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ABSTRACT PAGE 

Interpersonal network communications, including Voice over IP (VoiP) and Instant 
Messaging (1M), are increasingly popular communications tools. However, systems to date 
have generally adopted a client-server model, requiring complex centralized infrastructure, 
or have not adhered to any VoiP or IM standard. Many deployment scenarios either require 
no central equipment, or due to unique properties of the deployment, are limited or 
rendered unattractive by central servers. To address these scenarios, we present a 
solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized 
Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables 
users to communicate with minimal or no centralized servers, while providing secure, real­
time, authenticated communications comparable in security and performance to centralized 
solutions. 

We present two complete protocol descriptions and system designs. The first, the 
SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of 
P2P messages and personal communications, yielding an interoperable, single-stack 
solution for P2P communications. The RELOAD protocol is a binary P2P protocol, 
designed for use in a SIP-using-P2P architecture where an existing SIP application is 
modified to use an additional, binary RELOAD stack to distribute user information without 
need for a central server. 

To meet the unique security needs of a fully decentralized communications system, we 
propose an enrollment-time certificate authority model that provides asserted identity and 
strong P2P and user-level security. In this model, a centralized server is contacted only at 
enrollment time. No run-time connections to the servers are required. 

Additionally, we show that traditional P2P message routing mechanisms are inappropriate 
for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect 
critical practical elements of the open Internet- namely link-level security and asymmetric 
connectivity caused by Network Address Translators (NATs). In response to these 
shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR}, and 
using both analytical models and simulation show that AR significantly improves message 
routing performance for P2PSIP systems. 

Our work has led to the creation of a new research topic within the P2P and interpersonal 
communications communities, P2PSIP. Our seminal publications have provided the 
impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in 
conference calls for papers, and for the formation of a new working group in the Internet 
Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP. 



To my wonderful wife Marcia and my son Alexander 
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Chapter 1 

Introduction 

Voice over IP (VoiP) and Instant Messaging (IM) systems are increasingly popular com­

munications systems for private, corporate, and academic purposes. Examples of these 

kind of systems include AOL..:s AIM, Microsoft's MSN Messenger, Yahoo's Y! Messenger, 

and Google's GTalk [4, 42, 64, 1 03]. Many centralized VoiP and IM systems are based on 

protocols specified as standards by the Internet Engineering Task Force (IETF) [49], such 

as the Session Initiation Protocol (SIP, for VoiP), SIP for IM and Presence (SIMPLE) and 

the Extensible Messaging and Presence Protocol (XMPP, for IM) [24, 79, 84, 87, 88]. The 

adoption of common standards has led to extensive development effort of, broad adop­

tion of, and a focus on interoperability between applications using these protocols. These 

technologies can be extended to handle video/vision, resource sharing, and even remote 

control of physical hardware devices. Applications based on these protocols are now 

being used for more esoteric purposes, such as remote rehabilitation of injured persons 

out of reach of medical care, distributing information and communication for air traffic 

control, for wearable/on person computing environments, document sharing, communi­

cations within aircraft simulators, and many other purposes [2, 32, 1 02]. We discuss the 

Session Initiation Protocol (SIP), and communications systems in general, in more detail 

in section 2.4. 

2 
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While these centralized systems are increasingly popular, the choice of a client-server 

architecture with a central server introduces a number of limitations. Despite their pop­

ularity, the need for central servers, whether maintained locally or by third parties, limits 

growth and places a burden on users. Many large companies concerned about intellec­

tual property ban the use of centralized commercial IM systems. These systems consist 

of one or more client programs, run by end users, connected to one or a few centralized 

servers. There are a number of places where this approach is impractical. For small 

organizations, the costs, configuration and maintenance of these systems for communi­

cations can pose an insurmountable obstacle. For ad-hoc systems, small networks of 

nodes (such as sensor networks), or networks in locations with limited connectivity the 

need for a central server also poses a number of challenges. 

To address these problems, we combine standards-based communications systems 

with Peer-to-Peer (P2P) mechanisms for locating resources, resulting in a fully distributed, 

and widely interoperable communications system we call P2PSIP. P2P computing has 

emerged as a mechanism for decentralized, server-free implementations of various ap­

plications. In a P2P architecture, a number of individual nodes or peers work together 

in concert to provide a service or store resources that would otherwise be stored by the 

central server. In particular, one form of P2P, the Distributed Hash Table (DHT) allows 

for rapid, deterministic location of resources and routing of information between devices. 

We present additional background on P2P and DHTs in Section 2.3. By removing the 

centralized server, communications systems can be quickly set up and torn down, scale 

without need for server management, be deployed in environments without Internet con­

nectivity, and be inexpensively managed, even by very small organizations. In Section 

2.1 we present detailed use cases motivating our work. 
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1.1 Research Problem 

While a great deal of work has been done in both the areas of P2P and communications, 

very little work has addressed how to combine these technologies to enable interpersonal 

communications in new and novel ways. Our work focuses on solving the problems that 

arise when constructing a P2P personal communications system: 

• What changes are required to existing approaches and protocols for interpersonal 

communications when centralized servers are removed? 

• Existing P2P technology has often been motivated by file sharing or distributed file 

service considerations. In general, it is not optimized for the real-time constraints 

and traffic patterns required for locating and connecting users. Communications 

systems require guaranteed reachability and confirmation of remote identity, in con­

trast to the anonymity typically present in file sharing applications. In addition, real­

time constraints pose additional security challenges that differ from file sharing. 

What changes are needed to enable P2P to be used for interpersonal communica­

tions? 

• Because distributed communications systems must support users located in net­

works with non-optimal properties, particularly non-symmetric network connectivity 

caused by Network Address Translators (NATs), what modifications to existing P2P 

approaches are required to support these environments? 

• In the absence of a run-time central authority, how can we properly secure a com­

munications system and, using the primitives provided by a P2P solution, provide a 

reasonable level of asserted identity? 



CHAPTER 1. INTRODUCTION 5 

1.2 Requirements for a Solution 

The environments we address with our P2P solution impose the following set of require­

ments: 

• No (or limited) Central Server/Connectivity: In several scenarios, security con­

cerns or connectivity restrictions prohibit contacting an outside server, therefore we 

require none be present. A central server for certificate issuance may be required 

in the global communications scenario. In such a case, this central server must not 

be needed except to issue the certificate to a new user. 

• Compatibility and Reuse: The system must be compatible with as much exist­

ing infrastructure as possible, including VoiP and IM clients, and VoiP gateways. 

Code should be reused where possible. Users should be able to move from one 

client implementation to another and still participate in the same communications 

community. 

• Scalable Number of Users: Additional users must be able to join the system, and 

the system should grow in response. No new resources, other than those the new 

user brings, should be required. 

• Scalable Security: The system should allow for deployments with differing secu­

rity levels. Ad-hoc and ephemeral systems may have very limited security needs. 

Conventional personal communications systems, either for use within an office or at 

a global scale require stronger security to prevent disruption. Some deployments, 

such as systems designed for anonymous communication or to circumvent censor­

ship require strong but atypical security mechanisms. 
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• Limit Information to System Users: Users should be able to locate other users 

without having to go outside the system. Messages between users must not leave 

the system or be interceptable by other users within the system. 

• User Mobility Support: Users should be able to move from device from device 

(from a mobile device in the field to a device in an office, for example) and maintain 

access to configuration information, friend lists, etc. 

• Multiple, Interconnected Communications Communities: Users should be able 

to configure their own instance of a communication system and limit access. We 

refer to each such instance as a Communications Community. A security conscious 

group would typically utilize a private community for internal messages, and inter­

act with external communities for outside communications. While traffic within a 

community should be restricted to that community, we must support interconnect­

ing independent, separate communities, and allow some mechanism for users to 

communicate between these realms. In order to preserve privacy, this can not be 

done by implicit merging of the communities. 

1.3 Why P2PSIP? 

1.3.1 Why P2P and DHTs? 

Our requirements of No Central Server, No Central Naming Authority, Scalable Number of 

Users, and User Mobility Support led to our decision to use P2P. Dynamic versions of the 

Domain Name System (DNS) [97, 1 00] have been suggested as one approach to create 

a serverless communication system. While a dynamic DNS approach addresses some 

of the issues we raised, there are several scenarios in which such an approach is lacking. 

Dynamic DNS requires a central DNS server be available. In situations where there is no 
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external connectivity, such as ad-hoc deployments or deployments in remote locations 

or in the developing world, this is not possible. Additionally, unless users maintain their 

own DNS servers, this is not a service a typical end user has access to. Finally, if device 

mobility is important, the latency in making changes to DNS may be undesirable. 

Similarly, one possibility is to take a broadcast, replicate everything everywhere ap­

proach, in which all peers store all resources and broadcast updates to every peer. A 

very early commercial distributed telephone system, offered by NimCat Networks, took 

this very approach. This is very easy to implement, but unfortunately has numerous draw­

backs. Broadcasts are not supported in version 6 of the Internet Protocol (1Pv6) and have 

a very difficult time spanning networks boundaries, such as routers. While IP-multicast 

can address these limitations, a solution based on this approach still has obvious scal­

ability problems at the Internet level. While this approach may work for a few hundred 

users, storing location information for the millions of users required by a global Internet 

deployment on every peer is clearly not possible. 

Given the limitations of these approaches, the most obvious alternative, and the one 

we have chosen to pursue, is to take a P2P approach. 

1.3.2 Why SIP? 

SIP has emerged as the standard protocol for VoiP. Although some systems use older 

standards or proprietary mechanisms, the majority of new VoiP developments use SIP. 

The availability of the SIMPLE IM extensions means that a single design can be used for 

IM as well as voice and video. 

Using the open SIP/SIMPLE standard helps us meet our requirement for compatibility 

and reuse, and allows the system to leverage open source stacks and applications. Ad­

ditionally, the approach allows integration with existing SIP phones, SIMPLE IM clients, 
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and SIP gateways, used to enable SIP networks to connect to the PSTN (Public Switched 

Telephone Network- the current conventional phone network). 

We also feel that this protocol was the most extensible of the existing VoiP/IM pro­

tocols, and was the most P2P in nature already, due to the fact that SIP nodes can 

communicate directly with one another with no intervening servers, so long as they can 

locate each other. In SIP, this location service is provided by a centralized registration 

server. As a DHT is essentially a distributed location mechanism, SIP is well suited to 

being combined with a DHT, having already been designed with location services largely 

decoupled from call control mechanisms, and ripe for replacement with a DHT-based 

location service. 

1.4 Contributions 

We present our work in creating a fully functional, serverless P2PSIP communications 

system, including the earliest published work in the field. Our work includes the creation 

of two protocols for P2PSIP, research into increasing the integrity of P2P systems via 

secure assignment of Peer-IDs, development of an enrollment-time distributed identity 

mechanism, and analysis of existing P2P routing techniques, leading to the development 

of a new P2P response routing mechanism. As a result of our work, a working group 

has been formed at the IETF, and P2PSIP has become an active topic area in both 

the personal communications and P2P spaces, frequently mentioned as a topic in P2P 

conference calls for papers. Specifically, our contributions include: 

• Creating a fully-distributed, open P2P system for VoiP and IM by extending existing 

SIP standards. We have developed and present two complete protocols, one using 

SIP messages to convey P2P information (P2P-over-SIP) and one using a binary 
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encoding method (SIP-using-P2P). Both protocols are presented in Chapter 4 with 

additional details in Appendices A and 8 

• Creation of a new response routing protocol to address the inadequate NAT traver­

sal and security properties of existing techniques. In Chapter 5 we present an 

analytical framework to analyze existing P2P routing techniques, taking the costs of 

NAT traversal and security into account. We present a novel response routing tech­

nique for P2P systems, Adaptive Response, developed in response to deficiencies 

in existing response routing techniques revealed by our analysis. We show through 

both application of our analytical model and simulation that Adaptive Response of­

fers a better performance balance for both message count and response time than 

existing routing techniques in many common network environments. 

• While emerging standards for NAT traversal make systems with more fully partici­

pating peers possible, securing a system using NATed peers remains challenging. 

The mechanisms proposed by most DHTs for generating Peer-IDs are vulnerable to 

attack. We demonstrate that, although hashing can be made more secure, provid­

ing provable security in light of an attacker's capabilities is unlikely to be completely 

successful. In particular, NATs and the adoption of 1Pv6 impose constraints on 

Peer-ID generation for deployments on the open Internet. Further, assuring unique 

identity in a distributed system requires some central arbiter, but it is highly unde­

sirable to consult centralized servers at run-time. In Chapter 3 we presents a certi­

fication authority (CA) based solution to both these problems. We show that a P2P 

system using this solution can achieve security properties comparable with SIP's 

server-based security, using no centralized operations after a one-time enrollment. 

• In Chapter 3 we also present an improved resource replication scheme that can 

be used with certificate-based schemes, but can also be used in their absence to 

improve protection against a specific family of attacks against P2P systems, as well 
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as to provide limited shared-secret security for ad-hoc systems. 

1.5 Outline 

In Chapter 2, we provide background information, starting with a set of use cases mo­

tivating P2PSIP. We then present an introduction to the problems caused by NATs, to 

P2P systems, and to VoiP and IM systems. We close the chapter with a presentation of 

related work. 

In Chapter 3, we explain the special constraints in developing a P2P system for dis­

tributed communications, and present some of the more challenging problems in creating 

our solution, including secure Peer-ID assignment and distributed identity. We present a 

solution using an enrollment-time certificate server, and illustrate how this approach ad­

dresses these concerns. We then discuss how to provide secure redundancy and close 

by offering guidance on how to achieve the best levels of security when a certificate 

server is unavailable. Chapter 4 presents the design of two complete P2PSIP protocols 

we developed using these solutions: the P2P-over-SIP SOSIMPLE/dSIP solution and the 

SIP-using-P2P RELOAD solution. 

In Chapter 5 we discuss the selection of routing algorithms for P2PSIP, showing that 

some of the commonly proposed routing techniques in the DHT algorithm literature either 

do not function or are highly sub-optimal when security and NAT traversal are considered. 

We present an analytical model for comparing the costs of existing response routing 

in recursive routing systems in environments containing NATs and secured links, and 

show that each approach has drawbacks. Additionally, we present Adaptive Response, 

a novel technique for routing responses in P2P systems, and show that it provides a 

better balance of performance than existing techniques both in terms of simultaneously 
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optimizing message count and response time, as well as in terms of performing in diverse 

environments. 

We close with Chapter 6, where we summarize our work and discuss future directions 

for this research. Appendices A and B present additional details of the SOSIMPLE/dSIP 

and RELOAD protocols, including the syntactic productions, packet diagrams, and oper­

ational instructions for message processing. 



Chapter 2 

Background 

In this chapter, we provide the background information needed to understand P2PSIP 

properly. First, we provide a set of use cases, motivating the need for a distributed com­

munications solution. Network address translators, or NATs are discussed, followed by 

a description of various peer-to-peer algorithms, and in particular the Chord algorithm 

used in our solution. We present a basic primer on Voice over IP and the SIP protocol, 

and discuss other work related to our P2PSIP research. Finally, we provide a glossary of 

terms used throughout this document. 

2.1 Use cases 

To help understand why there is a need for a serverless, standards-based interpersonal 

communications system, we begin by describing some scenarios in which traditional, 

client-server based communications systems, or distributed but closed systems, have 

failed or proven less than optimal. These approaches may have failed for technical, fi­

nancial, security or social reasons. While we cannot present all such scenarios, the 

following provide a cross section of the problem. 

12 
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Use cases are grouped according to either the characteristics of the environment in 

which the end users or devices participating in the P2P overlay are communicating, or 

by some motivating characteristics. Note there is some overlap and duplication between 

scenarios. 

2.1.1 Groups of Users or Devices Best Served without Servers 

Groups of users or devices may need to communicate in some unusual way, or in some 

location where a traditional solution is poorly suited. Several of the scenarios proposed in 

this section are among the most compelling motivations for serverless communications 

systems. 

• Small or Resource Constrained Organizations: There are a number of reasons 

why small organizations may find existing solutions undesirable. These organiza­

tions may want private, internal communications, but may not be able to afford the 

equipment or expertise needed to install and maintain a centralized system. 

As a result, these organizations may use a service such as AOL.:s AIM, Microsoft's 

Messenger, or the Vonage VoiP service [98], which use servers located at the 

provider. Because all communication, even transactions between two internal users, 

will pass through this external party, many organizations have banned the use of 

these services. While large organizations can install their own internal systems, 

the personnel and equipment requirements are often too great for smaller organi­

zations. Small organizations which lack these resources may still have a need for 

internal communication. 

Other organizations may simply want to operate their own system. Many small en­

terprises have a need for integrated communications systems. Examples of such 
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systems are IP-PBX (Internet Protocol Private Branch Exchange) systems. IP­

PBXs support internal communications by handling phone calls, voicemail, and 

related functions. More elaborate systems are often referred to as "UC" or Uni­

fied Communications platforms, combining traditional telephone capabilities with 

advanced features such as instant messaging, integration with email, and pres­

ence . Presence is a mechanism that enables users to monitor properties of the 

system, for example another other user's connection status. This can be used to 

enable notifications whenever a someone on the user's friend or buddy list arrives 

or leaves. 

Certain extremely security conscious small organizations may go a step further and 

have more demanding needs. These users require communications systems that 

allow users to communicate directly with one another regardless of their location, 

with strong encryption, and without any connectivity to or use of central equipment. 

This differ slightly from the above scenario in that these users are not looking for 

general purpose communications, but special purpose, point-to-point secure com­

munications. Organizations with security needs in this category include military, 

national security, or intelligence organizations. These users may overlap with the 

anonymized communications case described later. 

• Ad-hoc and Ephemeral Groups: Groups that collaborate may be in ephemeral 

settings, such as in a meeting or classroom, or in a field research, battlefield, or 

conference setting. These users should be able to communicate and collaborate 

using IM, voice, video, and collaboration tools without having to configure a server. 

Such systems may be used in scenarios where connectivity to the Internet or cen­

tralized servers is difficult or impossible, but may also simply be among groups that 

don't share accounts on a centralized server. These systems should require min­

imal, ideally zero, configuration. Because users may join and leave such groups 

frequently, these systems must allow an arbitrary number of users to connect and 



CHAPTERZ BACKGROUND 15 

to come and go at their leisure. The underlying connectivity in this scenario may be 

an ad-hoc network, but such a network does not (by itself) provide a framework for 

locating and communicating with other users. 

• Multimedia Features for Consumer Electronics Devices: As more and more 

multimedia consumer electronics devices, including cameras, camcorders and tele­

visions, become network aware, sharing of multimedia content such as photos and 

video clips between family members and friends will be desirable. Presence is a 

useful and important feature for instant messaging and VoiP applications today, 

but in the future will be incorporated directly into these consumer devices, allowing 

users to comment on content and interact with one another. As an example, a digi­

tal camera may share photos on a digital picture frame with relatives thousands of 

kilometers away, who will be able to comment on and discuss the photos. 

While our work primarily focuses on the use of SIP as a VoiP and IM protocol, SIP 

is a generic protocol for establishing multimedia sessions between devices. As a 

result, in addition to enabling users to communicate, it is well suited for connecting 

and enabling sharing of media between consumer devices. A P2P approach allows 

instant sharing of multimedia content while reducing or eliminating the need for the 

equipment vendor to provide infrastructure to support this capability. 

While some proprietary solutions for this have been explored, most notably the 

Bluetooth standard [14], these closed standards generally cannot be used in open 

source projects or in an academic setting. Additionally, these solutions generally 

specify transport as well as application level functionality. We feel solutions in this 

space should be truly open, allowing devices to connect and communicate regard­

less of the underlying connectivity model used. 

• Emergency First Responder Networks: Following a large-scale disaster such 

as a tsunami, earthquake, hurricane, or terrorist attack, access to traditional com-
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munications devices of any kind - Internet, cellular, or traditional PSTN - may 

be compromised. The events following hurricane Katrina have shown that current 

first responder radio systems cannot be relied upon to interoperate effectively. A 

network of devices that can grow organically as responders arrive, requiring only 

wireless access, is required. As more personnel arrive, they should be able to join 

the network, locate other personnel, and communicate without any configuration of 

centralized devices. 

Example: Following a disaster, the local fire department arrives. Each fire fighter 

has a wireless handset, and one or more trucks have wireless base stations. When 

a nearby locality sends additional rescuers, their wireless handsets should be able 

to instantly join the communications network and communicate. Note that this sce­

nario overlaps somewhat with the limited or no Internet connectivity cases that fol­

low. 

2.1.2 Network or Equipment Failure Driven Scenarios 

A number of scenarios revolve around failures, either of devices or the networks connect­

ing these devices. In these scenarios, central servers often prove highly problematic, and 

P2P solutions offer a number of significant advantages. 

• Limited or No Internet Connectivity: There are many reasons a user may not 

have external connectivity. If the user is located in a very remote location (Antarc­

tica, a remote developing country, or even outer space), Internet connectivity could 

be intermittent, delayed, or non-existent. Additionally, there are many reasons con­

nectivity may be interrupted, including service provider failure, infrastructure dam­

age from a civil emergency, battlefield conditions, or simply being out of communi­

cations range. Security constraints, such as being located in a classified environ-
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ment can also preclude outside connectivity, essentially creating a closed environ­

ment. 

In some cases, connectivity to the global Internet may be available, but be very 

expensive, of limited capacity, or unstable, for example when using satellite con­

nections. In such cases, it is preferable to localize communications as much as 

possible, reducing dependency on any infrastructure in the global Internet. In these 

scenarios devices should be able to communicate as long they can establish con­

nectivity between themselves. 

When there is no physical network available for stable deployment of a communi­

cations server or when an instant deployment of real-time communication systems 

is required, the P2P approach may be the only feasible solution. In such an envi­

ronment, any type of manual configuration may be difficult to achieve, as technical 

support may not be available. 

• Extending the Reach of Mobile Devices: A network of mobile devices can relay 

traffic between themselves to reach a base station, even if the base station is out 

of reach of that device. A P2PSIP approach would be particularly effective here, as 

many mobile telephone devices today already use the SIP protocol. 

Example: A user has a handset for communication that cannot reach a base sta­

tion. Some other user is within range of both that user and a base station. This 

intermediate user can serve as a relay for the caller who is out of range. A sys­

tem might make this feature optional for standard communication and mandatory 

for emergency calls. 

• P2P for Redundancy in Centralized Communications Servers: Service providers, 

large enterprises, or universities may wish to connect a farm of central communica­

tions servers together in a transparent way, passing resources (user registrations 

or other call information) between servers with as little configuration or traffic as 
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possible. Ideally, the redundancy and exchange of information should require a 

minimum of configuration between the devices. A P2P architecture between the 

servers allows server farms to be organized and operated in this way. With this 

approach, it is easy to add more servers with minimal service disruptions, and the 

overall robustness of the system is increased. 

• Fail-over for Centralized Systems A traditional centralized communications server 

presents a single point of failure. Devices which fall back on a P2P paradigm when 

the server fails enable the service to function normally (or minimally in a degraded, 

but useful state) in the event of a server failure. If device that participates as a peer 

provides alternative connectivity to the traditional telephone network (for example 

via a mobile provider), the system can provide emergency functionality in the event 

connectivity to the ISP is lost. 

Example: A small company has a central IP-PBX. When that device experiences 

a failure, the handsets transparently switch to P2P and continue operation until a 

replacement IP-PBX arrives. 

2.1.3 Social and Political Motivations 

Another set of motivating scenarios involve human factors, either social or political in 

nature. 

• Deployments in the Developing World: 

Certain locations in the developing world have limited, intermittent, or non-existent 

connectivity to the Internet. These locations typically also lack experienced people 

with the specialized skills needed to administer or maintain centralized communica­

tions servers. Even DNS servers may not exist or be reachable. A communications 
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system that is able to function reliably for internal communications, even in the pres­

ence of degraded or absent connectivity, is clearly needed. Such a system must 

also scale easily with little or no configuration and ideally should interface easily to 

existing communications systems when connectivity is available. 

Example: A village in the developing world has connectivity that is limited by weather 

(microwave connection) or is solar powered. It would be desirable for intra-village 

communication to continue to function in the absence of Internet connectivity. 

• Censorship or Impeded Access: Some users may not be allowed to access cen­

tralized, persistent servers because of government censorship or because a service 

provider prevents access to competing services. Such scenarios exist today. The 

current Iranian government severely restricts access to communications services, 

and similar (if less severe) restrictions have been imposed by the Chinese gov­

ernment in recent years. US ISPs and Universities have at times limited access to 

VoiP/IM services to ensure users are restricted to their service. Service providers of 

cellular devices providing data transmission may also block access to VoiP/IM sys­

tems to ensure more costly SMS (Short Message Service, used to send small text 

messages between mobile handsets) and per-minute services are used instead, a 

practice known as creating a "walled garden". 

As one mechanism to disable access is to block central servers, users should be 

able to communicate without the need to connect to any centralized servers. A fully 

decentralized system cannot be completely disconnected without removing con­

nectivity at the basic Internet level. If connectivity to certain addresses is blocked, 

users can connect with different peers. If ports are blocked, the system can be run 

on different ports or use multiple ports. Examples: 

- A user wishes to use an IP telephony service to communicate PC to PC with 

a friend, but the ports commonly used by these services, or the servers used 
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for authentication, are blocked by the ISP. 

- A user with an Internet-enabled PDA devices wishes to connect with col­

leagues, but traditional services are blocked to ensure that SMS or voice min­

utes are used (at additional cost) instead. 

- A user in a country with an oppressive government is unable to connect to well­

known hosts or ports to enable communications during a government crack­

down. 

• Anonymous Communications: Users occasionally have need to communicate 

in a completely anonymous fashion, whether due to political persecution, need for 

secrecy for commercial reasons, or threats of violence. In such a case, the need for 

a self-organizing, serverless system is imperative. Users of such a system could 

communicate with reduced risk of the system being monitored or their identities 

discovered. As with the impeded access scenario, the only way to disable such 

networks would be to completely disable Internet connectivity. If encryption and 

onion routing techniques [41] are combined with a decentralized system, intercept 

can be extremely difficult. Note that while enabling anonymous communications 

in "good" scenarios such as political persecution or risk of safety, lawful intercept 

for legitimate reasons such as preventing terror attacks is also very difficult in such 

architectures. 

2.1.4 Large-scale or Global Communications Systems 

A final motivating scenario is to create large-scale networks of devices, allowing commu­

nication between many disparate individuals from around the world without centralized 

servers. These cases assume many users across a very large domain, either without 

or with only a loosely coupled administrator. Communication paths between two devices 
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may span multiple administrative domains and should be assumed to be insecure. Most 

well-known P2P file sharing networks have operated in this type of environment. 

While many users enjoy the functionality offered by services such as the Skype VoiP 

service [92], the reliance on a central authority for availability and access is inherently 

unscalable and failure prone. Recent research [7] has shown that Skype uses a central 

login server, responsible for management of registered usernames and contacted when 

a user connects to the system. A truly decentralized system is more reliable, easier to 

join, and ultimately less expensive for the users. Many of these systems also lock users 

into using non-standard clients. A system that replicates this functionality using standard­

based clients while minimizing the dependence on a central authority is highly desirable. 

As a cost-saving measure, operators could also build and deploy solutions based on this 

technology, while retaining some level of centralized control. 

A fully P2P VoiP network constructed in this way resembles the global Internet itself 

in that it has distributed management and growth, enables anyone to reach anyone else 

in the network, and allows any device supporting the standard protocols to be used. 

Anyone can join and leave the network freely and anyone can implement the software to 

participate. In such a system, the protocols used must be based on open standards. This 

approach does not have the single point of failure or scaling problems that a centralized 

system (or even a hybrid system with some centralized components) presents. 

2.2 NATs and NAT Traversal 

In many situations, end users have an inadequate number of IP addresses. This can 

be due to cost concerns or simply due to the scarcity of 1Pv4 addresses. Home users 

often obtain one IP address from their ISP, but it is very common today to have multiple 

computers or other devices requiring an IP address in the home. Similarly, corporations 
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may have several addresses, but not enough for their users. In many nations, particularly 

those outside of the US, there are far fewer IP addresses than there are users wishing 

to have one. This problem is fundamentally related to the inherent scarcity of 1Pv4 ad­

dresses. While a move to 1Pv6, with vastly more addresses, is intended to address this 

problem, this process is very slow, and at present the majority of Internet users do not 

have access to 1Pv6 connections and many resources on the Internet are not available 

using 1Pv6. 

Network Address Translators, or NATs, are a widely deployed solution to this problem. 

While many types of NATs exist, with slightly different implications to protocol develop­

ment, they all work in essentially the same way. The majority of home router/firewalls in 

use today are implemented as port address translating NATs, and we will use this type of 

NAT as an example for our discussion. 

A NAT works by allowing a number of internal IP addresses to share a single external 

address. Devices on the inside are given private addresses out of a pool reserved for this 

use. Note that these private addresses are unique only behind a particular NAT-there 

are not enough reserved private addresses for them to be globally unique. As a result, 

while no two machines behind the same NAT will share an address, two users behind 

different NATs may be assigned the same private address. 
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Public Internet 

• 123.45.67.89:5000 
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Figure 2.1: An Example of a Network Deployment with a NAT 
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As messages are sent from hosts behind the NAT to a public host, a particular map­

ping for this host is maintained by the NAT. We show an example of this in Figure 2.1. In 

the case of a port address translating NAT, packets from an internal host with a particu­

lar assigned private address of 192.168.1.1 will show as being from the public address 

of the NAT (in this case 123.45.67.89) and a particular port, here 5000. Later, another 

internal host with private address 192.168.1.2 sends packets, which may appear to be 

from 123.45.67.89:5001. The exact mechanism of how the port numbers are allocated is 

dependent on the type of NAT. When responses arrive for internal hosts, the NAT uses 

the internal mapping to determine which internal host the packets are directed to. 

This presents a number of problems in protocol design. If a protocol includes embed­

ded IP addresses in messages and these messages are intended for consumption by 

entities outside of the NAT, the host cannot place the actual assigned, private addresses 

into the messages, as these would be unreachable by external hosts and not globally 

unique. Instead, since there is no universally deployed mechanism to query the mapping 

from the NAT, a host must obtain the address by asking an external entity what the ap­

parent address is. The SIP protocol is one such protocol that uses internaiiP addresses 
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in messages. 

Incoming packets are even more problematic. While Internet applications commonly 

used an assigned, well-known port to reach a particular application with incoming re­

quests, if there are multiple hosts behind a NAT determining which host to send the 

message to is impossible absent explicit configuration. Without explicit configuration, this 

means that new incoming connections to a NAT are generally rejected. An internal host 

may need to send a message out to create and identify its mapping before a message 

can be received. In addition, for certain types of NATs, messages arriving on a partic­

ular port may even be directed to different internal hosts, depending on the source of 

the message. For these NATs, not only does a message have to be sent out before a 

connection can be established, but the reply must come from the same external host the 

request was sent to. For two devices each behind different NATs, this creates a sort of 

chicken and egg problem. In some cases. connections can only be established using a 

public relay intermediary. Both NATed devices open an outbound connection to the relay, 

which forwards packets between the devices on their behalf. Two SIP phones behind 

NATs often exhibit this problem. 

The IETF has created a suite of protocols to deal with these problems: STUN, TURN 

and ICE. [60, 80-82] These tools provide mechanisms for NAT traversal, including defin­

ing how public servers can return the apparent public address of a query to a device 

behind a NAT, and specifying protocols for message relay. Additionally, they provide ad­

vice on determining which of these tools need to be used and under what circumstances 

to establish a connection through the NAT. 
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2.3 Peer-to-Peer Systems 

2.3.1 Defining P2P and Comparing with Client-Server 

There are a wide variety of definitions for Peer-to-Peer (P2P) systems, and systems can 

also be "P2P" to a greater or lesser degree. At the most basic level, a P2P system is one 

where multiple software applications interact directly with one another as peers or nodes 

to accomplish some task. The group of peers as a whole forming the logical cluster is 

often referred to as an overlay or overlay network. The overlay is so named because 

the peers form a sub-network at a higher logical level than the lower level physical/data 

link/network layer connections. From an architectural standpoint, a P2P architecture is 

nearly the opposite of a client/server architecture, in that resources are being moved 

from a central device to the edge. With that said, P2P application behavior can be indis­

tinguishable from more traditional applications from the perspective of the end user. It is 

probably most accurate to view P2P as a philosophy of reducing or eliminating the need 

for central servers, rather than as a particular clearly defined architectural approach [37]. 

In a P2P network, every peer has equal importance in the network. Rather than a 

large number of clients contacting a few servers, peers interact directly with each other. 

In this way, the services or resources that would be provided by a centralized entity are 

instead available in a distributed fashion from the peers composing the system. While in 

some cases complete replication of all data may be used, in the vast majority of cases 

a P2P architecture doesn't imply that every peer must provide every service or maintain 

all the available data. Collectively, all the peers in the overlay must be able to provide all 

services or provide a particular resource, but any one particular peer may only provide 

or store some small subset. For example, a collection of peers replicating a database 

might each store a small number of entries from the database. If a very large group of 

peers splits up the task, the odds of one particular entry being on a given peer are quite 
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low, but at least one peer in the overlay will store a given entry, guaranteeing that as a 

group the peers provide the full database service. The services or resources provided are 

often said to be provided by the overlay, because collectively the members of the overlay 

provide them. One can envision such a structure as one where a "pie" of services is 

distributed, slice by slice, among the peers, whereas in a client-server model, the entire 

pie is stored by the server. (Figure 2.2). 

The P2P model can be contrasted with the more traditional client-server model, where 

one centralized piece of software (the server) processes requests from numerous clients. 

Choosing P2P or client-server is an architectural decision about where the processing 

of information takes place. For deployment scenarios such as disconnected networks of 

devices, a P2P solution may be the only option available. In other cases, the end user 

may be unaware of, and perhaps not care, where processing takes place. The choice 

may then be dictated by economic or configuration considerations. 

Client Server Architecture Peer-to-Peer Architecture 

Figure 2.2: A Simplistic Conceptual Comparison of P2P and Client-Server Architectures 

In contrast to centrally managed servers, in many P2P systems peers are assumed 

to be ephemeral in nature. Because the peer software may be running on unmanaged 
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end-user machines, they may only be available while the software is running and may 

disconnect at any time for a variety of reasons. The constant change in the makeup 

of the peers in the overlay is referred to as churn, and is an important consideration in 

developing P2P applications, particularly from the standpoint of replication of resources 

and for ensuring information can be properly routed by the overlay. 

As P2P technology has evolved, the mechanisms to distribute and locate data have 

fallen into two broad categories, Unstructured P2P and Structured P2P. These two ap­

proaches will be discussed in detail later in this section. 

In some P2P architectures, a subset of the peers provide more services than the 

others. These peers, often called "super-peers" or "super nodes", may even be the only 

peers providing services. In such architectures, the super-peers collectively replace the 

servers, with the remaining "peers" behaving essentially as clients, communicating with 

super-peers for their services. This approach is often used in the presence of NATs, 

where peers behind NATs may be unable to receive requests and therefore can't fully 

participate as peers. 

Yet another common variation of P2P is the hybrid architecture. Hybrid P2P systems 

use a centralized server to locate a particular peer offering a service, but the service takes 

place directly between the peers. The best known use of P2P, online file sharing, often 

worked this way. In the original Napster file sharing system, for example, users connected 

to a centralized server to enumerate the files they stored and locate files others stored. 

Once a peer that stored a requested file was located, the transfer of the files took place 

directly between the participating peers. The central server in such a deployment is 

often called a tracker. An example of such a system is the popular BitTorrent file sharing 

system [13]. 

