of total communication links compromised with the increasing
number of sensors compromised. (b). The memory space required for any two nodes to to establish a direct
pair-wise key under different key connectivity rate.

On average, each sensor has 20 neighbors. The above parameters are selected according to [8] so

that the sensor network can be connected with a probability greater than 99%. The senor node IDs

have the size of 2 bytes. The random keys have the size of 1 0 bytes. With additional 2 bytes for

key indices, each pre-distributed random key requires 12 bytes for memory space. We assume the

key pool size is 10,000 for both Random-key and PIKE. We choose 160-bit ECC as our public key

primitive. Accordingly, an ECC certificate has 40 bytes, an ECC public key has 40 bytes, and an

ECC private key has 20 bytes.

The ability to establish a direct pairwise key (not through the third party) between two neigh-

boring sensors is very important, since direct key sharing not only reduces the communication

overhead, more importantly, also improves the security resilience. Fig. 3.6(a) shows the memory

overhead required by the key establishing schemes to achieve a direct key between two sensors

with different probability.

To increase the probability of establishing direct pairwise keys, Random-key scheme needs to

pre-distribute more keys in each sensor node. We can see from Fig. 3.6(a), the memory overhead

74

is increasing linearly when the required key connectivity increases from 0.1 to 0.9. This trend

becomes exponential when the connectivity is larger than 0.9. To achieve 100% connectivity, each

sensor has to be pre-loaded with 300 keys, which requires 3.6KB memory space. Considering

MICAz only has 4KB data space, the 300 keys almost use up all available memory and leave

almost no space for the application programs .. Thus, the Random-key scheme obviously is not

practical to achieve 100% direct key connectivity.

Compared with Random-key scheme, the memory overhead ofPIKE only depends on the net­

work size. Given 10,000 sensor nodes, each sensor has to be pre-loaded with 2 x (v'1 0000- 1) =

198 keys. Therefore, the memory overhead for PIKE is constantly 12 x 198 = 2,376 bytes. Blom

scheme with A = 29 and co= 50 (please refer [::6] for the details) also introduces high memory

overhead as shown in Fig. 3.6(a), specially when the high key connectivity rate is required.

Compared to symmetric key schemes, our ECC-based schemes overall have less memory over­

head, specially when the key connectivity is high. In ECC-NoCert, each sensor only needs to store

its private key and public key pair, which have the combined size of 60 bytes. In ECC-Cert, each

sensor has to store one more certificate, so the memory overhead becomes 100 bytes, 40 bytes

more than that of ECC-NoCert. ECC-PreComp has more memory overhead because each sensor

needs to store the pre-computed random numbers (20 bytes each) and corresponding elliptic curve

points (40 bytes each). Given average 20 neighbors, each sensor at least stores 20 pre-computed

values, which account for 1200 bytes more overhead. As the result, the memory overhead for

ECC-PreComp are 1260 bytes. Note the memory overhead of the public key base schemes do not

change for achieving different key connectivity.

When the sensors are captured and compromised, the relative communication links are also

compromised. These compromised links include the direct communication links connected to

75

the compromised nodes and indirect communication links due to the leakage of the system secret,

such as the subset of system key pool in Random-key scheme. To simplify the analysis, we assume

the the compromised nodes are evenly and randomly scattered in the network. Fig. 3.6(b) plots

the number of compromised indirect communication links due to the node compromise.

Our ECC-based public key scheme is ideal under such situation. There is no indirect link

compromised due to the node compromise. In PIKE scheme, each sensor serves the intermediary

for other two sensors. Suppose a sensor with ID (i,j) is compromised. As the result, all potential

links between any sensor on the i1h row and any sensor on the fh column will be compromised.

Given VN sensors on the i1h row and VN sensors on the fh column, there are totally N potential

links. Considering the network connectivity is 20/ N, on average 20 indirect links can be compro­

mised for each compromised sensor. In Random-key scheme, the communication links, which are

not directly connected to the compromised nodes, may also be compromised because the secret

keys used in these indirect links might be revealed to the adversary when the nodes are captured.

Let the number of captured nodes be x. Given system parameters: total key pool number P and

pre-distributed key number k, the expected fraction of the compromised communication links is

I- (1- iY [26]. Fig. 3.6(b) indicates that Random-key scheme is more vulnerable to the node

compromise attack. When 32 nodes are compromised, more than 20,000 links can be compro­

mised. PIKE scheme performs much better, but the number of compromised indirect links still

grows linearly as the number of compromised sensor increases. As we indicated above, our ECC­

based schemes are resistant to the node compromise. There is no indirect link can be compromised

due to the node capture.

We find BJorn scheme is resistant to the node compromise as no indirected link is compro­

mised. As indicated in [26], however, this feature does not hold when the number of compromised

76

nodes keeps growing. The security resilience degrades exponentially when the fraction of the

compromised node reaches the certain threshold.

Careful readers may argue that the network parameter selection have an impact on the re­

sults of the above memory overhead and security resiliency analysis. For example, the memory

overhead of some symmetric-key schemes, such as Random-key and Blom, are low when the key

connectivity is low. However, the random graph theory [X] tells that, to have a securely connected

sensor networks, the key connectivity has to maintain a certain level. In our example, given 10,000

sensors and 20 neighbors for each, the key connectivity must be greater than 90% in order to have a

securely connected network with the probability of99%. It is true that the requirement for the key

connectivity reduces to 50% if the average degree of each node increases from 20 to 36. However,

the sensor network in the latter case is almost twice denser than the former one. As the result, the

hardware cost is nearly doubled because 16 more sensors are needed in each neighborhood area.

We have not found a good way to convert the hardware overhead to the memory overhead and

make the comparison against our previous memory overhead analysis, but we believe the hard­

ware cost is an important performance metric and cannot be ignored. In this chapter, we use the

memory overhead as an example to present the extra cost incurred in the symmetric key schemes.

3.6.1.2 Local User Access Control

_User access control requires the sensor nodes to authenticate the user and verifY the user's access

privilege. A symmetric-key user access control based on Blundo's scheme is proposed by Zhang

eta!. [1 09]. The Blundo's scheme is very similar to Blom's scheme as we explained previously.

The system maintains a symmetric bi-variate polynomial. Each sensor or user is pre-loaded with a

secret share of the polynomial. Any sensor and the user can establish a pairwise key by plugging

77

other's public information, such as sensor ID or user access list, into the secret polynomial share.

The access control can be achieved by integrating the user access list to the polynomial share, so

that the user has to show the genuine access list, otherwise the user can not establish the pairwise

key with the sensor and can not pass the authentication. The drawback of this scheme is that it

has very limited security resilience against the user collusion attack. The reason is that the system

secret, polynomial shares, has to be given to the user. Multiple malicious users may easily gather

the information, reconstruct the secret polynomial, and finally compromise the system security.

Here we want to emphasize that only public key scheme can fundamentally solve the security hole

ofthe user collusion attack.

We do not compare our ECC-based local user access control to Blundo access control [I 09].

We instead perform comparison experiment to study other advantages of our ECC-based local

access control. We reserve this part to the next subsection.

3.6.2 Experimental Results

Here, we demonstrate the advantages of our proposed public key schemes through real world

experiments. For the comparison purpose, we also implement Random-key scheme and Blundo's

scheme based access control scheme on real sensor motes.

3.6.2.1 Experiment Test-bed and Parameter Setting

We implement the baseline symmetric key scheme, Random-key, on the same test-bed for the

comparison of pairwise key establishment. We use 10 MICAz motes to form a sensor neighbor­

hood. Each sensor can directly communicate with any of other nine neighbors. We select the

key pool size of 10,000. Each key, with the size of 10 bytes, is identified by a two-byte key

78

index. We first generate 10,000 random keys at a laptop computer. Each mote is randomly pre­

distributed with 150 keys. In the experiment, we have adopted the simple scheduling method to

avoid message collision, which emulates the optimal communication environment for key estab­

lishing. We randomly pick one out of ten motes to initiate the pairwise key establishment with

all its neighbors. Even with 150 keys pre-loaded, they are not enough for any mote to establish

direct pairwise key with all the neighbors. Therefore, multiple rounds of key establishment have

to be performed. After the first round direct key establishment, the initiating mote notifies the

neighbors that have already established direct pairwise keys with it and starts the second round of

key establishment. The key establishing protocol is exactly the same in the second round except

the initiator has changed. Each of the neighbors that have established the direct key is required to

perform the indirect key establishing in the second round. Two rounds of key establishing still may

not achieve 100% key connectivity for the original initiator. More rounds of such operation could

be necessary. In our experiment, however, we limit it to three rounds. That means any two neigh­

boring motes at most have two helpers for establishing indirect pairwise key. This arrangement is

supported by the fact indicated in Random-key [28) that the number of pairwise key established

through more than 3 hops is negligible.

Finally, we implement the Blundo access control on our test-bed. We first generate a ran­

dom symmetric polynomial. The coefficients have the size of 10 bytes. The polynomial degree

is adjustable for the target security resilience against the node compromise. Each mote is pre­

distributed with a secret polynomial share, which is generated by simply plugging in the mote ID.

The amount of memory space for storing the polynomial share is determined by the polynomial

degree. Similar as the access control test-bed implemented by our ECC public scheme, we use the

HP iPAQ as the user module. Again, the iPAQ is attached to a MICAz mote.

For all schemes conducted on our test-bed, we repeat the tests for 20 times, and record the

average values.

3.6.2.2 Pairwise Key Establishment

Fig. 3.7(a) illustrates the processing time delay in pairwise key establishing for achieving different

degree of key connection. We select two ECC-based schemes: ECC-PreComp and ECC-NoCert

for this experiment. It clearly shows that ECC-PreComp is much faster than ECC-NoCert since

the former scheme only requires one ECC multiplication for both neighboring sensors, while the

latter one requires two. In reality, ECC-PreComp is very practical because the pre-computation

only introduces a very limited memory overhead compared to that in symmetric key schemes.

Compared to the PKC-based schemes, Random-key scheme has lower processing overhead

when the requirement of key connectivity is low. However, this advantage does not hold if more

than 80% key connection is required. The reason is that the number of pre-distributed keys is

not enough for establishing pairwise keys with all its neighbors. The key establishing time thus

increases to infinity. As shown in Fig. 3. 7(a), the time jumps to infinite large at key connectivity of

0.8. We restrict the pre-distributed key number due to the limited 4KB memory space in MICAz

motes. In our experiment, with 150 key pre-distributed, a mote can only establish direct pairwise

key with two out of its nine neighbors. The other pairwise keys are established through the second

and the third rounds of key establishing procedure.

Fig. 3.7(b) further reveals that ECC-based pairwise key scheme has much less message com­

plexity than Random-key scheme. To establish a pairwise key, two neighboring motes only need

to transmit 120 bytes for both ECC-NoCert and ECC-PreComp schemes. In Random-key scheme,

the broadcasting node has to send all key IDs in its key ring. Given 150 keys and 2 bytes each for

Q)

E
F c 15
Q)

E
..c

~ 10

~
UJ

-+-Random
-9- ECC-PreComp
··'(;l''" ECC-NoCert

0.2 OA 0.6 0.8
The Key Graph Connectivity

(a)

1600rr======:c;--~-~-~----;-

-·- Random * cn 1400 +EcC-PreComp ,'
2 -'V'- ECC-NoCert , ' ,e: 1200 ,'

~ 1000 , ... -- ...
Q) ,
~ ,
E 800 ,'

8 ~~---· Q) 600
Ol

"' Ill
Ill
Q)

::2

0.1 0.2 0.3 OA 0.5 0~ 0.7
The Key Graph Connectivity

(b)

80

Figure 3.7: (a) Key establishing delay for different key graph connectivities. (b) The message complexity
for achieving the target key connectivity.

key index, the broadcasting mote transmits 300 byte message. All listening neighbors also need

to respond the key establishing broadcast, by either replying the challenging message (if there

is shared key), or notifying there is no shared key. This message overhead has to be paid in all

three key establishing rounds. In wireless sensor networks, high message complexity increases the

chance of message collision and thus causes network congestion. The low message complexity is

a significant advantage for ECC-based pairwise key establishing schemes.

Finally, we compare the energy consumption, including communication energy and compu-

tation energy, during the pairwise key establishment. We estimate the communication energy

consumption by multiplying the total amount of communications by an average communication

energy consumption of 18,uJ/bit [13]. Since the symmetric-key encryption and decryption are

very efficient, we ignore the computation overhead of Random-key scheme. Comparatively, it

takes several seconds in the public-key-based schemes, so the computation energy consumption

cannot be ignored. The ECC computation energy consumption E can be calculated by E = U ·I· t,

where U is the voltage, I is the current and t is the time duration. According to the MICAz data-

81

sheet, U is 3.0V (two AA batteries), and I is 8mA (the current draw in the active mode). We plot

the results in Fig. 3.8(a). The dash-line is the communication energy cost of Random-key scheme.

The two solid lines are the combined communication energy and computation energy consumma­

tion of two ECC-based schemes. The figure clearly identifies the key drawback of Random-key

scheme. The symmetric-key-based scheme consumes more than twice amounts of communication

energy than the ECC-based scheme even though the public key scheme consumes more energy in

computation. The reason is that message broadcast is required in Random-key scheme. As the

result, all neighboring sensors need to listen the broadcasts all the time and consume the energy

for receiving the messages.

We argue that processing time is not a significant metric for sensor network application as

opposed to the memory usage, message complexity, robustness to sensor compromising. Pairwise

key sharing is usually conducted in the initialization phase of sensor network deployment as papers

on symmetric key pairwise key sharing argue. Public key protocol for key sharing takes a few more

seconds to finish than symmetric key protocols, which is tolerable for network initialization and

also for online pairwise key sharing, since it is done only once between two sensors. From the

experimental data, we clearly see that our protocol performs better than symmetric key protocols

in terms of memory usage, message complexity (and thus equivalently energy consumption and

system lifetime), and robustness to network compromising.

3.6.2.3 Local Access Control

We first measure the authentication delay in the local access control. Since the parameter selection

in the Blundo's scheme based local access control depends on the security resilience against the

node compromise. We test both schemes under various security resilience requirements. The

1600rr===~==~==~--~--~--~~
-•- Random lit

1400 +EcC-PreComp i
1200

-'V'- ECC-NoCert

c

~ 1000
E
~ 800
c
0

(.)

>-
~
Q)
c
w

,•--- * , ,

,
, , ,
, ·--- "*

, , , ,

0.2 0.3 0.4 0.5 0.6 0.7

~ 2.5
i=
0
-E 2
0

(.)
Ul § 1 5

<(

1'i 1

.3 ...,._SymmAcc
··(l~·ECC Ace

1 2 3 4 5

82

The Key Graph Connectivity The Allowed Percentage of Compromised Sensor Nodes(%)

(a) (b)

Figure 3.8: (a). The energy consumption (including communication and computation) for achieving the
target key connectivity. (b). Local authentication time vs. security resilience(% of compromised sensors).

user authentication delay is shown in Fig. 3.8(b). When the security resilience is low, up to 5.5%

percent of sensor nodes allowed to be compromised, the Blundo access control is more efficient

than our ECC-based scheme. The reason is that the polynomial operations are much faster than

ECC exponentiation. However, the processing overhead ofthe Blundo based scheme increases as

the requirement of security resilient increases. When the requirement of security resilience is more

than 5.5%, the processing overhead of the symmetric-key-based scheme becomes slower than our

PKC-based scheme. The reason is that the processing overhead of our ECC-based scheme does

not change, it always provides the security equivalent to the discrete logarithm problem.

Note, the security concern of user collusion attack has not been revealed yet by this experi-

ment. This security issue has to be considered in real world deployment. Therefore, either higher

degree random polynomial or multiple polynomial have to be selected to improve the security.

As a result, the processing overhead of the Blundo based access control will be higher. On the

contrary, the ECC-based access control scheme does not suffer from user collusion attack, so our

scheme can be directly applied to the real world deployment.

1 1.5 2 2.5
The Allowed Percentage of Compromised Sensor Nodes(%)

(a)

140 -!11-Symm Ace
c;; ""'""110:1

"'" ECC Ace
Q)

>. 120 e
.i?:' ·;;:
Q)

c.
E
0

(.)
Q)
C)

"' en
en
Q)

::E

20L---~~--~--~------~--~

101 10
2

10
3

The Size of the Network (in number of network blocks)

(b)

83

Figure 3.9: (a). The memory space required to finish the local user authentication, regarding the different
security resilience, in term of the percentage of sensors allowed to be compromised. (b). The message
complexity in user authentication, regarding the different network size, in term of the number of network
blocks, where each block is the user access area unit.

Fig. 3.9(a) shows the comparison of data size of two local access control schemes in the

real implementation. It clearly shows that the memory overhead scales linearly in the Blundo

based scheme for satisfYing different security resilience. The degree of the random polynomial

is larger for higher security requirements. As a result, the sensors need more space to store the

corresponding coefficients. The data size of the ECC-based scheme, as can be easily predicted,

does not change at all.

When Fig. 3.8(b) and Fig. 3.9(a) show that the Blundo access control has poor security scala-

bility in processing time and memory overhead, Fig. 3.9(b) displays that it also has poor network

scalability in message complexity. Since the Blundo access control scheme uses "Cell Merging"

and "Block Compression" [1 09] to reduce the number of polynomial possessed by the user. The

user has to traverse a Merkle-hash tree. The traversal path length is determined by the tree size,

which is in turn determined by the number of location blocks, or the network size. Again, our

ECC-based user access control has the advantage of excellent network scalability; the message

84

complexity is independent to the network size, fixed at 100 bytes. The figure clearly shows that

the Blundo based scheme has more complexity than our public key scheme when the network

size is just over 100 blocks. This fact proves our scheme is more favorable for large network

deployment.

3.6.3 Remote Access Control

In this subsection, we evaluate our remote access control scheme. We first provide the micro­

benchmark for the local authenticate and threshold endorsement generation. Then, we provide the

overall estimation of the remote access performance. In the experiments, we mainly focus on the

user perceived remote access processing delay. Our first hand experimental results suggest the

PKC-based remote access control scheme is very practical.

3.6.3.1 Local Endorsement

The local endorsement procedure can be further divided into user local authentication and endorse­

ment generation. We have already demonstrated the performance of user local authentication in

the previous section. To be authenticated by multiple local sensors, a simple and effective opti­

mization can be applied to allow the user to be authenticated in parallel rather than one-by-one.

The user first sends its certificate to all the endorsing sensors, so that the endorsing sensor can

verify the certificate and generate the challenges simultaneously. Then the user collects all the

challenges from each member of endorsing group and responds them one-by-one. This optimiza­

tion is valid for user authentication because the user device is much more powerful than sensors.

As we showed previously, ECC multiplication on iPAQ is more than 30 times faster than MICAz

mote. Therefore, the ECC operation overhead on user device is negligible compared to that of

u ! 40

~ 35
F
c 30
0

~ 25
.~

5j 20
.r::

~ 15

ri 10
.3

...._After Optimization
-e- Before Optimization

2 4 6 8 10 12 14 16
Number of Local Endorsing Sensors

(a)

-ua
Q)

~
Q)

~ 7
Ol
c

:.:::;

~6

4~----~--~----~--~----~
5 1 0 15 20 25 30

Number of Local Endorsing Sensors

(b)

85

Figure 3.10: (a). The user local authentication time, before and after the optimization, by multiple local
endorsing sensors. (b). Key establishing time with the remote sensor when the number of endorsing sensor
changes from 4 to 32.

sensors. This also explains why such optimization does not work in pairwise key establishment

between one sensor and its neighbors.

Fig. 3.1 O(a) displays time consumption when the user is authenticated by multiple endorsing

sensors. For the comparison purpose, we also show the authentication delay without the opti-

mization. Obviously, the optimized scheme is significantly more efficient. Before optimization,

it takes more than 45s for the user to finish authentication with 16 endorsing sensors. This delay

dramatically reduces to Ss after the optimization.

After finishing the user authentication, the endorsing sensors perform threshold endorsement

to establish pairwise key between the user and the remote sensor. We continue the above au-

thentication experiment. Each endorsing sensor immediately computes its endorsement share and

then sends to the user sequentially. Fig. 3 .I O(b) shows the user waiting time to receive all the

endorsement shares. With the number of endorsing sensors changing from 4 to 32, the time du-

ration linearly grows from 4.5s to 8.9s. The measurement includes the user local authentication

time (local pairwise key establishing time). The performance is consistent with that displayed in

86

Fig. 3.10(a). The threshold endorsement requires each sensor to perform one more ECC point

multiplication at the cost around 1.3s as showed previously.

Upon the receipt of the remote access query, the remote sensor has to verify the authenticity of

the remote query by decrypting the message using its own secret share as presented in section 3.4.

The computational complexity of this operation is independent to the number of local endorsing

sensors. The only expensive operation at the remote sensor is one ECC point multiplication. It

takes only 1.4s for the remote sensor to calculate its secret share and verify the query.

3.6.3.2 Complete Remote Access Control

Finally, we are eager to investigate the overall performance of the remote access control, includ­

ing the threshold signature generation, message propagation, and remote sensor verification. We

assume the local endorsing sensors have already established pairwise key with each others. To

simplify the experiment, the user directly sends the query to the remote sensor. Then we add the

estimated hop-by-hop forwarding delay to estimate the performance for various hop distances.

The estimated forwarding delay is the communication delay in sensor RF transceiver. Our estima­

tion fixes the amount of communication delay to 17.5ms. 1

Fig. 3.11 (a) shows the estimated overall user remote query response time, given the size of

local endorsing group with 4, 8 and 16, respectively. We find the overall remote query delay

is short. When the remote sensor is located at 20 hops away, the user query response time is

6.8s. When the larger size ofthe local endorsing sensor group is required, the additional overhead

increases moderately.

1 Based on our experimental result of forwarding a 60 byte payload in MICAz motes.

10~r==========?====,---~--~,
....._4 Endorsing Sensors

9.5 · · 0 8 Endorsing Sensors
-$- 16 Endorsing Sensors A.

9 ~~~v
()8.5 -<>~~~
QJ AA...(j-¢
.!!!- ..¢ ..¢ "V v

5 10 15 20 25
Number of Hops

(a)

30

0
~ 7
Q)
E
i=6

5

4
5 10 15 20 25

Number of Hops

(b)

87

30

Figure 3.11: (a). Remote query time delay. (b). Comparison of remote query delay between MICAz and
TelosB.

3.6.3.3 Porting to Other Sensor Platforms

Finally, we demonstrate that our ECC-based user access control suite can also be efficiently de-

ployed on a different sensor platform, TelosB mote. Fig. 3.11(b) illustrates the performance com-

parison between the two platforms for remote access control with the setup of 8 local endorsing

sensors. The overall access control performance on the two platforms is very close, although the

performance on TelosB is slightly worse because ECC on TelosB is slightly slower. In practice,

MICAz and TelosB can be deployed together to form a heterogeneous sensor network for user

access control purpose because they share the same RF transceiver.

Chapter 4

False Data Filtering

The repertoire of sensor network applications requires an inclement and human unattended en­

vironment, such as battlefield surveillance, wild animal habitat monitoring, and environmental

monitoring. Given the extremely constrained hardware resources of the sensor nodes, the ad­

versary Denial-of-Service (DoS) attack becomes a serious security threat. For example, in the

applications of the remote access control as we have discussed in the previous sections, interme­

diate forwarding sensors have no knowledge about the message payload (because the content is

encrypted) so that they cannot determine whether or not the forwarded packets are legitimate. The

adversary can first compromise an individual low-power sensor, and then inundate the whole net­

work by injecting large amounts of bogus data packets into the network through the compromised

node. These bogus messages flood the network, deplete the battery power of the sensor nodes, and

finally paralyze the whole network.

This problem has attracted many attentions in the past several years. Most of prior work

[IIJ4, i 15, I 0 J, l06], except [ll OJ, on sensor network message authentication and bogus data fil­

tering mainly rely on symmetric key schemes. Ye et al. [1 04, I 01] proposed a statistical en-route

88

89

false report filtering scheme (SEF). The scheme requires each report be endorsed by multiple

sensor nodes by encrypting the report with their random pre-distributed symmetric keys. The in­

termediate nodes on the route compare their own keys with those used for encrypting the report,

and check the corresponding encryption if matched keys are found. Since the authentication capa­

bility of the intermediate nodes depends on the probabilistic key sharing, only a portion of bogus

messages can be detected and dropped. If the communication is between two remote sensor nodes,

the receiver still cannot know, with a certain probability, whether or not the message is valid. Zhu

et al. [I ! 5] proposed an Interleaved Hop-by-hop Authentication scheme (IHA) to detect the false

report. The protocol requires that the sensor nodes maintain a pre-route interleaved associations

so that any sensor shares each secret with its upper associated node and lower associated sensor.

The problem of this approach is that it is not practical for large sensor networks. Many times, the

message routing paths are not determined due to the unpredictable nature of wireless communi­

cations. The association requires global knowledge of the networks, which is very difficult to get

for large scale sensor networks. Further, this scheme only filters the false report which is sent to

the sink. The sensor nodes have no ability to authenticate the messages between the sensor nodes

since the corresponding association knowledge is not available.

Unlike the symmetric key based schemes, the public key approach [ll 0] proposed by Zhang

et al. yields better security resilience. Unfortunately, the bilinear pairing based scheme is too

expensive to be afforded by the low-power sensor hardware. Another straightforward public-key

based approach is to use the public-key infrastructure (PKI) that is widely used on Internet, e.g.,

X509. However, PKI cannot be directly used on sensor networks due to following three issues.