As we'll point out later, VoiP and Instant-message systems based on SIP can be 

thought of as hybrid P2P systems, in that the user agents (UAs) or phones stream media 
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and commands directly between themselves and use a central server primarily to register 

and locate resources, in this case, other users to communicate with. This is in contrast to 

older VoiP systems, where all control and even relaying of media was centralized in the 

server. 

All P2P systems must address bootstrapping, or locating an initial peer in the overlay. 

This problem can be solved by using some set of fixed peers, requiring that an initial peer 

be located using an offline mechanism, or using a broadcast/multicast mechanism. 

P2P systems have several advantages over centralized architectures. P2P systems 

distribute resources, greatly reducing the potential for failure due to a single peer and 

providing a measure of protection against Denial-of-Service (DOS) attacks. P2P systems 

scale more easily as the number of peers increases, because each new peer brings with 

it some server-like functionality. 

P2P systems have some drawbacks. While resource location can be made relatively 

efficient for a distributed system, typically it requires more than the single hop required 

to connect to a centralized server. Malicious peers can provide incorrect information or 

deny access to resource in the system by refusing to properly route messages or by 

falsely claiming resources do not exist. Additionally, users can sometimes create many 

peers in the system, possibly using this as a mechanism for hijacking the system. This 

family of attacks is referred to as Sybil attacks [34]. 

2.3.2 Applications of P2P Architectures 

P2P systems can be used for many purposes, the most famous (or infamous) being file 

sharing. In file sharing, users share copies of media files such as movies or music. The 

distributed nature of P2P is used in these systems to help avoid detection. P2P has 
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also been used for gaming, distributed file storage, and as this paper describes, P2P 

communications. 

The belief that P2P is a fundamentally new concept is a misconception. Many com­

mon network protocols, including Border Gateway Protocol (BGP) and even the Sim­

ple Mail Transfer Protocol (SMTP) [55, 72] are arguably P2P, but between instances of 

servers or routers, rather than end hosts. Increasingly we are seeing peer groups made 

up of end-user applications, in contrast to groups of managed servers. When someone 

refers to something as "P2P" today, they generally mean "P2P between end-user appli­

cations". 

Other P2P examples include Apple's open-source enhanced version of TCP/IP, the 

Bonjour (formerly Rendezvous) protocol, which requires no Dynamic Host Configuration 

Protocol, or DHCP, server, and the IETF's service location (SRVLoc) protocol for an­

nouncing and discovering network services [5, 35, 44]. Both eliminate the need for central 

servers and have been used constructively for years. 

There have been many proposals to use P2P as an underlying protocol to store the 

information needed for a DNS system, the most popular being [29]. 

Like most technologies, P2P can be used for positive and negative applications, and 

the technology should not be ignored because of a few inappropriate uses. That said, 

negative connotations have a tendency to stick, and the term "P2P" is already at risk of 

joining disparaged terms like "hacker", which used to mean a skilled software engineer 

adept at quickly adapting code. It will be interesting to see if P2P becomes a tainted term 

as well. 
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2.3.3 Unstructured P2P 

The earliest P2P systems were unstructured (Left-hand side of Figure 2.3). In unstruc­

tured P2P, the peers organize in a haphazard way. Each new peer locates and connects 

to one or a few other peers in the overlay. There is no mechanism for selecting which 

peers a new peer connects to; any available peer will do. As a result, some peers may be 

connected to only a few other peers, while others are connected to many. The data stored 

or services provided by each peer are similarly randomly distributed. For data storage, 

this means any peer in the overlay could store a given piece of information, and that the 

information may not be well distributed among the peers. The connection between the 

peers is generally not related to the underlying physical network in any way. 

Unstructured Overlay Structured Overlay 

Figure 2.3: A Simplistic Conceptual Comparison of Structured and Unstructured P2P Overlays 

Such an arrangement is very easy to form and requires little overhead to maintain, 

but searching can be very difficult as overlays grow larger. Because any peer could store 

the information, every peer must be queried to be certain the data isn't present in the 

overlay. As the structure is random, it is impossible to know how many other peers a peer 
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will be connected to, or how many "hops" away the furthest peer will be. Peers can be 

easily split from the overlay, since there is no structure ensuring redundant links between 

portions of the overlay. 

In unstructured P2P, a peer searching for a resource asks their neighbors if they have 

a particular resource. If one of these peers has the resource, it will respond telling the 

requester they have the resource. If not, they pass the request on to their neighbors. 

The search can be limited to a particular depth using a Time to Live (TTL) mechanism, 

but since peers have no way of knowing if a response has already been transmitted 

by another peer, queries continue until the TTL is reached, even if some peers have 

already replied. Exhaustive searches can be very time consuming in large networks, 

and limiting the search by capping the depth of the searches using a TTL results in non­

deterministic searches, since every peer is not consulted and a resource can be stored 

anywhere in an unstructured network. This approach, used by very early P2P systems 

such as Gnutella [40, 77] is often called the flood search approach, and proved inefficient, 

particularly in large networks. 

For these reasons, unstructured P2P has fallen out of favor for use in large or Inter­

net scale deployments. For smaller deployments, or deployments where the underlying 

network itself may have an unstructured arrangement (particularly sensor networks and 

other ad-hoc or wireless network arrangements) this approach has proven well suited 

and is still sometimes used. 

2.3.4 Structured P2P 

In contrast, in a structured P2P architecture (right-hand side of Figure 2.3) the peers 

are connected to one another in a defined, logical structure, for example a ring, tree, 

or grid. Peers are assigned a (hopefully) unique identifier when they join the overlay. 
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This peer identifier, or Peer-10, could be assigned by some out of band mechanism, se­

lected randomly, or determined by hashing a property of the peer such as the IP address. 

The Peer-10 determines which other peers the new peer makes connections with. For 

example, the new peer may connect to peers with identifiers that are "close" in some 

mathematical sense such as numerical value or number of matching binary digits, or are 

distributed among the peers in some pre-determined fashion. While such systems do 

exist, generally the location of peers within the structure is not tied to geographical or 

topological location. 

Since the connections between peers are carefully controlled, a well-designed struc­

tured P2P algorithm can ensure that each peer is connected to several others, preventing 

partitioning when a single peer fails. The total distance between any two peers may also 

be mathematically limited by the structure of the overlay. 

2.3.4.1 Distributed Hash Tables 

One widely deployed form of structured P2P is the DHT, or Distributed Hash Table. 

Among the earliest DHTs proposed were Chord and Pastry [86, 94]. We discuss Chord 

in more detail in Section 2.3.4.2. In a DHT, not only is the structure of connectivity be­

tween the peers controlled in a mathematical way, but the placement of resources onto 

the peers is as well. 

Each resource is assigned an identifier, or Resource-10, in the same identifier space 

as the Peer-10 (Figure 2.4). That is, the range of values a Peer-10 or Resource-10 can 

take on are the same. The Resource-10 is the hash of a property of the resource such 

as a filename or keyword. A resource's keyword is hashed to produce a Resource-10, 

and the peer with the "closest" Peer-10 stores the resource. The peer with this Peer-10 is 

called the responsible peer. The hash space is divided up so that all of the hash space is 
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always the responsibility of some particular peer, although as peers enter and leave the 

system a particular peer's area of responsibility may change. Both the definition of "close" 

and provisions for redundancy are dependent on the particular OHT algorithm used. 

Keyword for -1 
resource to store ._ _____ _. 

Unique property 
of the peer 

-or-

Assigned Peer-10 

Figure 2.4: An Example of Hashing Identifiers and Peer IDs into the Same Namespace 

Messages are exchanged between the peers in the OHT as the peers enter and leave 

to preserve the structure of the OHT and exchange stored entries. Peers keep information 

about the location of other peers in the hash space and typically know about many peers 

nearby in the hash space, and progressively fewer more distant peers. This table of 

other peers is referred to as a Routing Table or a Finger Table. When a peer wishes to 

search, it consults the list of peers it is aware of and contacts the peer with the Peer-10 

nearest the desired Resource-10. If that peer does not know how to find the resource, it 

either returns information about a closer peer it knows about, or forwards the request to 

a closer peer. In this fashion, the request eventually reaches the peer responsible for the 

resource, which then replies to the requester. 

Various OHT implementations may visualize the hash space as a grid, circle, or line. 

Chord and Pastry use a ring-like structure for connecting the peers. In such an approach, 
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a resource with a Resource-ID of n might be stored on the peer with the Peer-ID closest 

to, but larger than n (see figure 3). In this case, we show 5 peers (circles), with Peer-IDs 

of 100, 200, 300, 400 and 500. The system stores 2 resources, with Resource-IDs of 345 

and 444, shown by squares. The arrows indicate which peer is responsible for storing 

each resource in the system. 

Figure 2.5: Example Ring-like DHT 

When some other peer wants to locate a resource later, they hash the distinguished 

name of that resource, and use the overlay to contact the peer with the nearest Peer-ID, 

called the responsible peer. That peer provides the resource if present, or can report the 

resource doesn't exist if it is not stored by the overlay. This mechanism requires fewer 

messages to be sent to locate data, and provides deterministic search, ensuring that the 

unique responsible peer is queried for the resource. 

Since each peer only connects directly to some subset of the entire overlay, the search 

will likely take more than one hop. A peer may ask a neighbor that is closer to the desired 

Peer-ID, which then asks another still closer neighbor, etc. Most of the DHTs used today 

are structured in such a way that they can guarantee that at most log(n) peers must be 
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consulted to locate a particular peer, where n is the total number of peers in the overlay. 

While this is obviously a higher search cost than the direct query and response of a 

client-server network, it results in relatively low search times even for overlays with a 

large number of peers, while eliminating central servers. 

Some of the more popular DHTs include: 

• Pastry (Bamboo) [75]: uses a ring-like structure, very similar to chord. 128 bit IDs 

are used. Bamboo is a modification on Pastry, optimized to support instances with 

high levels of churn. 

• Tapestry [1 07]: features a mesh-like structure, and uses 160 bit IDs created by the 

SHA-1 hash algorithm. Tapestry attempts to provide a routing framework that takes 

locality into account in making routing decisions. 

• Kademlia [63]: uses 160 bit IDs, and differs from the other algorithms in using an 

XOR metric in routing. Another unique property of the algorithm is the symmetry 

of the connections. In other words, the peers that a peer needs to connect to also 

will need to connect back to the original peer, allowing peers to learn about new, 

relevant neighbors from searches they process. This is in contrast to many other 

DHTs, where this property doesn't exist. The XOR metric also allows for easier 

proof of correctness and efficiency, but also increases the conceptual difficulty in 

describing (or implementing) Kademlia. 

2.3.4.2 Chord 

The Chord system [31, 94, 95] is an early and popular DHT algorithm, and is the one 

we have adapted for our work. Chord uses a ring-type structure for the peers in the 

overlay. In this structure, a peer with a hash of 0 would be located adjacent to a peer that 
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hashes to the highest possible hash value, essentially wrapping the namespace. Each 

peer keeps track of its immediate predecessor peer, as well as one (or more) successor 

peers in the ring. Each peer keeps information allowing it to directly contact some number 

of other peers in the overlay. In terms of the overlay network, these are the neighbors of 

the peer, since they are reachable in one hop. 

The list of neighbors is referred to as a finger table in Chord. If the hash has 2n bits 

in the output range, each peer will keep at most n finger table entries {pointers to other 

peers). These fingers are selected in a very specific way. The ith entry in the finger table 

contains a pointer to a peer at least 2i units away in the hash space. Essentially, the peer 

divides the overlay hash circle up into segments, the first being the segment from [0- 2°) 

away from the peer, the second being from [2° - 21), the third being from [21 - 22), etc., 

all the way to the segment from [2158 - 2159 ) away from peer. The highest finger table 

entry thus point ! of the way across the hash space, the next highest !. the next A· and 

the first entry points to a range only 1 away in the hash space. Each peer then stores 

an entry in the finger table for the first peer present in the system with a Peer-10 greater 

than or equal to the start of this interval. In this way, the peer has many entries pointing 

to nearby peers, and progressively fewer entries pointing to more remote peers. These 

tables are populated when the peer joins the overlay, and are kept current by periodically 

updating them. 

Chord uses the SHA-1 hash, which produces 160 bit results. Therefore in chord, 

there are 160 finger table entries, pointing to peers in the space at least 2i away from the 

peer, for i I 0 <= i <= 159, i = i mod 2160 • 

Messages are routed by taking advantage of the key property of these finger tables, 

that a peer has more detailed, fine grained information about peers near it than further 

away, but it knows at least a few more distant peers. When locating a resource (or peer) 

with a particular key, the peer will send the request to the finger table entry with the Peer-
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ID closest to (but preceding) the desired key. Since the peer receiving the request has 

many neighbors with similar Peer-IDs, it will presumably know of a peer with a Peer-ID 

closer to the key. In Chord, this request is then passed on to the closer peer, and the 

process repeats in a recursive fashion. When the peer that would finally be responsible 

for storing the particular key (the successor peer to that key) is reached, it can respond. 

In the case where the search is for a resource, it can indicate if that resource is present or 

not. In the case of storing a file, it can respond if the file exists, and provide a mechanism 

to retrieve it. 

Several proposals have been made to extend Chord and improve efficiency. Most 

notable is Epichord [58], which seeks to improve the performance of Chord by including 

overlay maintenance requests in searches (reactive routing management), and by issuing 

parallel searches. By maintaining lists of predecessors as well as successors, and main­

taining significantly more fingers, routing efficiency of only a few hops can be achieved 

in many cases. Note this is an example of the classic time-space tradeoff, as additional 

storage space is required. 

2.3.4.3 Routing in DHTs 

Messages can be routed in DHTs in a number of different ways. As we will see later, when 

deploying a system on the open Internet, the decision becomes very critical. There are 

two different types of forward routing, that is, ways to forward a message from the sender 

to the destination: iterative and recursive. Within recursive forward routing, there are 

three ways to route the response back to the sender: symmetric recursive (or symmetric 

response), direct response, and strict forwarding (or forward-only). As we will show in 

Section 5, the problem isn't quite as simple as presented here, but these descriptions will 

serve as a basic introduction to routing for the following sections. 
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Iterative Routing 

Figure 2.6: An Iterative Routing Flow 

In Figure 2.6 we illustrate an iterative routing flow. The peer receiving the message 

replies to the sender suggesting a nearer peer, rather than forwarding the message. The 

initiator then sends a new request to the recommended (and nearer) peer, repeating 

until the target is reached. This is the technique used by many early DHTs, and is still 

frequently proposed in the DHT algorithm literature. 

Recursive Routing 

With recursive routing, the initiator issues a message to the peer it is aware of nearest 

the target. If the recipient peer is not the target, the message is forwarded to the nearest 

peer the recipient is aware of, and the process repeats until the target is reached. 

Recursive algorithms can route the response in three ways. In a symmetric or true 

recursive algorithm (Figure 2.7) the response is returned simply by reversing the original 

path. Many recursive algorithms shortcut by sending the response directly back to the 

initiator, an approach termed direct response or semi-recursive routing (Figure 2.8). A 

response can also be routed as strict forwarding, with the response being routed back to 

the initiator in the same manner a new message from the responder to the initiator would 

be routed - in other words, the message will be routed forward through the links of the 
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overlay from the destination back to the source as if it was a message from destination to 

source (Figure 2.9). Here the shaded peers were not in the original forward path of the 

message. 

Figure 2.7: A Symmetric Recursive Routing Flow 

Figure 2.8: A Direct Response Routing Flow 

4 

5 

Figure 2.9: A Strict Forwarding Routing Flow 
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2.4 Network-based Personal Communications Systems 

2.4.1 VoiP and IM Systems 

Modern Voice Over IP (VoiP) and Instant Message (IM) systems are designed to allow 

users to communicate, either using voice/video conversations, or by the exchange of 

short text messages. These systems operate over the IP protocol, and are thus packet­

switched, but in many cases have been designed to replicate the perceived end user 

behavior of earlier phone systems, which were circuit-switched. To implement these ca­

pabilities, these systems generally provide three basic functions: 

• Resource location is responsible for identifying and locating other users so con­

versations can be established. 

• Session establishment and management creates, controls, and terminates text 

or multimedia sessions between users. 

• Presence is a mechanism that enables users to monitor properties of the sys­

tem, for example another other user's connection status. This can be used to en­

able notifications whenever a someone on the user's friend or buddy list arrives or 

leaves, perhaps by highlighting that friend on a list displayed on the user's GUI. Pres­

ence can also be used to provide other notifications, for example waiting voicemail 

messages, parked calls available to be retrieved, etc. 

The majority of today's VoiP and IM systems are centralized. Users connect using a 

User Agent (UA), which may be a software application such as an IM client program or a 

software-based phone, often called a soft client. UAs may also be hardware device such 

as an IP or mobile phone. In a VoiP architecture, many devices are actually implemented 

as UAs. For example a gateway which terminates VoiP calls and connects them to the 
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PSTN is often actually a special purpose UA from the point of view of the SIP system. 

Similarly, a voicemail system which receives and records messages may be implemented 

as a special purpose UA. 

In a traditional client-server architecture, the UAs connect to a central sever. Depend­

ing on the particular VoiP protocol used and the architecture of the system, this server 

may only provide location and call routing capabilities, in which case it is usually called 

a proxy. The server may also provide additional services and features including voice­

mail, interactive voice response (IVR) systems, etc. These more elaborate servers are 

typically called softswitches. In some more highly centralized systems, virtually all capa­

bility resides in the server. Historically, in these contexts the server has been called a 

gatekeeper. 

Several VoiP protocols are in wide use. Older protocols such as the International 

Telecommunications Union (ITU) H.323 standard [48] place most intelligence in the cen­

tral gatekeeper, while SIP pushes most of the intelligence to the UAs but relies on central 

servers for some functions, particularly locating users and helping to establish connec­

tions. 

A large outlay of effort, capital and time has been invested in building networks and 

equipment based on these protocols. Most physical or "hard" UAs in use today implement 

either H.323 or SIP. 

Commercial IM protocols used by AOL, Yahoo and MSN require users to connect to 

a server hosted at the provider's site. A few commercial products, as well as the IETF 

standards XMPP and SIMPLE allow a corporation or group to maintain their own server, 

but these are still centralized. XMPP is an XML based protocol that emerged from the 

Jabber project. SIMPLE is a set of extensions to the SIP protocol intended to support 

instant messaging. 
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2.4.2 SIP and SIMPLE 

SIP and SIMPLE are text-based protocols derived from HTTP [36], therefore message 

types and traffic are similar to web traffic. SIP is a general protocol for establishing and 

controlling multimedia sessions, but is most widely used for VoiP. SIP embeds Session 

Description Protocol (SOP) [45] information to specify the media parameters. SIP gen­

erally runs on port 5060, using either TCP or UDP as a transport, and also is designed 

to operate using 1Pv6. Like HTTP, SIP is a request/response protocol. Requests are 

generated by UAs, and sent either to a server or directly to one or another. The UAs 

themselves or the server may generate response messages. 

There are many types of requests in SIP. A few examples of request messages in­

clude: 

• REGISTER, used to inform a server of the location of a UA, thus providing a location 

where a particular user can be reached. 

• INVITE, to establish a session between two parties. 

• BYE to terminate a session that has been established. 

Response messages use a numerical status code, some borrowed directly from the 

HTTP protocol, others specific to SIP. A few examples of response messages include: 

• 100 TRYING and 180 RINGING, which are used to provide provisional information 

about the progress of an attempt to establish a connection. 

• 200 OK, indicating that a session has been established successfully. 

• 302 MOVED TEMPORARILY, which is used to redirect a caller to a different location 

or user. 
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• 404 NOT FOUND, indicating that the requested user cannot be located to establish 

a session. 

SIP/SIMPLE is structured so that two UAs can theoretically connect directly, but the 

proxy is generally needed to locate the remote party. In other words, two devices can 

be configured to directly contact each other and will function perfectly without the proxy if 

some other mechanism to locate users is provided. 

In the SIP specification, the functions of a server are broken into several logical net­

work elements, including a registrar capability to store the location of users, and two main 

techniques for routing, proxy {recursive) and redirection {iterative). In proxy, messages 

are passed from device to device on behalf of the user, and in redirection, a device replies 

with a suggested location to try and locate the user or resource. These capabilities are 

often incorporated into one physical box, which we refer to here as a server or proxy for 

convenience, even though it may have capabilities beyond simply proxy. 

Note that the SIP notion of a proxy is a more sophisticated network element than 

a web proxy, maintaining location information about users and UAs, as well as routing 

signaling traffic between UAs. Proxies also provide authentication and username admin­

istration. The registration capability allows a UA to manage information about its location 

with the central server, while proxy {and redirect) capability allow the server to assist UAs 

in locating each other. 

The initial signaling portion of the call consists of SIP messages flowing through the 

{one or more) central proxies connecting UAs. Media flows directly between UAs, and 

optionally some signaling may flow in this way as well. Media typically is encoded in 

the form of Real Time Protocol {RTP) or the secure variant SRTP [9, 89] packets. This 

separation is somewhat analogous to file sharing, where a central server {tracker) might 
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be used to store a list of which files each peer stores, while the files are exchanged 

directly between peers. 

2.4.2.1 Registration 

Users are uniquely identified by a SIP URI (Uniform Resource Identifier), such as 

"sip:bryan@cs.wm.edu". Users make themselves available to receive calls at a particular 

UA by sending a REGISTER message to the central server, which maintains a mapping 

between an address of record, or AoR, in the form of a SIP URI, and a contact, usually 

the user's UA IP address. REGISTER messages includes an expiry time and expire un­

less refreshed. Typical lengths of expiry are around one hour. Users remove themselves 

by registering an expiry time of zero, and a registrar can be queried for a particular user's 

registrations by sending a REGISTER with no expiry time in the message. Registrars 

can require security credentials to validate that the requester is authorized to modify the 

registration information. 

Multiple registrations are allowed. In such cases, SIP utilizes a mechanism called 

"forking" to attempt to find the user. Different types of forking can be used. Sequential 

forking will try multiple registrations, such as a desk and mobile phone one after the 

other, while parallel forking would try both simultaneously. This mechanism allows a user 

to have two devices (for example a home and work phone) or for unanswered calls to 

forward to a receptionist of voicemail server after a pre-determined time or number of 

rings. 

2.4.2.2 Establishing and Terminating Calls 

The SIP INVITE message is generated by a UA and sent to a proxy to establish a new 

connection. Incoming messages for a registered user arrive at the proxy, which forwards 

mailto:bryan@cs.wm.edu
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them to the UA. 

For unknown or unregistered users, local rules may be consulted to determine how to 

route the call. The call may be rejected (for example by sending a response of 404 NOT 

FOUND), the URI may be examined and the request proxied or redirected to a different 

domain to be processed, or the call may be gated to the public phone system. Access to 

the public phone system requires gateways and phone lines, and is often a pay service. 

In Figure 2.10 we show a basic successful proxy-brokered call flow between two 

users. While the INVITE is being forwarded to the destination, the proxy generates a 

1 00 TRYING response message and returns it to the calling UA. This message indicates 

to the calling UA that the message has been received by the proxy, preventing retrans­

missions, but indicates nothing with respect to the remote party. The INVITE is passed 

to the remote party by the proxy, which generates a 180 RINGING response message, 

passed back to the proxy and on to the calling UA, indicating that the message has 

reached the remote party and is being acted on. These 1 xx class messages are referred 

to as provisional responses, in the sense that they do not indicate a transaction has been 

completed, but provide information to the parties that processing is taking place. 

Once the remote party answers, a 200 OK message is generated, indicating that the 

call has been accepted. Finally, the original caller generates an ACK message, indicating 

that the 200 has been received. This is one way in which SIP differs from protocols 

such as HTTP. Because some period of time can pass while the device is alerting the 

human user and waiting for a response, it is possible that one or more of the devices or 

the underlying network connection could fail between the sending of the INVITE and the 

sending of the 200 OK. This time may be only a few seconds, but on the time scale of 

the devices, this is considerable. As a result, SIP uses a "triple-handshake" connection, 

including this final ACK message. 

Following the ACK message, a media session is established between the devices, 
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Figure 2.10: Call Flow for a Basic, Successful, Proxy-brokered SIP Call 

and media flows. Note that the format of the media is specified in the embedded SOP 

in the SIP messages, and may include audio, video, or any other type of streaming in­

formation the user requests. Multiple channels can be established. SIP also offers an 

offer-answer paradigm [83], by which the devices can negotiate with each other, discov­

ering the capabilities of the remote party and determining the best media connection 

possible. 

At the end of the session, one or the other party (in this example, the remote party) 

decides to cancel the connection by sending a BYE message. This message is acknowl­

edged with a 200 OK response, the media connection is torn down, and the session is 

complete. 

2.4.2.3 SIMPLE: SIP for IM and Presence 

SIMPLE is a set of extensions for SIP to add both IM and Presence capabilities. SIMPLE 

sends text IMs using the MESSAGE message. Unlike a conventional SIP session es-
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tablishment, no session or media stream is established to send the text messages. The 

text of the messages is carried directly in the SIP MESSAGE message, and so passes 

through the intermediaries that make up the signaling path. SIMPLE messages are not 

correlated into a session - each is a separate transaction and any correlation between 

messages to form a conversation is an artifact of the application. 

SIMPLE also adds SUBSCRIBE/NOTIFY capabilities, allowing for the implementation 

of presence. Users can use a SUBSCRIBE message, sent to a presence server, indicat­

ing they would like to be notified when some subscribed variable changes, for example 

when a remote user comes online or when a voicemail arrives. NOTIFY messages are 

sent from the server to indicate the new value of the variable. The party being monitored 

(in other words, the user that comes online or the voicemail server that receives a new 

message) sends PUBLISH messages to the server to post changes in the variable. 

Because of the close relationship between SIMPLE and SIP, a SIMPLE client that 

wishes to enable voice chat can do so very easily using the established SIP protocol. 

All of the SIMPLE messages and SIP messages use a common rule set for parsing, 

message construction and routing, meaning one stack can be used to enable both appli­

cations. 

2.5 Related Work 

While this is a very new area of research, there are a number of instances of related work 

to discuss. There have been a number of earlier efforts looking at using SIP to enable 

other P2P applications (rather than our work on running SIP in a P2P fashion), largely 

for file sharing. Some efforts have focused on developing P2P communications systems, 

but in a closed, non-standard way. Finally, since our work began, several others have 
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begun working on similar projects, some commercial and largely non-standard, but a few 

attempting to produce standards-based communications, similar to our work. 

Note that many researchers have used P2P for distributed lookup, much as we have, 

but for purposes other than communications. We have briefly touched on this work in 

Section 2.3. 

2.5.1 Using SIP for Other P2P Applications 

A number of efforts have looked at using SIP to enable other P2P applications. In some 

ways, this can be looked at as being the opposite of our work. Rather than taking SIP 

and using P2P to enable a fully distributed version of it, these efforts focus on using SIP 

to enable P2P. 

• Earthlink SIPshare: The Earthlink R&D group has created an application called 

SIPshare [91], using SIP as the underlying transport protocol for a file sharing P2P 

system. SIPshare uses UDP directly between hosts for the transfer of files, anal­

ogous to the way media sessions in SIP are streamed using UDP. Messages for 

search, as well as requesting the particular content requested are sent using SIP 

messages with specialized content. At the time, this work was quite revolutionary. 

Prior to this work, no one had suggested a standard mechanism for encoding the 

messages between P2P clients. 

• NUTSS: NUTSS [43) is a project exploring how using SIP and related technologies 

such as the family of NAT traversal mechanisms developed for SIP- STUN, TURN 

and ICE -can improve P2P performance. The primary focus of the work is on the 

NAT traversal efforts. This work provided some guidance for the NAT traversal work 

in our P2PSIP solution. 
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2.5.2 Non-standards Based P2P Communications 

• Waste: WASTE [1 01] was a short-lived P2P system for file sharing. Waste was 

briefly released as open-source in 2003 but later rescinded. What made it inter­

esting from the perspective of our research was that group chat was supported, 

apparently the first instance of a P2P application incorporating personal communi­

cations. 

For a new peer to join, some other peer needed to grant permission to that peer. 

All peers shared one encryption key and used it to encrypt all traffic. All messages 

are sent using a Gnutella-like flood mechanism. Periodic beacon broadcasts and 

flood polling are used by peers to identify other peers in the overlay. The group chat 

messages and search requests are also sent using broadcast, and passed through 

all peers. 

WASTE had a number of shortcomings. WASTE was non-standard, requiring a 

special client, and use a proprietary IM protocol. Traffic within the overlay was 

encrypted against outside snooping, but all traffic flooded all peers, and all peers 

shared the same encryption key, requiring complete trust of users within the network 

Since all messages were broadcast by flood, IM and broadcast traffic explode as 

size increases. This architectural decision limited WASTE networks to 50 peers. 

There was also no mechanisms to verify individual sender identity or ensure peers 

forwarded messages as requested. 

• Skype: Skype [92] allows users to make free phone calls between Internet users, 

and offers public phone connectivity for a fee. The system is proprietary, and is 

not compatible with non-Skype devices. Skype provides VoiP and IM capabilities. 

While partially P2P, username control, authentication, and some other services are 

controlled by Skype's central servers. 

While the Skype protocol is closed and details are thin, research indicates that 
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Skype works in somewhat the same way as SIP systems, with some critical dif­

ferences. According to [7, 12], there are a number of important properties to the 

Skype protocol. 

Like SIP, Skype uses a central server to authenticate and verify that users are al­

lowed to use the system, but Skype uses a proprietary protocol for this service. 

Unlike SIP, each Skype peer may be used as a media relay to assist with NAT 

traversal. This, along with a very effective and streamlined configuration process, 

is part of what allows Skype to work so smoothly. 

If a media relay is required for NAT traversal, Skype easily finds one within the 

system. This reduces the load on Skype's own servers, which only need to be used 

for authentication and lookup. The downside, at least from a network administrator's 

point of view, is the unpredictable traffic load on Skype peers within the network that 

are functioning as media gateways. 

Since any peer meeting a set of requirements identified by Skype (presumably, 

having available bandwidth and a public address) can easily be turned into a media 

relay for many other calls, participating in a Skype network leaves one open to being 

used as a relay, with the associated bandwidth problems, whether an administrator 

desires it or not. 

Similarly, a user's calls may be routed through some random location during a 

Skype call, although the encryption used on Skype calls makes this a less seri­

ous concern. 

With these two exceptions- using peers as media relays and the proprietary pro­

tocols - Skype is very similar in end user experience to other solutions, such as 

the Google Talk service, although Skype has taken a non-standard approach, while 

Google Talk is largely standards-based. 

• vop2p: 
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Another early project that seemed somewhat similar to Skype was a non-standard 

P2P communications project called vop2p. Vop2p was available open-source, but 

seemed to never reach a fully functional state. The project appears to have been 

shut down over five years ago, and the site has since been taken down. 

2.5.3 P2PSIP Research 

Extensive non-commercial efforts have been focused on extending SIP to use a pure 

P2P-based mechanism to locate other users, including work by the authors, researchers 

at Columbia University, Ericsson, Alcatei-Lucent, and others. 

P2PSIP has drawn healthy participation at the IETF. Much of this work is documented 

on [30]. 

Kundan Singh and Henning Schulzrinne at Columbia University have been active in 

exploring research similar to ours [8, 90]. The current protocol draft for P2PSIP being 

advanced by the IETF, RELOAD, is based on a merge of our RELOAD protocol with the 

Columbia P2PP protocol [6] (as well as the ASP protocol [54] from Cisco). The group at 

Columbia was the first to propose a binary protocol, following on to our earlier proposal 

of the first P2PSIP solution using SIP messages. They have also proposed a simplified 

system by using OpenDHT [68, 76]. While this is a simple approach for experimentation, 

we feel it cannot be used for deployed standardized systems, and has the limitation of 

preventing experimentation with DHT structures optimized for communications. 

In the five years since we have introduced the topic of P2PSIP, there have been many 

papers published in the area, including [1 0, 11, 46, 61 ], and the subject has become a 

frequent topic in P2P conference calls for papers. Our original paper [22] has been cited 

in more than 90 papers in the area. 
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2.6 Terminology and Glossary 

For convenience, we define a number of terms here that are used in the subsequent 

sections: 

• Overlay Network: An overlay network is a computer network which is built on top 

of another network. Peers in the overlay can be thought of as being connected by 

virtual or logical links, each of which corresponds to a path, perhaps through many 

physical links, in the underlying network. For example, many peer-to-peer networks 

are overlay networks because they run on top of the Internet. As an example, dial­

up Internet is an overlay upon the telephone network. 

• P2P Network: A peer-to-peer (or P2P) computer network is a network that relies 

primarily on the computing power and bandwidth of the participants in the network 

rather than concentrating it in a relatively low number of servers. P2P networks are 

typically used for connecting peers via largely ad-hoc connections. Such networks 

are useful for many purposes. Sharing content files containing audio, video, data 

or anything in digital format is very common, and real-time data, such as telephony 

traffic, is also exchanged using P2P technology. 

• P2PSIP: The combination of the Session Initiation Protocol (SIP) [RFC3261] with 

peer-to-peer techniques for resolving the targets of SIP requests, providing SIP 

message transport, and providing other SIP-related functions with minimal need for 

servers. 

• User: A human that interacts with the overlay through peers and clients. 

• Peer: A node participating in an overlay that provides storage and transport ser­

vices to other nodes in that overlay. Each Peer has a unique identifier, known as a 

Peer-ID, within the Overlay. In P2PSIP, each Peer may be coupled to one or more 
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SIP entities. Within the Overlay, the peer is capable of performing several different 

operations, including: joining and leaving the overlay, transporting SIP messages 

within the overlay, storing information on behalf of the overlay, putting information 

into the overlay, and getting information from the overlay. 

• Client: A node participating in a overlay that is less capable than a Peer in some 

way. Clients have the ability to add, modify, inspect, and delete information in the 

overlay, but generally do not participate in routing or storing information. Clients 

usually connect to a peer to access the services of the overlay. 

• Peer-10: Information that uniquely identifies each Peer within a given overlay. This 

value is not human-friendly - in a DHT approach, this is a numeric value in the 

hash space. These Peer-IDs are completely independent of the identifier of any 

user of a user agent associated with a peer. {Note: This is sometimes also called a 

"Node-ID" in the P2P literature). 

• Username: A human-friendly name for a user. This name must be unique within 

the overlay, and may be unique in a wider scope. 

• Service: A capability contributed by a peer to an overlay or to the members of an 

overlay. Services might include routing of requests, storing of routing data, storing 

of other data, STUN discovery, STUN relay, and many other things. 

• Resource: Anything about which information can be stored in the overlay. Both 

Users and Services are examples of Resources. 

• Resource-10: A non-human-friendly value that uniquely identifies a resource and 

which is used as a key for storing and retrieving data about the resource. One 

way to generate a Resource-10 is by applying a mapping function to some other 

unique name {e.g., Username) for the resource. The Resource-10 is used by the 
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distributed database algorithm to determine the peer or peers that are responsible 

for storing the data for the overlay. 

• Adapter Peer: An adapter peer is a node in the overlay that acts as an adapter 

for other non-P2P enabled SIP entities, allowing them to access the resources of 

the overlay. The adapter peer participates actively in the overlay network, while the 

non-P2P enabled SIP entities it provides 

• Chord: A particular algorithm/approach to implementing a DHT. Uses a circular 

arrangement for the namespace. 

• Finger Table: The list of peers that a peer uses to send messages to. The finger 

table contains many entries about peers with similar IDs, and fewer entries about 

more remote IDs. The same (or similar) concept is sometimes called a neighbor 

table or connection table in other contexts. 

• Neighbors: A collection of peers that a particular peer can reach in one hop. In 

general, note that a peer's set of neighbors is equivalent to the entries in that peer's 

finger table. In our DHT structure (Chord), neighbor relations are NOT symmetric, 

but may be in other DHTs such as Kademlia. 

• Successor Peer and Predecessor Peer: A term borrowed from Chord. These 

terms refer to the peer directly after (before) a particular peer in the address space. 

This does not mean the successor/predecessor peer's ID is one greater/less than 

the peer, it simply means that there are no other peers in the namespace between 

the peer and the successor/predecessor. Note that the first peer in a finger table is 

typically also the first successor peer. 

• Responsible Peer: The Peer that is responsible for storing the Resource Record 

for a Resource. In the literature, the term "Root Peer" is sometimes also used for 

this concept. 
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• Joining Peer: A peer that is attempting to become a Peer in a particular Overlay. 

• Bootstrap Peer: A Peer in the Overlay that is the first point of contact for a Joining 

Peer. It selects the peer that will serve as the Admitting Peer and helps the joining 

peer contact the admitting peer. 

• Admitting Peer: A Peer in the Overlay which helps the Joining Peer join the Over­

lay. The choice of the admitting peer may depend on the joining peer (e.g., depend 

on the joining peer's Peer-10). For example, the admitting peer might be chosen as 

the peer which is "closest" in the logical structure of the overlay to the future posi­

tion of the joining peer. The selection of the admitting peer is typically done by the 

bootstrap peer. It is allowable for the bootstrap peer to select itself as the admitting 

peer. 

• Peer Protocol: In P2PSIP, the protocol spoken between overlay peers to share 

information and organize the P2PSIP Overlay Network. 

• Client Protocol: In P2PSIP, the protocol spoken between Clients and Peers (if 

needed). It is used to store and retrieve information from the P2P Overlay. 

• Peer Admission: The act of admitting a peer (the "Joining Peer") into an Overlay 

as a Peer. After the admission process is over, the joining peer is a fully-functional 

peer of the overlay. During the admission process, the joining peer may need to 

present credentials to prove that it has sufficient authority to join the overlay. 



Chapter 3 

The Design of the Peer-to-Peer SIP 

(P2PSIP) Protocol 

In developing the first P2PSIP system and our protocols for P2PSIP, we encountered a 

number of challenges. In this chapter we discuss a number of the more interesting prob­

lems faced in the design of the protocol, and present our solutions to these challenges. 

In particular, we discuss the issues raised by Peer-ID generation, resource replication, 

and distributed identity, and show how an enrollment-time certificate server can address 

these and other problems. We also provide guidance for providing some level of security 

in systems where a certificate server cannot be used. 

In Chapter 4 we discuss the specific details of our two protocol design implementa­

tions, and in Chapter 5 we discuss our detailed research into optimizing routing tech­

niques for DHTs used in a P2PSIP solution. 

56 
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3.1 Choosing a Mechanism to Distribute Information 

The first step in the design of a fully distributed system is selecting a mechanism to 

distribute the {previously centralized) information among the participants. A number of 

mechanisms exist for this, including various types of P2P (structured, unstructured), as 

well as broadcast replication methods and the use of "cloud" services such as DNS. 

In Section 1.3.1 we discussed why we chose to use a P2P mechanism, rather than 

broadcast or dynamic DNS mechanisms. 

3.1.1 Requirements for Communications 

In Section 1.2, we outlined the requirements from a user and functionality perspective of 

developing a distributed personal communications system. Here we once again list some 

requirements, but these differ in that they are specific requirements not for the capabilities 

of the system, but rather requirement for the underlying programmatic structures used to 

distribute the information. 

In file sharing applications, many users may offer copies or versions of a file, and the 

identity of the provider is often deliberately obfuscated or at best unimportant. Except 

for special purpose systems, communications systems typically require that a unique 

individual be contacted. An obvious example is that when a user calls their bank, they 

expect to reach their bank, not someone offering a similar service, or worse still, a random 

user purporting to be the bank. Similarly, with multiple copies in a file sharing application, 

it is often acceptable to query some fraction of the peers, rather than all of them, and 

assume it is statistically likely the file will be found. Obviously, if each resource (user to 

communicate with, in our context) is unique, such an approach is not viable to locate a 

user. 
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The lack of anonymity and the availability of the desired resource {person) at only a 

single location, coupled with a need for high reliability for communications, leads to our 

first requirements: 

• The distributed algorithm must return the location of a resource, if present. False 

negatives are unacceptable. 

• The user must be able to verify the integrity of the resource and thus the identity of 

the remote party. 

The requirement to avoid false negatives eliminates many unstructured techniques, 

strongly suggesting that if P2P is used, a DHT or other structured P2P algorithm be 

used. Furthermore, the algorithm must contain sufficient protection against attackers 

manipulating the overlay routing to gain control of a particular portion of identifier space 

to prevent DoS attacks against targeted users. While also a problem, false positives due 

to stale registrations are more easily handled at the application (SIP) level, and do not 

require DHT support. 

Meeting the integrity and identity requirement requires a security mechanism that 

allows peers to sign resources, verify the signatures on resources, and the identity of 

remote parties. 

• The system must provide connectivity between NATed peers and include them in 

the DHT when possible. 

Deploying an Internet-scale P2P communications systems dictates that it must sup­

port the full range of deployed networking technologies. This includes consumer broad­

band network users and businesses and universities located in many countries. Un­

like hosts at Western universities, these endpoints are frequently behind Network Ad­

dress Translators (NATs), introducing the problem of non-symmetric (and sometimes 
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non-transitive) connectivity. Freedman et al. [39] explored these issues in a PlanetLab 

based system, where the cause of these connection problems is generally ephemeral 

problems or difficulties in lnternet1 systems communicating with lnternet2 systems. In 

our Internet-scale system, non-symmetric connectivity caused by NATs is the rule, rather 

than an exceptional failure condition. Because we support deployment scenarios where 

the majority of devices are behind NATs, we must utilize them as peers in the DHT rather 

than relying on a sufficient number of super-peers on the public Internet. 

• The DHT algorithm must not amplify DoS attacks. 

• The DHT algorithm must prevent an attacker from gaining control of a particular 

portion of the identifier space by manipulating Peer-ID assignment. 

As with any other publicly deployed P2P network, the overlay must guard against ma­

licious peers and be resilient against DoS attacks. In particular, a P2P communications 

network is subject to both general DoS attacks against the entire overlay and DoS attacks 

targeting specific users. 

In the next section we explore the need for preventing the user from manipulating the 

Peer-IDs in detail. 

3.2 Assignment of Peer-IDs 

3.2.1 Why Users Cannot Control Peer-ID Assignment 

Many attacks on P2P systems involve the user being able to place themselves in a par­

ticular location in the overlay. In particular, many require identifying a particular portion of 

the ID space and acquiring control of that space by becoming the responsible peer. In the 
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case of a P2PSIP system, one potential attack would be to control the peer storing a par­

ticular user's location registration. In such a case, callers wishing to reach the attacked 

user would request the registration information from the compromised peer, which could 

redirect the caller to a different party or simply deny the attacked user is registered with 

the system, constituting a man in the middle or DoS attack, respectively. We illustrate a 

DoS version of such an attack on the left side of Figure 3.1. Here we show an arbitrary 

hypothetical topology, where an attacker has compromised peers 18 and 20, and in so 

doing, effectively severed peer 19 from the overlay. 

Placed I D Attack Sybil Attack 

Figure 3.1: Examples of Placed ID and Sybil Attacks 

As a result, it is very important for P2P systems that the Peer-ID be assigned in 

some way that is beyond the control of the user. Any mechanism that generates Peer­

IDs based on hashing of a value that can be controlled in any way by the end user is 

inherently insecure. Additionally, one needs to limit the number of Peer-IDs a user can 

create or use. On the right side of Figure 3.1 we show a similar attack where the attacker 

has prevented connectivity to peer 19 simply by randomly generating many Peer-IDs until 

they are able to create peers with the IDs required to compromise peer 19. This attack 

is often referred to as a Sybil attack [34] after a 1973 book "Sybil" documenting a woman 
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with 16 personalities in that the attacker takes on many identities, 

3.2.2 Problems with IP-based Peer-IDs 

The majority of early DHT designs required that in order to produce unique Peer-IDs, 

the IP address (neglecting port) of the peer was hashed to produce the Peer-ID. This 

approach makes sense on the surface. The IP address of a computer seems to be a 

unique property, and as a result, hashing the IP address produces a unique Peer-ID. In 

our initial work, we looked to use an existing algorithm such as Chord unmodified, and 

thus explored hashing IP addresses as a mechanism for creating Peer-IDs. Unfortunately, 

we very quickly determined that such an approach was not feasible for an Internet-scale 

deployment for the following reasons: 

• Multi-user machines: A multi-user machine may have more than one user with 

running instances of the P2P application, each of which is technically a separate 

peer. Multiple peers clearly cannot have the same Peer-ID, despite running on the 

same host. 

• Two peers running on different private subnets, for example two home users behind 

different residential NATs, may believe themselves to have the same (private) IP 

address, typically 192.168.1.2. While this problem can be partially addressed by 

using STUN to determine the outside (public) address of the NAT, there is still the 

issue of multiple users located behind the same NAT, who would share an external 

IP address (although a different port). In both cases, duplicate Peer-IDs will be 

produced. 

• Access to multiple machines and 1Pv6 issues: For an attacker who might have 

access to many IP addresses (for example the operator of a botnet, or even a 
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student at a large university with many machines he can log into), an IP hash-based 

approach may not prevent a Sybil attack. In 1Pv6, there are many, many more IP 

addresses. As a result, in some cases an ISP will issue a range of addresses for 

use by a particular user. In such a case, a single user may effectively have access 

to many IP addresses, again allowing them to mount a Sybil attack. 

Combining the public address and a port number can ameliorate the problem, but 

does not protect against malicious peers. Appending the port number to the address 

before hashing produces a different Peer-ID for each of several peers behind a NAT, 

but enables an attack against the overlay, as an attacker can simply hash each of the 

64K host/port pairs of a particular IP address in advance, and select the closest Peer-ID 

to mount the attack (technically a Sybil attack, but with such large numbers available, 

effectively a placed ID attack). 

Replacing the least significant bits with the port number after hashing forces the pos­

sible IDs to be contiguous, reducing the area of DHT space that can be attacked, but has 

another problem. Chord places redundant storage of information on sequential peers, 

meaning an attacker can compromise all replicas of a particular resource. Many other 

DHTs take a similar approach. (We show a solution that reduces this concern in Sec­

tion 3.5) As a result, we determined that straight IP address hashing techniques are not 

sufficient for assigning Peer-IDs, and that even supplementing with ports is of limited 

effectiveness. 

3.3 Distributed Identity 

Perhaps the largest open question in securing a fully distributed is how to verify the 

identity of and communicate securely with a user. In practice there are two aspects to 
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this problem. When contacting a user with a particular name, can one be sure that the 

user is the same user we contacted previously with this name? In other words, can we 

detect two users attempting to use the same name at different times. A very closely 

related, but subtly different problem is ensuring that a user is the globally authorized 

instance of a particular username, or actually preventing two users from using the same 

name in the first place. 

Once the user is identified, we also need the best way to secure the connection with 

the remote party. SIP/SIMPLE offers private-key mechanisms for authentication between 

UAs and proxies, and for end-to-end encryption [53]. A P2P architecture, however, re­

quires a system that assumes no trust between the user and the system with which they 

are authenticating. 

3.3.1 Problems with Early Proposals 

During the development of P2PSIP, at least four mechanisms to assert identity and secure 

connections between users were proposed, but each ultimately had sufficient drawbacks 

to exclude it from consideration: 

• Storing the public portion of a self-generated user's key in the overlay: This 

mechanism provides no guarantee as to the ultimate identity of a user, but once the 

certificate has been obtained one can use it to determine that future conversations 

are with the same individual as previous conversations, ensuring detection of, if 

not prevention of, multiple users using the same name. Users need to use the 

certificates and awareness of previous conversations to distinguish users. This 

mechanism allows communication between peers to be encrypted using this public 

certificate. 
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• Email verification of user identities by the admitting peer: This requires user­

names be valid email addresses. A user attempting to register is challenged by the 

peer handling the registration to provide a key, which the admitting peer sends to 

the user in email. This test can be performed each time the user joins, or the pub­

lic key of the accepted user can be added to the overlay and used on subsequent 

joins. While with no compromised peers this approach ensures the uniqueness of 

usernames, it has a number of shortcomings. Most notably, it requires that the ad­

mitting peer not be compromised. A corrupted peer in an email challenge system 

can mount a DOS attack against users for which they are responsible. Another se­

rious drawback is that this system requires central equipment in the form of email 

access, and requires that identities be in the form of email addresses to ensure 

uniqueness. 

• A PGP [108] style web of trust model: In this model, a user wishing to join the 

overlay creates a certificate and ask one or more other users to "verify" the new 

user's identity by signing the new certificate. By following this path of signed certifi­

cates, the peer receiving the register can ascertain that the registering user really 

is who they say they are. The system could be constructed so that only signatures 

from peers inside the overlay are considered, or conventional PGP mechanisms 

could be used, which could require access to systems outside the overlay. While 

this approach works, it requires the often cumbersome step of asking other users 

to verify the identity of the joining peer before admitting it to the network. Once a 

user is signed, it can sign others, meaning a compromised user, once admitted, can 

allow additional bad users into the system. While revocation policies based on who 

signed the certificate can fix this problem, we feel this approach is only appropriate 

for certain deployments, and is not a general purpose solution. 

• Computational puzzles to determine the owner of a particular name: In such 
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a mechanism, a user asserts that they own a particular username. Their public 

key, as well as a record of the number of puzzles they have computed under the 

particular name is stored in the overlay. Users claiming to own the same name 

must compute more puzzles to "capture" the ID. If the ID is not used for some 

period of time, the key would expire. While this mechanism prevents users from 

easily claiming to be another user, there are issues relating to how difficult the 

puzzles should be. Puzzles need to be simple enough that low processing power 

entities such as IP or mobile handsets can compute the puzzles, but hard enough 

that a dedicated attacker with access to a small cluster cannot overtake the user. In 

general, there is nothing to prevent someone with access to many machines (again, 

a botnet or student with many department computers) from taking over any desired 

name. Additionally, issues arise relating to the integrity of the balances when they 

are maintained by a possibly corrupt peer. 

3.4 Securing the System with an Enrollment-time Certificate 

Server 

To secure Internet-scale deployments, we propose a system where both Peer-IDs and 

user identities are secured using a public-key certificate model, with certificates issued by 

a central certificate authority (CA) contacted at enrollment (but not peer join) time. Small­

scale ad-hoc systems, particularly those limited to a small number of trusted users, may 

still use an approach incorporating hash-based Peer-10 generation and a shared secret, 

but our deployments have shown that such systems are not practical for Internet-scale 

deployments. In Section 3.6 we provide some advice for making ad-hoc deployments as 

secure as possible. 
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The proposed certificate-based mechanism used in our system offers the following 

advantages: 

• Prevents collision of usernames, ensuring that a particular username is only used 

once in a deployment. 

• Ensures that users can verify the identity of a remote party each time they connect 

with that party. 

• Provides a PKI framework for encryption of peer and user messages, as well as 

offline messages and data stored in the overlay. Such messages are protected 

from eavesdropping, even though they may be stored on random peers. 

• Prevents duplication of Peer-IDs, and decouples the issuing of them from any con­

trollable value associated with the user. 

• Enables rate limiting of Peer-ID requests, reducing (although not eliminating) the 

threat from Sybil attacks. 

• Offers secure signatures for messages, ensuring that peers can identify the Peer 

and/or user that messages originated from. 

3.4.1 Architecture of an Enrollment-time Certificate Server System 

This CA based approach differs significantly from a hybrid P2P approach. In a hybrid P2P 

approach, the server is required for run-time operation of the system. In tracker-based 

file sharing applications, this means a central server stores a list of the files available and 

which peers can provide them. In a hybrid communications system such as Skype, this 

means the authentication server is contacted frequently (typically either when a new peer 
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joins or when a user places a call) to verify users. The centralized certificate authority we 

propose is not involved in every transaction, or even in the operation of the overlay. 

In our architecture, the centralized server issues certificates to peers and users at the 

time that they enroll in the overlay. Once the certificate is issued, there is no need for the 

server to be contacted again. The overlay can operate properly, users can communicate, 

and peers can come and go, all without the server, although no new users or peers can 

enroll until the server is available. In the case of certificates that expire (detailed below), 

the server may need to be contacted periodically to obtain a new certificate. 

The server generates two types of certificates: 

• User certificates assert that a user is valid and owns the specified username. 

Through this mechanism, the server guarantees the uniqueness of usernames. 

• Peer certificates asserts that a peer is authorized to join the system and has the 

Peer-ID specified in the certificate. This Peer-ID is a unique, random number gen­

erated by the server, and is not tied to IP or any other attribute of the peer itself. 

A user must obtain both a user and peer certificate from the CA before joining the 

system. We allow the certificates to be separate, since a particular device, for example an 

IP phone, might have multiple users or "lines," requiring several User-IDs to be asserted, 

but only one Peer-ID. Similarly, a user may be present on multiple devices, requiring 

multiple Peer-IDs but only one User-ID. Finally, devices such as gateways, which allow 

VoiP calls to terminate onto the PSTN, might be peers but not be associated with a 

particular user. 

In addition, each peer in the system obtains a copy of theCA's root certificate directly 

from the CA and stores it locally to prevent tampering. The public portion of the certificate 

for each user is stored persistently in the overlay to make them available even if the 
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user is offline. The user's certificate is used to encrypt media sessions as well as to 

secure messages (voicemail) left for the user. Because the chain for each certificate can 

be traced to the well-known, CA root, the authenticity of any certificate can be verified 

without contacting the central server. 

3.4.2 DHT Operations with Certificates 

When a peer attempts to join, it must present a valid certificate for the asserted Peer-

10, which is verified by the peer currently responsible for that region of the overlay. The 

certificate must be signed by the CA, as verified by the copy of the CA's root certificate 

each peer has. 

In addition to preventing a peer from claiming an arbitrary Peer-ID by issuing randomly 

placed Peer-IDs, a CA can reduce the effectiveness of Sybil attacks by limiting the rate 

at which certificates are generated. Rate limiting mechanisms can include a minimal 

charge or requiring a valid credit card number that while not charged, can only be used 

to obtain an ID once in a given period. Other possible rate limiting mechanisms include 

verification of human presence (via CAPTCHA or email), or a computational puzzle. As 

a result, obtaining the very large number required to corrupt an overlay would be costly 

or impossible. 

In addition to needing the certificate when joining the overlay, all requests by a particu­

lar peer are signed using the peer's certificate. This provides protection against two forms 

of attack. If an attacker does obtain a legitimate ID and launches a flooding attack, the 

sender's signature allows the attack to be detected, the malicious peer to be identified, 

and messages from that peer discarded (or the peer ejected). In addition, a peer sending 

a request can confirm that a response is delivered from the responsible peer, rather than 

a compromised peer along the route, by verifying the signature of the response. Similarly, 
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the recipient can verify the sender initiated the message. This allows "man-in-the-middle" 

attacks to be identified, and alternate routing paths (for example, sending using a differ­

ent finger) can be used to circumvent them. Signing of the entire message, including 

timestamp but excluding portions that require modification on-path, such as via-list, also 

prevents replay attacks and tampering with the message while it traverses other peers. 

Finally, in addition to signing the message, the portions of the message that are not 

required for routing can be encrypted using the public key of the destination peer, ob­

tained from the overlay. This prevents intermediate peers from examining the contents of 

the messages. 

3.4.3 User Operations with Certificates 

The certificates issued for each username are used both to sign user information stored 

in the overlay and to encrypt media and messages between users. 

A user registering a contact address used to reach them must sign the registration, 

incorporating an expiration time. A peer retrieving the registration does not need to trust 

the peer that stored the message, as they can directly verify the signed registration. An 

attacker, either the storing peer or a compromised peer along the query's route can fail 

to return a registration or provide an outdated (but validly signed) registration, but cannot 

spoof one or take over a particular username by issuing registrations for names they 

don't "own". By simultaneously querying several replicas of the resource as discussed in 

Section 3.5, and employing a Byzantine comparison algorithm as discussed in [66, 78], 

the severity of these types of attack can be reduced. 

The user certificates are also used to encrypt message payloads and media streams. 

Each user's public key is stored in the overlay and the recipient's public key is retrieved 
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and used to encrypt the text payload of IM messages sent to other users. These op­

erations involve only retrieval from the overlay, and do not require communication with 

a central server. Additionally, the sender signs the message using their own public key. 

This ensures that the message is not intercepted and read on route, and ensures that the 

original message - not a spoofed payload - is received. 

The public portions of the user certificates are also used by each side to encrypt 

media flows between users. If a recipient is offline, the caller records a message, encrypts 

it using the recipient's public key, and signs the message. The message is placed in 

the overlay for the recipient to retrieve later (keyed by their username), safe from both 

interception and tampering. 

3.5 Providing Secure Redundancy 

As discussed in Section 3.2.2, the default replication scheme for Chord places replicas 

on the peers succeeding the responsible peer. Because some hash-based ID generation 

schemes incorporating port numbers produce sequential IDs, it may be possible to attack 

sequential peers more easily. Even in systems where the IDs are assigned, the "half the 

distance to the target each step" approach used in a DHT means that the last few steps 

of a DHT search are often sequential. As a result, a corrupt peer may be able to deny 

easy access to a replica. 

Instead, in our protocols we use a shared set of replica keys, as shown in Figure 3.2. 

As before, the same, well-known keyword is used to identify a resource. The keyword 

has a replica key appended to it, and the resulting string is hashed, producing a unique 

Resource-10. For replication purposes, multiple shared replica keys are used, with the 

resource stored at each location. When a resource is stored, the storing party stores at 

all n locations. When retrieving, a peer can simply retrieve one, using others if they feel 
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the information is corrupt, or retrieve all n and compare the results using a Byzantine 

verification mechanism. 

Single 
Keyword 

for 
resource 
to store 

Replica­
+ key 1 

Replica­
+ key2 

Replica­
+ keyn 

Single 
Hash Function 

--• Resource-101 

--• Resource-102 

--• Resource-IOn 

Figure 3.2: Using Replica Keys for Distributed Replication 

This replication scheme can also be used as a very simple shared secret security 

mechanism. If only admitted peers know the key, it is difficult for an outside attacker to 

store or retrieve information. The keys can be changed periodically, further increasing the 

security of this mechanism. While no substitute for a CA-based system, it does provide 

some minimal security when a server is unavailable. 

3.6 Recommendations for "Best Effort" Security in Ad-hoc 

Systems 

While the certificate mechanism described in Section 3.4 provides very strong security 

and asserted identity without run-time servers, the system cannot be used for all deploy­

ments. For deployments where the use of a certificate model is not possible, for example 

in ad-hoc deployments, we provide the following advice: 
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• Use a key-based replication model such as the one described in Section 3.5 rather 

than a store on successor peer model. 

• Use Peer-IDs produced by a hash of a public IP address with an unhashed port 

number appended. When combined with the replication scheme above, this will 

provide some protection against Sybil attacks. 

• Use self-signed certificates. While such an approach won't prevent a user from 

claiming to be another user, it will allow a user to detect that they are talking to 

a different person. Use these certificates to secure all messages between users, 

preventing interception of messages. 

• If the users of the system are able to share information offline, replica keys should 

be a shared secret. Any outsider attempting to use the overlay will be unable to 

store information to the correct location, or determine proper keys to find and re­

trieve information. While this provides only very basic security. is is superior to a 

completely open system. 

3.7 Summary 

In this chapter we have outlined the reason to use a DHT approach for P2PSIP to dis­

tribute registrations, store offline messages, and store public certificates (when used). We 

have explored the security implications of Peer-ID assignment and assuring distributed 

identity. 

To address these problems, we have presented a solution based on an enrollment­

time certificate server, and shown how this can be used to secure Peer-ID assignment, 

provide secure identity, authenticate peers and users, and encrypt messages (offline and 

live) and media sessions. 
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We then discussed the need to use alternate replication schemes for overlays, and 

show how a replica key system can not only help with replication, but provide a simple 

shared secret security mechanism. 

Finally, we have provided advice on the "best efforts" that can be taken when a cer­

tificate server is unavailable, for example in ad-hoc deployments. In the next chapter, 

we present the details of two complete protocol designs we have created for P2PSIP: 

SOSIMPLE/dSIP and RELOAD. 



Chapter 4 

The SOSIMPLE/dSIP and RELOAD 

Protocols 

Over the course of our research, we took two different approaches to solving the problem 

of creating a distributed personal communications system. While some of the interesting 

research problems, such as securing the system, identifying optimal routing techniques 

and ensuring namespace coherence are not impacted by the specific protocol design, 

others are affected by the choice. The two approaches are: 

• SOSIMPLE/dSIP solution: This approach is an example of P2P-over-SIP, mean­

ing the messages for all aspects of the solution (communications and overlay man­

agement) are carried using SIP messages. In this approach existing messages 

(specifically, the SIP REGISTER message) are used to carry the information re­

quired to establish and maintain the DHT, as well as to perform the traditional func­

tions of a SIP client. We began with SOSIMPLE [21, 22], the first proposed P2PSIP 

solution (January 2005), which led to one of the first published paper on P2PSIP 

(June 2005). SOSIMPLE was defined as a complete protocol specification and as 

74 
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part of our research we implemented a prototype of a SOSIMPLE instant message 

client based on the ReSIProcate open source SIP stack [74] . Later, SOSIMPLE 

grew into the dSIP protocol proposal [23, 28, 105, 1 06] (February 2007), which we 

again fully documented in protocol specifications. Our research on dSIP was con­

ducted using an implementation developed by SIPeerior Technologies. 

• RELOAD solution: As work on P2PSIP continued, much of the research moved 

toward a system where the P2P component of a P2PSIP solution was carried over a 

separate P2P protocol, termed SIP-using-P2P. The primary motivation behind this 

approach was reuse- allowing other applications that are not communications 

systems to reuse the P2P solution. We still believe P2P-over-SIP is the superior 

architecture when the single application a P2P communications system, but to par­

ticipate in the research in SIP-using-P2P, we developed the RELOAD binary P2P 

protocol [20] for SIP-using-P2P (June 2007). This work was later merged with the 

work of several other authors to form the RELOAD protocol now being standardized 

for P2PSIP by the IETF [51, 52]. The discussion of RELOAD in this document refers 

to the earlier RELOAD we designed, not the later merged product of the working 

group. 

In this chapter, we provide a description of each approach. Detailed formal protocol 

specifications for each design are attached as appendices. 

4.1 SOSIMPLE/dSIP: A SIP-Based Protocol for P2PSIP 

SOSIMPLE and dSIP are protocols for decentralized communications using SIP mes­

sages to carry P2P overlay information (P2P-over-SIP). Because the protocols devel­

oped over time, the discussion below applies to the newest version of dSIP unless 
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otherwise noted. The formal specification of the dSIP protocol, including protocol syn­

tax/productions and network element processing instructions is included in Appendix A. 

4.1.1 Why P2P-over-SIP? 

There are several compelling reasons to use a P2P-over-SIP approach for interpersonal 

communications systems: 

• In order to provide the features of SIP IMNoiP, applications will need to incorpo­

rate a SIP stack. To prevent applications from having to add a second stack, SIP 

messages can be used to carry the P2P traffic. 

• The design allows for compatibility with and reuse of existing SIP/SIMPLE network 

elements (IP phones, gateways, IM clients, etc.), protocols, and source code, meet­

ing our requirement for Compatibility and Reuse. 

• Because the P2P overlay's purpose is to support SIP communications, and many 

existing network shaping, monitoring, and management tools recognize SIP traffic, 

such a design allows for unified management of the SIP application and the DHT 

supporting it. 

• An important property for a P2PSIP system is scalability. A P2P-over-SIP design 

preserves the SIP architecture's approach of sending only signaling through the 

SIP infrastructure (in this case the peers), while the media flows directly between 

UAs, improving scalability. 
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4.1.2 The SOSIMPLE/dSIP P2PSIP Architecture 

Because our design has no central servers and peers communicate directly with one 

another, there are some differences between our approach and traditional SIP. Peers 

connect to a number of other peers in the overlay network and use these as the destina­

tion for most SIP messages. Peers act both as UAs and as SIP servers simultaneously. 

Specifically, the peers collectively replace the functionality of SIP registrars and proxies, 

with each peer responsible for providing these services to some portion of the overlay. 

From a network architecture perspective, the code implementing the additional DHT 

and server functions can be located in several places in the network. The simplest is to 

have peers that are endpoints and which directly join the overlay. In this case the peers 

provide the basic functionality of any SIP endpoint and additionally implement dSIP to 

enable self-organization and provide SIP server-like functionality. 

The distributed functionality can also be located in an adapter peer, which allows one 

or more non-P2P aware SIP UAs (UAs that do not speak dSIP) to interact with the P2P 

overlay network. These adapters perform dSIP functions on behalf of the UA or UAs they 

support. In this case, only the adapter peer is a peer in the overlay, the UAs are not 

peers themselves. Architecturally the adapters speak the P2PSIP Peer Protocol (dSIP 

in this case) and participate as full peers, where the UAs speak conventional SIP and 

participate as clients. The adapter essentially acts as a proxy server for the unmodified 

SIP UAs. The adapter can take the form of a small software shim on a host or dedicated 

box, or may be code within a conventional SIP server. 
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4.1.3 Protocol Design of SOSIMPLE/dSIP 

4.1.3.1 Use of SIP Messages 

Where possible, the semantics of existing conventional SIP messages are preserved in 

dSIP, even when used for a slightly different purpose. All messages needed to main­

tain the DHT as well as those needed to query for information are implemented using 

SIP messages. Fundamentally, messages are being exchanged for two purposes. The 

purpose of the first class of messages is to maintain the DHT and transfer information be­

tween peers. An example of this type is the set of messages needed to join or leave the 

overlay. We refer to these as peer operations. The second use of messages is in the more 

conventional SIP sense- registering users, inviting other users to a session, etc. We 

refer to these operations as user operations. Because the DHT is used as a distributed 

registrar, registrations and searches for resources are performed using the DHT. Once 

the target resource has been located, further communication proceeds directly between 

the UAs in the same way as conventional SIP. 

The messages used to manipulate the DHT and convey peer-level operations are 

SIP REGISTER messages. The SIP specification states that REGISTER messages are 

used to "add, remove, and query bindings." Accordingly, we have selected REGISTER 

methods to use to add, remove, and query the information the peers need to maintain 

the DHT. REGISTER is used to bind both locations in the overlay to hosts as neighbors 

(entries in the routing table) as well as resource names to locations that are commonly 

maintained by SIP registrars. From the perspective of the user-level SIP functionality, 

the only difference is that these operations occur within the overlay, rather than on the 

conventional server. 
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4.1.3.2 DHT Algorithms and IDs 

dSIP is modular, allowing for the use of multiple DHT Algorithms. The first peer to start 

an overlay selects the DHT algorithm to be used, and later peers obtain this information 

when they attempt to join. For compatibility, support for the Chord DHT algorithm is 

required for all implementations. Additional DHT algorithms can be added and supported. 

In our work, we presented solutions using both Chord and Bamboo, and others have 

designed an extension for dSIP using Kademlia [27]. 

Each peer is assigned a Peer-ID, and each resource that is stored in the overlay is 

assigned a Resource-10. These values must map to the same name space or range. 

dSIP allows various hash algorithms to be used to produce these values, although all 

members of the overlay must use the same algorithm. In the Chord DHT implementation, 

SHA-1 is used to produce 160 bit values for both the Peer-ID and Resource-10. 

The Peer-ID assigned to each peer determines the peer's location in the DHT and 

the range of Resource-IDs for which it will be responsible. The exact mapping between 

these is determined by the DHT algorithm used by the overlay. Our early SOSIMPLE work 

used a simple hash of IP address/port, but we encountered the problems discussed in 

Section 3.2.2 when deploying on the open Internet. dSIP allows for flexibility in generating 

Peer-IDs. A simple SHA-1 hash of the IP address and the port of the peer could be used 

to generate the Peer-IDs for an ad-hoc solution running on a single network (i.e., no 

NATs}. For systems on the open Internet a certificate based system with CAs assign 

Peer-IDs as discussed in Section 3.4 is recommended. 

Every resource has a Resource-ID. In the case of users, the unique keyword is the 

username and the resource is the registration- a mapping between the username and 

a contact. Resources can be thought of as being stored in the distributed hash table at 

a location corresponding to their Resource-ID. Because entities searching for resources 
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must be able to locate them given the unique keyword, Resource-IDs are produced by 

hashing, and are never assigned, regardless of the DHT and security mechanism being 

used. 

Because dSIP allows for pluggable DHT algorithms, and each DHT is defined and 

functions differently, we generically refer to the table of peers that the DHT maintains and 

uses to route requests (i.e., neighbors) as a routing table. dSIP defines the syntax for 

the headers used by peers to exchange these entries, but leaves the exact form of the 

data each DHT stores in the table to the DHT implementation. Peers may maintain a list 

of peers to which they maintain connections for purposes other than routing, for example 

NAT traversal or caching. This larger table is a superset of the routing table and is referred 

to in dSIP as the connection table. Peers may make routing decisions using either the 

routing table or the larger connection table, and we use the terms interchangeably. 

4.1.3.3 Routing 

When locating a resource, a peer will first calculate the appropriate Resource-ID by hash­

ing the keyword. The peer will then send the request to the routing table entry with the 

Peer-ID closest to the desired Resource-ID as defined by the particular DHT algorithm 

being used. The target could be another user, a particular resource, or a peer (including 

itself) for DHT maintenance purposes. Because DHT algorithms must converge on the 

resource, the peer receiving the request is assumed to know of a peer with a Peer-ID 

closer to the Resource-10, and responds by suggesting or forwarding the message to this 

peer, depending on the routing mechanism being used. 

The earliest work on SOSIMPLE used only an iterative routing mechanism, which 

we later determined to be sub-optimal. dSIP allows iterative or recursive (symmetric 

response or direct response) routing to be used. The specifics of selecting an appropriate 
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routing mechanism became a key component of our research and this topic is discussed 

in extensive detail in Chapter 5 

dSIP allows various routing mechanisms to be used within the same overlay and 

even within the same search on a hop-by-hop basis. For example, a search may start 

as iterative, but if a particular peer receiving the request knows that the requester cannot 

reach the next hop directly (perhaps due to NAT issues), it may route the hop recursively. 

4.1.3.4 Peer Operations 

When a peer (called the joining peer) wishes to join or register with the overlay, it de­

termines or obtains its Peer-ID and sends a REGISTER message to a bootstrap peer 

already in the overlay, requesting to join. Any peer in the DHT may serve as a boot­

strap peer. The mechanism for selecting bootstrap peers is application dependent, and 

could include using a well-known peer, trying peers cached from the last time the joining 

peer connected, or using a broadcast mechanism to locate a peer on the local subnet 

participating in the overlay. 

If an iterative routing scheme is being used, the bootstrap peer is asked to look up 

the peer it knows nearest to the Peer-ID of the joining peer and responds with a SIP 302 

redirect response message directing the joining peer to this closer peer. The joining peer 

will repeat this process until the message reaches the admitting peer, which is the peer 

currently responsible for the space it will occupy. 