First, public key size is normally large, such as 128 bytes for 1 024-bit RSA. Sensors are extremely

resource constrained devices. The distribution of public keys in sensor network would cause high

90

communication overhead, which in tum will reduce the battery life. Second, the public key has

to be certified before it can be used to verifY a signature. It is difficult to have an on-line CA in

sensor networks. The workaround solution is to attach a certificate with the public key. But again

it would cause more communication overhead since the certificate has the same data length as the

public key. Third, the simple scheme is not resilient to defend against DoS attacks. If a sensor

is compromised, the adversary then uses it to send a large number of messages with legitimate

signatures (of the compromised sensor).

In this chapter, we propose a Public-key based false Data Filtering scheme (PDF), which

leverages threshold cryptography and Elliptic Curve Cryptography (ECC). As we will show, ECC

is more affordable than other public key schemes for sensors. With carefully devised ECC-based

security protocols and optimized ECC primitive implementation on sensor nodes, ECC is very

practical on extremely resource constrained devices. In PDF, any event report message requires

an attached digital signature which is signed by system private key. Due to the threat of node

compromise, any single sensor cannot be trusted to keep the system private key and be allowed to

generate the system signature. Instead, with the assumption that the adversary can not compromise

up tot sensors, we design a threshold endorsement scheme. We first pre-distribute a unique system

secret share to every individual sensor during the network deployment. Upon the detection of an

event, the group of sensor nodes that detect the event collaborate together and jointly generate a

system signature. The intermediate sensor nodes can easily validate the event report by efficiently

verifYing the attached signature. Unlike the symmetric key based schemes that only support false

data filtering for the sink bounded messages, PDF supports any point to point communication in

the sensor network.

Since it is computationally infeasible for the adversary to forge a digital signature without

91

knowing the system secret, any false report will be detected with 100% probability. PDF is also

resilient to sensor compromising attack. The threshold cryptography guarantees the system secret

will not be revealed as long as no more than t- 1 (t is a system parameter) sensors are compro­

mised. We have implemented all the components for the false data filtering scheme on the real

world sensor nodes and shown the performance of the public-key based scheme is practical.

4.1 Network and Security Model

We consider a large scale wireless sensor network deployed in a variety of environments. Sensor

nodes are the low-cost wireless devices and have very limited hardware resources including pro­

cessor, memory and energy. Upon detection of an event, the sensor nodes generate event report

packets and send them back to the sink through multihop routing. For the event detection that

needs the collaboration of a group of nearby sensors, we assume the sensor clustering protocol,

as proposed in prior work [45, I 05, ~, 5, 17, 3, 2], has been already deployed. The event report

is generated by the sensor cluster and transmitted to the sink by the multi-hop routing protocol.

We assume the sensor network routing scheme, such as Directed Diffusion [49], LEACH [45] or

GPSR [55], is also deployed.

The sensor network security is managed by a Certification Authority (CA), which is responsi­

ble for generating all security credentials and distributing the secret keys. Due to the constrained

resources and costly wireless communications on sensors, theCA can not be online and accessible

as the way it runs in Public Key Infrastructure (PKI). Instead, the CA only runs during the net­

work deployment, system rekeying, or sensor replenishing period. Since theCA has to be off-line

in most of time, each sensor has to be pre-loaded with its private key, public key and certificate

before the deployment. Each sensor uses these keys to build the secure communication channels

92

with its neighboring sensors as well as perform future sensing tasks.

An adversary is assumed to use all possible means to attack the message authentication mech­

anism in the sensor network. To capture the system secret, the adversary may launch either passive

or active attacks. A typical passive attack is message eavesdropping. The active attacks, however,

may include Man-In-The-Middle (MITM) and sensor compromise. Due to the limited hardware

resources, sensor nodes may be compromised upon capture. In this chapter, we assume the ad­

versary can retrieve all secret information from compromised sensors. However, we assume that

at most t- 1 sensors can be compromised. The assumption is reasonable because compromising

sensors takes time and effort. In addition to the system secret capture, this chapter focuses on the

adversary DoS attack. The adversary may forge the event reports and inundate these messages in

the network in order to deplete the batter power of sensors and finally paralyze the network.

Finally, we assume the event detected by a sensor group (or cluster) with t members is always

genuine. It is true that the adversary may generate a fake event or a forged value to confuse the

base station. The adversary can influence the group decision through various attacks, such as the

Sybil attack. However, it is obviously out of the scope of the security problem addressed in this

chapter, and prior work [3 J, 72] has already proposed schemes to defend against such attacks. We

thus do not explicitly address the security problem in event detection.

4.2 Public-key based False Data Filtering (PDF)

In this section, we present PDF, a public-key based false data filtering scheme. The basic idea

is to generate a system signature for each event report so that any intermediate node with the

system public key can easily verify the event report and drop the false data packets. While public

key signature generation and verification have been well established in Internet, its application

93

in wireless sensor network poses a unique challenge. To generate a system signature, the sensor

node has to have the system private key. However, any single sensor cannot be trusted to hold the

secret because it is vulnerable to adversary's compromise attack. Our PDF solves the problem by

using Shamir's secret sharing. Instead of giving the system secret to each individual sensor, PDF

distributes the secret in the following way: each sensor holds a unique share of the secret and any

t sensor can collaborate together and reconstruct the secret. Therefore, each event report message

has to be endorsed by t sensor nodes. The t endorsing sensors actually jointly generate a system

signature for the endorsed packet.

We first briefly introduce Shamir's secret sharing scheme. Second, to achieve the least over­

head as possible, we then adopt the ECPVS signature scheme [i 4]. Third, we present the threshold

endorsement false report filtering scheme. Finally, we provide the cost and security analysis, as

well as the extension of probabilistic verification to reduce the computation cost. Our discussion in

this chapter assumes that sensors have already established the pairwise keys with their neighbors

by using the pairwise key estabablishment schemes discussed in Chapter 3.

4.2.1 Shamir's Secret Sharing

We assume CA maintains a system secret polynomial:

(4.1)

a0 ,a1, ... a1_ 1 are random number picked in GF(q). System secret xis piCked as x = ao.

During the sensor network deployment, each sensor (identified by s;) is pre-distributed with a

secret share of x. In particular, the secret share for sensors; is x; = f(s;). Any t sensor nodes can

reconstruct the system secret by Lagrange interpolation: x = I:= 1 l;x;, where l; = TI~=l,J#i sJ:__s,

94

is Lagrange coefficient. However, it is computationally infeasible for any t- I or less sensors to

reconstruct the system secret.

4.2.2 ECPVS Signature Scheme

The typical digital signature scheme in ECC is the elliptic curve version of Digital Signature

Algorithm (DSA), also know as ECDSA. ECDSA produces 40 byte signature, which is much

smaller than I28 byte signature ofRSA. However, we are still concerned that the 60-byte message

payload (combining a 20-byte message and its 40-byte ECDSA signature) is still too large for a

typical data packet for sensor network (e.g., 29 bytes in TinyOS for MICAz motes). Therefore,

we adopt ECPVS signature scheme which offers smaller signature size than ECDSA.

We describe the ECPVS [I ~I] signature scheme as following. Given a message M, we divide

M to Cl IV, where C and V are two parts of the message M, and JCI + lVI 2: JMJ, because itis

necessary to arrange some redundant information to be included in C. For example, C holds some

secret information and the signer identity, while V holds the sender identity, message description,

time stamp, etc. We assume the signer has her private key x, and the corresponding public key

Q = xP. The signer performs the following steps to sign the message.

I. Choose a random key kin [I, q- I];

2. Compute kP, resulting a point with coordinate (xk,Yk), let r = Xk. Check r (mod q), go back

to the first step if the result is zero;

3. Compute e = ENC(r,C);

4. Computed= H(eJIV);

5. Compute(J=x·d+kmodq;

95

6. (e, cr) is the digital signature.

The ENC denotes a symmetric-key encryption algorithm. Similarly, we later denote ENc- 1 as

a decryption operation, which usually uses the same symmetric-key encryption algorithm. The

signer sends < V, e, cr > to the receiver. To verify the message M = q IV and the signature, the

receiver needs to do following steps.

1. Computed=H(eiiV);

2. ComputeR= crP- dQ;

3. Compute C = ENC- 1(X(R),e);

4. Check the redundant information in C.

4.2.3 Threshold Signature Generation

Our event report signature generation scheme combines the ECPVS digital signature and Shamir

secret sharing scheme [82] to generate the threshold signature. Examining the ECPVS protocol

presented in Section 4.2.2, the signer has to have secret k and x. Considering a group of local

sensors are the signer, the challenge of signature generation is how the group jointly constructs k

and x (step 1 of ECPVS signature generation), the encryption of the content C (in step 3), and the

calculation of sigma (in step 5). Note that any member of the group should not learn and reveal

any information about k and x, assuming the adversary may capture all the communications inside

the group.

We adopt Shamir's secret sharing scheme [82] to share system secret x. To achieve that, CA

maintains a secret polynomial: fx(y) = x + a1y + · · · + a,_uJ- 1. Before being deployed, each

sensor si receives a secret share of fx(y), which is denoted as xi, and xi= fx(si). Any t sensors can

96

reconstruct the system private key: x =I:= I xili, where /i is the Lagrange coefficient. Any t- 1

or less sensors, on the other hand, can not compromise system secret x because of the threshold

property.

Shamir's secret sharing system discussed above, however, can not be used to share the secret

random number k. The reason is that ECPVS signature scheme requires the signer should pick

a different random k for a different signature. Otherwise, an adversary may easily derive system

secret x by only capturing two signatures generated from the same k. To share a different random

secret k among the group of sensors each time, we adopt the Joint Shamir Random secret sharing

scheme [:Q]. This scheme allows all participating sensors to generate their own random secret

polynomials (similar to fx(y)) each time. To share a random secret k, each sensor in tum acts

as a dealer to distribute the share of the secret (of his own polynomial) to the other members in

the group. It should be emphasized that the polynomial shares must be distributed through the

secure communication channels. We assume sensors already establish the pair-wise keys with

their neighboring sensors by using existing schemes [28, 26, 16, 60, 15, 99]. In particular, sensor si

generates its secret random po lynomialfs; (y), and distributes the share of secret Is; (s 1) to sensor

s 1 (1 ::; j ::; t, j f. i). Then, each sensor receives t - 1 secret shares from the other t - 1 sensor in

the group, and one share of its own. By combining these t secret shares, each sensor si computes

its own share of k, denoted as ki, and ki = 'L)= 1fs1(si)· The shared secret, as the random number

k, is actually embedded in the polynomial that is the summation oft secret random polynomial

generated by each oft sensors, g(y) = I~= 1/s; (y). The secret k is determined by: k = g(0). In this

way, no sensor in the group knows the value of k. Any t sensors, however, can jointly reconstruct

k by using Larrange interpolation: k = I~=l kili. Again, li is the Lagrange coefficient.

With both k and x shared, the event report threshold signature generation scheme is illustrated

for(eachsensorsi,i= 1,2 ... ,t)

I I

s1----.s2,s3,··· ,s1 :R= L,P1(i.e.,R= LkilJP)
J=! J=!

for (each sensor si, i = 1, 2 · · · ,t)

si: e = MAC(X(R),C)

I

SJ: () = L ()i
i=l

I I

(i.e., a= L,xilid+ L,kili =xd+k)
i=l i=l

Figure 4.1: Event report threshold signature generation scheme by t sensor nodes, s1 ,s2 , · · · ,s1•

97

in Fig 4.1. We assume t sensors, st, · · · ,s1, detect the event, denoted as M = CIIV, where C

can be the secret event measures and V can be general event description. We also assume s1 is

elected as the group leader. First, t sensors construct kP. Each sensor si sends its share kiliP

to group leader s1 (li is the Lagrange coefficient), which in-tum sums the t shares to get kP (by

Lagrange interpolation), denoted as R. Then, St broadcasts R to the rest t- 1 sensors. Each

sensor uses R to generate e and d as shown in Fig 4.1, computes its share of the system signature:

ai = xilid + kili, and send it to St through the secure communication channel. The summation oft

shares of signatures produces the system signature: a= L~=I xilid + .L~=l kili = xd + k. Finally, SJ

sends (a, e, V) to the destination, either the sink or other remote sensor node.

An important security measure of the above joint signature generation protocol is not to reveal

98

any of system secrets, x, k, and individual sensor secret shares, si, xi, at any step of the protocol.

Otherwise, if the group leader is compromised, then system secrets are compromised. When kP is

constructed to encrypt C (in step 2 of ECPVS), each sensor si submits kiliP instead of explicit ki,

so that secret share ki is protected by the security property of discrete logarithm problem, i.e., it

is infeasible to derive ki from kiP. When the signature cr is built (in step 5 ofECPVS), the partial

signature O"i submitted by each sensor is the linear combination of two unknown secrets xi, ki, so

the group leader has no way to derive the values of xi,ki from cri. Overall, all secrets are well

protected during the signature generation by the group.

4.2.4 Cost Analysis

The t endorsing sensors have to jointly generate a random value k for each event report. To share

a random k, each participating sensor si first generates its own random polynomial fsJy), and

calculate the secret shares for other members in the group. For the group with t members, each

sensor has to computet shares of the t- 1 degree polynomial, including the one for itself. We will

show in the evaluation that the polynomial calculation is efficient for the motes. For the message

complexity, each sensor sends t- 1 secret shares to the t- 1 members, and receives t- 1 shares

from the t- 1 members. Therefore, each sensor has to send and receive 2(t- 1) messages.

Note the share of k can be pre-computed. The group of sensors can run the secret sharing

protocol at the idle time before the event is detected, so the shares of a new k is ready for the next

endorsement as long as the different events do not occur at the same location at the same time.

Another way to reduce the communication overhead for k sharing is to eliminate the k sharing

procedure by using pre-computation. If sensor nodes have enough storage space, CA can pre­

compute different polynomials and pre-load the shares into the sensors during the deployment.

99

Each share is associated with an index number. To endorse a new signature, the group of sensors

only need to negotiate a new index, and use that share to construct a new random k. In this way,

the message complexity can be reduced to the minimum.

After the shares of k are ready, the most expensive computation for each sensor si is one ECC

point multiplication to compute Pi as shown in Fig. 4.1. For the message complexity, each sensor

needs to send or receive two points and one scalar value, which includes its share Pi, the value of

kP, and its share of CJ.

The event report message consists of CJ, e and V. Since V has the half size of e, the total

message length is the size of two and half scalars. The computational cost to verifY the report, as

shown in Section 4.2.2, is two ECC point multiplications.

4.2.5 Security Analysis

Our security analysis of the threshold signature generation scheme focuses on following two

threats. We first check whether or not the adversary can infer the system secret by compromising

one or more sensors and collaborating with other sensors in signature generation. Second, we

examine the security resilience of secret k sharing because the compromise of k will lead to the

whole system secret compromise. Note, the security resilience of sharing secret secret x by any

t sensors is guaranteed by Shamir's secret sharing scheme. As long as there are no more than t

sensors are compromised, there is no feasible solution to get x.

A compromised group leader certainly may cause greater security threat than other sensors

since the leader collects more information, so the following analysis is based on the assumption

that the group leader is compromised. The group leader (si) receives t shares of kP from other

endorsing sensors and derive the value of kP, but the values of these points do not reveal any

100

information of k; or k due to the security property of ECC. The group leader s1 also receives t

shares of system signature. In each share, CY; = x;l;d + k;l;, there are two unknown values: x; and

k;. Any single or multiple shares combined does not reveal any information ofx; and k;. Therefore,

SJ has no way to determine the system secret x and the random k without physically compromising

the rest t- 1 endorsing sensors. As we can see, even though s1 can be compromised, the adversary

still cannot obtain the system secret to generate the signature for his injected data.

The shared random number k has a critical security role in PDF scheme. As we discussed

previously, the compromise of k directly leads the compromise of system secret x. Therefore, any

one or more (less than t) sensors must not get any information of k during the signature generate,

otherwise the compromise attack may allow the adversary to acquire k. In Joint Shamir Random

Secret sharing scheme [82], secret k is embedded in the polynomial that is the combination of each

secret polynomial oft sensors. Each group member s; holds a secret share of k, k;. As long as at

least one sensor is not compromised, the adversary can not get t secret shares, and thus can not

reconstruct k. Further, since sensors do not directly send their secret shares k; to the group leader,

(instead they bind their k; with x; and the endorsed messages abstract d), the traffic monitoring does

not give the adversary any chance to obtain the secret shares. Note the communication channel

between sensors are encrypted to raise the security threshold and defend against other security

attacks, including message injection and impersonate attacks.

One may wonder whether the compromised group leader can generate the signature for the

forged messages because it can collect t partial signatures. This forged signature generation at­

tempt, again, will fail because the partial signature submitted from each group member is bind

with the endorsed event. In particular, the message abstract d is bind with each partial signature.

If these partial signatures are used on a forged message, ECPVS verification will fail and the

101

forged message will be immediately dropped by the forwarding sensors.

Finally, PDF scheme does not prevent the adversary's disruption attacks. The disruption at­

tack happens when the adversary (by compromising one or more sensors) intentionally submits

a corrupted partial secret or signature and then disturbs the signature generation. As the result,

the generated threshold signature is invalid, and the legitimate event report will be dropped by the

forwarding sensors. Several schemes have been proposed to identify the compromised sensors

in prior studies [1 1 I , :: 7], the security solution for defending against the disruption or false

negative attacks is still an open research problem [l 04], and is considered as one of our future

work. It should be emphasized that the disruption attack may trigger the system attention from

the base station or sink because the network abnormality can be detected if many legitimate re­

ports are dropped due to the attack. Then, the administration personnel can physically locate the

compromised sensors and remove them from the network.

4.2.6 Probabilistic False Data Filtering

Given the event report with system signature, any intermediate forwarding sensor can easily verify

the signature and decide whether or not to drop the packet. Theoretically, starting from the source

node (s1) to the destination, only one verification is enough to filter the possible false data packet.

The signature verification at every hop is not necessary. However, considering the adversary's DoS

attack can occur at any location in the network, one signature verification is not adequate because

the adversary can inject the false data after the node that verifies the signature. Therefore, we

propose the probabilistic false data filtering to balance the trade-off between computation overhead

and the DoS attack prevention.

We denote PJ, a system wide parameter, as the en-route verification probability. Any inter-

102

mediate forwarding sensor, with the probability of PJ, verifies the system signature by using the

verification method presented in section 4.2.2. The verifying sensor first calculates d = h(eiiV),

then deduces R = CJP- dQ (Pis the base point, and Q is the system public key). The value of

X-coordinate of R is used to recover C, which is the part of original message M. Finally, the ver­

ifying sensor compares the redundant information inC with V. The event report message will be

regarded authentic if the verification is successful. Otherwise, the message will be immediately

dropped.

4.3 Performance Evaluation

We evaluate our proposed PDF scheme by implementing all components on the real world exper­

iment test-bed, including sensor confidential generation and pre-loading, security communication

channel establishing, random secret number sharing, and threshold signature generation.

4.3.1 Experiment Testbed and Parameter Setting

Our experiments use MICAz (48] motes as the sensor platform. MICAz is powered by an AT­

mega128 micro-controller, which features an 8MHz, 8-bit RISC CPU, 128K bytes flash memory

(ROM) and 4K RAM. The RF transceiver on MICAz is IEEE 802.15.4/ZigBee compliant, and can

achieve maximum 250kbps data rate. Our MICAz motes run TinyOS [88] version 1.1.15.

We implement ECC public key primitives on MICAz motes. We choose SECG recommended

160-bit elliptic curve, seep 160rl, in our ECC implementation. The 160-bit ECC offers the same

security level as the 1 024-bit RSA does [73], which is a more popular public key scheme and

widely used in e-commerce. The performance of threshold signature generation and public key

verification directly determines the performance of PDF. The current ECC implementation in the

103

public domain suffers very poor performance if ported directly. It is reported in [62] that it takes

more than 30s to generate a public key. To significantly reduce the computation time for ECC

exponentiation, we have adopted a number of optimization techniques customized for the 8-bit

architecture, including Hybrid Multiplication and Pseudo Mersenne modular reduction for large

integer multiplication, Mixed Coordination for efficient ECC additions and doubling, etc. Due to

the space limit, this chapter omits the detail description of the optimizations. We refer interested

readers to W-i] for details. We summarize the key performance results in Table 4.1.

Platform FPM RPM Sign Verify

MICAz 1.24s 1.35s 1.35s 1.96s

Table 4.1: The performance 160-bit ECC on MICAz mote, including fix point multiplication (FPM), ran­
dom point multiplication (RPM), signature generation (Sign) and signature verification (Verify).

We run the experiment in an office room with the dimension of 15ft by 1Oft. The sensors are

evenly placed on a table with the average distance of 2ft with each other. To achieve the better

communication efficiency, we change the default TinyOS data packet payload size to 68 bytes

(including 4-byte control information) from the original 29 bytes. This allows us to transmit an

ECC public key (40 bytes) in one data packet. One possible trade-off for payload size extension

is that the packet may suffer transmission errors more easily than that of the default size. As the

result, the communication efficiency can be affected when packet loss happens. Our experiment

results, however, show the packet loss is rare after the payload size extension. It could be the

reason that our sensor deployment condition is too ideal to show the difference after payload size

extension. It is one of our future work to study the communication efficiency in an outdoor and

realistic deployment condition.

With all security components implemented, the program has the code size (ROM) of 35,108

104

bytes and the data size (RAM) of2,648 bytes. Given the capacity of 128KB programming (ROM)

size and 4KB data (RAM) size, we only use less than 30% of the programming size. The rest space

can be reserved for other applications or future expansion. One may be concerned that we have

consumed about 65% of the data size so that other applications may have memory shortage. One

feasible solution is to move the constant variables (for ECC parameters) from RAM to on-board

permanent storage (EPROM or flash). Further, more optimized and careful programming can also

ease the memory shortage.

Our evaluation focuses on the time consumption, including the communication delay and the

computation delay. We do not explicitly give the performance of power consumption, because the

combination of message complexity and time consumption can always be approximately translated

to the power consumption. In the experiment, we have also adopted the simple scheduling scheme

so that the probability for the packet corruption due to the collision is very small. During the

experiment, we repeat each test for 20 times, and record the average time consumption. We finally

discuss the PDF scheme message overhead and its scalability when the network size grows.

Since the pairwise key performance evaluation has been studied in Chapter 3, we omit this

part in this chapter.

4.3.2 Evaluation of Threshold Signature Generation

In this subsection, we evaluate the false data filtering performance. We first present the perfor­

mance of the two components in PDF: threshold signature generation and signature verification.

We then use the results to estimate the overall performance with different hop-by-hop authentica­

tion probabilities.

It is important that, in the threshold signature generation, the group oft local sensors need

:§:6
~

§5
"C
c
~ 4
ro
(IJ

ffi 3
.c
(/)

.92
(IJ

E
F 1

4 6 8 10 12 14 16
The number of neighboring sensors

Figure 4.2: The time duration for the group of sensors to share a random secret k.

105

to share a different random secret k for each signature. Therefore, we first evaluate the cost for

random secret (k) sharing. In the experiment, we first schedule all the motes to generate their

random secret polynomials simultaneously, as well as the 20 byte secret shares for each of the other

sensors in the group. Then, all the motes in turn unicast their secret shares to the corresponding

sensors. We measure the time consumption in the whole process. The experiment results are

illustrated in Fig 4.2. We find the cost for sharing a random secret is not negligible but reasonable.

For a group of 8 sensors, it takes only 1.8 seconds. The time consumption increases quadratically

with the sensor group growing because the key graph edges increase with 0(n2) (suppose n is the

number of endorsing sensors). As the result, the communication complexity is O(n2). For a sensor

group with 16 nodes, it then takes 5. 8 seconds to share a random k.

Note the random k sharing protocol can be executed in the idle time before the event is de-

tected, so that the random secret can be immediately used for endorsing the event upon detection.

Therefore, the time duration for the threshold signature usually does not include the time delay

for sharing k unless more than one different events occur simultaneously at the same location.

Based on the above reason, our experiment for measuring the time delay for the threshold signa-

3.5,---~-~-~-~-~--,------,

3

c: ,g 2.5
~
::l

0
<ll 2
E
f=

1.

4 6 8 10 12 14 16
The Number of Local Endorsing Sensors

106

Figure 4.3: The time duration for the group of local sensors to generate threshold system signature for the
event report.

120
--prob=0.1

100
-e- prob=0.2
......t.- prob=0.4

~
'4/"'""prob=0.6

80 ~prob=0.8 c:
~ ··~r-· prob= 1.0
~ 60 ::l
0
<ll
E 40
f=

20

r}t
10 20 30 40 50

Number of Hops

Figure 4.4: The overall time duration of false data filtering performance under different probabilistic filter­
ing value.

ture generation does not include the random k sharing time. We present the experiment results in

Fig 4.3. In general, the threshold signature generation is efficient because each endorsing sensor

only needs to do one ECC point multiplication. With 8 local endorsing sensors, the time duration

is 2.3 seconds. The time linearly increases to 3.3 seconds when the number of endorsing sensors

becomes 16.

The system signature verification is equivalent to an ECC signature verification operation. The

verification time for an intermediate forwarding sensor is 1.96s.

107

We are eager to investigate the overall performance of PDF, including threshold signature

generation and the probabilistic false data filtering. In our evaluation, we assume that the event

detecting sensors have already established pair-wise key with their neighbor endorsing sensors.

We also assume these sensors have already shared a random secret k, which is used to generate

the threshold signature. We fix the number of endorsing sensors to 16. Fig. 4.4 demonstrates

the overall performance of the false data filtering scheme under different hop-by-hop verification

probabilities. As we can see, as long as the system parameter is properly selected, e.g., the verifi­

cation probability is 10% or 20%, the overall performance of PDF is reasonably practical. Given

the event report destination within less than 20 hops, the end-to-end delivery time is less than 1 Os.