Once the admitting peer is located, the joining peer then exchanges DHT state in­

formation with this peer allowing the joining peer to learn about other peers in the over­

lay (neighbors) and to obtain the resources the joining peer will now be responsible for 

maintaining. Other DHT maintenance messages will be exchanged later to maintain the 

overlay as other peers enter and leave, as well as to periodically verify the information 
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about the overlay, but once this set of initial messages are exchanged, a peer has joined 

the overlay. 

Further messages will be sent by the joining peer to other peers in the overlay to 

update their finger tables to point to the new peer. At this point the peer has joined the 

overlay and peer registration is complete. Any users associated with the peer are not 

yet registered at this point, but user operations can now take place. We discuss the user 

operations in the next section. 

(1) REGISTER 

~ 

Joining node after join 
(Node-10 503) 

Node B 
(Node-ID 445) 

Figure 4.1: An Example of a New Peer With Peer-ID 503 Joining the Overlay 

Figure 4.1 shows an example of a peer with Peer-ID 503 joining an overlay using 

iterative routing. The peer sends a REGISTER to the bootstrap peer, which has Peer-ID 

023 (1 ). Assuming that the bootstrap peer is not the peer currently responsible for this 

region, it responds with information about the peers it knows nearest to where the joining 

peer will be placed in the overlay-in this case, Peer B, with Peer-ID 445. This information 

is passed back in our new headers within a SIP 302 Moved Temporarily response (2). 
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The joining peer repeats the process (3-4). Finally, the joining peer reaches the admitting 

peer, In this case Peer C, with Peer-ID 520. Peer C responds with a SIP 200 OK response 

including detailed information about nearby neighbors in the headers (5-6), allowing the 

joining peer to insert itself into the overlay. 

If recursive routing is being used, the process is similar. The bootstrap peer looks up 

the peer it knows nearest to the Peer-ID of the joining peer but forwards the REGISTER 

message to that peer on behalf of the joining peer, rather than replying with a 302 redi­

rection directing the joining peer there. This process of forwarding the message repeats 

until the admitting peer is found. 

In order to keep the overlay stable, peers must periodically perform bookkeeping op­

eration to take into account peer failures. These DHT maintenance messages are sent 

using REGISTER messages and the particular overlay algorithm being used dictates how 

often and where these messages are sent. 

DHT maintenance messages are routed similarly to peer registrations. The peer cal­

culates the Peer-ID of the peer it wants to exchange DHT information with, and sends the 

message, routed in either an iterative or recursive fashion, allowing the peers to exchange 

DHT maintenance information. 

4.1.3.5 User Operations 

The peer registration does not register the peer's user(s) or other resources with the 

P2PSIP network: It simply inserts the peer into the overlay. The user still must be reg­

istered in the overlay, after which the the overlay may be used to locate users, establish 

calls, transmit instant messages, etc. 

User registration and resource location (finding users) are decentralized to meet our 

requirements for No Central Server and No Central Naming Authority. In order to register, 
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or to contact another user, the peer responsible for storing that user's information must 

be located. We will discuss registration and establishing a session individually, but first 

will address resource location in general as each requires it. We illustrate the resource 

location process in Figure 4.2. In this example, an iterative routing technique is shown. 

Alice's Node 

Node B 

Figure 4.2: Alice Locates User Bob and Establishes a Communications Session (Iterative Rout­
ing) 

When a user wishes to find the peer responsible for a particular user they begin by 

hashing the username to produce a Resource-ID. Because the user's peer is already 

properly in the overlay (peer registration has already occurred), the peer has a number 

of finger table entries pointing to peers within the overlay. In our example, Alice attempts 

to look up a resource (Bob). Alice's peer looks in its finger table and finds the peer with 

Peer-ID nearest the Resource-ID to be located. In this case, Peer A. Alice's peer sends 

a message to Peer A (1 ). The exact type of message sent depends on why Alice wants 

to locate the resource, as we'll see later in this section. 

Because we are using an iterative routing approach in this example, and because 
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Peer A is not responsible for that Resource-10, Peer A sends a SIP 302 reply, including 

the peer it thinks is closest, Peer B, in the headers (2). If recursive or direct response 

routing were being used, Peer A would forward the message to Peer B on Alice's behalf 

instead of sending a 302. After receiving the 302, Alice's peer tries Peer B and again 

receives a reply with another peer to try, in this case Peer C (3-4). Finally, Alice's peer 

tries Peer C, which is responsible for that resource (5). The result of that request varies 

depending on why Alice wished to locate the resource. 

Once a peer has joined the overlay, the user(s) the peer hosts must be registered 

with the system. This process is referred to as resource registration. This registration is 

analogous to the conventional SIP registration, in which a message is sent to the registrar 

creating a mapping between a SIP URI and a user's contact. The only difference is that 

since there is no central registrar, some peer in the overlay will maintain the registration 

on the users behalf. In our example, if Alice was registering herself as a user within the 

overlay (user registration), the messages Alice's UA sent (1, 3, 5) would be of type REG­

ISTER. When Peer C receives this message, it realizes that it is responsible for storing 

the registration on Alice's behalf. Peer C enters a mapping between Alice's username 

and her IP address into its registration table and replies to Alice's peer with a 200 OK (6). 

At this point, Alice is registered with the system. 

If instead Alice was trying to call Bob, the messages Alice's UA sent (1, 3, 5) were 

either SIP INVITE messages to establish a VoiP call or SIP MESSAGE messages con­

taining IM data. When these messages reach the desired peer, in this case Peer C, it 

looks in its registration table, determines it is responsible for Bob's registration, and looks 

to see if a registration is present. If there is not, a 404 Not Found is returned (6), indi­

cating the user is not in the system. If Bob is registered, Peer C sends a 302 Moved 

Temporarily reply, providing a contact directly for Bob (6). 

Once Alice has the IP address of Bob's UA, a call between these UAs can be estab-
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lished directly between the peers using conventional (non-P2P) SIP mechanisms without 

involving the overlay (7). Alice's peer caches the information received from Peer C and 

can use that for future communications with Bob. Unless Bob or Alice logs off or switches 

peers (prompting a new search) the overlay is not involved in any further messages or 

conversations between Alice and Bob. Once this location information is passed to the 

UA, the call establishment is unmodified SIP-no P2P functions are required. There­

source location portion can be implemented in a thin adapter shim, leaving the SIP UA 

unmodified. As in traditional SIP, the media also flows directly between the endpoints. 

Note that because Alice and Bob's registration data would likely be stored on different 

peers (i.e, their usernames are likely to hash to Resource-IDs that map to different peers), 

"Peer C" in the register and session establishment examples above would most likely be 

different peers. 

For redundancy, resources should also be registered at additional peers within the 

overlay. As discussed in section 3.5 there are many approaches that can be taken to 

provide redundancy. In dSIP these replicas are located by adding a replica number to 

the resource name and hashing to identify a new Resource-10 for each replica. In this 

way, replicas are located at unrelated points around the DHT, minimizing the risk of an 

attacker compromising more than one registration for a single resource. In the earlier 

SOSIMPLE design, the traditional Chord approach of storing replicas on the successors 

of the responsible peer was used, as shown in Figure 4.3. 

4.1.3.6 NAT Traversal 

Because dSIP uses conventional SIP messages, the mechanisms used for NAT traversal 

by the SIP protocol, including STUN, TURN and ICE are reused. As a consequence, 

many peers are able to participate in the overlay even when behind NATs. For those that 
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Node a 
Add to map: 

alice@alice.com maps to 1.1.1.1 :5060 

Node b (a's first successor) 
Add to map: 

alice@alice.com maps to 1.1.1. 1 :5060 

Node c (a's second successor) 
Add to map: 

alice@alice.com maps to 1. 1.1.1:5060 

Figure 4.3: Example Redundant Storage of Registrations Using Successor Method 

87 

cannot for some reason, conventional SIP can be used, and these peers can connect 

using adapter peers, as described in Section 4.1 .2. Since conventional SIP is used for 

this, there is no need for a P2PSIP Client Protocol (a particular protocol used for clients 

to connect to peers serving as super-peers), and therefore dSIP defines no such proto­

col. To the non-dSIP device, the adapter peer simply appears to be and functions as a 

conventional SIP proxy. 

4.1.3.7 Offline Message Storage, IM and Presence 

Essentially, offline messages in dSIP are stored by the peer responsible for hosting regis­

tration, and a PKI mechanism is used to secure the traffic and messages. A user leaving 

a voicemail or IM for an unavailable user records the message, signs it with their own 

certificate, and encrypts it with the remote party's public certificate. The peer that stores 

the registrations for the recipient also stores the offline messages (or a pointer to them), 

and they are retrieved the next time the recipient performs a user registration with the 

overlay. Note that other items such as buddy lists, configurations etc. can also be stored 

in the overlay to address the requirement of User Mobility Support. 
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IM is supported via the SIP MESSAGE method and routed like any other message 

using the P2P mechanisms described above. For presence, When a P2P UA starts, 

the user's buddy or contact list is consulted. The SIP SUBSCRIBE/NOTIFY mechanism 

(using P2P mechanisms to locate the resources) is used to attempt to establish sub­

scriptions with these users. These subscriptions track the availability of the buddies. If 

the buddy is not connected, the subscription will be attempted later. The address of the 

peer responsible for the user's information (not the address of the UA itself) will also be 

cached, and if that peer supports the functionality, it can serve as a presence server for 

the offline peer. 

4.2 RELOAD: A Binary Protocol for P2PSIP 

RELOAD is a binary protocol, designed to be used alongside SIP to maintain a DHT and 

perform lookup tasks (SIP-using-P2P). Message encoding derives from the encoding 

used in the STUN protocol [82]. The formal specification of the RELOAD protocol, includ­

ing protocol syntax/productions and network element processing instructions is included 

in Appendix B. 

4.2.1 Why SIP-using-P2P 

While we believe P2P-over-SIP to be a superior technical solution for a pure P2PSIP 

solution, there are a few advantages to a separate protocol. The most obvious are that 

a P2P-over-SIP protocol can be used for other applications, and the protocol can be 

designed as a clean sheet. Additionally, there are a few less obvious advantages to a 

distinct protocol, particularly one based on an existing binary encoding such as STUN: 
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• A fixed-length header can be used for routing the message through the overlay 

without the contents needing to be parsed (or even visible) by intermediate peers. 

• The header includes no information about specific IP addresses because none are 

needed to route along an overlay. The header only includes source and destination 

Peer-IDs as well as some minor option and version flags. Clearly separating the 

header components necessary for routing from the message contents simplifies 

processing and increases security. 

• Although the header uses fixed-length, fixed-offset fields, the content of the mes­

sage is in STUN-based TLV (Type-Length-Value) format, extending a syntax for 

which many implementers (and many NAT-capable applications) will already have 

a parser. Furthermore, this extensible design allows great flexibility in supporting a 

variety of DHT and security algorithms using the same base peer protocol. 

• A clean design allows for NAT traversal operations as part of the base design, in­

cluding establishing new RELOAD connections and tunneling SIP or other applica­

tion protocols required by P2PSIP. 

• This design offers support for security primitives that separate the roles of mes­

sage sender and resource owner, allowing a single message to contain multiple 

signatures authenticating different portions of the message content. 

4.2.2 The RELOAD P2PSIP Architecture 

In general, the architecture of RELOAD is quite similar to the architecture of SOSIM­

PLE/dSIP described in Section 4.1.2. However, there are a number of differences. 

Strictly speaking, a RELOAD peer has no requirement to implement SIP. While a UA 

intended for interpersonal communication would clearly do so, it is possible that RELOAD 
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could be used to implement other applications, including file sharing. Additionally, even 

in a P2PSIP deployment, there might be reasons to have additional peers participating in 

the overlay, storing resources, etc., but not actually participating as SIP devices. 

As a result of this disconnect between the P2P and SIP functionalities, the behavior 

of adapter peers is somewhat different in a RELOAD deployment. An adapter peer must 

implement both RELOAD and SIP and act as a SIP proxy on behalf of the conventional 

SIP clients it serves, sending requests to store, retrieve, and locate resources as required 

on behalf of these clients. 

4.2.3 Protocol Design of RELOAD 

4.2.3.1 Binary Messages 

RELOAD uses binary message with a fixed length header. Fixed headers can be faster to 

process than messages without a fixed header because the headers can be processed by 

the stack and redirected to the appropriate peer without processing the entire message. 

RELOAD provide three classes of messages: Peer, Resource, and Transport. Peer 

messages are designed to enable peer joins, or registrations, and peer searches, and 

perform a role roughly analogous to the peer operations in dSIP (Section 4.1.3.4) in that 

they are used for operation of the DHT. Resource messages include the GET, PUT, and 

TRANSFER messages and generally provide similar functions to the user operations in 

dSIP (Section 4.1.3.5) in that they allow information to be stored and retrieved to enable 

the application. Transport messages are designed to help with NAT traversal and the 

tunneling of both P2PSIP and SIP connections between machines, and do not have a 

direct dSIP analog, as dSIP relied on the NAT traversal mechanisms provided by the 

underlying SIP protocol. 
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RELOAD message bodies can contain information about multiple resources. RELOAD 

message bodies can contain the keys and bodies for multiple resource registrations, each 

signed by the person creating the resource. This enables information about multiple re­

sources that a peer is responsible for to be sent in one message. 

The transport methods are used to facilitate NAT and firewall traversal. The OPEN 

transport method provides a control connection that can be used by ICE to establish a 

direct connection between two peers for future RELOAD messages or messages in the 

form of the application's protocols. The TRANSPORT-TUNNEL method is used to encap­

sulate SIP (or other protocol, for other applications) messages in a RELOAD message 

that is routed across the overlay. TRANSPORT-TUNNEL is most useful for non-recurring 

messages such as SIP's INVITE, whereas adding a new peer to the routing table or 

using SIP MESSAGE or SUBSCRIBE/NOTIFY messages will benefit from using OPEN 

to establish a direct connection. Mechanisms are provided for encoding the SIP client's 

Peer-ID, allowing SIP messages to be routed across the overlay using P2PSIP primitives. 

RELOAD messages can contain multiple bodies. For example, a transport OPEN can 

be sent in the same message as a resource PUT saving both time and the expense of 

sending an OPEN after the resource registration has completed. 

RELOAD responses contain a numeric status response code, many of which (for 

example 302 to redirect to a new location) are identical to dSIP responses (which are 

identical to SIP responses, themselves derived from HTTP). 

4.2.3.2 DHT Algorithms and IDs 

Like dSIP, RELOAD allows multiple DHT algorithms to be implemented, allows the peers 

to indicate which is being used, and specifies Chord as a mandatory to implement com-
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man DHT. The creation and use of Peer-IDs and Resource-IDs in RELOAD is very similar 

to that in dSIP, as described in Section 4.1.3.2. 

4.2.3.3 Routing 

Like dSIP's routing (Section 4.1.3.3), various routing techniques, including iterative, sym­

metric recursive, direct response, and strict forwarding are supported. Various mecha­

nisms may be used within the same overlay within the same search. 

4.2.3.4 P2PSIP Resources and Resource Registration 

RELOAD resources support a "one-to-many" mapping, with a single key or name (such 

as a SIP AoR) mapping to multiple resource bodies (registrations), each of which is an­

notated with a number of parameters indicating its type or other attributes. For example, 

a resource such as "bob@p2psip.example.org" can have registrations for types such as 

"voicemail" and "mobile". Each resource body has its own expiration, parameters, and 

signature authenticating the registrations as genuine. A typical user's registration might 

also include a registration body with their certificate, allowing other users to validate the 

signatures as appropriate for the security specification used by the overlay. 

Resource bodies are given separate expirations because they serve different pur­

poses. An office phone, for example, might only be listed while the user is at their desk 

and is refreshed frequently by that device, whereas their voicemail registration should be 

long-lived to allow messages to be left when the user is away from the desk. RELOAD al­

lows invalidation of individual resource bodies as well as mass invalidation of the resource 

values for a particular resource name. 

mailto:bob@p2psip.example.org
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4.2.3.5 Peer Operations 

In general, the process for a peer to join the overlay is similar to dSIP's operation (Sec­

tion 4.1.3.4). Peers wishing to join the overlay in a particular location send a RELOAD 

JOIN message to a bootstrap peer already in the overlay with the desired location. Boot­

strap mechanisms are flexible, as in dSIP. For iterative routing, a series of 302 responses 

will be returned suggesting peers ever closer to the area the joining peer wishes to insert 

itself into, until the peer currently responsible for the area is reached. For iterative routing, 

intermediate peers will forward the JOIN message. Once the admitting peer is reached, 

messages are exchanged to admit the peer, and further messages transfer resources 

and later maintain the overlay. 

4.2.3.6 Resource Operations 

Resource operations are similar to user operation in dSIP (Section 4.1.3.5). Resources 

must be registered into the overlay using RELOAD messages, referred to as resource 

registration. Resource-IDs are calculated by hashing keywords, and the search mes­

sages to locate a peer to store or retrieve a resource can be routed either iteratively or 

recursively. 

A resource registration maps from a key to a value, typically a URL. As different 

resources (a user, a voicemail, a movie) vary in the action taken to use them, and their 

size, the same transport or protocol may not be suitable for different resources. The 

specific mechanism being used may vary and need not be the same within the overlay. 

Essentially, the search for a keyword returns a URL-Iike object, specifying where the 

object can be retrieved, and what protocol is used to retrieve it. RELOAD can be used 

for some of these transfers directly, but is not optimized for large file transfer. An existing 
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mechanism defined for such a purpose, such as HTTP, scp, MSRP or FTP is instead 

used to store and retrieve larger objects. 

For redundancy, a replica number hashing scheme, as used in dSIP and described in 

Section 3.5 is used. 

SIP Sessions are established by contacting the UA identified by the registration in the 

DHT. The first step in establishing a session is locating the remote party, which is done 

by searching for a resource in the DHT (using RELOAD GET messages). If a registration 

is found found, the session (using SIP messages) is then initiated directly with the UA. 

4.2.3.7 Large Messages and Fragmentation 

Practical issues of deploying RELOAD dictate that there is no one transport protocol that 

is appropriate for all situations. Device power, the number of connections that must be 

maintained, durations of typical connections, NAT and firewall policies and capabilities, 

and message size all influence the choice of transport protocol and frequently lead to 

different conclusions. Because stream-oriented protocols such as TCP cannot always be 

used, and because unlike dSIP the underlying protocol cannot be relied upon to provide 

these functions, the RELOAD protocol provides fragmentation support. 

RELOAD messages that are very large can be sent in multiple fragments or chunks. 

Each fragment contains one part of the complete message. The Frag-Offset header 

field indicates the overall position of each fragment, and the Frag-Length header field 

indicates the total fragments in the complete message. The FRAG header field is a flag 

that indicates whether the RELOAD message is fragmented or not. Finally, the LFRG 

header field is a flag that indicates whether this is the last fragment of the complete 

message. 
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4.2.3.8 NAT Traversal and Transport Operations 

RELOAD is designed with NAT traversal in mind. The Transport OPEN and TUNNEL 

messages are designed to be used by peers to ask neighbors for help opening NAT holes 

and establishing connections that can reliably be used to traverse NATs. OPEN is used to 

establish new RELOAD connections between peers and serves as a control connection 

for the exchange of ICE messages used to facilitate NAT traversal. OPEN is used when 

establishing new Routing Table entries by both iterative and recursive routing and may 

be needed for iterative routing when the searching peer is redirected to a peer it cannot 

directly contact. In this case, the redirecting peer serves as the intermediary, relaying the 

OPEN message between the two peers while they establish their own connection. 

TRANSPORT-TUNNEL is used to encapsulate application messages, such as SIP 

messages, as they are routed across the overlay. Using encapsulation eliminates the 

cost of establishing a direct connection (of benefit to short-lived application connections) 

and provides a way to support applications that do not themselves support the capabilities 

required for using OPEN or ICE directly. 

4.3 Summary 

In this chapter, we have provided a thumbnail sketch of our design of two complete pro­

tocols, the SOSIMPLE/dSIP P2P-over-SIP protocol and the RELOAD SIP-using-P2P 

protocol. Out of necessity, many details have been omitted. More detail of the de­

sign of these protocols can be found in Appendix A and Appendix B, and the detailed 

full specifications (consisting, collectively of several hundred pages) are available on­

line [20, 23, 28, 59, 105, 1 06] 



Chapter 5 

Message Routing for P2PSIP 

In evaluating how best to optimize a P2PSIP network, one of the most critical factors is 

the routing of messages. P2PSIP systems have some unique properties, some of which 

are not always present in file sharing systems. In a P2PSIP system, the connection to 

search for a piece of information (for example the location of another user) may not re­

quire a persistent connection to that peer after the information is returned. In the case of 

locating a remote user, once the location is returned, further communication is with there­

mote user referenced, not the peer storing the information. Additionally, the requirements 

around NATs may differ considerably from those required for file sharing applications. 

As discussed in Section 3.1.1, Internet-scale P2P communications systems must op­

erate in diverse network environments that frequently have a majority of endpoints lo­

cated behind NATs, and we wish to have many of these devices directly join the network, 

rather than connect via super-peers. The choice of routing algorithm-iterative, recur­

sive, etc.-might at first appear to be merely a question of the number of hops taken 

by a message. However, if we choose to utilize peers behind NATs, we must select an 

algorithm that allows them to function efficiently in the overlay, while considering how the 

unique properties of a P2PSIP network may impact algorithm selection. 

96 
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5.1 Narrowing the Field 

Our initial step in selecting a routing technique is to identify and remove those that are 

clearly non-optimal before performing a more detailed analysis on the remaining candi­

dates. To do this, we consider a number of factors, including the specific requirements 

imposed by personal communications, the impact of NATs, and the number of messages 

required. 

To enable this comparison, in Table 5.1, we explore the basic worst-case costs of four 

metrics for the four mechanisms presented in Section 2.3.4.3: 

• The total number of messages (request and response) exchanged between the 

peers for a transaction, neglecting NATs as well as the cost of any messages re­

quired to establish a secure connection. 

• The number of new connections that must be established. We assume a stable 

overlay, meaning that a peer can reach other peers already in the finger table with­

out having to establish a new connection, but peers not in the finger table require 

new connections. 

• Given that some messages will require a new connection, and given that the peer 

may be behind a NAT, we calculate the total number of messages (request and 

response) including the cost for NAT traversal for each new connection. 

Table 5.1: Comparison of costs associated with various routing algorithms 
Algorithm Messages New Conn. Msgs Including Msgs Processed 

Established NAT Traversal by Interior Peers 
Symmetric Recursive 2lg(N) 0 2lg(N) 4 

Direct Response lg(N) + 1 1 3lg(N) + 5 2 
Iterative 2lg(N) lg(N)- 1 10 lg(N)- 8 2 

Forward-only 2lg(N) 0 2 lg(N) 2to4 
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All values are worst-case. We assume an overlay of size N peers and further assume 

an algorithm like Chord, with worst-case routing cost of lg(N). 

As our protocols {SOSIMPLE, dSIP, and RELOAD) as well as the new RELOAD be­

ing developed in the IETF all use ICE to establish connections in the presence of NATs, 

we calculate costs for NAT traversal based on ICE. ICE relies on a rendezvous service 

to exchange information between the two devices attempting to form a direct connec­

tion. When used in a P2P overlay, the two peers can form a direct connection by relying 

on the overlay to route the ICE offer/answer messages that allow them to establish a 

direct connection. Using ICE to open a new connection requires the round-trip open 

requesVresponse routed along the existing overlay connection plus at least one pair of 

STUN requesVresponse messages sent directly between the two peers in each direction. 

As already mentioned, for our analysis we assume that the connections to immediate 

neighbors are established in advance and keep-alive messages occur during periodic 

DHT maintenance, therefore we look only at the cost of contacting a peer not in our set 

of neighbors. 

Using symmetric recursive routing, messages are proxied through the overlay and no 

new connections must be opened through NATs. Forward-only routing is similar, as only 

established connections are used. The round trip number of messages in both cases is 

thus 2 lg(N). For symmetric recursive, each interior peer deals with four messages­

receiving then sending the request on, and receiving and sending the response on. 

Forward-only is similar, but as the return path may be different, each peer may only 

process two messages {four if the return path is the same as the request path, which 

may occur either by coincidence or because an algorithm with symmetric neighbor tables 

such as Kademila is being used.) 

Direct response routing attempts to deliver the response directly to the querying peer. 

If the peer is behind a NAT that allows the traffic through, then the direct response is more 
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efficient, but otherwise, the direct response requires an ICE exchange to open the con­

nection. For our worst-case examination, we assume that the ICE exchange is required 

each time. In Section 5.2 we show a more detailed analysis that takes into account the 

number of peers that are unreachable behind NATs and gives a more favorable impres­

sion of the direct response routing technique, but we include it here for completeness. 

Given this assumption, the cost in column four of Table 5.1 is derived by counting the 

normal lg(N) + 1 messages, plus a round-trip symmetric recursively routed ICE open 

request {2 lg(N) hops), plus the STUN connection checks {4). 

For an iterative algorithm, many more connections must be established. While the first 

peer where a message is sent is the direct neighbor of the source, all subsequent con­

nections may be (and in a large overlay are statistically likely to be) with non-neighbors. 

A new NAT connection must be opened for each of these connections. In all, as many as 

lg(N)- 1 new connections may need to be established. By routing the ICE open request 

through the referring peer, each ICE request/response will take exactly 4 hops, with an 

additional 4 STUN connection check messages. 

5.1.1 Eliminating Iterative Routing 

Table 5.1 shows that Iterative is an extremely expensive routing technique in the presence 

of NATs. In the worst-case example presented here, the number of messages needed 

approaches 5 x the number needed for symmetric recursive routing for large overlays. 

In Section 5.2 we explore a more detailed analysis of direct response routing that 

takes into account the probability that a peer is behind a NAT, illustrating that direct re­

sponse is not always as expensive as it appears here. The reason that we did not perform 

a similar analysis for iterative routing is because of the greater number of new connec­

tions that need to be established. With direct response only one new connection must 
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be established. If 50% of the peers are behind NATs, direct response will succeed 50% 

of the time, and the tradeoff between better performance when NATs were not present 

and decreased performance in their presence seemed worth a closer look. With itera­

tive routing however, lg(N) - 1 new connections must be established. For an overlay of 

even moderate size, perhaps 1 000 users, this implies approximately 9 new connections 

need to be established using iterative routing. Even with only 10% of the peers behind 

NATs, the chances of having all new connections established directly without needing 

NAT traversal is less than 40%. 

Additionally, there is little gain to using iterative. Unlike direct response, the total 

number of message is the same as symmetric recursive. The primary advantage to 

an iterative approach is that interior peers need to provide less processing-that is, the 

effort is pushed to the requesting peer, rather than intermediary peers. While this is 

appealing in a P2P system where designing the system to cause the requester to do 

the bulk of the work (for their own requests) increases fairness, direct response offers 

the same advantage. In the environment where using iterative would suffer the least 

penalty (environments with no NATs), direct response also performs well, offering the 

same reduction in processing by intermediate peers while also reducing total message 

count significantly. As a result we eliminate iterative routing from our analysis and focus 

on more promising techniques. 

With that said, there is one area where iterative routing offers an advantage. Iterative 

routing offers some protection against DoS attacks in that it is more difficult to use another 

peer as a DoS surrogate or multiplier when iterative routing is used. In a completely 

unsecured network, this may be a consideration. See section 5.4.1 for a more in-depth 

discussion of this issue. 
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5.1.2 Eliminating Forward-Only Routing 

Forward-only offers performance very similar to symmetric recursive routing. The same 

number of messages are used, and like symmetric recursive routing, no new connections 

need to be established because all messages are routed through existing finger table 

entries. The advantage offered by forward-only routing is that (for larger overlays where 

the response path is unlikely to overlap the request path), the load imposed on interior 

peers is more evenly distributed. 

Unfortunately, there are a number of significant drawbacks that cause us to eliminate 

forward-only routing as a recommended technique for P2PSIP. 

First, forward-only cannot be used as the exclusive routing technique in an overlay. 

In the case of a peer just joining the overlay, the response from an admitting peer to the 

joining peer cannot reach the joining peer if it is forwarded around the overlay because the 

joining peer is not yet properly inserted and therefore not reachable via overlay routing. 

As a result, messages during a peer join would need to be routed differently from other 

messages. While this is obviously possible, it introduces additional complexity into the 

design of a system. 

In addition, in overlays with unstable or incorrect routing information (for example in 

the presence of significant churn), the odds of a message being misrouted are higher 

using forward-only routing. With forward-only routing, on average twice as many finger 

table entries must be correct to enable the message to be routed properly- both the 

forward path and the forward-calculated return path must be correct. A similar argument 

applies for peer failure, as twice as many peers will be traversed, there is twice the chance 

that a failed peer will be encountered in routing the message. 

As a result, we also eliminate forward-only routing from our evaluation. Given this, 

for the remainder of our analysis, we will analyze the two remaining existing proposals: 
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symmetric recursive response and direct response. 

5.2 Return Routing and Asymmetric Connectivity 

As ever increasing numbers of applications are delivered using Peer-to-Peer (P2P) ar­

chitectures, the networks on which these applications must operate, and the resulting 

constraints, have become more diverse. In particular, these networks often exhibit asym­

metric network connectivity problems, where a peer may be unreachable by some fraction 

of other peers in the overlay, or a peer may not be able to directly respond to a peer that 

can send it messages. As discussed above. these connectivity problems are most often 

caused by NATs or firewalls. However, these failures may also be cause by transient 

phenomena such as link failures or BGP updates [39]. 

Given that we eliminated iterative and forward-only routing from consideration in the 

sections above, and that the forward routing cost of symmetric recursive and direct re­

sponse routing are the same, the critical remaining element in comparing P2P routing al­

gorithms is the mechanism used to return responses to the sending peer. With some ex­

ceptions [17, 38] the literature on response routing for P2P algorithms, particularly DHTs, 

neglects the impact of asymmetric network connectivity problems on selecting a tech­

nique, advocating the most efficient solutions, even when these are impractical in real 

deployments. Some direct comparisons of these techniques in the literature [26] neglect 

transient network problems and the costs associated with opening new connections (for 

example the overhead to secure the connection). On the other hand, the Internet protocol 

standards community has defaulted to using techniques known to work in the presence 

of NATs, but which are often highly inefficient [52] for peers with adequate direct connec­

tivity. 
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In this section we examine direct response and symmetric recursive response, and 

use an analytical model to evaluate their performance in the context of operation on the 

open Internet, considering the impact of asymmetric connectivity, as well as considering 

the costs incurred when new connections are established. 

5.2.1 Deployment Environments 

The environments in which P2P applications are deployed differ widely in terms of the 

fraction of peers that may have asymmetric connectivity. In some environments virtually 

all peers are able to reach each other directly, with no interference from NATs. Exam­

ples of this types of environment include LANs, overlays where the majority of peers are 

located in universities or large companies, and certain experimental deployments like 

Planetlab [71 ]. 

Other environments may have a majority of peers that have some connectivity issues, 

including peers behind one or more NATs. For example, overlays where many peers are 

located in homes, small corporate offices, or in countries where 1Pv4 addresses are in 

short supply fit this description. The fraction of such peers in an overlay may change 

based on time of day, changes in the geographical location or changes in the population 

from which the peers are drawn. 

5.2.2 Defining An Analytical Model for Comparing Response Times 

For our comparison, we make a number of assumptions about the overlay and the net­

work that it is operating on. The motivation for these assumptions is to make the system 

very closely correspond to the emerging IETF DHT standard protocol RELOAD. Our as­

sumptions in this section are: 
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• A DHT-based overlay using an algorithm (for example, Chord [94].) requiring lg(N) 

messages in the worst-case for routing, where N is the number of peers composing 

the overlay. 

• As we wish to evaluate the impact of NATs and security messages on the cost of 

routing, and want to impose the maximum penalties when they are encountered, we 

use the worst-case value for routing cost here, rather than the average case lg(:) 

for a DHT. Either could be used. As a result, our model presents worst-case values 

for the cost of actually routing a message, although we arguably use average cost 

routing for deciding when a peer is behind a NAT (i.e., when we assume 50% of 

peers are behind NATs, we assume 50% of queries encounter a NAT, not a truly 

worst-case world where, by bad luck, 100% of requests encounter a NAT). If we did 

this, as we will see, recursive response would always provide the best results, and 

our model would provide no useful information. As a result, we obtain something 

that is probably best characterized as an "expected worst-case result". 

• As we eliminated iterative and forward-routing from consideration in Section 5.1, all 

the techniques being compared require the same lg(N) message to traverse the 

overlay from requester to responder. We analyze only the costs associated with 

the response message(s) in this section. Note that this differs from section 5.1 

where we considered total cost (request and response). We also assume re­

quests follow established, stable links between peers where necessary NAT traver­

sal and security establishment negotiation are complete. 

• We use a request-response transaction model for the analysis. Once the responder 

has provided an answer, the transaction is concluded. Further actions (e.g. NAT 

traversal) that might be required for additional or permanent connections between 

peers, such as establishing media streams are not considered. From the point of 

view of our application this makes sense. With P2PSIP, the overlay is used to locate 
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the remote party, and there is not always a need for a persistent connection to the 

remote party. 

• In keeping with our overall design, this analysis evaluates the performance of tech­

niques that maximize the number of peers able to fully participate in the overlay (full 

peers, or "super-peers"). While there may be other motivations for a peer to rely 

on a super-peer for services, we evaluate alternative routing techniques that do not 

require super-peers simply for reachability. 

5.2.2.1 Modeling Symmetric Recursive Response Routing (SR) 

In symmetric recursive response routing (Figure 2.7, Section 2.3.4.3), responses follow 

the original path of the request through the overlay. This approach has been shown to 

provide a number of advantages for systems running on the open Internet. Because 

messages retrace the established connections of the DHT, there is no need to negoti­

ate new secure connection or perform NAT traversal, and therefore this return routing 

technique ensures responses are properly delivered, assuming the overlay is stable and 

the path still exists when the response is sent. However, this approach is expensive in 

terms of total message count and number of hops traversed in those cases where a direct 

responses would be possible. 

For Symmetric Recursive, the message count for the response, MCsR, is equal to the 

length of the forward path, lg(N). To route the response, intermediate peers are required 

to process and forward the response. Excluding the sender and recipient, that number of 

intermediate peers that must receive and re-transmit a response on its way back to the 

sender, IPsR is lg(N)- 2. Assuming mean timer for messages to traverse one hop in 

the overlay, we can additionally define the mean propagation time TsR required for the 

response to travel from the responder back to the requester. For SR, the key metrics are 
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defined as: 

MCsR 

TsR 

IPsR 

lg(N) 

T lg(N) 

lg(N)- 2 

5.2.2.2 Modeling Simple Direct Response Routing (SO} 

106 

In the simplest form of direct response routing, responses are sent directly to the sender 

in a single message. This approach is very efficient, and is frequently proposed as the 

mechanism for sending responses in a P2P network. However, if a direct connection is 

not possible or has not been pre-negotiated between the responder and requester, this 

approach will fail. Additionally, delivery failures may not be detectable when an unreliable 

transport is being used with this technique, as there is no way to determine if the mes­

sage was sent properly. This mechanism is by far the most efficient in networks where 

connectivity is guaranteed (e.g. closed networks, managed networks, etc.), but in this 

basic form is unsuitable for networks where direct connectivity cannot be guaranteed. 

While limited in where they can be used, the values for the message count, mean 

propagation time, and processing by intermediate peers when using the simplest direct 

response mechanism are useful as a baseline of the lowest possible cost, and can be 

defined as: 

MCsv = 1 

Tsv = r 

IPsv 0 
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Note for Simple Direct, no processing by intermediate peers is required to deliver 

responses. 

5.2.2.3 Modeling Practical Direct Response Routing (DR} 

To properly analyze the cost of a direct response technique in an open Internet deploy­

ment, it is necessary to augment the simple direct response routing method. For our 

analysis, we will define and use an augmented version of direct routing, which we refer to 

as augmented Direct Response (DR). Augmented DR is able to function in the presence 

of NATs due to a fall-back mechanism for SR response routing. 

In this routing approach, additional messages exchanged between the requester and 

responder determine if a direct connection exists. If the reachability mechanism fails 

(after a timeout), we retransmit the response using Symmetric Response. (An alternative 

in the failure case would be to instead perform NAT traversal using some technique such 

as ICE and establish a connection, but such an exchange is far more expensive, and not 

required for simple request-response transactions). 

The minimum message count of the augmented technique is two, assuming both re­

quester and responder are directly reachable: the response and an acknowledgment 

returned from the requester. In the proposed RELOAD draft protocol being proposed by 

the IETF, TLS [33] or DTLS is used to secure the response. If the DTLS protocol [65, 73] 

is used to establish secure channels between peers, seven messages are exchanged 

between requester and responder. Assuming the initial message pair in the DTLS hand­

shake is used as the initial reachability check between requester and responder, eight 

messages (seven to negotiate the connection as well as the response) will be used in the 

transaction. As symmetric response always works, the burden of proof is on the direct re­

sponse to show that it can work. Therefore we use this worst-case value in our analysis. 
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In any case, the difference between the technique evaluated here, using eight messages, 

and a simpler approach using only two messages is a constant factor. 

Further, because the DTLS protocol recommends an initial timeout on the security 

handshake of Ts = 1s, we use this value for our analysis as the timeout for a re­

sponse. (For systems not using TLS, a shorter timeout, perhaps 3x mean RTT time, 

or Ts = 450ms could be used, but we have chosen to use the more expensive cost in 

the model to capture worst-case behavior.) In the event no response is received to the 

initial message within 1s, the responder assumes the requester is not directly reachable, 

aborts the handshake, and resends the reply using Symmetric Response. Using T to 

represent the mean latency on an overlay link, defining the probability any given peer 

is unreachable to be P, and including the seven message cost of establishing a DTLS 

connection prior to sending back the response itself, this gives us mean message count 

and propagation times of: 

MCvR = P (lg(N) + 1) + (1- P) 8 

TvR = P (T lg(N) + Ts) + (1- P)(8 T) 

Finally, the cost for intermediate peers to route a response for DR depends on the prob­

ability that the sender is reachable. However, when the response can be directly routed, 

there is no cost to intermediate peers to process the response. I PvR can thus be defined 

as: 

IPvR = P (lg(N)- 2) 
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5.2.3 Analytical Model Results 

5.2.3.1 Comparing Message Count 

First we examine the mean message counts required for each type of response routing 

technique. Analytically, Simple Direct (SD) is always most efficient, using a low fixed 

number of messages MCsD = 1, but is impractical in all but the few networks with perfect 

symmetric connectivity. when augmented Direct Response (DR) succeeds in sending a 

message directly, eight messages (in the case of DTLS security) will be used. This will 

be lower than the cost of a Symmetric Recursive (SR) response MCsR = lg(N) in all 

overlays with N > 28 . In the case that the direct connection of DR fails, it will need to fall 

back to and incur the full cost of SR, plus an additional message (the initial connectivity 

check that failed). 

In an overlay where peers are unreachable directly with probability P, Figure 5.1 

shows each mean message count MC for Symmetric Recursive (SR), Simple Direct 

(SD) and augmented Direct Response (DR) for overlays of size N = lOK and N = 1M 

(SD is identical for overlays of any size). 

Comparing SR to DR, we first evaluate the conditions under which DR will outperform 

SR in terms of average message count. Setting MCDR equal to MCsR and solving for 

P, we find that the mean expected worst-case message count of these two techniques is 

equivalent when the following condition is met: 

p _ lg(N)- 8 
EQ- lg(N)- 7 
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Figure 5.1: MC vs. P by routing type 

so -·-·-·-·-·· 
SR 10K -­
DR 1 OK ------------
SR1M-
DR 1M ........... . 

110 

When P < PEQ for a given size network, DR response routing will outperform SR 

response routing, and when P > PEQ• SR will be more efficient in terms of mean mes­

sage count. Graphically, we present this probability for overlays of size 1 OK to 1M peers 

in Figure 5.2. For an overlay of size N = lOK, DR will outperform SR when P < .66, and 

for N = 1M DR will outperform SR for all P < .92. In terms of DR's performance, DR re­

quires one additional message than SR in the worst-case. In the best case, DR requires 

a factor of 19({1) less messages than SR. While in many cases the number of peers likely 

to be unreachable cannot be estimated (particularly for a generic package or protocol 

intended for use in many environments), if it is static and can be measured or calculated, 

Figure 5.2 can be used to determine which technique is most efficient. For large overlays 

and unless nearly all peers are behind NATs, DR is usually more efficient than SR in 

terms of message count, even when the high additional overhead of establishing DTLS 

connections and needing to occasionally fall back to SR is considered. 
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Figure 5.2: PEQ vs. N for SR/DR routing 

5.2.3.2 Comparing Propagation Time 
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To analyze the mean propagation time for responses, we need to determine a value to 

use for the average overlay link propagation time r. An analysis of the Planetlab envi­

ronment in 2008 found that the average RTT latency between nodes was approximately 

150ms [1 04]. The majority of Planetlab nodes are located at universities and research 

institutes, meaning their RTT latency is lower than the average experienced by nodes 

in various environments and geographical locations, e.g. home users. For this analysis 

we use an average one-way time for a message to travel between peers of one half this 

value: r = 75ms. 

Figure 5.3 shows the average propagation time T tor each of the techniques with 

respect toP. For SR and DR, we illustrate these techniques for overlays of size 1 OK and 

1M. 

Here again SO exhibits the best performance, with constant time, but can only be 

used in environments where complete connectivity can be assured. Just as with total 

message count, whether SR or DR is more efficient depends on the fraction of peers 

that are not directly reachable. Again we compare these by setting TsR equal to TvR 

and solving for P. We find that the average time for these techniques is equal when the 

following condition is met: 



CHAPTER 5. MESSAGE ROUTING FOR P2PSIP 

2.5 .------.------.---.----...--------, 

2 

1.5 
(i) -

0.5 

0 L--~--~--~--~-~ 
0 0.2 0.4 0.6 0.8 1 

Probability Unreachable (P) 

Figure 5.3: T vs. P by routing technique 

I lg(N)- 8 
PEQ = lg(N) + 7f - 8 

Because r = 75ms and rs = 1 s, 7f ~ 13.33, and we have: 

I lg(N)- 8 
PEQ ~ lg(N) - 5.33 
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Plotting P~Q vs. N, we can see in Figure 5.4 that, as with message count, DR be­

comes more efficient as N increases. However in terms of mean response time, the frac­

tion of peers that must be unreachable for SR to outperform DR is considerably lower. 

In the case of time, DR will outperform SR only when P < .128 for N = 1 K and when 

P < .47 for N = 1M. In terms of DR's performance, in the worst-case, when a direct 

response is attempted and fails, DR will require an additional rs = 1 s. more time than SR 

to route the response. This delay is due to waiting for the direct message to time out, and 
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then retrying using SR. In the best case, DR again improves performance over SR by a 

factor of lg(:,l) in terms of average time. For smaller overlays, SR almost always outper­

forms DR in terms of propagation time, but for larger overlays, systems with a moderate 

number of NATs will achieve lower propagation times using DR. 
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Figure 5.4: PE:Q vs. N for SR/DR routing 

5.2.3.3 Comparing Processing by Intermediate Peers 

The final metric to compare these techniques is in terms of the mean number of mes­

sages intermediate peers must process to deliver the message. As with all comparisons 

in our analysis, in the event a network with perfect connectivity can be guaranteed, SO is 

optimal, requiring no processing by intermediate peers, I Psn = o. 

For SR and DR, DR provides a more efficient routing in terms of the average cost 

incurred by intermediate peers to process messages for any case where P < 1. When­

ever some peers are publicly reachable, at least some of the messages in a DR system 

will be routed directly. Similarly, in the worst-case P = 1 when the entire overlay con­

sists of mutually unreachable peers, the failed direct attempt will require no processing 

by intermediate peers, and the fall-back to SR routing results in equivalent processing 

by intermediate peers In general, DR always performs at least as well, and for a given 
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value of P, ;~~fJ) = J, times more intermediate peers on average will need to process 

messages for an overlay using SR routing instead of DR routing. 

5.2.3.4 Selecting a Technique 

If a system does not need to consider non-symmetric connectivity, for example a system 

running strictly in a data center, within one LAN, etc., using a simple, direct response 

mechanism (SD) provides the highest performance by any metric. However, in the open 

Internet, few if any deployments will be free of NATs. As a result, SD is only practical for 

specialized deployments. 

Deciding if SR or DR is most appropriate depends on two factors: determining what 

metric the system is optimizing for, and determining how many peers are not directly 

reachable (P). 

For systems optimizing for average message count (e.g. systems where transmission 

cost is high, such as battery powered RF systems and pay-per-bit connections), DR will 

provide significantly better performance for systems with all but the highest values of P, 

with the advantage increasing as N increases. 

In addition, processing by intermediate peers is always less in a DR than an SR de­

ployment. For systems attempting to minimize the work being performed by intermediate 

peers (e.g. systems where participation requires incentives, and reducing workload is a 

priority), DR will always provide equivalent or superior performance to SR. 

In deployments optimizing for average propagation time, the case for DR is less clear. 

Only a small number of peers need to be unreachable for SR to perform better for systems 

with a small number of peers. Again, as the system gets larger, DR performs better 

relative to SR, both in terms of the number of peers that can be unreachable and in terms 
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of impact on RTT. For a large system of 1M, lg(N) ~ 20, so if T = 75ms and Ts = 1 OOOms, 

RTT for SD is 3s, and ranges from 1.575-4s for DR. 

One could reach the conclusion that the best choice is application-specific. For exam­

ple, in a time-insensitive application such as performing a lookup of a user's location in a 

VoiP system, ring time will usually exceed the possible 1 s cost for a failed connection at­

tempt with DR, and DR might be chosen. For very time-sensitive applications, where the 

cost of a failed attempt (1 s of lost time) is unacceptable, for example control events in a 

video games, SR might be used. While for very special purpose applications and deploy­

ments this is true (and we provide Figures 5.2 and 5.4 for guidance in these situations), 

we are interested in the development of general-purpose protocols and applications, and 

in the next section propose an adaptive approach and show the approach is superior for 

general purpose protocols. 

5.3 Adaptive Response (AR) 

When developing general purpose libraries and protocols for deployment in multiple net­

work environments, selecting an optimal technique is not possible. In such a case, we 

instead recommend using an adaptive approach. If a peer finds that most responses 

are reaching it directly, it requests that DR be used to route responses, while peers that 

observe that few if any messages reach them directly would request SR be used. We 

now present a design for such an algorithm we call Adaptive Response (AR). 

The Adaptive Response algorithm allows each peer to determine experimentally (as 

best as possible) whether or not it believes itself to be reachable directly from the outside. 

If the peer believes it is directly reachable, it requests that DR response routing is used 

to route its responses. As always, DR will resort to an SR technique if a direct response 

fails, ensuring reachability. If the peer believes it is not reachable directly, it requests SR 



CHAPTER 5. MESSAGE ROUTING FOR P2PSIP 116 

be used instead, eliminating the cost of attempting a direct response. To support this 

technique, a flag is used by the requesting peer to indicate a preferred mechanism to 

use when sending it a reply, and by the responding peer to indicate which technique was 

used to send a response. 

A similar approach was informally considered in [60) as a possible use for the NAT dis­

covery algorithm presented there, but no actual mechanism was proposed or analyzed, 

and no applications discussed. 

When connecting to the network, the requester begins by assuming they are reach­

able, and requests that responses are sent directly using DR. The responder attempts 

to honor this request by first sending the response directly, but if this fails, reverts to SR 

(essentially following the rules for DR). In either case, the responder marks the response 

indicating which mechanism (SR or DR) was ultimately used to transmit the response. Af­

ter some number of requests, the sender evaluates the percentage that have succeeded 

to determine if they should continue using DR or request that future responses be trans­

mitted using SR. 

Depending on the importance of minimizing message count, these "probe" messages 

could be attempted as part of ordinary searches as the application runs, or could be 

performed when the peer joins the overlay. Alternately, the peer could use the techniques 

described in [60] to determine if it is reachable. 

5.3.1 Evaluating Adaptive Response Analytically 

To explore the performance of AR, we first evaluate the worst-case performance using 

the model from Section 5.2.2. As with that model, we will use worst-case values for the 

routing costs of the overlay (lg(N)) in the case that messages are routed recursively. In 
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Section 5.3.2, we present the results of a simulation which calculates the actual (average) 

cost of routing for an overlay. 

While a real system will not be 100% correct in determining reachability, if we imagine 

a stable system using this approach, having detected perfectly or having been provided 

the information via an oracle, the performance is determined strictly by the fraction of 

reachable peers. For those that are reachable, the performance of a Perfect Adaptive 

Response system (ARP) will incur the cost of a successful direct response for reachable 

peers and the cost of SR for unreachable peers. As with DR, the cost for intermediate 

peers to route a response is dependent on P. There is no processing required by inter­

mediate peers when direct routing succeeds. Following the analytical model defined in 

Section 5.2.2, the average message counts, response time (again, including setup time 

for DTLS connections), and processing by intermediate peers is: 

MCARP P (lg(N)) + (1- P) 8 

TARP = P (r lg(N)) + (1- P)(8 r) 

I PARP = P (lg(N) - 2) 

A real system is unlikely to have perfect visibility. Some peers will incorrectly deter­

mine or will not yet have accurately determined if they are reachable. To model such 

a scenario, we introduce C, the probability that the peer has correctly determined if it 

is unreachable. For simplicity, we further assume that the peers guess incorrectly pro­

portionate to the fraction that are unreachable. In other words, if 90% of the peers are 

reachable, than 90% of the incorrect guesses will be reachable peers believing they are 

unreachable. We will augment this simplistic model with simulation in Section 5.3.2. 
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Given these assumptions, and assuming the system has at least N > 28 peers, we 

can calculate the expected mean message count and propagation time for a more realistic 

Adaptive Response system AR as follows. First we define MCerr and Terr as the values 

when the peer guesses incorrectly: 

MCerr P (lg(N) + 1) + (1- P) lg(N) 

P (r (lg(N)) + rs) + (1- P)(r lg(N)) 

When the peer guesses correctly, the values for ARP are used. We can then define 

the combined mean message counts, response transit times and intermediate processing 

for a more realistic system MCAR· TAR and !PAR as: 

MCAR = C MCARP + (1- C) MCerr 

TAR C TARP + (1- C) Terr 

!PAR C (P (lg(N)- 2)) + (1- C)(lg(N)) 

5.3.1.1 Analytical Results for Adaptive Response 

In Figures 5.5 and 5.6, we evaluate the performance of the AR routing algorithm in three 

forms for overlays of size N = lOK and N = 1M and various values of P: theoretically 

perfect (ARP), as well as 90% and 75% correct at determining if the peer is unreachable 

(AR90 and AR75, respectively). 
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As with DR, all variations of the AR algorithm outperform SR for nearly all values of 

P except overlays where virtually all peers are unreachable. ARP, unsurprisingly, outper­

forms or equals both DR and SR for all overlays. However, even in the worst environment, 

AR75, where only 75% of peers have determined their reachability correctly, AR improves 

performance relative to DR for high values of P, while incurring little additional cost for 

low values of P. As expected, the performance of the various AR algorithms, like the DR 

algorithm, improves compared to SR as the size of the overlay N increases. 

Figure 5.7 presents the results slightly differently. Again, we plot for overlays of size 

N = lOK and N = 1M, but with a fixed P = .5, a value of P for which DR outperforms 

SR. Now, we plot mean message count against accuracy C. We plot results for values 

of C from .5 (the expected value for simple guessing) to 1, indicating perfect accuracy. 

Figure 5.8 is similar, but for a fixed P = .9, a value of P for which the performance of DR 

and SR are more similar. 
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Here we see that, as expected, as the accuracy of determining if the peer is reachable 

increases, the overall message count decreases. When many peers are directly reach­

able (P = .5), AR significantly outperforms SR even when effectively guessing (C = .5), 

and at 70% accuracy offers performance very close to DR. When many peers are un­

reachable (P = .9), SR and DR are flipped, with SR performing better, but AR's perfor­

mance advantage is even more dramatic. When N = 1M, AR outperforms both SR and 

DR in terms of mean message count for nearly any value of C. The advantages of being 

able to eliminate both the unneeded use of SR when peers are directly reachable and the 

overhead of trying direct response when they are not results in reduced message counts 

over SR (and over DR for environments with many NATs) in many deployment scenarios. 

Looking at average propagation time, we again compare ARP, AR90 and AR75 to SR 

and DR in Figures 5.9 and 5.10 for overlays of size N = 10K and N = 1M. 



CHAPTER 5. MESSAGE ROUTING FOR P2PSIP 

2 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

2.6 

2.4 

2.2 

2 

1.8 

en 1.6 -h 1.4 

1.2 

1 

0.8 

0.6 

0.4 

0 0.2 0.4 0.6 0.8 
Probability Unreachable {P) 

Figure 5.9: T vs. P (N = lOK) 

,,,,,,,,, 
,,,,,, 

,,,,,,, ······· ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·- -·-·-·-·-·---~~'"'"'\.l._,_.:~:;·.-"foL.-·.-:;-;-; 

,,,,,,,,,, ·········· 
,,,,,,,, ········ 

,, ·······::::::::::::.·::::::::::::: .... ··· 
,,,,,,,,,,,,'' .... ·········· 

,, ······ 
······ 

0 0.2 0.4 0.6 0.8 
Probability Unreachable {P) 

Figure 5.10: T vs. P (N =1M) 

1 

SR 
DR 

ARP 
AR90 
AR75 ........... . 

SR 
DR 

ARP 
AR90 
AR75 .......... .. 

122 



CHAPTER 5. MESSAGE ROUTING FOR P2PSIP 123 

Here the results are more dramatic. Except for overlays where virtually all peers are 

reachable (very small P), AR significantly outperform DR. Like DR, AR outperform SR 

for small P, but most importantly, AR offers a significant performance improvement over 

DR for larger values of P. AR offers average propagation times better than either SR or 

DR for values of Pless than approximately .5 for N = lOK and .7 for N = 1M. Just as 

significantly, even for very large P, AR75 increases response propagation time by only 

25% for N = lOK and less than 20% for N =1M. 

Viewing the performance relative to accuracy (Figures 5.11 and 5.12), one can see 

that for mean response time, where SR offers better performance than DR, AR offers a 

dramatic improvement over DR, approaching and eventually exceeding the performance 

of SR as accuracy improves. 
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While our analytical model provides information to compare the techniques when worst­

case routing cost is considered, a proper evaluation of the techniques needs to provide 

more information about average case performance. Our analytical model could certainly 

be extended for average cost routing in a DHT (19kn)), but such a model would still fail 

to capture the effects of churn. To obtain this information, we developed a simulator to 

evaluate the techniques in the average case, and in the presence of churn. The simulator 

uses Chord as the underlying DHT algorithm. For the simulation, we made a number of 

assumptions: 

• We simulate for 24 hours in one minute intervals. We simulate using 10000 peers 

in the overlay. 
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• We assume that some number of peers are behind NATs. We performed simula­

tions for 1 0%, 30%, 60%, 90% and 95% of the peers behind NATs. 

• We performed simulation runs for a number of different average peer lifetimes 

{churn): 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours and 

12 hours. 

• We assume each peer executes an average of two searches each minute. This 

number was calculated by assuming two phone calls per hour, 20 instant messages 

per hour, queries for the status of 40 buddies, and an overlay stability operation 

once per minute. While these numbers are somewhat arbitrary, as actual call rate 

information and IM information is often a closely guarded secret, from anecdotal 

evidence these are reasonable values. In the future we would like to obtain more 

realistic data. As a result, we perform 2 x N searches each time cycle, however the 

selection of the particular peers performing the call is random for each search. 

• To simulate churn, we calculate a probability that any given peer leaves in a simu­

lation step based on the average lifetime of the peer for that simulation run. We use 

this probability to randomly select a corresponding number of peers each interval. 

These peers leave and are immediately replaced, resulting in a constant number of 

peers at all time, N = 10000. For simulator efficiency reasons, the location in the 

overlay of the new peer is identical to the old peer, but the determination if the peer 

is actually behind a NAT, and any information it has determined about that state 

is reset to ensure appropriate impact on the performance of the AR and DR algo­

rithms. As will call distributions, information on real-world peer lifetimes is difficult 

to come by, and one future goal of our research is to obtain better information as to 

average peer lifetime in a communications system. 

• For each peer using AR, we assume that they will try the first five messages as 

DR to determine if they are reachable, and pay the corresponding cost in terms of 
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having to timeout and retransmit as SR if they are behind a NAT. Even if the first 

message fails, they will continue to perform five tests, as in a real deployment other 

factors (e.g. packet loss) may be at work, and a peer deciding if it is behind a NAT 

when the first message fails is unreasonable. Once a peer determines it is behind 

a NAT, it will continue to use SR for its lifetime. 

The results of our simulation are presented below, and show that AR performs very 

well in the average case, in all deployments except those where nearly all peers are 

behind NATs and those displaying a great deal of churn. 

Because of the nature of the simulation, there is a high degree of variability between 

call hops and routing times. When being routed back recursively, responses may take 

anywhere from 1 to lg(N) hops to traverse the overlay. As with the analytical model 

above, we assume a ls timeout when an attempt to route directly fails, and a time of 75ms 

for each hop. As a result, time for DR and AR can range from 75ms to lOOOms + 75ms x 

h, where h is the number of hops. Due to this, we have not plotted standard deviations 

on the graphs for clarity, but full results including standard deviations are presented in 

Appendix C. 

As one would expect, the deviations are large but constant for symmetric recursive 

(illustrating that messages take from 1 to lg(N) hops, but do so uniformly and indepen­

dently of churn or the presence of NATs). However for AR, the deviations are minimized 

when there are few NATs or when there are many NATs, and are most variable with an in­

termediate number, when some messages are routed using each technique. DR similarly 

shows the least variability at the extremes of NAT density, when it either always succeeds 

or always fails and must fall back to SR. 
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5.3.2.1 Simulating Hop Counts 

In Figure 5.13, we present the mean hop counts measured for each routing technique. 

For clarity, runs for each technique (SR, AR, DR) use the same color, regardless of 

NAT density, and runs with the same NAT density uses the same symbol, regardless of 

technique. SR provides identical results for any NAT density, as the symmetric recursive 

mechanism is unaffected by NATs, and is plotted only once. For DR and AR, the number 

following each technique indicates the NAT density. For example, AR1 0 is the result for 

AR when an average of 10% of the peers are behind NATs. Note that this is different 

from the graphs for the analytical section, where the number in the label indicated 

the accuracy C of determining the peer was behind a NAT. In this case, the peers in 

the simulation determine their NAT state by sending messages. As a result, longer lived 

peers are more likely to have accurate information, while peers with short lifetimes are 

more likely to have incorrect information. 

We can see that for hop count AR outperforms SR in all cases, with the performance 

improvement being more marked when fewer peers are behind NATs. DR also tends to 

outperform SR when there are few NATs, but for higher NAT densities, the cost of the 

additional message sent in failed attempts to route directly adds up, and the average cost 

for DR90 and DR95 exceeds the cost of SR. AR reduces this cost, as many of the peers 

behind NATs learn and send messages using SR, and the few that learn they are not 

behind NATs gain an advantage, resulting in slightly more efficient average routing cost, 

even with many NATs. 

While the effect is subtle, one can also see that ARs performance decreases when 

churn is higher (peer lifetime lower). This is expected, as short-lived peers spend more of 

that lifetime testing if they are behind a NAT, and thus effectively performing as DR peers, 

and less of the lifetime with an accurate picture of their NAT situation. 
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5.3.2.2 Simulation Routing Times 
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While the hop count results are similar to the worst-case results from our analytical model, 

the results for time show that in the average case, the performance of AR is typically sig­

nificantly better than SR and DR. In Figure 5.14 we present the results for each technique. 

In general, we see that AR techniques perform better that SR, as do DR1 0 and DR30, 

however when the NAT density exceeds 60%, DR's performance becomes considerably 

worse, as a result of frequently paying the assumed 1 s timeout. 

As a result, in Figure 5.15 we exclude these three results (DR60, DR90, DR95), 

allowing us to more closely examine the results for the remaining routing techniques. As 

with the number of hops above, we see that performance worsens as the NAT density 

increases for both AR and DR, and that the performance of AR worsens for higher churn. 

Despite this, AR always outperforms DR for the same NAT density, and in all but the 
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worst cases-NAT densities above 90% and peer lifetimes of under 2 hours-significantly 

outperforms SR. 
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5.3.3 Results of the Analysis 

In conclusion, the environment in which a P2P application is deployed has a tremendous 

impact on which response routing technique is most appropriate. The portion of peers 

with asymmetric connectivity, most frequently caused by NATs, heavily impacts which 

techniques offer the best performance. Given a-prior knowledge of the fraction of peers 

reachable in a specific deployment and an understanding of what it is that the application 

is optimizing for (message count or propagation time), one can use Figures 5.2 and 5.4 

to determine whether direct response or symmetric recursive routing will provide better 

results. 

However in the majority of cases when the network environment cannot be accurately 

characterized in advance, when multiple metrics need to be optimized, or for general 

purpose libraries or protocols, we have shown that the Adaptive Response algorithm pre­

sented in Section 5.3 offers an attractive middle ground, outperforming both DR and SR 

in all but the worst network environments. When the mean hop counts and propagation 

times for responses are considered, AR offers superior performance in nearly all network 

situations. While worst-case time cost of AR may exceed SR, as we have seen in the 

analytical model, simulations indicate that if the goal is to optimize mean performance 

over all environments, AR is the superior choice. 

5.4 Other Concerns and Topics in P2P Routing 

5.4.1 DoS Attack and Parallelization Risks 

The various recursive routing mechanisms allow for peers behind NATs to participate in 

the overlay, but introduces the hazard of DoS amplification attacks. Recursive algorithms 



CHAPTER 5. MESSAGE ROUTING FOR P2PSIP 131 

allow peers to serve as surrogates (although not amplifiers) in DoS attacks against a par­

ticular target. In Figure 5.16, we assume an attacker A can send requests to intermediate 

peers I searching for target peer T. With iterative routing, the intermediate peer I replies 

with a closer peer to use to attempt to reach T, but the attacker must directly send toT 

to attack it. In the recursive approach, attacker A can send to many intermediate peers 

I, all of which relay the message to T. The intermediate peers essentially serve as DoS 

surrogates for A and may assist in obfuscating the source of the attack. The number of 

peers A can use as surrogates is limited only by the number of intermediate peers I that 

are reachable from A. If we take Chord as an example, each peer has lg(m) immediate 

neighbors, where m = 160 is the size of the address space. If the attacker sends to every 

neighbor, lg(m) messages will reach the target. (Ironically, while this capability provides 

a way for an attacker to obfuscate the sender, sending parallel messages to a single peer 

using different paths also can be used as a defense against routing attacks, since if a bad 

peer on path attempts to drop the message, a parallel message will likely arrive [93]). 

Figure 5.16: Surrogate Attackers in a Recursive Approach 

Another problem with recursive algorithms is that combining them with parallelization 

can further aggravate the DoS Attack, turning intermediate peers into attack amplifiers 

as well as surrogates. Some iterative DHT algorithms such as EpiChord or Kademlia 

improve average case performance using parallel search, where each initiator sends the 

request to k intermediate peers, and the algorithm parallelizes by sending the request to 

an average of p neighbors at each level of the search. Combining parallelization with a 

recursive algorithm creates an explosive DoS multiplication attack risk. In a DHT where 
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queries have a worst-case depth of lg(N) (where N is the number of peers in the system), 

and all messages are delivered to the target, the number of messages Mr arriving at the 

target T can in the worst-case be Mr = k p1g(N). For even small values of k and small 

branching factors such as the p = 3 used by EpiChord, taking a recursive approach is 

disastrous. If we assume N = 100, ooo, and k = 3, (not even a particularly large DHT), 

we have Mr ~ 3 316·6 ~ 250 million. Techniques can be applied to detect and drop 

duplicate messages, but the target may still receive N messages, far more than a direct 

attack could produce. 

In a generic DHT without certified identity, the fact that intermediate peers have re­

layed the messages can make determining who sent the message impossible, leaving no 

simple way to find the attacker. Signing of the overlay messages, including signing each 

entry in the "Via-List" can prevent obfuscation, but cannot prevent the attack completely. 

In essence, the target of the attack would be able to determine who had attacked them, 

but not prevent the attack. Additionally, such an approach is computationally expensive, 

requiring that certificates are checked far more frequently than we propose in our sys­

tem. Exploring how distributed reputation services and certificates might be combined to 

reduce the impact of this problem is an area of future work. 

At present, the solutions being utilized for P2PSIP use a recursive routing technique, 

but with signed messages and no parallelization, the total number of messages cannot be 

increased beyond those the sender could create themselves, and signed messages elim­

inate any ability for the sender to disguise the source of the messages. In such a system, 

the capability to attack other peers via the overlay degenerates to the same capability as 

directly attacking. Clearly, in unsecured systems (or more precisely systems where the 

identity of the sender is not verified) or systems using parallelization to increase lookup 

performance, this is a serious concern that must be considered for recursive routing ap­

proaches. 
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5.4.2 A (seemingly) Dead End: Social Network Routing 

A very interesting addition to routing that we explored early in our research is to augment 

traditional DHT based routing table entries with social links. The basic idea is to take 

advantage of the availability of the buddy list or phone directory on a communications 

device to provide improved routing. 

Six degrees of separation, a common theory among social scientists, postulates that 

all individuals are separated by 6 connections. While buddy networks are unlikely to be 

rich enough to capture this property (every person one knows is not in their buddy list), 

we felt that an opportunity for significant performance improvement in routing by using 

social networking. Routing techniques that capitalize on this additional information could 

greatly increase the efficiency of searches by searching for users via buddies, rather than 

the network as a whole. Since many people have friends with similar interests, statistically 

speaking people they want to contact are more likely to be buddies of their buddies than 

buddies of random peers. To contact another computer scientist, for example, it is likely 

someone else in the computer science department may know them. By searching their 

buddies' buddy lists, could we produce a more efficient technique for routing the call than 

a traditional DHT which does not capture this additional information? 

One possible approach is to simply use the buddies as additional fingers. The creators 

of SPROUT [62] first proposed such a system as a mechanism for getting "more trusted" 

results in a file sharing system, and we worked to extend this work to apply to communi­

cations systems. We adapted our simulator to use the SPROUT technique, which simply 

uses buddies as additional fingers, but while it is possible that a remote party could be 

reached easily in such a way, the fact that the fingers are randomly spaced means the 

impact of these new fingers proved statistically no better than simply adding more fingers. 

We attempted a more advanced technique based on social networking [3, 47, 67, 96, 
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99], but unfortunately we ran into two (currently seeming) insurmountable obstacles to 

evaluating such an approach. To make such a model meaningful, this approach requires 

several things we were not able to obtain. We would need good information on the dis­

tribution of most people's buddy lists, and would need to be able to determine what the 

average overlap between friends is. Essentially, we would need access to buddy list in­

formation (anonymized data would be sufficient to construct such a model), but this data 

is viewed as extremely sensitive by the organizations that have it. 

Additionally, information that would be difficult to obtain in any circumstances is re­

quired. Having a metric of which buddies are a good match to you would be the first 

requirement. It is likely that a close friend and a parent, while both in a user's buddy list, 

would be of radically differing value in reaching another friend, for example. While one 

could imagine sharing a hashed list of buddies with buddies, and determining which have 

the most overlap, some users would be unlikely to share buddy lists, even in a hashed 

form. In any case, without out-of-band information about who one is trying to reach (a 

friend, a work colleague, a family member), and similar information about the current set 

of friends, choosing which friends are best to try is a very difficult problem. Except for 

extremely large networks, lg(N) search begins to quickly look more efficient when the 

cost of dead end searches is so high. 

In summary, while a considerable amount of time was spent on this effort, at present 

we cannot say that it has yielded any useful results. We will continue to explore pos­

sibilities for using social networking to augment search, when more practical solutions 

arise. 
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5.5 Summary 

In this section we have provided a detailed discussion of the appropriate routing tech­

nique to use for a communications system. We first explored the differences in overall 

routing techniques, showing that iterative and strict-forward techniques are unattractive 

for a number of reasons, and limiting the pool of options to symmetric recursive and direct 

response techniques. We then presented an analytical model comparing the expected 

worst-case performance of these approaches, and provided guidance on when each is 

most appropriate. Finally, we presented an adaptive technique, AR, which optimizes be­

tween SR and DR techniques, and showed analytically and through simulation that for 

general deployments, AR provides superior average-case mean performance for both 

hop count and response propagation time in the majority network environments. 



Chapter 6 

Conclusion 

In this chapter we outline the contributions presented in each chapter, and discuss future 

directions for our work. 

6.1 Results and Contributions 

The design of a P2P system optimized for interpersonal communications differs signif­

icantly from a system designed for applications such as file sharing. In Chapter 3, we 

explore the unique requirements imposed by a P2P communications system, and their 

impact on system design. We explain why the simplistic mechanisms for IP-based Peer­

ID assignment are vulnerable to attack in networks with NATs, and explore the problems 

of asserting identity when there is no central server available at run-time. To address 

these issues, we present an enrollment-time certificate authority model, and show how it 

can be used to secure both user and DHT operations. We further explain how this ap­

proach improves security and strengthens identity assertions without requiring the server 

to be contacted at peer-join or call time. 

136 
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In Chapter 4 and Appendices A and B, we present two complete designs for the 

Internet protocol needed for P2PSIP: 

• SOSIMPLE/dSIP provides a complete P2P-over-SIP solution, defining the mecha­

nisms and SIP messages required for a peer to perform both P2P and SIP opera­

tions using a single protocol, SIP. 

• RELOAD is a SIP-using-P2P binary protocol designed to encode P2P messages. 

We illustrate how this protocol is used in tandem with SIP to build a P2PSIP system. 

This work led to the development of the research area of P2PSIP, including a work­

ing group at the IETF, now extending a descendent of RELOAD. Additionally, this work 

provided the impetus for a number of conferences and publications which address or 

document the work performed in P2PSIP. 

As a result of the different requirements on P2P imposed by communications, and 

because of a need to operate in the open Internet where NATs are common, we show 

in Chapter 5 that many commonly proposed routing techniques, including iterative and 

forward-only, are sub-optimal. After narrowing the viable routing techniques to direct 

response and symmetric recursive, we introduce an analytical model showing that the 

NAT density in the network environment is the key deciding factor in determining which 

technique is optimal for a given deployment. We discuss which approach is most effective 

in different network environments, and provide guidance for determining which technique 

should be used by applications. Additionally, we show that neither technique is optimal 

for all network environments, and that each strongly favors optimization of a particular 

parameter, either message count or latency. 