While the delivery distance increases to 50 hops, the delivery time moderately increases to around

20s.

4.3.3 PDF Message Overhead and its Scalability

In addition to the time delay, PDF scheme also introduces extra messages to the sensor network.

Since message complexity analysis for each group sensor was presented in the previous section,

we here discuss the overall message overhead that PDF brings to the system. The overall message

overhead is important because it shows how much communication cost the system has to pay to

deploy PDF scheme to defend against the adversary's DoS attack.

The extra messages required in PDF scheme are used to share the random secret k, generate

the group signature and the event signature attached to each event report message. Note we do

not count the message overhead in pair-wise key establishing because it provides basic security

infrastructure to the sensor network and can be included in any other security scheme besides PDF.

Suppose there are t sensors in the group. As we indicated in the previous section, to share a random

108

secret k, each sensor needs to send t- 1 messages, sot sensors totally send t(t- 1) messages. As

showed in Fig. 4.1, the signature generation scheme, each group sensor sends two messages to the

group leader, and the group leader sends one message to the rest of group. The number of message

combined is 3(t-1). In total, the number of extra messages to generate a signature in PDF scheme

is (t+ 3)(t-1).

As the ECPVS scheme shows in Section 4.2, once the signature is generated, the group leader

sends the event report message in the format of (V, e, CJ), where V is the public part of the message,

e is the encrypted C, and CJ is the group signature. Since the original message is Cj/V, the extra

part sent in PDF scheme is just CJ, which has the length of20 bytes in 160-bit ECC system. Note

this overhead is counted as per hop. Ifthe average hop number ish, the total amount of message

overhead for signature transmission is 20h.

The above analysis reveals that the message overhead for signature generation is not related to

the network size, and is only determined by the size of group (t). In event report transmission, PDF

puts 20 bytes overhead in each event report. Considering that the average event report delivery

distance may increase when the network size grows, PDF scheme may introduce the network

size related message overhead. This overhead, however, can be very minimal as 20 bytes can be

transmitted in the same message with the moderate payload size inflation.

Chapter 5

Location Privacy

Sensor networks will be prevalent in the near future for various applications, including object

and event monitoring. A common communication paradigm for sensors is to obtain information

about objects or events and send the data back to a base station (or sink) for further analysis. The

wireless communication path from the object to the base station may jeopardize the safety of the

object if an adversary, who is capable of detecting the message flow, traces back to the message

source by moving along the reversed path. The object, e.g., an animal of an endangered species,

or a vehicle of military aides, may have to be protected for safety reasons and the related location

information should not be disclosed. This concern will become even more serious for future sensor

network prevalence in pervasive computing applications, as the ubiquitous information collections

doubtlessly encroaches on the privacy of the people involved.

In this chapter, we explore the location privacy problem in sensor networks. We aim to hide the

location of the message source and make it more difficult for an adversary to trace messages back

to the source location. We assume that a security infrastructure, such as secure communication,

has already been built in. That is, no information carried in the message (e.g., packet head) will

109

110

be disclosed, allowing the adversary to gain any knowledge about where the message comes from.

The adversary observes the wireless communication within a certain detection range and traces

toward the message source by moving, in each step, to the node that transmits the detected target

information.

The location privacy in sensor networks is very different from Internet anonymity and privacy

problems which have received extensive attention [I :S, Cl, 7N, 77, 50, 36]. The location privacy

discussed in this dissertation has two fundamental differences from prior work. First, Internet

anonymity relies upon channel secrecy (e.g., secret keys) to protect logical location privacy, while

location privacy in this dissertation addresses the issue of physical location privacy. For example,

there is a strong connection between the message header and the identity of the Internet users,

while this kind of binding does not exist in wireless sensor networks. Instead, the location of

the source sensor node is detected by the radio signal rather than the message content, given the

assumption that all messages are encrypted. Second, there is no power constraint for Internet users,

but energy is one of the most critical issues in sensor networks. In the Internet, a user may choose

any number of proxies [77] or join in a large and geographically diverse crowd [78] to achieve

anonymity. On the contrary, the energy budget in sensor networks is extremely constrained.

Many message routing protocols have been proposed for sensor networks [-49,55, J 02, l 03, 15].

None ofthem are designed for location privacy protection. Kamat et. a! [53] proposed Phantom

routing to solve a similar privacy issue. However, as we will show in Section 5.5.3, the random­

walk-based Phantom routing has poor performance in defending against the adversary's traceback,

even if the adversary has very limited traffic monitoring ability. More recently, [6"i, 84] propose

source location protection schemes under a global traffic analyzer. The two approaches only par­

tially solve the problem. The ConstRate and k-anonymity [64] schemes rely on global sensor

111

stimulation and are very resource demanding. FitProbRate [84], however, sacrifices location pri-

vacy for short message delivery delay. As we will present in Section 5.6, our solution minimizes

message delay while still achieving the perfect location privacy in the presence of a global attacker.

Several papers ([:25, 1~, I i 3, I, 34]) discussed privacy and anonymity issues in wireless

communications, and propose solutions by manipulating the message contents. The approaches

d . ['·; propose m .· ... , I 13] either encrypt or modify the message content (data cloaking) to con-

fuse the adversary and achieve privacy. The Mist Routers [I] offered both location privacy and

anonymous communication in ubiquitous computing environments by combining a hierarchical

mixed network and a message encryption scheme. In comparison, [52, 34] address the privacy

issue from the traffic analysis perspective. Jiang et al. [52] proposed a cover mode to keep the

protected message flow indistinguishable from the rest of the traffic. Fu et al. [34] designed a

digital filtering technology to defeat the flow marking attacks that could degrade anonymity. In

contrast to their schemes, this dissertation addresses the location privacy threat due to the physical

wireless medium that allows the adversary to perform traffic analysis to derive the message flows.

The papers most relevant to our work about privacy in sensor networks are [74, 53, 64, 84].

Ozturk et al. addressed concern about the originator location privacy [74] in sensor networks.

They identified the location privacy issue by using a vivid example Panda-Hunter Game, then

discussed a possible encryption and routing scheme to prevent the adversary (hunter) from locat-

ing the panda. Kamat et al. [53] continued the work and proposed the Phantom Routing scheme.

Message delivery in Phantom Routing is conducted in two phases: First, messages are routed a

fixed number of hops by using random walk; Second, after finishing random walking, messages

are delivered to the sink by using flooding or single path routing. Compared to the routing scheme

(e.g., shortest path routing) without any privacy protection, Phantom routing can achieve a certain

112

degree oflocation privacy, even though the performance is not satisfYing (as we will show in our

simulation results). The drawback of this approach is lacking the intuition of routing strategy.

In comparison, this dissertation presents the theoretical foundation in designing a privacy-aware

routing in sensor networks. More recently, [64, g,l] proposed location privacy protection schemes

under the presence of a global eavesdropper, the second adversary model considered in this chap­

ter. Mehta eta!. presented two techniques: periodic collection and source simulation. However,

the paper does not present the detailed routing scheme that delivers data to the sink during the

collecting period. Meanwhile, the source simulation scheme is limited to applications which the

source moving pattern is pre-known. The FitProbRate scheme proposed by Shao et al. greatly

shortens the message delay with the price of sacrificing source location privacy. In comparison,

we strive for achieving the minimum message delay and perfect location privacy at the same time

under the presence of a global eavesdropper.

We start the discussion from a simple model where there is only one source node and one

adversary, and the adversary always starts the traceback from the sink location. As we will show in

Section 5.2.1 and Section 5.4.4, our theoretical model can also be applied for multiple adversaries

and multiple data sources. The time for the adversary to trace back to the source is a natural metric

for location privacy. Even if the adversary has limited monitoring power, the adversary can follow

any random message path and thus trace back to the message source. We use average traceback

time and the possible minimal traceback time it takes for an adversary to reach the source as

two metrics for location privacy. Average traceback time signifies an expected performance for

location privacy. The minimal traceback time, which shows the worst case scenario, assumes that

the adversary has the best luck possible, taking the route with the shortest time to find the source.

We address the location privacy issue under a complete adversary model. When the adver-

113

sary has limited detecting power, we design routing algorithms to maximize the traceback time.

We formulate this problem as an optimization problem constrained by the energy budgets that are

allowed for use in message routing. To gain more understanding about this issue, we have tried

to look at the problem from different perspectives. First, we give an approximation of the per­

formance bound in a generalized scenario as a guideline for network routing design. Our result

indicates that the traceback time is proportional to the number of nodes involved in routing. Given

a certain sensor density, the number of nodes participating in message routing indicates the degree

of how dispersed in the message routes, which produces longer and more scrambled routing paths

that delay the adversary's traceback progress. Then, we show how to optimize the routing perfor­

mance by considering several special cases in which fixed routes are given. The fixed routes are

also categorized as routes that are well separated, without intersection in the middle and splicing

routes. Although this seems quite restricted, many applications fit in these constraints. For ex­

ample, an application may require the routes to be well separated so that the adversary has little

chance to capture sufficient messages for message content decryption. In addition, many appli­

cations also dictate fixed routes to avoid certain dangerous areas where adversaries gather, or to

force the routes to pass through certain points for various reasons such as information multicast or

data aggregation.

When the adversary is more powerful, e.g., being capable of deploying a sensor network to

monitor the traffic, we propose a random schedule scheme in which each node transmits at a cer­

tain time slot in a fixed period such that the adversary would not be able to profile the difference

in communication patterns among all the nodes. Obviously, this scheme requires a large number

of sensors to participate in the message transmission between the source and the sink, so that only

a very small portion of these sensors (which are on the routing path) transmit the valid messages;

114

others just send dummy messages. From the adversary's point of view, the sensors in the whole

area are flooding messages and no routing path can be inferred from the communication pattern.

As radio communication consumes a significant amount of energy in sensors, our goal is to min­

imize the message transmission delay so as to keep this "flooding" period as short as possible.

There are two ways to reduce the message transmission delay: either increase the data rate or use

more routes between the source and the sink. Considering that the message rate at the forwarding

nodes cannot be changed (otherwise the adversary would easily identifY the message forwarding

nodes and then the routing path), the problem of minimizing the message transmitting delay is

equivalent to finding as many disjoint routing paths as possible so that more message packets can

be routed in parallel. We give an approximation algorithm to find the optimal k disjoint routing

paths to deliver the data messages.

5.1 Network and Adversary Model

We consider a wireless sensor network consisting of sensor nodes hat are uniformly and randomly

scattered in a sensor field. Each node has the capabilities to collect data and route data to the sink

in a multihop fashion. We assume sensor nodes are evenly distributed in the sensor field and do

not move after being deployed.

We consider two types of adversary models. First, we focus on the single-adversary model. It

will be shown in the next section that the (limited) multiple-adversary model still obeys the general

performance of our adversary model. Once an adversary gets close to the source, the source will

be disclosed. This may not be true in all cases, but in many scenarios the adversary is capable to

detect the source by other means (other than eavesdropping) within a certain range. We describe

the adversary's radio detection model as follows. The adversary may carry a portable or car

Radio Signal Wave

' '

I I

A2

Adversary

115

Figure 5.1: Adversary's radio detection model: The portable or car based Radio Direction Finder is
equipped with multiple antennas, shown as Al and A2. With multiple separate receivers, the adversary
can easily use triangulation to locate the transmitting sensor node.

based Radio Direction Finder ['i 6]. This type of device normally is equipped with two or multiple

separate antennas. As shown in Figure 5.1, the adversary has two antennas A 1 and A2. Upon

receiving radio signal from the antennas, the adversary can easily triangulate on the transmitter. It

is also very possible that two or more adversaries work together. By applying current sensor node

localization techniques, they can easily pin-point the location of the transmitter. Once detecting

a message signal, the adversary quickly moves to the transmitter's location and starts the next

message detecting. By repeating this procedure, the adversary can trace back on the message

routing path and finally locate the source node. In this work, we assume the adversary's radio

detection is always successful and correct. Second, we extend our discussion to more powerful

adversaries. In the worst case, the adversaries may deploy a similar sensor network to monitor

every activity at every location. Under such situation, any routing scheme proposed for the first

adversary model will fail to protect the location privacy because the source sensor node activity

will be immediately detected by the adversary deployed sensors.

Many routing schemes are constrained by the energy consumption. We use a very simple

energy consumption model: each node sending a message (i.e., a packet) costs one unit of energy.

The energy consumption for receiving and the node sleeping/wake-up schedule can be carefully

116

considered to fit into this model. We omit this detail for space constraint. In the rest of the chapter,

the amount of messages sent in total and the energy consumption are all normalized. We assume

each data packet has enough space to carry one message. Then the amount of consumed energy

for a message is equal to the path length. Thus we use energy and path length interchangeably.

We model network routes in a directed graph. An edge (A, B) exists if and only if AB is a valid

link in one of the routes. Our goal is assign message flow to all the links (the route segments)

so that the traceback time can be maximized. After the message flow is assigned, the routing

becomes simple: each node randomly picks a downstream node for message relay according to

the flow distribution. In the rest of the chapter, except specified, all the routing schemes follow

this message distribution model.

In [1 00], Wright et al. described the predecessor attack and the set-up attack that are effective

against various anonymity schemes, including Crowds [78], DC-Net [19], Onion routing [77] and

MIX-net [l8]. Similarly, their proposed attacking techniques rely on message content analysis,

except for multiple collaborating adversaries and timing analysis. As indicated previously, we do

not consider this type of attack since we assume that proper encryption has already been applied

to the message content (including packet header) so that no content information is revealed. As

we will show, our discussion and proposed schemes do address the multiple adversary problem

and timing analysis attack. In particular, our analysis of optimum routing schemes under the

adversary model with limited detecting power is also valid when there are multiple adversaries

conducting traceback simultaneously, and so is our proposed random schedule scheme when our

sensor field is globally monitored by an adversary sensor network. To defend against the timing

analysis threat under the global adversary model, our random schedule scheme is designed to hide

the real message routing path and therefore defeat the adversary's timing analysis attack.

117

5.2 Performance Bound Analysis

Given a sensor network, we are interested in finding the ultimate location privacy we can achieve.

In this section, we first develop the performance bound under the assumption that the adversary has

the same radio detection range as the sensors' transmission range. Then, we relax the constraints of

the adversary's model and allow the adversary to trace back more than one hop each time. Finally,

we present our simulation results from our discrete event-based simulations. The performance

bound is an approximation of the adversary traceback time; it is by no means an accurate result.

5.2.1 Performance Bound for General Routing Schemes

To study the performance bound of general routing schemes, we consider a sensor field with

randomly and evenly distributed N nodes participating in message routing. Let Freq(i) be the

frequency of messages seen at sensor node i. We denote L as the average routing path length, and

normalize the sensor node's transmission range to 1. Therefore, L is actually the number of hops

between the source node and the sink, averaged over all routes. In this dissertation, we assume

the message rate, m, is small enough so that the time interval for sending any two consecutive

messages is much larger than the time that it takes the adversary to travel from one node to another.

We denote Tc as the traceback time for the adversary to traverse a routing path with L sensors. At

node i, it takes Fre~(i) units of time for the adversary to catch the next message. In total, the

traceback time is:

L 1
Tc=I-~

i=l Freq(i)
(5.1)

Note the Eq. 5.1 is very general and can be applied to any routing scenario, including multi-

path and random routing. When the routing paths are not evenly distributed, and the messages are

not evenly dispersed, it is possible that the adversary traceback time on different routing paths can

118

be different. In that case, Eq. 5.1 is still valid even though the value of Tc would be different for

different paths.

For each message generated from the source node, on average it will be propagated L hops

along the path from the source node to the sink. Within a time unit, each of m messages reaches L

sensor nodes in the sensor field. On the other hand, the total number of routed messages within a

time unit can also be given by I~1 Freq(i). Therefore

N

L_Freq(i) = m ·L.
i=l

(5.2)

If the routing paths are evenly distributed in the sensor field, and the source node randomly and

uniformly picks a path for each message, the participating sensor nodes have approximately the

same message frequency Freq. Then Eq. (5.1) and (5.2) will become

Tc = L/Freq, (5.3)

N·Freq = m ·L. (5.4)

Combining Eq. (5.3) with (5.4), we have

(5.5)

Note that the above results also apply to the multiple adversary model. Suppose K adversaries

collaborate and trace back the messages at the same time. In the best case (for traceback), the

adversaries are tracing on K independent routing paths. The traceback is is 1 / K times of that

of one adversary. Therefore, the traceback time for multiple adversaries still obeys the general

performance ofthe single adversary model.

119

800m

• • • • • n4
• • 80mn2 • • ns

•
l

n3 • n6
• • • • • • • • - B D

Figure 5.2: Network setup for performance bound simulation.

5.2.2 Performance Bound Analysis

In the previous subsection, we assume the adversary is tracing back one hop each time. Given a

longer radio detection ability, the adversary can trace back h hops (h > 1) each time. Therefore,

Eq. (5.1) should be rewritten as:

rL/hl 1 rc= I
i=l Freq(i)

(5.6)

Combining Eq. (5.6) with Eq. (5.4), we have

N·IL/hl N Tc = --'----'------'- :=::::: -
m·L h·m·

(5.7)

Compared with Eq. (5.5), Eq. (5.7) introduces one more factor h. The average traceback time is

inversely proportion to adversary detection range h.

Eq. (5.5) and (5.7) reveal that the adversary's average traceback time is determined by the

number of nodes involved, the message rate, and the adversary's detection ability. Considering the

message rate and the detection model are relatively stable, the only solution that increases location

privacy is to have more sensor nodes involved in message routing, which means the routing paths

should be dispersed into a larger area.

120

5.2.3 Simulation Results

We have built a discrete event simulator to study the performance bound of general routing

schemes. As shown in Fig. 5.2, we set up a rectangular sensor field with length of 800 m. The

sensor node's transmission range is 20 m. In order to simulate the scenario where each involved

sensor node has the same message frequency, we design the simulation scheme as follows. On

edge AB, we deploy a number of source nodes (the number depends on the length of AB) so that

the distance between every two consecutive source nodes is 20m. For example, given the length

80 min Fig. 5.2, we deploy three sensor nodes n1, n2, and n3• Then, we deploy the same number

of destination nodes on the other edge CD, with the destination nodes paired with different source

nodes. For example, n1 and n4 form one pair, n2 and ns form another pair. For each time unit,

we randomly pick a source node on AB and send a message to its paired destination node on CD.

The message routing follows the geographic routing scheme. The adversary can start from any

position on CD. A traceback procedure ends as soon as the adversary reaches any position on AB.

In order to change the number of nodes involved in routing, we change the width of the network

field with the same node density. In a larger network field, we can use more routes and thus more

nodes for routing. We use three possible adversary detection ranges in our simulation: 20 m, 30

m and 40 m.

We present our simulation results in Fig. 5.3. Instead of using traceback timeT, we actually

use the number of messages, for simplicity and accuracy. Eq. (5.5) can be rewritten as:

m·Tc =N. (5.8)

m · Tc in the left hand side of Eq. (5.8) is the number of messages the adversary needs in order to

reach the source node. Fig. 5.3 shows that the adversary's traceback time grows linearly with the

-g 500r.============;--~~
-g +detection range 20
~ 400 ~detection range 30
~ - •- detection range 40

~300
en
en
Q)

~ 200 -0

(i) 100
.0
E
::J
z 200 400 600

Number of Involved Sensor Nodes

121

Figure 5.3: The adversary's traceback time vs. the number of sensor nodes under three different adversary
detection ranges.

h

Sk

Figure 5.4: Message distribution scheme with only two paths.

increasing number of involved sensor nodes under all three different detection models. Moreover,

the slope for the detection range of 40 m is approximately twice the slope for the detection range

of20 m, which also matches Eq. (5.7).

5.3 Average Traceback Time

We have given the approximate performance estimation for any routing scheme, but how to design

a routing strategy to maximize the traceback time is still a question. In this section and the next

section, we explore the optimal routing strategies under two different performance metrics: aver-

age traceback time and minimal traceback time. This section presents the optimal routing scheme

122

that maximize the average traceback time. We assume the routes are well separated so that there

is no transmission interference between any node pair from any two routes, and that the adversary

tracing on one route is not able to detect the messages on another route. We start from a simple

example with two routing paths. Then, we generalize the problem with n routes.

Suppose we have the routing scenario shown in Fig. 5.4. Source node Sk has the choice to

send messages to either of two routing paths with length1 l1 and l2 (from now on, we use 11 and h

to represent the two paths, respectively). Suppose Sk chooses l1 with probability p 1, and chooses

h with probability P2 (p1 + P2 = 1). Path l1 and h intersect at point A, where the adversary is

located. Once the adversary starts tracing on one routing path, she will not be able to detect the

message on the other path. Therefore, the adversary traceback time along l1 is II/ PI· Similarly,

the traceback time along l2 is l2/ P2. Starting from point A, the adversary has probability PI to get

a message coming from l1 and probability p2 to get a message coming from l2. The adversary's

average traceback time, Ta, can be given by:

II h
Ta =PI·-+ P2 ·- = /1 +h.

PI P2
(5.9)

Let E be the amount of energy required to deliver a message from the source to the sink. We

assume that the two routes can be chosen from a range of routes with length between 10 and 1m

(E ::; 1m). Given the following constraints:

PI +p2 = 1, (5.10)

1 By length we mean the number of hops on that route.

123

the average traceback time Ta is maximized when /1 + /2 achieves its largest possible value. With-

out loss of generality, we assume /1 .:::; /2. To maximize /1 + /2, we first increase /2. Notice that the

largest possible value of h is lm, and /1 .:::; E-~212 , so we have

T -l l < E+lm(2pi-I) _E-lm 21 a- I+ 2 _ - + m· (5.11)
PI PI

Since E-lm.:::; 0, the maximum value of Tais achieved when PI = 1. Therefore, Max(Ta) =

E + lm. Note that the value of Max(Ta) cannot be reached unless lm =E. The reason is that

if PI = 1, then P2 = 0, and we cannot use Eq. (5.9) to calculate traceback time. Instead, the

traceback time Ta =II/PI= /1.

Now, let us consider the routing scenario with n paths. The average traceback time Ta =

/1 + /2 + · · · + ln, and our goal is to maximize /1 + /2 + ... +ln. We still assume that each path can

choose a length between lo and lm (E .:::; lm).

Theorem 5.1 Given n routing paths (/I, /2, · · · , ln) connecting the source node Sk and point A,

messages can be routed from sk to point A through any of the paths. Suppose that these n routes

do not intersect at anywhere except at point A. The adversary can then detect the message from

any path at point A. Once the adversary starts the traceback procedure on one of then paths, she

cannot detect the message signal from the other paths. Let P = {PI ,p2, · · · ,pn} be the message

probability distribution on {II, /2, · · · ,In} (note PI+ P2 + · · · + Pn =I). Therefore, the adversary's

average traceback time Ta = /1 + /2 +···+ln. If we have the following energy constraints:

(5.12)

the maximum average traceback time Max(Ta) = (n- 1) ·lm +E.

124

Proof: We can choose /2 = /3 = · · · = ln-1 = lm and /1 =E. Then Ta = /1 + /2 + ... + ln = (n- 1) ·

lm +E. This can be achieved by distributing all of the flow to I, and assigning message probability

0 to /2, /3, · · · , ln. The average traceback time is maximized because there must exist a path with

length no greater thanE (which is!,), and all other paths have the maximal length. •
Now, let us consider another variation of the problem. Suppose we have n fixed routes with

fixed length /1 :S /2 :S · · · :S ln, and the adversary chooses any path with equal probability 1/n,

which is the case when the adversary starts its tracing from a random point in the middle of the

network. The best strategy for distributing the message flows is to assign probability 1 to !1 and

probability 0 to all other routes, which makes the average traceback time Ta = (!,/Pi + !2/ P2 +

· · · + ln/ Pn)/n to be infinity.

The above analysis states that many routes have to be left unused or used very rarely to maxi­

mize the average traceback time. This is true if the adversary does not change position and always

waits for the next message on the previous selected traceback path. However, the adversary is

normally smarter. Instead of remaining static at one point and waiting for the next message, the

adversary may roam around to discover other traceback routes which carry messages more fre­

quently. In case the adversary finds the route that is assigned for message routing with probability

I, the traceback time would immediately be increased to Ta = 11• Therefore, we believe the aver­

age traceback time cannot characterize the real scenario. In the next section, we propose a more

realistic performance metric: minimal traceback time.

5.4 Max-Min Traceback Time

In the previous section, we have seen that the average traceback time leads to an unreasonable

solution and could not characterize the real scenario. Here we propose another more realistic

125

1 1

Figure 5.5: n routing paths are arranged to be parallel with each other.

performance metric for location privacy: minimal traceback time, which captures the worst case

scenario. Routing schemes with good performance in terms of the average traceback time may

perform poorly in the worst case. For example, consider the optimal routing scheme for average

traceback time described in the previous section. In the worst case, the adversary may pick the

shortest routing path with length /1 = E and message probability p 1 :::::i 1. The adversary's minimum

traceback time is 11/ Pi :::::i E. Thus, in the worst case, the optimal scheme performs no better than

a single routing path with the length of E.

In the following, we first consider the message routes that are well separated so that they

have no common node other than source and sink, then we investigate the splicing routes that are

tangled together. For well-separated routes, we consider which routing scheme is optimal given

energy consumption constraints. We look at two scenarios: a route can take an arbitrary length and

a set of fixed routes, and we find the optimal message flow distribution for them. In the splicing

route case, we also look at a set of fixed routes to see how to distribute flows.

5.4.1 Max-Min Trace-back Time for Length-adjustable Routes

In order to maximize the adversary's minimum traceback time, we should avoid following

two situations: (1) the majority of messages are routed through minority routes; (2) one or several

126

routing path lengths are significantly shorter than the rest of the routing paths. Given the same

power constraints as in Eq. (5.12), we arrange then routing paths in the way shown in Fig. 5.5.

All routing paths are parallel with each other without any intersection between sk and A. Since the

length of routing paths is adjustable, we let l1 = h = ... = ln =E. The source node sk randomly

and uniformly distributes the messages to these n routes. Obviously, the adversary's traceback

time on all n routing paths is nE. Therefore, the adversary's minimum traceback time under this

routing scheme is nE. Now, we show that nE is the Max-Min traceback time.

Theorem 5.2 Given n routing paths (11, h, · · · , ln) connecting the source node sk and point A,

messages can be routed from sk to point A through any path. Let P = {Pi ,p2, · · · ,pn} be the

message probability distribution for paths {l1, h, · · · , ln} (note PI+ P2 + · · · + Pn = 1). lfthere are

the following energy constraints:

(5.13)

l1P1 + l2P2 + · · · + lnPn::::; E,

the Max-Min traceback time TMax-Min = nE.

Proof: For any routing path distribution li and Pi, 1::::; i::::; n, we want to find Max{Min{~}}.

Suppose we have the constraints given in (5.13). Let ai = ld Pi, 1 ::::; i::::; n, and the energy con-

straint can be written as a1pj + a2p~ + ... + anp~ ::::; E. Suppose there is a path k (1 ::::; k::::; n),

_ M. () nr h 2 2 2 > 2 2 2 _ (2 2) ak - zn ai . vve ave a1p1 + azp2 + ... + anPn _ akp1 + akp2 + ... + akPn - p 1 + ... + Pn ak.

Finally, Max{ Min{~}}= nE. •

127

Figure 5.6: n length-fixed routing paths between Sk and A.

5.4.2 Max-Min Traceback Time for Length-fixed Routes

Suppose there are n fixed routes with length /I ::; /2 ::; · · · ::; ln. They are well separated from

each other so that any pair of routes intersect only at the source and the sink. Our goal is to

find the optimal message probability distribution {PI ,p2, · · · ,Pn} that maximizes the adversary's

minimum traceback time under the energy constraint liPI + l2P2 + · · · + lnPn::; E.

As we have discussed in the previous section, for then routes with the energy constraint E, the

Max-Min value of the adversary's minimum traceback time is achieved when the traceback time is

the same for every path. Likewise, to achieve maximal minimal traceback time, we have to force

all the routes to have the same traceback time. If we do not have the energy constraint, a possible

solution is to assign the following message distribution: PI = 11 +lz~··+ln ,p2 = 11 +lz~··+ln, · · · ,Pn =

11 +/z~ .. +ln. It is a valid message distribution because PI+ P2 + · · · + Pn = 1. Now, the correspond-

ing energy consumption becomes:

(5.14)

Therefore, the solution is feasible when the energy consumption in Eq. 5.14 is less than or

equal toE. Obviously, if our energy budget is sufficient (satisfies the above condition), this routing

scheme maximizes the adversary's minimum traceback time. This can be explained as follows.

128

The above scheme achieves the same traceback time-It+ 12 + · · · + ln on all n routing paths. If we

try to increase the traceback time on a specific route i, we need to reduce the amount of messages

on route i. Those messages that originally go through route i should be re-distributed to other

routes. Then, the route that gets these extra messages will have a larger message probability. As

a result, the corresponding traceback time will be less than the original value. Therefore, the

traceback time /1 + /2 + · · · + ln is the optimal value when E is large enough to cover the routing

energy expenditure.

However, since our energy budget is usually tight, which means the value of E is less than

the value in Eq. (5.14), then how do we distribute the messages? Without loss of generality, for

a given E, assume we can find k such that the first k routes satisfy the energy constraint by using

the above routing strategy, but the first k + 1 routes exceed the energy constraint E by using such

a scheme. In mathematical expression, we have

(5.15)

If we only use the first k routes, we can achieve the adversary's minimum traceback time as

lt + /2 +···+h. Notice that we have not used up our energy budget yet, so we can do better

because we have not used the rest of the n - k routes yet. Imagine we can move a portion of

messages from the first k routes to route k + 1, so that the traceback time for each of k routes

increases at the same rate while the total energy consumption just reaches the value of E. If we

use Ts to represent the new traceback time for the first k paths, PI ,p2, · · · ,Pk can be written as

II h.. h t" I TI fi h Ts' r,., · · · , r;, respec tve y. 1ere ore, we ave

if +li + ... + !~
Ts + Pk+Ih+I = E,

!I+lz+···+h
------+Pk+I = 1.

Ts

Combining the above equations, we get

back tiine on route k + 1 is

129

(5.16)

(5.17)

Since /1 + lz + · · · + lk < Ts < /1 + lz + · · · + lk + h+I, Ts -!1 -lz- · · ·- h < lk+I, the adversary's

traceback time on route k + 1 is longer than Ts. Now, we need to prove that Ts is the optimal

solution that we can achieve.

Theorem 5.3 Let k (0 ~ k ~ n) be an integer such that the following inequalities are satisfied:

tf+li+···+l~ E -,e----:''------c::...< '
/1 + lz + · · · + lk -

lf + ti + ... + ~~+ 1 -'-------'---- > E.
II+ lz + ... + h+I

1 ~ i~ k
i=k+1
i > k+ 1

gives the optimal message probability distribution on all of the routes.

(5.18)

Proof: Assume we have another routing scheme that can achieve a longer value of the adversary's

minimum traceback time. Compared with the above scheme, the new scheme should achieve a

130

Source Sink

Figure 5.7: A portion of a splicing network.

longer traceback time on each of the first k routes. Therefore, the message probability on each of

the first k routes should be reduced to smaller values, which is equal to "moving" some portion

of messages from the first k routes to the rest of the n - k routes. Since we know that the total

energy consumption for our proposed scheme is E and in the new scheme we transport message

flows from a shorter route to a longer route, the energy consumption for the new scheme will in-

crease, that is, be greater thanE, which means that the new scheme violates the energy constraint.

Therefore, our proposed scheme is the optimal solution with respect to all the constraints. •

5.4.3 Max-Min Traceback Time for Splicing Network

In many situations, it is not easy to find and deploy well-separated routing paths such as those in

Fig. 5.6 due to sensor field size and the sensor nodes' power constraints. Considering that a long

routing path may require a number of remote sensor nodes to participate in the message forwarding

task, it is not only a disadvantage in power saving (the operations switching between sleep and

active status consumes a lot of power), but also brings about security concerns. Although we

disperse our messages into as many routing paths as possible to prevent the possible adversary's

traceback, we do want to restrain the messages to a limited area.

A general routing scenario can be shown by a directed graph in Fig. 5.7. Since we are using

splicing network routes, the routing scheme is a little bit different from the previous ones. Each

node determines which neighbor to send a message to according to some probability. Our goal is

131

to find the message probability distribution that maximizes the adversary's traceback time in the

worst case. As we explained in the previous subsection, the max-min traceback time is achieved

when the adversary has the same amount of traceback time on all paths. Note that such an opti-

mum message distribution can be calculated at a centralized node, such as the sink. Since sensor

nodes are static, the network topology information can be used to derive the optimum message

distributions. Next, we show how to quantitatively determine the message distribution.

As an example, we only focus on two of the routing paths from the source to the sink. Each

path is composed of a number of edges. Suppose the upper path (route 1) has n edges, while the

lower path (route 2) has m edges. We denote liJ as the length of the fh edge of path i, PiJ as the

message probability of the fh edge of path i. Therefore, the adversary's traceback time on the

upper routing path can be written as lu_ + !.n_ + · · · + .!la... Similarly, the traceback time for the
PII PI2 Pin

lower path is .b.J... + !JJ,__ + · · · + 12
m . Thus we have the equation:

Pzi Pzz P2m '

/11 /12 l1n /21 /22 l2m -+-+· .. +-=-+-+· .. +-. (5.19)
PII PI2 Pin P21 P22 P2m

Since the edges normally do not change after the sensor network is deployed, the values of length

liJ are constants. We only need to determine the message probabilities of the edges. Based on the

observation that a message routing graph is very similar to multi-loop electric circuits (considering

the message flow as the electric currents, and the edge length as the electric voltage), it is natural

to apply Kirchhoff's Rules [~2] to solve the message probabilities in the routing graph. First, let

us define three terms similar to those in the electric circuits, junction, branch and loop.

Definition 1 A junction is a sensor node where at least three routing paths meet. The exceptions

are the source node and the sink. No matter how many routing paths they are connected to, the

source node and the sink are always regarded as junctions.

132

Definition 2 A branch is a routing edge or several serially concatenated edges between two junc­

tions. A branch may consist of several edges because the nodes on the concatenation points are

not junctions. In other words, those edges have the same message probability and can be treated

as one routing path unit.

Definition 3 A loop is composed of two routing paths between a starting junction and an ending

junction. Both routing paths begin at the starting junction and end at the ending junction, and they

do not intersect at any other junction. Messages can be routed on either path from the starting

junction to the ending junction. Each routing path may consist of one or more branches.

Here, our loop is different from a conventional "routing loop", which means the situation

where a node receives a message which was previously forwarded by itself. We assume a "routing

loop" is prevented in our routing protocol and will never happen. In our routing scheme, messages

are always moving forward from the source to the destination. For example, the two routing paths

in Fig. 5.7 form a loop. Similar to the multi-loop circuit, we can utilize Kirchhoff's Rules to

find the message probability for each branch. Here we re-write Kirchhoff's Rules for routing in a

splicing network:

Kirchhoff's First Rule: the junction rule. The sum of the message probability coming into a

junction is equal to the sum leaving the junction.

Kirchhoff's Second Rule: the loop rule. The adversary's end-to-end traceback time on two

paths of a loop is the same.

Based on Kirchhoff's Rules, we can write the junction equations and loop equations by fol­

lowing three steps:

• On the directed routing graph, label the message flow and flow direction in branch;

133

• Use Kirchhoff's first rule to write down a message probability equation for each junction. In

general, if there are J junctions in a routing graph, we need to write J- 1 junction equations.

The equation for the remaining junction is redundant and can be derived from the other J -1

equations.

• Use Kirchhoff's second rule to write down loop equations for as many loops as needed to

include each branch at least once. To find a loop, we need to pick a starting node and an

ending node, then try to find two different paths which both begin and end at these two

nodes. At the same time, they do not meet at any third node. When writing the loop

equations, we need to make sure equations are independent with respect to each other. A

loop equation is guaranteed to be independent as long as there is at least one new branch

(that has not previously appeared in other equations) in the loop. In general, ifthere are B

branches and J junctions in a routing graph, in total we will have B- J + 1 independent loop

equations.

Solving the above equations, we can get the optimal message distribution for each path in the

splicing network.

5.4.4 Multiple Source Objects

In the previous two sections, we have explored the optimal routing strategies in a network where

there is only one data source and one adversary. In the real world, this kind of network model

is rare and restricted. One may wonder whether privacy-aware routing is necessary if there are

multiple data sources in the network because the routing messages from multiple data sources that

may already confuse the adversary. In this section, we extend our discussion to a network with

multiple objects. We explain why multiple data sources cannot confuse the adversary's tracing,

I Sl e 11

~

Figure 5.8: Two data sources.

134

A

so that the location privacy issue is still valid even with multiple source. Our result can also be

applied to mobile objects.

Without loss of generality, we start our discussion with two data objects. If th~ two objects

(under sensing) are located far away from each other and their message routing paths do not

intersect at all, it is identical to our single source network model and all of our results can be

applied. Therefore, we assume the two routing paths intersect at least once as shown in Fig. 5.8.

Suppose that two data sources, s1 and s2, send messages to the sink (where the adversary is located)

along the routes lt and lz, respectively. lt and /2 intersect at B before they reach the sink.

As discussed in Section 5.3, if s 1 is the only data source, the adversary traceback time to s 1 is

/1. Similarly, the traceback time to sz is lz. If lt and lz do not intersect, the average traceback time

to either s1 or s2 is 11 !12 (assume the data rate is the same). Now we examine whether multiple

data sources confuse the adversary's traceback, or increase the traceback time. When two routes

intersect at B, It is divided into /11 and /12, and lz is divided into lz1 and lz2 . Since the data rate

from s 1 and sz is the same, the adversary at A has the same probability to detect messages from /12

and l2z. Therefore, the traceback time from A to B, denoted at TAB, is 112!122
• Similarly, at point

B, the adversary has 1 probability oftracing on either /11 or lzt· The expected traceback time for

the adversary to reach either of the two data sources from B, denoted as TBs, is 111!121
• In total, the

expected traceback time to reach either s 1 or sz from A is TAB + TBs= 112 !122 + h 1 !121 = h !'2 • This

135

result concludes that the adversary's expected traceback time (to reach either source) does not

increase when there are two data sources with intersecting routing paths.

We have studied how multiple sources affect the traceback time to any one of the data sources;

now let us focus on the traceback time for a specific data source. We still use the routing example

in Fig. 5.8. Without a data source s2, the traceback time to s 1 is /1. After s2 is introduced, the

average traceback time from A to SJ (suppose the adversary takes the route /11 at B), denoted as

TAsp changes to 112!/zz +Ill. The difference, denoted as Tdiff, can be computed as

7' -I 112+122 +l _l12-h2
.Ldijj- I- II-

2 2
(5.20)

Therefore, after the second data source is introduced, the change of the traceback time to the first

source depends on the difference between /12 and b. Note that both /12 and /22 are routes between

Band A. Using the general routing schemes in sensor networks, the length of /12 and h2 should

be very close to each other. Tdiff thus is approximate to 0. Finally, we conclude that multiple data

sources do not help confuse the adversary's tracing and increase the traceback time.

5.5 Privacy-aware Routing Schemes

Inspired by the traceback time analysis for the routing strategies, we discuss two privacy-aware

routing schemes in this section. The first routing scheme is called Random Parallel (RP) rout-

ing. The strategy is to randomly disperse the source messages into a number of pre-determined

parallel routing paths, so that the adversary's traceback progress is deterred due to the fact that

the adversary can only perform traceback on a certain routing path. As discussed previously, the

pre-determined routing paths are difficult to deploy in a large scale sensor network .. Therefore,

we propose the second routing scheme, Weighted Random Stride (WRS) routing. WRS routing

136

allows the messages to be routed in a splicing network, which is more practical and natural for

sensor networks and requires only a little deployment information.

5.5.1 Random Parallel Routing

Random Parallel routing is a straightforward privacy-aware routing scheme which is shown in

Fig. 5.6. Every sensor is pre-assigned n parallel routing paths starting from that sensor and ending

at the sink. We assume the arrangement of these n routes satisfies the energy budget. As we

discussed in the previous section, the message distribution strategy at the source node is to give

the adversary the same traceback time on any routing path. In particular, when the energy budget

is large enough, the message probabilities PI, P2, ... , Pn are arranged in such a way that !1 /PI =

l2/P2 = ... = ln/Pn· The adversary traceback time on any path is !1/PI·

In RP, any two paths should be well separated so that the adversary cannot detect the message

transmission on multiple paths at the same time. In practice, the message routing should be re­

stricted to a small area due to the power constraint and security concerns. For simplicity, we use a

rectangular routing zone for each sensor. Once the size of the rectangular routing zone is fixed, the

number of routing paths and their lengths can be determined. As a result, the message distribution

probability for each random parallel path can be determined during the deployment. The main

advantage of RP routing is that the messages can be evenly and well dispersed in the designated

routing zone to deter the adversary's traceback progress. However, the RP routing method itself

reveals the approximate location of the source node to the adversary. Suppose the adversary starts

at the sink; he can quickly identifY the direction of the source node by only tracing back several

messages on any one of the routing paths. Since all routing paths are parallel, the direction of

any routing path will lead the adversary to quickly locate the source node. Another disadvantage

137

•
'
~~ . Sl

' -------"------------- Sink ••
• • • • •

Figure 5.9: Weighted Random Stride routing scheme.

of RP routing is that each sensor has to have global routing path knowledge because the parallel

paths are different for different source nodes.

5.5.2 Weighted Random Stride Routing

The intuition ofthe Weighted Random Stride (WRS) routing scheme is based on the MAX-MIN

rule in the splicing network, as discussed in the previous section. The goal is to give the adversary

the same traceback time on different tracing paths between any two sensor nodes in the network.

As we discussed previously, given the network global topology, we can apply Kirchhoff's Rules to

derive the message distribution for every routing path. In practice, however, it is very difficult to

derive the results for a large scale sensor network due to a number of restrictions. For example, the

global topology of sensor locations is very hard to get, and the topology itself also changes a lot

over time due to the nature of wireless links. We propose an efficient, light-weight, yet robust WRS

scheme to approximately achieve the above goal. The design of the WRS routing scheme considers

the fact that that sensor network is a splicing network. Instead of distributing the messages to a

number of fixed parallel paths as described in RP, WRS scheme allows each individual sensor to

make the routing decision locally and independently, with very little deployment information.

138

Sector 0

/
/

' '
'
' • I

I
I

I • •
\

\ •

Figure 5.10: Pick the next hop with weighted probability.

To ease the explanation, we use the example shown in Fig. 5.9 to describe WRS routing.

There are two parameters specified in message routing: the forwarding angle and the stride. The

forwarding angle is the angle between the projected forwarding route and the line connecting the

forwarding node and the sink. When a sensor node S1 transmits a message to the sink (here S1 can

be either a source node or an intermediate forwarding node), it first randomly picks a forwarding

angle a, and selects the neighbor S2 (matching the forwarding angle) as the next hop. The stride

is defined as the number of hops associated with the forwarding angle selected by the transmitting

node S1. In this example, S1 selects the stride value 3. When S2 receives the message from S1, it

notices that the stride is not finished yet, so S2 picks its neighbor S3 as the next hop since S3 fits the

forwarding angle. This procedure continues until the message reaches S4 . S4 finds that the stride

is finished, so it randomly picks another forwarding angle and starts a new stride.

It is not difficult to see that a larger forwarding angle leads to a potentially longer routing path.

Therefore, different forwarding angles should be picked with different probabilities. In WRS,

nodes are arranged to pick a larger forwarding angle with a higher probability. In this way, more

messages will be distributed to longer paths so as to deter the adversary's traceback. For practical

139

reasons, we do not require the node to store all forwarding probabilities for every different angle.

Instead, we make the following arrangement as shown in Fig. 5.10 to simplify the procedure. We

divide the right half-disc of the node radio coverage (suppose the sink is on the right side, so the

node always picks the next hop that is located in the right half-disc) into a number of sectors (six

in our example). Now, we randomly pick a sector instead of an angle. Once a sector is picked, the

forwarding node selects its neighbor in the corresponding sector that makes the largest forwarding

step. Similarly, the probability of selecting the sectors is different. For the example as shown

in Fig.5.1 0, sectors 0 and 5 are most likely to be picked, while sectors 2 and 3 have the lowest

probability. In our simulation below, the probability of selecting sector 0 and 1 is three times and

twice of that of selecting sector 2, respectively.

5.5.3 Evaluation

To evaluate the proposed the privacy-aware routing schemes, we implement both RP routing and

WRS routing in our customized simulator. For the purpose of comparison, we implement a base­

line Random Walk (RW) routing scheme which is adopted by Phantom routing [71, 53]. In RW

routing, the forwarding node randomly and uniformly picks one of its neighbors as the next hop.

To make sure the messages will finally reach the sink, each intermediate node always forwards to

the neighbor that is closer to the sink.

5.5.3.1 Simulation Setup and Metrics

We deploy a large scale sensor network. Sensors are randomly and uniformly distributed in the

sensor network. The radio transmission range of the sensor is fixed at 10 m. On average, each

sensor has about 20 neighbors. Due to power constraints, message routing should be restricted in

(0,0)1' • • • • L. • • • >I
~-----------------------------------~ ' '
' :
:

Source. • • • • • • • .Sink
(0, W/2), e e • e e • e e : (L, W/2) '. . . . ' : :

e- - - - -- - - - --- - - - - - - - - - - - - --- - --- - - - - -. (L, W)

• • • • •••••

140

Figure 5.11: A rectangular routing zone: the length Lis the distance between the source node and the sink,
W is the width.

a routing zone. As shown in Fig. 5.11, we assign a rectangular routing zone for the source node.

All messages transmitted from the source node should be confined in the rectangular area. The

length of the field, L, is the distance between the source node and the sink. In the simulation, we

fix L to be 800 m. W is the width of the field. The value of W is determined by the energy budget

in the network. In the simulation, we change the width from 200 m to 600 m for comparing the

performance under different energy budget setups.

Once the width of the routing zone is determined, the routing paths in RP routing can be fixed.

In the simulation, we arrange any two adjacent routing paths in RP routing to be separated from

each other by 20 m so that the adversary can only trace the message on one routing path as long

as his radio detection range is no more than 20 m.

In the simulation, we fix the message rate of the source node at a fixed value, so that we use the

number of messages as the metric to measure the adversary traceback performance. We record the

number of messages the source node has sent until the adversary successfully locates the source

node. There is only one adversary in the simulation. Two radio detection ranges, 10 m and 20 m,

are considered.

Detection Range 1Om

., • oJ· Random Wal~
~4000

"' Vl

::l3000
::;:

~ 2000

" ~ 1000 f•··+·--+···+---;p
z

a~--~--~------~
200 300 400 500 600

Routing Zone Width (m)

Figure 5.12: The adversary's
traceback time with Random
Walk routing, when the detec­
tion range is 10 m.

5.5.3.2 Simulation Results

Detection Range 1Om

:3 -,,_ RP Routing
f.l'4000
(/)

~ 3000

~ 2000
Q)

~ 1000
::J
z

0
200 400 600

Routing Zone Width (m}

Figure 5.13: The adversary's
traceback time with Random
Parallel routing, when the detec­
tion range is 10 m.

Detection Range 1Om

., - .,. WRS Routing t f
~4000 f - ... ctl ..,
Vl -

~ 3000 _/

o 2ooo .A
~ $''
§ 1000
z

o~2~o~o~3o~o--4~oo~~5o~o~5~oo~
Routing Zone Width {m)

141

Figure 5.14: The adversary's
traceback time with WRS rout­
ing, when the detection range is
lOrn.

We perform the first set of adversary traceback simulation, with the adversary detection range of

10 m, for RW, RP and WRS routing, respectively . The routing zone length (the distance between

the source node and the sink) is fixed at 800 m. The width is changed from 200 m to 600 m

for different energy budget. In the simulation, the adversary always starts tracing from the sink.

Once the adversary detects a message transmission, he immediately moves to the location of the

transmitting node and waits for the next detection. The traceback ends as soon as the adversary

successfully reaches the source node. For each test, the adversary successfully performs traceback

for 1000 times. We record the average traceback time (in term of the number of messages) and the

standard deviation.

The result of the adversary traceback performance is illustrated in Fig. 5.12, Fig. 5.13 and

Fig. 5.14, respectively. Fig. 5.12 clearly shows that the privacy preservation characteristic of RW

routing does not change when the routing zone width changes. The adversary traceback time

stays around l 000 messages when the routing zone width expands from 200 m to 600 m. This

phenomenon indicates that pure random walk routing is independent of the routing zone size. The

random walk scheme is not aware of the routing zone change and cannot exploit the extra energy

142

budget to prevent the adversary's traceback.

In comparison, the traceback time in RP routing increases as the routing zone becomes larger.

The reason is that the routing paths are well dispersed in RP routing. When the zone size increases,

the source node will have more routing paths to which to distribute the messages. Therefore, the

adversary has less probability of detecting the message at a specific location, so that the traceback

time is longer. Fig. 5.13 demonstrates that the adversary consistently needs more messages to

perform a trace as the routing zone width increases. Given the exact same routing zone width

changing from 200m to 600 m, the adversary traceback time increases linearly from 775 messages

to 2424 messages, a much better performance than RW routing.

In WRS routing, ·we set the stride value to 5. Similarly to Fig. 5.10, each node has 6 for­

warding sectors, the probability ratio of selecting the forwarding sector is 3:2:1, which means the

probability of choosing sector 0 and 5 is three times more than that for sector 2 and 3. Differ­

ently from the RP routing scheme, WRS allows most of the sensor nodes in the routing zone to

participate in the message forwarding. Recall that there are a fixed number of routing paths in

RP routing, so the number of participating sensor nodes is limited to those on the routing paths.

Therefore, WRS routing yields better traceback time performance than RP routing because the

adversary is more confused by many more forwarding sensor nodes from different directions. As

we can see in Fig. 5.14, the adversary has to spend more time to successfully determine the the

source node location. When the zone width is between 200m and 500 m, it takes more than twice

the traceback time as in RP for the adversary to locate the source node. One may notice that the

traceback time decreases when the routing zone width changes from 500 m to 600 m. We call this

phenomenon saturation. In our simulation, we find that saturation happens when the zone width

is around 500 m. The reason is that the messages cannot reach the additional area when the zone

Detection Range 20m

~ 1500 -+Random Wal~

"' "' "' ~ 1000
::;:
0

.l'l 500
E
~ G----¢----ij>----$----1{!

0
200 300 400 500 600

Routing Zone Width (m)

Figure 5.15: The adversary's
traceback time with Random
Walk routing, when the detec­
tion range is 20m.