Motivated by the strong impact of NAT density on optimal technique selection, we 

go on in Chapter 5 to present an adaptive response mechanism, AR. AR infers NAT 
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connectivity and adapts accordingly, switching dynamically between symmetric recursive 

or direct response routing. Using both an analytical model and simulation, we show that in 

all but the worst environments-those with high churn and nearly all peers behind NAT s­

our technique offers a significant performance advantage in terms of both mean hop 

count and mean response propagation time. Additionally, we show that AR's performance 

is less sensitive to NAT density, making it well suited to general-purpose protocol design. 

6.2 Future Work 

While this work has made a large impact in the P2P communications area, there re­

main interesting questions to answer and further work to be done. Areas for future work 

include: 

• We have explored the use of P2P systems for interpersonal communications, and 

developed protocols that are optimized for this type of P2P application, however 

many other applications of P2P beyond interpersonal communications and file shar­

ing exist. In particular, the use of P2P to improve the performance of streaming 

media has been a topic of considerable interest in the literature, but to date no 

standard protocol for messages between peers for such a system exists. While 

many aspects of the protocol implications of this application are poorly understood, 

and would certainly impose new requirements, we feel our work could be extended 

to help design a protocol for use in these scenarios. 

• While our work has shown adaptive response to outperform other response tech­

niques in most environments, the impact of presence on the speed with which a 

peer can determine its NAT status has not been fully explored. As most users have 

a number of buddies, and these are contacted immediately upon joining an overlay, 
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this initial search may prove to be sufficient to quickly identify the peer's NAT sta­

tus, further improving the performance of AR. We would like to further explore this 

question, either through simulation or direct implementation of the AR technique in 

a P2PSIP client. 

• On the other hand, our work has currently explored only simple NAT scenarios. In 

our simulation a NAT, once characterized, does not change behavior, NAT behavior 

is relatively simplistic and uniform across NATs, and peers are behind only a sin­

gle NAT. While these are reasonable assumptions for most networks, in the open 

Internet some more unusual cases exist. We would like to further explore these 

considerations in the future. 

• At present, our models and simulations evaluating the AR algorithm use a fixed, 

average value for the time required to traverse a link. We would like to obtain infor­

mation about the distribution of peers behind various types of access links (mobile, 

various types of home broadband, enterprise, etc.), and the average propagation 

time for messages using each type of link. Given this information, we would like to 

include these characteristic in our simulation in an effort to better take into account 

the performance of AR in the open Internet. This result could also be achieved 

by instrumenting and measuring the performance of an actual deployed P2PSIP 

system. 

• Finally, if we are able to obtain better information on average peer lifetime, on the 

number of peers located behind NATs and the NAT type, or on average call patterns 

in a P2P communications system, we will be better able to refine our model. Such 

additional information would allow us to better determine if AR truly outperforms 

other routing techniques in actual deployments. 
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6.3 Conclusion 

We have shown the need for a standardized, decentralized system for interpersonal com­

munications, and have presented our solution, P2PSIP. We have designed two protocols 

and corresponding systems to implement P2PSIP. We have shown how to secure these 

protocols with a minimal amount of interaction with a central server, offering both user and 

DHT-Ievel security. We have shown that the need for security and the presence of NATs 

in the open Internet dictates routing technique, and have introduced a novel adaptive 

technique, Adaptive Response. We have shown through analytical models and simula­

tion that Adaptive Response is better suited than existing approaches for environments 

requiring security and where NAT density cannot be determined in advance. 



Appendix A 

dSIP Protocol Specification 

A.1 Message Syntax 

Much of this text appears in [23], and as such is a snapshot of the work on dSIP at that 

date. Protocol development on dSIP was not required for further research, and has not 

been continued, although our work has directed the work in [52] and others are continuing 

to use our research to develop that protocol in the IETF. 

This section provides normative text explaining the syntax of the extensions we use 

for SIP messages. 

A.1.1 Option Tags 

We create a new option tag "dht" as described in RFC 3261. This option tag indicates 

support for DHT based P2PSIP. Peers MUST include a Require and Supported header 

with the option tag dht for all messages that are intended to be processed using dSIP or 

include P2P extensions. Clients supporting P2P and contacting another SIP entity using 
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APPENDIX A. DSIP PROTOCOL SPECIFICATION 142 

a non-P2P mechanism for a transaction that may or may later be P2P SHOULD include a 

Supported header with dht. For a typical session establishment the search within the DHT 

MUST specify Require dht, whereas the actual contact with the resource's UA SHOULD 

include a Supported header with dht but SHOULD NOT include a Require header with 

dht. 

A.1.2 Hash Algorithms and Identifiers 

All IDs used for an overlay must be calculated using the same algorithm. Implementa­

tions MUST support the SHA-1 algorithm, which produces a 160 bit hash value. The 

hash algorithm used is specified in the DHT-PeeriD header, described below. An imple­

mentation MAY rely on a secret initialization vector, key, or other shared secret to use the 

identifier as an HMAC [56] such that no peer may join the overlay without knowledge of 

the shared secret, however this technique by itself does not protect the overlay against 

replay attacks. 

Both Peer-IDs and Resource-IDs MUST have the same range of values (map to the 

same space). Formally: 

P2PID = token 

When using SHA-1 : 

P2PID = 40LHEX 

A.1.2.1 Peer-IDs 

The particular DHT algorithm being used MAY specify an alternate mechanism for de­

termining Peer-ID. Similarly, some security models may assign Peer-IDs from a central 
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authority. In the event that neither of these mechanisms are being used, the Peer-10 

MUST be formed by taking the IP address of the peer, without the colon or port, and 

with no leading zeros, and hashing this string with the hash algorithm. Then the least 

significant sixteen bits of the hash are replaced by the port used by the peer. For peers 

behind a NAT participating in an overlay on the public Internet, they must identify their 

address on the public Internet through a protocol such as STUN and use this address for 

their Peer-10. 

The string hashed to obtain the Peer-10 is formally defined below as ipaddress. 

ipaddress IPV4address I IPv6reference 

PeeriD is formally defined as: 

PeeriD = P2PID 

A.1.2.2 Resource-IDs and the Replication 

Resource-IDs MUST be formed by hashing the resource URI after converting it to canon­

ical form. To do that, all URI parameters MUST be removed (including the user-param) 

except for the replica URI parameter, Any escaped characters MUST be converted to 

their unescaped form. Formally: 

ResourceiD = P2PID 

A.1.3 P2PSIP URis 

Because hashing URis to produce identifiers is a non-trivial cost, dSIP messages are 

constructed including these values already calculated. This is strictly as a courtesy to 
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peers processing messages for this peer, as it prevents them from having to hash the 

URI again before routing. Identifiers provided in a message are a courtesy only and 

MUST NOT be used when making any changes to the data stored in an overlay, as they 

may be spoofed or incorrect. If the hash parameter is used incorrectly for routing, this 

only affects the transmitting peer's user. If it is used to insert or modify stored information, 

it can affect the system's integrity. Peers MUST verify the hash of all URis before making 

changes that affect the overlay. 

A.1.3.1 Peer URis 

A P2PSIP peer is represented by constructing a SIP-URI (or SIPS-URI) with the keyword 

"peer" or a short form of "P" for the userinfo portion. The URI parameter "peer-ID", or the 

short form "piD" MUST be used. 

Peer URI ("peer@" I "P@") hostport 
uri-parameters 

11 .n 

' 
PeeriD-Param 11.11 

' 

Formally, the peeriD uri-parameter is defined as type other-param from RFC 3261 

with a pname of "peeriD" or "piD" for short form, and a pvalue which is of type PeeriD. A 

peer receiving a PeerURI MUST verify the hash value of the PeeriD-Param before using 

it to update its routing table. 

PeeriD-Param ("peer-ID" I "piD") EQUAL PeeriD 

For search operations, where an identifier is being searched for, but the host respon­

sible for that identifier is unknown, hostport MUST be set to "0.0.0.0". All non-search 

operations MUST specify a valid hostport. 
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P2P Peer URis MUST NOT include the resource-ID URI parameter (below), as it is 

intended to define information about resources that are stored in the overlay, not informa­

tion about the peers making up the overlay. P2P Peer URis used in name-addr SHOULD 

NOT include any display-name information, and peers receiving name-addrs for peers 

with display-name information MUST ignore the information. 

Examples, using a shortened hash for clarity: The URI for a peer using the SHA-1 

hash algorithm, with hashed ID ed57487add matching an IP address 10.6.5.5 used in a 

To header. Uses the short forms: 

To: <sip:P@10.6.5.5;piD=ed57487add> 

The URI for a peer using the SHA-1 hash algorithm, with hashed ID ed57487add 

matching an IP address 1 0.6.5.5 used in a To header. Uses the long forms: 

To: <sip:peer@10.6.5.5;peer-ID=ed57487add> 

A.1.3.2 Resource URis and the resource-ID URI Parameter 

Resource URis are no different for P2PSIP resources than for non-P2P SIP applications. 

However, because calculating the Resource-ID is a significant expense, the optional URI 

parameter resource- ID=iResource-IDl, or the short form riD=iResource-IDl, SHOULD 

be provided. This parameter is a courtesy only and MUST NOT be used when making 

any changes to the data stored in an overlay without being recalculated, as it may be 

spoofed or incorrect. The resource-ID URI parameter is of type other-param as defined 

in RFC 3261. 

resourceiD-param ("resource-ID" \ "riD") EQUAL ResourceiD 
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P2P Resource URis MUST NOT include the PeeriD-Param URI parameter, because 

this indicates that the target of the URI is a peer. P2P Resource URis MAY include other 

user-parameters such as user=phone. 

Examples {again using shortened hashes for clarity): The URI for a user resource with 

username bob@p2psip.org using the SHA-1 hash algorithm, with hashed Resource-ID 

723fedaab1. The optional resource-ID URI parameter is included, using the long form: 

sip:bob@p2psip.org;resource-ID=723fedaab1 

The URI for a user resource with username bob@p2psip.org using the SHA-1 hash 

algorithm, with hashed Resource-ID 723fedaab1. The optional resource-ID URI parame­

ter is included, using the short form: 

sip:bob@p2psip.org;riD=723fedaab1 

The URI, used in a To header for user Alice White, with username alice@p2psip.org. 

This example omits the optional resource-ID URI parameter: 

To: "Alice White" <sip:alice@p2psip.org> 

A.1.4 The DHT-PeeriD Header and Overlay Parameters 

We introduce a new SIP header called the DHT-PeeriD header. This header is used to 

express the Peer-ID of the sending peer as well as to identify the name and parameters 

of the overlay. The format of the DHT-PeeriD header is as follows: 

mailto:bob@p2psip.org
mailto:bob@p2psip.org
mailto:alice@p2psip.org
mailto:alice@p2psip.org
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DHT-PeeriD "DHT-PeeriD" HCDLDN PeerURI SEMI algorithm SEMI 
dht-param SEMI overlay-param *(SEMI generic-param) 
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Examples: A peer with an SHA-1 hashed Peer-ID of a04d371 eon IP 192.168.1.1. We 

include the PeerURI, algorithm, dht-param, and overlay as well as the optional expires 

header parameter. In this example, the overlay name is chat and the DHT algorithm being 

used is dhtalg1.0 

DHT-PeeriD: <sip:peer@192.168.1.1;peer-ID=a04d371e>;algorithm=sha1; 
dht=dhtalg1.0;overlay=chat;expires=600 

A.1.4.1 Hash Algorithms and the algorithm Parameter 

The hash algorithm used for the overlay is specified as a parameter of the DHT-PeeriD 

header. This parameter MUST appear in the DHT- PeeriD header. It MUST be the 

algorithm used to calculate all Peer-ID and Resource-tO values used in the message. It 

SHOULD NOT appear in other headers in the message, but if it does it MUST match the 

value in the DHT-PeeriD header. 

The hash algorithm is specified using the algorithm parameter from RFC3261. The 

tokens used to identify the algorithm MUST be the same as those used in other SIP 

documents such as [70]. Currently, those consist of 'sha1 ', indicating SHA-1 as defined 

in [1] and 'hmac-sha1 ', indicating HMAC-SHA 1 [56]. Implementations MUST support the 

SHA-1 algorithm. 

A peer MUST reject a message with 488 Not Acceptable here if it specifies a differ­

ent hash algorithm than that used by the peer's overlay. An initial contact to a bootstrap 

peer may specify the hash algorithm as the wildcard "*", in which case the joining peer 
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indicates its willingness to use whatever hash algorithm the bootstrap peer identifies in 

its response. A peer responding to such a request MUST route the message according 

to the rules described in the Message Routing Section if all other elements of the mes­

sage are correct and the routing algorithm indicates such a response is appropriate. If 

the normal response would be to allow the join with a 200 OK, the receiving peer MAY 

respond with a 302 redirect to itself and specifying the algorithm used in this overlay, in 

which case the joining peer should reissue the message with the proper hash algorithm 

specification. 

A.1.4.2 Overlay Names and the overlay Parameter 

Each overlay is named using a string, which SHOULD be unique to a particular deploy­

ment environment. Peers will use this value to identify messages in cases where they 

may belong to multiple overlays simultaneously. These are defined formally simply as a 

token: 

overlay-name "*" I token 

The overlay-param parameter MUST appear in the DHT-PeeriD header. It SHOULD 

NOT appear in other headers in the message, but if it does it MUST match the value in 

the DHT-PeeriD header. This parameter is defined formally as: 

overlay-par am "overlay" EQUAL overlay-name 

A peer MUST reject a message with 488 Not Acceptable here if it specifies an overlay 

in which the peer is not participating. An initial contact to a bootstrap peer MAY specify 

overlay-name as the wildcard "*", in which case the joining peer indicates its willingness 
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to join whatever overlay the bootstrap peer identifies in its response. A peer responding to 

such a request MUST route the message according to the rules described in the Message 

Routing section if all other elements of the message are correct and the routing algorithm 

indicates such a response is appropriate. If the normal response would be to allow the 

join with a 200 OK, the receiving peer MAY respond with a 302 redirect to itself, in which 

case the joining peer should reissue the message with the proper overlay specification. 

A.1.4.3 DHT Algorithms and the dht Parameter 

The routing algorithm used to implement the overlay is specified using a dht-param in 

the DHT-PeeriD header. It SHOULD NOT appear in other headers in the message, but 

if it does it MUST match the value in the DHT-PeeriD header. This parameter is defined 

formally as: 

dht-name 
dht-param 

= token 
= "dht" EQUAL dht-name 

The behavior of a peer receiving a message with a dht-param specifying a routing 

algorithm other than that which it is following is dependent on the routing algorithm. An 

initial contact of a bootstrap peer MAY specify dht-param as the wildcard "*", in which 

case the joining peer indicates its willingness to use whatever DHT algorithm the boot­

strap peer identifies in its response. A peer responding to such a request MUST route 

the message according to the rules described in the Message Routing section if all other 

elements of the message are correct and the routing algorithm indicates such a response 

is appropriate. New routing algorithms SHOULD be designed to maintain backward com­

patibility with previous algorithms where possible. If the routing algorithm specified is 

incompatible, a 488 Not Acceptable Here response MUST be returned. 
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A.1.4.4 PeeriD Expires header parameter 

The DHT-PeeriD header MAY include an Expires parameter indicating how long a recipi­

ent may keep knowledge of this peer. If not present, a default of 3600 is assumed. Mobile 

peers may wish to specify a shorter interval. 

A.1.5 The DHT-Link Header 

We introduce a new SIP header called the DHT-Link header. The DHT- Link header is 

used to transfer information about where in the DHT other peers are located. In partic­

ular, it is used by peers to pass information about its neighbor peers and routing table 

information stored by a peer. 

DHT-Link 

link-par am 
expires-param 

"DHT-Link" HCOLON PeerURI SEMI link-param SEMI 
expires-param *(SEMI generic-param) 

"link" EQUAL link-value 
"expires" EQUAL delta-seconds 

The value of linkvalue- that is, how you represent what type of link this is, is defined 

by the DHT algorithm specification. The generic-param leaves flexibility for an algorithm 

to add additional parameters if needed. 

As an example, the header might look like (using a shortened 10 digit Peer-ID for 

clarity). The value*** here is intended to represent a value determined by the particular 

DHT: 

DHT-Link: <sip:peer@192.168.0.1;Peer-ID=671a65bf22>;link=***;expires=600 



APPENDIX A. DSIP PROTOCOL SPECIFICATION 151 

A.1.5.1 Expires Processing 

Each DHT-Link header MUST contain an expires parameter. Each peer maintains an 

expiration time for each of its neighbor and routing table entries. These expiration times 

are updated whenever the peer receives a response with a longer expiration time than 

it currently maintains, most commonly in the PeeriD header of a response to a join or 

search. A peer MUST NOT report an expired entry in a DHT-Link header. A peer MUST 

update the expires parameter with the current value, adjusted for passed time, each time 

it generates a DHT-Link header. 

A.2 Message Routing 

When a peer sends a message within the DHT, it begins by calculating the target ID it is 

attempting to locate, which might be its own location in the DHT, or a user's registration, 

for which it hashes the user's URI to obtain the appropriate Resource- I D. It then consults 

its routing table, and its other neighbor peers, for the closest peer it is aware of to the 

target ID. 

The messages in the overlay MAY be routed either iteratively or recursively. The 

Request-Disposition header as described in [85] SHOULD be used to indicate if the next 

node should process the message using a recursive or iterative mechanism. If the header 

is omitted, the receiving node may process the message either recursively or iteratively. 

If the Request-Disposition header is iterative, the contacted peer MUST determine if 

it is responsible for that target I D. If it is not, then the contacted peer MUST issue a 302 

redirect pointing the search peer toward the best match the contacted peer has for the 

target I D. The searching peer then contact the peer to which it has been redirected and 

the process iterates until the responsible peer is located. 
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In recursive routing, the peer sends a message to the peer it knows that is nearest to 

the target. If the contacted peer is not responsible for the target ID, it MUST forward the 

query to the nearest peer to the target that it knows, and the process repeats until the 

target is reached. This process follows standard proxy behavior in RFC 3261. 

A.2.1 Peer Registration 

When a peer (the joining peer) wishes to join the overlay, it creates its Peer-ID and sends 

a REGISTER message to a bootstrap peer already in the overlay, requesting to join. Any 

peer in the DHT may serve as a bootstrap peer, although we expect that most UAs will 

be configured with a small number of well-known peers. 

Following the iterative routing scheme, the bootstrap peer looks up the peer it knows 

nearest to the Peer-ID of the joining peer and responds with 302 redirect to this nearer 

peer. The joining peer will repeat this process until it reaches the peer currently respon­

sible for the space it will occupy. 

If recursive routing is being used, the bootstrap peer looks up the peer it knows near­

est to the Peer-ID of the joining peer and forwards the REGISTER message to that peer. 

This process of forwarding the message repeats until the peer currently responsible for 

the space the joining peer will occupy is found. 

Once the peer responsible for the joining peer's portion of the namespace is located, 

the joining peer then exchanges DHT state information with this peer, called the admitting 

peer, to allow the joining peer to learn about other peers in the overlay (neighbors) and 

to obtain information about resources the joining peer will be responsible for maintaining. 

Other DHT maintenance messages will be exchanged later to maintain the overlay as 

other peers enter and leave, as well as to periodically verify the information about the 

overlay, but once the initial messages are exchanged, a peer has joined the overlay. 
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A.2.2 Resource Registration 

The peer registration does not register the peer's user(s) or other resources with the 

P2PSIP network- it has only allowed the peer to join the overlay. Once a peer has joined 

the overlay, the user that peer hosts must be registered with the system. This process 

is referred to as resource registration. This registration is analogous to the conventional 

SIP registration, in which a message is sent to the registrar creating a mapping between 

a SIP URI and a user's contact. The only difference is that since there is no central 

registrar, some peer in the overlay will maintain the registration on the users behalf. 

Resource registrations are routed similarly to peer registrations. The resource's peer 

calculates the resource-ID and contacts the peer it is aware of closest to the resource­

ID. This search process continues in either an iterative or recursive manner until the 

responsible peer is located. This peer then stores the registration for that user and returns 

a 200 response. 

For redundancy, resources should also be registered at additional peers within the 

overlay. These replicas are located by adding a replica number to the resource name and 

hashing to identify a new resource-ID for each replica. In this way, replicas are located at 

unrelated points around the DHT, minimizing the risk of an attacker compromising more 

than one registration for a single resource. 

A.2.3 Session Establishment 

Sessions are established by contacting the UA identified by the registration in the DHT. 

The first step in establishing a session is locating this peer, which is done by searching for 

a resource in the DHT. The name of the target resource is used to calculate a resource-ID 

and a REGISTER message with no Contact information (a conventional SIP search) is 



APPENDIX A. DSIP PROTOCOL SPECIFICATION 154 

sent to the closest known peer to that resource- I D. The search iterates until the respon­

sible peer is located. The responsible peer then returns either a 200 OK with the Contact 

information for the resource or a 404 Not Found. The session is then initiated directly 

with the resource's UA. 

If the peer needs to have the session establishment routed through the overlay, it MAY 

use the Request-Disposition header with a value of proxy to request that intermediate 

nodes proxy the invite over the overlay on their behalf. This is particular critical for NAT 

traversal. 

A.2.4 DHT Maintenance 

In order to keep the overlay stable, peers must periodically perform book keeping oper­

ations to take into account peer failures. These DHT maintenance messages are sent 

using REGISTER messages and the overlay algorithm being used will dictate how often 

and where these messages are sent. DHT maintenance messages are routed similarly to 

peer registrations and resource registrations. The peer calculates the Peer-ID of the peer 

it wants to exchange DHT information with and contacts the peer it is aware of closest 

to that Peer-ID. This search process continues until the current closest peer to the target 

Peer-ID is located at which point the peers exchange DHT maintenance information. 

A.3 Peer/DHT Operations 

The SIP REGISTER message is used extensively in this system. REGISTER is used 

to register users, as in conventional SIP systems, and we discuss this further in theRe­

source Registration section. Additionally, SIP REGISTER messages are used to register 

a new peer with the DHT and to transmit the information needed to maintain the DHT. 
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A.3.1 Peer Registration 

After a peer has located an initial bootstrap peer, the process of joining the overlay is 

started by constructing a REGISTER message and sending it to the bootstrap peer. Third 

party registration MAY NOT be used for registering peers into the overlay, and attempts 

to do so MUST be rejected by the peer receiving such a request (although third party 

registrations are used for other purposes, as described below). The peer MUST construct 

a SIP REGISTER message following the instructions in RFC3261, Section 10, with the 

exceptions/rules outlined below. 

A.3.1.1 Constructing a Peer Registration 

The Request-URI MUST include only the IP address of the peer that is being contacted 

(initially the bootstrap peer). This URI MUST NOT include any of the P2P defined param­

eters. For example, a request intended for peer 1 0.3.44.2 should look like: "REGISTER 

sip:10.3.44.2 SIP/2.0". 

The To and From fields of the REGISTER message MUST contain the URI of the 

registering peer constructed according to the rules in the section on Peer URis in the 

Message Syntax section. 

While allowing the IP address of the sender for To and From is different than conven­

tional SIP registers, there are two reasons for this. First, in a P2P network, which peer 

the request is sent to, and thus the domain for which the registration is intended, is not 

important. Any peer can process the information, and the username is not associated 

with a particular IP address or DNS domain, but rather with the overlay name, which 

is encoded elsewhere. In that sense, the IP address used is irrelevant. Choosing the 

domain of the sender ensures that if a request is sent to a non-P2P aware RFC 3261 
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compliant registrar, it will be rejected. RFC 3261 (section 1 0.3) states that a registrar 

should examine the To header to determine if it presents a valid address-of-record for 

the domain it serves. Since the IP address of the sending peer is unlikely to be a valid 

address for a non-P2P aware registrar, the message will be rejected, eliminating possibly 

erroneous handling by the registrar. 

The registering peer MUST also list its PeerURI in the contact field when registering 

so that this may be identified as a registration/ update, rather than a query. The peer 

MUST provide an expires parameter or expires header with a non-zero value. As in 

standard SIP registrations, Expire headers with a value of zero will be used to remove 

registrations. 

The registering peer MUST provide a DHT-PeeriD header field. It MAY leave the over­

lay parameter set to "*"for its initial registration message, but MUST set this parameter to 

the name of the overlay it is joining as soon as it receives a response from the bootstrap 

peer. 

The registering peer MUST include Require and Supported headers with the option 

tag "dht". 

Assume that a peer running on IP address 1 0.4.1.2 on port 5060 attempts to join 

the network by contacting a bootstrap peer at address 1 0.7.8.129. Further assume that 

1 0.4.1.2 hashes to 463ac4b449 under SHA-1 (using a 10 digit hash for example simplic­

ity), and the least significant bits are replaced with the port number, yielding 463ac413c4 

and that the overlay name is chat and the dht-param is dhtalg1.0. An example message 

would look like this (neglecting tags): 

REGISTER sip:10.7.8.129 SIP/2.0 
To: <sip:peer@10.4.1.2;peer-ID=463ac413c4> 
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From: <sip:peer@10.4.1.2;peer-ID=463ac413c4> 
Contact: <sip:peer@10.4.1.2;peer-ID=463ac413c4> 
Expires: 600 
DHT-PeeriD: <sip:peer@10.4.1.2;peer-ID=463ac413c4>;algorithm=sha1; 

dht=dhtalg1.0;overlay=chat;expires=600 
Require: dht 
Supported: dht 

A.3.1.2 Processing the Peer Registration 

157 

The receiving peer determines that this is a P2PSI P message based on the presence of 

the dht Require and Supported fields. In the event that the peer does not support P2P 

extensions, it MUST reply with a 420 Bad Extension response. If the peer examines the 

overlay parameters and determines that this is not an overlay the peer participates in, the 

peer MUST reject the message with a 488 Not Acceptable Here response. Likewise if the 

peer examines the dht- param and determines that the algorithm specified is not com­

patible with its algorithm, the peer MUST reject the message with a 488 Not Acceptable 

Here response. If a P2P peer receives a non-P2P request it MAY reject it with a message 

such as 421 Extension Required or it MAY process it as a conventional SIP message. 

An implementation may support both P2P and conventional SIP messages. In that 

case, it MAY include the dht Supported field with all messages but MUST NOT include it 

with messages intended for conventional nodes. 

Routing the Peer Registration 

The presence of peer-ID URI parameter in the To and Contact headers and a valid 

expiration time indicate that this message is a peer registration and the receiving peer 

MUST process this as a DHT level request. The bootstrap peer SHOULD verify that the 

Peer-ID corresponds to peer listed in the URI by validating the hash or the peers creden­

tials. If these do not match, the message SHOULD be rejected with a response of 493 
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Undecipherable. The bootstrap peer examines the Peer-ID to determine if it corresponds 

to the portion of the overlay the bootstrap peer is responsible for. If it does, the peer 

will handle the REGISTER request itself. If not, the bootstrap peer will either provide the 

joining peer with information about a peer closer to the area of the overlay where the 

joining peers Peer-ID is stored (iterative routing) or forward the request along the closest 

peer it knows about (recursive routing). If a Request- Disposition header is present and 

set to proxy, the peer MUST use a recursive routing mechanism, and if it is present and 

set to redirect, the peer MUST use an iterative routing mechanism. In the event that the 

Request-Disposition header is not present, the peer may choose either mechanism. 

In the case of iterative routing, if the receiving peer is not responsible for the area 

of the hash table where Peer-ID should be stored, the peer SHOULD generate a 302 

message. The 302 is constructed according the rules of RFC 3261 with the following 

rules. The receiving peer MUST look in its list of neighbors or in the routing table to find 

the peer with Peer-ID nearest the to joining peer's Peer-ID, and use it to create a contact 

field in the form of a peer URI, as specified in the P2P Peer URis section, including 

appropriate URI parameters. The response MUST contain a valid DHT-PeeriD header. 

This response is sent to the joining peer. 

In the case of recursive routing, if the receiving peer is not responsible for the area of 

the hash table where the Peer-ID should be stored, the receiving peer should forward the 

request to the peer it knows about that is closest to the Peer-ID. 

A peer MUST NOT add a new peer to its routing table or redirect requests to that 

new peer until it has successfully contacted that peer itself. By redirecting a message to 

another peer, the contacted peer indicates that it believes that peer to be alive and that it 

is willing to route messages to it for NAT and Firewall traversal purposes. 

Using our example register from the previous section, assume that iterative routing is 

being used and that the bootstrap peer 1 0.7.8.129 receives the message, determines it 
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is not responsible for that area of the overlay, and redirects the joining peer to a peer with 

Peer-ID 47e46fa2cd at IP address 1 0.3.1. 7. The 302 response, again neglecting tags, is 

shown below. Note that the peer creating the response uses its information to construct 

the DHT-PeeriD header. 

SIP/2.0 302 Moved Temporarily 
To: <sip:peer@10.4.1.2;peerid=463ac413c4> 
From: <sip:peer@10.4.1.2;peerid=463ac413c4> 
Contact: <sip:peer@10.3.1.7;peerid=47e46fa2cd> 
Expires: 600 
DHT-PeeriD: <sip:@10.7.8.129;peerid=084d299ff2>;algorithm=sha1; 

dht-param=dhtalg1.0;overlay=chat;expires=600 
Require: dht 
Supported: dht 

Upon receiving the 302, the joining peer uses the contact address as the new boot­

strap peer. The process is repeated until the peer contacted is currently responsible for 

the area of the DHT in which the new peer will reside. The receiving peer that is respon­

sible for that portion of the overlay is referred to as the admitting peer. 

Admitting the Joining Peer 

The admitting peer MUST verify that the Peer-ID is valid, as described above. If these 

do not match, the message MUST be rejected with a response of 493 Undecipherable. 

The admitting peer recognizes that it is presently responsible for this region of the hash 

space- that is, it is currently the peer storing the information that this Peer-ld will eventu­

ally be responsible for. The admitting peer knows this because the joining peer's Peer-ID 

is closest to its own Peer-ID. The admitting peer is responsible for helping the joining peer 

become a member of the overlay. In addition to verifying that the Peer-ID was properly 

calculated, the admitting peer MAY perform additional security checks. Once any chal­

lenge has been met, the admitting will reply with a 200 OK message to the joining peer. 
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As in a conventional registration, the Contact in the 200 OK will be the same as in the 

request, and the expiry time MUST be provided. 

The admitting peer MUST reply with a 200 response if the admitting peer's Peer-10 

is the closest to the joining peer's Peer-10. Each OHT algorithm MAY choose to define 

closest however they want, but the OHT algorithm MUST be able to deterministically 

find the closest Peer-10. The admitting peer must populate the OHT-Link headers with 

all values required by the OHT routing protocol so that the joining peer can initialize its 

neighbors and routing table entries. Additionally, the admitting peer MUST include its 

OHT-PeeriO header containing the admitting peer's Peer-10 and IP. 

A.3.2 Peer Query 

As with conventional SIP, REGISTER messages that are sent without a Contact: header 

are assumed to be queries, as described in Section 10 of RFC3261. 

A.3.2.1 Constructing a Peer Query Message 

The peer looks for the routing table entry or neighbor peer that is closest to the 10 they 

are searching for. If the routing table has not yet been filled, then the peer may send the 

request to any peer it has available, including their other neighbor peers or even some 

bootstrap peer. While these initial searches may be less efficient, they will succeed. The 

Request-URI MUST include only the IP address of the peer that the search is intended 

for. This URI MUST NOT include any of the P2P defined parameters. For example, a 

request intended for peer 1 0.3.44.2 should look like: "REGISTER sip:1 0.3.44.2 SIP/2.0". 

Because this is a query, the sending peer MUST NOT include a contact header. The 

sender MUST NOT include an expires header. 
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The peer MUST provide a DHT-PeeriD header. 

The peer MUST include Require and Supported headers with the option tag "dht". 

Assume that a peer running on IP address 1 0.4.1.2 on port 5060 wants to determine 

who is responsible for Peer-ID 4823affe45, and asks the peer with IP address 10.5.6.211 

Further assume that the peer uses SHA-1 (using a 10 digit hash for example simplicity), 

and that the overlay name is chat. An example message would look like this (neglecting 

tags): 

REGISTER sip:10.5.6.211 SIP/2.0 
To: <sip:peer@O.O.O.O;peerld=4823affe45> 
From: <sip:peer@10.4.1.2;peer!d=463ac413c4> 
DHT-PeeriD: <sip:peer@10.4.1.2;peer!d=463av413c4>;algorithm=sha1; 

dht-param=dhtalg1.0;overlay=chat;expires=600 
Require: dht 
Supported: dht 

The To field of the REGISTER message MUST contain the PeerURI of the identifier 

being search for, constructed according to the rules in the subsection P2P peer URis in 

the Message Syntax section. If a specific peer is being sought, the PeerURI must specify 

that hostport. If only the identifier is being searched for, then hostport MUST be set to 

"0.0.0.0". The From URI MUST use the searching peer's PeerURI. 

A.3.2.2 Processing Peer Query Message 

The receiving peer determines that this is a P2PSIP message based on the presence of 

the dht Require and Supported fields. In the event that the peer does not support P2P 

extensions, it MUST reply with a 5xx class response such as 501 Not Implemented. If 

the peer examines the overlay parameters and determines that this is not an overlay the 
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peer participates in, the peer MUST reject the message with a 488 Not Acceptable Here 

response. In the event a P2P peer receives a non-P2P request, it SHOULD reject it with 

a message such as 421 Extension Required. 

Routing the Peer Query Message 

The presence of a PeerURI and lack of an expiration time indicate that this message 

is a peer query and the receiving peer MUST process this as a DHT level request. The 

receiving peer SHOULD NOT alter any of its internal values such as successor or pre­

decessor in response to this message, since it is a query. Otherwise, the message is 

processed and routed as a peer registration until the responsible peer is reached. 

Responding to the Peer Query Message 

If the receiving peer is responsible for the region that the search key lies within, it 

MUST respond to the query. If the receiving peer's Peer-ID exactly matches the search 

key, it MUST respond with a 200 OK message. If it is responsible for that region, but its 

Peer-ID is not the search key, it MUST respond with a 404 Not Found message. The 

peer MAY verify the Peer-ID and IP address presented by the querying peer in the mes­

sage. If these do not match, the message should be rejected with a response of 493 

Undecipherable. 

A.3.3 Populating the Joining Peer's Routing Table 

Once admitted, the joining peer SHOULD populate its routing table and locate neighbors 

by issuing queries for peers with the appropriate identifiers. If the admitting peer pro­

vided neighbor or routing table information in its response, the joining peer MAY use this 

information to construct a temporary routing table and neighbor information and use this 

temporary table in the queries to populate the table. 
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A.3.4 Transfering User Registrations 

When a new peer joins, it splits the area in the hash space the admitting peer is responsi­

ble for. Some portion of the user registrations the admitting peer was responsible for may 

now be the responsibility of the joining peer, and these user registrations are handed to 

the joining peer by means of third party user registrations. Third party registrations are 

allowed for user registrations and arbitrary searches, but are not allowed for peer regis­

trations. These registrations are exactly the same as those discussed in the Registering 

and Removing User Registrations section, except that as they are third party registration 

from a peer, that is, the From header contains the PeerURI of the admitting peer. 

A.3.5 Peers Leaving the Overlay Gracefully 

Peers MUST send their registrations to the closest peer before leaving the overlay, as 

described in the section above. Additionally, peers MUST unregister themselves with 

their symmetric neighbors (if the DHT routing algorithm uses symmetric neighbors in any 

form). These graceful exit REGISTER messages are constructed exactly the same as 

one used to join, with the following exceptions. The expires parameter or header MUST 

be provided, and MUST be set to 0. DHT-Link headers must be provided, as specified in 

DHT routing algorithm 

A.3.6 NAT and Firewall Traversal 

The filtering properties of NATs and firewalls can lead to non- transitive connectivity. 