Detection Range 20m

:G +1- RP Routing
~1000 l
:G r ---r
~ soo -v··+·--- -
~ $---
::;)

z
0

200 400 600
Routing Zone Width (m)

Figure 5.16: The adversary's
traceback time with parallel
routing, when the detection
range is 20m.

143

Detection Range 20m

:G - '.1- WRS Routing r:: A 1+-1
.0 $'.
E
::;)

z o~------~----~
200 400 600

Routing Zone Width {m)

Figure 5.17: The adversary's
traceback time with random
routing, when the detection
range is 20 m.

width increases from 500 m to 600 m. In other words, WRS cannot take advantage of the extra

energy budget under this situation. We argue that the energy budget is normally very tight so that

the chance of saturation is very rare.

In the second set of traceback simulation, the adversary's detection range is doubled to 20

m. Fig. 5.15, Fig. 5.16 and Fig. 5.17 illustrate the adversary's traceback performance with 20 m

detection range. As we can see, compared to the first set of results, the traceback time in RW and

WRS routing reduces more than four times. The reason is that the adversary's effective detection

area size increases quadratically when his detection range extends linearly. Interestingly, we find

the adversary traceback time in RP routing does not reduce as much as that in RW and WRS.

Recall that we intentionally arrange the routing paths to be separated for approximately 20 m

from each other in RP. When the adversary's detection range increases from 10 m to 20 m, the

adversary can detect the messages on at most three consecutive paths. That explains why the

traceback time in RP reduces by about three times when the adversary detection range becomes

20m.

As explained in Section 5.4, many times the minimal traceback time is more critical and

practical. Finally, we examine the worst case traceback time for the three routing schemes when

(/)

~2000
(/)
(/)

~ 1500
.....
~ 1000
Q)
.0

§ 500
z

Minimum Traceback Time

-El- RW
+RP
··:t:l:.r,.WRS

oL_~--~--~----~--~~

200 300 400 500 600
Routing Zone Width (m)

Figure 5.18: The adversary's minimum traceback time with the detection range of 10m.

144

the adversary's detection range is 10m. Among the 1000 adversary's traceback simulation, we

pick the fastest traceback and plot the figure shown in Fig. 5.18. As we can see, RW routing

has the worst performance in the worst case. It only takes 570 messages for the adversary to

reach the source location. When the routing zone width increases to 600 m from 200 m, this

number increases only slightly to 688 messages. Interestingly, RP routing has similar worst case

performance as that of RW when the routing zone size is small. However, with the routing zone

size enlarged, the worst case traceback time increases quickly. For example, when the width

is broadened to 400 m from 200 m, the worst case traceback time increases to 890 from 531

messages. Compared to RW and RP routing, WRS achieves the best worst case performance

as expected. When the routing zone width is within 200 m to 500 m, the worst case traceback

time increases from 985 messages to 2406 messages, about twice the number of messages in RP.

Again, saturation happens when the width becomes 300 m, and the minimum traceback time is

moderately reduced to 2287 messages, which is still much higher than RP.

Power Consumption Competitive Ratio

-El- RW
g +RP
&_ 2 -.£.- WRS
Q)
> :;::;

:;::;
Q)

E" 1.5
0
0

1
200 300 400 500 600

Routing Zone Width (m)

Figure 5.19: The power consumption comparison among RW, RP and W RS routing schemes.

5.5.4 Power Consumption Overhead

145

Both the RP and W RS routing protocols improve location privacy by dispersing the messages

into different routing paths. Compared with message routing in the greedy shortest path routing

normally used in sensor networks, the messages in RP and WRS travel a longer distance (or more

hops) and therefore consume more energy. Now, we investigate the power consumption overhead

in both privacy-aware routing schemes.

Since the amount of energy consumption is proportional to the number of hops in the routing

path, we denote Cp = Lp/ L as the power consumption competitive ratio of the privacy-aware

routing scheme to shortest path routing, where L is the distance (or hop counts) between the

source node and the sink, and Lp is the average routing path length in the specific routing scheme,

either RW, RP or W RS.

We run the simulation for all three routing schemes: RW, RP and W RS, as well as the shortest-

path routing scheme as the base scheme. We continue to use the rectangular sensor field with

length of 800 m and the width changing from 200 m to 600 m. In each of above simulation, 1000

messages are routed from the source to the sink, the average number of hops are recorded, and

146

corresponding power consumption competitive ratios are presented in Fig. 5.19.

It is not a surprise to see that all three privacy routing schemes consume more energy than

the base shortest path scheme. What surprises us is that RW has a larger power consumption

overhead than RP and W RS, while its anti-traceback performance is much worse (as we discussed

previously). The reason can be explained as follows. In RW, each forwarding node equally and

randomly selects one of its neighbors (who have a shorter distance to the sink) as the next hop,

so the next hop node may not be the one (among the neighbors) that is closest to the sink. As a

result, the message forwarding efficiency could be low because it may cost two hops to forward a

message which otherwise could be directly routed in just one hop.

Comparatively, the power consumption overhead in RP is very small, just 23% more than the

base routing scheme. At the first glance, RP seems more appealing due to the advantage of its low

power consumption overhead. However, as we discussed in Section 5.5.1, RP is not suggested for

practical sensor deployment because all routing paths are parallel with each other, so the routing

paths in RP and the corresponding source node location may be easily derived by an adversary

after collecting initial network traffic activities.

The W RS scheme, on the other hand, has a larger power consumption overhead and needs

around 82% over the base scheme. In fact, the energy overhead ofW RS is the trade-off for location

privacy. Given the location privacy protection performance of increasing the adversary traceback

time from 10 to 40 times (for the corresponding network settings), we believe the approximately

82% energy overhead is a good price for the privacy.

147

5.6 Adversary Sensor Network

In this section, we extend our discussion to an extreme adversary model. Instead of placing a

certain number of monitoring subjects, the adversary is able to deploy a sensor network to monitor

the activities of the sensors in any location in the network. The adversary network is not purposed

to detect what our network is monitoring, but it is interested in what assignment our network is

involved with and in particular the location of the object that is our network's concern. In this

scenario, the adversary is extremely powerful in identifYing the monitored object by profiling

the network communication activities and analyzing and mining the spatio-temporal relationship

among all network communications.

We observe that all of the sensors should transmit their packets at the same rate to prevent the

adversary network from detecting any anomaly that may be identified as the data source or the

monitored object. Any node (or location) exhibiting more messages in a period encourages close

scrutiny and is exposed to a risk of disclosing the monitored object. The solution we propose in

this section is to regulate the sensor message transmission rate in a controlled way so that each

node (or location) cannot be distinguished by examining the message rate in a period. Each sensor

has a scheduled time slot to transmit a fixed amount of messages during a predefined period. In

the next period, the sensor will transmit again in the same scheduled time slot. If the sensor has a

data message to transmit or relay, it has to wait for its time slot. Otherwise, the sensor still needs

to transmit dummy messages if no data messages are available. In this way, all of the sensors have

the same message transmission rate in a period. Again, the transmitted messages are all encrypted

in a certain way so that the adversary is not able to know the content of any message, but the

recipient of the next hop sensor knows a message is destined to it by listening to the message

148

head.

We assume that the clocks on each sensor are well synchronized so that they agree on the

message transmission schedule. The scheduled time slot for transmission is a pseudo-random

function of the node ID so that each node knows the scheduled transmission slot for any node.

Our goal is to design a routing strategy to route messages from the source to the sink with average

message delay under the constraints of the controlled transmission schedule. Our algorithms are

centralized, assuming that network topology is known to the node who calculates the routing

assignment.

5.6.1 Problem

For easy exposition, we assume the data messages are generated at the same time in a bursty

fashion. Our algorithm can be easily extended to the case that messages are generated at a certain

rate. Our goal is to distribute those messages to the sensors in proximity so that the total delay

that those messages go through is minimized. Suppose the source is labeled as "0" and the sink is

labeled as "n". Strictly speaking, the source is not a sensor, instead it is a conceptual node for easy

explanation. The source node connects to the sensors that are in its proximity and can monitor the

source for data generation. Since it is a dummy node, we assume the source can send data to the

nearby sensors without capacity or rate constraints.

Assume every sensor sends one message per T time units. Let ti = f(i) be the schedule

transmission slot of node i, where tiE [0, T) and f is a pseudo-random function. Node i will send

a message at time t if t = ti(mod T). We define diJ as the delay at j if i sends a message to j

directly,

149

The network is modeled as a graph G(V,E), where each edge (eiJ E E) connects two nodes (i,j E

V) within the communication range. We assign du as the weight to edge eu. Let 0 and n be the

labels of the source and destination ofthe messages respectively.

do; (t; + T- fstart) mod T, for any edge eo;, and

din 0, for any edge ein connected to the sink,

where fstart is the starting time for the source to generate data messages. Our goal is to find routing

paths that deliver messages from the source to the sink with the minimum average delay, i.e., the

total delay of all messages. It is evident that sending one message with the minimum delay is

equivalent to finding the shortest path from the source to the destination in the weighted graph G.

In the following, we investigate how to route multiple messages.

5.6.2 Multiple Messages

If we have k > 1 messages to send, one solution is to send all of them through the shortest path.

However, due to the schedule constraint, every message arrives at the destination T time later

than the previous message. There may exist a more efficient solution, which uses multiple paths,

instead of repeatedly using the shortest path, to relay the k messages. A solutionS of this problem

consists of a set of paths P = {PI, pz, · · · , Pm, m :::; k} and the corresponding message loads on the

paths M = { M1, M2 , · · · , Mm}. In order to avoid message collision, the paths in our solution are

node disjoint. Our objective is to minimize the average/total delay of all messages. In other words,

our goal is to find a set of disjoint paths and assign message loads to each of them, such that the

total delay can be minimized.

Our algorithm is shown in Algorithm 5. We aim to find L node-disjoint routes to transmit

150

messages. During every time slot ofT, we inject one message to each of these L routes. Let /i be

the length of route Pi· The total delay of this strategy can be expressed as

L L L

Lli+ (Lli+L· T) + (Lli+L ·2T) + · ··
i=l i=l i=l

where I /i is the length summary of all selected paths. Let SN be the set of nodes within commu-

nication range of the source, SN = {Jie01 E E}. In Algorithm 5, we enumerate all ofthe possible

number of routes in the outer loop, which is upper-bounded by ISNI. For each value of L, we find

a set of L node disjoint paths, such that I,/i is minimized. This problem is equivalent to the mini-

mum k node-disjoint paths problem in graph theory. The existing algorithms, e.g., [86, 87, 6, 85],

can be applied to our problem. After checking all possible values of L, we finally obtain a solution

with the minimum total delay, which is stored in variable opt.

Algorithm 5 Find the optimal solution

for L = 1 to ISNI do

Find L node disjoint paths that the total length is minimized

min = total length of L paths

min+/{[_
if -L-2 <opt then

min+/{[_ opt= _L_2

L'=L

end if

end for

0 pt = 0 pt . k- k[

In the following, we show the performance of the approximate algorithm. We use { P, M} to

151

-
represent our solution, where the route set Pis obtained by the k node disjoint path algorithm and

the message load on each route is the same, i.e., Mi = f,, where L' records the value of L yielding

the optimal solution. We use a function D(P,M) to denote the total delay of solution {P,M}. In our

algorithm, opt= D(P,M). Let {P*,M*} be the optimal solution. In the following, we compare

our solution with the optimal one and show opt is very close to D(P*,M*).

Let P* ={PI ,pz, · · · ,PLopt} and M* = {MI ,Mz,

· · · ,MLapl }, where Lopt is the number of routes used in the optimal solution. Let li be the length of

Pi· The total delay of { P*, M*} is

D(P*,M*)
Lop/ U
L L li + (j- 1) T
i=li=l

}J~li+ ~(~- 1) T)
1

L TL 2 kT Ml+- M. --
. ll 2 . l 2
l l

(5.21)

For each path Pi, the delay of the last message is /i + T(~- 1). We can prove the following

lemma.

Lemma 5.1 For any two distinct paths PiE P* and PiE P*,

Proof: Proof is omitted due to page limits. •
Corollary 1 For any two distinct paths PiE P* and PiE P*,

0-~ 0-~ ---l<M-M·<1---. T - 1 J- T

152

Let Pmin be the path with the minimum length, i.e.,

Accordingly, the message load on Pmin is denoted as Mmin· We can prove the following lemma

Lemma 5.2 Mmin is the maximum among the optimal message loads of all paths,

Proof: Proof is omitted due to page limits. •
Now, let us consider another solution, where the route set is the same as P*, but the message

load on each route is the same. We use M' to indicate this message distribution, i.e., M; = _Lk •
opt

The following lemma shows the performance of this solution.

Lemma 5.3 When k is large,

where lmax and lmin are the longest and shortest path in P* respectively.

Proof: According to Corollary 1, M; ~ Mmin- !;-;min -1. Recall Eq.(5.21), the first term is

Since Mmin is the maximum message load, it must be greater than the average load L_!_. Therefore,
opt

L k L lmax -lmin L Ml>- l- · f.
ll- L 1 T 1,

i opt

where lmax is the longest path among the path set. Thus,

Since IM = k, we know

Therefore, we have

Recall

D(P*,M')

"2 "k2 ~ £.-Mi 2: £...(-) = -.
i Lap/ Lap/

D(P*,M')

> _!_ Lli + !_ L(_!_)2- kT
Lap/ 2 i Lap/ 2

_lmax -!min "f.
T £...!

= D(P*, M') _ lmax ~!min]:)i

D(F* ,M')

lma:x -!min Lap/ ((* M') kT ~T) - - DP +----
T k ' 2 2Lapt

D(P*' M') _ lmax ~!min L;, D(P*' M')

+ lmax -!min (k- L)
2

opt

> (I_ lmax ~!min Lt)D(P* ,M').

D(P*,M')

153

•

154

the value of the total delay only depends on 2); and Lapt· In Algorithm 5, we enumerate all

possible values of L, which include Lapt, and try to minimize 2.);. Thus, opt in Algorithm 5 must

be no more than D(F* ,M'), i.e.,

opt < D(P* ,M')

< kT D(P*,M*).
kT- Lapt(/max -!min)

Therefore, when k is large, our solution is very close to the optimal solution in terms of total

message delay.

5.6.3 Evaluation

To defend against traffic monitoring by the adversary sensor network, all sensors have to transmit

messages periodically (in T time units) as long as there is a message to be delivered to the sink.

As a result, message delivery becomes a very energy consuming task. Therefore, we want to keep

the message delivery time as short as possible. In this subsection, we examine the efficiency of

our proposed L-disjoint path message delivery solution through simulation.

We set up a rectangular sensor network similar to that presented in Fig. 5.11, with a length

of 800 m and a width of 200 m. Once the sensor network is deployed, the sink can calculate

the optimal routing solution as we proposed for each sensor node. We assume each sensor node

receives the routing provisioning from the sink, so that there is no processing delay while routing

the message from a specific source node to the sink (the routing path is predetermined).

In the simulation, we measure the total amount of time for the source node to successfully de-

liver various numbers of messages to the sink. Note that the message delivery time here is different

from the total delay we discussed in the previous subsection (which is solely for simplifying the

155

analysis). Here, the time is the real world time delay for the source node to deliver the messages

to the sink.

We randomly and uniformly deploy 10,000 sensor nodes in the rectangular sensor field. We

run the algorithm presented in the previous subsection and find a total of k = 16 paths. The length

ofthe 16 paths is shown in Table 5.1.

Path 1 2 3 4 5 6 7 8

Hops 87 88 89 89 89 89 89 89

Path 9 10 11 12 13 14 15 16

Hops 90 90 90 90 91 91 92 93

Table 5.1: Length of shortest 16 paths between the source and the sink.

Given the 16 routing paths, we estimate the time delay for the source node to deliver various

numbers of messages to the sink. For simplicity, we set T to one second. Each sensor node is

allowed to transmit either a real message or a dummy message in one second. For example, as

shown in Table 5.1, the shortest path between the source and the sink is 87 hops. It thus takes 87

s for the source node to transmit one message to the sink. Now, we compare the message delivery

time given a different number (k) of paths, and plot the results in Fig. 5.20.

As we can see, when there is only one message to be sent, the message delivery time is the

same for different k. As the number of messages increases, however, we start to notice a difference

in time delay. Considering that we have 10 messages to deliver, if k = 1, all messages have to be

sent through the only path; it therefore takes 9 extra time cycles to delivery 10 messages, for a

total of96 s. If k = 2, the source node sends five messages to one of two paths, so the total delay

is 92 s. We can get the results for other three cases in a similar fashion.

160 ---k=1
-4-k=2

u -a-k=4
! 140 -.t.- k=8
>- -+-k=16 co

~ 120
(j)

E
i= 100
L~~~~~

20 40 60 80
Number of Message Packets

156

Figure 5.20: Time delay for delivering various number of messages from the source node to the sink, given
a different number of paths.

Interestingly, we notice that the time delay for k = 16 is larger than that of k = 8 when the

number of messages is less than SO. The reason is that, as we can find in Table 5.1, the longest

path length of 16 paths is 93 hops, while the longest path length of 8 paths is only 89 hops. As we

discussed in the previous section, our algorithm assigns the same message load to each path, so

that the longest path in k = 16 takes an extra 4 cycles to deliver a message compared to the longest

path in k = 8. As a result, the time delay fork= 16 is larger when the number of messages is

small. The advantage of k = 16 starts to show when the number of messages is more than 60.

Overall, multi-pathing does help to reduce the message delivery time, which in tum reduces

the energy consumption of the sensor network. However, it does not mean more paths will bring

more benefits. If k becomes larger, the longest path length may be very long, which could increase

the message delivery time. As shown in Fig. 5.20, the message delivery time for 8 paths and 16

paths is very close. 16 paths do not bring significant benefit over 8 paths.

157

5.7 Conclusion

In this chapter, we focus on the location privacy problem in sensor networks. We formulate the

problem as an optimization problem in terms of the average traceback time and minimal traceback

time for the adversary to reach the message source starting from the sink. We show that the

traceback time is related to the number of sensor nodes involved in routing. We give routing

strategies to maximize the average and minimal traceback time for a set of fixed routes. Based

on it, we propose the WRS, a privacy-aware routing protocol. Our simulation results show that

WRS significantly hampers the adversary's traceback progress compared with the Random Walk

scheme. We also extend the adversary model to a more powerful one in which an adversary

sensor network is deployed to monitor our sensor network communication activities. We show an

approximation algorithm to route messages with minimal average delay.

Chapter 6

A Search Engine for the Physical World

Wireless sensors have grown beyond motes scattered off a plane to collect environmental data.

Sensors today can be found on diverse objects such as buildings, cars [47], and even clothing [35].

As sensors become more ubiquitous in our environment, their roles can extend beyond environ­

mental sensing, to become an electronic representation of different objects. A sensor attached to

a folder for example, can contain a short summary of the contents of the folder. Information once

scribbled onto post-it notes and stuck to the folder can also be stored directly onto the sensor itself.

These sensors, which are considered as representatives of the physical objects they are attached

to, naturally form a database of the physical world. The new techniques for searching information

about a particular object become necessary.

Information retrieval (IR) has been widely used to search for information1 within databases.

People can use search engines like Google, to easily find the remote web pages. However, since the

physical objects are disconnected from the cyberspace, searching for information in the physical

world is more difficult. For example, a college student can easily search and view the Shakespeare

1 Although information may be in many different types, this dissertation only focuses on the most popular textual

information search.

158

159

manuscript on the Web in several mouse clicks, but may have spend hours to find his notebook

for an exam. The above observation motivate us to develop an information retrieval system for the

physical world.

A straightforward system design is to maintain a central database, and let each sensor return

its location and data to this database. The user will query the database to find a particular sensor.

However, since the data in an object can change, frequent updates to the database are needed. This

poses a scalability issue when the number of sensors increase, since database will be unable to

support large numbers of simultaneous sensor updates. The alternative design of broadcasting a

user query to all the sensors instead of maintaining a database can eliminate the cost of frequent

updates. Upon receiving a query, each sensor will determine whether its data matches the query

and then decide whether to respond. The user will collect the responses to determine the most

suitable answer. However, the communication costs of delivering the query to all sensors is very

high when there are large number of sensors. Furthermore, a sensor is unaware of the answers

provided by its peers, and hence cannot accurately determine whether its own answer is best suited

for the query. As a result, the user has to sift through a large number of responses to determine a

suitable answer.

We present Snoogle, an information retrieval system built on low-cost wireless sensor net­

works. In the pervasive computing environment, Snoogle serves as the search engine and helps

people to search physical objects at their vicinity.

6.0.1 Challenges

While IR in Internet is well-established, adopting IR within a sensor network poses several unique

challenges. First, a sensor network has to limit communication to conserve power. Internet search

160

engines can have spiders that continuously crawl the Internet for data. Large amounts of data can

be collected and stored in a depository for further processing. Sensor networks do not have this

luxury so that the data collection techniques in the search engines for WWW cannot be applied

directly. Novel data storage and collection techniques are necessary to overcome such limitations.

Second, when we consider sensors being attached to physical objects, these sensors can be mobile

and the stored data can change rapidly. Most web page locations on the other hand are com­

paratively more static even though the content could be very dynamic. This makes maintaining

up-to-date information in a sensor network more challenging. Third, security and privacy are big­

ger challenges in sensor network search than Internet search. People may choose to not have a web

page, or not to update it frequently. However, since sensors attach to physical objects like clothes,

a user may have several sensors they are not aware of. Furthermore, sensors will always have less

resources compared to web servers, making implementation of security even more challenging. In

this chapter, we focus on reducing the communication cost, and addressing security and privacy

concerns.

6.1 System Design

6.1.1 System Components

Snoogle consists of three main components: object sensors, Index Points (/Ps) and Key Index

Points (Key!Ps). An object sensor is a mote attached to a physical object, and contains a textual

description of the physical object. The object sensor can be either static or mobile, depending

on whether the attached physical object is stationary or moving. Snoogle does not require object

sensors to be homogeneous. Object sensors can be as powerful as an iMote [70] or MICAz mote

161

Object Sensors

Figure 6.1: Overview of Sensors, IPs and Key!P Architecture

[-W], or as weak as an active RFID tag. Snoogle only requires all object sensors to communicate

under the same radio frequency.

An IP is a static sensor-device that is associated with a physical location, for example, a

particular room in an office building. IPs are responsible for collecting and maintaining the data

from the object sensors in their vicinity. A typical IP is battery powered, and equipped with a

micro controller, radio module and a large amount of flash memory. A collection of IPs forms a

homogeneous mesh sensor network.

The Key!P collects data from different IPs in the network. The Key!P is assumed to have

access to a constant power source, powerful processing capacity, and possess considerable storage

and processing capacity.

162

6.1.2 System Architecture

Snoogle adopts a two-tier hierarchical architecture shown in Fig. 6.1. The lower tier involves

object sensors and IPs. Each IP manages a certain area within its transmission range. Object

sensors register themselves and transmit the object description metadata to the specific IP. IPs are

responsible for building the inverted indexes for local search. We assume the object description

data are either pre-loaded or incrementally uploaded by the object owner. For example, before

a novel is place on the counter for sale, the store staff attaches a sensor loaded with the book's

introduction to the item, just like putting a price tag on the book. Later, the store staff can upload

some reader reviews to the sensor attached so that the potential buyers can directly search the

reviews from the book instead of via a remote website like amazon. com.

On the upper tier, IPs have dual roles. First, IPs forward the aggregated object information

to the KeyiP so that the KeyiP can return a list of IPs that are most relevant to a certain user

query. Second, IPs also provide the message routing for the traffic between IPs, KeyiP, and users.

The KeyiP, considered as the sink of the network, holds the global object aggregation information

reported by each IP. Snoogle does not restrict the number of KeyiPs. For the simplicity, we only

consider a single KeyiP setup in this dissertation.

Users query Snoogle using a portable device such as a cell phone or PDA. Snoogle provides

two different kinds of queries, a local query and a distributed query. A local query is performed

when a user directs his query to a specific IP. This type of query occurs when a user wishes to

find objects at a specific location. A user performs a distributed query when he queries the KeyiP.

The distributed query capability allows Snoogle to scale since users do not need to flood every IP

to find a particular object.

http://amazon.com

163

6.1.3 Data Processing in Object Sensors

Each object sensor contains two types of data, payload data and metadata. Payload is the short de­

scription about the particular physical object. Metadata is a representation of the payload data. For

example, consider an object sensor attached to a folder. The payload data could be a short note de­

scribing the contents of the folder. The metadata is a set of tuples, {term 1 : freq 1 : id} · · · {termn :

freqn : id}, where term is a single word describing the payload data, and freq indicates the impor­

tance ofthis term in describing the payload data. A user storing information into an object sensor

will create both the payload data and metadata. To minimize the data transmission cost, the data

in the object sensor can also be pre-compressed using compression schemes described in the next

section.

6.1.4 Data Processing and Storage at IPs

IPs in Snoogle have two data processing roles. First, IPs collect data from object sensors within

their range and organize the data into an inverted index. Due the reliability and space concern, the

inverted index table in the IP is stored in sensor on-board flash memory rather than RAM. Second,

IPs have to periodically send aggregated information to the KeyiP so that the KeyiP can maintain

its inverted index of IPs. IPs perform the following three data operations.

Insert: This operation is executed when a new object comes into the IF's region and sends the

metadata to the IP. The IP stores the new metadata with associated term frequency and object id

into its inverted table.

Delete: When a physical object leaves the vicinity of a particular IP, e.g. a user moves a

book from one office to another, the corresponding object sensor is no longer associated with the

previous IP. The IP then performs a "delete" operation to remove all the metadata of the leaving

164

object from its inverted table.