Typically this will manifest itself in a peer receiving a 302 redirecting it to another peer 

that it cannot contact, most likely because address dependent filtering is occurring. 
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A.3. 7 Handling Failed Requests 

When a request sent to another peer fails, the peer MUST perform searches to update its 

pointers. If the failed request was sent to a peer in the routing table or a neighbor peer, 

then the searches discussed in the Populating the Joining Peer's Routing Table section 

should be performed. 

A.4 Resource Operations 

The most important element of resource operations within the P2PSIP DHT is that they 

are performed exactly as if using a conventional SIP registrar, except that the registrar 

responsibilities are distributed among the DHT members. 

A.4.1 Resource Registrations 

When a peer is in the overlay, it must register the contacts for users and other resources 

for which it is responsible into the overlay. This differs from the registrations described 

above in that these registrations are responsible for entering a URI name to URI location 

mapping into the overlay as data, rather than joining a peer into the overlay. These 

registrations are very similar to those outlined in section 10 of RFC3261. 

The Request-URI that is constructed for the REGISTER MUST be addressed to the 

peer the request is sent to. The To and From fields of the REGISTER message MUST 

contain the Resource URI of the resource being registered, as described in the Resource 

URis section. The request MUST include the value dht in Require and Supported head­

ers. The request MUST include a DHT-PeeriD header and MAY include one or more 

DHT-Link headers. 
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The resource registration MUST include at least one Contact header containing a 

location of the resource and allowing this to be identified as a registration/update, rather 

than a query. The peer MUST provide an expires parameter or an Expire header with a 

non-zero value. As in standard SIP registrations, Expires parameters with a value of zero 

will be used to remove registrations. Any valid Contact for RFC 3261 is valid Contact for 

P2PSIP. Most users will register a Contact with the address of the user's UA (which may 

or may not be the IP address of the peer, since the peer could be an adaptor peer). The 

Contact URI does not need to include the Resource-ID or other P2PSIP parameters as it 

is stored in the DHT but not processed or routed by it in any way. 

The message is routed in a fashion exactly analogous to that described in the section 

on peer registration. In iterative routing algorithms, 302 messages are sent to indicate 

that the message is to be redirected to another Peer URI. In recursive routing algorithms, 

the receiving peer SHOULD forward the request to the peer in its connection table that is 

closest to the Resource- I D. Once the message arrives at a destination that is responsible 

for that portion of the hash namespace, the peer recognizes it as a resource registration, 

rather than a peer wishing to join the system, based upon the fact that the To and From 

fields do not contain a Peer URI. The peer responds with a 200 indicating a successful 

registration. The response is constructed as dictated by RFC3261. 

The registering peer SHOULD construct and register replica registrations using the 

same Contact headers, but with the replica URI parameter used in the To and From 

headers. 

A.4.2 Refreshing Resource Registrations 

Resource registrations are refreshed exactly as described in RFC 3261, Section 10. Re­

sponsible peers should send a new registration with a valid expiration time prior to the 
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time that the registration is set to expire. 

Agents MAY cache the address where they previously registered and attempt to send 

refreshes to this peer, but they are not guaranteed success, as a new peer may have 

registered and may now be responsible for this area of the space. In such a case if 

iterative routing is being used, the peer will receive a 302 from the peer with which they 

previously registered, and should follow the same procedure for locating the peer they 

used in the initial registration. 

As with initial registrations, the sending peer should use the neighbor peer or routing 

table information provided in the 200 to send these updates to the redundant peers as 

well. 

A.4.3 Removing Resource Registrations 

Resource registrations are removed exactly as described in RFC 3261, Section 10. Re­

sponsible peers MUST send a registration with expiration time of zero. 

As with initial registrations, the sending peer MUST construct replica unregister mes­

sages and use these to unregister the replicas. 

A.4.4 Querying Resource Registrations 

Resource queries are constructed as described in RFC 3261, Section 10. Querying 

peers should send a REGISTER message with no contact header. As described in the 

Peer Search section, this mechanism can also be used to locate the peer responsible for 

a particular Resource-10. 
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A P2P environment can do little to protect against an individual peer compromising 

the registrations it is responsible for. Accordingly, a UA cannot trust a response from a 

single peer, whether it indicates a successful search or an error. In the absence of other 

methods of verifying the response (such as having a certificate of the user being searched 

for and a signed registration that can be verified with the certificate) a UA should search 

for the primary registration and at least one replica. Because the locations the replicas 

are stored are unrelated to the location of the primary registration, a single attacker is 

unlikely to be able to compromise both entries. As the overlay gains more peers and 

more replicas are searched for, the odds of a compromise are reduced. 

A.4.5 Session Establishment 

When a caller wishes to send a SIP message (such as an INVITE, MESSAGE or SUB­

SCRIBE), the caller must first locate the peer where this callee's information resides using 

the resource search procedure described in the section titled Resource Location. 

Establishing a session is done entirely in the normal SIP fashion after the user is 

located using the P2P resource query. Once the peer responsible for the Resource-ID is 

located, it will provide either a 200, providing a contact for the users UA, or will provide 

a 404 if the user is not registered. If a 200 with a valid contact is received, the call will 

then be initiated directly with the UAS of the called using the standard RFC 3261 fashion 

for methods such as INVITE or MESSAGE, or the INVITE can be processed by routing it 

through the overlay if necessary for NAT traversal. 

A.4.6 Presence 

We use SUBSCRIBE/NOTIFY for this. We subscribe to every user on our friend list when 

we come online. If the friends are online, that means that we know exactly where they 
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are. Peers MAY use the Peer-IDs of their friends' peers as additional routing table entries 

or neighbor peers (essentially, cached values), consulting these first, as connections are 

likely to be made to people on the user's friend list. These should also be periodically 

checked, as described in the DHT Maintenance section. 

If friends are offline, one should periodically try to make the connection. However, if a 

UA receives a SUBSCRIBE from a friend that it believes to be offline, it SHOULD attempt 

to subscribe to that friend. This will allow people that are reciprocally on each other's 

friend lists to rapidly be notified when one or the other comes online, therefore the retry 

interval for subscribing to offline friends can be fairly long because it is only necessary in 

the case of race conditions or other temporary failures in resource location. 

A.4. 7 Offline Storage 

Delivery of messages to offline users, or voicemail for voice applications, requires storing 

that information for later retrieval. Storing user configuration information in a format ac­

cessible from the network also will allow a user to retrieve their profile from any computer. 

Gao et al. [25] describe an approach that separates the storage of resource location in­

formation from the actual storage of the offline research. We believe that this approach 

is in agreement with the approach taken by the rest of this appendix, which relies on the 

DHT overlay to store the registrar's location information, but relies on external, conven­

tional methods for the actual connection. For offline storage, it also allows the use of 

other standard protocols to store and retrieve the offline information, keeping the P2PSIP 

scope restricted to storing resource mappings. 
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A.S Pluggable DHT Algorithm Requirements 

All dSIP peers MUST support the Chord pluggable DHT algorithm for compatibility. They 

MAY support additional pluggable algorithms. The requirements for new pluggable algo­

rithms are defined in this section. 

Pluggable algorithm MUST use Peer-IDs and Resource-IDs as defined in the Hash 

Algorithms and Identifiers section. Pluggable algorithms are free to define what hash 

algorithms they support, but they MUST clearly specify what they are. 

A resource with Resource-ID k will be stored by the peer with Peer-ID closest to the 

Resource-I D. The definition of closeness may vary in different DHT algorithms, but each 

DHT algorithm MUST guarantee Resource-ID searches converge to exactly one peer 

responsible for that portion of the namespace. As peers enter and leave, resources may 

be stored on different peers, so the information related to them is exchanged as peers 

enter and leave. Redundancy is used to protect against loss of information in the event 

of a peer failure. 

Each new DHT algorithm MUST define a value for the dht-name parameter to be used 

in the dht-param parameter of the DHT-PeeriD header, as defined in the DHT Algorithms 

section and the dht parameter. 

Each new DHT algorithm MUST define the valid BNF for the link-value used in the 

DHT-Link header, as defined in The DHT-Link header section. 

A.6 Security Considerations 

The goal of P2PSIP is to scale gracefully from ad hoc groups of a few people to an 

overlay of millions of peers across the globe. As such, there is no one security model 
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that fits the needs of all envisioned environments; for the small network establishing a 

certificate chain is ludicrously difficult, while for a global network the unrestricted ability 

to insert resources and devise useful Peer-IDs is a clear invitation to insecurity. Any 

P2PSIP protocol must offer a range of security models that can be selected according to 

the needs of the overlay. 

A.6.1 Threat Model 

Without other security, the attacker is able to generate an ID and become a valid peer 

in the system. They can see other peers and process certain queries. Attackers may 

wish to receive communications intended for other participants, prevent other users from 

receiving their messages, prevent large portions of the users from receiving messages, 

or send messages that appear to be from others. Users would like to be sure they are 

communicating with the same person they have previously talked to, to be able to verify 

identity via some out of band mechanism. Attackers may try to squat on all the good 

names. Users would like names that are meaningful to them. Attackers may have com­

puters that are many times faster than the average user's. Attackers may be able to DOS 

other particular peers and make them fail. To make a robust DHT, many peers need to 

store information on behalf of the community. Peers may lie about this and not store the 

information. Attackers may wish to see who is communicating with whom and how much 

data is getting communicated. 

Many of the threats to P2PSIP are also threats to conventional SIP. As such, P2PSIP 

imports much of its security from conventional SIP. However, because conventional SIP 

generally relies on secure servers to maintain the integrity of the system, modifications 

to those techniques are required to maintain the same level of security. 
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A.6.2 Protecting the ID Namespace 

The fundamental protection that P2PSIP relies on is protecting the ID namespace. In 

particular, many of the attacks on P2PSIP require identifying a particular portion of the 

ID space and acquiring control of that space. This is a common vector both for attacks 

on a particular user, by obtaining control of the location in the overlay where the user is 

registered, and on the overlay itself, by means of a Sybil attack when one is able to insert 

multiple identities at different locations on the ring. 

The P2PSIP ID Namespace is considered protected when an attacker is not able to 

select an arbitrary Peer-ID and insert a peer at the location by convincing other peers to 

route traffic to them. This protects against hijacking and DoS attacks. The ID Namespace 

may also be protected by restricting admission to the overlay to some authorized (and 

trusted) set of individuals. 

A.6.2.1 Protection Using ID Hashing 

The default base security for P2PSIP determines Peer-IDs by hashing the peer's IP ad­

dress and appending the port number. The security of this scheme depends on the ease 

with which an attacker can choose their own Peer-ID. Because the port number is only 

appended to the Peer-ID, an attacker gains nothing by selecting different ports on the 

same node. Assuming that the SHA 1 hash used to calculate the Peer-ID is reliably ran­

dom, the attacker's ability to succeed depends on the number of separate IP addresses 

that they are able to obtain from which to launch their attacks. 

In the current predominantly IPV4 Internet, few attackers have access to more than a 

handful of IP addresses, perhaps a few hundred at worst. For a large-scale P2P system, 

this is unlikely to provide the ability to hijack a particular user ID or control a sufficient 
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portion of the network to affect other peers, in particular when registrations are replicated 

at independent peers. Ultimately, however, a sufficiently skilled and provisioned attacker 

can compromise this scheme. 

As the Internet migrates to IPV6, however, it is unclear that the assumption that few 

attackers have access to a significant range of IP addresses will remain true. Therefore, 

hashing IP addresses to Peer-IDs is assumed to provide a diminishing amount of security 

in the future. 

A.6.2.2 Cryptographic Protection 

Stronger protection guarantees are possible by relying on cryptographic techniques to 

restrict the generation of peer-IDs, either through requiring knowledge of a shared secret 

to calculate a valid hash or by issuing certificates through a central authority. 

A.6.3 Protecting the Resource Namespace 

The two primary vectors of attacks on resources in a P2PSIP overlay are inserting illegiti­

mate resources into the overlay and corrupting the registrations for which a compromised 

peer is responsible. 

For overlays that do not rely on certificates, once a peer has joined the overlay there 

are no restrictions on its ability to register resources. In an unsecured network, multiple 

peers can register the same resource (username) in the overlay. However, self-signed 

certificates can be used to authenticate a user as the same user previously contacted with 

that certificate. Unless a conventional SIP authentication server is available, however, 

establishing identity upon initial contact is still a problem. One potential solution is for 

an overlay that is expected to persist over long time-frames to store the credentials of 
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previous users for verification of a new registration. These techniques are beyond the 

scope of this specification. 

The second form of resource attack, which is really an ID attack, concerns the attacks 

that are possible when a peer has legitimately inserted itself into the overlay and is now 

responsible for storing resource registrations. Such an attack could occur through a 

corrupted peer or by an attacker who convinces the CA to issue them a certificate for 

a Peer-ID. In this case, the peer can corrupt any resource that is assigned to it. In the 

absence of certificates, the primary means of defense of such attacks is relying on the 

replication described in the Resource-IDs and Replication section. By storing replicas of 

each registration on multiple peers and performing parallel searches for resource lookup, 

the searching peer protects itself from a single peer trying to corrupt the namespace. 

Further protection from each attack vector is achieved by relying on certificates for 

resource authentication. 

A.6.4 Protecting the Routing 

The DHT forms a complex routing table. When a peer joins, it may contact a subversive 

peer that lies about the finger table information it provides. The subversive peer could 

do this to try to trick the joining peer to route all the traffic to a subversive group of 

peers. Prevention of this attack relies on protecting the namespace and (for hashed 

namespaces) identifying trusted bootstrap peers to use when joining. 

Resource searches are protected from a single subversive peer through the use of 

parallel searches on replicated registrations. Similar protection could be achieved through 

performing parallel searches using multiple bootstrap peers for initial join, but such speci­

fication is beyond the scope of this specification. When possible, securing the namespace 

is a better solution. 
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A.6.5 Protecting the Signaling 

The goal here is to stop an attacker from knowing who is signaling what to whom. An 

attacker being able to observe the activities of a specific individual is unlikely given the 

randomization of IDs and routing based on the present peers discussed above. 

A.6.6 Protecting the Media 

As with conventional SIP, all the media SHOULD be encrypted. Negotiating encryption 

for an end-to-end media session should be performed in the same manner for P2PSIP 

communications. 



Appendix B 

RELOAD Protocol Specification 

8.1 Message Syntax 

Much of this text appears in [20], and as such is a snapshot of the work on RELOAD at 

that date. Since then, this work has been merged into [52] and others are continuing to 

develop the protocol in the IETF with the help of some of our later research. 

This section provides normative text explaining the syntax of the RELOAD messages 

and provides the details of the binary encoding. The RELOAD protocol is a request­

response protocol. The messages are encoded using binary fields and is modeled after 

the binary STUN protocol. All integers are represented in network byte order and are 

present in base 1 0, decimal, unless otherwise noted. 

8.1.1 Message Header 

The RELOAD message contains a 68 byte header. 

175 
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0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

R E L 0 
4 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

IFILl 
TTL Routing IRIFix x x x x x x x x x x x x xl 

IAIRI I 
IGIGI I 

8 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

lEI 
lXI Version 
IPI 

DHT Hash Security 

12 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

IRI 
1/1 
lrl 

Method Length 

16 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Destination ID 

36 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Source ID 

56 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Transaction ID 
64 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Overlay 
68 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

The first four bytes identify this message as a RELOAD message. 

TTL (time-to-live) is an 8 bit field indicating the number of iterations, or hops, ames­

sage can experience before it is discarded. The TTL uJnt8 number MUST be stored in 

network byte order and MUST be decremented by one at every hop along the route the 

message traverses. If the TTL is 0, the message MUST NOT be propagated further and 

MUST be discarded. 
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Routing is an 8 bit field that specifies the type of routing the requester would like for 

the message. The following Routing options MUST be understood: 

UNSPECIFIED OxOO 
PROXY Ox01 
REDIRECT Ox02 

If a peer is unable or unwilling to perform the type of routing requested, the peer 

MUST respond with a 499 error message that indicates its unwillingness to process the 

message. 

FRAG is a 1 bit field used to specify if this message is a fragment. 

NOT-FRAGMENT OxO 
FRAGMENT Ox1 

LFRG is a 1 bit field used to specify whether this is the last fragment in a complete 

message. 

NOT-LAST-FRAGMENT OxO 
LAST-FRAGMENT Ox1 

EXP is a 1 bit field that specifies if this protocol is experimental or not. The EXP bit 

can be set to denote that this version of the protocol is private, in-house. This makes it 

possible to have private protocol versions that don't collide with IETF standards. 

Version is a 7 bit field that indicates the version of the P2PSIP protocol being used. 
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Version1.0 Ox! 

DHT is an 8 bit field that specifies the DHT algorithm being used. Because of its 

simplicity, implementations MUST support the Chord DHT algorithm, though other DHT 

algorithms MAY be used (and likely will be) 

Chord1.0 Ox01 
Bamboo1.0 Ox02 

HASH is an 8 bit field that specifies the hash algorithm used to generate IDs. All 

IDs used for an overlay must be calculated using the same algorithm. Implementations 

MUST support the SHA-1 algorithm, which produces a 160 bit hash value, though other 

hash algorithms MAY be used. 

SHA-1 Ox01 

Security is an 8 bit field that indicates the security mechanism being used by partici­

pants in the overlay. 

NONE Ox01 

R/r is a one bit field used to specify if this is a request or a response. 

REQUEST OxO 
RESPONSE Ox! 
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Method is a 7 bit field that indicates the message method. There are four types of 

methods: peer, resource, transport, and DHT specific. DHT specific methods are defined 

by the DHT algorithm being used. The class of methods are specified by the first two bits: 

PEER-METHODS OxO 
RESOURCE-METHODS Ox1 
TRANSPORT-METHODS Ox2 
DHT-SPECIFIC-METHODS Ox3 

The remaining four bits are used to specify the peer, resource, and transport methods. 

The following list of methods MUST be understood and are shown with their full 6 bit 

representations (first two bits are method type, last four specify method): 

PEER-JOIN OxOO 
PEER-SEARCH Ox01 
RESOURCE-GET Ox10 
RESOURCE-PUT Ox11 
RESOURCE-TRANSFER Ox12 
TRANSPORT-OPEN Ox20 
TRANSPORT-TUNNEL Ox21 

The message Length is the count in bytes of the size of the message, not including 

the header. 24 bits. 

The Destination ID is a 160 bit identifier (either Peer-ld or Resource-ID) that uniquely 

identifies destination peer or resource. 

The Source ID is a 160 bit identifier (either Peer-ID or Resource-10) uniquely identify­

ing the sender. 
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The Transaction 10 is a unique 64 bit number that identifies this transaction and also 

serves as a salt to randomize the request and the response. Responses use the same 

Transaction 10 as the request they correspond to. 

The Overlay field is the 32 bit checksum/hash of the overlay being used. The CRC-32 

checksum MUST be used to convert the variable length string representing the overlay 

name into a 32 bit value. The 32bit Overlay field does not provide a security check, 

but rather an integrity check. The CRC-32 checksum Overlay field provides a "digital 

signature" representing the overlay name so that peers can verify that they are interacting 

with overlay they are intending to interact with. 

8.1.2 Message Attributes 

Following the fixed length header, the message contains 0 or more attributes. Message 

attributes are TLV (type-length-value) encoded, with 16 bit type, 16 bit length, and variable 

value: 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Type Length 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Value 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

The following message attribute types are defined: 

RESPONSE-CODE 
SOURCE-INFO 

Ox0001 
Ox0002 
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RESOURCE Ox0003 
ROUTE-LOG Ox0004 
REDIRECT Ox0005 
SIGNATURE Ox0006 
SDP Ox0007 
APPLICATION Ox0008 

The SIGNATURE attribute MUST be the last attribute within a message when origi­

nally sent. ROUTE-LOG attributes may be added following the SIGNATURE. 

The attribute type field provides information about how to parse the value. Many of the 

attribute types listed here are composite types, i.e. the value is itself a set of TLV-encoded 

attributes. In this case, the length of the parent attribute, such as SOURCE-INFO, is the 

length of the entire set of member attributes to that SOURCE-INFO, and a parser can 

skip decoding the entire composite attribute if it is not interested in its contents. 

The following tables indicate which attributes appear in which messages. An M indi­

cates that inclusion of the attribute in the message is mandatory, 0 means its optional, C 

means it's conditional based on some other aspect of the message, and N/A means that 

the attribute is not applicable to that message type. 

Peer Peer Peer Peer 
Join Join Search Search 

Attr. Req Resp. Req. Resp. 
---------------------------------------------------
RESPONSE-CODE N/A M N/A M 
SOURCE-INFO 0 M 0 M 
RESOURCE N/A N/A N/A N/A 
ROUTE-LOG 0 0 0 0 
REDIRECT N/A 0 N/A 0 
SIGNATURE 0 0 0 0 
SDP 0 c 0 c 
APPLICATION N/A N/A N/A N/A 
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Res. Res. Res. Res. Res. Res. 
Get Get Put Put xfer xfer 

Attr. Req. Resp. Req. Resp Req Resp 
----------------------------------------------------------
RESPONSE-CODE N/A M N/A M N/A M 
SOURCE-INFO 0 M 0 M 0 M 
RESOURCE N/A M M N/A M N/A 
ROUTE-LOG 0 0 0 0 0 0 
REDIRECT N/A 0 N/A 0 N/A 0 
SIGNATURE 0 0 0 0 0 0 
SDP 0 c 0 c 0 c 
APPLICATION N/A N/A N/A N/A N/A N/A 

Tranport Transport Transport Transport 
OPEN OPEN tunnel tunnel 

Attr. Req Resp. Req. Resp. 
-------------------------------------------------------------
RESPONSE-CODE N/A M N/A M 
SOURCE-INFO 0 M 0 M 
RESOURCE N/A N/A N/A N/A 
ROUTE-LOG 0 0 0 0 
REDIRECT N/A 0 N/A 0 
SIGNATURE 0 0 0 0 
SDP M M N/A N/A 
APPLICATION N/A N/A M 0 

The Length refers to the length of the actual useful content of the Value portion of 

the attribute, measured in bytes. Since STUN aligns attributes on 32 bit boundaries, at­

tributes whose content is not a multiple of 4 bytes are padded with 1, 2 or 3 bytes of 

padding so that they are a multiple of 4 bytes. Such padding is only needed with at­

tributes that take freeform strings, such as USERNAME and PASSWORD. For attributes 

that contain more structured data, the attributes are constructed to align on 32 bit bound­

aries. The value in the Length field refers to the length of the Value part of the attribute 

prior to padding- i.e., the useful content. Consequently, when parsing messages, imple­

mentations will need to round up the Length field to the nearest multiple of four in order 

to find the start of the next attribute. 
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8.1.2.1 RESPONSE-CODE 

The RESPONSE-CODE is based on STUN's ERROR-CODE attribute, and provides the 

response status code for the message. The RESPONSE-CODE attribute value is a nu­

meric value in the range of 1 00 to 600 plus a textual reason phrase encoded in UTF-8. 

The length of the reason phrase is the length prior to padding. 

For processing purposes, the class of the error code is encoded separately from the 

rest of the code. 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

xxxxx I Class I Number 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Reason Phrase (variable) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

The first 21 bits are reserved for pad, as in STUN. 

The class represents the hundreds digit of the response code. The class value MUST 

be between 1 and 7. The number represents the response code modulo 100, and its 

value MUST be between 0 and 99. 

The following response codes and recommended reason phrases {in brackets) are 

defined at this time: 

• 200 {OK): Indicates a successful request. The information returned in the response 

will depend on the request method. 

• 302 (Moved Temporarily): The requesting peer SHOULD retry the request at the 

new address specified in the 302 response message. 
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• 404 (Not Found): The resource or peer cannot be found or does not exist. 

• 408 (Request Timeout): A response to the request has not been received in a 

suitable amount of time. The requesting peer MAY resend the request at a later 

time. 

• 498 (Incompatible with Overlay) A peer receiving the request is using a different 

overlay, DHT algorithm, or hash algorithm. 

• 499 (UnWilling To Proxy) A peer receiving the request is unwilling to support the 

Routing mechanism specified in the Routing field of the message header. 

8.1.2.2 SOURCE-INFO and PEER-INFO 

The SOURCE-INFO attribute provides information about the (source) peer sending the 

request or response. 

The SOURCE-INFO attribute is of PEER-INFO type, which itself contains several 

attributes. Because a number of other attributes are also of type PEER-INFO, they share 

the same sub-attributes. PEER-INFOs contain the following attributes: 

PEER-ID Ox0101 
PEER-NAME Ox0102 
PEER-IP-PORT Ox0103 
PEER-EXPIRATION Ox0104 
PEER-CERTIFCATE Ox0105 
PEER-SIGNATURE Ox0106 

PEER-ID 
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PEER-ID represents the P2P identifier associate with the peer. The PEER-ID value 

MUST be 160 bits to support the mandatory SHA-1 hash algorithm. Hash algorithms and 

ID generation are discussed in more detail in section Hash Algorithms and Identifiers. 

PEER-NAME 

PEER-NAME indicates a user or implementor defined name associated with the peer. 

It is optionally present in a PEER-INFO attribute. The PEER-NAME value is variable 

length, and the encoded value length is the length of the PEER-NAME prior to padding. 

A PEER-INFO may contain multiple PEER-NAME attributes. 

PEER-IP-PORT 

PEER-IP-PORT is based on STUN's MAPPED-ADDRESS attribute, and provides IP 

address and port pairs that can be used to contact the peer. PEER-IP-PORTS consist 

of an eight bit address family, and a sixteen bit port, followed by a variable length value 

representing the IP Address. 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

lx X X X X X X xi Family Port 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Address (variable) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

The first 8 bits are used for alignment and are ignored. The family is Ox01 for 1Pv4 

and Ox02 for IPV6. The port is the mapped port represented by a 16 bit network byte 

order number. If the family is IPV4, the Address is 32 bits. For IPV6, the address is 128 

bits (again, in network byte order). 
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A PEER-INFO may contain multiple PEER-IP-PORT values. The meanings and uses 

of these values are not defined by this specification. Reliable communication in environ­

ments with NATs or firewalls can only be established through the use of ICE as provided 

by the OPEN method. 

PEER-EXPIRATION 

The PEER-EXPIRATION attribute value provides the amount of time in seconds the 

peer information should be considered valid. The value MUST be a numeric value repre­

senting the relative time in seconds at which the peer will expire. The value SHOULD be 

32bits and MUST be encoded in network byte order. 

PEER-CERT 

The PEER-CERT attribute contains the security certificate used to authenticate the 

peer. This optional attribute is defined by the security mechanism being used. 

PEER-SIGNATURE 

The PEER-SIGNATURE attribute value contains the signature of the message. This 

optional PEER-INFO attribute is defined by the security mechanism being used. The 

PEER-SIGNATURE MUST be the last attribute in the PEER-INFO and is applied to all 

preceding attributes in the PEER-INFO. 

8.1.2.3 RESOURCE and RESOURCE-INFO 

The RESOURCE attribute provides information about resources and resource registra­

tions. 

The RESOURCE attribute type is a RESOURCE-INFO, which itself contains several 

attributes. RESOURCE-INFO contain the following attributes. 
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RESDURCE-INFO.KEY 
RESOURCE-INFO.BODY 

RESOURCE-INFO.KEY 

Ox0201 
Ox0202 
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The RESOURCE-INFO.KEY attribute represents the hashable string that uniquely 

identifies a resource. It MUST be present in an RESOURCE- INFO attribute. The 

RESOURCE-INFO. KEY value is variable length value and the encoded length is its length 

prior to padding. 

RESOURCE-INFO.BODY 

The RESOURCE-INFO.BODY attribute provides information about all of the resource 

types. At least one RESOURCE-lNFO.BODY attribute MUST be present in a RESOURCE­

INFO. Additional RESOURCE-INFO.BODY attributes MAY be added to the RESOURCE­

INFO. The RESOURCE-INFO.BODY attribute value consists of several attributes. 

RESOURCE-INFO.BODY.ENTRY 
RESOURCE-INFO.BODY.PARAMETER 
RESOURCE-INFO.BODY.EXPIRATION 
RESOURCE-INFO.BODY.SIGNATURE 
RESOURCE-INFO.BODY.PEER-INFO 
RESOURCE-INFO.BODY.CERTIFICATE 

RESOURCE-INFO.BODY.ENTRY 

Ox0303 
Ox0304 
Ox0305 
Ox0306 
Ox0307 
Ox0308 

The RESOURCE-INFO. BODY. ENTRY attribute contains the resource information. It 

MUST be present in the RESOURCE-INFO.BODY attribute and only one RESOURCE­

INFO.BODY.ENTRY can be specified in each RESOURCE-INFO. BODY. The RESOURCE­

INFO.BODY.ENTRY attribute is variable length and its encoded length is its length prior 

to padding .. 
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RESOURCE-INFO.BODV.PARAMETER 

RESOURCE-INFO.BODY.PARAMETER provides type parameters for each 

RESOURCE-INFO.BODY. For example, a RESOURCE-INFO.BODY.PARAMETER might 

indicate that the RESOURCE-INFO.BODY.ENTRY is of type "voicemail". 0 or more 

RESOURCE-INFO.BODY.PARAMETERs MAY be specified in a RESOURCE-INFO.BODY. 

RESOURCE-INFO.BODY.PARAMETER specifies characteristics of the 

RESOURCE-INFO.BODY. RESOURCE- INFO.BODY.PARAMETER consist of a name, 

an operator, and a value. 

RESOURCE-INFO.BODY.PARAMETER.NAME 
RESOURCE-INFO.BODY.PARAMETER.OP 
RESOURCE-INFO.BODY.PARAMETER.VALUE 

Ox0309 
Ox030A 
Ox030B 

RESOURCE-INFO.BODY.PARAMETER.NAME is the textual description of the re­

source type encoded in UTF-8. The length of the description is encoded as its length 

prior to padding. The RESOURCE- INFO.BODY.PARAMETER.NAME MUST be speci­

fied in the RESOURCE- INFO.BODY.PARAMETER.. 

RESOURCE-INFO.BODY.PARAMETER.OR is the operator defining the relationship 

between the RESOURCE-INFO.BODY.PARAMETER.NAME and the 

RESOURCE-INFO.BODY.PARAMETER.VALUE. It MUST be specified in the RESOURCE­

INFO.BODY.PARAMETER. It is an 8 bit numeric value with the following operators de­

fined: 

Ox1 
!= Ox2 
> Ox3 
>= Ox4 
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< Ox5 
<= Ox6 

RESOURCE-INFO.BODY.PARAMETER.VALUE is the textual right hand side of the 

operator encoded in UTF-8. It MUST be specified in the 

RESOURCE- INFO.BODY.PARAMETER attribute. 

RESOURCE-INFO.BODV.EXPIRATION 

The RESOURCE-INFO.BODY.EXPIRATION attribute value provides the amount of 

time in seconds the RESOURCE-INFO.BODY information should be considered valid. 

The value MUST be a numeric value representing the relative time in seconds at which 

the RESOURCE-INFO.BODY will expire. The value SHOULD be 32bits and MUST be 

encoded in network byte order 

RESOURCE-INFO.BODV.SIGNATURE 

The RESOURCE-INFO.BODY.SIGNATURE attribute contains the signature of the 

message. This optional RESOURCE-INFO.BODY attribute is defined by the security 

mechanism being used. 

RESOURCE-INFO.BODY.PEER-INFO 

The RESOURCE-INFO.BODY.PEER-INFO attribute contains information about the 

peer that is storing the resource and how to access the physical resource stored on 

that peer. RESOURCE-INFO.BODY.PEER-INFO is a type PEER-INFO attribute, see 

the SOURCE-INFO and PEER-INFO sections for syntax details, and it is an optional 

RESOURCE- INFO.BODY attribute. 

PEER-INFO might be included in a resource registration to provide information on 

how to contact a particular device through the overlay (using TRANSPORT-TUNNEL) 
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rather with a traditional URL. This information might also be included as a uri-param or 

other protocol- specific method embedded in the RESOURCE-INFO.BODY.ENTRY. 

8.1.2.4 ROUTE-LOG 

ROUTE-LOG provides diagnostic information about the path taken by the request so far 

and in this manner it is similar in function to SIP's Via header field. At each hop peers 

MUST append their P2PSIP implementation version, transport protocol, and PEER-INFOs 

in a new ROUTE-LOG attribute. The order of the ROUTE-LOGs in the message is used to 

determine the order of the peers were traversed along the path. The first ROUTE-LOGs 

attribute corresponds to the peer at the first hop along the path, and each subsequent 

ROUTE-LOG attribute corresponds to the peer at the next hop along the path. 

ROUTE-LOG.P2PSIP-VERSION 
ROUTE-LOG.TRANSPORT 
ROUTE-LOG.PEER-INFO 

ROUTE-LOG.P2PSIP-VERSION 

Ox0400 
Ox0401 
Ox0402 

ROUTE-LOG.P2PSIP-VERSION contains the protocol and version of the P2PSIP 

implementation used at each hop along the path. The value of ROUTE-LOG.P2PSIP­

VERSION is a variable length value. Its encoded length is its length prior to padding. 

ROUTE-LOG.TRANSPORT 

ROUTE-LOG.TRANSPORT specifies the transport protocol being used at each hop 

along the path. ROUTE-LOG.TRANSPORT values are integers numbers and the follow­

ing transport protocol values MUST be understood: 
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ROUTE-LOG.TRANSPORT.TCP 
ROUTE-LOG.TRANSPORT.UDP 
ROUTE-LOG.TRANSPORT.TLS 
ROUTE-LOG.TRANSPORT.SCTP 

Ox0006 
Ox0011 
Ox0038 
Ox0084 
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TLS means, TLS over TCP. The hex numbers specified are taken from lANA's as­

signed Internet Protocol Numbers, which are used to fill in the "Protocol" and "Next 

Header" fields in 1Pv4 and 1Pv6, respectively. 

ROUTE-LOG.PEER-INFO 

ROUTE-LOG.PEER-INFO provides information about the peer at each hop along the 

path. The syntax of ROUTE-LOG.PEER-INFO is identical to the PEER-INFO syntax 

described above in the SOURCE-INFO and PEER-INFO section. 

8.1.2.5 REDIRECT 

The REDIRECT attribute is intended to be used to specify a new peer to contact and is 

only present in response messages. The REDIRECT attribute value is a PEER-INFO, 

the syntax of which is described in the SOURCE-INFO and PEER-INFO section. 

8.1.2.6 SIGNATURE 

SIGNATURE attribute is a signature of the header fields. The SIGNATURE is applied to 

the entire message from the 8th byte of the header to the end of the attribute preceding 

the SIGNATURE. The SIGNATURE MUST be the last attribute of the message except for 

ROUTE- LOGs appended subsequently. The SIGNATURE attribute value is dependent 

on the security mechanism being used as indicated in the Security header field. 
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8.1.2.7 SOP 

The SOP attribute is used in a TRANSPORT-OPEN to establish a direct connection be­

tween peers. All RELOAD PEERs MUST provide an ICE implementation. This imple­

mentation SHOULD be a Full ICE implementation, rather than a Lite implementation. 

The SOP describes the type of connection that will be established. "application/reload" 

and "application/sip" are the two primary connections that a P2PSIP peer will need, but 

others such as "application/http" and "application/msrp" may be used as well. Both regu­

lar ICE and ICE-TCP [69] may be used for RELOAD connections. 