Modify: This operation is performed when there is a change in the object sensor's data. When

this happens, the object sensor sends a modification request to the IP. Since the IP inverted table

is stored in the flash memory, which does not support random write, the "modifY" operation is

achieved by the combination of a "delete" and an "insert".

We let the IP to only store the metadata of the objects, instead of the entire payload data, in the

general storage media to conserve storage space. We take advantage of the small granularity write

capability ofthe NOR flash (TelosB on-board flash memory) and allow IPs to be able to append

the object metadata sequentially in the flash memory.

We also implement a "delete" function that efficiently invalidates the metadata associated with

an object sensor. We perform the "delete" by zeroing out the necessary bytes in the flash memory,

avoiding the expensive read and write method used in general flash storage system. That same

memory location is not overwritten until there is a sector delete during garbage collection.

After the sensor sends its id and metadata to the IP, the information is first stored in a buffer

in RAM. Fig. 6.2 illustrates the IP storage architecture. Once the buffer is full, a hash function is

applied to every term in the buffer. The hash results are used as the indices that map to the lookup

table entries. We maintain the lookup table (INDEX in Fig. 6.2) in RAM to store the address

pointing to the flash page. Each flash page has the size of 256 bytes. Those flash pages which

are associated to the same lookup entry are organized in a chained structure, very similar to the

structure of the linked list in data structure. The value of the lookup table entry always points to the

head of the flash page chain. The most populated terms that are mapped to the same lookup table

entry are flushed to the flash memory, and the flash address is returned to the lookup table entry.

This flushing operation continues until there are enough empty buffer slots to hold the incoming

165

IndexPoint (IP)
I' ••• I ••• I •••••••••••••••••••••••••••••••• •••••••••• •••••••••

BUFFER INDEX

s2: tlO, 2 h(tS) paddr8

s5: tl6, 3 h(t9) paddrS

sensor)=tl2,2 s9: tll, 1 I--->- h(t!O) paddr3
h(mica)=tl 0,4 s3: tlO, 3 I

I h(t16) paddr2
sl: tl2, 2 - --·--I

I I h(tll) paddr4
sl:tl0,4 I

I - --
1-> h(tl2) paddrl

sl
I flash read/write

Object Sensor

I I I I
paddrl paddr2 paddr3 paddr4

sl: tl2, 4 sS: t16, 3 s2: t!O, 2 sl9: ttl, I
i~ s3: tlO, 3
i sl: t!O, 4
i
i

i}"TJ ! r-• >-
""'-1 r.r;

i ::c
i

!.,.,.,.,.,.,.I ••••• •••• 1• 1•1•1•1. I ••••••••• 1• 1•1•1 ••• I •••••1 ~

Figure 6.2: Sensor Sl sending data to IP

object terms. The lookup table manages the flash addresses in a chained structure that multiple

flash pages can be assigned to the same table entry.

When the IP receives a query, it applies the hash function to the query to map each query

term to a lookup table entry, and obtains the flash address. This address stores a location of the

flash page chain head which contains that particular term. Next, each flash page in the chain

is sequentially read to the RAM, and scanned for the matching elements. Eventually, a list of

matching terms with associated sensor IDs is obtained, then a ranked list of sensor IDs that best

match the query is derived using an IR algorithm elaborated in the next section.

Finally each IP will periodically send the updated metadata terms and sensors, which reflect

the object dynamics in the region, to the Key!P. The Key!P stores the data and checks for incon-

sistency. This inconsistency arises when sensors moved from one IP to another before the IPs

have a chance to update their information. Since all sensors have a unique id, this inconsistency is

easily detected by the Key!P. The Key!P then informs the involved IPs verifY the sensor data. For

example, both IP1 and IP2 report having sensor SJ. Each IP will send a message directed to SJ. If

s1 is no longer in the range of IP1, then only IP2 will receive a reply. IP1 will flag s1 as no longer

166

present and inform KeyiP. The same holds if SJ is no longer in the range of IP2• If s1 falls in the

intersection of both IPs, SJ will reply to both and KeyiP is not updated.

6.1.5 Additional Discussion

When an object sensor lies within the vicinity of multiple IPs, the object sensor has to determine

which IP to select to transmit its data. Ideally, the nearest IP in the physical distance could be a

good criteria. However, it may not be practical because the IP deployment may be restricted at

certain locations due to the physical limits. In this dissertation, we use a pre-determined mapping

table to identifY the IP that the object sensor should select. The lookup table maps the RSSI

pattern to a specific IP. In this scheme, the sensor will sample the RSSI values from multiple IPs,

and query the nearby IPs for the designated IPs given the RSSI readings. For example, a first-aid

kit placed in the cabinet should select the room IP mounted on the other side of the wall rather

than a closer IP that is mounted in the next room. This lookup table can be precomputed ahead of

time, and can be stored in I P flash memory.

The use of RSSI for localization is widely studied, and Snoogle can be modified to use more

advanced localization algorithms [11, 76, 10, 80, 67] to achieve more accurate localization.

While we do not specifY the maximum number of objects sensors that can associate with an

IP, we assume that there should not be more than about 200 objects that lie within the range of

a single IP. The reason is that even though object sensors are small, the sensors are attached to

larger physical objects like laptops and coffee mugs. For a smaller space like a office cubical, the

number of tagged things are unlikely to be in the hundreds or thousands, thus the IP never has to

index so many items. Furthermore, since the IP will delete data from object sensors that have left

its vicinity, there will no accumulation of data.

167

Larger spaces such as a warehouse storage area may contain thousands of object sensors. In

this situation, multiple IPs can be installed to index the data from the sensors. As mentioned

earlier, a sensor facing a choice of multiple IPs will send the RSSI values to the IPs which will

then assign an IP for that sensor to associate with. This way, the object sensors can be associate

with an appropriate IP to facilitate searching, and will not be concentrated into a single IP.

6.2 Communication Compression

A Bloom filter [7] is used in Snoogle to compress groups of terms together. A Bloom filter with

a m-bit array and k independent hash functions is used for every n words. The m-bit array is first

initialized to "0". Then, for each word, the hash function maps the input to a value between 0

and m- 1, corresponding to the bit position in the bit array, and that bit is then set to "1". After

n words are inserted, the resulting value of the array becomes the summary of the n words. The

collection of the arrays becomes the summary of the document. To check whether or not a word is

in the document, we apply the k hash functions to the word and check if the resulting bit positions

are all "1 "s in any of the array collection. Any "0" indicates there is no match. However, a result

of all matching "1 "s only indicates there is a certain probability that there is a real match. The

uncertainty is due to false positive (or collision, we use false positive and collision interchangeably

in our description). If a Bloom filter has m bits, k functions, and holds n words, the probability of

having a collision (incurs the false positive) with another word is

(1- (1- ~ /n/ ~ (1- e-kn/m)k.
m

(6.1)

When m and n are fixed, the optimal false positive rate can be achievable when [30]

m
k= ln2·­

n

168

(6.2)

Bloom filters can be further compressed to achieve better transmission efficiency [(J5]. This is

based on the observation that a m-bit string may be transmitted by a less number of bits without

any information loss. We denote z as the number of bits after compression. Note the compression

only works (z < m) when there are less "l "s than "O"s (or in reversed case). Mitzenmacher [65] in-

dicated that each bit of the Bloom filter has roughly l/2 probability to be "I" or "0" when a Bloom

filter is tuned to have optimal false positive rate. This tells us an optimal Bloom filter almost can-

not be compressed. It also means there is trade-off between false positive and compression ratio.

To gain transmission efficiency, we have to sacrifice the false positive rate. Mitzenmacher [65]

continued to point out that the procedure of compressing a Bloom filter is actually equivalent to

hash each term into a z/n bit string. Therefore, instead of doing complicated bit operations, we

simply hash each term to a z/n bit string, and concatenate then hash results together to generate

an array. Suppose the hash function is perfect, the probability of having a collision with another

word for each z/n bit string is roughly (tyln.

Selecting the correct compression method is crucial for Snoogle system. The optimal bloom

filter achieves the lowest false positive rate, while the compressed bloom filter scores better com-

pression ratio [58] so that it can achieve better transmission efficiency and lower processing over-

head. We believe that the low transmission cost and processing overhead are more desirable for

extremely resource constrained sensor nodes. Therefore, weighing the pros and cons of the two

compression schemes, we use the compressed Bloom filter for our Snoogle system. Actually, with

carefully chosen parameters, we can lower the false positive rate to an acceptable level. As we

169

will describe in the evaluation section, given the data set with 1512 words, and compressed Bloom

filter size of 16 bits, the false positive rate is only about 2.3%.

6.3 Performing Query

In this section, we present the details and theoretical discussion of the user query process and top-k

query schemes.

6.3.1 Query Process

There are two ways of querying Snoogle. The first is to query an IP directly, the second is to query

the KeyiP first, and then to perform the distributed query given a list of most relevant IPs returned

by the KeyiP.

The first query method is used when a user is only interested in finding the sensor in some

specific area, or if the user has an approximate idea where the sensor might be found. For example,

a user wants to find a particular magazine, but only if it is within a short distance from where he

is currently at. Thus, he only queries the IP near him by sending a few terms that describe this

magazine. The IP evaluates the answers to the user. Each answer is the id of a sensor that best

matches the user query. The user can then query the sensor directly, or physically find the sensor

and hence the object.

The second query method is used when a user wishes to find an object regardless of where it

is, or has no idea which IP to start querying. The user first queries the KeyiP with several terms

describing the target object. The KeyiP then returns a ranked list of m IPs that contain objects that

best match the query, where m is a system parameter. The user then perform the distributed top-k

query from the returned m IPs and find the satisfied answers.

170

6.3.2 Improving Query Accuracy

When a user queries an IP, he receives a ranked list of sensor IDs that best match his query from

the IP as his answer. This ranking is derived from a score for each sensor contained within that IP

based on the query terms. For example, the user issues a query with two query terms, (tx, ty) to an

IP with three sensors, (s1 ,s2,s3). The score for SJ is the sum of the weight oftx in s1 and weight

of ty in s 1 . The score for s2 and s3 are determined in a similar fashion.

I

The weight of a term in a sensor is determined using the T F I IDF weighing algorithm from

IR research. The intuition behind T F I IDF is that the importance of a term in describing a sensor

is based on two considerations. The first is the number of times that term appears in that sensor,

the T F. The more often a term appears in the sensor, the more relevant that term is in describing

that sensor. In our system, the T F value is given as part of the metadata of the sensor.

The second consideration is how important that term is among the collection of all sensors in

a particular IP. The IDF is determined as

Total number of sensors
IDF =log(. .).

Number of sensors contammg the term

The idea here is that if a term appears in many sensors found within an IP's neighborhood, it

is less important. Consider the extreme case where a term appears in every sensor under an IP.

Then, any one of the sensors returned will contain that term, making that term not descriptive of

any one sensor at all. To get the IDF value, we need the total number of sensors and the number

of sensors containing the term. The first one is easy to get since an IP knows all sensors in its

neighborhood. The second value is acquired while processing the query at an IP. Given a query

term, an IP counts the number of the matches with stored terms in its flash memory.

171

Putting it all together, the weight for a term lx in a sensor s1 is

Weight oftx = (T Ft. in si) ·(IDE;. in si).

The above T F I IDF scoring methods can also be used to evaluate the weight of the IP in the

distributed query.

We initially considered CORI weighing algorithm [:n] when a user queries the KeyiP, but

there was no noticeable improvement. Thus we use a simple T F I IDF algorithm throughout this

chapter.

The use of the IDF allows the appropriate answer to be derived when comparing different IPs.

Consider for instance two IPs, IPa and IPb, where IPa is placed at a music CD store, and IPb is

placed inside a student's dorm room. When the student wants to query for his own CD, he would

like to obtain an answer from IPb rather than IPa. However, since IPa is placed in a store with a

lot of music albums, IPa will contain more terms associated with music albums, even though the

appropriate answer should be from IPb.

If our scoring algorithm only used the T F, then the answer from IPa will be better than IPb,

since there are more sensors in IPa that contain album terms. However, using IDF means that

the scores from IPa will be smaller since the album terms appear in almost all the sensors in IPa,

resulting in a much lower overall score. This behavior allows IPb to be returned to the student as

the most likely location for his own CD album.

6.3.3 Performing Top-k Query

While Snoogle is capable of returning a ranked list of all relevant objects matching a query to a

user, a user will usually want to limit the number of replies due to limited device display or battery

172

power. Snoogle allows the user to specify a top-k query which returns the k best matches to a user

query. The k is a user specified value.

For a local query, returning the top-k query is straightforward since an IP needs to only return

the top k answers to the user. For a distributed query, a naive top-k query scheme is for the user

to perform a top-k query for each of them IPs returned by Key!P. By collecting them· k answers

the user can then obtain the top k objects. However, the message complexity of O(mk) is too

expensive for the energy constrained system.

Our distributed top-k query algorithm is shown in Algorithm. 6. The intuition is as follows.

Upon receiving a list of m ranked IPs, the Key!P queries each IP for the most relevant object,

denoted as tai, 1 :S i :S m. The Key!P stores the m objects in an array a such that a[i].obj =

tai,a[i].weight = weight(tai),a[i].ip =!Pi, where weight(tai) returns the weight score determined

by T F and IDF as we discussed previously. After collecting the top weighing objects from all

m IPs, the Key!P sorts the objects in the descending order of the object weight, and obtains a

new array that a[l].weight 2: a[2].weight 2: · · · 2: a[m].weight. The first top-k answer, a[l].obj, is

immediately available. The Key!P sets the threshold value as a[2].weight, and queries a[l].ip for

the objects (excluding a[l].obj) that weights more than the threshold value. Note that among all

them IPs, it is possible for IP a[l].ip to solely hold objects with weights larger than a[2].weight, so

there is no reason to firstly query other IPs. Ignoring objects that are designated as top-k objects,

each IP has a new top weighing object, and the same process,continues till all top-k objects are

found. The algorithm stops any time when k top objects are retrieved, and the Key!P returns the

answer to the user.

An important issue in the above algorithm is the accuracy of the merged object ranking. Note

that the object weights reported by each IP are local scores, which are determined by local IDFs.

173

However, the local weights cannot be compared directly [12]. We consider following two so­

lutions: 1. normalizing the local scores; 2. calculate the global scores. As indicated in the

study [I .2] by Callan et al., the common normalization scheme requires the exchange of object

statistics among IPs, which may incur large amount of communications between IPs. On the

other hand, the heuristics used in the proposed normalized score estimation are tied to the spe­

cific database and therefore cannot be used in Snoogle. In this work, we choose to calculate the

global IDF. Upon receipt of a user query, the KeyiP first query m IPs for the local DF value

of each term. After collecting all local DFs, KeyiP immediately computes the global IDFs and

sends them back to IPs. From now on, the weights computed at each IP becomes global scores

and then can be compared with each other. Although this approach requires an extra round of

communication between KeyiP and IPs, the actual cost is bounded by 2m, where m is the number

of IPs.

To bound the number of messages transmitted in the process, we make the following observa­

tions. First, each IP transmits at most one object that will not appear in the top-k list. Therefore,

the number of messages sent by all the IPs is at most m + k including the top-k objects and other

objects that will not appear in the top-k list. Second, for each query sent out to the IP, we will

get back at least one object (which may appear or not appear in the final top-k objects). Thus,

the number of queries sent out to all the IPs is bounded by the number of received objects, which

is at most m + k. From the two observations, the number of messages in this process is at most

2(m + k), which is more efficient than m ·kin naive scheme.

174

6.4 Mobility and Security Support

Here we present the system enhancement for supporting the mobile objects, and describe a flexible

and resilient security mechanism for private objects.

6.4.1 Supporting Mobile Objects

An IP needs to keep up-to-date information about the object sensors in its neighborhood. However,

since objects can be mobile, there will inevitably be object sensors moving in and out of an IP's

neighborhood. Snoogle uses a combination of beacon and timer methods to maintain updated

information.

In the beacon method, the IP will periodically broadcast a beacon that identifies itself. An

object sensor in the neighborhood that receive this beacon will compare it against the previous

beacon. If both beacons match, this indicates that the physical object's metadata has already been

sent to that IP, and the sensor does nothing. Otherwise, it indicates that the physical object has

moved to a new location, and sensor will send the metadata and id to the new IP.

In the timer method, the communication is initiated by each individual sensor. Each object

sensor periodically broadcasts a "keepalive" message. At the same time, the IP maintains a timer.

If the IP does not receive any "keepalive" message from a certain associated object before the

timer expires, the IP considers the object is gone, and then deletes the all data of the object sensor

from its storage. The beacon and timer methods can vividly regarded as "pull" and "push". In

the beacon method, IPs pull the status information from the object sensors. In the timer method,

object sensors push their status to IPs.

The beacon scheme consumes less energy than the timer method. The object sensors only

need to wake up in the duty cycle to listen the beacons. They do not need to transmit any message

175

as long as there is no movement. The timer method, however, offers better reliability. When an

object moves to another IP neighborhood, the previous IP can notice an object missing through

the timer, and the new IP also can also be notified by the timer message sent by the moving object.

In short, the beacon method is more suitable for static objects, while the timer method works

better for mobile ones. In practice, the two methods can be properly combined depending on the

system requirement.

6.4.2 Providing Security and Privacy

Since Snoogle is built on sensors, it shares all common security threats with other applications in

sensor networks. Furthermore, Snoogle also poses unique security and privacy requirements in

searching. The concern is that Snoogle may violate personal privacy by revealing object infor­

mation to others. For example, a user may not want his private object (i.e., DVD movie) to be

searchable by strangers, but only his friends and himself.

Based on the above concerns, Snoogle must have a security mechanism to prevent objects

from being searched by unauthorized users. We adopt the public key cryptography rather than

the symmetric key scheme to have a clean user interface and a simple key management. Recent

research [4 l, 59] have demonstrated that public key schemes are feasible for sensor nodes. We

developed an Elliptic Curve Cryptography (ECC) public key scheme for Snoogle. The reason we

choose ECC over more popular RSA is that ECC can be more efficiently implemented in resource

constrained sensors. On TelosB sensor motes, it takes 1.4s to generate a public key. To the best of

our knowledge, this is the best ECC performance achieved among the academic implementations.

In Snoogle, the access control is performed at the IP instead of at KeylP in a distributed fashion.

We provide security for Snoogle by adding a security tag field to the object sensor. The security

176

tag has an OwneriD field and a GroupMask field. The OwneriD refers to the owner identification.

The GroupMask determines which group of users has the privilege to access the object. The ECC­

based user authentication is very similar to RSA. If a user wants to search private objects, he

first sends the query and the certificate, where the certificate is issued by Certification Authority

(can be Snoogle administration). The IP first verifies the user certificate and then makes sure the

corresponding OwneriD and GroupMask matching with the object tag. In the next step, the IP

uses the derived user public key (from the certificate) to encrypt a randomly chosen secret key, and

sends the ciphertext to the user. If the user can successfully decrypt the key, it proves that the user

is the legitimate owner of the certificate. Finally, the key is used to establish the secure channel

between the I P and the user. This key can also be used to achieve the user privacy, since the user

can simply encrypt his query terms by using the key so that no one can learn the query content.

6.5 Prototype Experience

6.5.1 System Setup and Parameters

We implement a prototype of Snoogle system, including object sensors, IPs, KeyiP, and user

module, on TelosB motes, a research platform developed by Berkeley. TelosB hardware features

a lower-power TI MSP430 16-bit micro-controller with 1 OKB RAM and 48KB ROM. The on­

board IEEE 802.15 .4/ZigBee compliant radio transceiver facilitates the wireless communication

with other IEEE 802.15.4 compliant devices. TelosB also has an on-board flash memory with 1MB

space, which enables our prototype IP to store as many as 262,144 terms and the associated object

IDs and term frequency. The low-power feature (5 .lf.l.A current draw in sleep mode) of TelosB

motes allows object sensors to stay alive for long time. We use an HP iPAQ for the user module.

177

The HP iPAQ features a 522MHz ARM920T PXA270 processor, 64MB RAM and 128MB flash

memory. The software of IPs, object sensors and user module are written by NesC language on

TinyOS version 1.1.15. Table 6.1 illustrates the summary of the implementation.

KeyiP Laptop Computer

TelosB mote

Code size (binary): 31. 7K bytes

'
Data size: 3475 bytes

Index Point
Index table: 16 entries

Buffer size: 64 metadata

Flash page size: 256 bytes

TelosB mote

Object Sensor Code size (binary): 19.3K bytes

Data size: 6054 bytes

TelosB + iPAQ
User Module

Code size (Java class):10.8KB

Table 6.1: The summary of Snoogle implementation.

We adopt the RC5 block cipher as the cryptographic hash function to implement the com-

pressed Bloom filter. We choose 16-bit as the Bloom filter size. Given our data set with 1455

unique terms, the false positive rate is only 2.3%.

We set up a Snoogle network in our computer science building. The floorplan and the deploy-

ment of object sensors, IPs and Key!P are shown in figure 6.3. Our experiment consists of two IPs

in two wings of the building, in rooms 101 and 107. We attach a laptop to each IP to collect timing

178

Figure 6.3: Floorplan for testbed. The Key!P in rectangular shape is placed in the lobby. The two IPs,
!PI and IP2, also in rectangular shape, are located in two wings of the building, in rooms 101 and 107.
There are 5 object sensors (squares) in the neighborhood of each IP. To route the messages between IPs
and Key!P, we also deploy 6 IPs (round dots) in the hall way.

information. The laptop plays no role in processing any of the data sent from sensor to IP. Each

IP has in its neighborhood 5 sensors which simulate sensors attached to different objects. Each

sensor contains data from one complete conference paper from the workload discussed earlier.

The Key!P is placed in the lobby, and consists of a laptop using a TelosB sensor as a communica-

tions module. Since the Key!P in our scheme can be a server, all data processing is performed by

the laptop. We deploy several additional IPs to route data to the Key!P

We assume that a user will query Snoogle with a PDA like iPAQ. Since iPAQ does not directly

support sensor communications, we use a TelosB mote to attach to the iPAQ through a USB

adaptor as the front end radio communication module. The iPAQ is running Windows Mobile 5.0

and Mysaifu NM [G9]. Fig. 6.4 shows a picture of our PDA querying device.

179

Figure 6.4: Picture of a PDA Query Device

6.5.2 Prototype Test

We use the prototype test to demonstrate the validity of the Snoogle architecture in a real world

environment. The evaluation of specific Snoogle components are left to the next section. We

consider the following two tests. First, can a user successfully query the KeyiP to get a list of IPs,

and can he query an IP to obtain a list of sensors? Second, can the IP and KeyiP effectively and

accurately detect and manage mobile sensors?

Our first test emulates an user's query experience. We are particularly interested in the time

duration for a user to get the object he searches for. A graduate student wants to search an academic

publication. He first enters the lobby of Computer Science building, and uses his iPAQ to query

the KeyiP with the paper key words. The KeyiP immediately replies him with the list of IPs that

carries the record as well as the associated term frequency information. Given the information

replied from the KeyiP, the student picks the IP which most probably contains the paper he is

looking for, which is IP1 in our experiment setup. He then immediately queries IP1 again. This

time, IP1 gives more detailed answers which finally help the student to find the paper. The time

duration for the whole procedure is 1 minute and 45 seconds. The most time is spent on walking

across the hallway and operating iPAQ. Actually the KeyiP and IP query response time only has

Association

IPl

IPI

IP2

'''I
IP2 L.. ---'

Tirne(min)

beacon 60s

beacon 30s

achml movement

15 20

Figure 6.5: Mobility test with beacon method

180

a very tiny portion ofthe total time consumption, it only takes 41ms and 55ms for Key!P and IP

to reply the user query, respectively.

Our second experiment tests whether or not the Key!P and IPs are able to give a correct

answer to the query for a mobile object. We implement both the beacon and timer methods in the

prototype and test them separately. In each test, we set the cycle period with 30 seconds and 60

seconds. The mobile object starts at the neighborhood of !Pl. When the experiments begin, one

of our group members takes the mobile object and walks cross the hallway to room 1 07. He stays

in room 107 for 5 minutes and then carries the object back to room 101. During this period, we

keep track of the object status in Key!P.

The test results of the beacon method is shown in Fig. 6.5. In the test with 30s beacon cycle,

it takes 71.6s for the Key!P to get the object update report from IP2. Once the update arrives, the

Key!P detects the object was originally associated with !Pl. The Key!P therefore immediately

issues a notification to !Pl. Note !Pl has no way to notice the missing object in the beacon

method. After 5 minutes, the object returns to room 101, it takes 68.0s for the Key!P to receive the

update from !Pl. Similarly, Key!P issues a notification to IP2. When the beacon cycle is extended

from 30s to 60s, it takes longer time to detect the associate change.

Fig. 6.6 plots the mobile object association changes at the Key!P in the timer method. Com-

paring the two methods, the timer method is more reliable than the beacon method. The timer

181

Association

Figure 6.6: Mobility test with timer method

method allows both the IP and the object to detect the movement while the IP cannot detect the

leaving object in the beacon method. That explains why it takes more time for the beacon method

to detect the object movement once the object itself misses a couple of beacons, as shown in

Fig. 6.5. However, the timer method requires more energy consumption for the object sensors

because they have to keep sending "keepalive" message. This is a disadvantage for extremely

energy constrained sensors. In practice, the two methods may be combined together to achieve the

tracking performance to the energy consumption ratio.

6.6 Performance Evaluation

To better discern the performance ofthe system, we break the search system down into individual

components and evaluate each separately. We mainly focus on object sensor and IP interaction

because both the sensor and IP are power constrained and computationally challenged devices,

while the Key!P is a resource-rich device. This makes the performance of the object sensors and

IPs crucial for the validity of the system.

182

6.6.1 Workload Design

We use data from an academic conference to create our dataset. The title, authors and affiliations

of each entry become the metadata terms in each sensor. We use the IR definition ofT F to obtain

the weight of each metadata term. This yields a workload of 1455 terms, which are sufficient for

about 80 sensors, each of which has about 15 to 25 unique words on the average. The average term

size is between 7 characters to 8 characters. We further divide the 80 object sensors into eight IPs

as the testbed for the distributed query.

6.6.2 Data Input and Maintenance at IPs

The startup phase for our search system occurs when the IP is first initialized and contains no

object data at all. This is a costly activity since the IP has to identify all the sensors within its

range, and obtain their metadata. Fortunately, this initialization phase occurs rarely since the IP

utilizes persistent flash memory for data storage to protect against data loss. The main metric we

use to evaluate this portion is the time latency needed for an IP to obtain necessary data from

object sensors and update the collected data for the future changes to give accurate answers for

queries.

To reduce the transmission cost and improve the storage efficiency, Snoogle adopts the idea of

compressed Bloom filter to compress the metadata terms. In particular, a hash function residing

in the object sensor convert each plaintext metadata term into a 2-byte digest before transmitting

the data over to the JP. We perform a comparison test to learn the benefit of the data compression.

Fig. 6. 7 shows the time taken to transmit hashed data to the IP compared to the plaintext method.

As we can see, the transmission time grows linearly as the number of terms increases when the

plaintext data is used, while it takes much less time for the IP to collect the same amount of data

en
S4oo
Q)

E
i= 300 c
0 ·c;;

"' .E 200
"' c ro

t= 100

-+-Hashed Tex
-9-Piain Text

0
5 10 15 20 25 30 35 40

Number of Metadata Terms

Figure 6.7: Time taken to transmit metadata to IP

183

in the compressed form. It only takes 90ms to collect 40 compressed terms. However, it requires

more than 5 times of amount of time to transfer 40 uncompressed terms.

Note that the time taken to transmit hash terms is not proportional to the number of terms.

For instance, the transmission time for five hashed terms is 30ms, while the transmission time for

40 hashed terms is 90ms. It only takes triple the amount of time to transmit eight times the data.

The reason is due to TinyOS message overhead. For the communications between each object

and an IP, we set the message payload size up to 60 bytes. Besides the 60-byte payload, each

messages has 8-byte message header and 10-byte TinyOS header. We need three bytes to transmit

one hashed text: one for the term frequency and other two for hashed value. Given a 60-byte

payload, one message can carry up to 20 terms. Due to the above reason, even though the text size

of 40 terms is 8 times of that for 5 terms, it only takes one more message to transmit 40 terms,

compared to that for sending 5 terms. Therefore, the transmission time for 40 terms should not be

8 times of that for 5 terms.

Next, we show how the buffer helps to further improve the data collection efficiency. An

IP has limited RAM and uses flash memory to store the sensor metadata. The flash memory

60~~--~~-------r~======~ I+ Actual Time I

<1>

~ 300
~

~ 200

100

Figure 6.8: The time delay to write 256 byte of data with different write granularity .

., 200
s

5 10 15 20 25 30
Number of Object Sensors

Figure 6.9: Insertion performance with buffer and without buffer at IP

184

operation principle determines that the write in flash memory, specially in small granularity, is

slow. We have performed a simple test to show the write efficiency at different write granularity.

Fig. 6.8 plots the experiment result. As we can see, it consumes almost 0.6s to write 256 bytes

in flash with 1 byte write granularity, compared to 8ms to write the same amount of data with

256 byte granularity. A common way to amortize the memory write overhead is to use a buffer.

In Snoogle, each IP maintains a small buffer in RAM of 256 bytes, to buffer sensor data before

flushing to flash. Even though the NOR flash in TelosB supports random writes, we adopt the

buffering approach to improve the efficiency. When there are multiple sensors wanting to send

185

data to an IP, the IP will have to periodically halt transmission to flush the coming data into flash.

The IP does not need to invoke the expensive flash flushing routine as long as there is enough

buffer space to hold the coming object terms, and picks a spare time later to flush the buffered

terms into the flash.

Again, we conduct the comparison test to compare the two schemes. For the test case with

an IP buffer, we choose the buffer size with 256 bytes, equivalent to the page size of the flash

memory setup. Since each object term requires 4 byte memory space, including 2 byte digest,

1 byte term frequency and 1 byte for the object id, a 256-byte buffer can hold at most 64 object

terms. In the both experiments, 30 object sensors, each having 10 terms, sequentially transmit the

data to the IP. We record the average waiting time of each object sensor and present the results in

Fig. 6.9. It clearly shows that each object sensor waits significantly less amount of time when the

IP uses the buffer.

We further notice that the variation of the object sensor waiting time without an IP buffer is

much larger. Our investigation reveals that the variation is determined by the amount of time taken

to flush the data to the flash. Since each compressed term is further hashed by the 1P (as previously

described in Section 4) to an index table, different terms can be mapped to different positions of

index entries. The number of entries can be any value between 1 and the number of terms. The

bigger the number is, the longer time is required because the IP has to flush more flash pages. As

the comparison, this variation is much smaller with a buffer enabled IP. The reason is that, the

IP buffer keeps track of the index entry position of each term. When the number of buffer empty

slots is not enough to hold the coming data, the buffer first flushes the most populated terms that

hashed to the same index position, and stops flushing if there are enough space. As the result, with

a high probability the number of pages required to be flushed is less than that in a bufferless IP.

~300
(/)

5
CIJ
E
i= 250
c

.Q
Q)
Qj
0 200

150o 200 400 600 800 1000 1200 1400
Number of Terms in IP

Figure 6.10: The amount of time to delete an object with 10 terms.

186

When an object is removed from its original location, the IP has to update its inverted index

table to reflect such change. As described previously, the delete operation requires the IP to

scan the entire valid flash storage area and tag the deleted object terms to be invalid. It is not

difficult to suggest that delete performance is determined by the size of stored flash data. Our

experiment results, as shown in Fig. 6.1 0, exactly show this trend. The experiment is conducted

in the following way. We select a specific object sensor with 10 terms, and perform deletion with

different amounts of data loaded in the IP, ranging from 0 to 1600 terms. Initially, the deletion

time does not vary much when the number of loaded terms increases. The reason is that the IP has

to scan at least one flash page for each index entry, no matter how many terms have already been

stored in the flash. When the term number continues to grow, some index entries require more

flash page to store the metadata terms. Therefore, the deletion operation has to scan more flash

pages. As the result, the time consumption increases accordingly.

Note that deletion does not have to be done each time a sensor leaves an IP's neighborhood.

A simple list can be kept by the IP that records the IDs of sensors that have left. Then, before the

IP replies to a query, it removes the sensors found in the list from the answer. This way, the user

187

will still have the correct answer. The IP can then perform the deletion in the background when

there are no other pending query requests.

6.6.3 Local Query

To evaluate the local query performance, we focus on two main areas: query latency and query

accuracy. We first test the performance of the query latency of Snoogle. Then, we demonstrate

the Snoogle query efficiency by a comparison test that compares the latency performance between

Snoogle and a flat structured network. Finally, we evaluate the query accuracy.

6.6.3.1 Query Latency

Query latency is the time taken for a user querying an IP to receive a reply. This includes the time

to transmit, process and reply to a query. To better evaluate our search system, we measure the

query latency using common web search characteristics. From [51], the average number of query

terms per search is less than 3. We then determine the average time taken to complete a user query

comprising of one to four terms. Fig. 6.11 shows the results. We see that the query response time

increases as the number of query terms increase. As mentioned in section 4.1, multiple flash pages

may have to be read from flash memory to determine the IDF of each query term. This accounts

for the increase in query response time.

The above experiment has shown an example of the local query performance given a typical

system setting with 80 objects. To evaluate the scalability performance of the local query, we

design the following test. In the test, the IP term index table is configured with 16 entries. As

we discussed in section 6.1 , each object term (after being compressed) is hashed again to get

its index in the index table that stores the address pointing to the flash memory. Given the ideal

300.---~----~----~----~-----

250
(j)
E
~200
~
co
~ 150
E
i=
Cii 100
0
1-

50

2 3 4
Number of Query Terms

Figure 6.11: Time taken for IP to respond to a query

188

hash function as we assume, each term is equally likely hashed to one of 16 indices. Thus, the

16 page chains, pointed by 16 indices, can be considered to have the same length. Based on the

above consideration, we generate a number of synthetic object terms and directly load them into

the flash memory of an IP. We perform the local query performance as the flash memory starts

from empty to full. Suppose on average each object has 30 terms, an IP with 1MB flash memory

can index up to 262,144 terms.

The experiment results are plotted in Fig. 6.12. We find the local query time is affected by two

parameters: 1. the number of query terms; 2. the number of objects. For each query term, the IP

needs to scan the flash memory pages that are pointed by a certain entry in the indexing table. Our

test shows that it takes around 7ms to read a page of flash memory to RAM by a TelosB sensor.

Multiple terms then require the multiple scans and thus produce the corresponding delay. Note the

page scanning delay dominates the total query response time. The similar trend is observed that

more query time is used when the number of object increases as more terms are stored in flash

memory. Overall, the query time is efficient. It takes 1.2s for an IP to respond a 4-term query

when there are 256 objects.

1.4r;:::=====:;-----~--------,
+64 objects

1.2 --128 objects
~ -e- 256 objects

~ 1
i=
Sl 0.8
c
0 a.
:3 0.6
0::

~0.4
:::J
a

0.2

2 3 4
Number of Query Terms

Figure 6.12: Time taken for IP to respond to a query.

6.6.3.2 Compare to searching without IPs

189

An alternative searching method is to have users query the sensors sequentially, and then collect

the replied data to find the desired information. This method gets rid of the IP. To evaluate we

implement this alternative searching scheme and compared the performance against our Snoogle

system. The alternative searching scheme is implemented as follows. A group of sensors are

organized to a chained structure. The user always queries the chain head sensor, the queried

sensor searches the query term in its memory and puts the results at the pre-assigned position in

the message packet, and then forward the query to the next sensor in the chain. The 2nd sensor

repeats the above searching and puts the results in its pre-assigned position. This procedure repeats

until the last sensor finishes the query processing. The last sensor directly replies to the user.

We believe this is the most efficient way that a general searching scheme can achieve because it

requires lowest amount of the message transmission. We select 10 sensors for the both experiment

setups. Each sensor is pre-loaded with the metadata of one conference paper. The user performs a

single term query to the both systems. We measure the user query response time with the number

of object sensors changes from 1 to 10. In Fig. 6.13, we show the difference in query response time

<n
s 150
<1l
E
i=
<1l

"' § 100
c.
"' <1l

0:::
~
<1l
:::l a

+Without IP
-ill- With IP

o~~------~----~----~----__J
2 4 6 8 10

Number of Object Sensors

Figure 6.13: Query latency with and without IPs

190

in two different searching systems. We see that the query response time in Snoogle system remains

relatively constant. The time taken in general searching system, however, increases linearly with

the number of objects increases. This proves Snoogle achieves much better scalability than any

general searching scheme.

6.6.3.3 Query Accuracy

Query accuracy in traditional IR uses precision verses recall to evaluate the effectiveness of a

search system. However, Shah and Croft [8 l] pointed out that using the mean reciprocal rank

(MRR) metric from question answering (QA) was more suitable when performing IR on power

constrained or bandwidth limited devices. In QA, the emphasis is to return a single or a very small

group of answers in response to a query, and not the return as many relevant answers as possible.

In other words, the QA metric places more emphasis on the accuracy of the ranking of answers.

This is apt for our search system built on sensors. The MRR is defined as

1
MRR = ---------­

rank of first correct response

0.8

Q)

0 0.6
u en
0::

~ 0.4

0.2

a~~~~----~~~----~~--~

q2Terms q3Terms q4Terms
Different Test Files

Figure 6.14: Accuracy of query answer

191

For example, let the search system return a ranked answer (A,C,B) where the model answer is B.

In other words, the correct highest ranked response should be B. The MRR for this query is thus

t = 0.33 since the correct answer is three spots off. An answer that matches the model answer

will have a MRR of 1.

We first generate three different test files, q2Term, q3Term, q4Term, each file containing a

collection of two, three and four query terms respectively. Each collection consists of 20 different

questions and model answers. These questions are designed to contain some degree of ambiguity.

For example, in our collection, there are two papers with DHT in their title, four papers with

Frans Kaashoek listed as an author, and two papers with Jeremy Stribling as an author. Thus, a

query "Kaashoek DHT Stribling" will have the model answer the paper titled "Bandwidth-efficient

Management ofDHT Routing Tables". In other words, the ranked list of answers returned should

have this paper as the top ranked result. Fig. 6.14 shows the results. We see our search system has

a high MRR for different number of query terms. We do not test for only one query term since to

derive a model answer, the query term needs to be unique, which is equivalent to a simple grep

match.

!!l ·;::

BOr;========:;--~--~--+ Naive Scheme
10,.._ top-k (2 term query)

-ll>-- top-k (3 term query)
60 top-k (4 term query)

:::J 50
Q)
Cl
ro
"' 40

"'
~ ... -.,~· :M Jo "'l" "'· ~ ·"'·'"W

r~~·
~ 5 7 B

k value

Figure 6.15: Message complexity of distributed top-k query.

6.6.4 Distributed Top-k Query

192

As we discussed in Section 6.3.3, the message complexity is the major concern in the distributed

top-k query. To evaluate the performance of our top-k query scheme, we first perform a simulation

based on our own data set to study the message complexity. Then, we estimate the query response

time on a larger network setting by using the packet transmission time collected from our experi-

ments. In the both studies, we compare the performance of the proposed top-k query with that of

the naive scheme.

6.6.4.1 Message Complexity

In the simulation, we use the same dataset which is composed of 80 objects. We evenly and

randomly distribute these objects into eight IPs (each IP has 10 objects). In this way, we create

a testbed for the distributed query with eight IPs, which are returned from the KeyiP for the user

query (note m = 8). In the next step, the user performs the distributed top-k query.

We implement our distributed top-k query scheme on our simulator since our interest is the

message complexity only. The rule of determining the message complexity is explained as follows.

193

1. A single user query to a certain IP is counted as one message unit. 2. The answer with k objects

from a certain IP is counted as k message units since the message length grows ask increases. We

run the simulations for three different queries with two, three and four query terms, respectively.

We first randomly distribute the objects into eight IPs, then run the query and count the message

numbers. We repeat this procedure for 100 times for each simulation and calculate the average

message count values. For the comparison purpose, we also implement the naive top-k query

scheme. Note there is no change in message complexity of naive scheme given variant object

distribution and query term numbers.

The simulation results are shown in Fig. 6.15. As we can see, the performance of naive scheme

is significantly worse than that of our distributed top-k query scheme. When k increases by one, the

naive scheme needs m more messages (herem= 8). Comparatively, the number of extra messages

required for our top-k query is much less than m. As the result, when k increases to eight, the

naive scheme costs 72 messages, while our top-k query only needs 32 messages on average. The

figure also shows that the number of query terms has no significant impact on the performance of

the distributed top-k query, the performance of two, three and four term query is very close to each

other.

6.6.4.2 Query Response Time

While the above simulation studies the performance in the number of message units, the query

response time is more concerned for a real world application, specially in a large scale network.

Next, we estimate the distributed query time. Since the Key!P is a resource-rich computer, we

ignore the processing time at the Key!P. The message transmission time thus dominates the query

delay. Our experiment shows the average transmission time Tp for a packet with 68 byte payload

194

is 11.4ms.

The message complexity of the distributed top-k query is 2(m + k), where m is the number of

IPs having searched terms, and k is the number of top answers the user is looking for. Without

loss of generality, we let k be 10 so that the user always wants the top-1 0 answers. To determine

the value of m, we consider the following two scenarios. We let m be 20 as the search items are

popular, and let m be 5 as the items are non-popular. We further denote D as the average hop

distance between IPs and the KeyiP. A larger D indicates a larger network.

As we described in Alg. 6, the KeyiP first queries m IPs for their top-ranked answers. After

collecting the responses from m IPs, the KeyiP sequentially queries up to kIPs (that have higher

scores than the rest m - k) until the top-k answers are found. In the worst case, the message

complexity is 2(m + k). Combining all components, our estimation of the query time for the

distributed top-k query is:

(6.3)

The first term is the time to transmit m query messages by the KeyiP. Note the KeyiP can contin­

uously send out the messages without waiting for the reply for the specific IP. The second term

indicates the time duration of the average response time for the query send by the KeyiP. The

third term is the time taken for the KeyiP to query up to kIPs.

For the naive top-k query scheme, each IP has to replies k messages, each of which carries an

answer. The total query time can be expressed as:

I'query = m · Tp + D · Tp + m · k · Tp ·D. (6.4)

The first term is the same as in Eq. 6.3. The second term indicates the time taken for the query to

~

"'

40~r=========~--~~~--~--,
-e- m=5, top-k

35 -e- m=20, top-k
--'W- m=5, naive

30 ---- m=20, naive

-; 25
E
i= 20
c
~ 15
0

'~-~--.-r-;·--;·---;--t
2 4 6 8 10 12 14 16

Average Distance (hop)

Figure 6.16: Query response time of distributed top-k query.

reach IPs. The third term is the transmission time for the IPs to send k messages over D hops.

195

The estimated query response time for the both schemes is shown in Fig. 6.16. We find that our

distributed top-k query scheme is much more efficient than the naive scheme. When the average

hop distance increases from 2 to 16, the query response time of our distributed top-k query grows

linearly from 0.7s to 4.2s. The response time of the naive scheme, on the other hand, grows from

4.8s to more than 36s. We also find the value of m has very little affect toward the query response

time of our distributed top-k scheme. However, the m value has a large impact on the response

time of the naive scheme because every IP out ofm members has to respond the query from KeyiP

with k answers.

6.6.4.3 Impact of IDF on Query Accuracy

As we discussed in Section 6.3.3, we choose to use the global IDF to get accurate merged ob-

ject rankings. Now, we are interested in the accuracy comparison between the ranking using the

global IDF and that using the local IDF. We perform the similar simulation as we described in

Section 6.6.3.3. We still use the previous data set with 80 objects that form the testbed with eight

0.8

Q)

0 0.6
u

(f)

0::

~ 0.4

0.2

0

~~-GiobaiiDFI
c=:J Local I DF

.-
r-

r-
I

1
~i·,~~~

I IIIII,
/;I

,il':ll! Ill
1'!.~111 llllilli',

I !
111,1;

~'h!~~~~~
II~ 'llt~~1ii~

q2Terms q3Terms q4Terms
Different Test Files

Figure 6.17: Query accuracy of distributed top-k query.

196

IPs (each IP has 10 objects). We also use MRR as the metric, and generate three different test

files, q2Term, q3Term and q4Term, each ofwhich contains 20 questions with certain degree of

ambiguity.

The test results are illustrated in Fig. 6.17. We find the MRR scores of the rankings by the

global IDF are consistently higher than those of the rankings by the local IDFs. The reason can

be explained as follows. Once the data set (80 objects) are fixed, the global IDFs are determined

and will not be affected by the object distribution in IPs. Therefore, the merged rankings by using

the global IDF are also determined. However, the local IDF values depend on the local document

frequency (DF), which is affected by the distribution ofthe objects. Thus, the model answer may

not top the merged rankings by using the local IDF if the matching query term has a small local

IDF value (due to a large local DF) so that the matching term cannot contribute much weight in

the overall score.

:§:5.8
Q)

E i= 5.6
Q)
rJ)

i5 5.4
c.
rJ)
Q)

0:::
2:' 5.2
Q)
::::>

0 5

1-Response Timel

2 4 6 8
Number of Query Terms

Figure 6.18: User perceived private object query response time.

6.6.5 Security Overhead for User Query

197

Finally, we add the authentication module to the IP and test the performance of private object

query. We used an ECC public key cryptosystem designed for TelosB motes. Our extensive

optimization allows TelosB mote to efficiently perform ECC public key operation. Our experiment

shows it only takes 1.4s to do a point multiplication. To the best of our knowledge, this is the

best ECC performance achieved on TelosB motes by academic implementations. When the user

queries the private objects, the user's identity and access privilege have to be verified. The 160-

bit ECC based authentication is performed for the verification purpose. The user query response

time is presented in Fig. 6.18. To query a private object, the user waits around 4.9s to pass the

authentication check. Obviously, the authentication time dominates the overall response time.

This is because that the ECC based authentication scheme requires 3 ECC point multiplications,

which contribute more than 90% ofthe overall delay.

198

6. 7 System Limitations

Communication Reliability. From our experience building the prototype experiments, we notice

that message dropping is a major concern. Not only does it happen when IPs report to the KeyiP

for record updates, message drop is also found during IP beacon sending and replying, which may

cause object missing while moving. That is, the former IP has already deleted a leaving object (due

to the timeout), but the new IP does not catch it due to packet loss during beacon sending and reply.

Therefore, it is desirable and imperative to implement a reliable communication mechanism in the

application layer or, if possible, in the transport layer, such as acknowledge and retransmission.

System Scalability. Our Snoogle system design does not limit the number of IPs and KeyiPs.

When the number IPs is getting larger (e.g., the network spans several buildings in a district), we

can certainly deploy multiple Key IPs, each of which can serve a number of IPs in a certain area

as we discussed previously. Since KeyiPs are resource-rich devices, the information sharing and

exchanging among KeyiPs is beyond the scope of this dissertation.

Given the limited hardware resources, an individual IP domain has its capacity limit. As we

have discussed in the previous section, each object term takes four-byte flash space. Considering

20 terms for each objects on average and 1MB flash memory space, each IP in Snoogle can

support more than 10,000 objects in its neighborhood. Given the limited sensor transmission range

(normally 1OOft), we believe the scale of 10,000 objects can support most applications. When the

amounts of object are getting larger (within a certain IP), however, the query accuracy may be

affected for a query with multiple terms. The reason is that the RAM space in IP is very limited

in our prototype system and cannot hold all intermediate results while calculating the score of

relevancy given a multi-term query. One possible solution is to select a more powerful IP device

199

with a larger RAM size for the object populated areas.

Mobility Support. While Snoogle supports the search for a mobile object, it does not track a

moving object in real time. Due to the power constraints in both IPs and object sensors, Snoogle

cannot afford very frequent beacon or timer mechanism so that an IP may not immediately detect a

moving object in its neighborhood. Therefore, a snapshot of the system view does not necessarily

give accurate moving object locations. However, once the object stops at a certain place for a

certain amount of time (e.g., a beacon cycle), the IP at that location will capture the object and

update KeyiP with the new indexed items. Obviously, a large number of moving objects will

trigger many index updates from IPs to the KeyiP, which may cause much battery drain and could

be a concern of the IP life-cycle. We currently assume there are limited moving objects in the

system and reserve the IP power management in our future work.

6.8 Conclusion

In this chapter, we presented Snoogle, an information retrieval system built on sensor networks.

Our system reduces communication costs by employing compressed Bloom filter on sensor data,

while maintaining low rates of false positive. We also introduced a flexible security method us­

ing public key cryptography that protects user privacy. Our current implementation incurs a five

second latency. Currently we are working on different techniques to further reduce the latency for

security.

200

Algorithm 6 Distributed Top-k Query Algorithm

1: Input: kIPs: JP1,IP2 , 0 0 0 ,!Pm

2: Output: top-k answers: Ob }1, Ob }2, 0 0 0 , Ob }k

3: Each IP sorts its objects in descending order of the weights

4: for from i = 1 to i = m do

5: query !Pi for the top answer; each IP removes the first object from the sorted list and sends

it to user

6: store the top answer tai and its associated weight in an array: a[i]oobj = tai,a[i]oweight =

weight(tai),a[i]oip =/Pi

7: end for

8: set the number of committed objects, num_commit=l

9: while num_commit < k do

10: sort the array in descending order of weight so that a [1]0 weight 2 a [2]0 weight >

0 0 oa[m]oweight

II: send a[2]oweight and num_commit to !P a[l]oip

12: IP a[1]oip removes from its sorted list a list of objects (say l of them) such that the last

object has the highest weight less than a[2]oweight, say w

13: IP a [1]0 i p sends the first min(l, k ~ num_commit)

14: commit all retrieved objects with weight greater than a[l]oweight, change the value of

num_commit, set a[1]oweight = w

15: end while

16: return all the committed objects Ob}I, Ob}2, 0 0 0, Ob}k

Chapter 7

Conclusion

This dissertation explores the privacy issues in Cyber-Physical Systems (CPS). CPS is a new Com­

puter Science realm in that a CPS system composes of myriads of interacting low cost computing

elements that are deeply embedded in the physical world. While CPS brings the great system

performance enhancement in terms of response time, adaptability, reliability, safety, efficiency,

and so on, privacy becomes a big concern as these intelligent computing elements become deeply

pervasive in human societies. This dissertation proposes a privacy preserving framework to pre­

serve the privacy in CPS applications. The privacy preserving framework composes of two privacy

solutions: data privacy solution and location privacy solution.

The data privacy solution not only prevents the unauthorized access to the sensitive data, also

protects the network by filtering out the unauthorized messages. The building block of the data

privacy solution is WM-ECC, an efficient ECC implementation for resource constrained devices.

WM-ECC tops the performance in running time among the public available ECC implementa­

tions. In particular, the ECC signature generation is only 0.77s on Tmote Sky sensors and 1.12s

on MICAz sensors. WM-ECC makes computing intensive public key exponentiations become

201

202

practical on extremely resource constrained low-power devices.