A TRANSPORT-OPEN message indicates a desire for a direct connection between 

the source and destination peers. The TRANSPORT-OPEN message itself is routed 

along the established overlay network and is used as a control connection for the ICE 

negotiation. The peers may already be exchanging messages over the overlay, and one 

may decide to open the connection to improve efficiency. Many times the TRANSPORT­

OPEN will be used when a peer is updating its routing table and discovers a peer that 

should be in its routing table based on its DHT algorithm. 

TRANSPORT-OPEN is not required to be used for every connection. A PEER-INFO 

may contain multiple PEER-IP-PORT attributes for a particular peer and a connection 

may be attempted with those without use of TRANSPORT-OPEN. The exact decision of 

when to use TRANSPORT- OPEN is not specified by this specification. 

Support for ICE mandates that all RELOAD peers MUST implement STUN on their 

ports and multiplex between RELOAD and STUN traffic. Peers must also support 

keepalives on their ports. 

The straightforward mechanism described here works quite well for a single offer­

answer exchange. OPEN ISSUE: Because RELOAD does not require the various mid-
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session media changes that are required for SIP, we may not need to support subsequent 

offer/answer exchanges to update or improve the same session. 

Peers may continue to exchange RELOAD messages over the overlay until the con­

nection is established. Note that this only applies to recursive routing. 

8.1.2.8 APPLICATION 

The APPLICATION attribute is used to tunnel application-specific messages between 

peers in TRANSPORT-TUNNEL messages. APPLICATION attribute has three 

sub-attributes, each of which MUST be included in an APPLICATION attribute: 

APPLICATION.NAME 
APPLICATION.BODY 
APPLICATION.DIALOG 

Ox0403 
Ox0404 
Ox0405 

Each has a type of string. APPLICATION.NAME should contain the name of the 

protocol, i.e. "sip", "http", or "reload". 

APPLICATION.BODY contains the actual message to be delivered to the application. 

APPLICATION.DIALOG contains a 32-bit integer that uniquely identifies the dialog 

the current message is a part of. It is intended to help identify requesVresponse pairs 

and its specific meaning is particular to the protocol being tunneled. 

Multiple methods are possible for electing when to tunnel SIP traffic. In particular, 

the SIP UA portion of the P2PSIP peer may not wish to be aware of whether its traffic 

is being sent directly, routed over a TUNNEL, or sent through a connection opened with 

TRANSPORT-OPEN. 
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The response to a TRANSPORT-TUNNEL message MAY contain an APPLICATION 

attribute. If an application does not produce a response message or takes too long, the 

peer SHOULD produce a response with a 200 response code indicating the message 

was received. Subsequent responses will be sent in their own TRANSPORT-TUNNEL 

request with the same APPLICATION.DIALOG as previous messages. 

8.1.3 Adding New Attributes 

This specification is designed to allow future revisions of this protocol and pluggable DHT 

algorithms to add new attributes. DHT algorithms SHOULD define attributes that specify 

how to exchange DHT Routing Table, Connection Table, and Neighbor information. The 

exact details and syntax of these attributes is left to the DHT algorithms. 

Attributes numbering from Ox0600 to Ox06FF are reserved for the pluggable DHT 

algorithms. Each DHT algorithm may use any attributes in this range. Because the 

DHT algorithm in use is specified in the header, there are no concerns about collisions 

between two different DHT algorithms: they may each use the same attribute for different 

purposes. The pluggable security algorithms may use attributes from Ox0800 to Ox08FF 

subject to the same rules. 

8.2 Hash Algorithms and Identifiers 

8.2.1 Hash Algorithms 

All IDs used for an overlay must be calculated using the same hash algorithm. Implemen­

tations MUST support the SHA-1 algorithm, which produces a 160 bit hash value. The 
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hash algorithm used is specified in the HASH field of the message header, described in 

the Message Header section. 

8.2.1.1 Peer-IDs 

Peer-IDs MUST be acquired or generated in the same manner for all peers in the overlay. 

Peer-IDs MAY be generated by a peer hashing information specific to that peer, such as 

the IP address and port number, a peer creating a UUID, or a central authority assigning 

Peer-IDs to peers. For example, the particular DHT algorithm being used MAY specify 

an alternate mechanism for determining Peer-ID. Similarly, some security models may 

assign Peer-IDs from a central authority. 

Hashing the IP address and Port number to create a Peer-ID provides minimal se­

curity, but only if the Peer-ID can be used to verify the IP address of the peer. This is 

limited security in that it limits the number of Peer-IDs a malicious user could obtain to 

the number of IP addresses that user controls. In the case of an administrator or 1Pv6 

addresses a user could obtain a large number of Peer-IDs. Furthermore, NATs make it 

challenging to verify the IP addresses of peers. Hashing IP addresses and port numbers 

(possibly along with some other peer specific information) MAY be used to create unique 

Peer-IDs, but SHOULD NOT be used to provide security for the overlay. 

If the security mechanism does not define how Peer-IDs are generated, UUIDs 

SHOULD be created by peers and used as their Peer-IDS. The system constructs a 

version 1 UUID according to RFC 4122 [57). If the application cannot guarantee that the 

timestamp obtained for the UUID is globally unique (i.e. there is no system-wide shared 

stable store for the generator state), it MUST append to the UUID ";",the protocol ("udp" 

or "tcp"), ";", and the port number allocated for use by the application. The resulting 
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string is then hashed to generate a Peer-ID. UUIDs provide unique identifiers, but with no 

pretense of security. 

The security mechanism being used by the overlay MAY define how Peer- IDs are 

generated or acquired. For example, a certificate authority can be responsible for assign­

ing Peer-IDs to all of the peers in the overlay. Security algorithms are not discussed in 

detail in this specification. 

8.3 Message Routing 

When a peer sends a message within the DHT, it begins by calculating the target ID it is 

attempting to locate, which might be its own location in the DHT, or a user's registration, 

for which it hashes the user's URI to obtain the appropriate Resource- I D. It then consults 

its routing table, and its other neighbor peers, for the closest peer it is aware of to the 

target ID. 

The messages in the overlay MAY be routed either iteratively or recursively. The 

Routing as described above SHOULD be used to indicate if the next node should process 

the message using a recursive or iterative mechanism. If the header is omitted, the 

receiving peer may process the message either recursively or iteratively. If the receiving 

peer cannot or does not want to route the message in the manner specified in the Routing 

header field, a 499 Unwilling to Proxy message SHOULD be returned to the requesting 

peer. 

If the Routing header is iterative, the contacted peer MUST determine if it is respon­

sible for that target ID. If it is not, then the contacted peer MUST issue a 302 redirect 

pointing the search peer toward the best match the contacted peer has for the target I D. 
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The searching peer then contact the peer to which it has been redirected and the process 

iterates until the responsible peer is located. 

In recursive routing, the peer sends a message to the peer it knows that is nearest to 

the target. If the contacted peer is not responsible for the target 10, it MUST forward the 

query to the nearest peer to the target that it knows, and the process repeats until the 

target is reached. This process follows standard proxy behavior in RFC 3261. 

At each step, the contacted peer must only examine the first 12 bytes to ensure ver­

sion compatibility, type of routing requested, and R/r, then look at the source or destina­

tion ID to determine how to route the message. Parsing the body of the message or the 

other headers is not required unless the contacted peer is responsible for the destination 

I D. 

[28] provides an analysis of the tradeoffs between iterative and recursive routing. 

Although that analysis is based on dSIP, the functionality and message count of RELOAD 

is very similar. 

8.3.1 SIP Session Establishment 

If the peer needs to have the SIP session establishment routed through the overlay, it MAY 

use the TRANSPORT-OPEN or TRANSPORT- TUNNEL messages to request either that 

a new connection be established or that intermediate nodes proxy the INVITE over the 

overlay on their behalf. 



APPENDIX B. RELOAD PROTOCOL SPECIFICATION 198 

8.4 Peer and DHT Operations 

8.4.1 Peer Registration 

After a peer has located an initial bootstrap peer, the process of joining the overlay is 

started by constructing a PEER-JOIN message and sending it to the bootstrap peer. 

Third party registration MAY NOT be used for registering peers into the overlay, and 

attempts to do so MUST be rejected by the peer receiving such a request (although third 

party registrations are used for other purposes, as described below). The peer MUST 

construct according to the rules outlined below. 

8.4.1.1 Constructing a Peer Registration 

The Method field in the message MUST be set to PEER-JOIN, OxOO, and the Rlr bit field 

in the message header MUST be set to OxO. 

The Source ID field of the header MUST include only the 160bit identifier that specifies 

the joining peer's Peer- I D. The Destination ID header for a PEER-JOIN MUST also be set 

to the joining peer's Peer-ID. 

The joining peer MAY leave the Overlay header field set to OxO for its initial registration 

message, but MUST set this parameter to the checksum of the name of the overlay it is 

joining as soon as it receives a response from the bootstrap peer. 

The joining peer MUST set the DHT header field to the name of the DHT it will be 

using and MUST set the Version header field to be Ox01 for this version of the protocol. 

The joining peer MUST set the Hash header field to the name of the Hash algorithm 

it will use and as soon as it receives a response from the bootstrap peer. 
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The joining peer MAY leave the Security header field set to OxO for its initial registration 

message, but MUST set this parameter to the security type of the overlay it is joining as 

soon as it receives a response from the bootstrap peer. 

The joining peer SHOULD also list its peer information in a SOURCE- INFO attribute 

in the body of the message. See the sections on SOURCE-INFO and PEER-INFO for 

details on the syntax of this attribute. 

Assume that a peer running on IP address 1 0.4.1 .2 on port 5060 attempts to join the 

network by contacting a bootstrap peer. Further assume that the overlay is using IP:port 

hashing to determine Peer-IDs and that 1 0.4.1.2 hashes to 463ac4b449 under SHA-1 

(using a 10 digit hash for example simplicity), and the least significant bits are replaced 

with the port number, yielding 463ac413c4 and that the overlay name is chat and the 

DHT is dhtalg1.0. An example message would look like this: 

Version: Ox01 
Method: OxOO 
DHT: OxO 
Security: OxO 
Hash: OxO 
Source ID: 463ac413c4 
Destination ID: 463ac413c4 
------Attributes---­
SOURCE-INFO: 

PEER-ID: 463ac413c4 
PEER-IP-PORT: 10.4.1.2:5060 
PEER-EXPIRATION: 300 

8.4.1.2 Processing the Peer Registration 

If the peer examines the overlay parameters and determines that this is not an overlay 

the peer participates in, the peer MUST reject the message with a 497 Incompatible 
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With Overlay response. Likewise if the peer examines the DHT field determines that 

the algorithm specified is not compatible with its algorithm, the peer MUST reject the 

message with a 488 Incompatible With Overlay. 

Routing the Peer Registration 

The bootstrap peer SHOULD verify that the Peer-ID corresponds to the peer listed in 

the URI by validating the peer's credentials, if any are present. If these do not match, the 

message SHOULD be rejected with a response of 493 Undecipherable. The bootstrap 

peer examines the Peer-ID to determine if it corresponds to the portion of the overlay the 

bootstrap peer is responsible for. If it does, the peer will handle the PEER-JOIN request 

itself. If not, the bootstrap peer will either provide the joining peer with information about a 

peer closer to the area of the overlay where the joining peer's Peer-ID is stored (iterative 

routing) or forward the request along the closest peer it knows about (recursive routing). 

If a Routing header is set to proxy, the peer MUST use a recursive routing mechanism, 

and if it is set to redirect, the peer MUST use an iterative routing mechanism. If the 

peer is unwilling to use this routing mechanism, it MUST reject the message with a 499 

response. In the event that the Routing header is set to unspecified, the peer may choose 

either mechanism. 

In the case of iterative routing, if the receiving peer is not responsible for the area of 

the hash table where Peer-ID should be stored, the peer SHOULD generate a 302 mes­

sage. The receiving peer MUST look in its list of neighbors or in the routing table to find 

the peer with Peer-ID nearest the to joining peer's Peer-ID, and use it to create a Redi­

rect attribute in the form of a PEER-INFO, as specified in the REDIRECT section. The 

response MUST also contain a SOURCE-INFO attribute. The Source ID and Destination 

ID of the reply MUST NOT be changed. This response is sent to the joining peer. 

In the case of recursive routing, if the receiving peer is not responsible for the area of 

the hash table where the Peer-ID should be stored, the receiving peer should forward the 
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request to the peer it knows about that is closest to the Peer-ID. When using recursive 

routing, the reply from the admitting (responsible) peer is routed back through the over­

lay to the bootstrap peer, which then forwards the reply to the joining peer. A receiving 

peer receiving a join request from the joining peer and proxying that request MUST route 

that message to the admitting peer in a TRANSPORT-TUNNEL message with an APPLI­

CATION attribute whose APPLICATION.NAME is "reload". This technique is necessary 

because RELOAD must support both reliable authentication and NAT-traversal for routing 

its initial join messages. If the initial join is routed directly to the admitting peer, there is 

no way for the reply to be routed back to the joining peer because the joining peer is 

not yet properly placed in the overlay. The reply must be routed through the bootstrap 

peer, because it is the only peer known to have a connection to the joining peer. Using 

a TRANSPORT-TUNNEL for the transaction allows the joining peer to authenticate the 

message properly but encapsulates it so that a reply can be routed back to the bootstrap 

peer. A recursive join request MUST also include a TRANSPORT-OPEN to establish a 

direct connection with the admitting peer. 

A peer MUST NOT add a new peer to its routing table or redirect requests to that new 

peer until it has successfully established a connection with that peer itself. By redirecting 

a message to another peer, the contacted peer indicates that it believes that peer to be 

alive and that it is willing to route messages to it for NAT and Firewall traversal purposes. 

Admitting the Joining Peer 

The admitting peer recognizes that it is presently responsible for this region of the 

hash space - that is, it is currently the peer storing the information that this Peer-ld 

will eventually be responsible for. The admitting peer knows this because the joining 

peer's Peer-ID is closest to its own Peer-ID. The admitting peer is responsible for helping 

the joining peer become a member of the overlay and the admitting peer MAY perform 

additional security checks. Once any challenge has been met, the admitting will reply 
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with a 200 OK message to the joining peer. 

The admitting peer MUST reply with a 200 response if the admitting peer's Peer-ID 

is the closest to the joining peer's Peer-10. Each DHT algorithm MAY choose to define 

closest however they want, but the DHT algorithm MUST be able to deterministically find 

the closest Peer- I D. The admitting peer must populate any DHT-SPECIFIC attributes with 

all values required by the DHT routing protocol so that the joining peer can initialize its 

neighbors and routing table entries or sent additional DHT-SPECIFIC messages. Ad­

ditionally, the admitting peer MUST include its peer information in the SOURCE-INFO 

attribute of the response. 

8.4.2 Peer Query 

8.4.2.1 Constructing a Peer Query Message 

The peer looks for the routing table entry or neighbor peer that is closest to the ID they 

are searching for. If the routing table has not yet been filled, then the peer may send the 

request to any peer it has available, including their other neighbor peers or even some 

bootstrap peer. While these initial searches may be less efficient, they will succeed. 

The Method field in the message MUST be set to PEER-SEARCH, Ox01, and the R/r 

bit field in the message header MUST be set to OxO. 

The Source ID field of the header MUST include only the 160bit identifier that specifies 

the searching peer's Peer-ID. The Destination ID header for a PEER-SEARCH MUST be 

set to the Peer-ID that is being searched for. 

The searching peer MUST set the Overlay header field to the name of the overlay it 

is participating in. 
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The searching peer MUST set the DHT header field to the name of the DHT it is using 

using and MUST set the Version header field to be Ox01 for this version of the protocol. 

The searching peer MUST set the Hash header field to the name of the Hash algo­

rithm it is using. 

The searching peer MUST set the Security field to the security type of the overlay. 

The searching peer SHOULD also list its peer information in a SOURCE- INFO at­

tribute in the body of the message. See sections SOURCE-INFO and PEER-INFO for 

details on the syntax of this attribute. 

Assume that a peer wants to determine who is responsible for Peer-ID 4823affe45. 

Further assume that the peer uses SHA-1 (using a 10 digit hash for example simplicity), 

and that the overlay name is chat. An example message would look like this (Note that 

there is no indication of the source or destination IP addresses or ports, which allows this 

message to be routed, unchanged, to its destination): 

Version: Ox01 
Method: Ox01 
Source ID: 463ac413c4 
Destination ID: 4823affe45 
------Attributes---­
SOURCE-INFO: 

PEER-ID: 463ac413c4 
PEER-IP-PORT: 10.4.1.2:5060 
PEER-EXPIRATION: 300 

8.4.2.2 Processing Peer Query Message 

If the peer examines the overlay, hash, and DHT fields overlay the peer participates in 

or that the algorithms are incompatible, the peer MUST reject the message with a 498 
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Incompatible With Overlay response. 

Routing the Peer Query Message 

The receiving peer SHOULD NOT alter any of its internal values such as succes­

sor or predecessor in response to this message, since it is a query. This decision was 

made for security reasons- the peer should only learn about other peers it has directly 

queried. Otherwise, the message is processed and routed as a peer registration until the 

responsible peer is reached. 

Responding to the Peer Query Message 

If the receiving peer is responsible for the region that the search key lies within, it 

MUST respond to the query. If the receiving peer's Peer-ID exactly matches the search 

key, it MUST respond with a 200 OK message. If it is responsible for that region, but its 

Peer-ID is not the search key, it MUST respond with a 404 Not Found message. 

8.4.3 Populating the Joining Peer's Routing Table 

Once admitted, the joining peer SHOULD populate its routing table and locate neighbors 

by sending DHT-SPECIFIC messages or by issuing queries for peers with the appropri­

ate identifiers. If the admitting peer provided neighbor or routing table information in its 

response, the joining peer MAY use this information to construct a temporary routing ta­

ble and neighbor information and use this temporary table in the queries to populate the 

table. 

8.4.4 Transfering User Registrations 

When a new peer joins, it splits the area in the hash space the admitting peer is respon­

sible for. Some portion of the resources the admitting peer was responsible for may now 
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be the responsibility of the joining peer, and these resources are handed to the joining 

peer by means of RESOURCE-TRANSFER messages. 

8.4.5 Peers Leaving the Overlay Gracefully 

Peers MUST send their registrations to their closest peer before leaving the overlay, as 

described in the section above. Additionally, peers MUST unregister themselves with 

their symmetric neighbors (if the DHT routing algorithm uses symmetric neighbors in any 

form). These graceful exit messages are constructed exactly the same as one used 

to join, with the following exceptions. The PEER- EXPIRATION of the SOURCE-INFO 

MUST be set to 0. 

8.4.6 NAT and Firewall Traversal 

The filtering properties of NATs and firewalls can lead to non- transitive connectivity. 

Typically this will manifest itself in a peer receiving a 302 redirecting it to another peer 

that it cannot contact, most likely because address dependent filtering is occurring. In 

that case, the peer SHOULD use a TRANSPORT-OPEN message routed to the target 

peer through an established RELOAD connection to open a RELOAD connection with 

the target peer. 

8.4.7 Handling Failed Requests 

When a request sent to another peer fails, the peer MUST perform searches to update 

its pointers. If the failed request was sent to a peer in the routing table or a neighbor 

peer, then DHT-SPECIFIC message should be sent or the searches discussed in the 

Populating the Joining Peer's Routing Table section should be performed. 
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8.5 Resource Operations 

The most important element of resource operations within the P2PSIP DHT is that they 

are performed essentially the same as if using a conventional SIP registrar, except that 

the registrar responsibilities are distributed among the DHT members using the RELOAD 

protocol. 

8.5.1 Resource Registrations 

When a peer is in the overlay, it must register the contacts for users and other resources 

for which it is responsible into the overlay. This differs from the registrations described 

above in that these registrations are responsible for entering a resource name to re­

source body mapping into the overlay as data, rather than joining a peer into the overlay. 

Resources are registered in the overlay by sending a RESOURCE-PUT message. 

The Method field in the message MUST be set to RESOURCE-PUT, Ox11, and the 

Rlr bit field in the message header MUST be set to OxO. 

The Destination ID field of the header MUST be set to the 160bit identifier that speci­

fies the Resource-ID of the resource body being registered. The Source ID header MUST 

be set to the Peer-ID of the peer doing the RESOURCE-PUT. 

The RESOURCE-PUT request SHOULD also include a SOURCE-INFO attribute in 

the body of the message. See the sections on SOURCE-INFO and PEER-INFO for 

details on the syntax of this attribute. 

The resource registration MUST include at least one RESOURCE-INFO attribute, 

with at least one RESOURCE-INFO.BODY attribute in the body of the RESOURCE­

PUT message. The RESOURCE-INFO. KEY specifies the name of the resource and the 
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RESOURCE-INFO.BODY specifies one of the key to resource body (registrations} map­

pings. If more than one RESOURCE-INFO.BODY is in the RESOURCE-INFO attribute, 

there is a one to many mapping between resource key and resource body values. Each 

RESOURCE-INFO.BODY MUST have an expires value specified in the RESOURCE­

INFO.BODY.EXPIRATION attribute. EXPIRATION set to zero will be used to remove 

resource bodies. 

The message is routed in a fashion exactly analogous to that described in the section 

on peer registration. In iterative routing algorithms, 302 messages are sent to indicate 

that the message is to be redirected to another peer. In recursive routing algorithms, the 

receiving peer SHOULD forward the request to the peer in its routing table that is closest 

to the Resource- I D. Once the message arrives at a destination that is responsible for that 

portion of the hash namespace, the peer responds with a 200 indicating a successful 

registration. 

The registering peer SHOULD construct and register replica registrations. 

8.5.2 Refreshing Resource Registrations 

Resource registrations are refreshed exactly as described in RFC 3261, Section 10. Re­

sponsible peers should send a new registration with a valid expiration time prior to the 

time that the registration is set to expire. 

Agents MAY cache the address where they previously registered and attempt to send 

refreshes to this peer, but they are not guaranteed success, as a new peer may have 

registered and may now be responsible for this area of the space. In such a case if 

iterative routing is being used, the peer will receive a 302 from the peer with which they 

previously registered, and should follow the same procedure for locating the peer they 

used in the initial registration. 
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8.5.3 Removing Resource Registrations 

Resource registrations are removed exactly as described in RFC 3261, Section 10. Re­

sponsible peers MUST send a registration with expiration time of zero. 

If it registered replica registrations, the sending peer MUST construct replica unregis­

ter messages and use these to unregister the replicas. 

8.5.4 Querying Resource Registrations 

Querying peers should send a RESOURCE-GET message to the peer in its routing table 

with Peer-ID closest to the Resource-ID of the resource being searched for. 

The 200 response to a RESOURCE-GET MUST provide a RESOURCE-INFO with 

information about the requested resource. The RESOURCE-INFO.BODY MAY specify 

how to acquire the resource instead of containing the resource itself. For example, if the 

resource being searched for is a large voicemail file, the RESOURCE-INFO.BODY might 

contain a URL that can be used to fetch the resource. After obtaining the RESOURCE­

INFO.BODY from the RESOURCE-GET response message, it is the responsibility of the 

UA to acquire the resource from the peer specified in the RESOURCE-INFO.BODY. 

A P2P environment can do little to protect against an individual peer compromising 

the registrations it is responsible for. Accordingly, a UA cannot trust a response from a 

single peer, whether it indicates a successful search or an error. In the absence of other 

methods of verifying the response (such as having a certificate of the user being searched 

for and a signed registration that can be verified with the certificate) a UA should search 

for the primary registration and at least one replica. Because the locations the replicas 

are stored are unrelated to the location of the primary registration, a single attacker is 
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unlikely to be able to compromise both entries. As the overlay gains more peers and 

more replicas are searched for, the odds of a compromise are reduced. 

8.5.5 SIP Session Establishment 

When a caller wishes to send a SIP message (such as an INVITE, MESSAGE or SUB­

SCRIBE), the caller must first locate the peer where this callee's information resides using 

the resource search procedure described in the section titled Resource Location. 

Establishing a session is done entirely in the normal SIP fashion after the user is 

located using the P2P resource query. Once the peer responsible for the Resource­

ID is located, it will provide either a 200, providing a contact for the users UA, or will 

provide a 404 if the user is not registered. If a 200 with a valid contact is received, 

the call will then be initiated directly with the UAS of the called using the standard RFC 

3261 fashion. If necessary for NAT traversal, the INVITE can be processed by routing 

it through the overlay using TRANSPORT-TUNNEL or through a connection established 

with TRANSPORT-OPEN. 

8.5.6 Offline Storage 

Delivery of messages to offline users, or voicemail for voice applications, requires storing 

that information for later retrieval. Storing user configuration information in a format ac­

cessible from the network also will allow a user to retrieve their profile from any computer. 

Cao et al. [25] describe an approach that separates the storage of resource location in­

formation from the actual storage of the offline resource. We believe that this approach 

is in agreement with the approach taken by the rest of this specification, which relies on 

the DHT overlay to store the registrar's location information, but relies on external, con­

ventional methods for the actual connection. For offline storage, it also allows the use of 
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other standard protocols to store and retrieve the offline information, keeping the P2PSIP 

scope restricted to storing resource mappings. 

8.6 Pluggable DHT Algorithm Requirements 

All RELOAD peers MUST support the Chord pluggable DHT algorithm for compatibility. 

They MAY support additional pluggable algorithms. The requirements for new pluggable 

algorithms are defined in this section. 

Pluggable algorithm MUST use Peer-IDs and Resource-IDs as defined in the Hash 

Algorithms and Identifiers section. Pluggable algorithms are free to define what hash 

algorithms they support, but they MUST clearly specify what they are. 

A resource with Resource-ID k will be stored by the peer with Peer-ID closest to the 

Resource-ID. The definition of closeness may vary in different DHT algorithms, but each 

DHT algorithm MUST guarantee Resource-ID searches converge to exactly one peer 

responsible for that portion of the namespace. As peers enter and leave, resources may 

be stored on different peers, so the information related to them is exchanged as peers 

enter and leave. Redundancy is used to protect against loss of information in the event 

of a peer failure. 

Each new DHT algorithm MUST define a value for the DHT 8 bit field to be used in the 

DHT field of the RELOAD message header, defined in Message Header Syntax section. 

Each new DHT algorithm MUST define DHT-SPECIFIC Methods and any DHT- SPE­

CIFIC attributes that are to be used and understood in RELOAD messages. 
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B. 7 Security Considerations 

Please see the security considerations in A.6 which apply here, in addition to the new (or 

superseded) sections below: 

8.7.1 Protection Using ID Hashing 

(this Section supersedes Section A.6.2.1 with respect to RELOAD.) 

One method for determining Peer-IDs is hashing the peer's IP address and appending 

the port number. The security of this scheme depends on the ease with which an attacker 

can choose their own Peer-ID. Because the port number is only appended to the Peer-ID, 

an attacker gains nothing by selecting different ports on the same node. Assuming that 

the SHA1 hash used to calculate the Peer-ID is reliably random, the attacker's ability to 

succeed depends on the number of separate IP addresses that they are able to obtain 

from which to launch their attacks. 

In the current predominantly IPV4 Internet, few attackers have access to more than a 

handful of IP addresses, perhaps a few hundred at worst. For a large-scale P2P system, 

this is unlikely to provide the ability to hijack a particular user ID or control a sufficient 

portion of the network to affect other peers, in particular when registrations are replicated 

at independent peers. Ultimately, however, a sufficiently skilled and provisioned attacker 

can compromise this scheme. 

As the Internet migrates to IPV6, however, it is unclear that the assumption that few 

attackers have access to a significant range of IP addresses will remain true. Therefore, 

hashing IP addresses to Peer-IDs is assumed to provide a diminishing amount of security 

in the future. 
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Even in the IPV4 Internet, however, it is frequently impossible to verify another peer's 

IP address. Because of the common use of NAT in the modern Internet, IP addresses are 

not necessarily transitive or reflexive. Therefore, a peer cannot generate a valid Peer-ID 

for its IP address as seen by all other peers on the Internet. This problem makes hashed 

Peer-IDs essentially unverifiable in many situations. 

Due to these shortcomings, we recommend UUIDs as the default technique for gen­

erating Peer-IDs in the absence of other security schemes. While not offering any level of' 

security, they do a better job of ensuring uniqueness than allowing multiple peers behind 

NATs to claim the Peer-10 corresponding to 192.168.1.100:5060. 

8.7.2 Protecting the Signaling 

(this Section supersedes Section A.6.5 with respect to RELOAD.) 

The goal here is to stop an attacker from knowing who is signaling what to whom. An 

attacker being able to observe the activities of a specific individual is unlikely given the 

randomization of IDs and routing based on the present peers discussed above. Further­

more, because messages can be routed using only the header information, the actual 

body of the RELOAD message can be encrypted during transmission. 

8.7.3 Replay Attacks 

Defense against replay attacks is discussed in [59]. 



Appendix C 

Tables of Simulation Results 

Table C.1 : 1 0% NAT Density Results, Hops 

Peer SR SR AR AR DR DR 
Lifetime (h) Hops SD Hops SD Hops SD 
.5 6.50385 1.76157 1.55744 1.76899 1.64732 2.02494 
1 6.50388 1.76449 1.55439 1.75743 1.64912 2.02767 
2 6.50417 1.76109 1.55051 1.74739 1.64733 2.02482 
4 6.50799 1.76207 1.56360 1.76442 1.66420 2.04889 
6 6.50527 1.76446 1.55310 1.74894 1.65225 2.03242 
8 6.50427 1.76482 1.54043 1.73020 1.63755 2.01145 
12 6.50355 1.75821 1.53703 1.72418 1.63385 2.00548 

Table C.2: 10% NAT Density Results, Time 

Peer SR SR AR AR DR DR 
Lifetime (h) Time (ms) SD Time (ms) SD Time (ms) SD 
.5 498.917 132.585 101.2910 185.286 175.852 426.854 
1 498.942 132.806 98.4012 162.722 176.459 427.401 
2 498.976 132.552 96.4549 149.128 175.977 426.848 
4 499.382 132.636 96.2551 143.269 179.239 431.743 
6 499.116 132.810 95.5596 139.571 176.641 428.278 
8 498.962 132.829 94.9240 136.936 174.118 423.930 
12 498.798 132.326 94.8111 135.094 173.612 422.841 
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Table C.3: 30% NAT Density Results, Hops 

Peer SR SR AR AR DR DR 
Lifetime (h) Hops so Hops so Hops so 
.5 6.49940 1.76723 2.67211 2.74257 2.94197 3.12799 
1 6.50743 1.75905 2.66162 2.72272 2.94539 3.13031 
2 6.50580 1.76554 2.65252 2.71101 2.94310 3.12971 
4 6.50098 1.76589 2.66021 2.71001 2.95678 3.13533 
6 6.50325 1.76435 2.66102 2.70967 2.95913 3.13714 
8 6.50266 1.75981 2.65728 2.70565 2.95549 3.13409 
12 6.50181 1.76632 2.65906 2.70682 2.95816 3.13631 

Table C.4: 30% NAT Density Results, Time 

Peer SR SR AR AR DR DR 
Lifetime (h) Time (ms) so Time (ms) so Time (ms) so 
.5 498.493 133.001 194.226 294.647 439.439 653.114 
1 499.240 132.402 181.562 256.432 439.974 653.431 
2 499.099 132.885 174.612 233.819 439.415 653.239 
4 498.598 132.900 171.938 221.655 442.214 654.575 
6 498.848 132.791 171.030 217.191 442.751 654.800 
8 498.816 132.453 170.176 214.697 442.043 654.417 
12 498.695 132.935 170.137 212.612 442.650 654.679 

Table C.S: 60% NAT Density Results, Hops 

Peer SR SR AR AR DR DR 
Lifetime (h) Hops so Hops so Hops so 
.5 6.49887 1.76476 4.35354 3.07188 4.89498 3.46512 
1 6.50345 1.76057 4.33448 3.04819 4.90436 3.46519 
2 6.50475 1.76177 4.31725 3.03694 4.90074 3.46669 
4 6.50404 1.76077 4.32194 3.02878 4.91503 3.46447 
6 6.50739 1.76107 4.35833 3.02458 4.96041 3.46057 
8 6.50743 1.76918 4.32680 3.02903 4.92452 3.46761 
12 6.50333 1.75862 4.32194 3.02313 4.92083 3.46309 

Table C.6: 60% NAT Density Results, Time 

Peer SR SR AR AR DR DR 
Lifetime (h) Time (ms) so Time (ms) so Time (ms) so 
.5 498.392 132.811 359.306 354.274 958.468 700.610 
1 498.786 132.503 332.946 302.436 960.977 700.496 
2 499.028 132.604 318.542 270.479 959.862 700.741 
4 498.906 132.524 311.626 252.006 964.146 700.156 
6 499.219 132.552 312.537 245.480 977.954 698.644 
8 499.393 133.172 308.576 242.431 966.677 700.188 
12 498.771 132.356 307.221 238.661 966.040 699.945 
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Table C.7: 90% NAT Density Results, Hops 

Peer SR SR AR AR DR DR 
Lifetime (h) Hops SD Hops SD Hops SD 
.5 6.50527 1.76215 6.04064 2.38783 6.85348 2.57086 
1 6.50737 1.76068 6.00182 2.37000 6.85588 2.57009 
2 6.50955 1.76384 5.99576 2.35233 6.87357 2.55801 
4 6.49950 1.76467 5.95439 2.36317 6.83948 2.57899 
6 6.50115 1.76210 5.95897 2.35468 6.84906 2.57037 
8 6.50178 1.76267 5.95344 2.35776 6.84467 2.57536 
12 6.50630 1.77064 5.95067 2.36760 6.84282 2.58706 

Table C.8: 90% NAT Density Results, Time 

Peer SR SR AR AR DR DR 
Lifetime (h) Time (ms) SD Time (ms) SD Time (ms) SD 
.5 499.037 132.630 531.907 343.038 1193.05 468.177 
1 499.193 132.520 493.477 280.274 1193.05 468.163 
2 499.557 132.773 474.607 238.038 1193.05 465.397 
4 498.415 132.803 461.002 213.454 1193.05 469.620 
6 498.635 132.618 458.293 203.579 1193.05 468.055 
8 498.642 132.658 456.005 198.859 1193.05 469.007 
12 499.352 133.284 454.256 194.484 1193.05 470.528 

Table C.9: 95% NAT Density Results, Hops 

Peer SR SR AR AR DR DR 
Lifetime (h) Hops SD Hops SD Hops SD 
.5 6.51029 1.76470 6.32866 2.12729 7.18721 2.22679 
1 6.50853 1.76412 6.28603 2.10943 7.18848 2.22244 
2 6.50357 1.76367 6.25672 2.10276 7.18138 2.22447 
4 6.50259 1.76186 6.23507 2.10656 7.16981 2.23570 
6 6.50533 1.75987 6.23512 2.10244 7.17404 2.23269 
8 6.50098 1.76283 6.23961 2.09227 7.18242 2.21899 
12 6.50412 1.76074 6.23269 2.09878 7.17604 2.22938 

Table C.10: 95% NAT Density Results, Time 

Peer SR SR AR AR DR DR 
Lifetime (h) Time (ms) SD Time (ms) SD Time (ms) SD 
.5 499.586 132.835 561.840 334.467 1193.05 401.867 
1 499.345 132.783 521.244 269.554 1193.05 401.109 
2 498.950 132.747 499.258 225.487 1193.05 401.416 
4 498.890 132.613 487.175 198.465 1193.05 403.583 
6 498.963 132.453 483.571 187.914 1193.05 403.351 
8 498.671 132.678 482.324 181.902 1193.05 400.411 
12 498.958 132.526 479.986 176.691 1193.05 402.606 
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