Based on WM-ECC, this dissertation proposes a number of security schemes to protect the

data content and prevents DoS attacks in the network. In particular, the pairwise key establishment

scheme enable neighboring sensors to efficiently negotiate secret keys. The extensive evaluation

shows that the PKC-based schemes achieve better performance in memory overhead, message

complexity and group key establishing time than the symmetric-key based schemes proposed in

prior work. The user access control schemes allow a user to query a network node either locally

or remotely. Unlike the local access control scheme based on symmetric-key schemes, the PKC­

based solution is resilient to user collusion attacks. Further, the remote access control leverages the

threshold cryptography to defend against the adversary's DoS attacks. While the above schemes

provide the end-to-end message security in the network, the proposed PDF scheme protects the

network by blocking the unauthorized messages (forged by the adversary). PDF leverages the

threshold cryptography and arranges a number of nodes to jointly generate a system signature so

that any intermediate node can easily verify. All above schemes are implemented on commodity

sensor motes. The extensive experiments show the ECC-based security schemes are practical for

real world applications.

To address the location privacy issues, this dissertation presents privacy-ware routing schemes

under a complete adversary model. When the adversary has limited radio detection capability

and can only monitor the traffic within a small network area, we design the routing schemes that

distribute messages to a geographic area with certain energy constraint so that the adversary's

traceback time can be maximized. An optimization problem is formulated to study the adver­

sary's maximum traceback time under the routing energy constraints. When the adversary has

the global monitoring capability, a different routing strategy is designed to prevent the adversary

203

from profiling the traffic. To save the energy, a random message transmission schedule scheme is

presented to limit the message transmission period to minimum.

Finally, the proposed privacy preserving frame is applied to Snoogle, a sensor-based searching

system for the physical world. On top of the framework, a versatile security and privacy scheme

is integrated in the system that enables flexible user access control in searching for private items.

In addition, Snoogle also incorporates a number of techniques including communication compres­

sion, distributed top-k query and information retrieval. The combination of above techniques with

the pervasively embedded and resource constrained devices makes Snoogle a practical and pow­

erful search engine for the physical world, which is validated by the combination of real world

experiments and scalability simulations.

Bibliography

[1] JALAL AL-MUHTADI, ROY CAMPBELL, APU KAPADIA, M. DENNIS MICKUNAS, AND
SEUNG Yr. Routing through the mist: Privacy preserving communication in ubiquitous
computing environments. In ICDCS, pages 65-74, Vienna, Austria, Jul2002.

[2] A.D. AMIS, R. PRAKASH, T.H.P. VUONG, AND D.T. HUYNH. Max-Min D-Cluster
Formation in Wireless Ad Hoc Networks. In INFOCOM, 2000.

[3] S. BANDYOPADHYAY AND E. COYLE. An Energy-efficient Hierarchical Clustering Algo­
rithm for Wireless Sensor Networks. In INFOCOM, 2003.

[4] S. BANNERJEE AND S. KHULLER. A Clustering Scheme for Hierarchical Control in Multi­
hop Wireless Networks. In INFOCOM, 2001.

[5] S. BASAGNI. Distributed Clustering Algorithm for Ad-hoc Networks. In I-SPAN, 1999.

[6] RAMESH BHANDARI. Optimal Physical Diversity Algorithms and Survivable Networks.
In ISCC, Washington, DC, USA, 1997. IEEE.

[7] BURTON BLOOM. Space/time Trade-offs in Hash Coding with Allowable Errors. Commu­
nications of ACM, 13(7):422-426, July 1970.

[8] BLA BOLLOBS. Random Graphs. Acadamic Press Inc, 1985.

[9] D. BONEH AND M. FRANLIN. Identity-Based Encryption from the Weil Pairing. In
CRYPTO, pages 213-229, Springer-Verlag, 2001.

[10] NIRUPAMA BULUSU, DEBORAH ESTRIN, LEWIS GIROD, AND JOHN HEIDEMANN. Scal­
able coordination for wireless sensor networks: Self-configuring localization systems. In
Proceedings of the 6th IEEE International Symposium on Communication Theory and Ap­
plication, July 2001.

[11] NIRUPAMA BULUSU, JOHN HEIDEMANN, AND DEBORAH ESTRIN. Gps-less low cost
outdoor localization for very small devices, October 2000.

[12] JAMIE CALLAN. Distributed information retrieval. In In: Advances in Information Re­
trieval, pages 127-150. Kluwer Academic Publishers, 2000.

[13] D. CARMAN, B. MATT, P. KRUUS, D. BALENSON, AND D. BRANSTAD. Key Manage­
ment in Ditributed Sensor Networks. In DARPA Sensor IT Workshop, 2000.

204

205

[14] CERTICOM. Code and Cipher. Certicom 's Bulletin ofSecurity and Cryptography, 1(3):1-5,
2004.

[15] H. CHAN AND A. PERRIG. PIKE: Peer Intermediaries for Key Establishment in Sensor
Networks. In INFOCOM, Miami, FL, March 2005.

[16] H. CHAN, A. PERRIG, AND D. SONG. Random Key Predistribution Schemes for Sen­
sor Networks. In IEEE Symposium on Security and Privacy, pages 197-213, Berkeley,
California, May 2003.

[17] M. CHATTERJEE, S. K. DAS, AND D. TURGUT. WCA: A Weighted Clustering Algorithm
for Mobile Ad Hoc Networks. In Cluster Computing, 2002.

[18] D. CHAUM. Untraceable electronic mail, return addresses and digital pseudonyms. Com­
mun. ACM, 24(2):84-90, 1981.

[19] D. CHAUM. The dining cryptographers problem: Unconditional sender and receipient
untraceability. J Cryptol., 1(1):67-75, 1988.

[20] ROGER CLARKE. Introduction to dataveillance and information privacy, and definitions of
terms. August 1997.

[21] H. COHEN, A. MIYAJI, AND T. ONO. Efficient elliptic curve exponentiation. In Advances
in Crytology-Proceedings ofiCICS'97, Lecture Notes in Computer Science, pages 282-290,
Springer-Verlag, 1997.

[22] H. COHEN, A. MIYAJI, AND T. ONO. Efficient elliptic curve exponentiation using mixed
coordinates. In ASIACRYPT Advances in Cryptology, 1998.

[23] N. CORRELL, A. BOLGER, M. BOLLIN!, B. CHARROW, A. CLAYTON, F. DOMINGUEZ,
K. DONAHUE, S. DYAR, L. JOHNSON, H. LIU, A. PATRIKALAKIS, J. SMITH, M. TAN­
NER, L. WHITE, AND D. Rus. Building a Distributed Robot Garden. In IEEE!RSJ Inter­
national Conference on Intelligent Robots and Systems (IROS), StLouis, MO, Oct 2009.

[24] HUI DAI, MICHAEL NEUFELD, AND RICHARD HAN. ELF: an efficient log-structured
flash file system for micro sensor nodes. In SenSys '04: Proceedings of the 2nd interna­
tional conference on Embedded networked sensor systems, pages 176-187, New York, NY,
USA, 2004. ACM Press.

[25] J. DENG, R. HAN, AND S. MISHRA. A Performance Evaluation of Intrusion-Tolerant
Routing in Wireless Sensor Networks. In IPSN, pages 349-364, Palo Alto, California,
2003.

[26] W. Du AND J. DENG. A Pairwise Key Pre-distribution Scheme for Wireless Sensor Net­
works. InACMCCS, 2003.

[27] X. Du. Detection of Compromised Sensor Nodes in Heterogeneous Sensor Networks. In
ICC, pages 1446-1450, Beijing, China, 2008.

[28] L. ESCHENAUER AND V.D. GLIGOR. A Key-management Scheme for Distributed Sensor
Networks. In ACM CCS, November 2002.

206

[29] RONALD FAGIN, AMNON LOTEM, AND MONI NAOR. Optimal aggregation algorithms for
middleware. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 102-113, 2001.

[30] L. FAN, P. CAO, J. ALMEIDA, AND A. BRODER. Summary cache: A scalable wide-area
web cache sharing protocol. In SIGCOMM, 1998.

[31] A. C. FERREIRA, M.A. VILAA, L. B. OLIVEIRA, H. C. WONG, AND A. A. LOUREIRO .
. In Networking-ICN, pages 449-458, 2005.

[32] ARMANDO FOX AND STEVEN D. GRIBBLE. Security on the Move: Indirect Authentica­
tion Using Kerberos. In Mobicom, New York, November 1996.

[33] JAMES C. FRENCH, ALLISON L. POWELL, JAMES P. CALLAN, CHARLES L. VILES,
TRAVIS EMMITT, KEVIN J. PREY, AND YUN MOU. Comparing the performance of
database selection algorithms. In ACM SIGIR on Research and Development in Information
Retrieval, 1999.

(34] XINWEN FU, YE ZHU, BRYAN GRAHAM, RICCARDO BETTATI, AND WEI ZHAO. On
Flow Marking Attacks in Wireless Anonymous Communication Networks. In ICDCS,
pages 493-503, 2005.

(35] RAGHU K. GANTI, PRAVEEN JAYACHANDRAN, TAREK F. ABDELZAHER, AND JOHN A.
STANKOVIC. SATIRE: a software architecture for smart attire. In MobiSys, 2006.

[36] IAN GOLDBERG, DAVID WAGNER, AND ERIC A. BREWER. Privacy-enhancing technolo­
gies for the Internet. In IEEE COMPCON, Feb 1997.

[37] J. GROBCHADL. The Chinese Remainder Theorem and its application in a high-speed RSA
crypto chip. In ACSAC, page 384, 2000.

(38] MARCO GRUTESER, GRAHAM SCHELLE, ASHISH JAIN, RICK HAN, AND DIRK GRUN­
WALD. Privacy-Aware Location Sensor Networks. In HotOS IX, 2003.

[39] L. Gu AND J. STANKOVIC. t-kernel: Providing Reliable OS Support to Wireless Sensor
Networks. In ACM SenSys, Boulder, CO, Nov. 2006.

[40] V. GUPTA, MILLARD M, S. FUNG, Y. ZHU, N. GURA, H. EBERLE, AND S.C. SHANTZ.
Sizzle: A Standards-based end-to-end Security Architecture for the Embedded Internet. In
PERCOM, Kauai, Hawaii, Mar 2005.

[41] NILS GURA, ARUN PATEL, ARVINDERPAL WANDER, HANS EBERLE, AND SHEUEL­
ING CHANG SHANTZ. Comparing elliptic curve cryptography and rsa on 8-bit cpus. In
CHES, Boston, Aug 2004.

[42] ALLAN R. HAMBLEY. Electrical Engineering: Principles & Applications. Prentice Hall,
2004. 3rd Edition.

(43] D. HANKERSON, A. MENEZENS, AND S. VANSTONE. Guide to Elliptic Curve Cryptog­
raphy. Springer, 2004.

207

[44] QUN LI HAODONG WANG, CHIU C. TAN. Snoogle: A Search Engine for the Physical
World. In IEEE International Conference on Computer Communications (INFOCOM),
Phoenix, AZ, April 2008.

(45] W.R. HEINZELMAN, A. CHANDRAKASAN, AND H. BALADRISHNAN. An application­
specific protocol architecture for wireless microsensor networks. IEEE Transaction on
Wireless Communication, 1(4):660-670, October 2002.

[46] HOPPYTRON.COM. Doppler Direction Finder Kit.

(47] BRET HULL, VLADIMIR BYCHKOVSKY, KEVIN CHEN, MICHEL GORACZKO, ALLEN
MIU, EUGENE SHIH, YANG ZHANG, HARI BALAKRISHNAN, AND SAMUEL MADDEN.

Cartel: A distributed mobile sensor computing system. In SenSys, 2006.

(48] CROSSBOW TECHNOLOGY INC. Wireless Sensor Networks. http
/ jwww.xbow.com/ Products/Wireless_Sensor .Networks.htm.

(49] C. INTANAGONWIWAT, R. GOVINDAN, AND D. ESTRIN. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. In MOBICOM, Boston, MA,
August 2000.

[50] M. JACOBS SON. Flash Mixing. In Proceedings of Symposium on Principles of Distributed
Computing, May 1999.

(51] BERNARD J. JANSEN, AMANDA SPINK, JUDY BATEMAN, AND TEFKO SARACEVIC.
Real life information retrieval: a study of user queries on the web. SIGIR Forum, 1998.

[52] SHU JIANG, NITIN H. VAIDYA, AND WEI ZHAO. Routing In Packet Radio Networks to
Prevent Traffic Analysis. In Proceedings of the IEEE Information Assurance and Security
Workshop, West Point, NY, July 2000.

[53] P. KAMAT, Y. ZHANG, W. TRAPPE, AND C. 0ZTURK. Enhencing Source-Location Pri­
vacy in Sensor Network Routing. In ICDCS, Columbus, Ohio, June 2005.

[54] C. KARLOF, N. SASTRY, AND D. WAGNER. TinySec: A Link Layer Security Architecture
for Wireless Sensor Networks. In SENSYS, Baltimore, MD, Nov 2004.

[55] B. KARP AND H. KUNG. Greedy Perimeter Stateless Routing. In MOBICOM, 2000.

[56] C. K. Koc. High-Speed RSA Implementation. In RSA Laboratories TR201, Nov 1994.

[57] EDWARD LEE. Cyber Physical Systems: Design Challenges. In University ofCalifornia,
Berkeley Technical Report No. UCB/EECS-2008-8, January 2008:

(58] JINYANG LI, BOON THAU LOO, JOSEPH M. HELLERSTEIN, M. FRANS KAASHOEK,
DAVID KARGER, AND ROBERT MORRIS. On the feasibility of peer-to-peer web indexing
and search. In IPTPS, 2003.

[59] AN LIU AND PENG NING. Tinyecc: Elliptic curve cryptography for sensor networks. Sept

15 2005.

http://HOPPYTRON.COM
http://www.xbow.com

208

[60] D. LIU AND P. NING. Establishing Pairwise Keys in Distributed Sensor Networks. InACM
CCS, Washington, DC, October 2003.

[61] D. LIU AND P. NING. Improving Key Pre-Distribution with Deployment Knowledge in
Static Sensor Networks. ACM Transaction on Sensor Networks, 1(2):204-239, November
2005.

[62] D.J. MALAN, M. WELSH, AND M.D. SMITH. A Public-key Infrastructure for Key Distri­
bution in TinyOS Based on Elliptic Curve Cryptography. In The First IEEE International
Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara, CA, Octo­
ber 2004.

[63] GAURAV MATHUR, PETER DESNOYERS, DEEPAK GANESAN, AND PRASHANT
SHENOY. Ultra-low Power Data Storage for Sensor Networks. In IPSN '06: Proceed­
ings of the fifth international coriference on Iriformation processing in sensor networks,
pages 374-381, New York, NY, USA, 2006. ACM Press.

[64] KIRAN METHA, DONGGANG LIU, AND MATTHEW WRIGHT. Location Privacy in Sensor
Networks Against a Global Eavesdropper. In ICNP, Beijing, China, Oct 2007.

[65] M. MITZENMACHER. Compressed bloom filters. In Proc. of the 20th Annual ACM Sym­
posium on Principles of Distributed Computing, 2001.

[66] P. MONTGOMERY. Modular Multiplication Without Trial Division. Mathematics a/Com­
munication, 44(170):519-521, April1985.

[67] D. MOORE, J. LEONARD, D. RUS, AND S. TELLER. Robust distributed network localiza­
tion with noisy range measurements, 2004.

[68] F. MORAIN AND J. OLIVOS. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theoretical Informatics and Applications, 24:531-543, 1990.

[69] MYSAIFU. www2s.biglobe.ne.jpj dat /java/ project/ jvmj.

[70] LAMA NACHMAN, RALPH KLING, ROBERT ADLER, JONATHAN HUANG, AND VIN­
CENT HUMMEL. The Intel@mote platform: a bluetooth-based sensor network for industrial
monitoring. In IPSN '05: Proceedings of the 4th international symposium on Iriformation
processing in sensor networks, 2005.

[71] B. CLIFFORD NEUMAN AND THEODORE TS'O. Kerberos: An Authentication Service for
Computer Networks. IEEE Communications, 32(9):33-38, September 1994.

[72] J. NEWSOME, E. SHI, D. SONG, AND A. PERRIG. The Sybil Attack in Sensor Networks:
Analysis and Defenses. In IPSN, 2004.

[73] NIST. Key Management Guideline. In Workshop Document (DRAFT), October 2001.

[74] CELAL 0ZTURK, YANYONG ZHANG, AND WADE TRAPPE. Source-Location Privacy for
Networks of Energy-Constrained Sensors. In WSTFEUS, 2004.

http://www2s.biglobe.ne.jp/

209

[75] A. PERRIG, R. SZEWCZYK, V. WEN, D. CULLER, AND D. TYGAR. SPINS: Security Pro­
tocols for Sensor Networks. ACM/Kluwer Wireless Networks Journal (WINET), September
2002.

[76] N. B. PRIYANTHA, A. CHAKRABORTY, AND H. BALAKRISHNAN. The cricket location­
support system. In the 6th annual international conference on Mobile computing and net­
working, 2000.

[77] M. REED, P. SYVERSON, AND D. GOLDSCHLAG. Anonymous Connections and Onion
Routing. In IEEE JSAC Copyright and Privacy Protection, 1998.

[78] MICHAEL REITER AND AVIEL RUBIN. Crowds: Anonymity for Web Transaction. InACM
Transaction on Iriformation and System Security 1 (1), June 1998.

[79] Kui REN AND WENJING Lou. Privacy enhanced access control in pervasive computing
environments. In Proceedings ofBroadNet05, October 2005.

[80] A. SAVVIDES, C. HAN, AND M. STRIVASTAVA. Dynamic fine-grained localization in ad­
hoc networks of sensors. In the 7th annual international coriference on Mobile computing
and networking, 2001.

[81] CHIRAG SHAH AND W. BRUCE CROFT. Evaluating high accuracy retrieval techniques. In
SIGIR, 2004.

[82] A. SHAMIR. How to Share a Secret. Communications of the ACM, 22(11):612-613, 1979.

[83] S. CHANG SHANTZ. From Euclid's GCD to Montgomery Multiplication to the Great
Divide. In Technical report, Sun Microsystems Laboratories TR-2001-95, June 2001.

[84] M. SHAO, Y. YANG, S. ZHU, AND G. CAO. Towards Statistically Strong Source
Anonymity for Sensor Networks. In IEEE INFOCOM, Phoenix, AZ, Apr 2008.

[85] ANAND SRINIVAS AND EYTAN MODIANO. Finding Minimum Energy Disjoint Paths in
Wireless Ad-Hoc Networks. Wireless Network, 11(4):401--417, 2005.

[86] J. W. SUURBALLE. Disjoint Paths in a Network. Network, 4(2):125-145, 1974.

[87] J. W. SUURBALLE AND R.E. TARJAN. A Quick Method for Finding Shortest Pairs of
Disjoint Paths. Network, 14(2):325-336, 1984.

[88] TINYOS. TinyOS 1.1.15. http://www.tinyos.net, 2006.

[89] P. TRAYNOR, H. CHOI, G. CAO, S. ZHU, AND T.L. PORTA. Establishing Pair-wise Keys
in Heterogeneous Sensor Networks. In INFOCOM, Barcelona, Spain, April 2006.

[90] P. TRAYNOR, R. KUMAR, H. B. SAAD, G. CAO, AND T. L. PORTA. LIGER: Imple­
menting Efficient Hybrid Security Mechanisms for Heterogeneous Sensor Networks. In
MOBISYS, Uppsala, Sweden, June 2006.

[91] HAODONG WANG AND QUN Lr. Distributed User Access Control in Sensor Networks. In
the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS),
San Francisco, CA, June 2006.

http://www.tinyos.net

210

[92] HAODONG WANG AND QUN LI. Efficient Implementation of Public Key Cryptosystems
on MICAz Motes. In the 8th International Conference on Information and Communications
Security (ICICS, short paper), Raleigh, NC, Nov 2006.

[93] HAODONG WANG AND QUN LI. Efficient Implementation of Public Key Cryptosystems
on Mote Sensors (Short Paper). In International Conference on Information and Commu­
nication Security (ICICS), LNCS 4307, pages 519-528, Raleigh, NC, Dec. 2006.

[94] HAODONG WANG AND QUN LI. Achieving robust message authentication in sensor net­
works: A public-key based approach. ACM Journal of Wireless Networks, 2009.

[95] HAODONG WANG, Bo SHENG, AND QUN LI. Efficient Implementation of Public Key
Cryptosystems on MICAz and TelosB motes. In Technical Report WMCS-2006-7, College
of William and Mary, 2006.

(96] HAODONG WANG, BO SHENG, AND QUN LI. Elliptic curve cryptography based access
control in sensor networks. International Journal on Security and Networks, 1(2), 2006.

[97] HAODONG WANG, Bo SHENG, AND QUN LI. Privacy-aware routing in sensor networks.
Computer Networks, 53(9):1512-1529, 2009.

[98] HAODONG WANG, BO SHENG, CHIU C. TAN, AND QUN LI. WM-ECC: an Elliptic
Curve Cryptography Suite on Sensor Motes. In Technical Report WMCS-2007-11, College
of William and Mary, 2007.

(99] HAODONG WANG, BO SHENG, CHIU C. TAN, AND QUN LI. Comparing Symmetric-key
and Public-key based Schemes in Sensor Networks: A Case Study for User Access Control.
In the 28th International Conference on Distributed Computing Systems (ICDCS), Beijing,
June 2008.

(100] M. WRIGHT, M. ADLER, B. LEVINE, AND C. SHIELDS. An Analysis of the Degrada­
tion of Anonymous Protocols. In Proc. !SOC Symposium Network and Distributed System
Security (NDSS), pages 38-50, February 2002. Outstanding Paper Award.

[101] H. YANG, F. YE, Y. YUAN, S. Lu, AND W. ARBAUGH. Toward Resilient Security in
Wireless Sensor Networks. In MOB/HOC, Urbana-Champaign, IL, May 2005.

[102] F. YE, A. CHEN, S. Lu, AND L. ZHANG. A scalable solution to minimum cost forwarding
in large sensor networks. In Tenth International Conference on Computer Communications
and Networks, pages 304-309, 2001.

[103] F. YE, S. Lu, AND L. ZHANG. Gradient broadcast: a robust, long-live large sensor net­
work. In Tech. Report, Computer Science Department, UCLA, 2001.

[104] F. YE, H. Luo, S. Lu, AND L. ZHANG. Statistical En-Route Filtering of Injected False
Data in Sensor Networks. In INFOCOM, 2004.

[105] 0. YOUNIS AND S. FAHMY. Distributed Clustering in Ad-hoc Sensor Networks. In !N­
FOCOM, 2004.

211

[106] ZHEN Yu AND YONG GUAN. A Dynamic En-route Scheme for Filtering False Data in
Wireless Sensor Networks. In INFOCOM, Spain, April 2006.

[107] DEMETRIOS ZEINALIPOUR-YAZTI, SONG LIN, VANA KALOGERAKI, DIMITRIOS
GUNOPULOS, AND WALID A. NAJJAR. MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices. In FAST, 2005.

[108] Q. ZHANG, T. Yu, AND P. NING. A framework for identifying compromised nodes in
wireless sensor networks. ACMTrans. Inf Syst. Secur., 11(3):1-37, 2008.

[109] W. ZHANG, H. SONG, S. ZHU, AND G. CAO. Least Privilege and Privilege Deprivation:
Towards Tolerating Mobile Sink Compromises in Wireless Sensor Networks. In MOBI­
HOC, Chicago, IL, May 2005.

[110] Y. ZHANG, W. Lru, W. Lou, ANDY. FANG. Location-based Compromise-tolerant Se­
curity Mechanisms for Wireless Sensor Networks. IEEE Journal on Selected Areas in
Communications (Special Issue on Security in Wireless Ad Hoc Networks), 24(2):247-260,
Feb 2006.

[111] Y. ZHANG, Y. YANG, L. JIN, AND W. Lr. Locating Compromised Sensor Nodes through
Incremental Hashing Authentication. In DCOSS, San Francisco, CA, 2006.

[112] YANCHAO ZHANG, WEI LIU, WENJING LOU, AND YUGUANG FANG. Securing Sensor
Networks with Location-based Keys. In WCNC, New Orleans, Louisiana, March 2005.

[113] YANCHAO ZHANG, WEI LIU, WENJING LOU, AND YUGUANG FANG. MASK: Anony­
mous on-demand Routing in Mobile ad hoc Networks. IEEE Transactions on Wireless
Communications, 5(9), 2006.

[114] S. ZHU, S. SETIA, AND S. JAJODIA. LEAP: Efficient Security Mechanisms for Large­
Scale Distributed Sensor Networks. In ACM CCS, Washington D.C., October 2003.

[115] S. ZHU, S. SETIA, S. JAJODIA, AND P. NING. An Interleaved Hop-by-Hop Authentication
Scheme for Filtering of Injected False Data in Sensor Networks. In IEEE Symposium on
Security and Privacy, Oakland, CA, May 2004.

212

VITA

Haodong Wang

Haodong Wang received his Bachelor of Engineering degree in Electronic Engineering from Ts­

inghua University, China, and his Master of Science degree in Electric Engineering from Penn

State University, University Park, PA. He started his PhD study in Computer Science Department

at the College of William and Mary in 2003. He has become a PhD candidate since 2004. His re­

search interests include security and privacy support for wireless embedded devices and systems,

efficient data management, storage, search and retrieval in networked embedded systems, efficient

802.11 data communication in vehicular environments.

	A privacy preserving framework for cyber-physical systems and its integration in real world applications
	Recommended Citation

	ProQuest Dissertations

